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CONVERGENCE OF MESH ADAPTIVE DIRECT SEARCH
TO SECOND-ORDER STATIONARY POINTS *

MARK A. ABRAMSON T AND CHARLES AUDET ¥

Abstract. A previous analysis of second-order behavior of generalized pattern search algorithms for unconstrained and linearly
constrained minimization is extended to the more general class of mesh adaptive direct search (MADS) algorithms for general con-
strained optimization. Because of the ability of MADS to generate an asymptotically dense set of search directions, we are able
to establish reasonable conditions under which a subsequence of MADS iterates converges to a limit point satisfying second-order
necessary or sufficient optimality conditions for general set-constrained optimization problems.

Key words. nonlinear programming, mesh adaptive direct search, derivative-free optimization, convergence analysis, second-order
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1. Introduction. In this paper, we consider the class of derivative-free mesh adaptive direct search
(MADS) algorithms applied to general constrained optimization problems of the form,

min f(x), (1.1)
xXeQ
with f : R" — RU {4} andQ C R".

We treat the constraints by the “barrier” approach of applying the algorithm, rfottiot to the barrier
objective functionfq = f + Yq, wherelyq, is the indicator function fof2; i.e,, it is zero onQ, and infinity
elsewhere. If a point is not inQ, then we sefq(x) = o, andf is not evaluated. This is important in many
practical engineering problems in whidhs expensive to evaluate.

The class of MADS algorithms was introduced and analyzedlin [4], as an extension of generalized
pattern search (GPS) algorithms[[3] 21] for solving nonlinearly constrained problems. Rather than applying
a penalty function [18] or filtel [5] approach to handle the nonlinear constraints, MADS defines an additional
parameter that enables the algorithm to perform an exploration of the space of variables in an asymptotically
dense set of directions. Under mild assumptions, the Clarke [9] calculus together with three types of tangent
cones (hypertangent, Clarke tangent and contingent cones) are used to prove convergence of a subsequence
of iterates to a point satisfying certain first-order conditions for optimality. An implementable instance of
MADS is introduced in[[4], in which positive spanning directions are chosen in a random fashion and almost
sure convergence to a first-order stationary point is obtained. A similar first-order analysis is done in [15]
for the DIRECT algorithm.

This paper extends the MADS analysis to show convergence to points satisfying certain second-order
stationarity properties, in a manner similar to thai 0f [1] for GPS. An important result of [1], is that the iterates
produced by a GPS algorithm on a sufficiently smooth problem cannot converge in an infinite number of
steps to a local maximizer. We show here that it may, unfortunately, converge in an infinite number of steps
to a saddle point. The analysis in the present paper gives sufficient conditions under which a subsequence of
the iterates produced by a MADS algorithm converges to a strict local minimizer. The necessary optimality
condition is not based on any of the three tangent cones uséd in [4], but rather on the cone of feasible
directions.
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2 MARK ABRAMSON AND CHARLES AUDET

The paper is outlined as follows. The MADS algorithm is briefly described in Sdgtion 2, with first-order
properties restated in Sectiph 3. Secfipn 4 introduces the generalized Hessian [16] with some associated
properties, followed by necessary and sufficient second-order optimality conditions and convergence results.
Section[$ provides some examples to illustrate the strength of these results, and [Section 6 offers some
concluding remarks.

Notation. R, Z, andN denote the set of real numbers, integers, and nonnegative integers, respectively.
For any sef§ int(S) denotes its interior, and (@) its closure. For any matriR, the notatiora € A means
thata is a column ofA. Forx € R" ande > 0, we denote by (X) the open bally e R": |ly—X|| < €}. We
say thatf is C11 nearx if there exists an open s&tcontainingx such thatf is continuously differentiable
with Lipschitz derivatives for every point iB. The reader is invited to consult [16] for a discussion and
examples oL functions.

2. Mesh Adaptive Direct Search. Like GPS methods, each iterati@mof a MADS algorithm is char-
acterized by two steps — an optios@ARCHstep and a locatoLL step, in whichfg is evaluated at specified
points that lie on a mesh. The mesh is constructed from a finite fixed sgt directionsD C R" scaled
by a mesh size paramet&f' > 0. The directions form a positive spanning set [1i4].( nonnegative linear
combinations oD must sparR"), and each directiod € D, must be constructed as the prodGz where
G € R™"is a nonsingular generating matrix, and Z" is a vector of integers.

