FINAL REPORT:

EXTENDING LEARNING IN SOAR
John Laird
University of Michigan

2260 Hayward

Ann Arbor, M1
48109-2121

Phone: 734 647-1761
Fax: 734 763-1260
laird@umich.edu

March 14, 2006

20060320024

- @3_04_2_908 .TUE_.OI"?.?_PE._QM_ Al _LAB_ FAX NO. 734 763 1280 P. 02

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 074-0188

PuBlic roperling purden tor ihis colioclion of Infarmaiicn 18 pslimaled o Avarage 1 haur pBr respenss, Ineluding the time for roviewing instructions, Soarthing exisiing data sources, gathering and
malnlalnieg the dma nesded, 3nd complating and raviowing this ecllection of infermatian, Send commants regarding thiz kurden estimale or any othar uspsci el ns coliection af informatian, Including
suggestlens for reducing Ihia burdan 10 Washinglan Headquaners Servicos, Diractarats far Information Oparations and Reporls, 1246 Jafforsen Davis Highway, Sulte 1204, Adingtan, VA 22202-4302,
3ng 1o the Oftiee of Manngament and Budgsl, Peporwerk Reduction Prelact {0704-0188) Washinglon, OC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED FINAL 6/28/2004-9/30/2005
03.14.2006

4. TITLE AND SUBTITLE 6. FUNDING NUMBERS

Extended Learning in SOAR (FINAL REPORT) Grant: HR0011-04-1-0044

6. AUTHOR(S)

John X, Laird

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
The Regents of The Univ. of Michigan F010725 - 048136

Division of Research Dev. & Admin.
3000 South State Street
Ann Arbor, Michigan 48109

9, SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSIES) 10. SPONSORING / MONITORING
AGENCY REPORYT NUMBER

Defcnse Advanced Res. Projects Agency
Contracts Management Office

3701 North Fairfax Drive

Arlington, VA 22203-1714

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release; distribution is unlimited.

13. ABSTRACT (Maximum 200 Words)

The major goal of this project was to develop the science and technology for building autonomous knowledge-
rich learning agents — computational systems that have significant competence for performing tasks without
human intervention, but also have the ability to learn new tasks and improve almost any aspect of their behavior
through lcarning. Our plan was to concentrate on building agents with a variety of architectura] leaming
mechanisms, including reinforcement (to capture statistical regularities), episodic (to capture experiences) and
semantic leaming (to capture facts). We also planned to study their integration, including integration with Soar’s
chunking mechanism (which captures procedural knowledge).

The result of this project has been to develop initial versions of episodic and semantic memory, while at the same
time crealing a robust implementation of reinforcement learning in Soar. By the end of this project, we had
implementations of all three learning mechanisms, and each of them integrated with Soar’s chunking
mechanism. In follow on work, we are refining episodic and semantic memory and creating a complete
integration of these leaming mechanisms.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Coppnitive Architecture, Machine Learning, Artificial Inmelligence

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19, SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclagsified Unclassified Unclagesified
NSN 7540-04-280-5500 Standard Form 298 (Rev. 2-89)
;;;?:xr’lzhuﬂ by ANS! Std, 23818

B ‘ \\\

INTRODUCTION ;

The major goal of this project was to develop the science and technology for building autonomous
knowledge-rich learning agents — computational systems that have significant competence for
performing tasks without human intervention, but also have the ability to learn new tasks and
improve almost any aspect of their behavior through learning. Achieving this goal requires
identifying the types of knowledge required by complex human-level agents, as well as research
into mechanisms for learning those types of knowledge. More broadly we want to identify the
learning mechanisms that are needed to create more robust, intelligent agents that can pursue
multiple goals and survive in environments where novel, unexpected problems arise. Our plan was
to concentrate on building agents with a variety of architectural learning mechanisms, including
reinforcement (to capture statistical regularities), episodic (to capture experiences) and semantic
learning (to capture facts).We also planned to study their integration, including integration with
Soar’s chunking mechanism (which captures procedural knowledge).

The result of this project has been to develop initial versions of episodic and semantic memory,
while at the same time creating a robust implementation of reinforcement learning in Soar. By the
end of this project, we had implementations of all three learning mechanisms, and each of them
integrated with Soar’s chunking mechanism. In follow on work, we are refining episodic and
semantic memory and creating a complete integration of these learning mechanisms as show in

Figure 1.
Soar 9

Long-Term Memories

Procedural Semantic Episodic

=5 £ [D

®
Reinforcement ||| Chunking Semantic Episodic
Learning Learning Learning
A

o @ Short-Term Memory
© =
23
A&
31— o
' _ 4
Perception I Action I
Body "
\ 4

Figure 1: Structure of Extensions to Soar

-2.

Details of each of the learning mechanisms is described below. The integration of these learning
mechanisms with chunking (Soar’s procedural learning mechanism which compiles problem
solving into rules) required a significant extension to chunking. Before adding these learning
mechanisms, Soar’s reasoning was mostly deterministic. As preparation for reinforcement learning
we extended Soar’s decision procedure to fully support non-deterministic decision making. This
violated an assumption of chunking (and most logic-based reasoning systems), namely that if a line
of reasoning was pursued once and achieved a result, that line of reasoning could be compiled into a
rule. However, when the decisions are made probabilistically, compiling a line of reasoning can
solidify non-optimal behavior very early on. This led us to revise chunking so it is more
conservative, compiling reasoning only when the confidence in each decision is very high.
Retrievals from episodic and semantic memory can also be probabilistic (they provide “best”
matches), so this extension to chunking also including the requirement that retrievals from those
memories must be made with very high confidence (actually, there must be an exact match).

