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Presented is a general theoretical framework capable of describing the finite
deformation kinematics of several classes of defects prevalent in metallic crystals.
Our treatment relies upon powerful tools from differential geometry, including
linear connections and covariant differentiation, torsion, curvature and
anholonomic spaces. A length scale dependent, three-term multiplicative
decomposition of the deformation gradient is suggested, with terms representing
recoverable elasticity, residual lattice deformation due to defect fields, and plastic
deformation resulting from defect fluxes. Also proposed is an additional
micromorphic variable representing additional degrees-of-freedom associated
with rotational lattice defects (i.e. disclinations), point defects, and most
generally, Somigliana dislocations. We illustrate how particular implementations
of our general framework encompass notable theories from the literature and
classify particular versions of the framework via geometric terminology.

1. Motivation and background

Methods from geometry on differentiable manifolds have come to the fore in recent
years for describing the kinematics of elastoplasticity [1–9]. An understanding of
the kinematics of defective crystals is central to constructing arguments related to
nonlocal or gradient theories introducing scale effects in the description. As such,
the primary objective of the present work is to provide a unified framework encap-
sulating the kinematics of crystalline incompatibilities whose descriptions give rise
to higher-order gradient continuum plasticity models. Our scope is restricted to
kinematics of defects; for complementary treatments of material forces, the reader
is referred to works by Eshelby [10, 11], Nabarro [12], Kröner [13], Maugin [1–3]
and Gurtin [14].

The two-term multiplicative decomposition of the deformation gradient,
F ¼ F

e
F
p, was proposed by Bilby et al. [15] and Kröner [16] for modeling the
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deformation of single crystals within the framework of continuously distributed
dislocations. In the theory of Bilby et al. [15], F,Fe, and F

p are described as the
‘shape deformation’, the ‘lattice deformation’, and the ‘dislocation deformation’,
respectively. The existence of a generally incompatible, relaxed intermediate
configuration was described in the years prior, for example, by Eckart [17],
Kondo [18], Bilby et al. [19] and Eshelby [11]. Kondo [18] and Bilby et al. [19]
are usually credited with discovering the relationship between the density of
continuously distributed dislocations and Cartan’s torsion tensor of the ‘crystal
connection’, which we will see may be defined in terms of a spatial gradient of the
(inverse) lattice deformation. The geometry induced by the crystal connection is
said to possess a ‘distant parallelism’ or a ‘teleparallelism’ [20], and exhibits the
special property that covariant derivatives taken with respect to this connection of
spatially constant intermediate configuration slip vectors vanish. The null curvature
property of the crystal connection (cf. [21]), together with knowledge of its torsion
and either the covariant plastic or elastic strain tensor is sufficient to uniquely specify
the relaxed intermediate configuration, as demonstrated by Le and Stumpf [4].
Le and Stumpf [5] and Steinmann [6] also provide geometric viewpoints of the
kinematics of higher-gradient finite elastoplasticity of crystals with defects. Also of
interest is the description of Noll [21] admitting multiple reference configurations.
Rajagopal and Srinivasa [22] developed a framework capable of characterizing
evolving elastic symmetry in a wide class of fluids and solids, wherein the deforma-
tion is described as the evolution of a family of ‘natural configurations’. Cermelli and
Gurtin [23] examined the kinematics of geometrically necessary dislocations from the
perspective of multiplicative elastoplasticity with plastic deformation characterized
by shearing on discrete slip systems. Other noteworthy efforts employing differential
geometry to describe generalized continua include the manifold-based treatment
of Marsden et al. [24] and methods founded upon gauge theories and/or exterior
calculus [7, 25, 26].

Since dislocations associated with the crystal connection are required to sustain
compatibility of the total deformation and may induce local residual stresses
within the crystal, they are often labeled ‘geometrically necessary’ dislocations in
the sense of Ashby [27]. This is in contrast to the ‘absolute’ dislocations [28, 29] or
‘statistically stored’ dislocations [27] that sustain homogeneous plastic deformation.
Lardner [28] showed that vanishing of the torsion tensor of the crystal connection
corresponds to vanishing of excess dislocations of the same sign. Nye [30] associated
a dislocation density tensor with the gradient of lattice rotation, i.e. the stress-free
lattice curvature. Kroupa [31] proposed a loop density tensor for describing the
contributions of dislocation loops to the plastic distortion field and induced internal
stresses. Kröner [32, 33] suggested inclusion of various statistical moments of
dislocation distributions in theories of work hardening. Grain boundary, surface,
and interface dislocations have also been investigated from the geometric viewpoint
[34–38].

Kondo [18, 39, 40] proposed more general frameworks for yielding and plastic
deformation allowing nonzero Riemann–Christoffel curvature associated with a
connection different from the crystal connection. Kondo’s frameworks admit
different non-unique anholonomic (i.e. incompatible) intermediate configurations,
or ‘tearings’ in his terminology, for the same crystal. These configurations differ
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from the unique intermediate configuration favored by Bilby et al. [19], for which
the curvature of the crystal connection vanishes and teleparallelism is preserved.
Kondo [40] associated the nonzero curvature with the presence of ‘rotational
anomalies’ in the lattice, which could be interpreted as disclinations [41, 42].
Connections admitting non-vanishing curvature tensors have since been used by
many for modeling disclinations in Bravais lattices [43–48]. Rotational defects falling
under the general category of Somigliana dislocations (cf. [10, 11, 49, 50]) were
addressed in terms of a path-dependent integral of the non-vanishing curvature
tensor by Pe�cherski [51, 52]. Non-metric connections admitting ‘extra-matter’ defects
(e.g. interstitial atoms, vacancies, and other point defects) were introduced in
continuum theories by Kröner [16, 53, 54], Minagawa [45] and De Wit [48].

The remainder of the present paper is organized as follows. Section 2
defines relevant terminology, followed by mathematical preliminaries in section 3.
In section 4, we present our kinematic description at the macro-level, specifically the
decomposition of the deformation gradient for a local volume element of crystalline
material. Section 5 provides our kinematic description at the micro-level, in terms of
an affine connection, possibly non-metric with a potentially non-vanishing curvature
tensor. We illustrate throughout sections 4 and 5 how our description encompasses
the physics of translational dislocations, disclinations, point defects, and Somigliana
dislocations, and we discuss how particular versions of our framework reduce
to noteworthy models in prior literature. Key features are summarized in tabular
form in section 6.

2. Terminology

Here, we summarize terminology that is often a source of confusion to readers
not well-versed in differential geometry and its application to continuum mechanics.
The definitions given immediately below are free of notation and hence are
somewhat qualitative; in many cases corresponding equations may be found
later in the paper, or the reader may elect to consult more extensive sources
(e.g. [55–57]).

. Configuration. A configuration is defined as a generally time-dependent
realization of a body. In finite deformation theories, one often speaks of the
‘reference’, ‘initial’, ‘undeformed’, or ‘Lagrangian’ configuration, usually and
somewhat arbitrarily taken at zero time. Similarly, the ‘spatial’, ‘current’,
‘deformed’, or ‘Eulerian’ configuration is usually taken at the current time.
These two configurations are assumed to be holonomic to one another,
meaning that current coordinates can be written as smooth, single-valued
functions of reference coordinates, and vice-versa. In contrast, the virtual
‘intermediate’, ‘relaxed’, or ‘unloaded’ configuration of elastoplasticity is
often anholonomic, since its coordinates cannot always be prescribed as
single-valued functions of reference or current coordinates. The reader is
referred to Wang and Truesdell [56] for a more in-depth discussion.

. Metric tensor. A metric tensor (or simply a ‘metric’) is a rank 2 covariant
tensor that defines the scalar product of contravariant vectors, and conse-
quently, the squared length of a vector. A metric tensor that is both symmetric
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and positive definite is called a Riemannian metric tensory; non-Riemannian
metrics will not be employed here. Metric tensors perform other consequential
functions, such as raising and lowering indices and defining scalar products.

. Connection. A linearz connection is a rank three construct that defines
a covariant derivative of vectors (cf. (1)) and tensors of higher rank (4).
Alternatively and equivalently, the covariant derivative operation defines the
connection coefficients (i.e. Christoffel symbols). See Eisenhart [58] or Boothby
[59] for additional perspective.

