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Abstract. A previous analysis of second-order behavior of generalized pattern search algorithms for unconstrained and linearly
constrained minimization is extended to the more general class of mesh adaptive direct search (MADS) algorithms for general con-
strained optimization. Because of the ability of MADS to generate an asymptotically dense set of search directions, we are able
to establish reasonable conditions under which a subsequence of MADS iterates converges to a limit point satisfying second-order
necessary or sufficient optimality conditions for general set-constrained optimization problems.
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1. Introduction. In this paper, we consider the class of derivative-free mesh adaptive direct search
(MADS) algorithms applied to general constrained optimization problems of the form,

min
x∈Ω

f (x), (1.1)

with f : Rn→ R∪{+∞} andΩ⊆ Rn.
We treat the constraints by the “barrier” approach of applying the algorithm, not tof , but to the barrier

objective functionfΩ = f + ψΩ, whereψΩ is the indicator function forΩ; i.e., it is zero onΩ, and infinity
elsewhere. If a pointx is not inΩ, then we setfΩ(x) = ∞, and f is not evaluated. This is important in many
practical engineering problems in whichf is expensive to evaluate.

The class of MADS algorithms was introduced and analyzed in [4], as an extension of generalized
pattern search (GPS) algorithms [3, 21] for solving nonlinearly constrained problems. Rather than applying
a penalty function [18] or filter [5] approach to handle the nonlinear constraints, MADS defines an additional
parameter that enables the algorithm to perform an exploration of the space of variables in an asymptotically
dense set of directions. Under mild assumptions, the Clarke [9] calculus together with three types of tangent
cones (hypertangent, Clarke tangent and contingent cones) are used to prove convergence of a subsequence
of iterates to a point satisfying certain first-order conditions for optimality. An implementable instance of
MADS is introduced in [4], in which positive spanning directions are chosen in a random fashion and almost
sure convergence to a first-order stationary point is obtained. A similar first-order analysis is done in [15]
for theDIRECT algorithm.

This paper extends the MADS analysis to show convergence to points satisfying certain second-order
stationarity properties, in a manner similar to that of [1] for GPS. An important result of [1], is that the iterates
produced by a GPS algorithm on a sufficiently smooth problem cannot converge in an infinite number of
steps to a local maximizer. We show here that it may, unfortunately, converge in an infinite number of steps
to a saddle point. The analysis in the present paper gives sufficient conditions under which a subsequence of
the iterates produced by a MADS algorithm converges to a strict local minimizer. The necessary optimality
condition is not based on any of the three tangent cones used in [4], but rather on the cone of feasible
directions.
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2 MARK ABRAMSON AND CHARLES AUDET

The paper is outlined as follows. The MADS algorithm is briefly described in Section 2, with first-order
properties restated in Section 3. Section 4 introduces the generalized Hessian [16] with some associated
properties, followed by necessary and sufficient second-order optimality conditions and convergence results.
Section 5 provides some examples to illustrate the strength of these results, and Section 6 offers some
concluding remarks.

Notation. R, Z, andN denote the set of real numbers, integers, and nonnegative integers, respectively.
For any setS, int(S) denotes its interior, and cl(S) its closure. For any matrixA, the notationa∈ A means
thata is a column ofA. Forx∈ Rn andε > 0, we denote byBε(x) the open ball{y∈ Rn : ‖y−x‖< ε}. We
say thatf is C1,1 nearx if there exists an open setScontainingx such thatf is continuously differentiable
with Lipschitz derivatives for every point inS. The reader is invited to consult [16] for a discussion and
examples ofC1,1 functions.

2. Mesh Adaptive Direct Search.Like GPS methods, each iterationk of a MADS algorithm is char-
acterized by two steps – an optionalSEARCHstep and a localPOLL step, in whichfΩ is evaluated at specified
points that lie on a mesh. The mesh is constructed from a finite fixed set ofnD directionsD ⊂ Rn scaled
by a mesh size parameter∆m

k > 0. The directions form a positive spanning set [14] (i.e., nonnegative linear
combinations ofD must spanRn), and each directiond ∈ D, must be constructed as the productGz, where
G∈ Rn×n is a nonsingular generating matrix, andz∈ Zn is a vector of integers.

The following definition, taken from [4] and [5], precisely defines the current mesh so that all previously
visited points lie on the current mesh.

DEFINITION 2.1. At iteration k, thecurrent meshis defined to be the following union:

Mk =
⋃

x∈Sk

{x+∆m
k Dz : z∈ NnD} ,

where Sk is the finite set of points where the objective function f had been evaluated by the start of iteration
k, and S0 is a finite set of initial feasible points.

In both theSEARCH andPOLL steps, the algorithm seeks to find animproved mesh point; i.e., a point
y∈Mk for which fΩ(y) < fΩ(xk), wherexk is the current iterate or incumbent best iterate found thus far.