The following definition, taken from [4] and|[5], precisely defines the current mesh so that all previously
visited points lie on the current mesh.

DEFINITION 2.1. At iteration k, thecurrent meslis defined to be the following union:

M= |J {x+ADz:ze N},
XeS

where § is the finite set of points where the objective function f had been evaluated by the start of iteration
k, and g is a finite set of initial feasible points.

In both theseARCHandPOLL steps, the algorithm seeks to find iamproved mesh point.e., a point
y € M for which fq(y) < fa(x), wherex is the current iterate or incumbent best iterate found thus far.

The searRcH step allows evaluation ofy at any finite set of mesh points. Any strategy may be used,
including none. This is more restrictive than the frame methods of Coope and [Price [12], but it helps to
ensure convergence without a sufficient decrease condition or any other assumptions on mesh directions.
The seaRCH step adds nothing to the convergence theory, but well-chesercCH strategies can greatly
improve algorithm performance (sée[[2| 6l 7], 19]).

In the POLL step, fq is evaluated at points adjacent to the current iterate in a subset of the mesh di-
rections. Unlike GPS, the class of MADS algorithms has a second mesh parmfﬁateﬂed thepoll size
parametey which satisfied\]' < AP for all k, and also

limAY =0« lim AE = 0 for any infinite subset of indicds. (2.1)
keK keK

Under this construction, GPS methods now become the specific MADS instance inAyhichf = A,
The set of points generated in theLL step is called drame with x referred to as th&ame center
These terms are now formally defined as follows:
DEFINITION 2.2. At iteration k, theMADS frameis defined to be the set:

Pc= {x+AFd:de Dy} C M,

where [ is a positive spanning set such that for each By,
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e d =~ 0can be written as a nonnegative integer combination of the directions in D :
d = Du for some vector & N™ that may depend on the iteration number k
e the distance from the frame centgrto a poll point x + Af'd is bounded by a constant times the
poll size parameter A"||d|| < AP max{||d’|| : d’ € D}
¢ limits (as defined in Coope and Pride |11]) of the normalized setai® positive spanning sets.
In GPS, the set of directior3y used to construct the frame is a subset of the finit®sdthere is more
flexibility in MADS. In [4], an instance of MADS is presented in which the closure of the cone generated by

the setJy_; {H%H :de Dk} equalsR". In this case, we say that the set of poll directionasgmptotically
densen R".

Figur illustrates typical GPS and MADS frame®&husing the standardZoordinate directions.
In each case, the medly is the set of points at the intersections of the horizontal and vertical lines. The
thick lines delimit the points that are at a relative distance equal to the poll size parm&&m the frame
centerxc. In MADS, the mesh size parametsf' is much smaller than the poll size parameter; this allows
many more possibilities in the frame construction.

led P
o7
7 TR (2 R % P
T
p*
A GPS frame A MADS frame

Fic. 2.1.GPS and MADS frameg P {pt, p?, p°, p*} around the frame centegxwith the same poll size paramei}.

If the POLL step fails to produce an improved mesh polfatis said to be aninimal framewith minimal
frame center x If either theSEARCH or POLL step is successful in finding an improved mesh point, the
improved mesh point becomes the new current itefatee Q, and the mesh is either retained or coarsened.
If neither step is successful, then the minimal frame center is retained as the currentiierate { = Xx)
and the mesh is refined.

Rules for refining and coarsening the mesh are as follows. Given a fixed rational nrumiesnd two
integersv~ < 1 andw* > 0, the mesh size parameilff is updated according to the rule,

m  _ Wieam
Dicyq = THD

{0,1,...,wt} if an improved mesh point is found

{w-,w=+1,...,—1} otherwise. (2.2)

for somewy € {
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The class of MADS algorithms is stated formally as follows:
A GENERAL MADS ALGORITHM

e INITIALIZATION : Letxg € Q, setAg > A7 > 0. Set the iteration countérto 0.

e SEARCH AND POLL STER Perform theseARCHand possibly theoLL steps until an improved mesh poj|nt
X¢+1 is found on the mesM (see Definitiof 2]1).
— OPTIONAL SEARCH Evaluatefq on a finite subset of trial points on the medh.
— LocaL poLL: Evaluatefg on the frameR (see Definition 22).

e PARAMETER UPDATE UpdateA} ; according to[(ZP), antllf+l according to[(Z]1). Increade— k+1
and go back to theEARCHandPOLL step.

