
Abstract— This paper explores the problem of cooperative 
control among multiple networked unmanned air vehicles 
(UAVs) for persistent area denial (PAD) mission.  An adaptive 
Markov chain model is used to predict the locations of pop-up 
threats.  The mixed information of predicted pop-up threats 
and actual pop-up targets is utilized to develop cooperative 
strategies for networked UAVs.   The approach is illustrated 
by use of a simulation test bed for multiple networked UAVs 
and Monte Carlo simulation runs to evaluate our cooperative 
strategy.  Both theoretical analysis and simulation results are 
presented to demonstrate the effectiveness of using predicted 
pop-up information in improving the overall PAD mission 
performance.

I. INTRODUCTION

NINHABITED air vehicles have been identified as 
potential valuable resources for future military, 
communications and earth-science efforts.  

Cooperation among multiple UAVs is a key capability for 
utilizing the full potential of UAV systems.  With respect to 
military applications, one of the potential missions for 
UAVs is persistent area denial.   The aim of multiple UAVs 
in PAD operations is to provide persistent surveillance, 
tracking, and rapid engagement with high-volume strike, 
against threats (e.g., enemy integrated air defense system) 
at various ranges in the adversarial terrains.  Threats in the 
battle space, in general, are of two types: known and pop-
up.  The locations of known threats are identified by the 
UAVs at the beginning of the battle, while the locations of 
pop-up targets are not always observable during the entire 
PAD operation.  In other words, the pop-up targets may 
appear and disappear at frequent and random intervals of 
time.  Obviously, uncertainty introduced by pop-up targets 
presents the significant theoretical and technical challenges 
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in designing and implementing cooperative control 
strategies for multiple UAVs.  

The present paper is mainly concerned with the problem 
of coordinating multiple UAVs for pop-up threats in the 
PAD operation.  In this work, the most closely related work 
is introduced in [1] and [2].  In [1], the author modeled the 
information flow and communication constraints between 
UAVs and developed cooperative strategy for path re-
planning to deal with pop-up threats during the mission.   
The work in [1], however, does not consider that the pop-
up targets appear and disappear in a stochastic manner.   In 
[2], the locations of pop-up targets are modeled as a first-
order Markov chain.  Utilizing a mixed integer 
programming approach, a cooperative control strategy of 
multiple UAVs for PAD operation is developed in [2] as 
well.  In this strategy, the trajectories of vehicles are 
optimized so that they can reach all targets in the shortest 
time.  The predicted information, however, is not utilized in 
the computation of cooperative control strategies.  In this 
paper, we modify this cooperative strategy in a manner that 
allows the UAVs to make use of both actual and predicted 
information about pop-up targets in coordinating their 
target assignments.     Moreover, since recent advances in 
telecommunication have provided enabling technologies 
for achieving cooperative control of multiple UAVs via a 
communication network [3], we will consider networked 
UAVs in performing the PAD operations.    

II. SYSTEM MODEL

A. Adaptive Markov-Chain Model of Pop-up Targets  
Pop-up targets are ground assets that appear at 

unpredictable locations and at random instants of time.  In 
addition, pop-up targets may stay for a regular interval time 
and then disappear.  Suppose that the location of the next 
pop-up target only depends on the location of present 
targets in the area concerned.  Clearly, such discrete-time 
random sequence of the appearance of pop-ups can be 
modeled as a first-order Markov chain [4]. To 
mathematically define this Markov-chain model, we need 
to specify its state space Q  and one-step transition 
matrix P .   First, we restrict the area of PAD operation to 
be a two-dimensional rectangular grid, shown in Fig. 1, 
with length L  and width W .   Divide the edge with length 
L  into m  segments and the edge with width W into n
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segments which will decompose the original rectangular 
region into mn  smaller rectangles.  Assume that there 
exists at most one target in each cell at one time and no 
target appears right between cells of partitioned area.