Note that a particular configuration or space can be assigned more than
one connection, just as it can be assigned more than one metric tensor. We can
often classify the pair of {configuration, connection} or triad of {configuration,
connection, metric tensor} as one or more of the following five types of
‘geometric spaces’:

(1) Euclidean space. For a space to be classified as Euclidean or non-Euclidean, it
must include a configuration, a metric tensor, and a connection. A Euclidean
space satisfies three requirements: (i) the torsion tensor from the connection
vanishes, (ii) the covariant derivative of the metric tensor vanishes, and
(iii) the Riemann–Christoffel curvature tensor from the connection
coefficients vanishes. A Euclidean n-space permits at each location a
transformation from local coordinates to a global n-dimensional Cartesian
coordinate system. In continuum mechanics, both the reference and current
configurations are typically viewed as three-dimensional Euclidean spaces,
with the motion acting as a diffeomorphism (i.e. a differentiable homeomor-
phism, or a differentiable one-to-one, invertible mapping) between these two
configurations [61]. Notice the distinction between Euclidean and Cartesian:
the former (e.g. spherical coordinates in three dimensions) admits a global
transformation to the latter (e.g. three constant and orthonormal basis
vectors).

(2) Anholonomic space. An anholonomic space is regarded as a configuration
defined by a non-integrable, two-point deformation map. In multiplicative
plasticity, since F

e�1 and F
p are generally non-integrable or ‘anholonomic’

functions of current and reference coordinates, respectively, the correspond-
ing intermediate configuration is generally anholonomic. Coordinate
functions on such an anholonomic space are necessarily discontinuous,
multi-valued functions of current or reference configuration ‘holonomic’
coordinates. Anholonomicity is related to Cartan’s torsion tensor of a
certain connection (i.e. the crystal connection) constructed from the lattice
deformation in our theory, as discussed in section 5.1 (see equation (21)).
Anholonomic coordinates are discussed at length by Schouten [55].

yA non-Riemannian metric tensor would not be positive-definite. Such metrics arise in more
generalized geometries such as Finlser spaces, an example of which is Minkowski’s spacetime
(cf. Rund [60]). Metrics are symmetric by definition.
z In the present work we focus on linear (also called affine) connections, which strictly
obey (1). Nonlinear connections arise in more generalized spaces such as Finsler
manifolds [60] and will not be dealt with here.
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(3) Cartan space. A configuration with a connection admitting a non-vanishing
Cartan’s torsion tensor is labeled a ‘Cartan’ space, sometimes called a
‘non-symmetric’ space. We need only consider the pair {configuration,
connection} to label a space as Cartan or non-Cartan.

(4) Riemannian space. For a space to be labeled as ‘Riemannian’ or ‘non-
Riemannian’ it must include the pair {configuration, connection} — a metric
is not needed for our designation. A Riemannian space is defined here as a
configuration with connection coefficients whose components yield a nonzero
Riemann–Christoffel curvature tensor. A space with a non-vanishing curva-
ture is non-Euclidean: for example, a global 2D Cartesian coordinate system
cannot be used to parameterize a shell unless the shell is flat. Conversely,
a space with vanishing curvature is ‘non-Riemannian’, and the connection
is said to be ‘integrable’.

(5) Non-metric space. For one to label a generalized space as ‘metric’ or ‘non-
metric’ the configuration must be assigned both a linear connection and a
metric tensor; we must examine the trio of {configuration, connection, metric
tensor}. In a non-metric space, the covariant derivative of the metric tensor
taken with respect to the connection is nonzero.

The above terminology is not fully consistent in the literature [6, 19, 21, 40, 55, 57].
We have attempted to use terminology appearing most frequently and logically for
describing crystals.

3. Mathematical preliminaries

Reviewed next are fundamental geometric concepts. Definitions are given first,
followed by a discussion of strain compatibility and anholonomic coordinates.
For more in-depth treatments, the reader is referred Schouten [55], Wang and
Truesdell [56] and Marsden and Hughes [57]. Boldface type is used for vectors
and tensors of higher rank, while scalars and components of tensors are written
in italics. In order to appeal to a broad audience (e.g. engineers, physicists, and
mathematicians) we often use the index notation favored by earlier differential
geometers [55, 58] even though many expressions could be presented more concisely
via more modern direct notation of tensor analysis on manifolds and exterior
calculus [7, 57].

3.1. Definitions

An n-manifold is a set M such that for each P 2M there is a subset U of M contain-
ing P, and a one-to-one mapping from U onto an open set in R

n (the n- space of
real numbers). Changes in coordinates over coincident regions are assumed to be
infinitely differentiable if the manifold is smooth. For the present discussion, we
introduce a smooth manifold B0, which we associate with the reference configuration
of a body in the terminology of finite deformation continuum mechanics. Manifold
B0 is parameterized by coordinates XA (A¼ 1, 2, 3), with the tangent space at
each X spanned by the natural basis vectors GA � @AX, where @A � @=@X

A.
The ensemble of local tangent spaces of B0, or tangent bundle, is written TB0.
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The metric tensor corresponding to natural basis vectors on B0 is denoted G, where
GAB ¼ GAEGB.

A linear connection (also often called an affine connection) on a manifold B0

induces an operation r that assigns to two vector fields V,W 2 TB0 a third vector
field rVW 2 TB0, called the covariant derivative of W along V, such that

ðiÞ rVW is linear in both W and V;

ðiiÞ rfVW ¼ frVW for scalar functions f;

ðiiiÞ rV fWð Þ ¼ frVWþ V Dfð ÞW:

ð1Þ

In (iii) above, V Dfð Þ ¼ VA@A f. The Christoffel symbols (or connection coefficients)
G::ABC of a connection r on B0 are defined on a coordinate system XA, with holonomic
basis fGAg, by

G::ABCGA ¼ rGB
GC: ð2Þ

Using equations (1) and (2), the covariant derivative of W along V is written as

rVW ¼ VB@BW
A
þ G::ABCV

BWC
� �

GA: ð3Þ

An affine connection on the tangent bundle TB0 defines parallel transport of vectors
on different tangent spaces in TB0, such that vectors in different tangent spaces may
be compared, permitting calculation of the change of constituent vectors of a vector
field over the entire tangent bundle. A vector is said to undergo parallel transport
(with respect to a connection with covariant derivative r) along paths for which its
covariant derivative vanishes. For example, a vector W is considered to be ‘‘parallel’’

along a curve �ðtÞ if rVW ¼ 0, where V ¼ @�=@t is the tangent vector to the curve
at the current value of parameter t.

The covariant derivative is applied to N
M

� �
tensor fields as [55]:

rNAðXÞ
A...F
G...M ¼ @NA

A...F
G...M þ G::ANRA

RB...F
G...M þ � � � þ G::FNRA

A...ER
G...M

� G::RNGA
A...F
RH...M � � � � � G::RNMAA...F

G...LR,
ð4Þ

where we have placed the index of covariant differentiation as a subscript
immediately following the r-operator. Analogous to parallel transport of vectors,
a tensor is parallel transported along a curve if its covariant derivative vanishes as
the tensor is ‘dragged’ along the curve.

