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Abstract man path integral [4, 5]. The quantum algorithmic

Presented is quantum lattice-gas model for simulating the approach is based on a two-component complex field

time-dependent evolution of a many-body quantum mechanical defined on a discrete spacetime lattice where unitary
system of particles governed by the non-relativistic Schroedinger matrices act locally on the field causing its temporal
wave equation with an external scalar potential. A variety of evolution in discrete time steps. Using such a spatially
computational demonstrations are given where the numerical discrete field makes it possible to computationally rep-
predictions are compared with exact analytical solutions. In
all cases, the model results accurately agree with the analytical resent, in the long wavelength limit of modes in the
predictions and we show that the rModel's error is second-order discrete system, the dynamical time-dependent evolu-
in the temporal discretization and fourth-order in the spatial tion of a continuous wave function in a manner that is
discretization. The difficult problem of simulating a system of numerically efficient.
fermionic particles is also treated and a general computational
formulation of this problem is given. For pedagogical purposes, In 1994 Bialynicki-Birula presented a general quan-
the two-particle case is presented and the numerical dispersion tum algoithmic approach of this kind for modeling
of the simulated wave packets is compared with the analytical
solutions. the Weyl, Dirac, and Maxwell equations on a body-

* centered cubic lattice in three-dimensions [6]. In a se-
KEY WORDS: Schroedinger wave equation, quantum comput- ries of papers on simulating the one-dimensional Dirac
ing, quantum lattice gas, quantum mechanics, computational equation [7, 8, 9], Meyer presented a quantum algo-
physics

* rithm similar to that of Bialynicki-Birula with a va-
riety of numerical simulations including the effects of

1 Introduction boundary conditions, inhomogeneities, and an exter-

nal scalar potential. Meyer set the quantum algorithm
Feynman's work regarding quantum mechanical com- for the discretized path integral in the context of what
puters used to simulate physical quantum mechanical is called the quantum lattice gas method and his algo-
behavior in a numerically efficient way [1, 2, 3] has sub- rithm is equivalent to the one-dimensional version of
sequently led to several series of research papers con- the Bialynicki-Birula quantum algorithm for the Dirac
cerned with a variety of details involving the particu- equation.
lar quantum algorithm that best represents the Feyn- Contemporaneously with Meyer, two other series

*This work is supported by the Air Force Office of Scientific of papers on quantum lattice-gas models of the one-
Research under the Quantum Computation for Physical Mod- dimensional non-relativistic Schroedinger wave equa-
eling initiative. tioi .... • nrt-.qe.ted bv Succi and Benzi 110, 11] and by

20051129 029



Boghosian and Taylor [12, 13, 14]. The approach taken dynamical modes in the discrete system. there is an
by Succi and Benzi is sorhewhat more computationally emergent effective field theory for a, complex ampli-
oriented in that they begin with a "kinetic" lattice tude field, continuous and differentiable in both space
Boltzmann equation of motion1 (effectively the one- and time, that exactly'obeys the physical quantum me-
dimensional Dirac equation in the Majorana represen- chanical equations of motion. At the small scale (char-
tation) and show that the Schroedinger wave equation acterized by the lattice cell size) one imagines a sys-
emerges as the governing equation of motion for the tem of fermionic particles undergoing local collisions
slow mode in the long wavelength "hydrodynamic" and translation to nearby nodes of the lattice. Each
limit. That is, Succi and Benzi observed that the of these fermionic particles occupies a local positional
"macroscopic scale" Schroedinger wave equation arises state at a specific lattice node with a certain probabil-
from the "mesoscopic scale" Dirac equation in a man- ity amplitude. All the possible locations of the actual
ner quite analogous to how the macroscopic Navier- physical quantum particle are effectively modeled by
Stokes hydrodynamic fluid equation arises from the the interfering set of probability amplitudes associated
mesoscopic kinetic Boltzmann equation through the with this system of fermionic particles. That is, all the
Chapman-Enskog expansion. possible pathways are modeled simultaneously using a

Boghosian and Taylor's approach follows more kind of kinetic system of locally interacting fermions
along the lines of Meyer's approach in that their model on the small scale.
is developed as a generalization of the classical lattice Seen as a kinetic system then, we may expect that
gas method. A kinetic transport equation, now for- there exists a local equilibrium configuration of parti-
muated directly at the "microscopic scale," again leds cles. We require that this configuration be an eigen-
to the Schroedinger wave equation in the continuum ket, with unity eigenvalue, of the local unitary colli-
limit. The Boghosian and Taylor quantum lattice gas sion operator that is uniformly and spatially homo-
model focuses on solving the many-body Schroedinger geneously applied to the lattice-based two-component
wave equation with an arbitrary scalar potential in an field. Then the dynamical lattice-based system on all
arbitrary number of spatial dimensions. They ana- lattice nodes undergoes local relaxation towards this
lytically argue for an exponential numerical speedup equilibrium configuration. However, unlike a classi-
arising from simulation in the many-body sector of cal kinetic system, the global configuration of particles
the full Hilbert space carried out simultaneously us- does not relax to a single steady-state equilibrium. In-
ing quantum superposition of states. The Boghosian stead, there are many steady-state global equilibrium
and Taylor version of the quantum algorithm is also configurations which effectively are the energy eigen-
cast explicitly for direct implementation of an array of states of the "macroscopic scale" quantum mechanical
quantum bits [13]. Polley has recently presented an ar- equation of motion modeled by the quantum lattice
gument for adding both an external scalar and vector gas. If the quantum lattice gas system is initialized in
potential into a quantum lattice-gas model by analyt- any one of the energy eigenstate global configurations,
ically demonstrating the discrete model's invariance the macroscopic scale configuration of the system will
with respect to a general local gauge transformation remain fixed in time albeit the microscopic configu-
[18]. ration of particles would be continually changing at