3. Existing First-Order Stationarity Results. Before presenting new results, we reproduce known
convergence properties of MADS, originally published[ih [4]. All results are based on the following as-
sumptions:

Al. Afeasible initial pointxg is provided.

A2. The initial objective function valué (Xp) is finite.

A3. All iterates{x} generated by MADS lie in a compact set.

Under these assumptions, Audet and Derinis [4] prove that

liminf Af = liminf A" = 0.
k— 00 k— 00
This ensures the existence of infinitely many minimal frame centers, A[foaly shrinks when a minimal
frame is found. The following definition, taken from [4], is needed for later results.
DEFINITION 3.1. A subsequence of the MADS iterates consisting of minimal frame cefitgfg:k

for some subset of indices K, is said to beefining subsequendé{Alf}keK converges to zero.

Letx be the limit of a convergent refining subsequencimif Hg—i” exists for some subsetd K with
poll direction d; € Dy, and if % + Af'dk € Q for infinitely many ke L, then this limit is said to be gefining
directionfor X.

Existence of refining subsequences for MADS was proved in [4]. The following four definitibins! [9, 17,
20] are needed in the main theorems.

DEFINITION 3.2. A vector ve R" is said to be ehypertangent vectdo the setQ C R" at the point
x € Q if there exists a scalag > 0 such that

y+twe Q forally e QNBg(x), weBg(v) and 0<t <E€. (3.1)
The set of hypertangent vectorsQaat X is called thehypertangent cone tQ atx and is denoted by(';\' (X).

DEFINITION 3.3. A vector ve R" is said to be &Clarke tangent vectdo the setQ C R" at the point
x € cl(Q) if for every sequencéyy} of elements of2 that converges to x and for every sequence of positive
real numbers{tc} converging to zero, there exists a sequence of vedtog$ converging to v such that
Yk +tkwk € Q. The set 'g'(x) of all Clarke tangent vectors tQ at x is called theClarke tangent cont Q
at x.

DEFINITION 3.4. A vector ve R" is said to be @angent vectoto the seQQ C R" at the point xc cl(Q)
if there exists a sequendgy} of elements of2 that converges to x and a sequence of positive real numbers
{A} for which v= limAk(yk — X). The set °(x) of all tangent vectors t& at x is called thecontingent
cone(or sequential Bouligand tangent cdnie Q at x.

DEFINITION 3.5. The seQ is said to beegularat x if T (x) = T$°(x). In addition to these definitions,
we add the following clarifying remarks, due to Clarké [9] unless otherwise noted:
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e Any convex set is regular at each of its points.
e Both T§O(x) andTS!(x) are closed, and boff§' (x) and T4 () are convex.
o 15 () C T5'(x) S TS(X).
e Rockafellar[20] showed that, T} (x) is nonemptyTh (x) = int(TS'(x)), and thereforeT§! (x) =
cl(TH (x).

In order to establish the results of this section, we apply a generalization of the Clarke [9] directional
derivative, as presented in [17], in which function evaluations are restricted to points in the domain. Specifi-
cally, the Clarke generalized directional derivative of the locally Lipschitz fundtiatx € Q in the direction
v e R"is defined by

fly+tv) - f(y).

fo(xv) = limsup n

y—X yeQ
t]0, y+tveQ

(3.2)

The next definition, also from [4], provides some nonsmooth terminology for stationarity.

DEFINITION 3.6. Let f be Lipschitz neat € Q. ThenX is said to be a Clarke, or contingent stationary
point of f overQ, if f°(X;v) > 0 for every direction v in the Clarke tangent cone, or contingent cong, to
at X, respectively.

In addition, X is said to be a Clarke, or contingent KKT stationary point of f ofeif —[1f(X) exists
and belongs to the polar of the Clarke tangent cone, or contingent cofeat, respectively.

If Q =TR"orXlies in the interior ofQ, then a stationary point as described by Definifion} 3.6 meets the
condition thatf°(X;v) > 0 for all v € R". This is equivalent to & df (X), the generalized gradient dfat
X [9], which is defined by

of (x) := {seR": f°(x;v) > V'sforallve R"}.