Let kZ  be the cell at which the pop-up target appears at 
discrete-event time index k .  Note that the index k is the 
time when a pop-up target shows up.  Let 0, kZZ k

represent a random sequence of locations of pop-up targets.  
In terms of our definition of the PAD operational area, the 
set of all the possible locations that the pop-up targets  can 
be located at, i.e., the state space of Z , is composed of 
mn  discrete cells, which is given by },,2,1{ QNQ  and 

mnNQ .   As described before, we model the predicted 
pop-up locations as a first-order Markov-chain such that, 
for any k , 1kZ  is conditionally independent of 

110 ,,, kZZZ  given kZ .  That is, 

QjiiZjZ

iZiZiZjZ

kk

kkkk

,},|Pr{
},,,|Pr{

1

00111  .        (1) 

In the expression above, iZ k  means that the pop-up 
target appears in cell i at discrete event index k. We 
assume that one-step transition probabilities 

}|Pr{ 1 iZjZ kk , Qji,  depend only on the states i
and j and are independent of the index k, i.e.,

1Pr{ | }k kZ j Z i = ijp        for all Qji, .       (2) 

In other words, we are concerned with homogeneous 
Markov chains only in this paper.  Next, we define two 
maps to simplify some notations for our later discussion.  
First, we define a map to transform a two-dimensional 
coordinate into the corresponding cell, i.e.,

: [0, ] [0, ]ce L W Q                                        (3) 

Fig. 1   Theater of PAD operations 

Let Txxx ],[ 21 be the coordinate of the pop-up target 
with 1x  as its horizontal coordinate and 2x  as its vertical 
coordinate.  This transformation can be expressed as  

,1)
/
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where )int(  is the operator which takes the integer part of 
its operand.  It is easy to verify that Qxce )( .  On the 
other hand, we can define a map to convert a given cell 
where a target is located to a two-dimensional coordinate, 
which is given by 

],0[],0[: WLQcr .                         (5) 
To complete this definition, we assume that the pop-up 

target is located at the center of the cell.  Thus, if the target 
is at cell j Q , its corresponding coordinate Txxx ],[ 21 ,
or )( jcrx , can be determined as  

n
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n
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m
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mjx
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)int(

2
)1),(mod(

2

1
      if 0),mod( mj ; (6) 

where mod(a,b) is the operator which takes the value of the 
modulus after dividing a by b.   

In what follows, we will briefly review the adaptive 
algorithm to estimate transition probability )1(ˆ kpij ,
which is determined as  

)1,(
)1,,()1(ˆ

kiN
kjiN

kpij  .                     (7) 

where ),( kiN  represent the number of pop-up targets 
having appeared in the cell Qi  in the random sequence 
Z by the discrete event time k , and ),,( kjiN  the number 
of transitions from the current pop-up target being at cell 

Qi  to the next pop-up target at cell Qj  in the random 
sequence Z until k , which are calculated as 

otherwise),,(
if1),,(

)1,,(
kjiN

jjkjiN
kjiN ,          (8) 

1),()1,( kiNkiN ,           (9) 
Essentially, this update procedure increases the transition 
probability to a location where a pop up has appeared and 
reduces it for the other locations.

We need another procedure to estimate the uptime at a 
particular location (or cell).  Let ),(sup kite  represent the 
estimated uptime of a pop-up target stored at previously 
update index k and ),( kitup  the real uptime of the target 

staying at cell i at previously update time k .  As the 
targets start popping up, the uptime for a particular pop-up 
target is re-calculated when the target either is destroyed or 
disappears at next update time 1k , which is given by: 
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B. Networked Vehicles Model 

Suppose that there are vN  UAVs and that the thi  UAV is 
modeled as a Dubins’ car model [5] and flies at a constant 
altitude and at a constant velocity, which has a continuous 
time kinematics given by 

i
v

i
v

i
v

i
v

i
v

i
v

u

vx

vx

max

2

1

)sin(
)cos(

                                        (11) 

where i
vx 1  is its horizontal position, i

vx 2  is its vertical 

position, v  is its transitional (constant) velocity, i
v  is its 

heading direction, max is its maximum angular velocity, 

and 11 i
vu  is the steering input.  Rather than use this 

continuous time representation we assume that vehicles 
will either travel on the minimum turn radius or on straight 
lines.  It is then possible to analytically write down the 
formulas for the vehicle trajectories (e.g. in terms of arc 
segments on circles and line segments [5]).  All UAVs are 
connected via communication network [6] and assumed to 
have perfect knowledge of threats that have been popped 
up.