A characteristic feature of all these quantum algo- every unit time step.2 In the end, the Feynman path
rithms, used to model the dynamical behavior of ei- integral is efficiently and accurately recast as a kinetic
ther relativistic or non-relativistic quantum particles, dynamical process computed in parallel efficiently on
is that the governing wave function is well approxi- a spacetime lattice.
mated as one approaches the continuum limit where In this paper we do not argure that the quantum
the grid resolution of the spatial lattice become in- lattice gas dynamical rules represent a local hidden
finite (the lattice cell size approaches zero). There- variable theory of quantum mechanics. Although fun-
fore, from the point-of-view of the modeler, there ex- damental arguments can be made to limit the possi-
ists a "microscopic scale" where the unitary dynamical ble form of the local unitary operator in the quan-
rules are locally applied in a discretized fashion and turn lattice gas [6, 7], these arguments lead to an algo-
time advances forward in incremental units in a way rithm suited for implementation on a quantum com-
that is quite artificial. Yet at the "macroscopic scale," 2

Given a finite size' lattice used for modeling purposes, each

which' corresponds to the long wavelength limit of the local configuration oscillates in time even when the global con-

figuration is a time-independent energy eigenvalue. However,
1 The classical lattice Boltzmann equation was popularized the amplitude of the oscillation does approach zero as the lat-

with its application to computational fluid dynamics [15, 16, 17]. tice size becomes infinite.
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puter. In our investigation of a suitable local unitary potential well and quantum scattering off of and tun-
collision operator we have found that one quantunm neling through a constant potential energy barrier. In
gate in particular, the square-root-of-swap given be- both cases, the model behaves as expected.
low in Section 2.3, is especially useful for modeling Third, in Section 4 we test how well the quantum
the Schroedinger wave equation in that the local equi- lattice gas can simulate the simultaneous dispersion
librium configuration discussed above is an eigenket of two fermionic particles. In the case of multiple
of this gate and with unity eigenvalue. Therefore, we particles, the operational quantum gate sequence to
have selected the square-root-of-swap gate as our basic handle the many-body case is identical to the sin-
model quantum gate. As demonstrated in Section 2.6, gle particle case presented in Section 2. Therefore,
we find that this quantum gate leads to an overall mod- the implementation of either situation on a quan-
eling error that is second-order in the temporal dis- turn computer would be identical as well, except for
cretization and fourth-order in the spatial discretiza- state-preparation and measurements. However, since
tion. Another point regarding this particular gate is at present no quantum computer exists that can test
that when measurements are periodically made of the the algorithm presented here, we are forced to con-
state of qubits in the system, which destroys quantum sider the implementation on a classical computer and
superpositions and entanglements in the system, the here the implementation for a many-body problem is
macroscopic scale behavior of the quantum lattice gas much more complex than for the single-body prob-
system is governed by the classical diffusion equation lem. Nevertheless, we present a general formulation
[19]. of the quantum gates in a second quantized represen-

This paper is organized as follows. First, in Sec- tation where the basic computational operations are

tion 2 we describe the basic quantum algorithm, in creation and annihilation of local particle occupancies.

particular, how we encode the wave function, how we The advantage of such an implementation is that it

use two basic quantum gates applied to the qubits at is straightforward to implement the fundamental cre-

the nodes of the lattice. We first describe the algo- ation and annihilation operation is a way that respects

rithm using matrices and then we describe an equiv- the anti-commutation relations for fermionic particles.
alent finite difference formulation. Using the micro- We demonstrate that the macroscopic scale behavior

scopic finite difference equations, we then derive the of the quantum lattice gas agrees with the exact time-

effective field theory at the macroscopic scale where dependent solution of the two-body wave equation.

both the lattice cell size and the update time step ap- Finally, we conclude this paper with a short de-
proach zero. Diffusive ordering holds, as is typical for scription of results and share some lessons we learned
lattice gas systems, where small-scale temporal fluc- after using the quantum lattice gas model extensively.
tuations in the wave function go as the square of the We also point out some future directions that may be
magnitude of the small-scale spatial fluctuations. To taken to expand the usefulness of the model.
confirm that our derivation is correct and to test the
validity of the quantum lattice gas model, we test the
time-dependent dispersion of a free Gaussian packet. 2 Quantum Algorithm for a Sin-
We also test the system when it is initialized in an en- i Fre Particle
ergy state, which is a fixed macroscopic scale steady- ge
state configuration. We find that as we halve the lat-
tice cell size (double the spatial resolution), the cumu- We describe the quantum lattice-gas algorithm for

lative error in the model drops by a factor 25.45 = 43.7. modeling the Schroedinger wave equation by consid-
ering the simplest case of a single free particle in a

Second, in Section 3 we show how an external scalar one-dimensional space. In this simple case, the wave
potential may be modeled in the quantum lattice gas function O(x, t) obeys the following partial differential
system by inducing a local phase rotation in the qubits equation in the position representation
at each node of the lattice. The qubits at a lattice node
are phase rotated by an amount corresponding to the 84)Q, t) h' .940(x, t)
strength of the spatially dependent external potential ih ( - -- 2 2 (1)

at that node. We show how this local phiase rotation, a

kind of gauge transformation, produces an additional where h is Planck's constfant and m is the mass of
potential energy term in the Schroedinger wave equa- the quantum particle. Here 4(x, t) is a continuous
tion. We then test the quantum algorithnm against two probability amplitude field (e.g. a continuous complex
well-known cases of harmonic oscillation in a parabolic field).
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2.1 Encoding the Wave Function representation can be written as

To "programn" a quantum computer to simulate (1), L--1 1
it is necessary to first formulate an encoding scheme 10) 6 S S 1+.1221+a), (3)
where a collection of qubits is used to store the value 1=0 a=0

of the wave function. Since the number of qubits in
any quantum computer is necessarily a finite number, where each ý21+a is a probability amplitude (e.g. com-

the wave function will have to be approximated in the plex number).

