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Abstract

We consider the problem of selecting an appropriate distortion function and asso-
ciated parameters to account for rare but catastrophic events that may result from a
shortfall of military or security capabilities. Additionally, we describe the means by
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shown to be sensitive to the decision maker's level of risk aversion.
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1 Introduction

In this paper, we review and illustrate the concept of distorted risk measures in order
to analyze the risk of shortfalls in military capabilities. The application of these concepts
leads to a method for optimally allocating resources among various military capabilities
while taking into account the risk of shortfalls. However, an open and difficult question is
the selection of appropriate distortion functions (and parameters), and their interpretations,
for a given risk scenario. In this paper, it is our aim to elucidate the usefulness of these
concepts, especially for scenarios involving low-likelihood, catastrophic events.

Consider a military or national-level decision maker who is faced with addressing
shortfalls in military or homeland security capability. However, due to budgetary (or possibly
other) constraints, only a subset of shortfalls can be addressed. We assume that input data
from subject matter experts, in the form of risks of capability shortfalls, can be converted into
appropriate risk distributions. While the decision maker may trust and value the opinions
of the subject matter experts, he or she may desire to assign their own risk priorities in
the resource allocation process to reflect additional information and/or considerations not
necessarily available to the subject matter experts.

Distortion functions can be used to alter standard risk measures for scenarios in which
the catastrophic occurrences in the tail of the risk distribution are of interest, but are often
suppressed by standard risk measures (e.g., expectation and conditional expectation). In
such cases, distortion functions serve the purpose of shifting probability density toward the
region of the distribution that corresponds to highly adverse outcomes, thereby inflating
the expectation risk measure. A wide variety of shaping effects and degrees of effect are
possible depending on the distortion function selected and its parameters. The challenge
for the decision maker is to select appropriate distortion functions to apply to the risk
distributions suggested by his or her subordinates. Similarly, the selection of appropriate
distortion parameters must also be considered, since the degree of distortion applied via the
parameter selection can be (indirectly) linked to the decision maker's degree of risk aversion.
While numerous distortion functions have been introduced in the literature (cf. [6] and [9]),
there does not appear to be a formal methodology for the selection of a distortion function
or its associated parameters.

As a relatively new and competing theory for the pricing of risk (prospect theory
is the other), the properties of parametric distortion functions have been examined in the
finance and insurance literature for the past ten years. The seminal work on distortion
functions is due to Wang [8], who first proposed transforming the survivor function of the
risk using the proportional hazard transform. Subsequently, Wang [9] generalized the theory
of distortion to an entire class of functions used to calculate insurance premiums. Wang et
al. [11] provided an axiomatic theory of insurance premiums pricing. Distortion and the
axiomatic theory are tied to the concept of risk measure coherency, outlined by Artzner et
al. [1] and further developed by the same authors in [2]. A coherent risk measure is one
that accurately portrays the way financial markets operate. Artzner et al. [1] establish
four attributes that a coherent risk measure must possess. McLeish and Reesor [6] proved
that a concave distortion function produces a coherent risk measure. Wirch and Hardy [12]
made two general observations regarding distortion parameters. First, they associate the
parameters with a decision maker's risk aversion level toward risk in the far right tail of



the distribution. Second, they state that the selection of distortion parameters is mostly a
"political" decision. To our knowledge, the problem of selecting an appropriate distortion
function and its parameter(s) has not been formally addressed in the risk analysis literature.

In this paper we seek to provide some guidance for the selection of distortion func-
tions and their parameters when concerned with inflating the right tail of a risk distribu-
tion. We are motivated by the potentially catastrophic losses that may result from military
or homeland security capability shortfalls. Specifically, this concerns the representation of
catastrophic risks that cannot, for operational or political reasons, be disregarded despite
their low likelihood of occurrence. Throughout this paper, we concern ourselves with the
expected value of the risk; however, it is worth noting that we may choose any other coherent
risk measure. (We discuss the meaning of a coherent risk measure in section 2.) Though it
is admittedly difficult to generalize the guidelines to an arbitrary scenario, we attempt to
provide a framework within which the risk of military capability shortfalls may be consid-
ered. For other contexts (e.g., insurance or financial risk), it may be necessary to develop a
separate analysis.

We summarize and study the impact of three of the most widely referenced distortion
functions on four frequently encountered parametric probability distributions, specifically the
exponential, Weibull, triangular, and uniform distributions. Whenever possible, we provide
analytical expressions for distorted risk measures. However, when analytical expressions
may not be obtained, it is still possible to compute the measures by numerical methods.
We propose two simple measures of distortion effects, and by means of a simple designed
experiment, we argue that some distortions may be preferable to others, depending on the risk
distribution and "amount" of distortion desired. Finally, we illustrate the means by which a

* decision maker's risk priorities may be incorporated into a resource allocation problem using
''appropriate distortion selection. The results of the paper offer some practical guidance for
the application of distortion functions to some specific risk scenarios.