C. Multi-UAV Simulation Test bed
 In order to implement and evaluate cooperative control 

strategy, we use a Matlab simulation first developed at 
AFRL [7] and then extended by the authors as a test bed.  
In this paper, we consider the area of PAD operation in 
Fig.1 with length of 5000L  meters and width of 

5000W meters, and let 10nm  so that the entire area 
is divided into 100 cells.  Here we assume that, for each 
current pop-up location, the maximum number of next 
possible pop-up locations is five and each of the next pop-
up locations is not identical to the current pop-up location.    
We also assume that the first-order Markov chain model 
and the estimated uptime of pop-up targets at each cell have 
been obtained using the adaptive approach before UAVs 
start their PAD mission.   

III. MANEUVERING UAVS TO POP-UP THREATS

To aid in the development of cooperative control 
strategies among UAVs, first we need to address the issue 
of how to maneuver UAV to pop-up targets.  In the absence 
of knowing the information about predicted pop-up threats, 
a UAV often waits for the next actual pop-up target to 
appear and then maneuvers to that target.  Such strategy is 
often referred to as a simplistic and inactive strategy.  We 
call this type of strategy “WA” strategy.  On the other 
hand, a UAV may decide to move to an intermediate 

position even before the real one shows up.  This could be 
done if the predicted information about pop-up targets is 
available.

A. Strategies for locating UAVs intermediate destination

Consider a present pop-up target at cell i , and the 
corresponding next pop-up targets predicted from the 
Markov-chain model as illustrated in Fig. 2.  Let S denote 
the set of cells where those predicted pop-up targets are 
located, which is 1 2, , , s

i i iS j j j , where 0l
iijp  for all 

sl ,,1 .  Moreover, let Tlll xxx ],[ 21 be the coordinate 

of the thl predicted pop-up targets and )( l
i

l jcrx ,
for sl ,,2,1 .
Definition 1.  A predicted location MLx TMLML xx ],[ 21

selected as
*lML xx  with }{maxarg*

l
iijl

pl

is called maximum likelihood (ML) locating strategy.  
Definition 2. A predicted location TBWBWBW xxx ],[ 21

given by
s

l

l
ij

BW xpx l
i

1

is called a Bayesian weighted (BW) locating strategy.   
Definition  3.  A predicted location TUWUWUW xxx ],[ 21

given by 
s

l

lUW x
s

x
1

1

is called a uniformly weighted (UW) locating strategy.  
We define completion time as the time that it takes a UAV 
to reach the next pop-up target after it becomes visible.  
Clearly, the completion time depends on when this pop-up 
target shows up and which predicted target in the set S will 
be appeared as a real target.  Clearly, the completion time is 
a random variable.  Hence, we will use the expected value 
of completion time as a performance index to evaluate 
various locating strategies developed so far. 

Let WAt  be the completion time when using WA strategy, 
and let )( WAtE  denote the expected value of WAt , which 
can be calculated as 

s

1

/),()(
l

l
iijWA vjidptE l

i
                   (12) 

where ),( jid  is the minimum flying distance for UAV 
from cell i to cell j .   Similarly, we define MLt , BWt and

UWt as the completion times using ML locating strategy, 
BW locating strategy and UW locating strategy, 
respectively.
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Fig. 2.   Present target at cell i and the corresponding predicted pop-up 
targets in the set S. 

The expected values of these completion times can be 
computed as 

s

*
,1

* /),()(

ll
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l
i

l
iijML vjjdptE l

i
where }{maxarg* l

iijl
pl (13)
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where )( UWUW xcej  (15) 

With the expressions (12)-(15), we can easily figure out 
under what conditions the performances of three locating 
strategies are better than the WA strategy.  Obviously, if  

0),(),(),(
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Similarly, the condition  

0),(),(
1

*
s

l

l
i

l
i jjdjid   where UWBW

j xxx or*  (17) 

Ensures that the performance of the weighted locating 
strategies is better than WA strategy. 

