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Chapter 1: THEORY, MODELING AND DESIGN 

 
1.1  Thermal Conductivity in CNT Bundles 
 
1.1.1.  Introduction 
 

It is expected that a single-wall carbon nanotube (SWCN) is a very promising object for 
creation of metamaterials with a high thermal conductivity (TC) [1,2]. The first reason for 
this expectation is that carbon-based materials, like diamond, have the largest known TC 
and, the second reason is a molecular perfection of the SWCNs [1]. However, to the best of 
my knowledge, the highest TC ever observed in SWCN bundles at room temperature is 
about 220 W/mK and it is ten times smaller than the TC of the natural diamond [3].  This 
highest result has been reported by Hone et al. [4] for a bulk sample of magnetically aligned 
nanotubes. The aligned SWCNs form a bundle in which all tubes have a preferable 
orientation in some direction. Hone et al. showed that the TC of the aligned SWCNs is 
strongly anisotropic with the largest value in the direction of the alignment. 

The enhancement of the TC due to the alignment has been observed also by Zhou         
et al. [5] and by Choi et al. [6], but the absolute values of the reported TC have been 
significantly smaller than in [4]. 

There are many theoretical works on TC of the SWCNs. Some computational ones [7-
10] are made by molecular dynamics simulations. The results of these simulations have 
different values and different T-dependences. They predict mostly very high values of the 
room temperature TC (for example 6000 in [7].) 

  Evidently, the main problem of all these works is the small size of the array that can 
be simulated. There are also some different analytical approaches to the problem [11,12] and 
wonderful  reviews [13-15]. 

The purpose of this research is to estimate the maximum TC value of aligned nanotubes 
taking into account that they do necessarily consist of segments with a finite length. It is well 
known, that tubes in ropes are not infinitely long, but have brakes, because each method of 
synthesis is able to create separated tubes of only a certain length. It is believed that this 
length is of the order of a few microns (see [16] and references therein). Then, due to Van der 
Waals forces, the tubes stick together and create bundles wherein the end of a tube has no 
chance to make a strong chemical bond to the end of a neighboring tube. 

There are many experiments that show that tubes inside bundles have free ends. The 
idea here is to argue that this effect may be responsible for the relatively low TC as 
compared to crystalline carbon materials. 

 
 

1.1.2.  Scattering problems 
 

 Consider a bundle of nanotubes perfectly aligned; each segment has a finite length 
with an average value L. The nanotubes are organized in an ideal triangular lattice with six 
nearest neighbors [17]. The cross section in a plane perpendicular to the nanotubes is shown 
in Fig.1.1(a). The cuts in each line of the nanotubes have random positions. Thus, on the 
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length of each segment there are in average six cuts of its nearest neighbors. A homogeneous 
interaction between infinite tubes does not cause the loss of the phonon momentum. 
However, a phonon flux has to overcome the openings between the segments at the 
termination points of each nanotube segment. Assume that these openings are so large that a 
jump of flux occurs with an assistance of all six neighboring rows of the tubes as shown in 
Fig.1.1(b). A slightly different mechanism of momentum scattering appears in a given 
nanotube ("0'') if one of the neighboring nanotubes has a termination point as shown in 
Fig.1.1(c). 

 
 

 
 
 Fig. 1.1:  (a)  The cross-section of the bundle that shown a nanotube ``0'' and its nearest neighbors. 
   (b) The first scattering problem - cross-section by the plane of nanotubes 2-0-5. The wave incident  
   from 0- reflects backward and transmits through the opening into 0+  with simultaneous 
   excitation of the waves in all six neighboring tubes.  

 (c)  The second scattering problem. The wave incident from 0- is scattered by the cut in tube 2. 
 It reflects backward, transmits into 0+ and excites waves in tube 2+. 

 
 The propagation of heat flux Q between the scattering points was assumed to be 
ballistic because the goal is to get a maximum estimate of the TC. Quick phonon exchange at 
the scattering points leads to a thermalisation of symmetrical parts of the distribution 
functions of phonons with temperatures that are determined by values of effective thermal 
resistances between scattering points. It should be noted that calculations could not be 
applied directly to multiwall carbon nanotubes. 

Thus, there are two different scattering problems. Since the bottle neck of problem 1 is 
a jump through the opening, let us assume strong interaction between tubes as compared to 
the phonon energy. In this way, we can achieve the upper estimate of TC.  In all cases, the 
scattering is determined by three coefficients: reflection D, transmission C and penetration to 
a neighboring nanotube A. In this case, the results for transmission and reflection are 
independent of the spectrum of the phonon mode and determined by the geometry of the 
problem only.   

For the first scattering problem |D|2 = 36/49, |C|2 = |A|2 = 1/49 and for the second 
problem |D1|2 = |C1|2 = |A1|2 = 1/4. 
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1.1.3.  Thermal Conductivity 

 
In the approximation of elastic scattering, the heat flux Q along each row of the aligned 

nanotube is conserved because the waves generated in neighboring nanotubes due to 
scattering have zero total momentum. This leads to a conservation of Q along the row 
because in the theory of phonon thermal conductivity any relaxation of Q is the result of 
momentum loss. It is important, however, that at the points of scattering of both types 
considered above, the numbers of phonons in each mode changes. Therefore the symmetric 
parts of the distribution functions in these points can be considered as in equilibrium with 
different temperatures for each point.  Assume that the propagation is ballistic between the 
scattering points of both types. 

In average every section of a nanotube can be divided into seven ballistic regions such 
that each boundary of the region corresponds to a cut in one of the six neighboring rows of 
the nanotubes. The part of one row is shown in Fig. 1.2. The energy flux is the same along the 
row. Since the scattering is different, the temperature intervals between neighboring 
boundaries are also different. To calculate the TC, the total temperature difference through 
all the nanotube at a given flux Q was found. 

 
 

 
 

Fig. 1.2: Part of the row of nanotubes with two cuts. Dotted lines in the nanotubes correspond to  
   cuts of the neighboring nanotubes. The regions between them are considered to be ballistic. 

  
 

Consider one region i of a nanotube and assume that each end of the region perfectly 
matches a thermal bath. The temperature difference of the left and right boundaries of the 
region is ti. Thermal flux produced in this region is Q=G(T)ti , where the function  G(T)  is 
called thermal conductance. It can be written in the form [18]: 

 

( )
dx

e
ex

h
Tk

TG
a

z

z x

x
b ∑∫

−
= 2

1
2

22

1
)(

      (1.1) 

 
where z = hw/kBT and the sum is over all monotonously increasing segments of spectrum 
ws(k), z1 and z2 are  the lower and upper boundaries of such segments. Here kB and h are the 
Boltzmann and the Plank constants respectively. To calculate the above integrals one should 
know the vibration spectra of nanotubes. They have been calculated previously within 
different frameworks such as an empirical force constant model [17,19]. The function G(T)  
calculated by Yu. Gartstein [20] is used in this experiment. Finally, an equation for TC was 
obtained, 
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  k = NLG(T)/B       (1.2) 
 

where N  is the number of tubes in the bundle per square meter (assuming triangular lattice, 
it is easy to get N=4 x 1017 m-2 for (10,10) nanotubes), L is the length of a nanotube, 

2 2
12 2

1

6 1B 6 | C | | C |
1 | D | 1 | D |

= + - -
- -

=1/0.0976. 

 
Since the interaction is assumed to be strong, coefficients in B are independent of the 

frequency. As a result the TC can be expressed in terms of G(T) . Thus, the final result is  
 

 k = 0.0976G(T)LN       (1.3) 
 

Fig. 1.3 shows the results at L=1, 0.87, 0.7µm together with the results by Hone et al. 
[4]. One can see that the theory reflects well enough both the magnitude and the temperature 
behavior. In fact, the only parameter here is the average length of a nanotube. The deviation 
at high temperatures is probably related to the Umklapp processes. 

 
 

 
Fig. 1.3: Thermal conductivity as calculated theoretically for the (10,10) tube with L=0.7µm (dashed 

line), 0.87µm (solid) and 1.0µm (dotted). The experimental data of [4] are shown by diamonds. 
 
 
1.1.4.  Conclusions 

 
In this paper, the maximum estimate of the TC of perfectly aligned nanotubes, taking 

into account the scattering of phonons by the terminal points of the nanotubes, was 
presented. This estimate gives a quantitatively correct description of the thermal 
conductivity of aligned nanotubes as obtained experimentally by Hone et al. [4] assuming 
that the length of segments is of the order of 1µm. It follows from these results that the way 
to make the thermal conductivity of the aligned nanotubes at room temperature larger than 
300 W/m K is to increase their lengths. Of course, the TC will not increase indefinitely with 
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length (L), as it follows from (1.3), because, sooner or later, the mean free path, due to other 
scattering processes, will be smaller than L/7.  However, some additional gain may be 
achieved with increasing L.  

 
The paper is published in cond-mat/0405499 and sent to Phys. Rev. B 
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1.2  Theory of Thermal Conductivity by Polaritons 
 

 See APPENDIX 5.1 and 5.4 
 
 

1.3  Modeling of Phonons and Heat Transfer in Carbon Nanostructures 
 

1.3.1.   Phonon dynamics and thermal properties of zigzag and armchair carbon nanotubes 

 
Report-2b: "Strategies to Increase Thermal Conductivity. Enhancement by Optical  
  Phonon Sub-Bands Engineering in 3-D Nanostructures Based on C and 

BN Nanotubes" 
 
 

1.3.1a. Phonon dynamics and thermal properties of zigzag carbon nanotubes  
 

Content 
 
 

I. Introduction 
 
II. Phonon dynamics in a zigzag carbon nanotube 
 
III. Generalized equation of thermal conductivity in a single nanotube  
 
IV. Thermodynamics and statistics for a carbon nanotube  
 
V. Summary 
 
VI. References 
 
VII. Attachment - Short investigation plan 
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I. Introduction 
 

 This report presents the second stage of investigation of phonon fluxes in carbon and 
BN nanostructures in the framework of the tasks for "Strategies to Increase Thermal 
Conductivity. Enhancement by Optical Phonon Sub-Bands Engineering in 3-D Nanostructures 
Based on C and BN Nanotubes".  

Here, the dynamics of the heat transfer problem for closed carbon nets (planned point 
1c), zigzag tubes (point 2c) and macroscopic manifestations (point 3c) are presented. Phonon 
eigenstates, density of states and vibration amplitude distribution for each phonon along the 
molecular fragment are considered for two main tubulene geometries: zigzag and armchair. 

 The idea of the PQDM approach proposed in the previous report is to use a discrete 
microscopic model for phonon dynamics of relatively small molecular fragments 
approximately of phonon mean free path sizes. The dynamics of such a cluster may be 
described classically in Born approach [1, 2] and all the important data may be obtained: 
eigenfrequences, density of states and phonon amplitude distribution inside the molecular 
fragment during its lifetime. Neighboring fragments of a molecular net are in an 
uninterrupted process of exchange by phonons. Due to the weak fragment-surrounding 
medium interaction, the process may be described by Fermi’s “golden rule” which 
determines the value of the transfer rate. This quantum characteristic is a transport process 
consideration that enables the introduction of a microscopic thermal conductivity coefficient 
that depends on the temperature difference between opposite sides of the fragment in contact 
with the baths. 

 An averaged classical picture of phonon energy (heat) transport and temperature 
distribution in the big 2D carbon nets, both open (graphene) and closed (tubulenes), and 
other kinetic and statistical phenomena may be obtained in rough space scale. The transition 
to rough scale leads to the generalized phonon kinetics equation describing heat propagation 
in 2D molecular nets. Results obtained in the previous report for flat nets have important 
meaning for comparison with that for closed nets. Considering here phonon dynamics and 
statistics in tubes with zero-chirality and of zigzag geometry, comparison with data for flat 
nets will be made. 
 The general picture of connected subjects for the problem of phonon propagation in 
molecular nets is shown in Fig.1. 
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 In Fig.1, fundamental data such as elastic modulus E, G and elastic coefficients k, k’ 
describing forces when shifts are directed along the main axes of the bond potential ellipsoid 
are presented. U(r) is the site potential energy of an atom which has to be determined in 
other approaches; the same for thermal expansion coefficient β, pressure coefficient γ(T), 
characteristic frequency (or phonon band width) temperature dependence ωo(T). 

 
II. Phonon dynamics in a zigzag carbon nanotube 

 
 Linear approximation in phonon dynamics is based on the supposition that small 
atomic vibrations have harmonic character at least in the case of not too high temperatures. 
It means that a potential equienergetical surface in the vicinity of atomic equilibrium 
positions has an ellipsoidal form. Classical motion of atoms near their equilibrium points is 
described by elastic constants k that characterizes atom-atom bonds in Born approach [1]. 
For atomic shifts perpendicular to bond we will use nonzero elastic constant k’ << k coming 
out the framework of linear approximation.  

Fig.1. General picture of connected subjects for the problem of phonon propagation in molecular nets. 
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 The symmetry of carbon structures dictates three main vibration types (radial ρ-
mode, tangential ϕ-mode and axial z-mode) shown in Fig.3. It should be marked that 
principal difference between vibration branches originates from bonds direction relative the 
direction of symmetry axes connected with given freedom’s degree. This difference manifests 
itself in phonon band structure for tangential and axial branches in pure zero-chirality case. 
In presence of helicity the difference vanishes. 

 

 

 
Fig.2. Fragment of hexagonal lattice. Shaded 

is the conventional elementary cell 
containing four atoms. Two types of bonds 

are presented by different colors. 

 
Fig.3. The problem’s geometry. Z-axes is 
perpendicular to the figure plane. It’s shown 
ϕ and ρ shifts of an atom. 
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In Fig.4, the case when ϕ-mode and axial z-mode have approximately equal 
orientation shifts relative to both red and blue bonds inside a chosen elementary cell is 

presented.  
 
Systems of dynamical equations for all three branches of vibrations are calculated 

taking into account that the motion of each atom is three-dimensional. The zero-
approximation approach supposes that radial ρ-mode, tangential ϕ-mode and axial z-mode 
should be considered independently. 
 Consider a zigzag tube (n,0) produced from the fragment shown in Fig.2 by rolling 
around vertical direction without any shift. In this case, each of the tube fragments is 
connected with the same fragment. Therefore, contrary to the case of flat fragments 
connecting external media (Report-1b) all atomic positions and their bonds are described 
similarly by the same dynamical equations. The difference exists with different vibration 
types or branches only. 
 For shifts directed normal to the tube surface, the equation is the following  
 

{ 1 2 3'(3 ) ,i i i i im kρ ρ ρ ρ ρ= − − − −&&

                         (1) 
where i1, i2, i3 are indexes for atom i neighbors. Atomic coordinates are not important here. 
The united atomic number i is defined using its position in the row and column of initial flat 
fragment creating the tube. For tangential atomic shifts having in view that atom space 
coordinates on the tube surface x=ϕR , where R is the tube radius and ϕ is the azimuth angle. 
The zigzag case with the absence of chirality is described by the system: 
 

                            

{ 1 2 30.75 (2 ) '( )i i i i i imx k x x x k x x= − − − − −&&  

 (2)

 

where coefficient 0.25 characterizes two weak bonds for this vibration. For axial atomic 
shifts we have  
 

Fig.4. Fragment of armchair tubulene (10,5) with non-zero 
chirality created from a graphene sheet {14,10} by rolling up 
around the armchair direction. Picked out is the conventional 
elementary cell containing four atoms. Two types of bonds 
are marked by different colors. 
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{ 1 2 3( ) 0 .2 5 ( 2 )i i i i i im z k z z k z z z= − − − − −&&

   (3)

 

Matrix structure of all equations (1-3) corresponding zigzag (n,0) case is shown in Fig.5. 
 
  
 
 Fig. 5 shows a zigzag tubulene matrix and vibration amplitudes. Atomic coordinates 
become important when mode amplitude distribution is presented in the space.  

The square of vibration mode s=1 of any type is shown in Fig.6. There are 
considerable differences in amplitude distribution over the tube surface relative open carbon 
net. The differences are caused by a change in the topology of the system. The difference 
between mode frequencies and density of states at the same number of state exists but it is 
not essential.  

The calculations given are for eigenvectors |Csi |2 which is a well known standing wave 
picture with corresponding number of knot's lines depending on the number of state s. 
Increasing the number of states leads to lateral (parallel to z-axes) divided by transversal 
(circular) knot’s lines the tube’s surface. 

 

Fig.5. Sketch of the dynamical matrix for zigzag tubulene created from a 
graphene sheet {5,5} containing 60 atoms by its rolling up. Rose-colored 
spots are diagonal elements, green and blue show two types of bonds, rest 
elements equal to zero, left and upper red bands contain atomic numbers.  
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Fig.6a. Calculated ρ-branch amplitude distribution 
along zigzag tubulene created from a graphene sheet 
{8,10} by rolling up around marked direction. 
Ground state. 

 
Fig.6b. ρ-branch amplitude distribution 

along zigzag tubulene created from a 
graphene sheet {5,5} by rolling up 
around marked direction. 5th state. 

Transversal knot’s line is degenerated. 
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 The Low frequency ground state is shown in Fig.6a. The picture is typical for mean 
amplitudes distribution: maximal amplitudes situates near the tube’s middle. The Fig.6b 
illustrates amplitude distribution for 5th (or r-4th) state where twice degenerated line of knots 
crossing two non-degenerated lateral lines of knots. 
 Increasing the tube’s length leads to a considerable change in the picture of 
vibrations. The same 5th (or r-4th ) state presented in Fig.6c has another combination of 
knot’s lines. The transversal line vanishes and two additional lateral lines of knots arise. 

The mean vibration amplitudes Aj averaged on the state populations ns decrease from 
the lateral ends to the middle axes of the nanobridge.  

 

 
Fig.6c. ρ-branch square amplitude distribution along zigzag tubulene created from a graphene sheet 
{14,5} by rolling up around marked direction. Four transversal knot’s lines correspond to 5th-state. 

 
Fig.6d. Calculated mean square amplitude distribution along 
zigzag tubulene created from a graphene sheet {15,5} by 
rolling up around marked direction. T=0.03 eV. Circular 
arrows show rolling up of the structure.
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More free lateral atoms have bigger vibration amplitudes. 
 

2
,

,
s jj C nA s

s
σ

σ
= ∑

(4)

 

where nsσ is the population of s,σ  state, j numbers atoms situated on the tube surface and Csj 
is the s-state probability amplitude at j-position of the net. Mean square amplitudes 
calculated for temperature T=0.03eV by expression (4) are shown in Fig.6d. The averaging 
was made here on all phonon branches σ. One can see that in contrary with flat carbon 
terminated nets with free edge atoms the closed structure is harder near the edges and 
greatest amplitudes of vibrations take place in the middle of the tube. The greater are 
temperatures the lesser is this effect of hard tube ends. Tube ends are frozen at low 
temperatures. 
 
The density of states (DOS) for a zigzag tubulene spectrum is shown in Fig 7a. 