The SEARCH step allows evaluation offΩ at any finite set of mesh points. Any strategy may be used,
including none. This is more restrictive than the frame methods of Coope and Price [12], but it helps to
ensure convergence without a sufficient decrease condition or any other assumptions on mesh directions.
The SEARCH step adds nothing to the convergence theory, but well-chosenSEARCH strategies can greatly
improve algorithm performance (see [2, 6, 7, 19]).

In the POLL step, fΩ is evaluated at points adjacent to the current iterate in a subset of the mesh di-
rections. Unlike GPS, the class of MADS algorithms has a second mesh parameter∆p

k , called thepoll size
parameter, which satisfies∆m

k ≤ ∆p
k for all k, and also

lim
k∈K

∆m
k = 0⇔ lim

k∈K
∆p

k = 0 for any infinite subset of indicesK. (2.1)

Under this construction, GPS methods now become the specific MADS instance in which∆k = ∆p
k = ∆m

k .
The set of points generated in thePOLL step is called aframe, with xk referred to as theframe center.

These terms are now formally defined as follows:
DEFINITION 2.2. At iteration k, theMADS frameis defined to be the set:

Pk = {xk +∆m
k d : d ∈ Dk} ⊂ Mk ,

where Dk is a positive spanning set such that for each d∈ Dk,
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• d 6= 0 can be written as a nonnegative integer combination of the directions in D :
d = Du for some vector u∈ NnD that may depend on the iteration number k
• the distance from the frame center xk to a poll point xk + ∆m

k d is bounded by a constant times the
poll size parameter :∆m

k ‖d‖ ≤ ∆p
k max{‖d′‖ : d′ ∈ D}

• limits (as defined in Coope and Price [11]) of the normalized sets Dk are positive spanning sets.
In GPS, the set of directionsDk used to construct the frame is a subset of the finite setD. There is more

flexibility in MADS. In [4], an instance of MADS is presented in which the closure of the cone generated by

the set
⋃∞

k=1

{
d
‖d‖ : d ∈ Dk

}
equalsRn. In this case, we say that the set of poll directions isasymptotically

densein Rn.
Figure 2.1 illustrates typical GPS and MADS frames inR2 using the standard 2n coordinate directions.

In each case, the meshMk is the set of points at the intersections of the horizontal and vertical lines. The
thick lines delimit the points that are at a relative distance equal to the poll size parameter∆p

k from the frame
centerxk. In MADS, the mesh size parameter∆m

k is much smaller than the poll size parameter; this allows
many more possibilities in the frame construction.

s
xk

s
p4

sp2

s
p3

s
p1

∆p
k

A GPS frame

s
xk

s
p2

sp1

s
p4

s
p3

∆m
k

A MADS frame

FIG. 2.1.GPS and MADS frames Pk = {p1, p2, p3, p4} around the frame center xk, with the same poll size parameter∆p
k .

If the POLL step fails to produce an improved mesh point,Pk is said to be aminimal framewith minimal
frame center xk. If either theSEARCH or POLL step is successful in finding an improved mesh point, the
improved mesh point becomes the new current iteratexk+1∈Ω, and the mesh is either retained or coarsened.
If neither step is successful, then the minimal frame center is retained as the current iterate (i.e., xk+1 = xk)
and the mesh is refined.

Rules for refining and coarsening the mesh are as follows. Given a fixed rational numberτ > 1 and two
integersw− ≤ 1 andw+ ≥ 0, the mesh size parameter∆m

k is updated according to the rule,

∆m
k+1 = τwk∆m

k

for somewk ∈
{

{0,1, . . . ,w+} if an improved mesh point is found
{w−,w−+1, . . . ,−1} otherwise.

(2.2)
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The class of MADS algorithms is stated formally as follows:
A GENERAL MADS ALGORITHM

• INITIALIZATION : Let x0 ∈Ω, set∆p
0 ≥ ∆m

0 > 0. Set the iteration counterk to 0.

• SEARCH AND POLL STEP: Perform theSEARCHand possibly thePOLL steps until an improved mesh point
xk+1 is found on the meshMk (see Definition 2.1).

– OPTIONAL SEARCH: EvaluatefΩ on a finite subset of trial points on the meshMk.
– LOCAL POLL: EvaluatefΩ on the framePk (see Definition 2.2).

• PARAMETER UPDATE: Update∆m
k+1 according to (2.2), and∆p

k+1 according to (2.1). Increasek← k+ 1
and go back to theSEARCHandPOLL step.

3. Existing First-Order Stationarity Results. Before presenting new results, we reproduce known
convergence properties of MADS, originally published in [4]. All results are based on the following as-
sumptions:

A1. A feasible initial pointx0 is provided.
A2. The initial objective function valuef (x0) is finite.
A3. All iterates{xk} generated by MADS lie in a compact set.

Under these assumptions, Audet and Dennis [4] prove that

liminf
k→+∞

∆p
k = liminf

k→+∞
∆m

k = 0.