The other significant result of this research was that it led directly to the creation of a successful
proposal to the DARPA Biologically-Inspired Cognitive Architecture program. Our BICA project
picked up directly from the results of this project.

EPISODIC LEARNING

Episodic learning captures a history of what happened to the entity. This raw information is not
directly useful for decision making because it is retrospective not prescriptive. However, by
recalling relevant memories about the effects of actions in the world and their impact on the goals
and desires of the entity, the entity can use episodic memory to improve future decisions. Of course,
recalling and reasoning about episodic memories is a reflective activity that takes time and so the
costs of reflective reasoning using episodic memories can be prohibitive in time critical situations.
Nevertheless, an autonomous entity is not always under time pressure. It will have many occasions
when it can reflect back on prior activities, analyze what went right or wrong, generalize across
multiple experiences, and learn knowledge that will influence future decisions.

Episodic memory has several characteristics that may have an impact on its implementation. Below
are some of the most distinguishing in contrast to other types of memory.

Autonoetic: The retrieved memory is distinguished from current sensing.
Autobiographical: ~ The rememberer remembers the episode from his or her own perspective.
Variable Duration: ~ The time period spanned by a memory is not fixed.

Temporally Indexed: The rememberer has a sense of the time when the episode occurred.

One of the results of our research was to identify the uses of Episodic Memory. This process began
as an analysis of environments where episodic memory would be effective. It has evolved into a
catalog (below) of the cognitive capabilities that are supported by episodic memory. When an agent
is ineffective due to a lack of episodic memory, it is because it lacks one or more of these cognitive
capabilities when it is sensing, making a decision or learning:

o Noticing Significant Input: Episodic memory provides a measure of the familiarity of a set of
features of the environment within a familiar context. Conversely it allows you to recognize
when an action does not produce an expected outcome.

e Virtual Sensing: Events or sensing that may not have been relevant to the task when
experienced may unexpectedly become relevant in the future (e.g., Where did I last see my car

keys?). Episodic memory provides an avenue for retrieving past sensing. In effect, it provides
another sensory input to the decision process.

Action Modeling: Episodic memory allows an agent to predict how its environment will change
as the result of a given action by recalling episodes where it experienced a similar situation.
Retroactive Learning: Episodic memory allows previous experiences to be relived or rehearsed
once the resources are available so it can be reanalyzed with new knowledge or experience.
Explaining Behavior: The ability to remember what you did and why you did it allows you to
explain your actions to others and allow them to instruct you or you to instruct them (e.g., Why
did you go left instead of right?). .

Another thrust of our research was to determine a set of requirements for an episodic
memory system. They are summarized below:

>

Task Independent: A task independent episodic memory can be used in domains that the agent
encounters but is not programmed for.

Low Resource Demand: If the episodic memory system interrupts, or severely slows the
agent’s reasoning, then the cost of the system can outweigh its value.

Non-Invasive Integration: An episodic memory system that requires changes to the agent will
be less useful to the agent’s developers.

Supports Both Deliberate and Spontaneous Retrieval: The most obvious form of episodic
retrieval is deliberate retrieval wherein the agent specifically attempts to remember a particular
episode that matches a given cue. However, an agent can also benefit from spontaneous
retrieval that occurs when a particular episode is strikingly similar to something from the past.
Negative Cue: The ability to specify features that should »not be in a retrieved memory seems
essential to some tasks. (e.g., “When was the last time we didn’f go to your parents’ house for
the Thanksgiving?”)

Supports Recursive Retrieval: An agent that monitors its behavior must not only be capable
of remembering an episode but should also be able to remember remembering an episode.
Supports Sequences of Episodes: Once an agent has retrieved an episode, it should be able to
remember what happened next. Without this feature, the episodic memory is unable to provide
the agent with the action modeling and retroactive learning cognitive capabilities.

Episodes Convey a Sense of Time: Knowing the order in which past events occurred can be
critical to an agent’s success.

Strength of Match: Information about how strong the match is between a retrieved memory
and its cue can be useful to the agent because it allows the agent to adjust its confidence in any
decisions it makes because of the content of the memory.

We have many difficult decisions to make in trying to create a computational implementation of
episodic memory. Episodic learning can be decomposed into the following major phases:

e encoding — how a memory is captured and stored;
 storage — how a memory is maintained;

o retrieval — how a memory is retrieved; and

o use — how the memory will be used by the agent.

Some of the most basic design decisions, such as the structure of a memory, have impact across all
phases. The original framework was based upon the work of Endel Tulving (1983) and then refined
as we encountered issues or other research. There is no guarantee that this is a definitive
framework, but it does encompass all implementations and ideas we have considered to date.

Encoding

Encoding initiation: when an episode is recorded. Initiation is automatic, but there are many
possible events that could trigger encoding. This might be as simple as recording a new memory
at regular intervals. Alternatively, a new episode might be recorded whenever the agent takes an
action in the world, whenever there is a significant change in its sensing or when something
unexpected occurs.