The torsion tensor T of a connection is defined by

T V,Wð Þ � rVW� rWV� V,W½ �, ð5Þ

where the Lie bracket of vector fields V and W on TB0 is given by

V,W½ � ¼ VB@BW
A
�WB@BV

A
� �

GA: ð6Þ

Using Equations (3), (5) and (6), the coordinate representation of the torsion tensor
is found as

T ¼ G::ABC � G::ACB
� �

GA �G
B
�G

C
¼ 2G::ABC½ �GA �G

B
�G

C, ð7Þ
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where indices enclosed in brackets [E] are anti-symmetrized, i.e. 2A AB½ � ¼ AAB � ABA,

and � is the outer product. The torsion tensor of a linear connection is often called

Cartan’s torsion, by association with geometer E. Cartan [62]. A connection with

vanishing torsion is said to be symmetric. For a smooth manifold B0 with

Riemannian metric G, there is a unique affine connection, which we label now r
G
,

on B0 that is torsion-free (T
G

¼ 0) and for which parallel transport preserves dot

products of vectors, i.e. r
G
G ¼ 0. It is called the Levi-Civita connection [57] or the

Riemannian connection [63]. The connection coefficients of the covariant derivative r
G

are defined by

!
G

�
1

2
GAB @DGCB þ @CGDB � @BGDCð ÞGA �G

C
�G

D: ð8Þ

A connection yielding a null covariant derivative of the metric tensor is called a

metric connection. The Levi–Civita connection of (8) is metric. Note that in Cartesian

coordinates, GAB ¼ �AB ¼ constant, meaning that the Christoffel symbols from GAB

vanish by (8).
The Riemann–Christoffel curvature tensor associated with an arbitrary linear

connection with covariant derivative r on B0 is a 1
3

� �
tensor satisfying [57]

Rða,W1,W2,W3Þ ¼ aðrW1
rW2

W3 � rW2
rW1

W3 � rW1,W2½ �W3Þ, ð9Þ

where a and Wi denote, respectively, arbitrary one-forms (i.e. covariant vectors) and

contravariant vectors in configuration B0. The component representation of R is

given by

R ¼ @CG
::A
DB � @DG

::A
CB þ G::ACEG

::E
DB � G::ADEG

::E
CB

� �
GA �G

B
�G

C
�G

D: ð10Þ

We denote by R
G

the curvature tensor formed by inserting the Levi–Civita con-

nection (8) into (10). A geometric space B0 with metric G having R
G

¼ 0 is called flat.

One may show (cf. [55]) that R
G

¼ 0 if and only if we may assign coordinate

bases at each X 2 B0 such that GAB ! �AB; i.e. if and only if B0 is Euclidean. In fact,

R
G

¼ 0 are compatibility conditions for existence of connection coefficients !
G
derived

from a Euclidean metric G via (8).

3.2. Finite strain compatibility

Assume that the coordinates XA covering B0 undergo a smooth, time-dependent

mapping to ‘current’ coordinates xa ¼ ’aðXA, tÞ spanning B. Current configuration

B is parameterized by spatial coordinates xa (a ¼ 1, 2, 3), with the tangent space at

each point on B spanned by the natural basis vectors ga � @ax. The tangent bundle in
the current configuration is TB, and the metric tensor g corresponding to the natural

bases on B has components gab ¼ gaEgb. The linear tangent map F � Tw is labeled

the local deformation gradient:

F ¼ Fa
:Aga �G

A
¼
@’a

@XA
ga �G

A: ð11Þ
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The right Cauchy–Green deformation tensor is the pull-back of the current

configuration metric:

C � w� gð Þ ¼ Fa
:AgabF

b
:BG

A
�G

B, ð12Þ

where w� denotes the pull-back operation by F (cf. [57]). The strain tensor C assigns

any (infinitesimal) vector dX ¼ dXA
GA the length it obtains after deformation

by F, i.e. dxk k ¼ FdXk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CdX, dXh i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CABdX

AdXB
p

. We introduce a linear

connection

!
C

�
1

2
C�1
� �AB

@DCCB þ @CCDB � @BCDCð ÞGA �G
C
�G

D: ð13Þ

We then form the curvature R
C

by substituting the components of !
C

into (10). Since

C ¼ w� gð Þ, one may show [57], using the properties of a linear connection (3.1) and

the definition of the curvature tensor (3.9), that R
C

¼ w� ðRÞ
g
. Hence, if the tensor

field C is derivable from a motion function wðX, tÞ and if R
g

¼ 0, then C is compatible

and R
C

¼ w�ð0Þ ¼ 0. Notice that C-compatibility does not require specification of a

unique current configuration, since C is independent of the rotation tensor Q

associated with the right polar decomposition F ¼ QU. Furthermore, as discussed

by Truesdell and Noll [101] and Acharya and Bassani [100], even if C is compatible,

the integrability of an arbitrary deformation gradient field F generating the

strain field C may be destroyed by rotations Q that do not arise from rigid-body

transformations of w. A material in such a condition is said to be in a state of

contorted aleotropy in the sense of Noll [21]. The converse of the previous theorem

has also been proven, albeit only locally [58]. In other words, given a positive-

definite, symmetric, second-rank tensor C whose curvature vanishes (i.e. R
C

¼ 0)

then at any point with coordinates XA
2 B0 there exists a neighborhood U0 of XA

endowed with a mapping w : B0 � U0 ! U � B whose deformation tensor is C. One

can consider C-compatibility an outcome of deformation gradient compatibility

(F-compatibility), which is discussed next.

3.3. Deformation gradient compatibility

Consider now a field of contravariant (basis) vectors ~gg�
� �

, where � ¼ 1, 2, 3ð Þ,

spanning configuration space ~BB. By introducing the two-point deformation map
~FF ¼ ~FF�:A ~gg� �G

A, which we assume is defined globally, we can push forward vectors

V 2 TB0 to the tangent bundle T ~BB:

~FFV ¼ ~FF�:A~gg� �G
A VB

GB

� �
¼ ~FF�:AV

B~gg� G
A,GB

� �
¼ ~FF�:AV

B�AB~gg� ¼ ~FF�:AV
A~gg� 2 T ~BB: ð14Þ

The basis vectors are tangent to globally-continuous coordinate curves ~xx� (i.e.
~gg� ¼ @�~xx for some coordinate parameterization ~xx�ðXÞ) if and only if the following

integrability conditions hold for ~FF [55]:

@B ~FF�:A ¼ @A ~FF�:B $
@2 ~xx�

@XA@XB
¼

@2 ~xx�

@XB@XA
: ð15Þ
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If the conditions (15) are not satisfied, then f~gg�g is called an anholonomic coordinate
basis, the deformation map ~FF is called an incompatible map, and the configuration
space ~BB is called an incompatible configuration or an anholonomic space. Since
conventional partial differentiation with respect to anholonomic coordinates does
not apply, we define differentiation with respect to the ~xx� as

@ðEÞ

@ ~xx�
�
@ðEÞ

@XA
~FF�1A:� $ @�ðEÞ � @AðEÞ ~FF

�1A
:� : ð16Þ

A Levi–Civita connection (i.e. a connection both torsion-free and metric with
respect to ~gg, the latter with components ~gg�� ¼ ~gg�E~gg�) on ~BB may not exist, since
the field of tangent vectors f~gg�g may not be sufficiently smooth over all of ~BB to
admit coordinate differentiation (with respect to coordinates that may in fact not
exist, i.e. anholonomic coordinates). However, in the anholonomic (intermediate or
natural) configurations of elastoplasticity theory, each local volume element is often
referred to an external system of coordinates with Euclidean metric tensor, typically
taken as a global Cartesian frame [64, 65], although such an assumption is not
necessary from a physical perspective [2, 66]. The Riemann–Christoffel curvature
formed from the covariant strain measure ~CCAB �

~FF �
:A ~gg�� ~FF �

:B does not necessarily
vanish (unless holonomic ~xx� are available), in contrast to the curvature tensor
derived from connection (13) formed from the deformation C.

4. Deformation gradient kinematics

Our framework encompasses kinematic descriptions at two length scales, which we
shall refer to henceforth as the macroscale and the microscale. The macroscopic
description, predicated upon the multiplicative decomposition of the deformation
gradient, describes the elastic–plastic kinematics for a volume element of crystalline
material in an average sense. The microscopic description, predicated upon an
additively-decomposed linear connection, embodies higher spatial gradients of
lattice deformation as discussed in section 5, enabling one to interpolate for lattice
stretch and orientation between centroids of neighboring elements.