This ensures the existence of infinitely many minimal frame centers, since∆m
k only shrinks when a minimal

frame is found. The following definition, taken from [4], is needed for later results.
DEFINITION 3.1. A subsequence of the MADS iterates consisting of minimal frame centers,{xk}k∈K

for some subset of indices K, is said to be arefining subsequenceif {∆p
k}k∈K converges to zero.

Let x̂ be the limit of a convergent refining subsequence. Iflimk∈L
dk
‖dk‖

exists for some subset L⊆ K with
poll direction dk ∈ Dk, and if xk +∆m

k dk ∈Ω for infinitely many k∈ L, then this limit is said to be arefining
directionfor x̂.

Existence of refining subsequences for MADS was proved in [4]. The following four definitions [9, 17,
20] are needed in the main theorems.

DEFINITION 3.2. A vector v∈ Rn is said to be ahypertangent vectorto the setΩ ⊂ Rn at the point
x∈Ω if there exists a scalarε > 0 such that

y+ tw∈Ω for all y ∈Ω∩Bε(x), w∈ Bε(v) and 0 < t < ε. (3.1)

The set of hypertangent vectors toΩ at x is called thehypertangent cone toΩ atx and is denoted by THΩ (x).

DEFINITION 3.3. A vector v∈ Rn is said to be aClarke tangent vectorto the setΩ ⊂ Rn at the point
x∈ cl(Ω) if for every sequence{yk} of elements ofΩ that converges to x and for every sequence of positive
real numbers{tk} converging to zero, there exists a sequence of vectors{wk} converging to v such that
yk + tkwk ∈Ω. The set TCl

Ω (x) of all Clarke tangent vectors toΩ at x is called theClarke tangent coneto Ω
at x.

DEFINITION 3.4. A vector v∈Rn is said to be atangent vectorto the setΩ⊂Rn at the point x∈ cl(Ω)
if there exists a sequence{yk} of elements ofΩ that converges to x and a sequence of positive real numbers
{λk} for which v= limk λk(yk− x). The set TCo

Ω (x) of all tangent vectors toΩ at x is called thecontingent
cone(or sequential Bouligand tangent cone) to Ω at x.

DEFINITION 3.5. The setΩ is said to beregularat x if TCl
Ω (x) = TCo

Ω (x). In addition to these definitions,
we add the following clarifying remarks, due to Clarke [9] unless otherwise noted:
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• Any convex set is regular at each of its points.
• BothTCo

Ω (x) andTCl
Ω (x) are closed, and bothTCl

Ω (x) andTH
Ω (x) are convex.

• TH
Ω (x)⊆ TCl

Ω (x)⊆ TCo
Ω (x).

• Rockafellar [20] showed that, ifTH
Ω (x) is nonempty,TH

Ω (x) = int(TCl
Ω (x)), and therefore,TCl

Ω (x) =
cl(TH

Ω (x)).
In order to establish the results of this section, we apply a generalization of the Clarke [9] directional

derivative, as presented in [17], in which function evaluations are restricted to points in the domain. Specifi-
cally, the Clarke generalized directional derivative of the locally Lipschitz functionf atx∈Ω in the direction
v∈ Rn is defined by

f ◦(x;v) := limsup
y→ x, y∈Ω

t ↓ 0, y+ tv∈Ω

f (y+ tv)− f (y)
t

. (3.2)

The next definition, also from [4], provides some nonsmooth terminology for stationarity.
DEFINITION 3.6. Let f be Lipschitz near̂x∈Ω. Then,x̂ is said to be a Clarke, or contingent stationary

point of f overΩ, if f ◦(x̂;v) ≥ 0 for every direction v in the Clarke tangent cone, or contingent cone, toΩ
at x̂, respectively.

In addition,x̂ is said to be a Clarke, or contingent KKT stationary point of f overΩ, if −∇ f (x̂) exists
and belongs to the polar of the Clarke tangent cone, or contingent cone, toΩ at x̂, respectively.

If Ω = Rn or x̂ lies in the interior ofΩ, then a stationary point as described by Definition 3.6 meets the
condition thatf ◦(x̂;v) ≥ 0 for all v∈ Rn. This is equivalent to 0∈ ∂ f (x̂), the generalized gradient off at
x̂ [9], which is defined by

∂ f (x) :=
{

s∈ Rn : f ◦(x;v)≥ vTs for all v∈ Rn} .

The functionf is said to bestrictly differentiableatx if the generalized gradient off atx is a singleton;i.e.,
∂ f (x) = {∇ f (x)}.

We now restate the main results from [4]. Theorem 3.7 is a directional result obtained under very mild
assumptions, and Theorem 3.8, the main result of this section, is a restatement of four different theorems
found in [4].

THEOREM 3.7. Let f be Lipschitz near a limit̂x ∈ Ω of a refining subsequence, and v∈ TH
Ω (x̂) be a

refining direction forx̂. Then the generalized directional derivative of f atx̂ in the direction v is nonnegative,
i.e., f ◦(x̂;v)≥ 0.