 
 
The density of states may be approximately defined by the expression : 

1,

1
( )

s s

sg

σ σ

σω
ω ω

−

≈
−

                    (5)

 

that transfers to an exact one if the number of degrees of  freedom becomes big enough. 
More correctly, the density of states function may be calculated providing preliminary state 
grouping and density determination inside the each group. DOS calculation were made with 
preliminary state grouping using dividing the whole frequency band interval into 
h=Int[35r/50] sub-intervals (or near this value) where the number of eigenmodes was 
counted. The integer numbers are present on vertical axes in figures 7b, 8b and 9b. 
Frequency spectrum and DOS function in case of zero chirality are presented in Fig 7-9. The 
figures 7a, 7b were obtained by numerical calculation in system (1) described by the matrix 
of eigenvalues problem shown in Fig.5a 

 
Fig 7a. Radial mode spectrum of zigzag tubulene 
created from a graphene sheet {5,15} by rolling up 
around z-axes. The unity of frequency is ω0  
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 The comparison of these results obtained for the tube radial mode spectrum and DOS 
function for a graphene fragment of the same number of atoms and zigzag orientation shows 
the absence of any significant differences. Thus, the process of sheet rolling up into a tube 
has no influence on spectrum and density of states in this type of vibration case. But 
vibration amplitudes distribution (Fig.6) differs from that for graphene (see Report-1b, 
Fig.3, Fig.9a, Fig.9b) where the mean vibration amplitudes of the sheet free edges were 
bigger than that in the middle (Fig.9a). One can see that the tube has hard edges and soft 
middle part (Fig. 6a, 6d)   

 
 Calculated by system (2), the 
frequency spectrum and DOS function for 
azimuth mode are shown in Fig. 8a, 8b. Fig 8c 
presents the result of numerical calculation 
for azimuth mode existing in graphene sheet 
{15,5}, consisting 190 atoms. 
 

 
Fig.7b Radial mode DOS function for Fig.7b 
system. h=Int[35r/50]. 

Fig 8a. Azimutb mode spectrum of zigzag tubulene 
created from a graphene sheet {5,15} by rolling up 
around z-axes. The unity of frequency is ω0 . 

Fig.8b Azimuthal mode DOS function (arbitrary 
units) for tubulene fragment created from a 
graphene sheet {5,15} by rolling around z-axes. 
h=Int[35r/50]. 
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 The comparison of results in Fig.8b obtained for tube with azimuthal mode spectrum 
and DOS function for graphene fragment of the same number of atoms Fig.8c shows some 
differences. Thre tube’s number of bands is twice less than that of a plane sheet. The reason 
lies in the double degeneration of athimuthal motion around the tube axes. For this type of 
vibrations, the process of rolling a sheet into a tube has an influence on the spectrum and 
density of states. The tube creating process is accompanied by subbands uniting due to the 

fact that rotational symmetry arises.  
Vibration amplitudes distribution or space 
density distribution are similar for all types of 
phonons as shown in Fig 6.   
 

 
 
    Calculated from the system of equations (3), the frequency spectrum for z-branch modes is 
shown in Fig. 9a. The arising of a narrow subband near 0.125ω0 that plays the role of a 
characteristic “mark” for the changed topology of the system is of great interest. The density 
of states function for h=Int[35r/50] is shown in figure 9b. Superposition of two DOS 
functions presented in Fig. 9c gives an opportunity to immediately compare the spectra of 
open and closed graphene structures. In the case of z-type vibrations for zigzag tubulene, one 
can say that the only consequence is the arising of a narrow subband containing 2*n levels in 
the middle of the gap. This is because the new topology permits circular standing waves for 
z-type vibrations that were forbidden before in the plane structure. 
 

Fig.8c Azimuthal mode DOS function 
(arbitrary units) for graphene sheet {5,15} 
h=Int[35r/50].  

Fig 9a. Axial mode spectrum of zigzag tubulene 
created from a graphene sheet {5,15} by rolling up 
around z-axes. The unity of frequency is ω0 . 
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There exist different opinions as to the spectrum transformation when a graphite 

sheet is rolled up into a tube [3, 4]. These results show that only some of the graphene 
spectrum characteristics change significantly (case ϕ-mode and z-mode). As to the low-
frequency ρ-branch, one can talk about spectra similarity.  
  
 
III. Generalized equation of thermal conductivity in a single nanotube 
 

 
 

 

 

 
Fig.10a. Heat transistor (4-polar contact) 
on a flat carbon structure connecting four 
baths at different temperatures Tl , Tu , Td 
and Tr.  

 
Fig 9b. Axial mode DOS function (arbitrary units) for 
tubulene fragment created from a graphene sheet {5,15} 
by rolling around z-axes. Horizontal axes, frequency in ω0 
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 The PQDM analysis, proposed in Report-1b, considered heat processes from “first 
principles” using microscopic characteristic on a quantum level including phonon jump 
probability, phonon-phonon interaction, calculated spectrum and amplitudes distribution 
along the structure and macroscopic kinetic approach operating by length of phonon 
decoherence lph or phonon mean free path. The time of the phonon state establishing in area 
lph x lph is much less than the phonon lifetime. The latter is determined by phonon-phonon 
scattering and may lay in interval (10-8-10-7)s [???]. This supposition allows one to consider 
propagation of phonons as a sequence of jumps from one fragment to another with relatively 
long life on each one. Figures 10a, 10b 
illustrate 2D phonon propagation by jumps 
between mean free path-sized areas. 
Neighboring areas play a role of leads 
having some fixed temperatures. Taking 
into account that phonon scattering 
processes are weak ones we have obtained 
generalized equation of phonon 
dynamics.(Report-1b, paperzd-a.doc).  
 
Temperature distribution along the tube 
 

 
 
The phonon mean free path lph decreases with increasing of temperature. Evaluations made 
in different sources give interval from hundred Angstroms to several micrometers at room 
temperatures. In any case azimuthal phonon motion may be considered as ballistic one and 

Fig.10b. Phonon jumps over a carbon armchair 
structure (arrows). One-dimensional phonon 
dynamics in tubulenes. 

 
Fig.11. One dimensional phonon dynamics. Exact temperature 

distribution along the tube given by (7). Tl  ,Tr.are end 
temperatures, L is the tube length. End points come together all 

modal (partial) temperatures for each sσ. 
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jumps or diffusion in tubes may occur only in axial direction. In relation to phonon 
propagation nanotubes embody an ideal one-dimensional system. In stationary case it is ease 
to write the exact solution of the 1D variant of equation (6).  
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( ) ( ( ) ( ))

s

l s r s l s

T z
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σ

σ σ σ

ω

ω ω ω
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Here L is tube’s length, z is axial coordinate along the tube, nl  nr  are population numbers 
nsσ  taken at left and right temperatures of both tube ends Tl  ,Tr. Indeed on the macroscopic 
level local populations nl nr obeys equilibrium Planck law. The approximate behavior of 
temperature distribution is shown in Fig.11. The bundle of partial modal temperatures 
comes together in end points. With increasing temperature, all modal dependences become 
equal. The difference may be essential at low temperatures.  
 
 
 
 
Thermal conductivity and phonon mean free path 
 

Thermal conductivity was calculated here in PQDM approach for tubes of zigzag 
geometry by expression 
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where lph is phonon mean free path, square modulus reflect connections of end atoms of the 
tube fragment with  the rest part of the tube. 

ls i i sl lil

G G C=∑
                       (9)

 

Left and right end atoms numbered il  and il  were taken into account with its bonds 
orientations. Formula (8) is a partial case of obtained in Report-1b expression (16) for 
thermal conductivity when left and right DOS functions coincides with own density of states 
gr=gl.  
 The lph is playing here in some sense the double role. From one side it dictates the 
length of tube fragment where phonon states occur in ballistic regime. For a zigzag tube 
made from a graphene sheet {n,m} we have lph =2ma, where a is the bond length. In 
accordance with PQDM approach lph coincides with the length of calculated fragment with 
phonon standing waves inside. In contrary, DOS function g(ωsσ) describes the left (=right) 
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medium. From the other side lph depends on phonon-phonon collisions that in own turn 
depend on the temperature. 
 It is worth to evaluate temperature dependence of lph. General expression for phonon 
mean free path is given by the surface density of phonons S/N.  
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                (10) 
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where S is the tube surface where phonons propagate, ld is the tube circle length, ∆ is the 
phonon band width and <N> is mean number of phonons. Taking into account that <N>∝T 
we have  

1~ph Tl
                        (12) 

Implicitly lph  is contained in upper limit of summation in (8), in |Gls|2 and in g(ωsσ). The size 
dependence for zigzag tubes of given diameter and at given temperature was calculated by 
(8).  The Fig.12 presents typical picture of linear λ increasing vs phonon mean free path. 

~ phlλ
                    (13) 

Relations (13), (14) contain an explanation for the well-known experimental fact of thermal 

 
Fig.12. One dimensional phonon dynamics. Thermal conductivity size dependence for axial 
branch of vibrations. Lph is phonon mean free path, a is carbon bond length. For radial and 
athimuthal branches dependence has the same character.
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conductivity temperature damping at high temperatures by 1/T law. It is of interest also that 
the PQDM gives a simple opportunity to connect heat propagation with the definition of 
phonon mean free path.  

 The result of thermal conductivity numerical calculations for radial, azimuthal and 
axial phonon branches (σ=1,2,3) is presented in Fig.13. It is easy to see that the sum on all σ 
will be very close to curve 3 connecting with radial ρ-band. Unity λ0 determined from (8) and 
(16) from Report-1b is measured in W⋅m/K  

 
2
0

0
0

2 aG kπλ
ω

=
h

   ,              (13)

 

where a=1.2 Angstrom is unity of length, k is Boltzmann constant, ω0 is accepted here 
phonon energy unity and G0 is the constant of phonon-phonon interaction. Evaluations [4-8] 
give for characteristic phonon energy interval ω0∈[0.8-1.2]eV. 
 It should be marked that weak temperature dependence has also the structure 
constant (bond length a) of the system. Thermal expansion of single walled nanotubes was 
investigated in [9-12] but the result obtained there for radial expansion is not a reliable one. 
Elastic constants and the constant of phonon-phonon interaction G0 depend on the 
temperature too. 
 
 

 
Fig.13. Thermal conductivity temperature dependence. Zigzag NT. Curve 1 corresponds to z-
branch contribution, curve 2 to ϕ-branch and ρ-branch contribution is presented by curve 3. 
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The conclusion that radial mode contribution into heat transfer is dominating in 
temperature interval under consideration is based on the supposition that phonon-phonon 
interaction constant G0 (see (8), (9), (13)) participating in end atoms constants Gil does not 
depend on the phonon type (ρ, ϕ or z). Then due to big density of states in narrow low-
frequency ρ-band comparatively with that for ϕ- and z-vibrations essential prevail of ρ-
vibrations arises. So at actual temperatures ρ-branch of phonons determines heat 
propagation through single-walled nanotube. One should wait the same effect and for 
armchair geometry too. The problem of phonon-phonon constants for different vibration 
types is open now and should be investigated in detail in following study. 

 
IV.  Thermodynamics and statistics of zigzag nanotubes 
 

Static thermodynamic characteristics of non-helical zigzag nanotubes of different 
sizes have been calculated. If the system exists in equilibrium state, the atomic heat 
capacitance C(T) and entropy S(T) are as follows, 
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where r=2n(m+1) is the number of atoms in a zigzag tube of length 2ma and radius 
a/(2sin(π/n)). 
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The calculated temperature dependence for heat capacitance is shown in Fig.14. The curve 
illustrates the third thermodynamical law (W.Nernst theorem) at low temperatures and 
Dulong-Petit law at high temperatures (T>0.1ω0). The entropy behavior has similar 
character at low temperatures and shows logarithmic growth at high temperatures. 
 

 
V.  Summary 
 
 A complex approach PQDM was applied to describe dynamics, kinetics and statistics 
of phonons in carbon nanotubes with zero-chirality.  
 Atom vibration dynamics was considered for carbon nanotubes of zigzag geometry in 
comparison with the results obtained for graphene sheets. Vibrational eigenmodes, density of 
states and amplitude distribution for tube fragments of the length up to 40 hexagons were 
calculated in linear approximation for three types of vibration: athimuthal or tangential ϕ-
mode, radial ρ-mode and longitudinal z-mode. 
 Thermal fluxes and thermal conductivity were considered in PQDM. Temperature 
dependences were obtained. The mechanism of heat conductivity temperature damping was 
analyzed. 

 
Fig.14. Heat capacitance vs temperature dependence for zigzag nanotube. Dulong-Petit law and 
W.Nernst theorem. ω0∈(0.8, 1.2)eV. 
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 The exact solution of generalized thermal conductivity equation was obtained for 
nanotubes. Temperature distribution along the tube was derived analytically.  
 Size dependences were considered for thermal conductivity. It was shown the linear 
increasing of heat conductivity with the growth of the phonon mean free path. 
 Statistical properties were investigated. Heat capacitance and the entropy of carbon 
linear tubes were calculated as the function of temperature. 
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VII. Attachment: Short investigation plan 
 

1. Phonon(vibron) bands. Direct calculation in elastic approximation. 
a) Graphene molecules of various kinds, free and contacting with two leads. Influence 

of the number of bounding atoms on phonon structure. 
b) Phonon structure of 3-polar and 4-polar molecular bridges. 
c)  Carbon tubes of various radii. Short fragments. Free and contacting with leads. 
d) BN- flat structures. Free and contacting. 
e) BN-tubes of various radii. Short fragments. Free and contacting with leads. 
f) More complicate geometry. Torus. Two wall C-tube as a heat conductor.  

2 Heat transport investigation in PQDM. 
b) Linear carbon chains connecting electrodes (analytical approach) 
c) Graphene molecules of various kinds contacting with leads. Calculation. 
d) Carbon tubes of various radii. Short fragments. Free and contacting with leads. 
e) BN- flat structures. Free and contacting. 
f) BN-tubes of various radii. Short fragments. Free and contacting with leads 

3 Macroscopic manifestations of phonon propagation in carbon nets. 
a) Generalized 2D and 3D equation of thermal conductivity in carbon nets. 
b) Boundary problem and temperature distribution in macroscopic carbon nets. 
c) Boundary problem for heat conductivity in carbon and BN tubulenes and 

temperature distribution along tubulene bridge.. 
g) Carbon tubes of various radii. Short fragments. Free and contacting with leads. 

4 Phonon-phonon effects in charge and heat transport. 
a. Spectrum modification due to phonon-phonon processes; 
b. Non-linear transport through flat carbon structures; 
c. Non-linear transport along carbon tubulenes; 

5 Thermodynamics and statistics of closed and open carbon nets 
       a. Statistical sum and entropy of carbon nets (graphene and tubulene).  
       b. Heat capacitance of graphene and tubulene structures 
 
 
6 Heat-transistor effects. 

a. Three pole systems; 
b. Four pole systems; 

7 Electron-phonon effects in charge and heat transport. 
a. Transport through linear carbon chains connecting electrodes (analytical approach). 
 Dragging in linear bridges. 
b. United transport in graphene molecules of various kinds, free and contacting with 
 leads. Calculation. 
c. Electron-vibron interaction in carbon tubes of various radii. Short fragments. Free 
 and contacting with leads. 
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1.3.1b. Phonon dynamics and thermal properties of free armchair carbon nanotubes 
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I. Introduction 
 

 The content of Report-3a presents the third stage of the investigation of phonon fluxes 
in carbon and BN nanostructures in the framework of the tasks for "Strategies to Increase 
Thermal Conductivity. Enhancement by Optical Phonon Sub-Bands Engineering in 3-D 
Nanostructures Based on C and BN Nanotubes".  

Here, dynamics (planned point 1c, see attachment), heat transfer problem for closed 
carbon nets – armchair tubes (point 2c) and macroscopic manifestations (point 3c) are 
presented. Two main tubulene geometries: zigzag and armchair are compared with respect 
to phonon eigenstates, density of states, vibration amplitude distribution and thermal 
conductivity. 

The idea of the PQDM approach proposed before is to use a discrete microscopic 
model for phonon dynamics of relatively small molecular fragments approximately of 
phonon mean free path (MFP) sizes. 

The dynamics of such a cluster may be described classically in Born approach [1, 2] 
and all the important data may be obtained: eigenfrequences, density of states and phonon 
amplitude distribution inside the molecular fragment during its lifetime. Neighboring parts 
of the nanotube are in an uninterrupted process of exchange by phonons. Due to the weak 
fragment-surrounding medium interaction, the process may be described by Fermi’s “golden 

Fig.2.1. Structure of PQDM approach. I-II small scale processes, III-V rough scale processes. Lph is 
phonon mean free path. I stage, classical dynamics, atomic scale; II stage, phonon jumps between 
nanotube areas. III stage, transition to averaging, The notion of statistical temperature erases at IV stage. 
V stage , macroscopic thermodynamics and kinetics. 
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rule” which determines the value of the transfer rate. This quantum characteristic is a 
transport processes consideration that enables the introduction of a microscopic thermal 
conductivity coefficient that depends on the temperature difference between opposite sides of 
the fragment in contact with the baths. An averaged classical picture of phonon energy (heat) 
transport and temperature distribution along pulled carbon nanotubes and other kinetic and 
statistical phenomena may be obtained in rough space scale. The rough scale leads to the 
generalized phonon kinetics equation describing heat propagation in 2D molecular nets.  
 The general scheme of the developed PQDM approach is shown in Fig.1.1. The tiny 
scale stages (I-II) involve classical dynamics on the atomic level and weak phonon-phonon 
transformations and jumps. The parameters of this model are the elastic constants 
determined from atom-atom quantum-mechanical potentials, the geometry and symmetry of 
the system, the lattice constants, and the phonon-phonon interaction constant. At this level 
processes are ballistic.  The discrete system of contacting separate atoms vibrates and 
the complicate motion is represented as the superposition of modes that group into three 
branches. Each mode (=degree of freedom=standing wave) is described by the 
eigenfrequency and distribution of atomic amplitudes inside the corresponding standing 
wave. On the second stage, phonon standing waves jump between neighboring areas along 
the nanotube. Due to the actual “compactification” of circular degrees of freedom (ϕ) the 
phonon motion is a purely one-dimensional process (Report-2a). The rough scale processes 
occur on distances of the order of (or slightly greater than) phonon mean free path lengths 
(Lph) (stages III-V). The transition to averaging (stage III) gives a picture for phonon 
population along the molecular system. If the phonon-phonon interaction is elastic, there 
arise local or modal temperatures describing thermodynamic equilibrium between phonons 
of a given mode. The notion of statistical temperature is erased at stage IV when the 
averaging of different phonon mean free path lengths is performed. After the transition to a 
macroscopic description (stage V), the ballistic processes vanish and macroscopic 
thermodynamics and kinetics can be used.  
 Taking the phonon band structure and dividing by different phonon branches has 
significant meaning in describing thermal conductivity. This investigation shows a 
dominating contribution from the radial branch of vibration in heat propagation in zigzag 
NT and graphene sheets. The radial breathing mode (RBM) was investigated experimentally 
and theoretically in [3-5]. The mean frequency of RBM vibrations was estimated there within 
the interval (100-300)cm-1 that corresponds to estimations made here for the radial phonon 
band width (0.004-0.007)eV for graphene and single walled zigzag nanotubes.  