usual way by discretizing a physically continuous am- Now for each position ket lxj) there are two cor-
plitude field into an artificially discrete and finite set of responding basis states in the number representation

complex numbers. To do this, let us begin with a one- 1221) and 1221+1). There are two interfering possibilities

dimensional spatial lattice with L number of nodes. for a particle to occupy the lth position on the lattice.
With each node of the lattice we associate a position Therefore, the occupancy probability of the lth node is

basis ket denoted by lxi), where 0 > 1 > L - 1. The computed by first summing the probability amplitudes
discretized system ket in the position basis is of these corresponding basis states and then comput-ing the square of the absolute value thereof. In other

L-1 words, the coefficient cl in (2) is set equal to the sum
10 ) E cIlxI), (2) of the on-site coefficients in (3)

1=0
cl = 621 +6•21+-. (4)

where cl = (xilO) is a complex number. In other
words, the basic approach to model the single par- The definition (4) is an essential part of the quantum
tide wave function governed by (1) is to express I1) lattice-gas model presented in this paper. In the sec-
as a sum of all the possible ways the particle can be tion below, where we analytically predict an effective
situated on the lattice with a probability amplitude cl field theory for our artificially discretized model, we
associated with each possible location lx1). explain why we need to make this assignment. We will

In our model, we assign two qubits to each node of find that (4) is needed for the predicted effective field
the lattice, for a total of 2L qubits in the whole quan- theory to accurately approximate the Schroedinger
tum computer. The qubits that reside at the lth node wave equation in the long-wavelength limit, which is
of the lattice are denoted by IqO) and Iqi) and they are also defined below.
used to encode the coefficient cl of (2) of the position
ket for that node. Each qubit is a two-level quantum 2.2 Formulating a Suitable Gate Se-
system Iq') = a'a10) +0'l .1), where Ia'all -I2•I 12 = 1 for
a = 0 or 1 and 0 > 1 > L - 1. We consider each qubit quene
to be a container that may or may not be occupied by We shall require that the algorithmic scheme be at
the quantum particle. The quantum particle is said to least second order convergent in space, so that as we
occupy the ath local state at position x, when /3z = 1. double the grid resolution (e.g. double the number
Similarly, the ath local state at position x, is said to of qubits) we in turn reduce the numerical error due
be empty when 0a, = 0. to the field discretization by a factor of one-quarter.

To see how the qubit encoding works, we write 1I) With this type of convergence characteristic, we are
in the number representation. In the number repre- assured that we can simulate a wave function gov-
sentation, each basis state is expressible as the ket erned by the Schroedinger wave equation (1) to any
Inon noninon2... no nL), where n' = 0 or 1 for all l arbitrary degree of accuracy. After we formulate our
and a. The Boolean variables n a are called the number algorithmic scheme, we will then a posteriori verify by
variables and they correspond to a binary indexing of direct numerical simulation that it is indeed at least
the basis states in the number representation. Since a second-order convergent numerical scheme. In fact
we are concerned with modeling the one-particle wave in Section 2.6 we will find that our numerical scheme
equation, we need consider only a subset of all the ba- is fourth-order convergent with an error that goes as
sis states where only one of the number variables is (6x)4 .
1 and all the rest are 0. This subset of all the ba- To simulate the quantum behavior of the wave func-
sis states is called the one-particle sector. There are tion, we seek to develop a sequence of 2-qubit gate op-
2L such combinations and we shall label these with erations that will act on a large collection of qubits in
the binary encoding formula 1221+a), for a = 0, 1 and the simplest way. We impose the following four sim-
0 > 1 > L- 1. Therefore, the system ket in the number plifying constraints:
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1. All quantum gate operations are homogeneous The full collision operator, denoted C, which acts

and independent of space and time. on the system ket 10) is formed by a. L-fold tensor
product over the local collision operators U applied

2. Only a single quantum gate is used to evolve the homogenously and independently on each node of the

wave function and this gate is applied to each lat- lattice
tice node independently (locality). L-1o 1ý, (T. (7)

3. To provide communication channels between lat- (7)
tice nodes, only the simplest gate is used (e.g. a Let us denote the swap operator by , where
swap gate)- p* and v index any two qubits in the system. The

4. Because the final value of the computed wave streaming operator, denoted S1, causes a global shift

function depends on summing interfering possibil- to the right of the first qubit on all the lattice nodes.

ities according to (4), we shall use the Haddamard Therefore, S1 can be represented by a sequence of swap

gate at the very end of the simulation prior to operators acting on nearest neighbors

making a measurement of the wave function so
that a single qubit at each node will encode the "
probability amplitude cl = (xi1,) in (2). S1 = fi X2l,21+2. (8)

1=0

With two qubits per node, there are four on-site In matrix form, Q is a 22 x 22 permutation matrix
basis kets, 10) ®0 0) =- (1, 0, 0, 0), 10) 0 11) - (0, 1, 0, 0),
11)®[0)=(0,0,1,0), and l1)®1)=(0,0,0,1). Inthe ( 0 0 -0
context of a quantum lattice-gas model, the unitary 0 1 0
matrix U is called the local collision operator and the 0 1 0 0
on-site ket IV) - 10}®1}+I11}®0)=- (0, 1, 1, 0) is called 00 0 -1

the number density ket. To have a well behaved local
equilibrium associated with the collision process, the The algorithm we use to model the Schroedinger wave

local collision operator must have the number density equation involves multiple applications of the collision

ket as an eigenvector with unity eigenvalue. operator interleaved with streaming operations as fol-
lows:

2.3 Matrix Representation (t+/2)=! ¢t),10
where the square root of the evolution operator is

The quantum gate that we use to evolve the wave func-
tion, which is applied independently on a site-by-site E2 (11)
basis, is the square-root-of-swap gate

Here S§ denotes the transpose of S1 and is the inverse
0 0 0+ i -- 0of S 1 . Application of ST causes a global shift to the

02 2 (5) left of the first qubit on all the lattice nodes. One full

0) time step of the evolution is
0 0 0 -1

1I(tT + )) = EIV*(t)). (12)
The reason for calling this the square-root-of-swap
gate is that &r2 is the swap gate itself We use four applications of the collision operator in

E1 because 04 is the identity operation. Note that

(1 0 0 0 S& and C do not commute, otherwise (12) would be a
U. = 001 . (6) trivial evolution equation.