The functionf is said to bestrictly differentiableat x if the generalized gradient dfatx is a singletonj.e.,
of(x) ={0f(x)}.

We now restate the main results from [4]. Theofen) 3.7 is a directional result obtained under very mild
assumptions, and Theor¢m 3.8, the main result of this section, is a restatement of four different theorems
found in [4].

THEOREM 3.7. Let f be Lipschitz near a limit € Q of a refining subsequence, amthg'z" (X) be a
refining direction fork. Then the generalized directional derivative of Kat the direction v is nonnegative,

i.e., f°(Xv) > 0.

THEOREM 3.8. LetX € Q be the limit of a refining subsequence, and assume gﬁlaf()'l';«é 0 and the

set of refining directions is dense ig'TR).

1. If f is Lipschitz neaK, thenX is a Clarke stationary point of f of.

2. If f is strictly differentiable aik, thenx is a Clarke KKT stationary point of f of.
Furthermore, ifQ is regular atX, then the following hold:

1. If f is Lipschitz neaik, thenX is a contingent stationary point of f d®.

2. If f is strictly differentiable aRk, thenx is a contingent KKT stationary point of f @h

4. New Second-Order Stationarity Results.This section contains second-order convergence theory
for MADS. In Sectior{ 4.]l we recall the definition of the generalized Hessian and identifies some useful
properties. In Sectidn 4.2 we present second-order necessary and sufficient conditions for optimality for set-
constrained optimization problems. Finally, in Secfior} 4.3, we establish conditions under which convergence
of MADS iterates to a point satisfying second-order necessary and sufficient conditions is achieved.
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4.1. Generalized Second-Order DerivativesBefore proving convergence to second-order points, we
present nonsmooth notions of second derivatives and introduce second-order optimality conditions. Gen-
eralized second-order directional derivatives are developed in [10] ahd [16], consistent with the [Clarke [9]
calculus for first order derivatives. In this paper, we follow the Hirriart-Urreityal. [16] definition of a
generalized Hessian, given as follows.

DEFINITION 4.1. Let g: R" — R be C-! near xe Q C R". Thegeneralized Hessiaof g at x, denoted
by 9%g(x), is the set of matrices defined as the convex hull of the set

{AeR™": there exists x— x with g twice differentiable atpand 02g(xc) — A}.

By construction,d?g(x) is a nonempty, compact, and convex set of symmetric matrices [16]. The
functiongis said to bewice strictly differentiablatx if the generalized Hessian is a singletoa;, 4%g(x) =
{?g(x)}. Furthermore, as a set-valued mappiag; 0°g(x) has two key properties, also identified in [16],
which are necessary to establish optimality conditions in the next section.

e 0°g(x) is alocally boundedset-valued mapping:
Given a matrix norn| - ||, there exists aB > 0 andn € R such that

sup{[|A| : A€ d°g(y),y € Be(x)} < n;

e 0°g(x) is aclosedset-valued mapping:
If x« — x andAx — Awith A, € 8%g(x¢) for all k, thenA € 9%g(x).
The following second-order Taylor series result also comes from [16].
THEOREM4.2. Letg: R" — R be C! in a open set U- R", and let[a,b] € U be a line segment. Then
there exist an xc]a, b[ and a matrix 4 € 8%f (x) such that

g(b) = g(a)+ (b—a) Of(a) + %(b— a)" A(b—a).

In the next section, we apply this result to feasible points that may lie on the boundary\é are able to
do this because our assumptions on the local smoothndsarefindependent a®.

4.2. Second-Order Optimality Conditions. Second-order necessary and sufficient optimality condi-
tions for constrained problems are traditionally expressed in terms of the Lagrangian function. However, our
use of the barrier approach in handling constraints provides no useful information about the constraint gradi-
ents, and thus prevents us from proving anything with respect to traditional optimality conditions. Therefore,
instead of dealing with the Lagrangian function, we extend optimality conditions for set-constrained prob-
lems (see 8] for further discussions).

We now establish Clarke-based second-order necessary and sufficient conditions for set-constrained
optimality. The proof for the former is very similar to one found|inl[16] for unconstrained problems, the
only difference being the first-order condition satisfied by the local minimizer. It is expressed in terms of
feasible directions, formally given in Definitipn 4.3.

DEFINITION 4.3. The direction \e R" is said to be feasible fd2 c R" at x € Q if there exists ag > 0
for which x+tv e Q for all 0 <t < €. The set of feasible directions f@rat xc Q is a cone and is denoted
by T5 ().