THEOREM 3.8. Let x̂∈ Ω be the limit of a refining subsequence, and assume that TH
Ω (x̂) 6= /0 and the

set of refining directions is dense in TH
Ω (x̂).

1. If f is Lipschitz near̂x, thenx̂ is a Clarke stationary point of f onΩ.
2. If f is strictly differentiable at̂x, thenx̂ is a Clarke KKT stationary point of f onΩ.

Furthermore, ifΩ is regular atx̂, then the following hold:
1. If f is Lipschitz near̂x, thenx̂ is a contingent stationary point of f onΩ.
2. If f is strictly differentiable at̂x, thenx̂ is a contingent KKT stationary point of f onΩ.

4. New Second-Order Stationarity Results.This section contains second-order convergence theory
for MADS. In Section 4.1 we recall the definition of the generalized Hessian and identifies some useful
properties. In Section 4.2 we present second-order necessary and sufficient conditions for optimality for set-
constrained optimization problems. Finally, in Section 4.3, we establish conditions under which convergence
of MADS iterates to a point satisfying second-order necessary and sufficient conditions is achieved.
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4.1. Generalized Second-Order Derivatives.Before proving convergence to second-order points, we
present nonsmooth notions of second derivatives and introduce second-order optimality conditions. Gen-
eralized second-order directional derivatives are developed in [10] and [16], consistent with the Clarke [9]
calculus for first order derivatives. In this paper, we follow the Hirriart-Urrutyet al. [16] definition of a
generalized Hessian, given as follows.

DEFINITION 4.1. Let g: Rn→ R be C1,1 near x∈Ω⊆ Rn. Thegeneralized Hessianof g at x, denoted
by ∂2g(x), is the set of matrices defined as the convex hull of the set

{A∈ Rn×n : there exists xk→ x with g twice differentiable at xk and∇2g(xk)→ A}.

By construction,∂2g(x) is a nonempty, compact, and convex set of symmetric matrices [16]. The
functiong is said to betwice strictly differentiableatx if the generalized Hessian is a singleton;i.e., ∂2g(x) =
{∇2g(x)}. Furthermore, as a set-valued mapping,x ⇒ ∂2g(x) has two key properties, also identified in [16],
which are necessary to establish optimality conditions in the next section.

• ∂2g(x) is a locally boundedset-valued mapping:
Given a matrix norm‖ · ‖, there exists anε > 0 andη ∈ R such that

sup{‖A‖ : A∈ ∂2g(y),y∈ Bε(x)} ≤ η;

• ∂2g(x) is aclosedset-valued mapping:
If xk→ x andAk→ A with Ak ∈ ∂2g(xk) for all k, thenA∈ ∂2g(x).

The following second-order Taylor series result also comes from [16].
THEOREM 4.2. Let g: Rn→R be C1,1 in a open set U⊂Rn, and let[a,b]⊂U be a line segment. Then

there exist an x∈]a,b[ and a matrix Ax ∈ ∂2 f (x) such that

g(b) = g(a)+(b−a)T∇ f (a)+
1
2
(b−a)TAx(b−a).

In the next section, we apply this result to feasible points that may lie on the boundary ofΩ. We are able to
do this because our assumptions on the local smoothness off are independent ofΩ.

4.2. Second-Order Optimality Conditions. Second-order necessary and sufficient optimality condi-
tions for constrained problems are traditionally expressed in terms of the Lagrangian function. However, our
use of the barrier approach in handling constraints provides no useful information about the constraint gradi-
ents, and thus prevents us from proving anything with respect to traditional optimality conditions. Therefore,
instead of dealing with the Lagrangian function, we extend optimality conditions for set-constrained prob-
lems (see [8] for further discussions).

We now establish Clarke-based second-order necessary and sufficient conditions for set-constrained
optimality. The proof for the former is very similar to one found in [16] for unconstrained problems, the
only difference being the first-order condition satisfied by the local minimizer. It is expressed in terms of
feasible directions, formally given in Definition 4.3.

DEFINITION 4.3. The direction v∈Rn is said to be feasible forΩ⊂Rn at x∈Ω if there exists anε > 0
for which x+ tv∈Ω for all 0≤ t < ε. The set of feasible directions forΩ at x∈Ω is a cone and is denoted
by TF

Ω (x).
It follows immediately thatTH

Ω (x)⊆ TF
Ω (x)⊆ TCo

Ω (x) for anyx∈ Ω. Moreover, ifTH
Ω (x) 6= /0 for some

x∈Ω, and ifΩ is regular atx, then cl(TH
Ω (x)) = cl(TF

Ω (x)) = TCl
Ω (x) = TCo

Ω (x). However, without regularity
it is possible that either of the following holds:
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• TCl
Ω (x)⊂ int(TF

Ω (x)): e.g., ifΩ = {(a,b)∈R2 : a≥ 0 orb≥ 0}, thenTCl
Ω (0,0) = R2

+ andTF
Ω (0,0) =

Ω,
• cl(TF

Ω (x)) ⊂ int(TCl
Ω (x)): e.g., if Ω = R2 \ {(−1

k ,b) ∈ R2 : b ∈ R,k = 1,2, . . .}, thenTF
Ω (0,0) =

{(a,b) ∈ R2 : a≥ 0} andTCl
Ω (0,0) = R2.