Phonon engineering of low-dimensional structures and heat conductivity properties of 
nanotubes are actively discussed in physical literature [6-8]. Establishing a concrete law for 
the temperature dependence of thermal conductivity at high temperatures as well as a law 
for the increasing at low temperatures is among the most common current problems. 
Different sources give the data for maximal thermal conductivity for a solitary carbon tube 
in a wide interval from 200 W/mK to 3000 W/mK. The temperature of maximal thermal 
conductivity for many carbon tubes also varies within a wide interval from 150 K to 300 K 
from different authors. Another point of interest is the differences in thermal conductivity 
for solitary carbon tubes depending on type (armchair or zigzag), chirality and size.  

Phonon dynamics and kinetics in tubes with armchair geometry and zero-chirality are 
considered below and compared with data for zigzag nanotubes. 
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I. Phonon dynamics in an armchair carbon nanotube 

 
 Linear approximation in phonon dynamics is based on the supposition that small 
atomic vibrations have harmonic character at least in the case of not too high temperatures. 
It means that the potential iso-energy l surface in the vicinity of atomic equilibrium positions 
has an ellipsoidal form. Classical motion of atoms near their equilibrium points is described 
by elastic constant k that characterizes atom-atom bonds in the Born approximation. In this 
investigation, nonzero elastic constant k’ << k, from the framework of linear approximation, 
is used for atomic shifts perpendicular to the bond. The symmetry of carbon structures 
dictates three main types of vibration (radial ρ-mode, tangential ϕ-mode and axial z-mode) 

Fig.2.1. 

 
Fig.2.1 The problem’s geometry. Z-axes is 
perpendicular to the figure plane. It’s shown 
ϕ and ρ shifts of an atom. 
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 It should be noted that the principal difference between the vibration branches 
originates from the direction of bonds relative to the direction of the axes of symmetry 
associated with the given degree of freedom (Fig.2.2). This difference manifests itself in the 
phonon band structure for the tangential and axial branches in the case of pure zero-
chirality. In the presence of helicity the difference vanishes. In Fig.2.3 (the case with non-zero 
chirality), the situation when the tangential ϕ-mode and axial z-mode have approximately 
equal orientation shifts relative to both red and blue bonds inside a chosen elementary cell is 
presented.  

  Dynamical equations for all three branches of vibrations can be calculated taking into 
account that the motion of each atom is three-dimensional. The zero-approximation 

Fig.2.2. A fragment {9,9}of hexagonal 
lattice. Shaded are two equivalent 
conventional elementary cells containing 
four atoms. Two types of bonds are 
presented by different colors. Rolling around 
horizontal axes could be implemented only 
for even number horizontal rows {8,9}  

Fig.2.3. Fragment of armchair tubulene (10,5) with non-zero 
chirality created from a graphene sheet {14,10} by rolling up 
around the armchair direction. Picked out is the conventional 
elementary cell containing four atoms. Two types of bonds 
are marked by different colors. 
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approach supposes that the radial ρ-mode, tangential ϕ-mode and axial z-mode should be 
considered independently. 

  Consider an armchair tube (n,0) produced from the fragment shown in Fig.2.2 by 
rolling around horizontal direction without any shift. In this case each of the tube fragments 
is connected with the same fragments. Therefore, contrary to the case of flat fragments 
connected to the external media, all atomic positions along with their bonds are described by 
the same dynamical equations. The difference exists between different vibration types or 
branches only.  
 For shifts directed normal to the tube surface the equation is the following: 
 

{ 1 2 3'( 3 ) ,i i i i im kρ ρ ρ ρ ρ= − − − −&&

                         (2.1) 
where i1, i2, i3 are indexes for atom i neighbors. Atomic coordinates are not important here. 
The universal atomic number i is defined using its position in the row and column of the 
initial flat fragment creating the tube. This type of vibration is called the radial breathing 
mode (RBM) in literature [3-5]. 

For tangential atomic shifts, taking into account the atom space coordinates on the 
tube surface x=ϕR , where R is the tube radius and ϕ is the azimuth angle, the armchair case 
with the absence of chirality is described by the system: 

{ 1 2 3( ) 0 . 2 5 ( 2 )i i i i i im x k x x k x x x= − − − − −&&  

(2.2)

 

where coefficient 0.25 characterizes two weak bonds for this vibration.  
 For axial atomic shifts we have  

{ 1 2 30 . 7 5 ( 2 ) '( )i i i i i im z k z z z k z z= − − − − −&&  

(2.3)
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The matrix structure of all equations (1-3) corresponding to the armchair (n,0) case is shown in 
Fig.4. 

 
Armchair tubulene matrix and vibration amplitudes 
 

Atomic coordinates become important when the mode amplitude distribution is 
presented in the space. The vibration amplitudes for mode s=5 of any type are shown in 
Fig.2.5. As in the case of zigzag NT, there are considerable differences in amplitude 
distribution over the armchair tube surface compared to the open carbon net. The 
differences are caused by the changed topology of the system. A difference exists between the 
frequency of modes and density of states at the same state but it is not essential.  

 
Fig.2.4. Sketch of the dynamical matrix for armchair tubulene created from a graphene sheet {5,5} 
containing 60 atoms by its rolling up. Rose-colored spots are diagonal elements, green and blue show 
two types of bonds, rest elements equal to zero, left and upper red bands contain atomic numbers. 
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The calculations performed with the system of equations (1-3) give |Csi |2 for 

eigenvectors which is a well known standing wave picture with the corresponding number of 
knot's lines depending on the state number s. Increasing the number of states leads to the 
formation of lateral (parallel to z-axes) and transverse (circular) knot’s lines dividing the 
tube’s surface. Fig.2.5 illustrates the well known knot’s theorem for the 5th (or r-4th) state 
where two twice degenerated knot's lines cross circularly to the tube's surface. Increasing the 

 
Fig.2.8. Lower part. Three branches of phonon 
spectrum for armchair tubulene created from a 
graphene sheet {8,15} by rolling up around z-axes. 
Upper part. Radial phonon band for zigzag {8,15} 
NT.  

 
Fig.2.7. Calculated mean square amplitude 
distribution along armchair tubulene created from a 
graphene sheet {15,5} by rolling up around marked 
direction. T=0.03 eV. Circular arrows show rolling up 
of the structure. 

Fig.2.5. Calculated ρ-branch amplitude 
distribution s=5 along armchair tubulene 
created from a graphene sheet {6,5} by 
rolling up around marked direction. 
Transversal knot’s lines are degenerated. 

 
Fig.2.6. ρ-branch amplitude distribution along 
zigzag tubulene created from a graphene sheet 
{6,5} by rolling up around marked direction. 5th 
state. Longitudinal knot’s lines are degenerated. 
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tube’s length leads to a considerable change in the picture of vibrations. The same 5th (or r-
4th) state in the zigzag case, presented in Fig.2.6, has knot’s lines perpendicular to those of 
the armchair case.  

 
 
The mean vibration amplitudes Aj, averaged for the state populations ns, are almost 

constant and do not deviate sufficiently along the tube surface. There is a difference in zigzag 
nanotubes where |Csi |2 decreases from the lateral ends to the middle axes of the nanobridge.  
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where nsσ is the population of s, σ  state,  j numbers atoms situated on the tube surface and 
Csj is the s-state probability amplitude at j-position of the net. Coefficients Csj are the 
components of eigenvectors arising as the solution of systems (1-3). Mean square amplitudes 
calculated for temperature T=0.03eV by expression (4) are shown in Fig.2.7. The averaging 
was made here over all phonon σ-branches.  One can see that in contrast with flat carbon 
terminated nets with free edge atoms (Report-1b) and to some extent zigzag carbon tubes 
(report-2b), the closed armchair structure has almost constant amplitudes along all 
directions over the surface of the tube.  
 Phonon mode frequencies are obtained from expressions (1-3) as eigenvalues. In 
Fig.2.8, three branches of the phonon spectrum for an armchair tubulene having 8 
honeycombs in the circumference are presented.  
 
Armchair tubulene spectrum and DOS 
 
The density of states may be approximately defined by the following expression. 

( )
s

s

Nsg
σ

σ
σω

ω

∂
=
∂

        (2.5)

 



 39

This transforms into an exact equation if the number of degrees of freedom becomes large 
enough. Here, Nsσ numbers phonon states with frequency ωsσ. More correctly, the density of 
states function may be calculated providing preliminary state grouping and density 
determination inside each group.  

 
 DOS with preliminary state grouping have been calculated by dividing the whole 
frequency band interval into h=Int[4r/5] sub-intervals (or near this value) within which the 
number of eigenmodes were counted. The frequency spectrum and DOS function in the zero 
chirality armchair nanotube case are presented in Figs. 9-11. Fig. 9 was obtained by 
numerical calculation of system (1) described by the matrix of eigenvalues problem shown in 
Fig.2.4. 

 
Fig.2.9. Radial mode density of states for armchair tubulene created from a graphene sheet {8,15} 
by rolling up around z-axes. Insertion the same for zigzag tubulene. 
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 The comparison between results obtained for armchair tube radial mode spectrum 
and DOS functions for a zigzag tube and a graphene fragment with the same number of 
atoms shows the absence of any significant differences.  

 
Thus, the process of rolling a sheet up into a tube does not influence the spectrum and 
density of states in this type of vibration case. But the distribution of vibration amplitudes 
(Fig.7) differs from that for graphene (see Report-1b, Fig.3, Fig.9a, Fig.9b) where the mean 
vibration amplitudes of the sheet's free edges were bigger than that in the middle.  
 The density of states frequency function for the tangential branch of vibrations 
calculated with equation (2) is shown in Fig. 2.10. The insertion shows the result of numerical 
calculations performed before for the ϕ-branch in an armchair geometry equivalent to the z-
branch in a zigzag NT. Note the narrow subband near 0.125ω0 (see insertion) that plays the 
role of a characteristic “mark” for the changed topology of the system. This subband 
contains 2*n levels in the middle of the gap that occur because the new topology now permits 
circular standing waves z-type vibrations that were forbidden before in the plane structure. 
In the armchair geometry, circular atomic chains are absent (for ϕ-type vibrations) and the 
middle-gap subband vanishes again.  

Comparing results obtained for zigzag and armchair tubes for the DOS function 
shows some differences. The subband inside the gap (see insertion) originates from circular 
chains of equivalent atoms in zigzag geometry while for armchir geometry the circles are 
absent. On the other hand, graphene z-branch DOS is very similar to tangential armchair 
due to the absence of circular symmetry.  
   
 
 

Fig.2.10. Tangential ϕ-mode density of states for armchair tubulene created from a graphene sheet 
{8,15} by rolling up around z-axes. Insertion is zigzag equivalent for this that is z-mode DOS. 
h=Int[4r/5]. 
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 The frequency spectrum for z-branch modes calculated from the system of equations 
(3) is shown in Fig.2.11.  

 
  
II. Generalized equation of 

thermal conductivity in a 
single nanotube 

 
 The PQDM analysis 
proposed in Report-1b consider 
heat processes from “first 
principles” both using microscopic 
characteristic on quantum level 
including phonon jump 
probability, phonon-phonon 
interaction, calculated spectrum 
and amplitudes distribution along 
the structure and macroscopic 

Fig.3.1. One dimensional phonon dynamics. Exact 
temperature distribution along the tube given by (4.4). Tl  
,Tr.are temperatures of baths connecting with tube ends, L 
is the tube length. End points come together all modal 
(partial) temperatures for each sσ. 

Fig.2.11. Axial z-branch density of states for armchair tubulene created from a graphene sheet 
{8,15} by rolling up around z-axes. Insertion is zigzag equivalent for this that is ϕ-mode DOS. 
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kinetic approach operating by length of phonon decoherence lph or phonon mean free path. 
The time of the phonon state establishing in area lph x 2πR is much less than the phonon 
lifetime. The latter is determined by phonon-phonon scattering and may lay in interval (10-8-
10-7)s [2]. This supposition allows one to consider propagation of phonons as a sequence of 
jumps from one fragment to another with relatively long life on each one. In a tube of not too 
big radius R the phonons propagate by jumps between mean free path-sized areas. 
Neighboring areas play a role of leads having some fixed temperatures. Taking into account 
that phonon scattering processes are weak ones we have obtained generalized equation of 
phonon dynamics (Report-1b, paperzd-a.doc).  In 1D case it has the form 
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t z

σσ σ∂ ∂=
∂ ∂

                (3.1) 
 
 
 
Temperature distribution along the tube 
 
The phonon mean free path lph decreases with increasing of temperature. Evaluations made 
in different sources give interval from hundred Angstroms to several micrometers at room 
temperatures. In any case azimuthal phonon motion may be considered as ballistic one and 
jumps or diffusion in tubes may occur only in axial direction. In relation to phonon 
propagation nanotubes embody an ideal one-dimensional system. In stationary case it is ease 
to write the exact solution of the one-dimensional equation (1) if to start from generalized 
equation written for populations nsσ (Report-2b).  
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Here L is tube’s length, z is axial coordinate along the tube, nl  nr  are population numbers 
nsσ  taken at left and right temperatures of both tube ends Tl  ,Tr. Indeed on the macroscopic 
level local populations nl nr obeys equilibrium Planck law. The approximate behavior of 
temperature distribution is shown in Fig.3.1. The bundle of partial modal temperatures 
comes together in end points. With increasing of temperature all modal dependences become 
equal. The difference may be essential at low temperatures.  
 
Thermal conductivity and phonon mean free path 

Thermal conductivity was calculated here in PQDM approach for tubes of armchair 
geometry by expression obtained in previous reports 1b and 2b. 
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where lph is phonon mean free path, square modulus reflect connections of end atoms of the 
tube fragment with  the rest part of the tube. 

ls i i sl lil

G G C=∑
                        (3.4) 

 
Left and right end atoms numbered il  and il  were taken into account with its bonds 
orientations. Formula (3) is a partial case of obtained in Report-1b expression (16) for 
thermal conductivity when left and right DOS functions coincides with own density of states 
gr=gl.  
 The lph is playing here in some sense the double role. From the one side it dictates the 
length of tube fragment where phonon states occur in ballistic regime. For an armchair tube 
made from a graphene sheet {n,m} we have l2

ph =3m2a2/4, where a is the bond length. In 
accordance with PQDM approach lph coincides with the length of calculated fragment with 
phonon standing waves inside. In contrary, DOS function g(ωsσ) describes the left (=right) 
medium. From the other side lph depends on phonon-phonon collisions that in own turn 
depend on the temperature. 
 It is worth to evaluate temperature dependence of lph. General expression for phonon 
mean free path is given by the surface density of phonons S/N.  
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where S is the tube surface where phonons propagate, ld is the tube circle length, ∆ is the 
phonon band width and <N> is mean number of phonons. Taking into account that <N>∝T 
we have  

1~ph Tl
                       (3.7) 

Implicitly lph is contained in upper limit of summation in (3), in |Gls|2 and in g(ωsσ). The size 
dependence for armchair tubes of given diameter and at given temperature was calculated 
by (3). The Fig.3.2 presents typical picture of quadratic increasing for λ vs phonon mean free 
path. 
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2~ phlλ
                   (3.8) 

Relations (7), (8) contain an explanation for the well-known experimental fact of thermal 
conductivity temperature damping at high temperatures by 1/T2 law. This phenomenon is 
observed both in 3D and low-dimensional systems. Proposed here PQDM approach gives a 
simple opportunity to connect heat propagation with the definition of phonon mean free 

path.  
 The thermal conductivity dependence on the radius of SWNT is also approximately 
quadratic (Fig.3.2, insertion).  

 The result of thermal conductivity numerical calculations for radial, azimuthal and 
axial phonon branches (σ=1,2,3) is presented in Fig.3.3. It is easy to see that the sum on all σ 
will be very close to curve 1 connecting with radial ρ-band (Fig.3.4). The unity λ0 determined 
from (3) and formula (16) from Report-1b is measured in W⋅m/K  
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where a=1.2 Angstrom is unity of length, k is the Boltzmann constant, ω0 is accepted here 
phonon energy unity and G0 is the constant of phonon-phonon interaction. Evaluations using 
data of [8] and [9] give for  
characteristic phonon energy very wide interval ω0∈[0.8-1.6]eV. 

Fig.3.2. One dimensional phonon dynamics. Calculated total thermal conductivity length 
dependence that includes all vibration branches of armchair NT. Lph is phonon mean free path, a 
is carbon bond length.  
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 It should be noted that the weak temperature dependence also has the structure 
constant (bond length a) of the system. Thermal expansion of single walled nanotubes was 
investigated in [10] but the result obtained there for radial expansion is not a reliable one 
and deviates from negative to positive values. Elastic constants and the constant of phonon-
phonon interaction G0 depend on the temperature too.  

The maximum is situated near 1.5ω0 both in armchair (Fig.3.4) and zigzag case 
(Report-2b, Fig.13). It means that the difference between two geometries exists only on the 
dynamical level of tiny scale processes and vanishes after the transition to rough scale 
processes. The insertion to Fig.3.4 presents the law of initial temperature rising of thermal 
conductivity at low temperatures. Our conclusion λ~T2 for an isolated SWNT coincides with 
experimental data obtained in direct measurement for MWNT by [11] and is in contradiction 

Fig.6 . Thermal conductivity temperature dependence. Armchair NT. Curve 1 corresponds to z-branch contribution, curve 2 to ϕ-
branch and ρ-branch contribution is presented by curve 3. 

Fig.3.4 . Total thermal conductivity temperature dependence. Armchair NT. Eight honeycombs       
along the circumference. Insertion: the law of increasing at low temperatures: λ~T2,  T∈(0, 
0.005)ω0 .  
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with linear temperature law obtained in [12] for SWNT bundles. 

The conclusion that the radial mode contribution to heat transfer is dominating in the 
temperature interval under consideration is based on the supposition that the phonon-
phonon interaction constant G0 (see (3), (4), (9)) participating in end atoms constants Gil does 
not depend on the phonon type (ρ, ϕ or z). Then due to the large density of states in narrow 
low-frequency ρ-band comparatively with that for ϕ- and z-vibrations essential prevail of ρ-
vibrations arises. So at actual temperatures ρ-branch of phonons determines heat 
propagation through single-walled armchair nanotube. The same effect was obtained before 
and for zigzag geometry too. Of course, the problem of phonon-phonon constants G0 for 
different vibration types exists now and should be investigated in detail in following study. It 
should be mentioned also very important in PQDM starting constant ω0 that have to be 
found from comparison with experimental data for isolated SWNT. As well the problem of 
mean free path distribution function is open and should be investigated more detail.  