Episode determination: what information is stored in an episode. An Al agent’s state consists
of a set features that represent its current sensing as well as a set internal features that are derived
from its processing. The content of this episode consists of a subset of these features. This
subset could consist of only the sensing information or only the internally derived features. The
episode might consist of only those features that have been attended to by the agent. It is at this
stage that the episodic memory system must select what is “important” about an episode.
Feature selection: which features in an episode will be available for match during the retrieval
phase. In effect, this determines which parts of the episode will be matched to a memory cue
during retrieval. The episode’s features may include the entire episode content or as little as one
or two key elements. If a subset is selected, this reflects the episodic memory system’s
prediction about what features will be needed to match future memory cues.

Storage
Episode structure: how the encoded episode is stored. The structure of the episode is often

dependent upon the architecture upon which it is built. The structure must support the other
phases of the memory system.

Episode dynamics: how stored episodes change over time. This may manifest as cross indexing
with other memories. It may include a form of memory decay such as a loss of detail, a decline
in activation, a merging with other memories or outright removal from the episodic store.

Retrieval

Retrieval initiation: how memory retrieval is triggered. Often the agent will initiate memory
retrieval in order to accomplish a specific subtask where it deems that previous experience may
be useful. Episodic retrieval may also be triggered automatically by the presence of keenly
familiar elements or unexpected sensing.

Cue determination: determining which data are used to cue the retrieval of an episode.
Memory cues may consist of a partial memory that can be matched directly to other memories in
the store. They may also consist of a few key features. Finally, a memory cue may consist of a
command relative to the previous retrieval (e.g., “What happened next?”).

Retrieval: selecting which episode is retrieved given the current cue. This is the critical
matching phase of memory retrieval. Matching can be exact or partial. Different features of the
cue can be given variable weight in the match. Multiple memories may be retrieved or just a
single match. The match algorithm can also be influenced by the agent’s current sensing and
internal state.

Retrieved episode representation: what aspects of the episode(s) are retrieved and how they
are represented. The result of a match can be as simple as a Boolean yes/no (i.e., recognition).
Typically, the episodes are recreated or referenced in some location where the agent can examine
them.

Retrieval meta-data: what meta-information about the retrieved episode is available. Possible
meta-data that could be made available includes: information about the strength of the match
between the episode and the cue; temporal information describing when the episode occurred
and information about when it has been retrieved in the past.

Use

« Once the episode is retrieved, how it is used to aid reasoning? This is not a part of the design of
the episodic learning system, but depends on the capabilities of the embedding architecture,
general methods, and task knowledge. We can expect episodic memory to be used for one or
more of the cognitive capabilities listed in the previous section.

To date, we have created a working episodic memory system for Soar called Soar-EM. As part of
our iterative methodology, Soar-EM has undergone two large reimplementations and several
smaller modifications as we have learned more about episodic memory and its use by intelligent
agents. The current implementation uses a separate episodic memory, with episode that consist of a
subset of working memory that is selected in a task independent manner. Retrieval of the episodes
is modeled after the use of buffers in ACT-R, where a retrieval is made when a cue is placed in a
special location in working memory. The current implementation’s external episodic memory store
supports the use of a partial matching algorithms. To allow the agent to retrieve multiple episodes,
we added support for a direct command to retrieve the next episode in temporal order (rather than
attempt to retrieve it via a query).

The current episodic memory system fits within our episodic memory framework as follows:

Encoding
» Encoding initiation: A new memory is encoded each time the agent takes an action in the

world. We have also experimented with recording new episodes whenever there is a significant
change in working memory.

» Episode determination: The content of an episode consists of a large portion of the agent’s
working memory including its input (sensing) and output (actions in the world). This subset
consists of all elements of working memory whose activation level has not decreased to the
point where the element would be removed in a strict psychological model.”

» Feature selection: All features in the episode can participate in retrieval.

Storage

» Episode structure: We have experimented with two different episodic memory structures in the

current implementation. Both structures use a single data structure (called the working memory
tree) that holds a single instance of all elements that have ever been in working memory
throughout the agent’s existence. In the first approach, episodes are stored in an instance-based
format. Each episode consists of a list of pointers to each of the working memory elements it
contains, in a canonical order. In addition, all elements in the tree have pointers to the memories
that contain them. The activation level of each element at the time of storage is also recorded in
each episode. This structure is illustrated in Figure 1.
The second approach is to store the episodes implicitly in the working memory tree via a series
of time increments (ranges of decision cycles) on each node in the tree. This makes the required
storage linear in the number of changes to working memory instead of the number of elements
in working memory. The ranges indicate the cycles when the associated working memory
element was in the agent’s working memory. This approach precludes the ability to efficiently
store the activation level of each element in a given memory but it uses significantly less space
(see section Error! Reference source not found.). This structure is illustrated in Figure 2.

» Episode dynamics: Episodic memories still do not change over time.

! Working memory activation was originally added to Soar to support memory decay models. Thus, when a particular
working memory element dropped below an activation threshold it was removed from working memory.

-6-

Episodic
Working Memory Tree Memories

)
<4

1
[
I 1

Figure 1: Soar-EM: Instance-Based Approach

Working Memory Tree

Range List
| B AN]

] | S 16 - 39

R 51-71

Other 74 -76

‘Pata 107 - 151

l [I - 776 -785

Figure 2: Soar-EM: Interval-Based Approach

Retrieval

» Retrieval initiation: Retrieval is initiated deliberately by the agent when the agent creates a
cue. There is currently no support for spontaneous retrieval.