THEOREM 4.4 (Second-order necessary condition for set-constrained optimality.).Let x∗ ∈ Ω be a
local solution of (1.1). If f is C1,1 near x∗, then any feasible direction v∈ TF

Ω (x∗) for which vT∇ f (x∗) = 0
satisfies vTAv≥ 0 for some A∈ ∂2 f (x∗).
Proof. Let v∈Rn be a feasible direction that satisfiesvT∇ f (x∗) = 0, and consider the sequence{xk}, where
xk = x∗+ 1

kv. It follows thatxk ∈ Ω whenk is sufficiently large. Then by second-order Taylor series in a
neighborhood of the local minimizerx∗, we have for eachk sufficiently large

0 ≤ f (xk)− f (x∗) =
1
k

∇ f (x∗)Tv+
1

2k2 vTAkv =
1

2k2 vTAkv, (4.1)

whereAk ∈ ∂2 f (x̄k) for some ¯xk ∈]x∗,xk[.
Since∂2 f is locally bounded and ¯xk→ x∗, the sequence{Ak} is locally bounded and thus possesses an

accumulation pointA. Furthermore, since∂2 f is a closed set-valued mapping, we haveA∈ ∂2 f (x∗). Taking
limits in (4.1) leads tovTAv≥ 0.

Theorem 4.4 applies to the set of hypertangent vectors as well as feasible directions since the set of
feasible directions contains the hypertangent cone. However, this necessary condition does not necessarily
hold for directions in the Clarke tangent or contingent cone, as the following example shows.

EXAMPLE 4.5. Consider the quadratic optimization problem, in which f: R2 → R is defined by
f (a,b) =−(a2 +b2), andΩ = {(a,b) ∈ R2 : a2 +(b−1)2≤ 1}. The optimal solution is at(0,2), where

TH
Ω (0,2) = TF

Ω (0,2) = {(v1,v2) : v2 < 0} and TCl
Ω (0,2) = TCo

Ω (0,2) = {(v1,v2) : v2≤ 0}.

The direction v= (1,0)T ∈ TCl
Ω (0,2) = TCo

Ω (0,2), is not a feasible direction and makes a zero inner product
with ∇ f (0,2) = (0,−4)T , but the Hessian matrix is given by

∇2 f (0,2) =
[
−2 0

0 −2

]
,

which yields vT∇2 f (0,2)v =−2 < 0.
THEOREM 4.6 (Second-order sufficient condition for set-constrained optimality.).Let x∗ ∈ Ω be a

contingent stationary point for the optimization problem defined in (1.1), and suppose that TH
Ω (x∗) 6= /0 and

that Ω is convex near x∗. If f is C1,1 near x∗, and if vTAv> 0 for all matrices A∈ ∂2 f (x∗) and all nonzero
tangent directions v∈ TCo

Ω (x) that satisfy vT∇ f (x∗) = 0, then x∗ is a strict local solution of (1.1).
Proof. The proof is by contraposition. Suppose thatx∗ is not a strict local minimizer. Then there exists a
sequence{yk}⊂Ω (with yk 6= x∗) converging tox∗ satisfyingf (yk)≤ f (x∗) for all k. By taking subsequences
if necessary, we can assume that the sequence{wk} with wk = yk−x∗

‖yk−x∗‖ converges to some vectorv∈ Rn.

Local convexity ofΩ nearx∗ implies thatv andwk are contingent directions for allk ≥ `, for some
integer`≥ 0. Moreover, sincex∗ is assumed to be a contingent stationary point, and sincef is continuously
differentiable, thenvT∇ f (x∗) ≥ 0 andwT

k ∇ f (x∗) ≥ 0 for all k≥ `. However, sincef (yk) ≤ f (x∗) for all k,
thenvT∇ f (x∗) = 0.

Theorem 4.2 on Taylor series ensures that for eachk≥ `, there exists some matrixAk ∈ ∂2 f (x̄k) with
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x̄k ∈]x∗,yk[ such that

0 ≥ f (yk)− f (x∗) = (yk−x∗)T∇ f (x∗)+
1
2
(yk−x∗)TAk(yk−x∗)

≥ 1
2
(yk−x∗)TAk(yk−x∗). (4.2)

Now, since ¯xk→ x∗, and since∂2 f (x∗) is a closed locally bounded set-valued mapping, then there exists an
accumulation pointA∈ ∂2 f (x∗) of the sequence{Ak}. Dividing (4.2) by‖yk−x∗‖2 and taking limits leads
to 0≥ 1

2vTAv, wherev 6= 0 belongs toTCo
Ω (x∗) and satisfiesvT∇ f (x∗) = 0.