It follows immediately thaff ! (x) C T (x) € TQC:O(X) for anyx € Q. Moreover, ifTH (x) # 0 for some
x € Q, and ifQ is regular ak, then c[TH (x)) = cl(T (X)) = TS (x) = T§(x). However, without regularity
it is possible that either of the following holds:
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o TS'(X) Cint(TS (x)): e.g.,ifQ={(a,b) e R2:a> 0 orb> 0}, thenTS'(0,0) =R2 andT§ (0,0) =
Q,

o cl(TE(x) Cint(TS'(X)): e.g., fFQ=R?\{(—£,b) e R?:beR,k=1,2,...}, thenT§(0,0) =
{(a,b) € R2: a> 0} andT§'(0,0) = R2.

THEOREM 4.4 (Second-order necessary condition for set-constrained optimalitgt) X € Q be a
local solution of [(L.]t). If f is & near x, then any feasible direction& T§ (x*) for which V Of (x*) = 0
satisfies VAv > 0 for some Ac 9% f (x*).

Proof. Letv € R" be a feasible direction that satisfids]f (x*) = 0, and consider the sequenjog}, where
X = X*+ %v. It follows thatxx € Q whenk is sufficiently large. Then by second-order Taylor series in a
neighborhood of the local minimize#, we have for each sufficiently large

L) Tvs T A — LT
(DI VS aV AV = S5V A, (4.1)

0 < f(x)—f(x) =

whereA € 0 (x) for somexi €]x*, x|.

Sinced?f is locally bounded angl — x*, the sequencéAy} is locally bounded and thus possesses an
accumulation poinf. Furthermore, sincé?f is a closed set-valued mapping, we héve 8 f (x*). Taking
limits in (4.1) leads to/" Av> 0. =

Theoren{ 4.4 applies to the set of hypertangent vectors as well as feasible directions since the set of
feasible directions contains the hypertangent cone. However, this necessary condition does not necessarily
hold for directions in the Clarke tangent or contingent cone, as the following example shows.

EXAMPLE 4.5. Consider the quadratic optimization problem, in which k2 — R is defined by
f(a,b) = —(a2+b?), andQ = {(a,b) € R?: @+ (b— 1) < 1}. The optimal solution is a0, 2), where

T8(0,2) = T5(0,2) = {(v1,v2) : v < 0} and T§'(0,2) = T$°(0,2) = {(v1,V2) : Vo < 0}.

The direction v= (1,0)T € T§'(0,2) = T§°(0,2), is not a feasible direction and makes a zero inner product
with 0f(0,2) = (0,—4)T, but the Hessian matrix is given by

2 -2 0
o0z - [ 2 2],
which yields V0% (0,2)v= —2 < 0.

THEOREM 4.6 (Second-order sufficient condition for set-constrained optimalityet X € Q be a
contingent stationary point for the optimization problem define@ (1.1), and supposéhttet) B~ 0 and
that Q is convex near If f is C11 near x, and if V' Av> 0 for all matrices Ac *f (x*) and all nonzero
tangent directions & T§°(x) that satisfy VO (x*) = 0, then X is a strict local solution 01).

Proof. The proof is by contraposition. Suppose tikais not a strict local minimizer. Then there exists a
sequencéyi} C Q (with yi # X*) converging toc* satisfyingf (yx) < f(x*) for all k. By taking subsequences
if necessary, we can assume that the sequéngkwith wy, = % converges to some vecteE R".

Local convexity ofQ nearx* implies thatv andwy are contingent directions for al > ¢, for some
integer? > 0. Moreover, sincg* is assumed to be a contingent stationary point, and dinseontinuously
differentiable, therv' Of (x*) > 0 andw Of (x*) > O for all k > ¢. However, sincef (yi) < f(x*) for all k,
thenv' Of (x*) = 0.

Theore on Taylor series ensures that for daztv, there exists some matri € 02f (x¢) with
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Xk €]X*,yk[ such that
0 > fyi)— () = (y—x)TOf () + %(yk— X*) T Ay —X)
> 200X A ) @2

Now, sincexq — x*, and sinced?f (x*) is a closed locally bounded set-valued mapping, then there exists an
accumulation poinA € 0 f (x*) of the sequencéA,}. Dividing ) by ||y — x*||? and taking limits leads
to 0> v Av, wherev # 0 belongs tar§°(x*) and satisfies Of (x*) = 0. .