IV  Thermodynamics and statistics of armchair nanotubes 
 

Static thermodynamic characteristics of non-helical armchair nanotubes of different 
sizes have been calculated. If the system exists in equilibrium state, the atomic heat 
capacitance C(T) and entropy S(T) are given by the following expressions, 

2
2

, ,
( ) 1) ,( )1 1( ) ( )( s

s
s s s

s s
NNC T N

Tr r T
σ

σ
σ σ σ

σ σ
ωωω ω ω +

∂= =∑ ∑∂
   

(4.1) 
where r=2n(m+1) is the number of atoms in a armchair tube of length 1.7ma and radius 
a/sin(π/n). 
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The calculated temperature dependence for heat capacitance is shown in Fig.4.1.  

The curve illustrates the third thermodynamical law (W.Nernst theorem) at low 
temperatures and Dulong-Petit law at high temperatures (T>0.1ω0). An absolutely equivalent 
curve was obtained before for zigzag NT (Report-2b). This means that from a 
thermodynamical point of view both NT symmetries, armchair and zigzag, are equivalent at 
all temperatures. 

The Dulong-Petit law is a tag in thermodynamics that embodies the classic systems. It 
is clear from the Fig.4.1 that the notion “high temperatures=classical system” begin to act 
from 0.15ω0, that is approximately 1400K, for carbon single-walled nanotubes. Thus, in real 
temperature intervals, single-walled nanotubes are non-classical objects. 

The entropy behavior has similar characteristics at low temperatures and shows 
logarithmic growth at high temperatures both for zigzag and armchair nanotubes. 

 
V.  Summary and discussion 
 
 A complex approach PQDM applied gives an opportunity to describe dynamics, 
kinetics and statistics of phonons in carbon nanotubes with zero-chirality. Fig.5.1 illustrates 

 
Fig.4.1. Heat capacitance vs temperature dependence for armchair nanotube. Dulong-Petit law and 
W. Nernst theorem. ω0∈(0.8, 1.2)eV. 

Fig.5.1. Averaging procedures and speed of propagation. 
a is interatomic distance, <x> is mean atomic shift , x is extended coordinate of the freedom’s 
degree, V is excitation velocity, m is atom mass, k is elasticity coefficient. 
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the important role of averaging procedures in understanding of phonon, sound and heat 
propagation in low-dimensional atomic nets. The classical dynamical equations don’t contain 
retardation in non-relativistic approach. This causes the infinite speed of vibrational 
excitation propagation along the net or nanotube (Fig.5.1, second column, upper row).  

The first stage averaging is transition to presentation of dynamical equations in the 
finite differences (second column, middle row). Evaluations by data [9,10] (k=4.65⋅10-12N/m) 
and our data [13] give for second row velocity V=18.3 km/s. This value is close to sound 
velocity in diamond (1,1,0) direction. 

More rough averaging at the 
phonon mean free path distances is 
used to describe heat spreading 
along carbon nets (Fig.5.1, second 
column, lowest row). Found from 
RBM frequency band width value of 
phase velocity V= a⋅∆ρ/π is more 
than twenty times less (0.85km/s) 
than for the pure sound. 
 Atom vibration dynamics 
was considered for carbon 
nanotubes of armchair geometry in 
comparison with the results 
obtained for graphene sheets. 
Vibrational eigenmodes, density of 
states and amplitude distribution for 
tube fragments of the length up to 
40 hexagons were calculated in 
linear approximation for three types 

of vibration: athimuthal or tangential ϕ-mode, radial ρ-mode and longitudinal z-mode.  
 It’s shown that phonon propagation in actual nanotubes is characterized by a kind of 
“compactification” of circular freedom’s degree due to the big phonon mean free path. 
Nanotubes of actual diameters are ideal one-dimensional phonon qnd heat conductors. 
 Phonon band structure was investigated for armchair nanotubes on the base of 
hierarchical law and system symmetry. 
 Thermal fluxes and thermal conductivity were considered in PQDM. Temperature 
dependences were obtained. The mechanism of heat conductivity high temperature damping 
is reflected in Fig.5.2. Two competitive tendencies produce thermal conductivity maximum at 
intermediate temperatures (100-300)K. 
 The exact solution of generalized thermal conductivity equation was obtained for 
nanotubes. Temperature distribution along the tube was derived analytically.  
 Size dependences were considered for thermal conductivity. It was shown the linear 
increasing of heat conductivity with the growth of the phonon mean free path. 
 Statistical properties were investigated. Heat capacitance and the entropy of carbon 
linear tubes were calculated as the function of temperature. 
 Our theoretical approach (Fig.1.1) explains the nature of good thermal conductivity in 
carbon and carbon-like materials by existing of the soft vibration branch (low frequency 
RBM phonons with high DOS at thermal energies) accompanied by structure hardness (high 
frequency ϕ- and z-branches) providing big mean free path for phonons (Fig.5.2).  

 Fig.5.2. Temperature dependence of thermal 
conductivity coefficient. Two competitive 
tendencies. 
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 Adding of new layers or new walls to single-walled NT makes breathing ρ-branch of 
vibrations harder. That causes the sharp decreasing of phonon density of states at the same 
phonon mean free path. Phonons leave the active thermal zone and heat conductivity 
decreases. Therefore, atomic monolayers and isolated single-walled nanotubes have to be 
champions in thermal conductivity. Uniting SWNT into the tight bundles quenches breathing 
mode too. PQDM approach predicts the sufficient worsening of thermal conductivity in 
SWNT tight bundles comparatively with free SWNT. The way of thermal conductivity 
enhancement in this case is “dissolving” of inter-tubes bonds and turning out tight bundles 
into the system of almost free tubes. 
 Pressure decreases thermal conductivity [14]. The effect is connected with total 
hardening of all bonds and phonon modes going away from active thermal zone. 
 Melting decreases thermal conductivity by another reason: the phonon’s mean free 
path becomes small.  

In conclusion we mark that the problem of creating “heat superconductors” may have a 
perspective on the way of hardness-softness uniting. It seems, the natural limit is given by 
isolated fragments of carbon-like structures: carbon sheets and single-walled nanotubes. The 
question is in the existing of possibility to create more complicate artificial heat 
superconductivity aimed systems.  
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VIII. Attachment: Short investigation plan 
 

2. Phonon(vibron) bands. Direct calculation in elastic approximation. 
a) Graphene molecules of various kinds, free and contacting with two leads. Influence 

of the number of bounding atoms on phonon structure. 
b) Phonon structure of 3-polar and 4-polar molecular bridges. 
c)  Carbon tubes of various radii. Short fragments. Free and contacting with leads. 
d) BN- flat structures. Free and contacting. 
e) BN-tubes of various radii. Short fragments. Free and contacting with leads. 
f) More complicate geometry. Torus. Two wall C-tube as a heat conductor.  

2 Heat transport investigation in PQDM. 
a. Linear carbon chains connecting electrodes (analytical approach) 
h) Graphene molecules of various kinds contacting with leads. Calculation. 
i) Carbon tubes of various radii. Short fragments. Free and contacting with leads. 
j) BN- flat structures. Free and contacting. 
k) BN-tubes of various radii. Short fragments. Free and contacting with leads 

3 Macroscopic manifestations of phonon propagation in carbon nets. 
a. Generalized 2D and 3D equation of thermal conductivity in carbon nets. 
b. Boundary problem and temperature distribution in macroscopic carbon nets. 
c. Boundary problem for heat conductivity in carbon and BN tubulenes and 

temperature distribution along tubulene bridge.. 
d. Carbon tubes of various radii. Short fragments. Free and contacting with leads. 

4 Phonon-phonon effects in charge and heat transport. 
a. Spectrum modification due to phonon-phonon processes; 
b. Non-linear transport through flat carbon structures; 
c. Non-linear transport along carbon tubulenes; 

5 Thermodynamics and statistics of closed and open carbon nets 
a) Statistical sum and entropy of carbon nets (graphene and tubulene).  
b) Heat capacitance of graphene and tubulene structures 

6 Heat-transistor effects. 
a) Three pole systems 
b) Four pole systems 

7 Electron-phonon effects in charge and heat transport. 
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a) Transport through linear carbon chains connecting electrodes (analytical approach). 
 Dragging in linear bridges. 
b) United transport in graphene molecules of various kinds, free and contacting with 
leads.  Calculation. 
c)  Electron-vibron interaction in carbon tubes of various radii. Short fragments. Free 
and  contacting with leads. 
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1.3.2.   Carbon heat radiators in polymer surroundings 

Here we consider the heat transfer problem for a solitary carbon nanotube (NT) 
inserted into a solid matrix with low thermal conductivity. Phonon eigenstates, density of 
states and vibration amplitude distribution along the molecule will be investigated for a NT 
laterally in contact with the continuous external medium. The temperature distribution 
inside a low-conducting medium containing a high-conducting channel will be calculated in 
the framework of boundary problems (point 3d). Concentration dependences of the effective 
conductivity of the composite will be evaluated. Also, the influence of the embracing polymer 
molecule on the phonon dynamics and the heat spreading along the nanotube will be 
calculated. 

Heat conductivity properties of nanotubes are actively discussed in this literature. The 
following is a list of questions and problems under investigation:  

•  the general features of the temperature dependence of thermal conductivity - the    
 mechanism of temperature damping at high temperatures and concrete law of 
 increasing at low temperatures. 

•  the maximum thermal conductivity for a solitary carbon tube has not been 
 measured reliably.  Current values vary on a wide interval from 200 W/mK to 3000 
 W/mK from different authors.  

•  the temperature for maximum thermal conductivity for carbon tubes has not been 
 reliably measured  and also varies on a wide interval from 150 K to 300 K from 
 different authors.  

•  the question is whether there exist differences in the thermal conductivity of 
 solitary carbon tubes depending on the type (armchair or zigzag), chirality and 
 diameter.  

•  are the differences between thermal conductivity of solitary carbon tubes, flat 
 carbon structures like graphene and graphite (in plane) essential?  

 
Different authors give different answers to these questions. Another complex problem 

arises in composites containing nanotubes as a mixture element. Experiments show that a 
medium like epoxy, having very low thermal conductivity, may change its thermal properties 
dramatically when a small amount of nanotubes is dissolved in it. 

 In [1], the single-walled carbon nanotubes (SWNTs) were used to augment the thermal 
transport properties of industrial epoxy. It was shown that the thermal and mechanical 
properties of SWNT-epoxy composites were improved significantly. Samples loaded with 
1wt% unpurified SWNT material showed a 70% increase in thermal conductivity at 40 K, 
rising to 125% at room temperature.  

The phenomenon of SWNT thermal conductivity was discussed in [2]. The comparison 
made in this article shows that the measured heat conductivity of single-walled nanotubes 
differs from that of both 2D graphene and 3D graphite, especially at low temperatures, 
where 1D quantization of the phonon band structure is observed. For aligned bundles of 
SWNTs a thermal conductivity of more than 200 W/mK was obtained at room temperature. 
A linear temperature dependence up to approximately 40 K was observed in [2] for SWNTs. 
Contradicting results, between quadratic and linear laws at low temperatures, were obtained 
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for the T-dependence of thermal conductivity of multi-wall NT (MWNT) [3]. The thermal 
conductivity of a MWNT bundle was measured in the interval T∈[8-350] K  and a maximum 
of 1200 W/mK was reached at 300 K. In [4] it is shown that the heat processes of nanotubes 
are similar to that of two-dimensional graphene at high temperatures but is sensitive to the 
effects of rolling the graphene sheet into a small cylinder at low temperatures.  

Measurements for tube bundles show that inter-tube coupling is relatively weak, and 
the thermal conductivity of nanobundles reflects the on-tube phonon structure [4]. The 
temperature dependence of electrical conductivity and thermopower were studied 
theoretically in [5] for single-wall carbon nanotubes using a Green's-function theory. It is 
shown that armchair and zigzag tubes exhibit quite different temperature dependencies of 
transport coefficients. The thermal conductivity and thermoelectrical power of a single 
carbon nanotube were measured in [6] using a micro-device. The observed thermal 
conductivity is more than 3000 W/Km at room temperature. The temperature dependence of 
the thermal conductivity exhibits a peak at 320 K. The molecular dynamics method was used 
in [7] to simulate heat conduction along a single walled carbon nanotube with the Tersoff-B 
Renner bond order potential [8]. SWNT models with different chiralities (5,5), (8,1), and 
(10,10) were investigated for the typical length about 125 Angstroms. Thermal conductivity 
values from 200-300 W/mK were obtained and the dependence on the length of the tube was 
relatively small. The thermal conductivity for (8,1) chiral tube was measured to be a little 
smaller than the armchair system. The phonon density of states were measured as the power 
spectra of velocity fluctuations and compared with the experimental Raman spectra.  

Measurements of the thermal conductivity made in [9] show graphite-like behavior for 
MWNTs but a quite different behavior for SWNTs, specifically a linear temperature 
dependence at low temperatures, which is consistent with one-dimensional phonons. The 
room-temperature thermal conductivity of highly aligned SWNT samples is over 200 W/mK, 
and the thermal conductivity of individual nanotubes is likely to be higher still. Carbon 
nanotubes have very high thermal conductivity; comparable to diamond crystal and in-plane 
graphite sheet [10]. The nanotube bundles show very similar properties to graphite crystal in 
which dramatic differences exist in thermal conductivities along different crystal axis. 

We will consider problems relevant to heat propagation in composites containing 
nanotubes weakly connected with the surrounding medium. Only zigzag and armchair 
single-walled nanotubes will be taken into account. 

 
1.3.2a. Dynamics of carbon tubes laterally in contact with external medium 

 
The idea of the phonon quantum discrete model (PQDM) is to use a discrete 

microscopic model for phonon dynamics of relatively small molecular fragments that are 
approximately of phonon mean free path sizes. The dynamics of such a cluster may be 
described classically in the Born approach and all the important data may be obtained: 
eigenfrequences, density of states and phonon amplitude distribution inside the molecular 
fragment during its lifetime. Connected fragments of a molecular net are in an uninterrupted 
process of phonon exchange. Due to the weak fragment-surrounding-medium interaction the 
process may be described by Fermi’s “golden rule” that determines a value for the transfer 
rate. This quantum characteristic is a transport processes consideration and enables us to 
introduce a microscopic thermal conductivity coefficient that depends on the temperature 
difference between opposite sides of a fragment that is in contact with the baths. 
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The model developed here is based on fundamental data characterizing the structure 
with elastic modulus and elastic coefficients k, describing forces acting along the main axes of 
the bond potential ellipsoid. Thermal expansion coefficient, pressure coefficient, 
characteristic frequency (or phonon band width) temperature and pressure dependences 
may be included in the proposed model. 

   
In this section, we consider a nanotube 

inserted into the solid matrix – a continuous 
medium of relatively small heat conductivity. 
Suppose here that the tube-matrix bonds are 
weak, that is, the bond is of a physical 
adsorption type. An armchair nanotube of 
radius ro that is weakly connected with the 
walls of the channel by horizontal bonds is 
presented in Fig. 1.4. 

The vibration dynamics of the armchair 
tube is represented by three equations for the 
main types of atomic motion. The adsorption 
bond will be described by elastic constant κ if 
the shift is directed along the bond and κ’ if it 
is in the perpendicular direction. We assume 
that adsorption is weak and κ ≈ k/5, κ’ ≈ κ/10. 

 
 
 
 

The equation for shifts, ρI, directed normal to 
the tube surface is as following:  

 

     

1 2 3'(3 ) ,i i i i i im kρ κρ ρ ρ ρ ρ= − − − − −&&   (1.4) 
 
where i1, i2, i3 are indexes for the neighbors of atom i, κ and k’ are the elastic constants of 
external adsorption bond and intrinsic respectively. The united atomic number i is defined 
using its position in the row and column of the initial flat fragment creating the tube.  
 For tangential atomic shifts we will take into account the atomic space coordinates on 
the tube surface x=ϕR, where R is the tube radius and ϕ is the azimuth angle. The armchair 
case with the absence of chirality is described by the system: 
 

1 2 30.25 (2 ) ( ) 'i i i i i i imx k x x x k x x xκ= − − − − − −&&  
          (1.5) 

 
where coefficient 0.25 characterizes two weak bonds laying on the tube’s surface for 
tangential atomic shift. Another bond directed along the atomic shift is most intensive. The 
bond of adsorption connection with the external medium is relatively weak for this motion.  

 
Fig.1.4: Armchair-nanotube inserted into solid 
 matrix. Horizontal blue lines show  
 tube-medium bonds. ro is tube radius,  
 medium is shown by green.  
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For axial atomic shifts we have: 

1 2 3( ) 0 .7 5 ( 2 ) 'i i i i i i im z k z z k z z z zκ= − − − − − −&&

           

(1.6)

 
where the coefficient 0.75 is connected with two strong bonds and κ’ is the elastic constant 
describing motion perpendicular to the absorption bond κ.  
 

 
 

Calculations show significant differences in phonon band characteristics for the radial 
branch of vibrations compared to that of a free armchair tube. In Fig.1.5, we see the DOS 
function for the ρ-branch of phonons found from (1.4) at κ=0.2k and κ’=κ/10. The bottom of 
this band rises at about 0.04ωo though the top of the band remains almost at the same 
position. The effect has its explanation in an interesting quality of atomic radial motion. For 
radial shifts, even relatively weak adsorption bonds have elasticity coefficients bigger than 
inner bonds. This means that the radial band for a free nanotube transforms to a band of a 
system of almost non-connected atoms adsorbed onto the intrinsic medium surface.  

The eigenstates are grouped in this case near the characteristic frequency of the 
adsorption bond. Radial vibrations occur as if each carbon atom is almost independent from 
the neighboring carbon atoms in the nanotube. Due to the band narrowing, the mean density 
of states becomes several times greater for a nanotube connected by adsorption bonds with a 
medium surrounding the nanotube surface. Comparison with the data for a free armchair 
tube shows that only the density of states of radial modes changes essentially with a shift and 
redistribution.  

 

 
Fig.1.5: Calculated DOS function for radial-branch phonons in laterally adsorbed carbon NT. 
  κ=0.2k, κ’=κ/10 
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The DOS function calculated for the ϕ-branch of molecular vibrations found from (1.5 

at κ=0.2k and κ’=κ/10 is plotted in Fig.1.6. Minimal differences may be observed in the 
density of states distribution for the lowest phonon modes that are shifted up by 
approximately 0.01ωo. The upper part of the band density remains unchanged.  

Similar small deviations are observed for longitudinal z-branch vibrations in a laterally 
adsorbed armchair nanotube. The band bottom also shifts up by about 0.01ωo at the 
immovable band top. The calculated DOS function for the z-branch of molecular vibrations, 
found from (1.6) at parameters given above, is plotted in Fig.1.7. Minimal differences in 
comparison with free armchair nanotube may be observed as well.  

 

 
 

 
Fig.1.7 Calculated DOS function for axial branch of phonons in armchair nanotube having 8 hexagons 
   in circumference and laterally adsorbed by external medium. κ=0.2k, κ’=κ/10 

  
Fig.1.6: Calculated DOS function for tangential branch of phonons in armchair nanotube having 8 
  hexagons in circumference and laterally adsorbed by external medium. κ=0.2k, κ’=κ/10. 
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It should be marked that considerable changes arise only for radial the branch of 
vibration due to the direct influence of adsorbtion bonds on breathing modes. As radial 
vibrations play the key role in heat transport processes through nanotubes one should wait 
for a significant transformation of the thermal conductivity coefficient λ(T). 