Let F denote the volume-averaged deformation gradient (equation (11)) for an
element of crystalline material. Most generally, we decompose F multiplicatively as

F � Tw ¼
@x

@X
¼ F

L
F
p
¼ F

e
F
i
F
p, ð17Þ

where FL
� F

e
F
i represents the total lattice deformation, Fe is the recoverable elastic

deformation, and F
p is the plastic deformation, leaving F

i as the residual lattice
deformation associated with defects and other sources of heterogeneity. None of
the mappings Fe, Fi, Fp, or FL need be holonomic when considered from the scale
of neighboring volume elements. The inverse of the recoverable elastic deformation,
F
e�1, is achieved via instantaneous traction removal from the surface of the crystal-

line element, and may include rigid body rotation of the solid as well as recoverable
thermal deformation (e.g., average contraction of the lattice upon cooling to
a reference temperature). Since lattice defects are not introduced during this
hypothetical unloading process, Fe does not alter the holonomicity (or lack thereof )
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of the material within the volume element. However, since the deformation
achieved upon unloading may not be compatible across neighboring elements, Fe

is anholonomic at the macroscale. The deformation F
p embodies contributions of

defects that leave the lattice unperturbed in an average sense, e.g. dislocation glide.
Finally, Fi accounts for remaining physics, including

. Residual strain and rotation fields attributed to non-redundant (i.e. geometri-
cally necessary) dislocations [67]

. Rotation of the lattice attributed to rotational defects (i.e. disclinations),
which may describe subgranular defect walls formed during large deforma-
tions (cf. [68]) or deformation twins [69, 70]

. Residual thermal strains due to heterogeneous thermal expansion properties
within the volume element, perhaps induced by defects in the microstructure

. Volumetric defects such as interstitials or voids resulting in lattice expansion
or contraction

. Phase transformations that alter the lattice arrangement [70]

Decomposition (17) and the F
i deformation mapping were introduced by the

present authors to describe elastoplastic polycrystals [71] and elastoplastic single
crystals [67], both in the context of dislocation-based crystal plasticity theory.
The concept is generalized here to account for various residual lattice deformation
modes listed above. Note that (17) is scale dependent, depending upon the size of
the crystal volume element to which it is applied, and resolution dependent, depend-
ing upon the way in which local kinematics within the volume element are resolved
and accounted for in the description. For example, the relative magnitudes of
components of F

i will differ for a single crystal containing a few non-redundant
dislocations and a heterogeneously-deforming polycrystal supporting large residual
stresses due to intergranular incompatibility. Kratochvı́l [72] postulated a three-term
decomposition similar to (17), although the length scale dependence was not
emphasized. Our theory reduces to one suggested by Bilby and Smith [99] for
residual elastoplasticity when F

e
¼ 1 and the elastic unloading corresponds to global

unloading, leading to the reduced decomposition F ¼ F
i
F
p (see [73]). And our

decomposition reduces to that of Lardner [44, 74] and Peçherski [51, 52] when we
set Fi

¼ ~RR, where ~RR is an orthogonal matrix describing lattice rotation caused by
disclinations.

Macroscopic configurations of a crystalline element corresponding to (17) are
depicted in figure 1. Intermediate configurations �BB and ~BB are generally anholonomic,
spanned by anholonomic coordinates �xx ��� and ~xx�, respectively, while reference and
spatial configurations B0 and B are holonomic, spanned by continuous coordinates
XA and xa, respectively. Configuration B supports nonzero traction vector t, while
configurations �BB and ~BB are traction free, i.e. tt ¼ 0 and ~tt ¼ 0. Lattice director vectors
are mapped across configurations via

da ¼ F L�1
� � ���

:a
d ���, d� ¼ F i�1

� � ���

:�
d ���, da ¼ F e�1

� ��
:a
d�, ð18Þ

while F
p is assumed to leave the lattice unperturbed. When the lattice directors

are heterogeneous within the crystalline volume element (e.g. in polycrystals or in
subdivided single crystals), the triads of (18) and figure 1 are understood to
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represent suitably-defined ‘average’ directors for the volume element [75]. In

non-cubic lattices, the directors of (18) are not necessarily parallel to primitive

translation vectors of the unit cell, but are instead an external construct.

Upon assuming that the directors in �BB are orthonormal, and assigning

an external Cartesian coordinate system to anholonomic space �BB with metric

tensor

d ���Ed ��� ¼ �gg ��� ��� ¼ � ��� ���, ð19Þ

we define a metric tensor C
L referred to configuration B and associated with the

director strain:

CL
ab � daEdb ¼ FL�1 ���

:a FL�1 ���
:b d ���Ed ��� ¼ FL�1 ���

:a � ��� ���F
L�1 ���
:b : ð20Þ

The metric C
L will play a prominent role in the continuation of our framework

in section 5.
The particular sequence of deformation maps in (17) is chosen based on

rational arguments. The plastic deformation term F
p is the rightmost in our

decomposition, as it leaves the lattice vectors unaltered, permitting identification

of configuration �bb of figure 1 with Mandel’s [76] isoclinic configuration. The

residual deformation due to micro-heterogeneity in the presence of lattice defects,

F
i, is placed second, as it affects the lattice directors via (18), yet is assumed

unaffected by superposed rigid body motion or a change in spatial coordinate

frame [72]. Finally, the recoverable elastic deformation F
e
¼ V

e
R

e logically

assumes the leftmost position, as the stretch V
e is associated with unloading

of the average traction acting on the volume element from the current state

and the orthogonal matrix R
e accounts for all lattice rotations not embodied

in F
i, including net rigid body motions of the solid. The rotational components

R
i of Fi and R

p of Fp are assumed to evolve independently of rigid body motions

of the solid. Although numerous decompositions are possible (cf. [77]), we find

our description (17) most appropriate and realistic from the physical standpoint.

Figure 1. Deformation mappings and configurations for crystalline volume element.
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Figure 2 describes the physics of equation (17) from the standpoint of (a) a

Volterra process and (b) a cubic crystalline lattice for a volume element contain-

ing a single edge dislocation. The tangent line of the defect is written as n0, and

the Burgers vector is labeled b, with adornments corresponding to the particular

configuration. Notice how the displacement discontinuity in the wake of the

dislocation is sealed by the residual lattice deformation F
i. Prior to the applica-

tion of F
i, for the body labeled �BB in figure 2, elastic strain fields are absent,

and the plastic deformation gradient F
p is completely defined in terms of the

relative motion of the two halves of the lattice on opposite sides of the slip

plane (dotted line in figure (2b)). Note also that �BB is generally locally incom-

patible across the entire slip path, contains slip discontinuities but no lattice

strains, and is free of internal residual stress fields. This is in contrast to ~BB,

which may contain internal residual stress and lattice strain fields but includes

no discontinuities except for those in the immediate vicinity of individual defect

lines contained within the volume.

5. Micromorphic kinematics

At the microscopic level, spatial changes in the lattice directors da are described by

parallel transport with respect to a linear connection. The absolute change of the

director vector field in the current configuration is found in terms of the covariant

derivative r̂r, i.e.

r̂rbda ¼ da, b � ĜG::cbadc, ð21Þ

with the subscripted comma denoting partial coordinate differentiation with respect

to x. The Christoffel symbols of the connection are defined by [45, 46]

ĜG::acb � FLa
: ��� FL�1 ���

:b, c þQ::a
cb ¼

�GG::acb þQ::a
cb , ð22Þ

Figure 2. Configurations of crystal element containing edge dislocation: (a) Volterra model
and (b) lattice model.
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where �GG::acb � FLa
: ��� FL�1 ���

:b, c ¼ �F
La
: ���, cF

L�1 ���
:b are coefficients of the crystal connection of

non-Riemannian dislocation theories [4, 5, 19, 21], and Q::a
cb are micromorphic

degrees-of-freedom representing contributions of distributed defects to the spatial
gradients of the lattice director field. Upon assuming that r̂rbda ¼ 0 [46], the connec-
tion (22) allows one to interpolate for the directions and magnitudes of the lattice
directors between centroids of neighboring crystal volume elements. For example, in
the trivial situation when ĜG::acb ¼ 0, the lattice directors are spatially constant. The
crystal connection ( �!!) component of (22) accounts for effects of first-order spatial
gradients of (the inverse of) FL, while the micromorphic variable Q of (22) accounts
for additional spatial variations of lattice directors not captured by the first gradient
of F

L. The average continuum deformation of the director vectors located at the
volume element’s centroid is determined by FL, as indicated by equation (18). Lattice
stretch and rotation gradients (e.g. at the scale of subgrain cells and cell blocks
(cf. [68, 78]) are represented by the coefficients of equation (22).