The previous theorem requires as an assumption that tleisébcally convex. The following example
shows that regularity aR is not sufficient to guarantee a local minimizer.

EXAMPLE 4.7. Consider the quadratic optimization problem, in which R?2 — R is defined by
f(a,b) = a®>+2b, andQ = {(a,b) € R?: 2a? +-b > 0}. The solution kX = (0,0) is a contingent stationary
point, andQ is regular at x since

TS (%) = T§°(X) = {(v1,V2) : v2 > O}.

The vector, v= (1,0)T € T§O(x) satisfies VO f (x) = 0 and V 0 (x)v = 2 > 0. However,(g, —€2) belongs
to the strict interior ofQ for all € # 0, and f(g, —£2) = —€2 < 0= f(x).

4.3. Second-Order Stationarity Results for MADS. The next two results are the main contributions
of this paper. The first theorem establishes convergence of a subsequence of MADS iterates to a point
satisfying the second-order necessary condition identified in Theorém 4.4, and the second establishes the
sufficiency conditions of Theorem 4.6.

THEOREM4.8. Let f be 1 near a limitg of a refining subsequence, and assume tﬁb(b?f;é 0 and
thatQ is regular neark. If the set of refining directions is dense iff (%), thenx satisfies the second-order
necessary condition for set-constrained optimality.
Proof. Letv € R" be any nonzero feasible direction that satisfit8 f (%) = 0, and suppose, by way of
contradiction, thav™ Av < O for all matricesA € 82f (%). Sinced?f (X) is nonempty and compact, andf
is a closed set-valued mapping, there exists semed such thaw" Av < 0 for all A € 3%f(x) and for all
X € Bg(X).

LetK denote the set of indices of unsuccessful iterations. Regularidy tifgether with the assumption
that T} (R) # 0 guarantee that €TH (X)) = T§°(R) = cl(TE (R)). Therefore, the denseness of the set of

refining directions inTQH (X) ensures the existence P }kek converging tov with wi = Hg—tu, dx € Dy for
eachk € K. Taylor series yields

1

f(xc+0Pdk) — F(x) = APdY OF (%) + E(AE)ZdE Aldy, (4.3)
1

f (X — BPdk) — f (%) = —APdg OF () + > (AP)%di A dk (4.4)

whereA” € 9%f(x™) for somext €]xq, X« +Afd[ andA, € 02f (x~) for somex~ €]xc, % — Afdk[. Since
Ay — 0" andx — X, there is a subsequence for whih converges to somé* € 021 (), andA, converges
to someA™~ € 92f(X). Moreover, sinc@?f () is a convex set, theA= (A" +A~) € 02f(X).

Adding (4.3) and[(4]4) and substitutinig = ||d||w yields

L[ ARk — 1) 0% = Ackwi) — 705

.
= W AWk, (4.5)
A A dk| O k| k
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whereA, = %(A,f +A,). Furthermore, sincey — v andv' Av < 0, there existy < 0 such thawIAkwk <

y < 0 for all sufficiently largek € K, which forces the left-hand side §f (4.5) to also be negative and bounded
away from zero. But sincey € Dy for all sufficiently largek € K, we have thaf (xc) < f (xc+APdy), which
makes nonnegative the first term of the left-hand sidg of (4.5) (for all sufficiently kagg€). Thus it must

be the case that

f (X — A8 cwho) — (%)
A7 ok

<y<o0 (4.6)