The densities of phonon states for all three vibrational branches were found to have the 
same shape for different NT radii (parameter n) and different lengths of fragment 
(parameter m). The proportionality coefficient depends on the number of atoms in a 
fragment.  

 
1.3.2b. Phonon dynamics of carbon tubes embraced by polymer molecule 
 

We have also undertaken the investigation of a two-molecule system: a single-walled 
nanotube embraced by a polymer molecule like polyacetylene. The calculation of the system 

was made in the PQDM 
framework for two molecules: 
an armchair NT {n,m} (created 
from a graphene sheet {n,m}) 
and a polyacetylene chain 
(CH)2m+1, adsorbed by the 
outer surface parallel to the 
tube axes. Here the index n 
describes the hexagon number 
along the tube circumference 
and index m is the same along 
the tube axes. In the armchair 
case the length of the tube 

equals 2ma, where a is the bond length. In zero-approximation, we consider carbon-
hydrogen bonds in the polymer as absolutely rigid which leads to an effective mass of the 
polymer carbon equal to 13. The order of this problem’s dynamical matrix becomes equal to 
2n(m+1)+2m+2 and for the matrix shown in Fig.1.8 the (2m+2) subspace has to be added.  

The most important for heat transport radial motion is described by equations for 
shifts ρi (nanotube atoms) and ρj (polyacetylene atoms) directed normally to the tube surface   

 
1 2 3

1 2

( ) '( 3 )

' ( ) '( 2 )
i i j i i i i

j j i j j j

m k

m k

ρ κ ρ ρ ρ ρ ρ ρ

ρ κ ρ ρ ρ ρ ρ

= − − − − − −

= − − − − −

&&

&&

                      (1.7) 

where m’=13m/12, is  and js,  are indexes for the  neighbors of NT-atom i and polymer atom j, 
κ and k’ are elastic constants of external adsorption bond and intrinsic respectively. The 
united atomic number i is defined using its position in the row and column of the initial flat 
fragment creating the tube. For tangential atomic shifts we will take into account that atomic 
space coordinates on the tube surface x=ϕR , where R is the tube radius and ϕ is the azimuth 
angle.  

 
 
 

Fig.1.8 A polymer molecule absorbed by armchair nanotube. 
 Absorption bonds are shown by red lines, C-C bonds of the 
 polymer are shown by violet color. 
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The armchair case with the absence of chirality is described by the system: 
 

1 2 3

1 2

0 .2 5 ( 2 ) ( ) '( )

' ( 2 ) '( )
i i i i i i i j

j j j j j i

m x k x x x k x x x x

m x k x x x x x

κ

κ

= − − − − − − −

= − − − − −

&&

&&
 

(1.8) 
where coefficient 0.25 characterizes two strong bonds for tangential atomic shift. Another 
pair of bonds directed perpendicular to atomic shift is weak and includes a bond of 
absorption connection with external medium.  
For axial atomic shifts we have: 
 

1 2

1 2 3

' ( 2 ) '( )

'( ) 0 .7 5 ( 2 ) '( )
j j j j j i

i i i i i i i j

m z k z z z z z

m z k z z k z z z z z

κ

κ

= − − − − −

= − − − − − − −

&&

&&

(1.9)

 

where the coefficient 0.25 is connected with two weak bonds and κ’ is elastic constant 
describing motion perpendicular to absorption bond κ. 

In Fig.1.9, we present the general view of all branches of phonon spectra. In all cases, 
the spectrum is the superposition of nanotube and polyacetylene spectra deviated by 
additional bonds.  

 
 

 
 

 
Fig.1.9: Calculated phonon spectra for radial (ρ), tangential (ϕ), and axial (z) branches of NT-polyacetylene 
 system. 1 shows the nanotube modes, 2 and 3 are two halves of (CH)n band. Here κ=k/5, κ’=κ/10. 
 There are eight hexagons in NT circumference. 
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1.3.3.   Sound propagation in molecular nets 

 Molecular nets based on carbon and carbon-like systems provide the perfect natural 
target for 2D and 1D systems that allow us to consider the relation between pure non-
thermodynamical sound, called hypersound (or nanosound), and atomic vibrations and the 
structure of phonon band. Wave phenomena in small flat and closed carbon fragments, 
films, fulerenes and nanotubes attract close attention now as they are an important part of 
thermal and transport processes in nanoelectronic devices [1]. Bulk mechanical properties 
expressed by elastic modules determine sound wave characteristics [2]. The most studied 
carbon materials, both experimentally and theoretically, are 3D crystals and thin layers [3]. 
The elastic properties of separated low-dimensional nanosize carbon fragments, single-
walled nanotubes etc., give some theoretical troubles connecting the transformation of bulk 
notions to 2D and 1D ones and with the influence of small sizes [1-4]. Structural and phonon 
properties of carbon tubulenes were calculated in [5] with the tight binding approach and 
comparison with flat graphene sheets and bulk graphite was made. The vibrational density 
of states for 2D hierarchical quasicrystals has been calculated in [6] with the use of the Born 
approximation [2]. Experimental study of the elastic modulus in a multi-wall nanotube was 
performed in [7]. Thermal expansion of single-walled carbon nanotube bundles in X-ray 
diffraction experiments was studied in [8]. 

The classical theory of sound passing through the interface relies on macroscopic 
representations in regards to the nature of sound. The phenomenon characteristic sizes 
(wavelength and the size of averaging) are big compared to the lattice constant. Classical 
sound is the thermodynamic process uniting both time and space averaging and containing 
many phonons. The boundary conditions (BC) are introduced into the theory as an external 
term describing the contact type (strong or weak) between the media [9]. In that case, the 
BCs are not connected immediately with the microscopic structure of the boundary and have 
approximate characteristics. Really, for macroscopic rough boundary, the existing exact 
conditions of the vibration wave passing through the boundary have to be averaged at the 
distance of the sound wavelength. Now that nanoengineering technology is close to creating 
hierarchical molecular nets consisting of regularly alternating fragments, the problem of 
sound propagation in systems with sharp atomic contact boundaries has become the topic of 
interest.  

Carbon nanotubes may be modified by periodic liquid surrounding, periodic intrinsic 
contain, periodic embracing by polymer, periodic other atoms adsorbed areas, periodic 
alternating of zigzag and armchair NT, alternating of carbon and BN-tubes, periodic isotope 
saturated areas and so on. A few pretenders where sound with extremely small wavelengths 
could exist are presented in Fig.1.10.  
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Fig. 1.10: Nanosize periodic structures – pretenders to detect nanosound interfierence.   
 (a) Cross-linked binary graphene sheet with zigzag type boundaries. Conventional elementary cells 
 are shaded. (b) Carbine-polyethylene periodic linear chain. (c) Periodic fragments of a nanotube 
 differed by elastic constants and (or) atomic mass. 1and 2 are hypersound generator and receiver. 

 
Such tailored structures may play the same role for the hypersound as photonic band 

gap materials perform for electromagnetic waves [10]. One can suppose the existence of the 
similarity between acoustic and electromagnetic wave phenomena is due to the band 
structure and energy transport trough periodic systems [11].  

It should be established that the connection between the nanostructure phonon 
dynamics and sound waves of small wavelengths is not investigated in detail for mesoscopic 
molecular nets, especially if it reaches the boundary condition problem in complex carbon 
nets. To obtain the exact BC for sound wave we propose here the integral procedure that 
starts from dynamical equations for atom vibrations in physically small areas near the 
boundary. The procedure includes averaging of discrete dynamical equations and transfer to 
a continuous description. The comparison of notions for native phenomena like phonons, 
sound and hypersound is used to emphasize the nanosound specifics in molecular nets. The 
hypersound band structure is calculated in linear approximation for periodically cross-
linked nets of different nature. The structure and angular-frequency diagrams describing the 
sound band structure are obtained.  

 
 1.3.3a. Phonons and Hypersound in Low-dimensional Molecular Nets 
 

The molecule vibrational eigenstates are called vibrons. In bulk crystals, the same are 
defined as “phonons”. Low-dimensional molecular nets occupy an intermediate position 
between small molecules and big macroscopic crystals. Nano-engineering allows the 
production of complex molecular net systems containing alternating fragments [12, 13]. The 
external geometry of such cross-linked systems is similar to well-known photonic crystals so 
sound propagation should possess the same properties including frequency bands and gaps 
[11]. Electron transport, light absorption and other impact processes in periodically cross-

(1) 

(2) 
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linked molecular nets may be accompanied by sound pulses of comparatively short 
wavelength. Characteristic wavelengths of the sound must be about 102 nanometers with 
frequencies of the order of terahertz.  

The difference between crystal vibrational eigenstates, phonons and sound is illustrated 
by the well-known solution for an isolated damped linear oscillator with external driving 
force 

2
0 02 i tx x x F e ωγ ω+ + =&& &

' 0
0 0 2 2

0

( ) c o s ( )
2

i t
t F ex t x e t

i

ω
γ ω ϕ

ω ω γ ω
−= + +

− +
             ( 1.10) 

 
where x0 is the vibration amplitude, ω0 and ω’0 are eigenfrequency and shifted 
eigenfrequency respectively, F0 and ω are the external force amplitude and frequency 
respectively, γ is the damping constant, ϕ is the initial phase shift.  

So, phonon modes have strongly determined frequencies and generally speaking they 
disappear with time but the sound that is connected with the external source of energy may 
be of any frequency. Principally, the same takes place for the net of linked oscillators. It is 
worthwhile to note that the solution for the system of linked oscillators also has a linear 
combination of partial solutions, like (1.10), and does not contain retardation or any sign of 
propagating waves.  

Several remarkable features are present in periodic molecular nets that differ from 
bulk materials [9]. First, there exists a precise atomic scale of boundaries between the net 
fragments with the absence of intermediate layers. The second feature is that phonon 
branches participate in sound transportation independently in zero-approximation and obey 
separate boundary conditions. The third one is the strongly non-macroscopic characteristic 
of elastic waves in small molecular fragments containing a periodic net. This is the reason for 
the term “nanosound” to differentiate nanometer sound waves from macroscopic sound.  

The averaging procedure plays an important role in understanding phonon, sound 
and heat propagation in low-dimensional atomic nets. Classical dynamical equations in the 
non-relativistic Born approximation do not contain retardation. This causes the infinite 
speed of initial vibrational excitation propagation along the net or nanotube. 

The first stage of averaging is the presentation of dynamic equations in a finite 
differences view. More rough-averaging of the phonon mean free path distances is used to 
describe heat spreading along carbon nets.  
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 Hypersound Phonon standing 
waves 

Macro-sound 

Frequency spectrum 
type 

Continuous Discrete Continuous 

Wavelength diapason 0--103 nm No wavelength More than 1 mkm 

Size of state No Mean free path(*) No 

Frequency diapason (1010  - 1013 ) c-1 Phonon bandwidth Less than 1010  c-1 

Size of averaging 
range 

1nm (elementary cell) No averaging 1-10 mkm 

Examples of activity 
processes 

Impact effects, external 
sources 

Raman effect External sources 

Transmitting energy Energy of atomic 
vibrations 

Heat Energy of elastic 
deformation 

Nature of 
phenomenon 

Extending waves of 
atomic vibration 

Standing waves of 
vibrations(eigenstates) 

Extending 
deformation waves 

Note: (*) determined from the phonon lifetime relatively the interaction with other particles and external medium. 

 Table 1: Sound, hypersound and phonons 
 

Non-linearity may be presented directly in the dynamic equations as a consequence of 
averaging and transfer to the rough scale of the phenomena. It should be noted that non-
linearity is not connected with the damping of whole phonon states. The energy dissipation 
and the width of states arise formally when first derivatives are added into the system of 
classical dynamical equations. 

Hypersound waves occur as the result of averaging of classical equations of atomic 
dynamics. The transfer from equations in finite differences to continuous representation 
gives second derivatives in both space and temporal. As the averaging acts at very small 
areas having sizes of an elementary (conventional) cell, the result depends on the concrete 
symmetry of the elementary cell. 

 
a. Periodic linear chain: 
 The simple case corresponds to waves in a linear chain with periodically alternating 
fragments. Let us consider a molecular chain with regular alternation of equal fragments of 
two types. There exists three vibrational branches that correspond to three degrees of 
freedom for each atom s=1,2,3. Immediately, from atomic dynamical equations, we have 
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where a is the interatomic distance, <x>s is the mean atomic shift in s-direction, zs marks the 
extended coordinate of s degree of freedom. Evaluations by data [5,12] (χ=330 N/m) give for 
sound velocity along the carbon net V=18.3 km/s. This value is close to the velocity of sound 
in diamond in the (1,1,0) direction. 
 
b. Square lattice:  
 Waves in hypothetical simple quadratic 2D lattice are described by equation  

  

2 2 2
2 ' 2

2 2 2( ) 0s s s
s s

x x xV V
t z y

∂ < > ∂ < > ∂ < >
− + =

∂ ∂ ∂                       (1.12) 

 Here we are taking into account that the elastic constant for motion transverse to the 
bond direction differs from that for motion along the band. In 2D structure it is convenient 
to mark the degrees of freedom through the generalized coordinates. In quadratic lattice s=z, 
y, ρ, the latter describes vibrations perpendicular to the lattice plane. (1.12) is anisotropic for 
separate branches s=z, y. The medium in-plane isotropy manifests in correlation '

z yV V=  

and '
y zV V= . 

 
c. Honeycomb lattice zigzag nanostructure, Z-branch:  

The dynamics of longitudinal motion along the net or nanotube z-axes may be written 
for the whole elementary cell having two atoms. For any i–atom we have for s=1 degree of 
freedom, 

(2 ) 0.25 (2 )l r u d
i i i i i i imx k x x x k x x x= − − − − − −&&                     (1.13)                      

 

where the upper indexes mark coordinates of neighboring atoms in y- and z-directions. Two 
brackets in the right-hand part of (1.13) are transformed into the space coordinate second 
derivatives after averaging along z-direction and y-direction. In the zigzag case, the 
averaging distance between neighboring elementary cells equals to 3a/2 along z-axes and 31/2a 
along y-axes. Inserting these distances into the finite differences derivatives gives the wave 
equation: 

 

2 2 2
2 2

2 2 2 0y z
x x xV V

t y z
∂ < > ∂ < > ∂ < >

− − =
∂ ∂ ∂                       (1.14) 

 

where, due to the system anisotropy for z-branch of vibrations as to z- and y-directions, we 
get different wave velocities along z- and y-directions:  

 3 / 2 1 .5 /z yV V a k m= = %
                                               (1.15) 
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d. Honeycomb lattice, zigzag nanostructure, ϕ-branch: 

This branch is connected with the s=2 circumferential degree of freedom in a tube-
like net and y-motion in plane structure. For all i–atoms, we have the system of connected 
equations,  

(2 ) '(2 )u d l r
i i i i i i imx k x x x k x x x= − − − − − −%&&  ,                  (1.16) 

that transforms after the transfer to the finite difference view into the wave equation:  
2 2 2

2 2
2 2 23 0y z
x x xV v

t y z
∂ < > ∂ < > ∂ < >

− − =
∂ ∂ ∂                                    (1.17) 
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2 2z
a kv

m
=                                                                   (1.18) 

where νz is the ϕ-wave velocity along z-direction. 

 
1.3.3b. Sound Boundary Conditions 

Boundary conditions arise in this approach as a consequence of integrating dynamical 
equations and averaging in the vicinity of the boundary. In contrast to electromagnetic 
waves, the vibrational dynamics has the exact meaning immediately for a non-homogeneous 
range including both sides of the boundary. To take into account the exact bonds between 
contacting nets of different nature, one has to perform integration or summing before the 
averaging procedure. In a sense, the sound BCs are a more pure phenomenon than BCs for 
electromagnetic waves that represent correlation between averaged fields in contacting 
materials.  

a. Periodic linear chain: 

 The illustration to the BC standards is given by linear chains with periodically 
alternating fragments. Examples may be carbine fragments alternated by polyethylene or 
polyacethylene fragments. 

 
Fig.1.11: One-dimensional periodical chain. Tags d1 and d2 mark the length of alternating chain parts.   

               Brackets show the physically small ranges of integration near the boundary.  
 
Consider the range on both sides near the boundary of two molecular chains: from l0 to 

the end atom l of the left fragment d1 and from atom r to r0 on the right chain d2 (Fig.1.11).  
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Summation gives: 
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The averaging of the finite difference expressions, on the right side of (1.20), leads to 

continuous space derivatives. Besides, taking into account the balk wave equations, we 
change the time derivatives on the left side of (1.20 to the corresponding space derivatives. 
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On the left-hand side, we perform the transfer from summation to integration within 

the same limits and after the cancellation of end derivatives we get the exact BC, 
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where a and a are lattice constants on both sides of the boundary. 

(1.23) gives the first of two BCs for near itinerant ranges on both sides of the boundary 
between chains of two types.  
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Another condition arises from the continuity of displacement <x> during the wave 

transition through the boundary.The first BC expression is a kind of material correlation 
like in the case of electromagnetic waves (EMW) in a medium.  
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An essential difference arises between sound waves and EMW when we begin 
considering the free edge of the molecular net. Sound waves are principally absent in the 
surrounding empty space. This leads to a special case of end boundary equations.  

,( ) 0l r
x
z

∂ < >
=

∂                                                                (1.24) 

 
Besides, in the EMW case, there is no need for a transfer from discreet equations to 

continuous ones due to the fact that the classical electromagnetic field is principally a 
continuous phenomenon. 

b. Honeycomb lattice:  

 BCs in a honeycomb lattice may be obtained in an integral procedure similar to that 
considered above for a 1D periodical chain. The operation uses a substantially small 
summation range. The notion of an infinitely small range is a corner-stone of the 
electromagnetic theory in condensed matter. Its size (1-100nm) determines the size of a 
conventional point of continuous medium containing electromagnetic field. It is the same for 
the acoustics of hypersound extending in molecular nets where this has to be introduced on 
account of the reduced dimensionality and mechanical nature of sound waves. The left side of 
this interval may be active for hypersound, but in both cases the physically small element 
must contain many atoms. The summation of dynamical equations inside the small range on 
both sides near the boundary gives, 
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      (1.25)  

The parameters χ-bar and m-bar belong to the right-hand material. The averaging and 
transfer to continuous forms of derivatives and sums give:  
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Here S0 marks the half-area of left material elementary cell. Taking into account the 
wave equation (1.14) connecting time and spatial second derivatives, we have for the left side 
of (1.26), 
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  (1.27) 

 
Using explicit expressions for Vz and S0, we may cancel edge z-derivatives in l0 and r0 

points of (1.26) and (1.27) after substituting the left part of (1.26) by the expression in (1.27). 
Due to the fact that the boundary, in this case, is situated perpendicular to the z-axes and 
taking into account the limits l0 →l, r0 → r, d0 → u0, we obtain the boundary condition of the 
type in (1.22): 

  
2 2

0 0

( ) ( )z z
l r

mV x mV x
S z S z
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=

∂ ∂                                                  (1.28) 

 
If the boundary is situated perpendicular to the y-axes (armchair-type boundary), then 

the expressions for Vy and S0 allow cancellation of the edge y-derivatives along the u0 and d0 
lines in (1.26) and the boundary condition takes the form 

 
2 2

0 0

( ) ( )y y
u d

mV mVx x
S y S y

∂ < > ∂ < >
=

∂ ∂                                                     (1.29) 

 
(1.29) represents material correlation between contacting media. The kinematic part of 

the BC is similar to the zigzag type of boundary for the continuity of the displacement <x> 
when the wave transits through the boundary (see (1.23)). It should be noted that exact 
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cancellations during the derivation of the BC in the integral procedure performed above is a 
manifestation of the united nature of both itinerant 2D wave equation and boundary 
condition procedures. Contrary to electromagnetic waves where BCs are derived from the 
integral form of Maxwell equations, the analogous integral form of atomic dynamics 
equations are not very popular. Another significant difference with obtaining EMW 
boundary conditions consists of the direct presence of elementary cell parameters in material 
BCs ((1.22), (1.28) and (1.29)) and the atomic bonds elasticity. 