The covariant components of Q are defined via lowering by the metric C
L

of equation (20):

Qcba � Q::d
cbC

L
da: ð23Þ

Quantities Qcba and Q::a
cb are effectively equivalent micro-deformation measures

only when lattice strains are negligible, i.e. when CL
da 	 �da. The covariant derivative

of CL is found as

r̂rcC
L
ab ¼ CL

ab, c �
�GG::dcaC

L
db �

�GG::dcbC
L
ad|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

�Q::d
caC

L
db �Q::d

cbC
L
ad ¼ �2QcðabÞ, ð24Þ

where parentheses denote symmetrization, e.g. 2QcðbaÞ ¼ Qcba þQcab. Components
of the torsion tensor T̂T of the connection !̂! are given by (see equation (7))

T̂T::acb � ĜG::acb � ĜG::abc ¼ �TT::acb þ 2Q::a
cb½ �, ð25Þ

where �TT::acb is the torsion of the crystal connection. The components of the
Riemann–Christoffel curvature tensor R̂R:::abcd formed from the connection coefficients
ĜG::acb are found using equation (10):

R̂R:::abcd � ĜG::adb, c � ĜG::acb, d þ ĜG::ace ĜG
::e
db � ĜG::ade ĜG

::e
cb, ð26Þ

which, because ĜG::acb ¼ �GG::acb þQ::a
cb , we are able to rewrite as [55]

R̂R:::abcd ¼
�RR...a
bcd|{z}
¼0

þ2r̂r½cQ
::a
d�b þQ::a

ce Q
::e
db �Q::a

deQ
::e
cb þ T̂T::ecdQ

::a
eb , ð27Þ

where the curvature from the crystal connection, �RR:::abcd, vanishes identically as shown,
since �!! is integrable (see equation (53)). The fully covariant curvature
R̂Rabcd � CL

afR̂R
...f
bcd is [45]

R̂R½ab�cd ¼ 2r̂r½cQd�½ba� þ T̂T::ecdQe ba½ �, R̂RðabÞcd ¼ 2r̂r½cQd�ðabÞ þ T̂T::ecdQeðabÞ: ð28Þ

We see from (28) that R̂R vanishes completely when Q ¼ 0.
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The concept of a Somigliana dislocation [79] can be used to characterize the

displacement discontinuities from translational and rotational dislocations (i.e.
disclinations) of Volterra [41], point defects [10, 11] and interface incompatibility
in multi-phase composites [49]. A Somigliana dislocation may be idealized in
terms of a closed volume V bounded by surface S located within the interior

of a body B of infinite size, as shown in figure 3. The surface S is first cut, and
the two faces of the cut undergo a small relative displacement bðxÞ, where x is
the position of the point on the surface S. When bðxÞ produces separation of
matter, the empty space is then filled. On the other hand, when bðxÞ produces an

overlap of material, we consider the extra material to be subsequently removed.
The faces of S are cemented together, such that any further displacements are
continuous across S. The body containing the Somigliana defect is now in a
state of internal stress (see also [50]).

If bðxÞ ¼ constant, the Somigliana dislocation is equivalent to the usual transla-
tional dislocation of Volterra [41] and Burgers [80]. If bðxÞ ¼ x
 rðxÞ, where x is

the spatially constant Frank vector [81] and r is the disclination radius, the
Somigliana defect is equivalent to the disclination of Volterra [41] and Frank
[81]. To model a point defect, we let S be a small sphere with a distribution of
bðxÞ over the surface. Letting the radius of S shrink to zero, while at the same time

prescribing bðxÞ such that the displacement at a fixed distance from the sphere
remains finite, provides a mechanical representation of a point singularity [11]. For
the particular case of bðxÞ constant and directed radially outward from S, we
obtain a model of a spherical interstitial or substitutional atom, while a vacancy

is modeled for bðxÞ directed inward. By considering a uniform distribution of
somewhat larger hollow spheres, we can model porosity associated with microvoids
in crystals.

We now make the association of the general micromorphic framework of
(21)–(28) with the physics of crystal defects. This is accomplished by considering
three limiting cases: traditional (geometrically-necessary) dislocation theory,

characterized by Qcba ¼ 0; disclination theory, characterized by Qcba ¼ Qc½ba�; and
a model for isotropically-distributed point defects, characterized by Qcba ¼ QcC

L
ba.

Superposition of the three cases then enables us to consider Somigliana dislocations
of arbitrary character.

Figure 3. Somigliana dislocation.
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5.1. Dislocations

The description afforded by our framework is restricted to translational dislocations

if we prescribe Qcba ¼ 0, for which (22) reduces to the crystal connection [19]:

ĜG::acb ¼ �GG::acb ¼ FLa
: ��� FL�1 ���

:b, c ¼ �F
La
: ���, cF

L�1 ���
:b : ð29Þ

The torsion tensor of (29) is then written as

T̂T::acb ¼ �TT::acb ¼ FLa
: ��� FL�1 ���

: b, c½ � , ð30Þ

which vanishes according to (35) when the lattice deformation is holonomic, i.e.

�TT::acb ¼ 0$ FL�1 ���
:½b, c� ¼ 0$ FL�1 ���

:a ¼ @a �xx ���: ð31Þ

Figure 4 provides a two-dimensional visual interpretation. On the left side of

figure 4, we inscribe two orthogonal fields of constant contravariant ‘lattice slip

vectors’ on �BB — denoted by uu and vv — that form a rectilinear grid. Such a repre-

sentation of a ‘perfect’ lattice in �BB is in agreement with classical crystal plasticity

theory [82], for example, wherein F
p is assumed to leave the slip directions unper-

turbed. Notice that the lattice may have slipped with respect to its position relative to

the reference configuration B0, consistent with figure 2(b) and indicated by the

dotted unit cells on the left side of figure 4 (for clarity, these slip steps are not

shown on the right side of figure 4, though they do exist in configuration B). Since

the lattice slip vectors are spatially constant over the relaxed crystal, we have

uu Að Þ ¼ uu Bð Þ, vv Að Þ ¼ vv Bð Þ, ð32Þ

where A and B are two neighboring points in the relaxed configuration that are

separated by a small distance dx � xðAÞ � xðBÞ when mapped onto the deformed

coordinates of the crystal. Focusing for the moment on the field �uu, we multiply both

sides of the first of (32) by F
L
ðAÞ, the value of the lattice deformation at the location

corresponding to point A, to obtain

FLa
: ��� Að Þ �uu ��� Að Þ ¼ FLa

: ��� Að Þ �uu ��� Bð Þ: ð33Þ

Figure 4. Visualization of the crystal connection.
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Expanding F
L
ðAÞ with a first-order (i.e. linear) approximation in x, we have

FLa
: ��� Að Þ 	 FLa

: ��� Bð Þ þ FLa
: ���, b Bð Þdxb, ð34Þ

which is then substituted into equation (33) to yield

ua Að Þ ¼ ua Bð Þ þ FLa
: ���, b Bð ÞFL�1 ���

:c Bð Þdxbuc Bð Þ, ð35Þ

where we have defined the deformed slip vectors as push-forwards via

ua Að Þ � FLa
: ��� Að Þ �uu ��� Að Þ, ua Bð Þ � FLa

: ��� Bð Þ �uu ��� Bð Þ: ð36Þ

Using the identity ðFLa
: ��� FL�1 ���

:c Þ, b ¼ 0, we can rewrite equation (35) as

0 ¼ ua Að Þ � ua Bð Þ þ FLa
: ��� Bð ÞFL�1 ���

:c, b Bð Þdxbuc Bð Þ: ð37Þ

Making the linear approximation

ua Að Þ � ua Bð Þ 	
@ua Bð Þ

@xb
xb Að Þ � xb Bð Þ
	 

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

�dxb

, ð38Þ

and dropping the notation signaling localization to point B, equation (37) then

becomes

0 ¼ ua:, bdx
b
þ FLa

: ��� FL�1 ���
:c, b dxbuc, ð39Þ

which obtains the structure of a null covariant derivative, i.e. parallel transport:

�rrbu
a
� ua:, b þ �GG::abcu

c
¼ 0, ð40Þ

since dxb is now arbitrary. Since the Christoffel symbols corresponding to �rr in (40)

are equivalent to those given in equation (29), parallel transport of the slip vectors

with respect to the crystal connection physically corresponds to construction of the

deformed lattice from a rectilinear grid in relaxed configuration �BB. Analogously, the

field v in figure 4 satisfies

�rrbv
a
� va:, b þ �GG::abc v

c
¼ 0, ð41Þ

i.e. the vector field v ¼ F
L
vv 2 TB constructed by pushing forward from the uniform

reference grid vv 2 T �BB obeys the rule of parallel transport with respect to the con-

nection �!!. It is clear why the crystal connection is said to possess the property of

‘distant parallelism’ or ‘teleparallelism’.
The closure failure B of the area a (with local differential one-form

ncda ¼ "cabdx
a
^ dxb, where nc denotes a unit vector normal to a) shown in

figure 4—i.e. the area of the parallelogram enclosed by uðAÞ, uðBÞ, vðAÞ, and vðCÞ,

with C a third location on the deformed crystal—is equivalent to the area integral
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of the field of local Burgers vectors bðxÞ [53]:

Ba
�

ð
a

ba da ¼

ð
a

�ab nb da ¼
1

2

ð
a

�TT::abcdx
b
^ dxc, ð42Þ

where 2�ab � "bdc �TT::adc is the geometrically necessary dislocation density tensor

referred to B. In terms of straight defect lines, the dislocation density tensor is

written [30, 74]

a ¼
X
j

� j
b
j
� n j, ð43Þ

with � j, b j, and n j the line length per unit current volume, Burgers vector, and

tangent line in the spatial configuration for dislocation population j. To deduce

(42) directly from the right side of figure 4, we begin with the rather obvious vector

addition relation

Ba
¼ ua Að Þ � ua Bð Þ þ va Cð Þ � va Að Þ: ð44Þ

Also from the current configuration lattice depicted in figure 4 we have

d xb
ðuÞ

� xb Bð Þ � xb Að Þ ¼ vb Að Þ, d xb
vð Þ

� xb Cð Þ � xb Að Þ ¼ ub Að Þ: ð45Þ

Upon making the linear approximations

ua Bð Þ � ua Að Þ 	 ua, b Að Þd xb,
uð Þ

va Cð Þ � va Að Þ 	 va, b Að Þd xb
vð Þ

, ð46Þ

and invoking equations (40) and (41), equation (44) becomes

Ba
¼ �ua, b Að Þd xb

ðuÞ

þva, b Að Þd xb
ðvÞ

¼ �GG::abcd x
b
ðuÞ

uc Að Þ � �GG::abcd x
b
ðvÞ

vc Að Þ, ð47Þ

which upon usage of (45) can be written as

Ba
¼ 2 �GG::a½bc�v

b Að Þuc Að Þ ¼ �TT::abc v Að Þu Að Þð Þ
½bc�: ð48Þ

Making the identification

v Að Þu Að Þð Þ
bc½ �
¼

1

2
vb Að Þuc Að Þ � vc Að Þub Að Þ
	 


�
1

2
dxb ^ dxc, ð49Þ

equation (48) is then rewritten as

Ba
¼

1

2
�TT::abcdx

b
^ dxc, ð50Þ

which is the local form of (42). Integrability conditions for the crystal connection

coefficients of equation (29) have a natural geometric interpretation, as demon-

strated in previous works by Schouten [55] and Le and Stumpf [4]. Partial

coordinate differentiation of (29) yields

FL�1 ���
:a

�GG::abc
� �

, d
¼ FL�1 ���

:c, bd , ð51Þ
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the left side of which is expanded to read

FL�1 ���
:a, d

�GG::abc þ FL�1 ���
:a

�GG::abc, d ¼ FL�1 ���
:a

�GG::ade �GG::ebc þ �GG::abc, d
� �

: ð52Þ

Since the order of partial differentiation on the right side of (51) is arbitrary,

we then have

0 ¼ �2FL�1 ���
:c, bd½ � ¼ FL�1 ���

:a
�GG::adc, b � �GG::abc, d þ �GG::abe �GG::edc � �GG::ade �GG::ebc
� �

¼ FL�1 ���
:a

�RR:::acbd, ð53Þ

where �RR:::acbd are the components of the Riemann–Christoffel curvature tensor derived

from �GG::abc using (10). Upon multiplication of (53) through by F
L we arrive at the

conclusion that �RR:::acbd ¼ 0 are conditions ensuring satisfaction of (29). From satisfac-

tion of (53), the crystal connection is said to be ‘integrable’ [55]. Since the crystal

connection is metric with respect to C
L (from equation (24) with Q::a

bc ¼ 0), and its

curvature tensor vanishes, the set {B, �CC,CL} constitutes a metric, non-Riemannian

space. We also have

2CL
ab

�GG::aðcdÞ ¼ CL
cb, d þ CL

db, c � CL
dc, b, ð54Þ

easily verified by direct calculation. If we now further impose that the torsion
�TT::acb ¼ 0, such that �GG::acb ¼ �GG::aðcbÞ, meaning that the connection is symmetric (i.e. non-

Cartan space), and physically that geometrically necessary dislocations are absent,

then (54) defines the Levi–Civita connection coefficients (cf. (8)) on the current

configuration with Riemannian metric tensor CL, and the set {B, �CC,CL} constitutes

a Euclidean space.

5.2. Disclinations

Volterra [41] introduced six fundamental types of defects in elastic bodies: three

types of translational displacement discontinuities, known as edge and screw

dislocations, and three types of rotational incompatibilities, later termed disclina-

tions by Frank [81] and further classified as either wedge or twist disclinations

(see figure 5). Disclination theory has been applied to numerous problems of interest.

These include descriptions of micropolar rotations in liquid crystals [81], rotational

defect substructures and commensurate strain hardening in metal forming processes

[83], grain boundary structures [84], deformation twins [69], and polycrystalline

triple junctions [85]. Disclinations have also been recognized as characteristic

defects in polymers [86] and nanocrystals [87]. Molecular dynamics simulations

incorporating disclination concepts [88, 89] have been undertaken to characterize

energy distributions over a range of misorientations.
Continuum theories of distributed dislocations and disclinations can be found in

the geometrically-oriented papers of Anthony [43], Eringen and Claus [73], Lardner

[44], Minagawa [45, 46], Amari [47] and De Wit [48]. Precise mathematical descrip-

tions and/or elastic solutions are also included in the texts of Nabarro [42], Lardner

[74], Mura [90], Maugin [1] and Zubov [91]. An extensive review of disclination

theory focusing upon defect kinetics and contributions to plastic strain hardening

was provided by Seefeldt [78], who suggested that partial disclination dipoles be used

to describe misoriented subgranular interfaces manifesting upon grain refinement
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in advanced stages of plastic deformation. Li [84, 92] demonstrated for a volume

of isotropic linear-elastic solid material the equivalence between the strain energy

of a wedge disclination dipole and a finite wall of edge dislocations. Kröner and

Lagoudas [93] developed a gauge theory of disclinations intended to model micro-

rotations in liquid crystals. Lazar and Maugin [94] solved for the stress field of

a wedge disclination using higher gradient elasticity theory.
The coefficients ĜG::acb in the dislocation-disclination version of our framework are

given by equation (22), with the covariant components of Q anti-symmetric [45, 46]:

Qcba � Q::d
cbC

L
da ¼ �Qcab ¼ Qc½ba�: ð55Þ

The micro-rotation kinematic variable Q describes spatial gradients of lattice rota-

tion within the crystalline volume element arising from distributed disclinations.

Consider parallel transport of a lattice director da, over the small distance dx to a

new orientation d
0
a, conducted with respect to the covariant derivative (21). For

illustrative purposes, we temporarily restrict attention the special case when

F
L
	 1 and spatial gradients of the lattice deformation F

L are small. Applying the

summation convention over covariant Cartesian coordinates, we may then write

d
0
a ¼ da þ da, bdxb ¼ da þQbacdxbdc ¼ �ac þQb½ac�dxb

� �
dc ¼ �acdc, ð56Þ

where Qbac ¼ Qb ac½ � from equation (55), and the rotation matrix Fac satisfies

FT
	 F�1 and detðFÞ 	 1 for small magnitudes of Qbacdxb, i.e. small relative lattice

rotations such as those occurring across low-angle grain or subgrain boundaries.