for all sufficiently largek € K. Taking the limit of ) a& — o in K yieldsOf(R)T(—v) <0, orOf (%) Tv >
0, which contradicts the assumption that(X)"v = 0. "
The following result shows that the sufficient conditions of Thedrerh 4.6 can be satisfied by a subse-
quence of MADS iterates, given stronger hypotheses than those of Theoiem 4.8.
THEOREM4.9. Let f be twice strictly differentiable at a lim#t of a refining subsequence, and assume
that T} (X) # 0, Q is convex neak, and?f () is nonsingular. If the set of refining directions is dense in
TS (%), theng is a strict local minimizer of f o®.
Proof. Sincef is twice strictly differentiable ax, 92f (R) = {0?f(X)}. Thus, it follows from Theore@.S
thatv' 02 f (X)v > O for all feasible directions € T§ (X) satisfyingd f () Tv= 0. But since1?f(X) is assumed
to be nonsingular, this inequality is strict. Furthermore, by The¢rein 3.8 and the smoothfiessaof;, X is
a first-order contingent stationary point. Thus the hypotheses of Th¢orém 4.6 are satisfied, and the result is
proved. =
Clearly, these are strong results for a direct search method. However, in practice, achieving denseness
of the refining directions in the hypertangent cone (a key assumption) requires increasingly more poll di-
rections per iteration. To overcome this problem, an implementable instance of MADS is introduced in [4],
called LTMADS, in which the positive spanning directions used at each iteration are limited in number, but
chosen randomly from among the increasing number of possible poll directions. While this is not difficult
to implement, the drawback is that denseness of the refining directions is only achiecest surely(i.e.,
with probability one). Thus, in practice, the convergence results proved both here and in [4] are only at-
tainedalmost surely This is a weaker measure of convergence, but it works well in practice [4]. We apply
LTMADS to one of the numerical examples in the next section.

5. Examples. Second order results for GPS are presentedlin [1]. They are not as strong as those
presented here for MADS. In this section, we illustrate this difference through a series of three bound con-
strained or unconstrained quadratic exampleR4n The first [1] illustrates how GPS, but not MADS, can
converge to a local maximizer. The second shows how GPS, but not MADS, converges in an infinite number
of iterations to a saddle point. Finally, since the second example requires an uncommon set of parame-
ter choices, we recall a simpler numerical example [1] with more realistic parameter choices to show how
MADS avoids a saddle point having narrow cones of descent, which GPS with reasonable parameter choices
does not.

5.1. An example where GPS stalls at a global maximizer for a minimization problemConsider
the unconstrained problem of minimizing the functibfa, b) = —(ab)?, subject to—2 < a,b < 2, with a
starting point at0,0), the global maximizer. Using standard coordinate directions and their negatives as
poll directions, GPS will stall at the starting point without moving. This is consistent with the result proved
in [1], that convergence of GPS to a maximizer may only occur in a finite number of iterations, and when
f is locally constant along all feasible poll directions. On the other hand, any reasonable implementation of
MADS will generate more directions (a dense set in the limit), which is all that is needed to avoid stalling at
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the maximizer. This is consistent with Theorem| 4.8, which ensures that stalling at a local maximizer is not
possible for MADS, provided the hypotheses are met.

5.2. An example where GPS converges in an infinite number of iterations to a saddle poin€on-
sider the unconstrained quadratic optimization problem in which the polynomial objective funcR8nsn
f(a,b) = a® +3ab+ b2 The point (0,0) is a saddle point, at which the descent directions lie in the cone
generated bp = 1b(—3+ V).

We apply an instance of GPS whddg = D = {e;, e, —e1, —€2} is constant throughout all iterations.
On iterations that fail to improve the incumbent, the mesh size parameter is divided by 16. On successful
iterations that follow an unsuccessful one, the mesh size is kept constant, and on other successful iterations,
the mesh size parameter is multiplied by 8. Thus, the GPS paramete@-aile(the identity matrix),
Z=D=][l; -], 1=2,w =—4andw™ = 3.

Furthermore, we use an em@gARCHand an opportunistoLL, i.e., an iteration terminates as soon as
an improved mesh point is generated. Moreover, when the iteration nikmbedulo 3 is 1, theeOLL step
first evaluatesy — Axey, and otherwise, theoLL step first evaluates — Axe;. The order in which the other
poll points are explored is irrelevant to this example.

The initial parameters arg = (1,1) with f(xo) = 5 andAo = 8. Figure 5.1 displays the first iterates
generated by the algorithm. The figure also displays some level séts of

FiG. 5.1.Initial GPS iterates

We next show that the entire sequence of iterates converges to the origin. This happens because this
instance of GPS never generates any trial points in the cone Whsraegative. It either jumps over the
cone, which results in an unsuccessful iteration, or take a small step which falls short of reaching the cone.