0 1 0Note that in (12), our choice of streaming the first
0 0 0 / qubit was arbitrary. A more balanced algorithmic ap-

proach would treat both qubits identically. Therefore,
The two nontrivial eigenvalues of U are A1 = 1 and we could alternatively define one full time step as
A2 = -i, with eigenvectors Ivi) = (0, 1, 1, 0) and 1v2) =
(0, -1, 1, 0), respectively. Also, since (5) causes mixing 10 +10) =2AIO(t)),

only between the single-particle basis kets 0)&11) and
I1) ® 10), it conserves particle number. So (5) is an where
appropriate choice for the local collision operator. E2 S2

5



and where the streaming operator S2 causes a global right after collision operation
shift to the right of the second qubit on all the lat-
tice nodes. The advantage of using the balanced al- poo(xl+l,tn) = A*5 o(xi, t.--) - AJ i(xi, tn-1)

gorithm (13) is that its error is fourth-order in space ,1(x 1_j,t.) = -Apo(xj,t_-l) + A*•l(xi,t.-i).
whereas for the unbalanced algorithm (12) it is only (19)
third-order.

They noted that after four time steps, the total am-

2.4 Finite Difference Formulation plitude V)(xl,tn) = Oo(x 1 ,t.) + 0j(xj,t,) satisfies
a finite-difference equation which approximates the

It is possible to specify the quantum algorithm to Schroedinger equation in the continuum limit. The
model the Schroedinger equation without the use of two essential differences between the improved algo-
matrices. Instead we can write down a set of finite rithm (15) through (18) presented in this paper and
difference equations, which are equivalent to (10), but the quantum algorithm (19) appearing in [20] is that
perhaps simpler to comprehend at first glance. To do we liave alleviated the problem of the occurrence of
this, let us introduce a new notation for the 2L prob- two non-interpenetrating lattice-gas systems indepen-
abilities amplitudes ý2l+ in (3). We will denote the dently evolving on different checker-board sub-lattices
two complex numbers per lattice node by Wo(x, t.) and we have doubled the numerical accuracy. This
and V, (xj, tn). That is, we have L-pairs of complex is a problem that occurs when both on-site qubits
numbers. Then, the quantum algorithmic operations are simultaneously streamed because streaming only
(14) can be expressed as follows: a single qubit at a time, as was done for the quantum

lattice-gas model of the diffusion equation [19], causes
if mod(n, 4) = 0 (15) interactions between all the qubits at each time step.

Oo (xi, tn) = A*Vo(xl,tn-1) +Apol(xj,tn-0)

Wp1(x1,tn) = Acoo(x 1,tn_ 1) +A*½1 (x1,tn), 2.5 The Governing Partial Differential
.if mod(n, 4) = 1 (16) Equation

ý0o(X1, tn) = VoO(X1-l,tn-1)W (X1, tn) = V1 (Xe.i, tn- 0) It is straightforward using a symbolic mathematics

program, and tedious by hand, to use the update rules

if mod(n, 4) = 2 (17) (15) through (18) to algebraically determine the value

Vo'(xi,tn) = A*so(xi,t.-,) +'AW(x 1,tn-1) of Wo and W, at a later time. With the initial wave

W (X1, tn) = A~o(x1 ,t._-) + A*Wy(xi,tn-), function set at to, one complete cycle of the algorithm
and if rood(n, 4) = 3 (18) is completed at t8 (that is, ts-to = 67). With the wave

an fon 3(1 function defined as O(xi, tn) =o(-ztn) + c 1 (x1 , tA),

Vo(X1, tn) = .Oo(xl+l,tn-1) the result after one cycle is4

Wl(xI, tn) = vil(XI, t.-1),1

O(i t8) - O(1 to) + *X+ to) + Cx-'to)
where A = + ± ½. The finite-difference equation pair 2
(15) is equivalent to the local collision operation C, 1-i [)(x+, to)+ O(xl_2, to)], (20)

as is the pair (17). The equation pairs (16).and (18) 4

are equivalent to the streaming operations S and ST, Note that (20) is the simplified form of the finite-
respectively. 3 

.'.difference equation at the macroscopic scale when the
This finite-difference representation of the al- system is very close to local equilibrium throughout

gorithm is nearly identical to that presented by the course of the evolution as ýoo(xt) = wi (xt) ý-
Boghosian and Taylor in 1997 [14] where the two on- 10(x, t) for all x. The full finite-difference equation is
site qubits are simultaneously streamed to the left and ttoo long to present here, but is given in Appendix A.

3 Noting that A ± A* = 1, this set of finite difference equa- This result is a finite-difference equation for the fol-
tions can he expressed in a more compact way 4 Note that the result (20) is accurate up to fourth order

ýpO(X1+,,tn+1) = o(xl,tn) +Qo in 5x only in the situation where the initial system is in local
.Wl(xl,t.+I) = P1(X 1,tn) +91 equilibrium defined by Woo(xz,tn) = W1(Xz,tn). In the more

general situation when the system is not in local equilibrium
where c = (--l)n and Qo = A(ýoj - ýo0) and 1 = -9o, which where Wo(xl,tn) =, VOl(xL,tn), the result (20) is accurate only
has the standard form of a lattice-gas transport equation. up to third order in Jx.
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lowing partial differential equation governing the con- 0.1

tinuous amplitude field ,(i, t) 3t=
S0.08

Oa/(x,t) • o(&t2) = 'i x 2 2(x+t) - O()X4 ), (21) 0.06
at 2 T 8x2

>1

which is an approximation of (1) where the diffusion .11
constant is h/m = 6x 2 /6T and where 6x is the lattice 0.04
cell size. M

-Q 0.02 t=150
If one adds a phase angle ( to the off-diagonal corn- 0

ponents of collision operator (5) to obtain a slightly 4 t=200

more general collision operator 10 20 30 40 50 60
Position1 0 0 01

0- (1 +,)eic 21 (22)2 2 0 Figure 1: Time evolution of a Gaussian packet for a single