The previous theorem requires as an assumption that the setΩ is locally convex. The following example
shows that regularity ofΩ is not sufficient to guarantee a local minimizer.

EXAMPLE 4.7. Consider the quadratic optimization problem, in which f: R2 → R is defined by
f (a,b) = a2 +2b, andΩ = {(a,b) ∈ R2 : 2a2 +b≥ 0}. The solution xT = (0,0) is a contingent stationary
point, andΩ is regular at x since

TCl
Ω (x) = TCo

Ω (x) = {(v1,v2) : v2≥ 0}.

The vector, v= (1,0)T ∈ TCo
Ω (x) satisfies vT∇ f (x) = 0 and vT∇2 f (x)v = 2 > 0. However,(ε,−ε2) belongs

to the strict interior ofΩ for all ε 6= 0, and f(ε,−ε2) =−ε2 < 0 = f (x).

4.3. Second-Order Stationarity Results for MADS.The next two results are the main contributions
of this paper. The first theorem establishes convergence of a subsequence of MADS iterates to a point
satisfying the second-order necessary condition identified in Theorem 4.4, and the second establishes the
sufficiency conditions of Theorem 4.6.

THEOREM 4.8. Let f be C1,1 near a limit x̂ of a refining subsequence, and assume that TH
Ω (x̂) 6= /0 and

that Ω is regular nearx̂. If the set of refining directions is dense in TH
Ω (x̂), thenx̂ satisfies the second-order

necessary condition for set-constrained optimality.
Proof. Let v ∈ Rn be any nonzero feasible direction that satisfiesvT∇ f (x̂) = 0, and suppose, by way of
contradiction, thatvT Âv< 0 for all matricesÂ∈ ∂2 f (x̂). Since∂2 f (x̂) is nonempty and compact, and∂2 f
is a closed set-valued mapping, there exists someε > 0 such thatvTAv< 0 for all A ∈ ∂2 f (x) and for all
x∈ Bε(x̂).

Let K denote the set of indices of unsuccessful iterations. Regularity ofΩ, together with the assumption
that TH

Ω (x̂) 6= /0 guarantee that cl(TH
Ω (x̂)) = TCo

Ω (x̂) = cl(TF
Ω (x̂)). Therefore, the denseness of the set of

refining directions inTH
Ω (x̂) ensures the existence of{wk}k∈K converging tov with wk = dk

‖dk‖
, dk ∈ Dk for

eachk∈ K. Taylor series yields

f (xk +∆p
kdk)− f (xk) = ∆p

kdT
k ∇ f (xk)+

1
2
(∆p

k)2dT
k A+

k dk, (4.3)

f (xk−∆p
kdk)− f (xk) =−∆p

kdT
k ∇ f (xk)+

1
2
(∆p

k)2dT
k A−k dk (4.4)

whereA+
k ∈ ∂2 f (x+) for somex+ ∈]xk,xk + ∆p

kdk[ andA−k ∈ ∂2 f (x−) for somex− ∈]xk,xk−∆p
kdk[. Since

∆k→ 0+ andxk→ x̂, there is a subsequence for whichA+
k converges to someA+ ∈ ∂2 f (x̂), andA−k converges

to someA− ∈ ∂2 f (x̂). Moreover, since∂2 f (x̂) is a convex set, thenA = 1
2(A+ +A−) ∈ ∂2 f (x̂).

Adding (4.3) and (4.4) and substitutingdk = ‖dk‖wk yields

1
∆p

k‖dk‖

[
f (xk +∆p

k‖dk‖wk)− f (xk)
∆p

k‖dk‖
+

f (xk−∆p
k‖dk‖wk)− f (xk)
∆p

k‖dk‖

]
= wT

k Akwk, (4.5)
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whereAk = 1
2(A+

k +A−k ). Furthermore, sincewk→ v andvTAv< 0, there existsγ < 0 such thatwT
k Akwk ≤

γ < 0 for all sufficiently largek∈ K, which forces the left-hand side of (4.5) to also be negative and bounded
away from zero. But sincedk ∈Dk for all sufficiently largek∈ K, we have thatf (xk)≤ f (xk +∆p

kdk), which
makes nonnegative the first term of the left-hand side of (4.5) (for all sufficiently largek∈ K). Thus it must
be the case that

f (xk−∆p
k‖dk‖wk)− f (xk)
∆p

k‖dk‖
≤ γ < 0 (4.6)

for all sufficiently largek∈K. Taking the limit of (4.6) ask→∞ in K yields∇ f (x̂)T(−v) < 0, or∇ f (x̂)Tv>
0, which contradicts the assumption that∇ f (x̂)Tv = 0.

The following result shows that the sufficient conditions of Theorem 4.6 can be satisfied by a subse-
quence of MADS iterates, given stronger hypotheses than those of Theorem 4.8.