For example, at iteratiok = 9, the trial poll points ar¢2,1),(1,2),(—£,1) and(1,—§). These four trial
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points are represented by the symboain the figure.
ProPOSITIONS.1. For any integer/ > 0, the GPS iterates are such thajy x= Xz;11 = (24,2*‘),
Xarr2 = (274,2707Y), andAgy = 237, Agps1 = Dgpyp = 27071
Proof. The proof is done by induction. The result is true for the initial iteration 0. Suppose that
iterationk = 3¢ is initiated with A, = 23-¢ andx = (27¢,27¢). The current objective function value is
f(x) =5x47". TabI details the objective function values at the poll points for iteraktien3/, 3¢ + 1
and 3+ 2. Trial points that improve the incumbent appear in shaded boxes. This table shows that the iterate

l k ‘ Xk ‘ A% ‘ Trial poll points aty = (ax, bk) ‘
3¢ (27,279 28t f(ak+Ak b) = f(9x 276,27 =109x 4~ = f(27¢,9x 271)) = f(ax, bk + L)
flax—Di,be) = F(=7x 270,270 =29x 4~ = §(270, =7 x 271)) = f(ay, b+ A)
3+1 (24270 |27 | fagbk—A) = f(27 4270 ) =11x 4 42
342 | (202700 [ 2760 flag—Agbe) = f(2 61,261 =5x 41

30+ | (2t | 22t

TABLE 5.1
Iterations k=3¢ to k= 3(¢+1)

for k=3(¢+1)is (2771,27~1) and that the corresponding mesh size parameteris This concludes
the proof. =

The previous proposition shows that the entire sequence of iterates generated by GPS converges to the
saddle poin{0,0), which is not a local minimizer. Theoregm 4.8 ensures that any MADS instance with an
asymptotically dense set of refining directions will not converge to that saddle point, since the necessary
optimality condition is not satisfied:" = (—1,1) is a feasible direction for whict' 0 (0,0) = 0 but

vID2£(0,0)v = V' [g S}VT = -2

is negative.

5.3. An example where GPS reaches and stalls at a saddle poir€onsider the bound constrained

problem,
min _ f(a,b) = 99?2 —20ab+b? = (9a—b)(11la—b).
—2<ab<2

At the saddle point0, 0), directions of descent lie only in the narrow cone formed by the lnes9a and
b = 11a. Thus to avoid stalling at the saddle point, GPS or MADS would have to generate a feasible iterate
that lies inside this cone (see Fig{ire]5.2). In this examples#arcHstep is empty and the initial point is
chosen to b¢1.01, 0.93). This starting point is chosen to be non-integral to make it more difficult for GPS
to reach the integral poirf0,0). Both GPS and MADS were run using the NOMAD software package [13]
with primarily default settings.

GPS (using the standard coordinate directions and their negatives as poll directions) reaches the saddle
point at the 358th function evaluation with a poll size parameter of10This implies that, regardless of
the termination tolerance chosen, it stalls there because none of the poll directions are directions of descent.
On the other hand, NOMAD's implementation of LTMADS successfully moved off of the saddle point to
reach a local minimizer in 100 of 100 runs. This is again consistent with Th.m 4.8y5iacfl, 10) is
a feasible direction for whick" O (0,0) = 0 but

T2 7] 198 -20| 1
va(O,O)v_v[20 5 vi = =2
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Cones of Negative Curvature

_0.57 4

FiG. 5.2. For f(a,b) = (9a—b)(11a—b), the cones of descent at the saddle point (0,0) are shown in the shaded area between
the lines b=9a and b= 11a.

is negative.

6. Concluding Remarks. The theoretical results presented here establish strong convergence results
for MADS. In spite of MADS being a derivative-free method, we have shown convergence of a subsequence
of MADS iterates to a second-order stationary point under conditions weaker than standard Newton assump-
tions; namely, thaf is continuously differentiable with Lipschitz derivatives near the limit point. Moreover,
if Q is locally convex and twice strictly differentiable near the limit point, then the limit point is a local
minimizer for [11).

In Section b, we provided examples to illustrate the superior convergence properties of MADS over
GPS. However, since our implementation involves random selection of positive spanning directions, the
convergence properties established in Segtioh 4.3 are achieved, in practice, with probability one. We envi-
sion a future area of research being the clever enumeration of these directions so that the stronger type of
convergence is retained by an implementable instance of the algorithm. Specifically, we would like to deter-
ministically generate an asymptotically dense set of directions in such a way that, after any finite number of
iterations, the directions used by the algorithm are uniformly spaced (or as close to it as possible).
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