» Cue determination: A cue is deliberately constructed by the agent (using rules) in a reserved
location in working memory. The cue can have any number of working memory elements.

» Retrieval: During episodic retrieval, the cue is compared to all stored episodes in order to select
the episode that “best matches” the cue. The match is determined by totaling the number of
working memory elements that are shared between the cue and the episode. In the instance-
based approach, the match is weighted by the activation level of the WMEs when they were
recorded into the episodic memory. In the interval-based approach, the match is weighted by
the activation level of the WMEs in the cue. Once an episode has been retrieved, the agent can
also retrieve the next episode in temporal order via a special “next episode” command.

» Retrieved episode representation: The complete episode is retrieved in a labeled area of
working memory to avoid confusion with the current state of the agent.

» Retrieval meta-data: Currently there is no meta-data retrieved with the episode.

Instance-Based vs. Interval-Based Retrieval Algorithm

This section provides a more detailed comparison of the two approaches we’ve implemented for
storing episodic memories.

Instance-Based Approach:

The instance-based approach was implemented first and its algorithm is as follows (refer again to

Figure 1 above):

1. The system simultaneously traverses the cue and the working memory tree. For each entry in
the cue, the corresponding entry in the working memory tree is located.

2. Each element that is matched in the tree contains a list of references to every episode that
contains it. A list of all episodic memories that contain at least one element from the cue is
created by merging the references from each matched part of the cue.

3. The complete cue is then compared to each episodic memory in the newly created episodic
memory list and the one that best matches the cue is selected.

This algorithm requires O(nm) comparisons to find the best match to a given cue (where ‘n’ is the

number of elements in the cue and ‘m’ is the number of episodes that elements of the cue appear

in). Note that the size of the cue will be much smaller than the number of episodes and not grow
over time. While the cardinality of ‘m’ could equal the size of the entire episodic store, in practice
it is much smaller because a given entry in the cue is unlikely to appear in all the stored episodes.

Moreover, the size of the cue limits the number of memories that need to be directly compared to

the cue. In addition, if the agent is moving from tasks to task, so that the number of episodes with

common features does not grow, the time required will be much smaller than O(nm) might imply.

Our results do show growth, but in a single task where all of the episodes share common features

(this is the worst case in terms of performance for the algorithm).

Interval-Based Approach:
The interval-based retrieval algorithm follows these steps:
1. The system simultaneously traverses the cue and the working memory tree. For each entry
in the cue, the corresponding entry in the working memory tree is located.
2. Each element that is matched in the tree contains a list of ranges. Each of these lists is set
aside and each range in the list is assigned a match score equal to the activation level of the

associated cue element.

3. All of the selected lists are merged together into a single list of ranges. If two ranges
partially overlap, they are split into two or more separate ranges. For example, if one list
contains two ranges (1-10, 15-20) and the other list contains one range (8-18) the merged list
will contain six ranges (1-7,8-10,11-14,15-18,19-20). Each range in the merged list has a
match score equal to the sum of the activation levels of all the ranges that entirely covered
that range.

4. The merged list is traversed to locate the range with the highest match score (activation
level). The number(s) in that range represent the cycles in which the best matching episode
was recorded. (In the event of a tie, the most recent cycle is selected.)

5. The episode can be recreated by traversing the working memory tree and creating working
memory elements for each node that contains the selected cycle in one of its ranges.

The complexity of this algorithm is O(nr) where ‘n’ is the number of items in the cue and ‘r’ is the
total number of ranges that must be examined. This complexity can also be expressed as O(n’l)
where ‘I’ is the average number of ranges in each list that is merged in the matching process. As
before, these two variables are not independent in practice. At worst, we expect the growth to be
linear in the number of episodes because the size of the cue is relatively constant as it was in our
test domain. As in the prior algorithm, the growth will be minimized if the same features in the
environment are not continually encountered (so that r is small). However, this algorithm has the
additional advantage in that it is sensitive to only changes in features, so that the growth could be
significantly less than the instance-based algorithm if features change values slowly.

The most expensive processing required by the matching algorithm is the merging process. This
merging requires that all the ranges in all the lists be sorted twice: once by their high numbers and
then again by their low numbers. It may be possible to reduce this time by using a faster sorting
algorithm.

RESULTS FROM THE CURRENT IMPLEMENTATION | oters loying board__

The domain we selected for our experiments is called Eaters.
An “eater” is a Pacman-like agent that moves around a 16x16
grid world (see Figure 4). Each cell in the grid is either empty
or contains a wall, normal food (® = 5pts), or bonus food (m = E
10 pts). The eater is able to move in each of the four cardinal M+
directions unless there is a wall in its way. Each time it moves E
=
)
5

into a cell containing food; it eats the food (receiving the
appropriate score). When an eater leaves a cell it becomes an
empty cell. The eater’s goal is to get the highest score it can, as
fast as it can. The eater’s sensory input includes the contents of
nearby cells, its current score, its color, and number of moves
taken so far. Figure 4 also contains a graphical depiction of the
input available to an eater (although it is represented
completely symbolically for the eater).

Figure 3: The Eaters Domain

Among the merits of Eaters as our first environment is that it is a hostile environment for episodic
memory research. This results from three properties. First, the same features are repeated over and
over again, leading to many episodes sharing the same features. Second, the majority of the eater’s
sensory input changes completely each time it takes a step, greatly reducing the advantages of the
interval-based approach. Third, the relatively fast pace of the task requires that many episodic

memories be recorded. However, the simple nature of the domain did make it easy to
quantitatively measure the performance of a given agent.