We can also obtain other conditions for evaluating the 
performance of the ML locating strategy and the weighted 
locating strategies in a similar way.  In general, the hold of 
those conditions will depend upon either the transition 
probabilities or spatial distribution of the predicted targets, 
or both of them. 

B. Monte Carlo Evaluations 
In this section, we would like to perform the Monte Carlo 

simulations to evaluate various locating strategies.  It is 
clear that transition probabilities and spatial distribution of 
the predicted targets are two extremely important factors in 
determining which strategy works best.   

Experiment 3.1 In this experiment, we consider the 
effects of transition probabilities on the performance of 
various strategies.  First, we define

0 where}{min}{max l
i

l
i

l
i ijijlijl

i
pr ppp

as the variation of the transition probabilities with respect 
to the present target at cell i .  For example, if 0i

pr , this 

means 0l
i

l
i ijij pp  for ll .  We choose a scenario 

with 100 sets of pop-up locations and perform the 10,000 
Monte Carlo runs for each set letting the variation of the 
transition probabilities vary from 1% to 35%.  The results 
are shown in Fig. 3.

 We observe that the performances of three locating 
strategies (ML, BW and UW) are significantly better than 
the WA strategy for each probability distribution.  Since 
the predicted information is not utilized in the WA strategy, 
the performance of this strategy does not vary much as we 
vary the transition probability distribution.   When the 
variation of the transition probabilities is small, both UW 
and BW locating strategies work better than ML locating 
strategy.  As the variation i

pr  increases, the averaged 
completion time using the ML locating strategy falls off 
constantly and results in much better performance than 
weighted locating strategies.  The error bars show the 
standard deviation of every data point which corresponds to 
the average completion time of 100 independent runs.   

Experiment 3.2 In this experiment, we examine the 
effects of the other factor, i.e., the spatial distribution of 
predicted targets, on the performance of various strategies.  
We fix the location of the present pop-up target at cell 1 
and take five sets of spatial distributions of predicted 
targets as shown in Fig. 4.

For each configuration of distribution, we assume that 
the predicted pop-up targets are uniformly distributed in the 
area composed of the corresponding set of cells.  Hence, 
the predicted pop-up targets are spread out as the set 
number increases.   Fig. 5 compares the outcome of 
simulations with 5000 sets of pop-up targets for each 
distribution and 1000 Monte Carlo runs for each set.

We observe that three locating strategies present better 
performance than that using WA strategy.  As the targets 
are more spread out, we observe that the difference 
between two weighted locating strategies becomes larger.  
In particular, the ML locating strategy works best in this 
simulation.  However, the standard deviation of the 
performance of the ML locating strategy is worse than 
those two weighted locating strategies. This can be seen in 
Fig 6.

In most cases, the ML locating strategy works best in 
terms of minimizing the expected time to reach the next 
pop-up target after it appears.

IV. COOPERATIVE CONTROL STRATEGIES OF NETWORKED
UAVS FOR PAD MISSION

Basically, it is desirable to have more than one UAV 
performing persistent area denial since multiple UAVs can 
cooperate by sharing relevant information and try to 
accomplish the task more efficiently.  In this section, we 
will define specific version of our cooperative control 
strategy by involving the information of predicted pop-up 
targets in our development.   

1
iij

p
l
iij

p

…

1
ij

1
ij

l
ij

s
iij

p

2
iij

p

s
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A. Cooperative Strategy Using Mixed Information  
1)  Initial Cooperative Target Assignment: First, let us 

consider the allocation of multiple UAVs to the targets that 
are currently observed.  This can be done by using integer 
programming (IP) approach [8].   The cost function and 
constraints are formulate 

1 1( ) ( )

( , )
1 1

min ( , ) ( , )
n k n k

i j
v r

i j
j i

d x x i j                     (18) 

subject to the constraints
1( )

1

( , ) 1
n k

j

i j                                   (19) 

1( )

1

( , ) 1
n k

i

i j                                  (20) 

where ( , )i j  is the assignment function which is given by 
UAV  is assigned to target if 

otherwise

1
( , )

0
i j

i j .      (21) 