0 0 -1/ quantum particle overplotted in succession where the x-axis is
the position on a 64-node lattice in units of the lattice spacing

then the resulting governing partial differential equa- t and the y-axis is the probability density IV;(X, t)12
. The solid

nwill have its transport coefficient dependent on curves are the exact analytical solution and the circles are the
tion wdata from the quantum lattice-gas simulation (the initial wave

this phase angle as follows: function was normalized, therefore the area under each curve is

one). The lattice size is L = 64W. The initial Gaussian packet of
(x, t) + (t)_ i x 2 2 (x, t) with = L/10 at t = 0 is centered at x = 32f and the disper-

± t 2  see C 7 ax2  ±sion is evident by observing the wave function at the subsequent

(23) times t = 50, 100r, 150r, and 200r. Periodic boundary condi-
tions were used and nr_ = 20 energy eigenmodes were used

This allows us to simulate a quantum system where 'to generate the exact solutions. A time scale factor ts = 1.04

a particle's mass can be arbitrarily large m = sec (, was used to improve the agreement between the numerical and

but has a minimum of one. Note that in this case the analytical solutions.

error is cubic and is proportional to sin C. So for very
large masses, the accuracy of the model is reduced 2 L2

to third-order in space. Note that (23) is is valid ef- an = -f / (x, 0) cos (2nlrX dx. (26)
fectively field theory at the macroscopic scale when L JL/2 \ L1

the system is very close to local equilibrium where
,o0(x, t) = V, (x, t) 1L ½ (x, t) for all x. With h 1 and m = 1, the energy eigenvalues are

2n
2 7r

2 x
2

2.6 Numerical Confirmations En= L 2&t (27)

To numerically test that the quantum algorithm (12) and the time-dependent solution to (21) plotted in Fig-
is indeed equivalent to the finite-difference equation a te tim
(20) and to see just how good of an approximation of
the single-particle Schroedinger equation it is, we have nax
preformed two simulations. .... t(mx,t)-ao >mj acos (2nr)-iE/t.(28)

In the first simulation, we test the numerical time n=1

evolution of a Gaussian packet Note that in (28), time is scaled by a factor t. to ac-

1x0 (2count for kinetic corrections to the time step. As theO(x, 0) e-2 (24)
U2r*Z number of lattice nodes becomes large, this scaling

where f > x > L for a lattice of size L 64t and where factor approaches one.

the packet width is a = L/10 as shown in Figure 1. The second test of the quantum lattice-gas algo-

The exact anaytical solution of (21) is obtained by rithm as a model of the Schroedinger wave equation is

computing the Fourier components of the energy basis' the measurement of its numerical convergence. Mul-

functions tiple simulations (10 in total) were carried out for
lattice sizes ranging from L = 8t, 16e, 32e, ... up to

1 1 L (x, 0)dx (25) L = 8192f. In each case the initial state of the simula-

L E--/2 tion was the ground state (a sinusoidal energy eigen-
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0W +" e--iV(x1)6t,(X,+l' to)
H 0 .0

S 0.00001
. - i _iv(X'+)t(x+2, to)~ 4

i. e .1 + e-iv(xI-2)6 t Ip(X1. 2,t 0 )]

o.000s0.00l 0.00o 0.01 0.05 o.1 If we expand the potential terms in the arguments of
Delta x the exponentials

Figure 2" Log-log plot of the numerical error versus re- V(xl-1)jt = V(xl)jt + 6t6x dV(x) + O(6t6x 2 )
solving grid cell size, 6x, indicating the convergence property dx Lx
of the quantum lattice-gas algorithm (12) and (13) for the (33)
Schroedinger equation. The data (black circles) are taken from we see that we can neglect the second term on the
numerical simulations with grid sizes from L = 8e up to 8192e RHS because of diffusive ordering t5tx -& x 3 since we
after a single time step T = r-. The solid curves are best-fit
linear regression with a slope of 3.48 and 5.45 for the models need to keep terms only to order 6xx2 . Therefore, in
defined by (12) and (13), respectively. These results demon- the continuum limit (32) is well o roximated by
strate third-order and fourth-order convergence in space for t~he
two models, respectively. V)+(X, t8) + i e_iy(X V)(x1' to) (34)

2state) + t)2e- J(X ) [*(xl+4,,t 0) + ((x3l4t0)]

st1 - i e_iV(X,)6t [O(xl+2, to) + V)(xI-2, to)]]

O(x, 0) .. c W (x)- cos (2irx/L) (29) 4 1
L/2 Now multiplying through by eiV(xj)6t and expanding

Each simulation was run for one time step T = r and the LHS to order 6t 2 we have the following finite-
the numerical error, denoted c, from the exact solution difference equation:

was then measured using the following formula 1 + i
I[1 +iV(xi)5t]¢(xi,ts) =- 2 2,(xz,t0) (35)

1 L

c(L) = 110Z{I(x',T)I12 -¢ at(X)I2}
2 . (30) + v)(xi+l,to) +V0(xz-1,to)

N x=l " [b(XI±2 , to) + 0(X1- 2 , to)]

We define the grid resolution as the inverse of the total In the continuum limit, this finite-difference equation
number of lattice points. That is, for a box of size 1, represents the Schroedinger wave equation withan ex-
the resolving cell size is defined as 6x =-. A plot reresents t er w
of the error versus the resolution is given in Figure 2.
As the resolution is increased, the error drops off as aO(x, t) -(6t 2) i 6x2  2 x, t) + (6X4)
c(L) -L- 5 .4 5. at +06t 2 , aX2 -iV(X)Ob(X, t)±Qx)

(36)
To confirm the validity of (36) we perform the follow-

3 Adding an External Scalar ing numerical simulations that yield results that can

Potential be checked against analytical predictions:

1. Harmonic oscillation of a displaced Gaussian wave
It is possible to model an external potential by apply- Ha c i llation ofeatiacs
ing a local phase change to the system wave function packet in a parabolic potential.