To test the episodic memory system, we created an eater with an episodic memory. This eater does
not know the relative value of the objects it senses, nor does it have a model of how its actions
affect its world. Our goal is for it to use its episodic memory in place of that knowledge to aid in
selecting its action. For each of the possible directions, it creates a memory cue composed of its
current sensory input and the proposed direction of travel. The memory retrieved by the pilot
implementation represented what happened as a result of the situation described by the memory cue.
This new memory includes the score it had received for its last action. This change in score was
used to provide an evaluation to a proposed action. The agent then selects the action with the
highest evaluation.

There is no guarantee that an appropriate prior episode will be retrieved — that will depend on the
set of recorded episodes and the algorithm used for retrieving episodes from memory. If no prior
memory is found the agent must still assign a default evaluation to the action so that it can compare
the action to the other possible actions. If the default value is greater than bonus food, the eater will
be biased to explore new actions, which in turn would build up its episodic memory. If a low value
is used, the eater will avoid the unknown.

With the current implementation, we began assessing the eaters agents based upon how accurately
they evaluated their available actions. Figure 4 shows a typical result for the current
implementation. As the graph depicts, agents using the current version of Soar-EM quickly learn
how to improve their behavior in the Eaters environment. After 2000 actions in the world, the agent
is predicting the immediate results of its actions with about 90% accuracy. The graph also shows
that the agent with instance-based retrieval episodic performs slightly better than the agent with the
interval-based retrieval. Both of these result sets are the average of five different agents.

Episodic Memory Eaters Performance

s Instance-Based

—e— Interval-Based

Fraction of Correct Evaluations

1 154 307 460 613 766 919 1072 1225 1378 1531 1684 1837 1990 2143
Action

Figure 4: Episodic Memory Eater Performance

-10 -

Error! Reference source not found. depicts the growth of the additional processing time required
for the retrieval operation (by far the most expensive operation).

Episodic Memory Processing Time

0.016
(2}
P Iy
¢ 0.014 .
g 2.0
§ 0.012 T
g 001 IR
L 008 s, s Instance-Based
g L ba s + Interval-Based
F 0.006 Lt
g, s, “f’z N
@ 0.004 P
g 0.002 b S
£ 0002 N

0 4
0 10000 20000 30000 40000 50000 60000
decision cycles

T T

Figure 6: Episodic Memory Eater Processing Time

Figure 7 shows the amount of memory used by the episodic memory system over time. As
expected, there is continuous growth over time. However, the instance-based data structures require
nearly four times the memory used by the interval-based implementation.

Memory Usage Comparison
8000 ‘l
7000

6000

5000

Instance-Based

4000
w Interval-Based

3000

2000
1000

Memory allocated (kilobytes)

0 10000 20000 30000 40000 50000 60000

decision cycles
Figure 7: Memory Usage for the Current Episodic Memory Implementation

To reiterate, all these experiments have only been performed on a single domain. Clearly there are
trade offs between our instance-based and interval-based approaches. It is our intent to continue to
investigation and compare these two algorithms as new environments and algorithm refinements

-11 -

become available. Eaters has proven to be a valuable test bed for our research, but we must move
beyond it to other domains if we want to demonstrate the general usefulness of episodic memory.
Our future work in episodic memory is to apply this to a more complex domain.

REINFORCEMENT LEARNING

Reinforcement learning captures statistical regularities of the effect of the entity’s actions on the
states of the environment as it continually tries to refine its predictions of the future. It learns the
expected outcomes of actions that can be used in future decision making. However, it requires
multiple related training examples to converge on the correct knowledge and it mostly learns
propositional representations for a specific reward function, greatly restricting the generality of the
learned knowledge and its usefulness for an entity with dynamic, hierarchical tasks. Our approach
to integrating reinforcement learning into Soar starts with the recent integration of probabilistic |
decision making into Soar. Soar’s new decision scheme has two levels of filters, both driven by
preferences created by rules matching the current situation. The preferences generated by the first
level remove possible choices that are dominated by other choices. If more than one choice survives
the first level, the preferences of the second level produce ratings of the expected value for the
remaining choices. The ratings for a given choice are summed, and a random selection is made
among the choices, biased by the ratings. Soar is distinguished from other reinforcement learning
systems because in Soar the computation of the expected value is determined dynamically based on
the ratings generated by rule firings, in contrast to the typical approach where a specific value is
associated with a state (or set of states) action pair. In those systems, the learner is continually
trying to refine the one “true” value for that state-action pair. In contrast, Soar continually learns
new rules where each rule captures the value available when it was learned. Each rule defines a set
of states that should receive the rating, some rules being more general than others, and the goal of
learning is to continually refine the final computation of the rating by learning rules that correct
errors in the predicted reward. Moreover, since the rules can include tests for which tasks are being
attempted, different sets of rules will be relevant for different tasks, providing a flexible mechanism
for supporting multiple tasks with different reward functions.

As stated above, the learning system automatically builds rules that attempt to correct the predicted
value (called Q-value) of the selected operator given the results it creates. More formally, the
current RL-Soar system uses the following Q-learning update rule:

Q(si,ar) = Q(s1,a0) + a(R(sr,a)) + A max, Q(Se, ap1) — Q(s. ar))

During execution, Q values are updated by inserting new preference rules that carry a numeric value
equal to the underlined portion of the above equation. If an operator is selected on the t* decision
cycle, then a new preference for that operator will be built during the (t+1) decision.