The constraints (19) and (20) means that each UAV can be 
assigned to a single target only and vise versa.  For the 
purpose of illustration, we currently consider two UAVs, 
i.e., 2vN .  This algorithm actually assigns each UAV to 
the target closest to its current location in the area.   Let AV
(UV) and AT (UT) denote the set of assigned (unassigned) 
UAVs and assigned (unassigned) pop-up targets, 
respectively.  In this algorithm, a UAV (target) assigned to 
a dummy target (UAV) is called an unassigned UAV 
(target). 2) Cooperative Targeting Adjustment: It is 
possible that in certain situation, a single UAV is sufficient 
to destroy two or more targets close to each other.  In 
addition, the allocation of UAVs to targets depends on the 
remaining time of the appearance of targets also, i.e. 

sup{ ( ), }et i i Q . Consider the situation where 

( ) 2Dim AT  and 1 2{ , }AT j j .  This means all the UAVs 
are assigned to attack the two targets because 2vN .   We 
claim that two targets are close to each other if the distance 
between them is less than a threshold thd .  In this case, one 

UAV, say UAV *i , can be assigned to attack both of them 
at the same time.  If the set UTis not empty, then the other 
UAV *i i  will be assigned to a target in UT closest to it.  
If ( ) 2Dim UT , UAV i  may determine how many targets 
it can deal with using the adjustment algorithm. If 
UT , the sets AV and UV  are updated as 
: /{ }iAV AV UAV  and { }iUV UV UAV .
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3) Predicted Target Assignment: In the case that UT
but UV , the UAVs in set UV  will determine an 
intermediate location to move by using the locating 
strategies developed in step 2) based on the predicted 
information obtained from Markov model, instead of 
waiting for the next pop-up target to appear.

B. Illustrative Examples 
The cooperative control strategies developed in the 

previous section are tested using the simulation performed 
from the AFRL software.  The simulations here will have a 
group of two UAVs assigned for four pop-up targets in 
total in the given area and the initial situation is shown in 
Fig. 7.  Note that the present targets 1 and 2 are close to 
each other.  As a result, UAV 1 will be assigned to reach 
both of them.  Hence, UV={UAV 2}.

In the first simulation, we test the performance of the 
cooperative strategy without using the predicted 
information (i.e., WA strategy).  By viewing a movie of 
Fig. 7, we see that the unassigned UAV 2 is just hovering 
around its initial location to wait for the appearance of the 
next pop-up target, i.e., target 3.  As a result, when pop-up 
target 3 appears, UAV 2 starts moving to it and finally, the 
UAV 2 misses its target.  Similarly, UAV 1 fails to reach 
the pop-up target 4 in time.   In the end, we notice that the 
team of UAVs missed two pop-up targets in total and it 
took them 1501 seconds for the overall simulation.  

We then performed the same simulation except that the 
unassigned UAV now decides to move to an intermediate 
location using the ML locating strategy.  In this simulation, 
we see that the UAV 2 flies to the destination where the 
predicted pop-up target with the highest transition 
probability is located.   When the pop-up target 3 shows up, 
UAV 2 is much closer to it and thus continues to move to 
it.  As a result, UAV 2 catches the target 3 successfully.  
We also observe that UAV 1, after accomplishing the pre-
assignment, then heads towards the predicted location using 
the ML locating strategy, and reach the target 4 in a timely 
manner.  In the end, all the four pop-up targets are reached 
successfully by taking advantage of the predicted 
information and the overall mission takes the group of 
UAVs 1401 seconds, a shorter simulation time, to complete 
the PAD task.

V. CONCLUDING REMARKS

This research addresses the coordination of the multiple 
UAVs in PAD operations for pop-up threats.  We present 
various locating strategies to move a UAV to an 
intermediate position using predicted information. Monte 
Carlo runs show that the ML locating strategy has an 
average performance superior to other locating strategies in 
many cases.  Cooperative strategies considered in this paper 
are designed to achieve the objectives of UAVs based on 

Fig. 7 Initial Situation
available information about predicted pop-up targets, thus 
enabling better results for their PAD operations.  Our 
simulation results have demonstrated that the developed 
cooperative strategies using mixed information about pop- 
up targets in an appropriate way can reduce mission time 
and increase the number of the targets reached, and thus 
improve the overall performance of PAD operation.
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