[13, 14] 2. Quantum tunneling through a potential barrier.
¢(x, t) --+ e-iV(x)6 t¢(x, t)• (31)

The effect of this phase change is to alter the finite 3.1 Harmonic Oscillator
difference equation (20) as follows The first numerical test presented here is the simula-

• ttion of the behavior of a wave packet in an external
0(x1, ts) 21 + e_-v(a)•¢(x' to) (32) parabolic potential. This is the well-known problem of

2
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Figure 3: Time evolution of a Gaussian packet initially dis-
placed by a = 321 lattice sites from the center of a parabolic 0 1000 2000 3000 4000 5000 6000
potential well with K = 10- 5 . The width of the packet is Time Step Iteration (t)
a .= 14.4t. The time development of the Gaussian packets
over plotted in succession where the x-axis is the position on
a L = 256U node lattice and the y-axis is the probability Figure 4: A comparison between the analytical and numerical
density 14*(x,t)12

. The red curve is the parabolic potential. predictions of the location of an oscillating Gaussian packet in
The 71 = 1 and m = 1, the time period of the oscillation is peitoso h oaino noclaigGusa akti

= h 19a6d92r= A total of tee overllotted a harmonic parabolic potential well. The solid curve is the an-S 1tpalytical prediction and the black circles are the numerical data
corresponding to time t = 0, 100r, 2007, ... , 1000-, which is ap- taken from the quantum lattice gas simulation presented in Fig-
proximately half of the oscillation time period, so the packet ure 3. In the simulation, the packet is initially displaced 32 lat-
is seen to "swing" to the other side of the potential well while tice units from the center of the grid at lattice node 128 for a
maintaining a fixed shape as analytically predicted. periodic system with a total of L = 2561 nodes. The numerical

predictions are in excellent agreement with the exact analytical
solution.

the linear harmonic oscillator. Schroedinger analyti-
cally calculated the exact time-dependent solution for
the evolution of a Gaussian packet that is displaced by wave packet was recorded every 100T time steps. This
a distance a from its central ground state in a parabolic data is plotted in Fig 4. The location of the peak
potential well of thb form V(x) = Kx 2. The initial oscillates in time as expected. Overplotted on this

.wave function is numerical data is the exact solution for the oscillation
_S a cos wct+Xo and the agreement between the analytical

a2 1 2''2)ý
%b(x,O) - -- e- (x-) , (37) solution and the numerical data is excellent.

crf

where a = (mK/h2 )4 is the width of the packet and 3.2 Scattering Off A Potential Barrier
wc = (K/m) 2 is the angular frequency of the classical
harmonic oscillator [21]. The exact time-dependent The next numerical test of the quantum lattice gas is
solution for the probability density is the following: to simulate the well-known case of quantum tunneling

2 a 2 cthrough a constant potential barrier of width a. That
1= e•e (x-acoswe)_* (38) is, V(x) = Vo for 0 < x < a and V(x) = 0 otherwise.

The initial wave function is a Gaussian packet with
A derivation of the result (38) is also presented by net momentum to the right
Schiff [22].

To test the quantum lattice gas algorithm against1 . _..2(xo)a+spx (39)
(38) we used a periodic lattice with L = 256f nodes. V(x, 0) 1 e2'P(

The initial Gaussian packet is displaced to the right
of the center of the grid by 32 lattice nodes and so where p is the momentum parameter. We choose the
is initially located at x. = 160f as shown in Fig 3. mean kinetic energy of the packet to be equal to the
With h = 1 and m = 1, the classical time period constant energy level of the potential barrier p2 =Vo.
is Tc = 27r/Lwc = 1987,-. So letting the simulation In this case, the packet tunnels through the barrier
run for 1000 iterations allows the packet to the other but the sum of the transmission and reflection proba-
side of the potential well near position x = 96W as bilities are less than one because there is a resonance
demonstrated in Fig 3. effect where the particle is also trapped inside of the

The simulation was rum for a total of 6000 time barrier. This effect is observed in the numerical simu-
steps and the location of the peak of the Gaussian lation shown in Figure 5.
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4 Two Fermionic Particles

The efficiency of the quantum algorithm (12) becomes
evident when it is used to simulate the dynamics of
multiple quantum 'particles. The case of multiple

quantum particles is still handled by the same evolu-
tion operator E that we tested for the single particle
case. The particular sequence and number of quan-
turn gate operations remains fixed, independent of the
number of particles to be simulated. The only differ-
ence is how the system wave function is initialized.

In this section, for pedagogical reasons, we will con-
t=0 t=2600 t=4000 sider the case of simulating two free quantum particles.

The approach we use in this case can be directly gen-
eralized to the many-particle case.

To begin with we write the Schroedinger wave equa-

A tion for two free quantum particles
t=6000 t=8000 t=10000 -h o o(x,y,t) h 2 82 4(x,y,t) h2 O2,b(x,y,t)

Ot 2m Ox 2  2m 0Y2

(40)_ where x and y are the spatial coordinates of the firstand second particle, respectively. Since the wave func-
t=12000 t=14000 t-20000 tion is spatially separable as O(x, y, t) = p(x, t)W(y, t),

the analytical solution to (40) is obtained in a similar
__ _ _ -fashion to the one-body case by computing the Fourier

/• components of the energy basis functions

1 fL/2
a 1 f I (x,O)dx (41)

Figure 5: A sequence of snap shots of the time evolution of

a packet that is incident from the left on to a potential barrier 2 /L/2

where the mean kinetic energy of the packet equals the energy an = I -i W(x, 0) COS t 2nlr x dx (42)
of the barrier. The x-axis is the lattice position and the y- L /

axis is the probability density. The iteration time step for each 2 L/2 (
frame of the sequence is labeled in the upper left corners. The bn = - (x, 0) sin 2nlr x dx. (43)
simulation was run on a periodic grid of size L = 4000t for a L -L/2
total of 20000 time steps. The width of the incident packet was
set to a = .035L = 140U and the initial momentum parameter The energy eigenvalues are still given by (27) and the
was set to p = 0.1 in units where A = 1, r = 1 and m = time-dependent single-particle solution is
1. The width of the barrier was set to a = 0.064L = 256E.
As expected the numerical simulation clearly demonstrates the nmax
resonance effect where there is a non-zero probability of the 2n[maL)
particle to be trapped within the barrier itself. W(x, t) = ao ± : [an cos L2nr

n=1

+ bnsin(2nrL))] e-'iE~t/t, (44)

which is basically the same as (28) except that we had
to add the sin term because with two particles the
wavefunction is not even, as is (24) for example. We
shall test the time evolution of two Gaussian packets.
The initial wave function in our test is the odd function