Inherent to Soar is its ability to automatically generate substates in response to impasses in its
problem solving. RL has been successfully applied to systems with hierarchical goals and we have
extended our implementation so that it works across Soar’s hierarchical structure.

In our implementation, there is an independent reward link on each state in the state hierarchy.
Environmental rewards are not distributed automatically to all levels of the hierarchy - each level in
Soar-RL only gets rewards that are explicitly given to it. One exception is that for tie impasses
when there is insufficient knowledge to choose between options. The purpose of a tie impasse is to
reduce the number of candidate operators to one, so we can give a task independent reward for
changing the number of tied operators.

-12-

We have an implementation that has been tested on a variety of simple domains. There are many
research issues before us, with the most important being determining the conditions for the rules
and dealing effectively with incomplete state information. The conditions should reflect which
aspects of the state are relevant to computing that specific value. If all aspects of the current
situation are included, the rules are extremely specific and will only fire in exactly the same
situation. We plan to investigate different methods for selecting conditions (initially we will
investigate techniques that are based on the most active elements) and for learning with incomplete
state information (initially we will investigate techniques based on eligibility-traces).

SEMANTIC LEARNING

This is the least developed of our research initiatives. It deals with learning facts about the world,
which on the surface seems the easiest, just store away enduring properties of objects and
relationship among objects, as well as properties of and relationships between object classes.
However, there are many questions. Which facts should be stored, when should a fact be retrieved,
using which cues, what should be done to “update” facts as the world changes, how can this be
implemented efficiently, and how is this all done without requiring explicit reasoning by the entity?
Our research approach will be the same as above where we decompose the problem of semantic
learning into its functional components. The following are the phases of semantic memory
according to the general framework presented in our description of episodic memory.

+ Encoding

¢ Encoding initiation
This decision is about how semantic memory encoding is initiated. The options here are
deliberate initiation or automatic initiation. ‘Deliberate’ initiation means encoding is
controlled by task specific knowledge encoded in rules. ‘Automatic’ initiation means
encoding is initiated based on general task independent information. The options include:
initiate encoding every decision cycle, only when the element is being removed, or to be
triggered by some general features such as when there is significant changes in working
memory.

e Target determination
This decision is about what are the structures need to be saved into semantic memory. There
are again the options of deliberate determination and automatic determination. Deliberate
target determination will be controlled by rules. For automatic determination, there will be
several options, such as picking the working memory structure being frequently tested by
rules, or picking the one with certain connectivity features, or picking all working memory
elements.

e Knowledge integration
This decision is about how the newly added knowledge is to be integrated with existing
knowledge. It’s not likely that all declarative chunks are independent structures. Actually,
similar structures are likely to combine with each other, which may result in effects such as
wider associations and saving of storage space. One simple form of knowledge integration is
that when identical structures are repeatedly encoded, they should be merged together.

e Storage

e Storage structure
The structure of semantic memory storage, or the representation, depends on the architecture
upon which it is built. The structure must support the other phases of the memory system.
One possible design is a graph structure similar to working memory structure, with

-13 -

additional meta information. Neural network representation is also an option with many
desirable properties, but currently, two major problems are computation and connection to
abstract symbols that can be used by the symbolic system.

Storage dynamics

How semantic knowledge change over time. This may include merging or cross indexing
with other memories, or removal from the semantic store. The dynamics may result in many
interesting phenomena such as forgetting, associative learning and concept formation, etc.

o Retrieval

o Use

Retrieval initiation

Acquired knowledge that is relevant to current situation are put into working memory to
assist reasoning. Similar to the encoding situation, retrieval can be triggered either
deliberately by rule or automatically by task independent mechanisms.

Cue determination

Cue is like the stimulus that triggers a response. For semantic memory retrieval, cue is the
structure used to retrieve relevant knowledge, which should ‘match’ the cue according to
certain criteria, for example, equality. Cue determination should be task-dependent. It’s
natural to couple cue determination with retrieval initiation.

Cue specification

What is the language to specify the retrieval cue. What should be the expressiveness?
Should it support variable, negotiation, disjunctions and other relations? For example, can
you say something like retrieve a creature that has the same number of wings as legs
(variable and relation), either has feather or fur (disjunction), but not a bird (negation). There
will be tradeoffs related to this expressiveness which will be discussed later.

Retrieval algorithm

What is the actual algorithm to perform retrieval. The algorithm will be constrained by both
the storage and the cue structures. The trade-off between computational complexity and
accuracy will be the focus here.

Retrieved result representation

How will the retrieved information be represented in working memory. One possible way
with minimum invasion is to represent the retrieved information as working memory
structures under a specific ‘link’ (such as that for input and out link).

Retrieval meta-data (interface)

What is the extra information needed to be returned from semantic memory? For example, if
no matches are found, a failure status needs to be returned; if succeeded, the retrieval
confidence value for best partial match might be useful.

How the retrieve knowledge is used will depend on task specific knowledge encoded by rules.

The most general criteria for evaluating a design implementation include the following. The first
four are task-independent and the fifth is task-dependent. They reflect the various aspects of the
requirements for a good design.

 Efficiency: The computational complexity to find the target from semantic memory for a given
cue should be constant or near constant time, or otherwise at least bounded. Retrieval time
should scale up well to be feasible for large applications.