 
1.3.3c. The Hypersound Frequency Bands in Periodic Molecular Nets  

 The hypersound wave of frequency ω is described by two amplitudes inside each net 
band.  

z y z yi t i k z i k y i t i k z i k yx A e B eω ω+ + − +< > = +                            (1.30) 
 

There exist two z-projections of the wave vector k in a periodic binary molecular net or 
linear chain depending on the hypersound velocities in the separated materials.  

The system of BC equations is described by the matrix presented in Table 2. The 
intrinsic problem for hypersound eigenstates when external sources are absent and the 
system is isolated from another sound conductor may be solved analytically as in the case of 
EMW in layered structures [11, 12].  

 
B1 A’1 B’1 A2 B2 A’2 B’2 A3 B3  A’-1 B’-1 AN BN A’N 
Zl -1 -1 0 0 0 0         
Yl

 η2 η2
* 0 0 0 0         

0 σ2
 σ2

*
 -1 -1 0 0         

0 δ2 δ2
* η1 η1

* 0 0         
0 0 0 σ1

 σ1
*

 -1 -1         
0 0 0 δ1 δ1

* η2 η2
* 0 0       

0 0 0 0 0 σ2
 σ2

*
 -1 -1       

     δ2 δ2
* η1 η1

*       
     0 0 σ1

 σ1
*

       
       … …       
         … …     
          …     
          η2 η2

* 0 0  
          σ2

 σ2
*

 -1 -1  

          δ2 δ2
* η η*  

          0 0 σ1
 σ1

*
 Zr 

            δ1 δ1
* Yr

 

       Note: Dotted lines show the minor µ that is matrix element Λ11. 
     

Table 2: The matrix of boundary condition equations 
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The generalized dispersion equation is represented in row-matrix-column production 

ˆ( , ) 0rn
l l

r

Y
Z Y

Z
⎛ ⎞

− Λ =⎜ ⎟
⎝ ⎠

, 
ˆ µ ν

λ µ
⎛ ⎞

Λ = ⎜ ⎟
⎝ ⎠

                                                             (1.31) 

 

where n=N-1; matrix elements µ, µ , ν and λ are minors of the dynamical matrix (Tab.2), 
index l corresponds to the left and index r corresponds to the right end of the net. The matrix 
Λ describing the lattice period in turn, is the product of each material matrix Λ=Λ1 Λ2. The 
matrix elements for the first instance are as follows: 

 

1 1 12 cosz z zi k a k dµ µ χ= = − ;     2
1 12 ( ) sinz z zi k a k dν χ= − ;    1 12 sin zi k dλ =    

 

1cosl zZ k d= ;   2cosr zZ k d= − ;    2sinr z z zY k a k dχ= −                            (1.32)     
                         

The n-degree for transfer matrix Λ is found by canonical transformation, Θ̂ , 
diagonalizing the  matrix Λ. 
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where xij are elements of matrix Λ eigenvectors: $ ( , )X x x1 11 12
+ = and $ ( , )X x x2 12 22

+ =   
       x x11 21= = ν ; 12 1x f µ= − , 22 2x f µ= −  
 
The eigenvalues f1, f2 are,  
 
  2

1,2 ( ) / 2 (( ) / 2)f µ µ µ µ λν= + ± − +                                                                (1.34) 
 

Taking into account (1.32)-(1.34) and (1.31), we obtain a generalized dispersion 
equation for hypersound in periodic structures, describing sound wave frequencies and  type 
of state: local or band. 

 

1 22 21 11 12 2 12 11 21 22( )( ) ( )( ) 0n n
r r l l r r l lf Y x Z x Z x Y x f Y x Z x Z x Y x− − − − − =                        (1.35)      
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Extended band states exist in the frequency range with a negative value of 
discriminant in f1 or f2. In this case, there are two parts on the left side of (1.35) which are 
conjugated and the partial dispersion equation for band states takes the form 
 

2 sin( ) 0l rnν ϕ ϕ ϕ+ + =                                                                   (1.36)                               
 

where nφ, φl and φr are complex phases of three multipliers in the first term of (1.35). A 
positive discriminant corresponds to frequency gaps. The result of band calculations using 
(1.35) is presented in Fig.4 for a 16-periodic carbine-polyethylene linear chain C-CH2.  
The frequency is normalized. 

 
 Fig.1.13: One-dimensional 16-periodic elastic chain carbon-CH2. Frequency–size diagram.   
           d1/d0 gives the dimensionless length of the “1-material” fragment, d2 =80d0 , 

           d0 =0.13nm is the accepted length unity (for normalizing) and ω0 =20.48 THz is the   
           accepted frequency unity.  

A value of ω0 = 20.48 THz was obtained using the elasticity coefficient of the carbon-
carbon bond χ =330 N/m: ω0 = (χ/m)1/2. The z-wave velocity of sound in pure 2D graphene 
sheet or tubulene is V0=16730m/s. The velocity of sound in a hydrogenised graphene sheet is 
supposedly 7.5% less due to the bigger site mass. Characteristic frequencies are of the order 
of terahertz for chosen fragment sizes of the order a ten nanometers. If the fragments of 
chains that are in contact are taken to be near hundreds (102) nanometers one may observe 
the same picture in frequency range but ten times lesser.  

Calculations undertaken for different frequency and size scales gave very high 
similarity in the obtained band pictures at scale transformation ω→cω, d1 ,d2 → d1/c,d2/c. 
With increasing frequency, the bands and gaps became smaller and the slopes of the lines 
increase. Each frequency band contains the number of states (modes) that coincides with the 
number of periods in the structure. Only the lower band consists of one less state due to the 
absence of the trivial (zero-frequency) solution of (1.35). The width of the gap depends on the 
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difference between relations χ/m for contacting chains and it becomes approximately equal to 
the band width at m1≈6m2. 

In two-dimensional systems consisting of alternating flat or tube fragments of different 
kinds, the hexagonal lattices have a new parameter – the incidence angle of the hypersound 
wave. Standing waves existing in the isolated periodical net depend on the direction of the 
wave vector. Due to the principal anisotropy of the propagation of z-waves in the hexagonal 
lattice, the constant velocities in the z- and y-directions are different. Therefore, the wave 
vector depends on the angle θ of wave propagation.  

 

2 2 2 2cos sinz y

k
V V

ω

θ θ
=

+
                                                                (1.37) 

 
The same expression exists for the second material, for which the analogous notations 

are θ-bar and V-bar. The Snellius-Descartes law y yk k=  gives for transition from medium-1 
wave to medium-2 wave. 

2 2 2 2
s in

( )
y z

y z y

k V

k V V
θ

ω
=

+ −
                                               (1.38) 

 

  
  Fig.1.14: Two-dimensional flat 14-period elastic graphene-CH2 net angular-frequency   
                  diagram. Calculated by Eqtns.1.35 and 1.36; d1=100d0, d2=200d0,  ω = (0,0.1)ω0 . 

 

The result of calculations by (1.36) for a 2D 14-periodic flat graphene-graphene or 
closed tube-tube system is presented in Fig.1.14. Accepted unities are ω0 =20.48 THz and        
χ =330 N/m for both media. The z-wave velocity of sound in medium-2 was taken to be 
1.573V0 and Vz=1.388V0 in the acoustically less dense medium. Characteristic frequencies are 
of the order of teraherzs. The scale transformation ω→cω, d1, d2 → d1/c, d2/c does not change 
the system band structure in the 2D case either. The number of modes inside each frequency 
band coincides with the number of periods in the structure.  



 72

 
Fig.1.15: Two-dimensional flat 12-period elastic graphene-Si net. Calculated by (26), (27) angular- 

 frequency diagram: d1=100d0, d2=200d0, ω = (0,0.1)ω0 

The width of the gaps depend directly on the difference between χ/m and / mχ . This 
property and band structure may be illustrated by an imaginary system – acoustic crystal 
with sound velocities differed four times: 1.53z zV V=  (Fig.1.15). In Fig.1.14, we see that both 
bandwidth and gap width are almost regular at small incidence angles. Increasing the 
frequency leads to bands touching one another and splitting again. A similar phenomenon 
was observed in 1D photonic crystals [11, 14] for electromagnetic field structure. 

The whole intrinsic reflection range occurs in periodic systems due to the difference in 
wave velocities of different materials. Equation 1.38 illustrates this when 2 2 2

y yk Vω =  and the 
formula gives unity. Then the angle of whole reflection in the acoustically less dense first 
medium is determined by the expression, 

 

max 2 2 2
sin z

z y y

V
V V V

θ =
+ −

                                                              (1.39) 

 
Waves from medium-1 that have the incidence angle bigger than θmax, lose extending 

character and become damping after the transfer into the acoustically less dense medium-2. 
Wave vectors become complex z zk ik→  and trigonometric functions in (1.32) become 
hyperbolic. In the case under study, θmax equals 1.22. The upper part of the frequency-angle 
diagram was calculated by (1.35 over a wide frequency range. The obtained results show that 
hypersound bands passing into the whole reflection range degenerate into narrow lines 
separated by relatively wide gaps. 

It is worthwhile to note a difference between sound waves and EM waves in periodic 
structures that appears in the immediate vicinity of the BC - the boundary microscopic 
structure parameters in case of hypersound. The other circumstance is the principal 
presence of anisotropy in the sound wave equation for all vibration branches and all lattice 
types. In a certain sense, the wave mechanics of hypersound is the theory of spatially 
dispersed waves in anisotropic media [15]. Another peculiar property of sound waves in 
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separated structures is the absence of exit waves when all solutions have the characteristics 
of standing waves.   

 
1.3.3d. Summary 
 

 The developed simple model of vibrational dynamics of “bulk” flat and closed carbon 
and boron-nitride (BN) nanostructures allows immediate transition to the boundary 
condition problem for sound of small wavelengths in tailored nets. As for the existence of flat 
carbon or BN systems, we predict that they are geometrically stable and may bridge the 
inter-electrode space in a strong external electric field. The reason is that negative charging 
accompanies the process of structure adsorption onto the cathode surface. The affinity 
electrons captured by the net may prevent its rolling up. The linear approximation used here 
gives a possibility to consider the vibrations of teraherz frequencies in low-dimensional 
molecular nets separate from other types of sound. All vibrational branches, z, φ and ρ, obey 
BC of the same view. The first two branches are mutually complementary for zigzag and 
armchair nanotubes [13, 16].  The third branch, called the radial mode ρ, is a slow elastic 
wave compared with other branches. A bandwidth value of phase velocity Vρ = a⋅∆ρ/π,  found 
from radial frequency, is more than twenty times less (0.85km/s) than for the z-branch. The 
radial branch of vibrations plays a main role in heat transport but does not participate in 
sound energy transport. 

Hypersound accompanies fast processes that occur in molecular nets during the passing 
of an electric current - the capture of an electron from the external medium, interaction with 
high energy particles and photons. On the other hand, sound irradiation in such processes 
may be used as the grounds for particle detecting. The periodical structures considered 
possess non-trivial frequency band structure for hypersound that allows us to raise the 
sensitivity of detection. Comparatively slow processes of adsorption also influence the 
hypersound band structure because adsorption bonds modify host atomic dynamics. The 
possible adsorption manifestation is the appearance of local states accompanied by a shape 
transformation of bands. If the adsorption occurs in a mixed gaseous media, each of the gas 
components matches the individual kind of local hypersound states. This may serve as a tag 
for sensor devices. 

 

1.3.4.  Conclusions 

• The PQDM proposed is able to describe complex interdependent phenomena in 
open and closed molecular nets: phonon structure, phonon-phonon interaction, statistics, 
kinetics and irradiation. 

• Our arguments based on PQDM put in the forefront the eigenstates of weakly 
bounded captured phonons participating in heat energy transport through the molecular 
bridges.  

• Our theoretical approach explains the nature of extremely good thermal 
conductivity in carbon and carbon-like materials by the existence of the soft vibration 
branch (low frequency ρ-branch of phonons with high DOS at thermal energies) 
accompanied by structure hardness (high frequency ϕ- and z-branches) providing large 
mean free path for phonons. We conclude that the radial mode contribution to heat transfer 
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is dominating in the temperature interval under consideration with the supposition that the 
phonon-phonon interaction constant G0 participating in the end atoms constants Gil does not 
depend on the phonon type (ρ, ϕ or z). Then, ρ-vibrations essentially prevail due to the large 
density of states in narrow low-frequency ρ-band compared with the DOS for ϕ- and z-
vibrations. So, at actual temperatures ρ-branch of phonons determines heat propagation 
through the single-walled nanotube.  

• Our results are in accordance with experiments for suspensions by David Cahill 
et.al (Letters, (Oct. 2003) 

 
If we add new layers or new walls to single-walled NT, it makes the radial ρ-branch of 

vibrations harder (see Fig.1.5). This causes the sharp decrease in phonon density of states at 
the same phonon mean free path. The phonons leave the active thermal zone and heat 
conductivity decreases. Therefore, atomic monolayers and isolated single-walled nanotubes 
have to be the best thermal conductors. If we unite SWNT into the tight bundles, the radial 
mode quenches due to new inter-tube bonds arising. PQDM approach predicts the sufficient 
worsening of thermal conductivity in SWNT tight bundles comparared with free SWNT. The 
method of thermal conductivity enhancement in this case is “dissolving” of inter-tubes bonds 
and turning out the tight bundles into the system of almost free tubes. 

Intercalation may be a good way to do this “dissolving” of existing Van der Waals 
interaction inside bundles. From F.R.Gamble et.al. (Science, 168,568(1970)), the distance 
between atomic layers increases more than ten times after intercalation by organic 
molecules. For our case it is enough to increase inter-SWNT distances three or more times 
and we will obtain a really significant increase in thermal conductivity. 

Our proposition is to modify the experimental technique of preparing NT bundles and 
accompany it by intercalation.  Intercalation conserves the large density of states (DOS) of 
acoustic (radial) phonons in the actual temperature range of frequencies. Our results show 
that the dominating contribution is from radial (breathing and bending) vibrational degrees 
of freedoms. Maybe only bending modes are important it is not possible to tell with certainty 
because all the degrees are present in a common sum. This we will hopefully clarify soon. 

 
 

 

 
Fig.1.16:  A nanotube bundle intercalated by organic molecules or nanoparticles. Intercalation conserves big  
    acoustic (radial) phonon DOS in actual temperature range of frequencies. The distance in 10 or more 
    Angstroms will be enough to switch on radial acoustic phonons for thermal conductivity 
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 We also considered temperature dependencies for thermal coefficient in the entire 
temperature range and investigate size effects for graphene and tubulene bridges.We studied 
the transfer of vibration waves through the contact of differing carbon nets and nanometer 
sound wave interference in periodically alternating 1D or 2D molecular nets of two types. 
Boundary conditions for hypersound in tailored molecular nets are obtained ab initio by an 
averaging procedure. The intrinsic problem of vibron egenstates is calculated for carbon net 
periodic structures. It is shown that hypersound standing wave frequencies are grouped into 
typical bands divided by frequency gaps. The whole intrinsic reflection effects are 
considered. In both cases the boundaries between cross-linked fragments lay in the plane 
perpendicular to z-axes. 
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Chapter 2: SYNTHESIS OF NANOSTRUCTURES 
 
2.1 Synthesis of Zeolite Encapsulated Nanotubes 

 
Considerable progress has been made in the synthesis of multi-walled and single-walled 

carbon nanotubes (SWCNT) by catalytic chemical vapor deposition (CVD) techniques. 
However, a typical preparation may result in a complex mixture of nanotube sizes and types. 
Between 1 and 3 nm in diameter there are 403 possible structures alone. To prepare one size 
and a single type of carbon nanotube remains a challenge. There are only 3 possible 
structures ((5,0), (4,2), (3,3)) for the 0.40 ±0.01 SWCNT, compared with the 403. To prepare 
such small diameter SWCNTs, one might employ a matrix to control the size during 
synthesis. It was reported that mono-sized (0.4nm) single-wall carbon nanotubes (SWCNTs) 
can be formed in the channels of large single crystal AlPO4-5 by pyrolysis of the organic 
template, tripropylamine (TPA), without any other external carbon source [Tang et al, Appl. 
Phys. Lett., 73 (1998), 2287].  

We have now prepared single-wall carbon nanotubes in the channels of UTD-1, UTD-
18 and UTD-12 (shown below) which are structurally related zeolites having one-dimensional 
channels that run in parallel. All of these zeolites are made using various cobalticinium ions. 
The thermal decomposition of these organometallic templates results in cobalt catalyst as 
well as a carbon source for making carbon nanotubes. The dimensions of the pores dictate 
the size of the resulting nanotubes such that we can systematically vary the CNT diameter by 
using the 10, 12 or 14 MR structures. 

 
 

   Fig. 2.1: 10, 12 or 14 MR structures 
 
Fig. 2.2 shows the typical Raman spectra of the as synthesized UTD-1 (bottom - black) 

and the SWCNTs recovered after HF treatment of the UTD-1 crystals (top - purple). The 
Raman spectrum of the as synthesized UTD-1 shows characteristic Raman-active modes of 
CH3 symmetric stretching (2912 cm-1), the CH3 anti-symmetric deformation (1430cm-1), C=C 
stretching (1650 cm-1) and the symmetric metal-ring stretching vibration (365cm-1) of 
Cp*2Co+ molecules. When the sample is pyrolyzed at 800°C for 5 hrs and then HF treated, 
new Raman peaks appeared at 1600 cm-1 and 432 cm-1 (shown in Figure 2 top purple). The 

12 MR 14 MR10 MR
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strongest low-frequency Raman mode at 432 cm-1 is expected to be the radial breathing A1g 
mode. The radial breathing A1g mode is not sensitive to nanotube structure but to the 
nanotube radius. The observed frequency of 432 cm-1 indicates the radius of the carbon 
nanotube is 0.54 nm. 