.exact (x, y, t) = al,0l(x, t)9 0 2 ,0 2 (y, t)

- (y't)PU2 ,a 2 (X0t)], (45)
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where The number operator ft, &t5, has eigenvalues of

'aa (x, 0) = il-c 2a2 (46) 1 or 0 in the number representation when acting on
U i2 r4 a pure state, corresponding to the ath qubit being in

The subscripts on the function Wa,,, denote its de- state 11) or 10) respectively.

pendence on the position and width of the individual The square-root-of-swap gate (5) acting on the on-

Gaussian packet. This functional dependence is actu- site qubits indexed by a and a + 1 can be expressed

ally contained within the form of the coefficients a., in terms of the creation and annihilation operators as

an, and b, that depend on the position and width of
the Gaussian packet in accordance with (41) through Ua;ai = A*ft(1 - ft±+) - A&,tai - Ac4+i&a

(43). Note that given the form of (45), 0,....,(x, x, t)= + A*(1- h•)h+i+1 fi 0-j-+, (50)
0 which satisfies the Pauli exclusion principle.

where A = + ± }. Also, the swap operator (9) acting

4.1 Numerical Confirmation between the first qubits indexed by a and f) at neigh-
boring nodes can be expressed in terms of the creation

To numerically simulate the evolution of the two- and annihilation operators as
particle wave function governed by (40) using quan-
turn algorithm (12) we must use a new computational Ya, = 1 - ataj - apaa 1 - ftp. (51)
formulation to implement our algorithm. The finite-
difference equation implementation that we used in The quantum gates (50) and (51) are used to imple-

Section 2.4, in the single-particle case, cannot be di- ment the quantum lattice gas collision and streaming

rectly applied in the two-particle case to each particle operations, respectively [23].

individually because it does not allow for the possi-' The basis state in the two-particle sector can be

bility when the particles are quantum mechanically labeled with the binary encoding formula 12a-1 +2'-1)
entangled. In general, this will be the case when there where the integers a and f are in the ranges 1 < a < Q

is an interaction between the particles. Therefore, we and a + 1 •< < Q. The number of basis states in this

shall use an implementation that can handle the most case is the binomial coefficient ('27). The system ket
general situations involving correlated particles and \QI
one that naturally scales to handle an arbitrarily large can then be expressed in the two-particle sector as

number of particles in the system. .Q Q
We shall represent the basic quantum gate opera- 4)= S E+ gp2a-i ± 2 /0-1). (52)

tions in terms of the fermionic creation and annihila- aQ1 P=a+i

tion operators in the number representation, denoted
&a and &a respectively, and use this approach as the Since there are two qubits per site, we initialize the
basis for a general computational formulation appli- wave function using (45) as follows:
cable, in particular, to our algorithm and, in general,
to any quantum algorithm. Acting on a system of Q a +-1--_ ( [ 1+ J [,-3 L 1 - L 1 0
qubits, at and &a create and destroy a particle occu- 222-22 2 /
pancy encoded in the ath qubit (53)

where the notation [xj means the floor of x and where
f 0 , na = 1 Q - 2L. The floor operation is used so that the ini-

nl. ..n. f.. . nQ, = ns... 1... nQ) , =0 tial value of the wave function at each node is divided

(47) evenly between each pair of on-site qubits. This is

In, ... 0 ... fiQ) n, n=1 on account of definition (4) that allowed us to have
&clnl. f...f fQ0 = j..i. 0  0 " interfering possibilities for a single particle to occupy

a single position on the lattice. Moreover in the two
(48) particle case, still only a single particle can occupy a

single position because of the form of the wave func-
isfythe fmnti-cmcreation an nlations otion (45) which is consistent with the anti-commutater

relations (49). However, particle one can interfere on-

{5a, a}= 3 a (49) site with itself or with particle two, or vice versa since
the particles are indistinguishable.

{5, ap} = 0 At this point we have described how we implement

{ft', &a} 0. the two quantum gates used in our algorithm, how

11



0.1 5 Conclusion

o0.08 We have presented a quantum algorithm that is an
efficient and accurate scheme for simulating the tirne-

0.06 dependent evolution of a system of quantum particles
>1governed by the non-relativistic Schroedinger wave
S0.04 equation. The scheme uses a quantum lattice gas

system of particles colliding and hopping on a lat-
0. tice. The algorithm is efficient in the sense that the

N computational effort needed to simulate an arbitrar-
5 10 15 .. 2 0 . 25 30 ily large number of particles (within the constraint of

5osition 1the grid resolution) exactly equals the computationalPosition
work needed to simulate a single particle, given that
the algorithm is executed on a quantum computer that