THEOREM 4.9. Let f be twice strictly differentiable at a limit̂x of a refining subsequence, and assume
that TH

Ω (x̂) 6= /0, Ω is convex near̂x, and∇2 f (x̂) is nonsingular. If the set of refining directions is dense in
TH

Ω (x̂), thenx̂ is a strict local minimizer of f onΩ.
Proof. Since f is twice strictly differentiable at ˆx, ∂2 f (x̂) = {∇2 f (x̂)}. Thus, it follows from Theorem 4.8
thatvT∇2 f (x̂)v≥0 for all feasible directionsv∈TF

Ω (x̂) satisfying∇ f (x̂)Tv= 0. But since∇2 f (x̂) is assumed
to be nonsingular, this inequality is strict. Furthermore, by Theorem 3.8 and the smoothness off nearx̂, x̂ is
a first-order contingent stationary point. Thus the hypotheses of Theorem 4.6 are satisfied, and the result is
proved.

Clearly, these are strong results for a direct search method. However, in practice, achieving denseness
of the refining directions in the hypertangent cone (a key assumption) requires increasingly more poll di-
rections per iteration. To overcome this problem, an implementable instance of MADS is introduced in [4],
called LTMADS, in which the positive spanning directions used at each iteration are limited in number, but
chosen randomly from among the increasing number of possible poll directions. While this is not difficult
to implement, the drawback is that denseness of the refining directions is only achievedalmost surely(i.e.,
with probability one). Thus, in practice, the convergence results proved both here and in [4] are only at-
tainedalmost surely. This is a weaker measure of convergence, but it works well in practice [4]. We apply
LTMADS to one of the numerical examples in the next section.

5. Examples. Second order results for GPS are presented in [1]. They are not as strong as those
presented here for MADS. In this section, we illustrate this difference through a series of three bound con-
strained or unconstrained quadratic examples inR2. The first [1] illustrates how GPS, but not MADS, can
converge to a local maximizer. The second shows how GPS, but not MADS, converges in an infinite number
of iterations to a saddle point. Finally, since the second example requires an uncommon set of parame-
ter choices, we recall a simpler numerical example [1] with more realistic parameter choices to show how
MADS avoids a saddle point having narrow cones of descent, which GPS with reasonable parameter choices
does not.

5.1. An example where GPS stalls at a global maximizer for a minimization problem.Consider
the unconstrained problem of minimizing the functionf (a,b) = −(ab)2, subject to−2≤ a,b≤ 2, with a
starting point at(0,0), the global maximizer. Using standard coordinate directions and their negatives as
poll directions, GPS will stall at the starting point without moving. This is consistent with the result proved
in [1], that convergence of GPS to a maximizer may only occur in a finite number of iterations, and when
f is locally constant along all feasible poll directions. On the other hand, any reasonable implementation of
MADS will generate more directions (a dense set in the limit), which is all that is needed to avoid stalling at
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the maximizer. This is consistent with Theorem 4.8, which ensures that stalling at a local maximizer is not
possible for MADS, provided the hypotheses are met.

5.2. An example where GPS converges in an infinite number of iterations to a saddle point.Con-
sider the unconstrained quadratic optimization problem in which the polynomial objective function inR2 is
f (a,b) = a2 + 3ab+ b2. The point (0,0) is a saddle point, at which the descent directions lie in the cone
generated bya = 1

2b(−3±
√

5).
We apply an instance of GPS whereDk = D = {e1,e2,−e1,−e2} is constant throughout all iterations.

On iterations that fail to improve the incumbent, the mesh size parameter is divided by 16. On successful
iterations that follow an unsuccessful one, the mesh size is kept constant, and on other successful iterations,
the mesh size parameter is multiplied by 8. Thus, the GPS parameters areG = I (the identity matrix),
Z = D = [I ; −I ], τ = 2, w− =−4 andw+ = 3.

Furthermore, we use an emptySEARCHand an opportunistPOLL, i.e., an iteration terminates as soon as
an improved mesh point is generated. Moreover, when the iteration numberk modulo 3 is 1, thePOLL step
first evaluatesxk−∆ke2, and otherwise, thePOLL step first evaluatesxk−∆ke1. The order in which the other
poll points are explored is irrelevant to this example.

The initial parameters arexT
0 = (1,1) with f (x0) = 5 and∆0 = 8. Figure 5.1 displays the first iterates

generated by the algorithm. The figure also displays some level sets off .

b

a

x0=x1

x2x3=x4

x5x6=x7

x8x9

•

••

••

••⊗ ⊗

⊗

⊗

FIG. 5.1. Initial GPS iterates

We next show that the entire sequence of iterates converges to the origin. This happens because this
instance of GPS never generates any trial points in the cone wheref is negative. It either jumps over the
cone, which results in an unsuccessful iteration, or take a small step which falls short of reaching the cone.
For example, at iterationk = 9, the trial poll points are(9

8,1),(1, 9
8),(−7

8,1) and(1,−7
8). These four trial
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points are represented by the symbol⊗ in the figure.
PROPOSITION 5.1. For any integer` ≥ 0, the GPS iterates are such that x3` = x3`+1 =

(
2−`,2−`

)
,

x3`+2 =
(
2−`,2−`−1

)
, and∆3` = 23−`, ∆3`+1 = ∆3`+2 = 2−`−1.