 

 
Fig.2.2: typical Raman spectra of as synthesized UTD-1 and SWCNTs recovered after HF    

  treatment of the UTD-1 crystals 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 

Fig.2.3: SEM image of a SWCNT obtained after HF treatment   
                                of calcined UTD-1 

 
 

Fig. 2.3 shows the SEM image of a SWCNT obtained after HF treatment of calcined 
UTD-1. It shows the size of the carbon nanotube is less than 1 nm and at least 500nm long, 
consistent with the Raman spectrum. The SEM results also indicate that the SWCNTs 
prepared in the UTD-1 channels are stable without the silica matrix. A high resolution TEM 
image of the SWCNTs recovered from UTD-1 is shown in Fig.2.5. From this image an 
estimate of the nanotube diameter is ~0.5nm. The exact type of carbon nanotube prepared in 
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UTD-1 is uncertain but possible nanotubes might be the (4,4)-0.54nm, (7,0)-5.5nm and the 
(5,3)-0.55nm.  

Zeolite UTD-18 is structurally related to SSZ-31 (polymoph C) which is comprised of 
elliptical 12 MR pores with dimensions of 8.6 × 5.7 Å. Fig. 2.4 shows the typical Raman 
spectra of the as synthesized UTD-18 (bottom - black) and the SWCNTs recovered after HF 
treatment of UTD-18 (top - purple). The Raman spectrum of the as synthesized UTD-18 
shows characteristic Raman-active modes of C=C stretching (1650 cm-1), the CH3 anti-
symmetric deformation (1480 cm-1), CH2 wag (1235 cm-1) and twist (1211 cm-1), C-H in phase 
bending (1052 cm-1) and out-of-plane bending (849 cm-1) and the symmetric metal-ring 
stretching vibration (332 cm-1) of the (EtCp)2Co+ template molecules. When the zeolite is 
heated at 800°C for 5 hrs followed by HF treatment, new Raman peaks appear at 1606 cm-1 
and 445 cm-1 (shown in Fig.2.7 top purple). The strongest low-frequency Raman mode at 445 
cm-1 is expected to be the radial breathing A1g mode. The observed frequency of 445 cm-1 
indicates the radius of the carbon nanotube is ~0.52 nm. The higher frequency radial 
breathing mode and smaller SWCNT diameter compared with UTD-1 is consistent with the 
smaller pore size of UTD-18. Fig.2.6 shows the SWNTs recovered from UTD-18. 

 
 

 
Fig.2.4: Typical Raman spectra of the as synthesized UTD-18 (black) and the SWCNTs recovered  

    after HF treatment of UTD-18 (purple) 
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    Fig.2.5: SWNT recovered from UTD-1    
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 Fig.2.6: SWNTs recovered from UTD-18 
 
 

Zeolite UTD-12, closely related to ZSM-48, possesses non-interpenetrating linear 
channels defined by 10 membered rings having dimensions of 5.3 × 5.6 Å. Fig. 2.7 shows the 
typical Raman spectra of as synthesized UTD-12 (bottom - black) and the SWCNTs 
recovered from UTD-12 after HF treatment (top - purple). The Raman spectrum of the as 
synthesized UTD-12 shows the characteristic Raman-active modes of C-C stretching 
(1421cm-1), the C-C ring breath (1113cm-1), C-H in-phase bending (1069cm-1) and C-H out-
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of-plane bending (849cm-1), the symmetric metal-ring vibration (318cm-1) and the ring 
deformation (385cm-1) of the Cp2Co+ template molecules [30]. When the sample is pyrolyzed 
at 800°C for 5 hrs followed by HF treatment, new Raman peaks appeared at 1597cm-1 and 
559cm-1 (shown in Fig.2.7 top purple). The strongest low-frequency Raman mode at 559cm-1 
is expected to be the radial breathing A1g mode. The observed frequency of 559cm-1 indicates 
the radius of the carbon nanotube is 0.41 nm. This could very well be the smallest carbon 
nanotube ever made. 

 
Fig.2.7 typical Raman spectra of as synthesized UTD-12 (black) and the SWCNTs recovered from  

      UTD-12 after HF treatment (purple) 

0

2000

4000

6000

8000

10000

12000

14000

16000

0 500 1000 1500 2000 2500 3000

Raman Shift (cm-1)

After heating and HF treatment  

As-synthesized UTD-12 



 82

 
  Fig.2.8: SWNTs recovered from UTD-12 

 
 
CNTs this small may be metallic and superconducting. Preliminary magnetic 

susceptibility χT-dependence measurement of the UTD-12 (with SWCNTs) after HF 
treatment is shown below. Some of the unusual magnetic properties of the SWCNTs obtained 
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in the UTD-12 channels may be due to residual Co. However, there may be some evidence of 
superconductivity. 

 

 
     Fig.2.9 
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2.2  Synthesis of Conjugated Polymer-CNT Complexes  
 
Poor heat dissipation in organic and polymeric electronic devices is a key problem that limits 
their performance at high current loading.  It is known that addition of quite small amounts 
of nanotubes can improve the performance of organic devices, apparently due to improved 
heat dissipation via the nanotube component. 
 
Various CNT-CNT interactions that can compromise the spectacular thermal conductivity 
properties of individual CNTs are shown in Fig. 2.10(a). The focus of this effort was to create 
new types of donor (acceptor) polymers, which could provide better unbundling of CNTs 
(Fig. 2.10(b)) to enhance dissipation of the heat generated in polymeric devices such as 
OLEDs or solar cells.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a)       (b) 
 
Fig. 2.10:  Representative CNT-CNT interactions that compromise high thermal conductivity of CNTs (a),              
     and reduction of these effects due to unbundling (b). 

   Fig.2.11: Bundle exfoliation using conjugated polymers 
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Several types of debundling polymer systems are known. Fig. 2.11 shows that CNTs can be 
effectively debundled using a phenylene-vinylene (PPV) conjugated polymer. Conjugated 
polymers (CP) afford the additional opportunity to introduce charge transfer to enhance CP-
CNT interactions that can be “tuned” by polymer design. 
 Several PPV-derivatives were synthesized to determine their abilities to debundle 
CNTs with the goal toward enhancing thermal conductivities in CP-CNT composites.  The 
well-studied MEH–PPV was prepared according to literature procedures and used as a 
reference material for the composites. The molecular weights of the samples used were 
292,000 (Mn) with a polydispersity of 1.04 and 281,000 (Mn) with a polydispersity of <1.2. 
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BEHM-PPV precursor monomer synthesis 
 
 
 
 
 
 

The composites were prepared using the following protocol. SWNTs were added to a 
solution of MEHPPV (or other CP) in THF or CHCl3.  The resulting suspension was stirred 
overnight and allowed to settle. The supernatant was then decanted and the composite film 
was obtained by rotary-evaporation of the solvent. 
 

     
 
Fig. 2.12: The dramatic effect of adding SWNT to MEH-PPV (or BEH-PPV) can be seen from the 
     accompanying figure.  The pure polymer produces clear red films while the composite films exhibit a 
    blue-green metallic sheen. 

 

Fig. 2.11
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Fig. 2.13: Shows the solutions of BEHM-PPV mixed with SWNT in different concentrations. SEM images 
    of  several composite film compositions are shown below 
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Fig. 2.14: Dispersion of 1% SWNT in MEH-PPV.  Note non-uniformity 

Fig. 2.15: Dispersion of 5% SWNT in MEH-PPV. Note non-uniformity 
 

Fig.2.16: Enhanced dispersion of 2% SWNT in BEHM-PPV compared to 5% MEH-PPV 

BEHM-PPVMEH-PPV 
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Figure 2.17: Even with modest dispersion of SWNT with MEH-PPV, the nanotubes are 

            strongly wetted by the polymer  composites as evidenced by the efficient  
             energy transfer (quenching) in the excited state.  
 
 
 The hydrophobic SWNT mixed with MEH-PPV in chloroform solution gave rise to 
the agglomeration shown above in Fig. 2.16 (left). Better distribution of SWNT was obtained 
for BEHM-PPV polymer (Fig. 2.16, right). Strong anisotropy of λ(T) (Fig. 2.18) in MEH-PPV 
films mixed with SWNT indicates the in-plane distribution of nanotubes along the film. 
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Figure 2.18: Temperature dependence of thermal conductivity of MEH-PPV conjugated polymer reinforced by 
 2% SWNT.  Open circles shows the heat flow along the film and solid circle corresponded to the 
 thermal conductivity perpendicular to the film surface. 
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 The concentration dependence of the thermal conductivity perpendicular to the 
MEH-PPV film surface is shown below (Figure 2.19). The considerable enhancement of the 
thermal conductivity is much below expectations, however, perhaps because of poor 
distribution of SWNT in MEH-PPV matrix.  
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 Fig. 2.19: Concentration dependence of thermal conductivity of MEH-PPV + SWNT composite. Insert 
      shows the I-V curve for MEH-PPV +2% SWNT composite.  
 
 
 The high frequency dependence of the electrical conductivity shown in the insert 
indicates the non-ohmic interconnection between carbon nanotubes.  The agglomeration and 
non-ohmic contacts are the main reasons causing the low thermal conductivity of the studied 
composites. 
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Chapter 3: CHARACTERIZATION AND OPTIMIZATION OF PHONON SPECTRA,  
         THERMAL CONDUCTIVITY AND SUPERCONDUCTIVITY 

3.1. Thermal Conductivity Measurements on Nanocomposites with CNTs 

3.1.1.  Comparative method in PPMS 
 

To eliminate the heat losses through lead wires the comparative method was used for 
thermal conductivity measurements of thin CNT fibers and films. The PPMS (Quantum 
Design) Thermal Transport circuit was modified for the comparative method as shown in the 
schematic diagram below (Fig.3.1).  

                                           
 Fig.3.1: Schematic diagram of sample connection for comparative      

  measurement of thermal conductivity using the nickel standard sample.  
 
This method is a variation of the methodology commonly known as the cut-bar 

technique. In the cut-bar technique, a specimen of unknown thermal conductivity is 
sandwiched between two pieces of material with known thermal conductivity using a thermal 
grease and a pliable metal foil to eliminate interfacial thermal contact resistance between the 
materials. Thermocouples placed along the lengths of the three material pieces yield 
information on the rate of heat flow through the two reference-material sections of known 
conductivity. The heat-flow rate can then be used to determine thermal conductivity of the 
unknown specimen using the one-dimensional Fourier conduction equation: 

 
   Q = λ A dT/dx                  (3.1) 
 

where Q is the rate of heat flow, λ is the thermal conductivity, A is the cross-sectional area 
through which the heat flows, and dT/dx is the temperature gradient. Experimentally, dT is 
approximated by ∆T, the finite temperature difference, and dx is approximated by ∆x , the 
distance over which the temperature difference is measured. 



 92

 In our measurement method, only one section of known material is used. Assuming 
that the heat flux through both samples and the Ni-standard is the same, the thermal 
conductivity of the unknown sample, λs can be calculated as: 

 
  Qs = QR = λsAs (∆Ts/Ls) = λRAR(∆TR /LR ).                        (3.2) 
 

G= λ A/L is the sample conductance.  
 

The thin SWNT fibers shown in Fig.3.2, in comparison with human hair, were 
arranged in parallel stack to enhance the sample conductance (see Fig.3.3). The fibers were 
glued to gold covered copper leads by silver filled epoxy H20E (EPO-TEK) [1]. The four 
probe assembly shown in Fig.3.3. 

 
 

                                   
 
 

Fig.3.2: Bunch of 8 fibers prepared by coagulation method compared with human hair (vertical). The  
 PVA polymer concentration in bunch is 35% 

 

  
 
 

Fig.3.3: Four probe assembly of 16 fibers each comprising 8 fibers with 35% PVA.   
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3.1.2.  Tunable thermal conductivity in carbon nanotube paper 
 

Phonon transport in one-dimensional (1D) nanostructures such as carbon nanotubes 
has recently received a lot of attention. The very high thermal conductivity (10,000 W/mּK) 
predicted theoretically for single tubes [1.2] was not achieved experimentally. Due to the 
phonon-phonon interaction between carbon nanotubes, the measured thermal conductivity 
of a collection or a mat of carbon nanotubes was found to be much lower than predicted [3].  

In disordered SWNT ‘mat’ samples, the room temperature thermal conductivity is 
only�35 W/mּK [3]. However, in samples consisting of aligned SWNTs, the room-
temperature thermal conductivity normalized to crystalline nanotube arrangement is above 
200 W/mּK [4].  On the other hand, the thermal conductivity of a 14 nm diameter multiwall 
carbon nanotube (MWNT) measured by a microfabricated device [5] was about 3000 W/mּK 
at room temperature, which is in close agreement with the prediction value [1]. However the 
T2 temperature dependence suggests that MWNT behaves rather like a 2D system thermally. 
The very important result of this work, for our investigation, is a decrease in thermal 
conductivity with an increase in the number of nanotubes in the bundle: an 80 nm diameter 
MWNT bundle has the thermal conductivity of about ~1200W/mּK, and a 200 nm diameter 
MWNT has about ~300 W/mּK respectively. The decrease mentioned above, compared to 
thermal conductivity in single nanotubes, is a consequence of a phonon-phonon interaction 
leading to the rise of umklapp processes between interconnected nanoubes in bundles or 
mats.   

      In this part of the project, we will show that charge injection in carbon nanotube 
bundles in bucky paper will decrease the phonon-phonon interaction between carbon 
nanotubes by increasing the nanotube separation as was predicted in theoretical part 1.  

 
 

 

3.1.2a  Experiment 
 
1. Techniques 
 

To measure the change in thermal conductivity, the laser flash method was chosen to 
measure the thermal diffusivity along a carbon nanotube paper. Thermal diffusivity D relate 
to the thermal conductivity λ by a simple equation,   

    λ = ρּCvּD,             (3.3) 
where ρ is the density and Cv is the heat capacity.  
 The design of laser flash method is very appropriate for in situ measurements and D is 
the most sensitive parameter, in (3.3, to structural changes in medium with low heat capacity 
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and density. A schematic view of the laser flash method used in this study is shown in Fig. 
3.4. 

A 135 mW IQ series laser module from Power Technology Inc., operated together with 
a build-in modulator or chopper (model SR540 with Chopper Controller), radiate a 2 mm 
diameter modulated beam with 830 nm wavelength. The laser beam is focused onto the 
sample with 50 mm focal length lens (or cylindrical lens for wide strip). The sample is 
mounted between two gold standoffs on a ceramic sink. The heated spot is adjustable so that 
it can be made occur at any position on the front surface of the prolonged specimen by using 
three-axis translation stages to move the sample holder (or the vacuum cryostat) together 
with the specimen. The periodic heating technique can provide two independent methods: 
frequency-variation method when the position of the heated spot is fixed just opposite to the 
sensing point and only the modulation frequency is changed and distance-variation method 
when the modulation frequency is fixed and the distance between the heated spot and the 
sensing point is changed. In the present study we are using distance-variation method.   

 
 

Fig.3.4: The instrumentation of laser flash technique used to measure the thermal diffusivity of SWNT   
   bucky paper. 

 
The measurements are made by changing the distance x between the fixed 

thermocouple tip and the laser spot in stationary conditions. This means that each 
measurement is done when the temperature distribution has reached its steady state and no 
dynamical problems arise. In our case, because of very thin and narrow bucky paper strip 
and very sharp thermocouple tip (d<10µm), the relaxation time was less then 1s. To reduce 
the thermal inertia of thermocouple we used only one (constantan) wire with additional 
chemical treatment. The tip of 75µm constantan wire was etched by 50% HNO3 water 
solution by dipping 1 mm end in solution for 1 min. The resulted tip diameter was less then 
10µm. The other wire of thermocouple is the studied carbon nanotube strip.  
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The thermoelectrical signal from thermocouple constantan/carbon nanotube is 
amplified with Tektronix differential preamplifier ADA400A with tunable band. Then the 
resulted signal compared with reference signal from Agilent functional generator 33220A to 
obtain the phase delay between two periodic signals with the same frequency: heat source 
signal modulated with generator 33220A and signal of thermocouple tip outstanding on 
distance x. The phase delay is read from the display of lock-in amplifier SR540 and the 
magnitude of thermal signal from the two channel digital storage oscilloscope Tektronix TDS 
2002.  

 If we have a periodic point heat source which liberates heat at the rate Ioexp(iωt), the 
temperature on a line at distance x from the heated point is related to the temperature 
T(x=0) by 

   T(x) = T(0)ּexp(-x/lt)         (3.4) 

where lt is the thermal diffusion length. The ratio of the two moduli M of the thermal signals 
taken along the lines at x=0  and x is  

 M(x)/M(0) = 2 exp(-x/lt),  or  Dfx
M

xM /)2ln(
)0(
)(ln π−=    (3.5) 

and the phase φ of the thermal signal on the distance x is  φ = -x(πּf/D)1/2, where f is the 
frequency of modulation of the laser beam intensity and D is the thermal diffusivity.  

The calibration on the thin gold wire using phase shift measurement via distance shows 
very linear dependence and excellent agreement of thermal diffusivity, D=128.9 mm2/s with 
the data presented in the literature, D=130 mm2/s, [6]. However for CNT paper we have to 
take into account the high surface area and radiation losses.  
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Fig.3.5: Phase shift of thermal signal chopped with the frequency 20 Hz as a function of offset between                  

laser beam and thermocouple tip.   
 

2. Charge Injection  
 
Small diameter lithium or sodium ions seem to be ideal for ion insertion between 

nanotubes. 1M NaCl aqueous solution and platinum counter electrode was used to charge a 
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thin bucky paper strip (20x 0.5x 0.035 mm3) in cronoamperometry regime on CHI 660B 
Electrochemical Station.  The positive (Cl-) or negative (Na+) charges with current 0.1 mA 
was applied to CWNT strip during 1h at 0.8V. Than the sample was washed in DI water and 
dried in vacuum during 4 h.   

 
3. Results and discussion 

 
 a. HipCO: 
 

First, we measured the thermal diffusivity of bucky paper consisting of  HipCo SWNT. 
Fig.3.6 shows the phase shift of the thermal signal collected at different distances. To make 
sure that dipping in electrolyte solution and washing in DI water do not change the thermal 
properties of bucky paper, we first carried out the test measurement shown by green solid 
circles. 
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Fig.3.6: Thermal diffusivity of bucky-paper on the base of HiPCO SWNT. 

 
b. Magnetically aligned bucky paper: 
 
Magnetically aligned SWNT paper was obtained from National High Magnetic Field 

Laboratory in Florida, USA. SWNTs prepared by laser ablation technique at 1100о С, were 
purified and deposited by vacuum filtration from water suspension under high magnetic 
field, 17Т. 