We see from (56) that Qbac acts as an effective ‘gradient’ of rotation in the spatial

direction xb. However, since Q is not required to satisfy the following compatibility

conditions, it is not a true spatial gradient, i.e.

Qb½ac�, d �Qd½ac�, b 6¼ 0! Qb½ac� 6¼ #½ac�, b, ð57Þ

Figure 5. Volterra’s defects: reference cylinder with defect line n and cut surface S (a); edge
dislocations (b, c) and screw dislocation (d) with Burgers vector b; twist disclinations (e, f ) and
wedge disclination (g) with Frank vector x.
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where # ac½ � is a skew matrix that can exist only when the conditions Qb½ac�, d ¼ Qd½ac�, b

are met.
We now return to the general situation wherein components of F

L may be

arbitrarily large. From (24), the connection is metric, since the covariant derivative

of CL vanishes:

r̂rcC
L
ab ¼ �2QcðabÞ ¼ 0: ð58Þ

Components of the torsion tensor T̂T of the connection !̂! are given by

T̂T::acb ¼ �TT::acb þ 2Q::a
½cb�, ð59Þ

where �TT::acb is the torsion of the crystal connection discussed in section 5.1 [16, 19, 21].

The components of the Riemann–Christoffel curvature tensor R̂R:::abcd are, from (28)

and (55),

R̂R½ab�cd ¼ 2r̂r½cQd�½ba� þ T̂T::ecdQe½ba�, R̂RðabÞcd ¼ 2r̂r½cQd�ðabÞ þ T̂T::ecdQeðabÞ ¼ 0: ð60Þ

Thus we see that the curvature is limited to nine independent components, i.e.

R̂Rabcd ¼ R̂R½ab�½cd�.
Consider a Burgers circuit c in the current configuration, enclosing area a

comprised of oriented elements nda. A total Burgers vector accounting for

incompatibility induced by torsion and curvature may be written as [40, 44, 45]

Ba
�

1

2
"dbc

ð
a

T̂T::abc � R̂R:::aecbx
e

	 

ndda ¼ Ba

T þ Ba
R, ð61Þ

where 2Ba
T � "

dbc
Ð
aT̂T

::a
bc ndda describes the closure failure of c and

2Ba
R � "

bdc
Ð
aR̂R

:::a
ecbx

endda measures the change in direction of position vector xe

upon parallel transport about c with respect to the connection !̂!. Equation (61)

reduces to (42) when disclinations are absent (i.e. when T̂T::abc ¼ �TT::abc , Q
::a
bc ¼ 0, and

R̂R:::abcc ¼ 0) . We can re-write (61) in terms of the second rank geometrically necessary

dislocation tensor a and second rank geometrically necessary disclination tensor u,
each referred to the spatial configuration B:

Ba
¼

ð
a

�ad þ CL�1af"fgb�
gdxb

	 

ndda, ð62Þ

where

2�ad � "dbcT̂T::abc , 4�gd � "gba"dceR̂Rabce: ð63Þ

Figure 6 illustrates the total Burgers vector B ¼ BT þ BR introduced in equation (62)

in terms of parallel transport of a lattice director vector da about an incompatibility

circuit c [40]. When viewed from the standpoint of a Volterra process [41], one

can imagine the body in figure 6 to consist of the superposition of a single

edge dislocation (producing the incompatibility BT) and a single wedge disclination

(producing the incompatibility BR).
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Defect tensors a and u contain information enabling us to fully reconstruct
T̂T and R̂R:

T̂T::acb ¼ T̂T::a½cb� ¼ "cbd�
ad, R̂Rabcd ¼ R̂R½ab�½cd� ¼ "bae"cdf�

ef: ð64Þ

The tensors of (63) are also related to the summed contributions of discrete crystal
defects as

a ¼
X
j

� j
b
j
� m j, u ¼

X
k

�kxk
� fk; ð65Þ

with � j, b j, and m j the net scalar dislocation line density, Burgers vector, and unit
tangent line, respectively, for dislocation population j, and with �k, xk, and fk the net
scalar disclination line density, Frank vector, and unit tangent line, respectively, for
disclination population k.

Notice that a and h do not account for curved defect segments and combinations
of defect lines that do not contribute to a net Burgers vector. This is evident when
(65) is written in terms of positively- and negatively-signed defect populations [29]:

a ¼
X
j

� j
þ � �

j
�

� �
b
j
þ � m

j, u ¼
X
k

�kþ � �
k
�

	 

xk
þ � fk, ð66Þ

where b j
þ ¼ �b

j
� and x

k
þ ¼ �x

k
�. It is emphasized that while the net defect densities

of (63), (65) and (66) represent incompatibility, the total mobile defect densities
contribute to the rate of plastic deformation (to _FF

p
), the latter which may be nonzero

even in the absence of net defect densities, as would occur under conditions
of homogeneous plastic flow (e.g. when � j

þ ¼ �
j
�). We use the qualifiers ‘net’,

‘geometrically necessary’, and ‘non-redundant’ interchangeably to describe defect
densities producing nonzero incompatibility.

Linearized compatibility equations for the defect density tensors of (63)
follow from identities of Bianchi and Schouten (cf. [55]), expressed in Cartesian
coordinates as

T̂T::a½bc, d� ¼ R̂R:::a½bcd� ! CL�
� �:b

a, b
¼ "abc�

bc, R̂R:::ab½cd, e� ¼ 0! �ab, b ¼ 0: ð67Þ

In a small-strain formulation that employs additive elastoplastic strains and rotation
gradients, De Wit [48] inferred from equations analogous to (67) that disclinations
may act as sources/sinks for dislocations, and that disclination lines cannot end

Figure 6. Burgers vector with contributions from dislocations ðBTÞ and disclinations ðBRÞ.
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abruptly within a crystal. When disclinations are absent, the first of (67) depicts a

divergence-free dislocation density tensor, meaning that dislocations cannot start
or end within the crystal.

5.3. Point defects

We focus attention now upon a geometric representation of uniformly-distributed,

isotropic point defects. The same connection !̂! listed in equation (22) is used, but
the form of Q is restricted as follows [45]:

ĜG::acb � FLa
: ��� FL�1 ���

:b, c þQ::a
cb ¼

�GG::acb þQc�
a
b, Q::a

cb ¼ Qc�
a
b, Qcba ¼ QcC

L
ba: ð68Þ

From (68), the contribution from point defects to the derivative r̂rcdadx
c is given

by Q::b
ca dx

c
¼ �baQcdx

c, a pure stretch. The connection is non-metric since, by (24)
and (68),

r̂rcC
L
ab ¼ �2QcðabÞ ¼ �2QcC

L
ab, ð69Þ

meaning physically that vacancies, interstitials, or micro-voids alter the counting

of atomic steps in the crystal [102]. The torsion becomes, upon substitution of (68)
into (25),

T̂T::acb � ĜG::acb � ĜG::abc ¼ �TT::acb þQc�
a
b �Qb�

a
c , ð70Þ

thereby including a contribution to the non-redundant dislocation density
2�ad � "dbcT̂T::abc from the crystal connection �TT::acb and a contribution from micro-

morphic contraction/expansion in the form Qb�
a
c �Qc�

a
b. From equation (27),

the Riemann–Christoffel curvature tensor becomes simply

R̂R:::abcd ¼ 2r̂r½cQd� þ T̂T::ecdQe

	 

�ab ¼ 2Q½d, c��

a
b� 2ĜG::ecd½ �Qe � T̂T::ecdQe

	 

�ab|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

¼ 2�abQ½d, c�: ð71Þ

Upon parallel transport around a current configuration circuit c, a lattice director

vector da changes by an amount �da as follows in the presence of a non-vanishing

curvature tensor R̂R:::abcd [44, 55, 56]:

�da � d
0
a � da ¼

1

2

ð
a

R̂R:::bacddbdx
c
^ dxd ¼ �da

ð
a

Q½c, d�dx
c
^ dxd, ð72Þ

where we have used (71). From the last of (72), we see that the vector da is unchanged

in direction upon completion of the circuit c; its components merely undergo stretch
or reduction.