-14-

» Flexibility: The cue specification needs to be flexible enough, so that a sufficiently expressive
specification language is required. The natural tradeoff is that more expressive specification
results in more expensive computation. For example, disjunctions will increase the flexibility of
query, but also easily enlarge the searching space for the matched candidates.

e Accuracy: If it is not feasible to always find the global optimum of the best partial match and
approximation has to be done, then to what degree should accuracy be compromised? Accuracy
is also

» Ease of use: If automatic encoding is used instead of deliberate encoding, one impact is that
there is no need to program extra rules to control semantic knowledge encoding.

» Efficacy: Evaluation of efficacy is task-dependent. In many situations, it is not easy to discovery
general criteria across tasks for different domains, thus the evaluation need to be done task by

task.

Exploring design space

The design framework helps identify critical decision points and make it explicit to explore the
complex design space in a systemic way. In order to find optimal designs, the design options will be
evaluated either by both general criteria and representative tasks.

Current implementation

One general principle of the design is to be minimum intrusive. The added semantic memory should
be well integrated without affecting the other mechanisms, although in the long term, there can be
more radical modifications. Following is the current implementation described according to the
general design framework.

e Encoding

e Encoding initiation
Both deliberate and automatic encoding options have been implemented. Deliberate
initiation is via a special working memory structure, the ‘save’ link. If automatic encoding is
turned on, it will initiate encoding at the output phase for each decision cycle.

e Target determination
Deliberate target determination is also mediated via the save link. Task knowledge will help
identify what structures need to be save and put them under the save link. For automatic
determination, all working memory elements are saved, except for the cue structure itself.

¢ Knowledge integration
Currently, the only integration operation is merging identical declarative chunks. A
declarative chunk is defined as a set of working memory elements with the same identifier,
which describe some coherent object or concept. Therefore, an identifier uniquely identifies
a declarative chunk. Two declarative chunks with different identifiers are considered
identical if they have exactly the same set of attribute-value pairs and will be merged
together. It is a common situation that identical structures are created at different decision
cycles or under different context. On the other hand, different attributes for the same chunk
could be saved into semantic memory at different cycles. Figure 8 shows an example, step .
by step, about how semantic knowledge is encoded.

-15-

Decision
Cycles 1 2 3 4

fack-1

stm,

Working Memory

Semantic Memory

: Figure 8: Encoding
At decision cycle 1, fact-1 which contains two attributes is deposited into semantic memory. At decision cycle 2, fact-1 has a new
attribute and the previous attributes are removed from working memory, but in long term semantic memory, all three attributes are
saved under the same declarative chunk with identifier A1, which is 2+3=5. At decision cycle 3, a sub-state S2 is created, which
contains another fact-1: 3+3=6, this new structure is also deposited into semantic memory. At decision cycle 4, a new fact, fact-2
which is 2+3=5 is added to working memory under S2. The new chunk A3 is added to working memory but it is identical ti chunk
Al, so they merged together, and the value of fact-2 under S2 becomes Al instead A3.

Storage

e Storage structure
At the conceptual level, the storage structures are declarative chunks. Each declarative
chunk consists of triples of identifier, attribute and value just as working memory elements.
Identifier is unique for each declarative chunk. There are data structures facilitating
operations performed on semantic knowledge (Figure 9).

e Storage dynamics (internal)
For current implementation, the only dynamics is to add new long term elements into
semantic memory. There is no removal and forgetting yet, nor is there automatic association
of similar chunks. Storage dynamics share similar routine with knowledge integration of the
encoding phase. The main difference is the latter is triggered at encoding time, the former is

anytime.

-16 -

jsum

Declarative Implementation of Storage
Chunks Structure

addend-2

Array of elgments
y

(A1, sum, 5} {A1, addend-1, 2)| (A1, addend-2, 3)| (A2, sum, 6) (A2, addend-1, 3)| (A2, addend-2,3}] A

addend-2

Attribute - value - identifier I sum I addenden-1 | addenden-2 IH I

Figure 9: Storage
The figure shows semantic memory storage structure for the situation when it contains only two chunks for addition facts: 2+3=5
and 3+3=6. There are two hierarchical hashing structures to facilitate operations, such as retrieval and merging in semantic
memory. *...A’ denotes array data structure, and ‘...H’ denotes hash data structure.
Attribute-value-identifier hash will facilitate attribute-value based matching operations. For the first level hash, the keys are
attribute names, and the value for a unique key is the second level hash. The second level hash uses attribute values under the same
attribute name as the key and the third level hash as the value. And the third level hash uses the identifier having the same attribute-
value pair as the key and the pointer to the thus far unique identified triplet structure which is stored in an array. The triple element
may contain extra information such as the reference history and other data structures for the intended purposes.
Similarly, the identifier-attribute-value hash will facilitate retrieving the attributes being queried based on the matched identifier.

o Retrieval

Retrieval initiation

Currently, retrieval initiation is triggered deliberately via a special working memory
structure, the ‘cue’ link.

Cue determination

Cue determination is coupled with retrieval initiation via the ‘cue’ link. Cue structure is
determined by task specific knowledge which is encoded as rules.

Cue specification :

Currently, the cue specification language support one level retrieval with variable, but
doesn’t support negations, disjunctions and relations other than equality.