To overcome the dominant role of contact resistance in SWNT bucky-paper, multiple 
attempts were made to align disordered bunches. It is supposed that increasing the paper 
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density (and consequently contact surface area) and increasing the number of contacts in the 
alignment direction will increase the conductivity of the oriented paper significantly. Below, 
in Fig.3.7, the temperature dependence of resistivity for magnetically aligned “laser” SWNT 
bucky-paper is shown.  
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Fig.3.7:  А. The temperature dependence of conductivity of magnetically aligned SWNT bucky-paper,  
 measured along and across alignment direction by four-probe method. The dimensions for sample 1:  
 15x1x0.012 mm3, the distance between potential electrodes is 10 mm; samples 2 and 3 have length 10 
 mm, distance between potential electrodes 8 mm.    
 В. The temperature dependence of conductivity along the nanotube alignment direction. The fitting by 
 Luttinger liquid and VRH models shown by dashed and dot lines, respectively. 

 
Anisotropy of resistivity of Rperp/Rpar ≈ 14 is temperature independent. R(T) curves for 

samples 1 and 2 with different distance between electrodes actually have coincided. Analysis 
of temperature dependence of resistivity (Rpar(T)) in the framework of VRH model leads to 
following expression (see Fig.3.7 B),  

 
        R(T) = 4.5·10-4·exp(200/T)1/2.57    (3.6) 

 
where the conductivity dimensionality has shifted toward a two-dimensional system. Such 
behavior of R(T) could be explained by the increase in contact area for the aligned CNT. 
However, it is important to mention that magnetically aligned samples were produced from 
“laser” SWNT. It is recognized that “laser” SWNT is less defective.  
 The lowering of То and new temperature dependences of hoping conductivity, lnR ~ 
(To/T)2/5 was predicted in [23] for one-dimensional conductors with reduced concentrations of 
defects [26]. Decreasing the concentration of defects, keeps the hopping mechanism in rare 
short clusters, dissolved in long channels of one-dimensional conductors. However for the 
system of one-dimensional conductors, the weak excitations of the charge density now leads 
to the linear Coulomb gap with high shielding anisotropy of the Coulomb potential. 

 Fig.3.8 shows the thermal diffusivity measurement of  magnetically aligned bucky-
paper.  
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  Fig.3.8: Thermal diffusivity of magnetically aligned bucky-paper.  
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3.2.  Thermal Conductivity of Thin-wall Carbon Inverse Opal 

 
 In the last decade, a new material called photonic crystal (PC) has attracted much 

attention from both basic and applied science viewpoint. The behavior of photons in PCs is 
very much like that of electrons in semiconductors [1, 2]: the photonic band structure may 
show forbidden gaps in which photons cannot exist. Therefore, many of the devices and 
concepts based on the band gap phenomena may be extended to PCs.  

This novel concept was developed for various new applications of PCs such as 
threshold-less lasers and optical transistors [3]. However, the obstacles to obtain this kind of 
PCs with a complete gap in the desired spectral region represent a big challenge. PCs can be 
defined as mesoporous materials with a periodic distribution of submicrometric pores. 
Mainly, there are two parameters that determine the existence of a photonic gap. First, the 
refractive index contrast, defined as the ratio between the refractive indices of the material 
and the surrounding substance; secondly, the filling fraction, defined as the percentage 
volume occupied by the voids, is a very important parameter. Also, the topology of the 
structure will be decisive in explaining the band structure.  

 Among the various preparation methods of three-dimensional periodic structures, a 
self-assembly method utilizing sedimentation of monodispersed nanoscale spheres is the 
simplest. Silica opal is a type of naturally occurring photonic crystal that consist of well-
ordered three dimensional arrays of SiO2 spheres, which have diameters in the wavelength 
range of visible light [4]. As a consequence of periodicity they show opalescence colors that 
come from Bragg diffraction by the periodic distribution of particles. Bragg diffraction 
constitutes the fingerprint of photonic band gap (PBG) properties. However, theory predicts 
that inverse opals would show much better PBG properties than direct opals. Inverse opals 
that can be regarded as the negative replica of opals, have a well-ordered array of 
nanometric spherical cavities surrounded by a high refractive index material, in which both 
the cavities and the high refractive material is connected throughout the structure. To 
achieve a complete PBG, many laboratories are trying to fabricate high quality inverse opals 
with high contrast and filling factor [5-10].  

 At the same time, the unusual mesoscopic structure of the synthetic opal attracted a 
large effort to improve the efficiency of thermoelectric materials [11, 12]. A good 
thermoelectric material has low thermal conductivity κ, high electrical conductivity σ, and a 
high Seebeck coefficient, in order to maximize the thermoelectric figure of merit, 

 
     Z= σS2/κ      (3.7) 
 

where Z has units of inverse absolute temperature and is generally quoted as ZT.  
 For more than 40 years, the search for better thermoelectrics has not provided a 
material with ZT significantly larger than one. ZT of about four would make thermoelectric 
coolers able to compete with gas-compression technology. Assuming that the Seebeck 
coefficient in opal where silicon spheres replaced by thermoelectric materials will not 
affected by the opal structure, if the thermal conductivity is reduced much more than the 
electrical conductivity, the opals could be useful thermoelectric materials. Unfortunately 
many experimental works [7,13,14] and theoretical calculations [15] show that the overall 
reduction for electrons and phonons in synthetic fcc opal structures will be the same.  
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 On the other hand such porous and highly ordered materials as inverse opals open up 
new opportunities for further development of multifunctional nanodevices. Particularly, at 
the low filling factor usually achieving by infiltration of pores by sol-gel route or Chemical 
Vapor Deposition (CVD), inverse opals have two independent nets of pores divided by a very 
thin shell: one resulting from removing SiO2 spheres and the other consists of octahedral and 
tetrahedral pores reduced by thin wall covered on SiO2 spheres but still with interconnected 
windows. Both nets could be tuned independently: first net by changing the SiO2 sphere size, 
second net by filling factor. Moreover, at some condition they could be filled by functional 
materials divided by shell material.  

 In this part of the project we study the behavior of the heat flow through thin-wall 
carbon inverse opals produced by two different methods.  

 
3.2.1. Experiment 
 

Porous silica opals were used as templates for infiltration and carbon inverse opal 
synthesis as described in detail by Zakhidov et al [7,8,16]. Briefly, the carbon inverse opals 
were fabricated by infiltrating silica opal with a phenolic resin, thermally curing this resin at 
low temperature, dissolving the SiO2 from the infiltrated opal with aqueous HF, and 
pyrolyzing the resulting phenolic inverse opal at progressively increased temperatures up to 
1000oC. The graphitic carbon inverse opal was fabricated by CVD method using 1:3 molar 
ratio of propylene and N2 as the feed gas followed by silica removal with aqueous HF.   

Thermal and electrical conductivity measurements were performed using Quantum 
Design Physical Properties Measurement System (PPMS). For these measurements for both 
inverse opals two samples with different geometry (4.5x1.8x12 mm3 and 6.0x2.0x17 mm3) and 
lead distance (6 and 10 mm) have been prepared. The gold covered copper leads were glued 
to sample by silver filled epoxy H20E (EPO-TEK) using four-probe design: heater -
thermometer T1 - thermometer T2 - sink. To eliminate the thermal radiation “tail” in the 
thermal conductivity data, usually appearing at high temperatures, the thermal conductivity 
measurements above 200 K were confirmed by comparative method involving the series 
connection of Ni-standard and studied samples. The electrical resistivity for some of samples 
was measured by a conventional four-probe method using Agilent HP4284A milliohmmeter. 
Heat capacity measurements were performed using Perkin Elmer Pyris Diamond DSC,. The 
surface and fracture image of inversed opal were examined by a JSM-1500 (JEOL, Japan) 
Scanning Electron Microscope (SEM).  

 
3.2.2. Results and discussion 

 
1. Structure    

 
Fig.3.9 shows SEM images of cleft edges of (001) and (111) facet of the thin-walled 

inverse opal lattice (250 nm spheres). For both glassy carbon inverse opal fabricated by a 
phenolic route and graphitic carbon inverse opal fabricated by CVD route a highly periodic 
structure throughout the volume have been obtained. The void structure consists of an FCC 
arrangement of spherical carbon shells interconnected with 12 neighboring spherical shells 
via windows, which result from the sintering process.   
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Fig.3.9: The (100) and (111) planes of surface-templated inverse opal. The rough appearance of a cleaved edge 
 of carbon infiltrated inverse opal is due to the occurrence of fracture through hollow spheres (rather 
 than between spheres in silica opal). The large windows interconnecting the spherical cavities are due 
 to the sintering of the opal template.  

 
2. Thermal conductivity 

 
 The temperature behaviors of thermal conductivity of both inverse carbon opals are 

almost similar: the linear increase at low temperatures shown in the insert of Fig.3.10 
illustrates the changed slope at 20 K and the slight exponential growth above 75 K. The 
difference in absolute value of about 20% obtained for the whole measured range may be 
attributed to the difference in crystalline structure of the shells. The X-ray diffraction 
spectra show the higher crystallinity for CVD infiltrated samples. Moreover, SEM and TEM 
electron micrographs [7] indicate that the thin wall shells consist of graphite sheets that are 
preferentially oriented parallel to the void surface created by removal of the SiO2 spheres. 
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Fig.3.10: Temperature dependence of thermal conductivity of graphitic carbon (CVD) and glassy  
     carbon (pyrolitic amorphous carbon) inverse opals.  

 
Effective thermal conductivity. There are a lot of approaches to calculate the thermal 

conductivity of porous materials and composites using the known thermal conductivity of the 
parent material. Within a continuum description, the effective thermal conductivity of a 
composite with spherical voids (d=3) or infinite cylindrical voids (d=2) and the thermal 
conductivity of host material κo can be given by the following equation [17].  

 

                                                ,
)1/(1

)1(
−+

−
=

dp
p o

eff
κκ      (3.8) 

 
where p is the fractional volume of the voids often called the “porosity”.  
 Another equation, taking into account the thermal conductivity of the material in 
pores, κpores [18] were used in [19,20] for the FCC opal, 
 

   ν
κ
κ

4
1

1)1( ppp
o

eff +−−= ,           (3.9) 

 
where ν = κpores/κo.  
 The continuum approach to study the effective thermal conductivity of periodic 
composites was examined by Albrecht et al [21] for a number of two-dimensional and three-
dimensional lattices.  

 

 

3. Porosity 

 To calculate the effective thermal conductivity, we have to first estimate the porosity 
of the structure. The schematic representation of the face-centered cubic structure of inverse 
opal is given below. 

 

        
 

Fig.3.11: Schematic representation of surface-templated inverse opal. 
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The volume of the FCC structure unit is Vcub. = (2√2·R)3 = 16√2·R3, where R is SiO2 
sphere radius. The unit comprises four spheres with volume Vsphere= 4· (4/3) ·π·R3 = (16/3) 
·π·R3. For an opal structure we can find the commonly used filling factor F value, F = Vsphere/ 
Vcub. = π/3√2 = 0.74. For surface-templated inverse opal, the cubic volume filled only with 
thin shells of thickness h = R1-R, depends on filling conditions (Fig.3.11).  

For the sample presented in Fig.3.9, D = 250 nm, and the average layer thickness is    h 
= 10 nm. The volume of an empty sphere is, (4/3)πR1

3 – (4/3)πR3
 = 0.26(4/3)πR3, where R1 

was shifted by 1.08·R,  R1 = ((R+h)/R)R = 1.08R.  The filling factor for surface-templated 
inverse opal is F = 0.74·0.26 = 0.192, and the porosity is P = 1- F = 0.808.  

In this calculation, we neglected the structure shrinkage at the first sintering which 
provided the intersphere interconnection through which the SiO2 spheres were removed 
after infiltration, and we neglected the volume of these circular interfaces (12 holes per each 
sphere). Subtraction of the volume of 24 holes with average diameter 76 nm results in a 
reduction of the filling factor to 0.191. Consequently, P = 0.809.  

Now we can calculate the thermal conductivity of the material of the shell (for 
graphitic carbon). At room temperature (T=300 K),  κeffect = 0.33 W/m·K (Fig.3.10). 
Considering that sphere voids and interstitials air filled, for (3.9 we can write,  

  mKW
P

effect
o /95.3

)1( 2/3 =
−

=
κ

κ                (3.10) 

 
By Albrecht approach for κpores/κo=0 (air filling) giving κeff./ κo=0.09 for thermal 

conductivity of shell material, we found very close result, κo=3.67 W/m·K. 
 The density of measured samples is 0.22 g/cm3. Taking into account the porosity of the 

studied inverse opal structure, P=19.1%, we calculate the density of the host material to be ρ 
= 1.15 g/cm3 which is twice less than the density of crystalline graphite, ρc = 2.21 g/cm3. 
Perhaps this difference is due to the porosity of the graphite layer and the extended diameter 
of interconnected windows appeared for the volume change at pyrolysis. 

The schematic representation of graphitic shell structure in Fig.3.12 shows that for 
materials with high anisotropy of conductivity, both electric and thermal, the conducting 
path would be strongly dependent on the anisotropy factor: ⊥= κκγ /II . For pyrolytic 
graphite at room temperature γ = 342 [22]. Heat flow from one sphere to another occurs only 
perpendicular to graphitic layers with thermal conductivity 5.7 W/m·K. As far as heat 
transferred to the surface layers of another sphere the high thermal conductivity along the 
graphitic layers, 1950 W/mK, shorts the heat flow near the sphere surface preventing further 
penetration of heat to deeper layers. In such structures, the thermal conductivity would be 
independent of the thickness of shell walls. 
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Fig.3.12: Schematic representation of heat flow through graphitic shell structure and real structure of  
     interconnecting windows. 

 
Electrical conductivity.   Since graphite has a high electronic conductivity, let us 

estimate the electronic contribution to the thermal conductivity using the Wiedemann-Franz 
law: 

     κ/σ = LT          (3.11) 
    
where L= 2.45⋅10-8 W⋅Ohm/K2 is  Lorenz number.  

The temperature dependence of specific resistivity of the studied inverse opal, 
measured by two-probe and four-probe methods, is shown in Fig.3.13. The slope of the curve 
is in good agreement with the data for crystalline graphite for this temperature region [23] 
and for carbon inverse opals with high filling factor studied in [8,24] for various heat 
treatment temperatures. However, the absolute value of resistivity for our inverse opals heat 
treated at 1000oC is much lower than those obtained in [8,24]. The anisotropy factor for 
electrical conductivity in highly crystalline graphite is much higher than for thermal 
conductivity, γe = 0.5(Ω·cm) / 0.5·10-3 (Ω·cm) = 103 [23]. The obtained resistivity of graphitic 
inverse opal normalized to porosity is in good agreement with a resistivity of crystalline 
graphite across the graphite layers.  This result shows excellent evidence that the transport 
properties of graphitic inverse opal are determined by the tiled structure of contacted area of 
the shells.  

The electronic contribution to total thermal conductivity, λe(300K)  = 3.7·10-3 W/m·K, is 
two orders smaller than the measured value, λ(300K) = 0.33 W/m·K. However at low 
temperature, T<50K, the electronic contribution to the thermal conductivity could be 
predominant. 
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Fig.3.13: Temperature dependence of resistivity for the carbon inverse opal (carbon opal replica). The  insert 
   shows the comparative behaviour of resistivity for studied inverse opal (open circles), phenol  replica
   with high filling factor, heat treated at 830oC [24] (dash-dot line), and POCO graphite[23].  

 
Heat capacity. The temperature dependence of the specific heat capacity of graphitic 

inverse opal is shown in Fig.3.14. Within the measured temperature range the heat capacity 
exhibits the smooth rise closely resembling the 2-3D behavior of of bulk planar graphite 
(solid line) [23]. For comparison the specific heat capacity values of POCO graphite [23] was 
divided to the density ratio ρPOCO/ρinvers opal= 1.82 g/cm3 / 0.22 g/cm3.  
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Fig.3.14: Temperature dependence of specific heat capacity, Cp of graphitic inverse opal prepared by  

    CVD method. Cp vs T for  pyrolitic POCO graphite was normalized to the density of studied  
     inverse opal, (1.82 g/cm3 / 0.22 g/cm3).  

 
3.2.3.  Conclusion 
 

We measured the thermal conductivity of carbon inverse opals with different 
crystallinity of the infiltrated carbon. The obtained thermal conductivity in both samples is 
extremely low, 0.33 W/m·K. The conducting path is strongly dependent on the anisotropy 
factor: ⊥= κκγ /II . For highly crystalline pyrolytic graphite (γ = 342) the heat flow from one 
spherical shell to another occurs only perpendicular to graphitic layers with thermal 
conductivity 5.7 W/m·K. These interconnecting interfaces determine the whole thermal 
conductance of the system. The heat transferred to the surface layers of another sphere is 
rapidly shorted by high thermal conductivity along the graphitic layers (1950 W/m·K) thus, 
preventing the further penetration of heat to deeper layers. In such structures, the thermal 
conductivity would be independent of the thickness of shell walls. 

     The electronic contribution to the thermal conductivity, κe(300K) = 3.7·10-3 W/m·K, is 
negligible compared to the measured value, κ(300K) = 0.33 W/m·K. 

      The low thermal conductivity with an appreciably high electronic conductivity 
suggests the possible application for these materials in thermoelectric cells.  
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Chapter 4: SUMMARY AND CONCLUSIONS 
 
4.1 Summary on Carbon Nanotubes 
 
“Modest” applications of nanotubes for thermal management (like 100-200% increase for 
composites with low conductivity matrices) look quite feasible. 
However, in order to evaluate prospects of more aggressive goals fully exploiting the claimed 
potential, much more research work is needed to provide a firm understanding of issues 
involved. Among the problems could be: 

•  Details of the physics of individual tube behavior, especially the low-T regime 
•  Microscopic picture of intertube/interlayer interactions and scattering 
•  Microscopic study of contacts with various media (leads)  
•  Possibility of (self-) assembly of contacts and environments that would be beneficial 

to the therm. conductivity 
•  Optimization issues given the understanding achieved 

 
 
 
4.2 Conclusions on Thermal Conductivity Enhancement  

 
1. Ph-Polaritons are found to contribute to K(T) of thin films, with T-peak. 
    Position of T-peak depends on W op,  the line width of OP and the TO-LO splitting. 
 
2. K(T) can be 10-20 times stronger than the conventional radiative contribution to K by free    
    photons. 
 
3. T-peak shifts to lowest T in microcavities (L ~ 1-10 mm), which can be used in cryogenic    
     heat transfer. 
4. To create a material with high enough polaritonic K(T) at RT, compared to the usual,     
     phonon Kph one should create an organic material with OP at 1500-2000 cm-1, which has   
     large oscillator strength. In organic materials  Kph is usually low (< 0.1-1  W/mK), the   
     Kpol can become a main contribution. 
 
5. One candidate for polaritonic heat pipe, can be a doped fullerene film MxC60 in which    
     giant oscillator strength S enhancement is found, which is quadratic in doping level  
     x: S ~x2. 
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6. The strong dependence of Kpol(T) on S(x)  leads to tunability of K(T) by charge transfer 
    and thus may be used in  “polariton-transistors”, in which K can be amplified by charging   
    gate G.  
   
7. Phonon-Polaritons can be used for  “Polariton-lasers”, which will emit monochromatic 
    and coherent IR radiation, due to Bose-Einstein condensation in microcavity.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