Figure 6: Time evolution of two fermionic particles initialized remains phase-coherent throughout the entire coarse
as Gaussian packets overplotted in succession where the x-axis is of the simulation. However, a limitation does exist
the position on a 30-node lattice in units of the lattice spacing t on state preparation (i.e. initialize the quantum com-
and the y-axis is the probability density [)(Xi,X2,t)j 2 projected
onto the xl-axis. The solid curves are the exact analytical solu- puter's memory) and we have not argued here that
tion and the circles are the data from the quantum lattice-gas it is possible to initialize the many-body wave func-
simulation (the initial wave function was normalized, therefore tion in an efficient way. For that matter, have we also
the area under each curve is one). The initial Gaussian pack- have not argued that it is possible to measure the fi-
ets of Width a = 3U at t = 0 of the first and second particle
is centered at x = 10t and x = 20f, respectively. The disper- nal state (reading the quantum computer's memory) of
sion of both packets is evident by observing the wave function the computed wave function in an efficient way. Never-
at the subsequent times t = 7Tr, 21k, 287, 35r and 427. Periodic theless, the quantum algorithm presented here, which
boundary conditions were used and nax = 40 energy eigen- is a way of representing a discretized Feynman path
modes were used to generate the exact solutions at four times
the resolution of the numerical solution. No time scale factor integral, has the useful feature that it is explicit in
was used and there is good agreement between the analytical time where the value of the wave function at location
and numerical predictions at all later times of the numerical x and time t+±r depends only on the previous values of
simulation as demonstated by the graphs. the wave function at time t in the immediate vicinity

of x. Since the algorithm is unitary and fourth-order
accurate in space, it is useful even for implementation

we enumerate the basis states, and how we initialize ion a classical computer.
the two-body wave function in this basis. The only We have carried out a variety of numerical tests
remaining issue left to describe is how we project the proving that the quantum algorithm indeed allows us
two-coordinate wave function i(x, y, t) on to a single- to faithfully reproduce the correct dynamical behavior
coordinate wave function 4'(x, t) that can be plotted of a continuous and differentiable wave function in the
on a single physical axis. Because of the underlying presence of an external potential. However, the total
lattice in our system this is straightforward to do by probability for finding the quantum particle in the sys-
summing out one of the coordinates as follows: tem is not exactly conserved in this quantum lattice

gas model. One must approach the continuum limit
to achieve a high degree of probability conservation.

L-1 Since we have demonstrated that the quantum lattice
= tY(gas model is fourth-order convergent in space, it is al-

m=O ways possible to choose a grid resolution that achieves

the necessary fixed numerical accuracy required by any
If O(xl, Y, tn) is normalized then so is 4(xl, tn) ac- application.
cording to (54). A comparison of the time evolution of We have also described and carried out the numer-
the analytical solution (45) and the numerical solution ical simulation of two fermionic particles, which are
(54) for a lattice with 30 nodes is shown in Figure 6. non-interacting except for a quantum mechanical ex-
Even with this small lattice, throughout the time evo- change force arising from the anti-commutation rela-
lution of the model run the numerical predictions are tions. The numerical formalism used to implement
in good agreement with the predictions of the exact the quantum lattice gas algorithm represents the basic
solution. quantum gates in terms of quadratic products of cre-
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ation and annihilation operators in a second quantized 6 Acknowledgements
representation. This formalism str'aightforwardly.han-
dles an arbitrarily large number of particles. The sim- J. Yepez would like to thank George and Linda Vahala

ulation is carried out in the many-body sector (i.e. for their critical inspection of this quantum lattice-gas

a Fock space where the number of particles is fixed) model and helpful discussions.

where all the basis states are enumerated by a sim-
ple binary encoding formula. In general, the wave A Appendix
function is initialized using a Slater determinant so
that the Pauli exclusion principle is satisfied and the The full finite-difference equation for the quantum
wave function is odd. In all the test cases (single free lattice-gas model presented in this paper is very long.
particle, single particle in an external potential, and To simplify this expression, we introduce a local neigh-
two free fermions) the numerical predictions agreed borhood vector with the following 18 components
extremely well the analytical predictions and exact so-
lutions. #(x, t) = (o0 (xIt), 0y i(xit), (55)

It is important to realize that it is possible to push ) y(xi+0,t),)o(xz...s0) (xj... 2 0)

the quantum lattice gas model into regimes where the WO(xl+2, t); o1(xl+2, t), WO (X1-2, t), W1 (xI-2, 0,

numerically predicted results are absolutely wrong. WO (xI+3, t), Wo1 (X+3, t), 0 O(x-3,t), 0, (xPI _1,3t),
This occurs when the local configurations are far from Wo(xI+4, t), ýy (xl+4, t), 0 o(xP4-, t), (PI (xz-4, t)).
local equilibrium. Remember that local equilibrium
exists on a lattice node when the qubits at that node

have identical phase. Therefore, large gradients in a (-3, -3i, 3, i, -3, -5i, 1, i, 3, 3i, -1, i, 1, 3i, 0, 0, -1, -i)
the macroscopic profile of the modeled wave function - (

may cause a large phase difference between the on-site (-3i, -3,-Si, -3, i, 3,3i, 3, i, 1 3i,1,i,-1,-i,-1,0,0).

qubits eventually resulting in anomalous large-scale (56)

behavior in the model. A good example of this occurs The microscopic evolution equation (13), explicitly
when the momentum of a moving wave packet is too written out, has the following protocol of operations
high. In this case, since the real and imaginary parts
of the wave function are sinusoidal, if the momentum (t1 6 ) (S )(.
is so high that the wavelength of the traveling wave (57)
is on the order of the lattice cell size (A = h/p - f), The corresponding full finite-difference equation can
then after a few times step iterations of the algorithm, be specified by the following dot product of these vec-
large phase differences in the on-site qubits occur. In tors
this case, the local on-site configuration will not re-
lax toward the correct local equilibrium. Fortunately, 0(xlit6) #j-(xj, to) (58)
the norm of the modeled wave function will deviate 16
from unity in these types of cases. Therefore, it is fOi ((x1'to)
straightforward to test if the model predictions are 16l(xz, t16) = 16 (59)
non-physical by periodically checking the norm of the Note that if to is the initial time, then the interval
wave function. t 16 is defined the update time step. The finite-

difference equation for W o0 + W, is
Interaction potentials between particles can also be

modeled using this quantum lattice gas method [14]. (d + Mf). 4 (xi, to) (60)
We still need to perform simulations of a many-body 4(xj, t16) = 16

system with an interaction potential. Also, numerical and it has a high degree of numerical accuracy as in-
tests in two and three dimensions should be conducted. dicated in Figure 2.
In this case, it would be straightforward to test the ad-
dition of an external vector potential using the results
analytically predicted by Polley [18]. The simulation References
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