Recall that the micromorphic variable Q represents additional degrees-of-

freedom at the microscale for capturing the effects of defects on spatial gradients
of the lattice directors. Accompanying Q at the macroscale is the contribution of

these defects to F of (17). The contribution of isotropic defects may be written in
terms of our Fi term, neglecting here the contributions of anisotropic residual lattice

deformation:

F
i
¼ ���: ���

	 

g� � g

���, ð73Þ
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where the scalar � is given by

� ¼ 1� 	ð Þ
�1=3, ð74Þ

where 	 will be defined shortly. Consider differential volume elements d ~VV 2 ~BB and
d �VV 2 �BB. The relationship between these volume elements, upon appealing to (73) and
(74), is then

d ~VV ¼ Jid �VV ¼ detFi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ~gg= det gg

q
d ~VV ¼ d �VV 1� 	ð Þ

�1, ð75Þ

upon assuming coincident coordinate frames on ~BB and �BB (and thus equivalent
metric tensors ~gg and gg). Equation (75) then provides the definition for the scalar 	:

	 ¼ d ~VV� d �VV
� �

=d ~VV: ð76Þ

When microvoids or interstitials are considered, 	 is the fraction of defects in the
intermediate configuration, per intermediate configuration volume [95]:

	 d ~VV ¼ Nþ ~VVþ þ d �VV
� �

� d �VV ¼ Nþ ~VVþ, ð77Þ

where Nþ and ~VVþ are the number of defects and the volume of each defect, respec-
tively, within the local volume element d ~VV, in configuration ~BB. For an isotropic
distribution of vacancies, there is a net decrease in volume due to F

i, and we have [96]

	 d ~VV ¼ �N� ~VV� þ d �VV
� �

� d �VV ¼ �N� ~VV�, ð78Þ

with N� the number of vacancies within volume element d ~VV, each inducing
reduction ~VV�.

6. Summary

Our theory is founded upon two major assumptions, the first being a three-term
decomposition of the average deformation gradient for a crystal element (see also
equation (17)):

F ¼ F
e
F
i|ffl{zffl}

FL

F
p, ð79Þ

with the F
i term, non-standard in the usual theories from the literature (cf. [97]),

accounting for the presence of defects that affect the average lattice arrangement and
internal residual stresses within the crystalline volume element (see figure 2). Also
in (79) are the elastic deformation F

e representing both the recoverable lattice stretch
associated with the average applied stress acting on the element and rigid-body
rotations of the lattice, as well as the plastic deformation F

p accounting for the
partition of fluxes of mobile defects that leaves the lattice unperturbed. The total
lattice deformation is written as F

L. The second major assumption is an additive
decomposition of a linear connection describing spatial gradients of the slip
directions and lattice director vectors between neighboring crystalline elements
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(i.e. the microscopic description). Christoffel symbols of this connection, introduced
in equation (22), may be written as

ĜG::acb ¼ FLa
: ��� F

L�1 ���
:b, c|fflfflfflfflfflffl{zfflfflfflfflfflffl}

crystal
connection
ðGNDsÞ

þCL�1adQc½bd�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
micro-rotation
ðdisclinationsÞ

þ �abQc|ffl{zffl}
micro-expansion
isotropic point defectsð Þ

þCL�1ad QcðbdÞ �QcC
L
bd

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

micro-strain
ðSomigliana dislocationsÞ

, ð80Þ

where the first term on the right side describes gradients of the director vectors due to
first-order gradients in the average lattice deformation tensor F

L, following Bilby
et al. [19], as discussed in section 5.1. The micromorphic variable Q (cf. [45, 48])
participates in the remaining three terms on the right of (80): a micro-rotation
associated with disclinations, as discussed in section 5.2, an isotropic micromorphic
expansion associated with point defects, discussed in section 5.3, and a general
micromorphic strain that may be used to represent arbitrary lattice director
deformations when superposed with the other terms in (80). Dislocation and
disclination density tensors then follow from the torsion and curvature, respectively,
of the connection (80), the latter vanishing when the variable Q vanishes. Our theory
is unique from others in the literature via its combination of the three-term deforma-
tion decomposition (79) with the additive connection for geometrically-necessary
defects (80). Note that it is possible to describe defect kinematics (e.g. construct
the dislocation and disclination density tensors) without decomposing the lattice
deformation F

L into distinct recoverable and residual terms. For example,
Minagawa [45, 46] invoked a connection similar to (80), but used only a single elastic
lattice deformation map, amounting in essence to a two-term deformation gradient
decomposition. However, we find our three-term decomposition more realistic than
the usual two-term decomposition from the viewpoint of developing constitutive
relations, with only the recoverable portion F

e of the lattice deformation F
L acting

as a thermodynamic force conjugate to the externally applied stress [67].
In summary, we present table 1, which depicts the classifications of the affine

geometries corresponding to crystal defects in finite elastoplasticity, following
terminology of our section 2 and motivated by Steinmann [6]. Figure 7 is a two-
dimensional idealization of a crystalline element in the spatial configuration
containing the lattice defects listed in table 1. We remark that in many figures in
this paper, simple cubic lattices have been used to illustrate key concepts, as this
crystal structure is easiest to visualize. Our framework has been developed with the
primary intention of describing engineering metals that deform by dislocation glide,
most typically exhibiting a Bravais lattice structure and most often realized in a
face-centered-cubic, body-centered-cubic, or hexagonal close-packed arrangement.
The concepts forwarded herein are most naturally applied to cubic lattices, wherein
the director vectors of (18) may be assigned parallel to the primitive translation
vectors of the lattice. The framework is valid for crystal structures of lower symmetry
(e.g. hexagonal) so long as the Cauchy–Born rule (cf. [103]) applies for the elastic
deformation of the interatomic bond vectors. In such cases, while the directors of
relations (18) assigned to each crystal volume element are not parallel to the physical
edges of the unit cell of the lattice, they are assumed to fully characterize the stretch
and rotation of the interatomic vectors comprising the primitive cell. On the other
hand, for more exotic structures wherein the recoverable deformation is non-uniform
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within the unit cell, additional degrees of freedom not included in our theory
are required—see for example the couple stress-based treatment of diamond
cubic-structured silicon by Garikipati [98].

6. Conclusions

A comprehensive and rigorous theoretical framework for the finite deforma-
tion kinematics of lattice defects in crystalline materials has been presented.

Figure 7. Current configuration lattices accompanying table 1: (a) Euclidean space,
(b) Cartan space, (c) Cartan and Riemannian space, (d) general non-metric space.

Table 1. Geometric classifications, kinematic quantities, and corresponding crystal defects.

Geometry Torsion Curvature Metric Defects

Euclidean
( �BB admits holonomic
coordinates)

T̂T ¼ 0 R̂R ¼ 0 r̂rC
L
¼ 0 (yes) Statistically stored

dislocations
(SSDs)* figure 7a

Cartan and non-
Riemannian
(e.g. !̂! ¼ �!!)

T̂T 6¼ 0 R̂R ¼ 0 r̂rC
L
¼ 0 (yes) Geometrically necessary

dislocations (GNDs)
figure 7b

Riemannian and
symmetric

T̂T ¼ 0 R̂R 6¼ 0 r̂rC
L
¼ 0 (yes) Disclinations

Metric, Cartan,
and Riemannian

T̂T 6¼ 0 R̂R 6¼ 0 r̂rC
L
¼ 0 (yes) GNDs and disclinations

figure 7c
Non-metric, Cartan,
and Riemannian

T̂T 6¼ 0 R̂R 6¼ 0 r̂rC
L
6¼ 0 (no) All types of defects

(e.g. point and line
defects) figure 7d

*Admissible defects for all geometries in table 1. However, all dislocations are geometrically
necessary when considered in isolation; collections of SSDs produce no net Burgers vector
and no net torsion tensor.
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The framework includes a three-term multiplicative decomposition of the deforma-
tion gradient, with terms accounting for recoverable elasticity, residual lattice
deformation due to defect populations, and plastic deformation resulting from
defect fluxes. Also invoked is an additional micromorphic variable representing
additional degrees-of-freedom associated with lattice defects other than conventional
translational dislocations, such as disclinations, point defects, and most
generally, Somigliana dislocations. Our treatment has been purely kinematic in
nature; accompanying thermodynamics and kinetics remain to be addressed in
future work.
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