Proof. The proof is done by induction. The result is true for the initial iterationk = 0. Suppose that
iterationk = 3` is initiated with∆k = 23−` andxk =

(
2−`,2−`

)
. The current objective function value is

f (xk) = 5×4−`. Table 5.1 details the objective function values at the poll points for iterationsk = 3`,3`+1
and 3̀ +2. Trial points that improve the incumbent appear in shaded boxes. This table shows that the iterate

k xk ∆k Trial poll points atxk = (ak,bk)

3` (2−`,2−`) 23−` f (ak +∆k,bk) = f (9×2−`,2−`) = 109×4−` = f (2−`,9×2−`)) = f (ak,bk +∆k)

f (ak−∆k,bk) = f (−7×2−`,2−`) = 29×4−` = f (2−`,−7×2−`)) = f (ak,bk +∆k)

3`+1 (2−`,2−`) 2−`−1 f (ak,bk−∆k) = f (2−`,2−`−1) = 11×4−`−1

3`+2 (2−`,2−`−1) 2−`−1 f (ak−∆k,bk) = f (2−`−1,2−`−1) = 5×4−`−1

3(`+1) (2−`−1,2−`−1) 22−` . . .

TABLE 5.1
Iterations k= 3` to k= 3(`+1)

for k = 3(`+1) is (2−`−1,2−`−1) and that the corresponding mesh size parameter is 22−`. This concludes
the proof.

The previous proposition shows that the entire sequence of iterates generated by GPS converges to the
saddle point(0,0), which is not a local minimizer. Theorem 4.8 ensures that any MADS instance with an
asymptotically dense set of refining directions will not converge to that saddle point, since the necessary
optimality condition is not satisfied:vT = (−1,1) is a feasible direction for whichvT∇ f (0,0) = 0 but

vT∇2 f (0,0)v = vT
[

2 3
3 2

]
vT = −2

is negative.

5.3. An example where GPS reaches and stalls at a saddle point.Consider the bound constrained
problem,

min
−2≤a,b≤2

f (a,b) = 99a2−20ab+b2 = (9a−b)(11a−b).

At the saddle point(0,0), directions of descent lie only in the narrow cone formed by the linesb = 9a and
b = 11a. Thus to avoid stalling at the saddle point, GPS or MADS would have to generate a feasible iterate
that lies inside this cone (see Figure 5.2). In this example, theSEARCHstep is empty and the initial point is
chosen to be(1.01, 0.93). This starting point is chosen to be non-integral to make it more difficult for GPS
to reach the integral point(0,0). Both GPS and MADS were run using the NOMAD software package [13]
with primarily default settings.

GPS (using the standard coordinate directions and their negatives as poll directions) reaches the saddle
point at the 358th function evaluation with a poll size parameter of 10−17. This implies that, regardless of
the termination tolerance chosen, it stalls there because none of the poll directions are directions of descent.
On the other hand, NOMAD’s implementation of LTMADS successfully moved off of the saddle point to
reach a local minimizer in 100 of 100 runs. This is again consistent with Theorem 4.8, sincevT = (1,10) is
a feasible direction for whichvT∇ f (0,0) = 0 but

vT∇2 f (0,0)v = vT
[

198 −20
−20 2

]
vT = −2
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−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Cones of Negative Curvature

�

�

FIG. 5.2. For f (a,b) = (9a−b)(11a−b), the cones of descent at the saddle point (0,0) are shown in the shaded area between
the lines b= 9a and b= 11a.

is negative.

6. Concluding Remarks. The theoretical results presented here establish strong convergence results
for MADS. In spite of MADS being a derivative-free method, we have shown convergence of a subsequence
of MADS iterates to a second-order stationary point under conditions weaker than standard Newton assump-
tions; namely, thatf is continuously differentiable with Lipschitz derivatives near the limit point. Moreover,
if Ω is locally convex andf twice strictly differentiable near the limit point, then the limit point is a local
minimizer for (1.1).

In Section 5, we provided examples to illustrate the superior convergence properties of MADS over
GPS. However, since our implementation involves random selection of positive spanning directions, the
convergence properties established in Section 4.3 are achieved, in practice, with probability one. We envi-
sion a future area of research being the clever enumeration of these directions so that the stronger type of
convergence is retained by an implementable instance of the algorithm. Specifically, we would like to deter-
ministically generate an asymptotically dense set of directions in such a way that, after any finite number of
iterations, the directions used by the algorithm are uniformly spaced (or as close to it as possible).
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