Retrieval algorithm

Current implementation of retrieval algorithm is a complete search algorithm that finds
exact matches. If multiple matches are found, an arbitrary selection is made by the
algorithm. If no match is found, a failure chunk is returned.

-17 -

¢ Retrieved result representation
Retrieved information is put under a special working memory structure, the ‘retrieved’ link.

¢ Retrieval meta-data
In current implementation, the only meta-data is the failure chunk to indicate the situation

that no match can be found from the semantic memory.

Cue specification Retrieval Algorithm

Retrieve via attribute-value-id hash | Retrieve via identifier-attribute-value | Retrieved result representation

attribute = addend-2 : 1A identifier = A1 z> 3

value =3 attribute = addend-1

attribute = sum —> Ay

value =6

Final Matches —> an

ratrieved

attribute = addend-1
value = 2 >
attribute = addend-2 E=—""1> {}

value =4 sfatus

Final Matches :> {} fallira

Figure 10: Retrieval
Content of the semantic memory is the same as the previous example. The first retrieval is to query 3 plus what is 6. The cue
structure is represented as working memory elements. The attribute-value-id hierarchical hash will facilitate retrieving candidate
identifiers matching each of the attribute value pairs. Intersection of the matched identifiers contains the final result — identifier
Al. Then the identifier-attribute-value hash facilitate retrieving the attribute being queried, which is addend-1 = 3. The complete
retrieved chunk is represented under a special link, ‘retrieved’, in working memory. The second retrieval failed to find a match,
and a failure chunk is put under the ‘retrieved” link.

Preliminary Experiments and Analysis
Preliminary experiments on some representative tasks have been performed to test the current
implementation.

Associative learning task

An obvious application of semantic learning is to tasks requiring learning associations, such as
required in arithmetic. The standard addition procedure used by humans is to process the problem
column by column (Figure 11). If the sum for a column is over ten, an extra one is carried to next
column. This task demonstrated the desired semantic memory functionality of flexible knowledge
representation and the related effects in transfer learning.

To better demonstrate learning, the initial available knowledge contains just counting facts: 0 is
followed by 1, which followed by 2, etc.... up to 9. The agent doesn’t have knowledge about
addition results, such as 2+3=5, but it knows how to do a parallel counting from O to 3 and 2 to 5,
and then obtain 5 as the final result (Figure 6-b). It also knows to carry 1 to next column if it counts
over 9 (then continue from 0) when doing addition, or borrow from next column if it counts below
zero (then continue from 9) when doing subtraction. The counting facts are encoded as working
memory structure with next pointers connecting the 10 digits, from 0 to 9 (Figure 6-b). Other

-18 -

knowledge is encoded as production rules. Random addition/subtraction problem are generated in
working memory to be solved. Using the semantic learning component, the system must initially
use a primitive counting procedure to do addition (or subtraction). Over time, the addition facts are
built up in semantic memory so that instead of counting, and memory retrieval can be used. Note,
that an addition fact can be used for subtraction and vice versa. As expected, this leads to a speed up

in performance over time.

0952
+0063 arithmetic-problem
1015 operation
addition
Qne-column

NIL "e’“‘CO'U%‘ next-column @: next-column

% <

digit1 digit2 digit1 igit2 digit1

9 0 5 6

a Representation of the problem 952 + 63

a. Representation of 952+63 in working memory

facts. In this case, it is counting 3 from 2 to get the answer 5

2 3 4 5
W
0 1 2 3

b. Procedure to compute 2+3=5

Figure 11: An addition problem

b. If the agent doesn’t have the knowledge of 2+3, it’ll call upon the counting procedure replying on counting

Transfer learning

Chunking and semantic learning are complementary. Since retrieval is a more expensive operation
than firing a rule, learning rules that replace retrievals is practically very useful. As can be seen
from this example, if retrieval takes place in a sub-state, the retrieval process itself can be compiled
into a rule by chunking. Intuitively, the purpose of chunking is to speed up execution via practicing,
and semantic learning is to learn flexible knowledge structure potentially transferable to different
procedures without practicing with the exact situation. The following result demonstrates the

different aspects of learning in a simple example (Figure 12).

-19-

Learning Progress

100
]

addition
O subtraction
O subtraction2

80
I

Decision Cycles

20
I

Chunking Semantic Learning C+$S

Figure 12: Semantic learning helps achieve transfer learning
The addition problem in this experiment is: 234 + 345 = 579. The subtraction problem is: 579 - 345 = 234.
The agent did the addition problem once, and then did the subtraction problem twice.
Chunking doesn’t have transfer learning effects as the learned addition rule is not applicable to subtraction. But chunking will
greatly speed up the problem solving by practicing with the same problem
Semantic learning is able to transfer knowledge from addition to subtraction.
Having chunking and semantic learning work together (C + S), it will benefit from both aspects of learning.
Decision cycles: Chunking: 72, 72, 9; Semantic Learning: 72, 33, 33; C + S: 72, 33, 9

In real world problems, the agent doesn’t have complete knowledge or exact model of the task
environment, so that uncertainty emerges. Different from the exact production rule matching
mechanism, semantic memory provides bes? partial match to better handle uncertainty.
Assumptions about the environment need to be made. The following are three principles about best
partial match, which are based on Anderson’s rational analysis.

Future

As mentioned earlier, this work has continued under the BICA program. We are extending these
learning mechanism, studying their integration, and also developing a computational theory of
emotion.

-20 -