The remainder of this paper is organized as follows. In section 2, we define and
review the concept of distorted risk measures and provide analytical results for the distorted
expectation risk measure using a few common probability distributions. In section 3 we
propose two distortion performance measures and provide a simple designed experiment to
help establish some guidelines for distortion function selection. Section 4 describes a resource
allocation problem which considers the decision maker's risk aversion levels, and section 5
provides a few concluding remarks and future research directions.

2 A Review of Distortion Functions

In this section, we provide a brief overview of distortion functions and coherent risk
measures. Before presenting mathematical descriptions, we first provide an intuitive moti-
vation for the use of distortions in a given risk scenario.

2.1 Concept of Distortion

Assume that risk is a nonnegative random variable. If one is concerned only about the
probability that the random variable is above (or below) some critical value, and not about
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what happens above that value, then it is instructive to simply use a quantile risk measure
(i.e., the Value-at-Risk (VaR) measure in finance). In such a case, the distortion function
is simply a step function and the resulting distorted risk measure has no probability in the
tail of the original risk distribution. In many cases, however, the tail of the distribution is of
interest since highly catastrophic losses can occur with low probability. In these scenarios,
it makes sense to inflate the probability in the region of the original risk distribution that
corresponds to highly adverse and unacceptable outcomes.

In our context, a military or national-level decision maker may forego the opportunity
to acquire certain military capabilities. The risks involved in a shortfall of military capability
can be viewed as the potential for loss of human life, loss of assets, or other significant losses.
We assume that a nonnegative risk X is defined on an appropriate probability space (Q, F, P)
with cumulative distribution function (c.d.f.) given by F(x) = P(X < x), x > 0 and survivor
function S(x) - P(X > x), x > 0. The expectation risk measure is given by

E(X) S(x)dx. (1)

The problem of selecting the risk distribution for extreme events is a difficult question in its
own right. We do not specifically address distribution selection here; however, some guidance
is given by Lambert, et al. [5]. The objective of a distortion function is to transform the
survivor function S(x) so that when a risk measure is computed, the resulting distorted mea-
sure more adequately reflects the possibility and impact of extreme events. More formally,
the distortion of S is given by the composition function

g(S(x)) (g o S)(x), (2)

where g is a function satisfying (cf. [12]):

1. g: [0, 1] -- [0, 11 is monotonically increasing;

2. lim.o0 g(u) = 0; and

3. limu1 g(u) = 1.

The function S(x) - (g o S)(x) is again a survivor function with the usual properties:
its range is [0, 1], it is non-increasing in x, and integrating over the range of X gives the
(distorted) expectation. That is, under the distortion g, the expectation risk measure is00 00

(X) = S(x)dx = f (g o S)(x)dx. (3)

The concept of distortion is closely tied to the concept of risk measure coherency
which was formalized by Artzner et al. [2]. Suppose X and Y are two nonnegative random
variables representing two risks and let p denote a risk measure. Then p is said to be a
coherent risk measure if it satisfies the following four axioms:

1. Translation invariance: For all real a and r, p(X + cer) = p(X) - a

2. Sub-additivity: p(X + Y) •_ p(X) + p(Y)
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3. Positive homogeneity: For all a > 0, p(aX) = ap(X)

4. Monotonicity: If X < Y, then p(X) _ p(Y)

McLeish and Reesor [6] have shown that, if g is a concave function, then the resulting
distorted risk measure will satisfy the four axioms of coherency. This fact will be useful in
determining appropriate distortion parameter values since we seek a resulting risk measure
that is coherent. Next, we review some of the most commonly applied distortions.

2.2 Common Distortion Functions

The distortion functions most frequently encountered in the literature are the gamma-
beta distortion and its variants which are discussed extensively in [6]. This family of dis-
tortion functions consists of the gamma-beta, beta, proportional hazard (PH), dual power
(DP), gamma, and exponential (EX) distortions. Among these six, the single-parameter
distortions (PH, DP, and EX) will be considered for three primary reasons: i) the effects
of an individual parameter may be observed more easily; ii) the distorted expectation risk
measure can be computed analytically in many cases, and numerically in others; and iii) it
is desirable to minimize the number of parameters that need to be estimated.

The gamma-beta distortion is defined as

gGB(S(x)) = Kta-(1 - t)b-I exp(-t/c)dt, (4)

where

K-1 ta-1 (I t)b1 exp(-t/c)dt.

This distortion serves as the basis for other distortions when we assume certain values for
the parameters a, b, and c. It is worth mentioning here that a, b, and c may assume any
nonnegative values; however, McLeish and Reesor [6] have shown that 0 < a < 1, b > 1, and
c > 0 are sufficient to ensure concavity of the distortion function, and thus coherency of the
associated risk measure.

By setting b = 1 and allowing c -* co in (4), we obtain the proportional hazard (PH)
distortion given by

(gpH o S)(x) = Sa(x), 0 < a < 1. (5)

The attractive feature of (5) is its ease of computation. By setting a = 1 and allowing c --+ cc
in (4), we arrive at the dual power (DP) distortion given by

(gDPo0S)(xW l (1 S (x))', b>l1. (6)

As noted by Wirch and Hardy [12], this distortion has perhaps the most lucid interpretation.
For an integer value of b, the expectation risk measure corresponds to the expected value of
the maximum of a sample of b observations of X. Finally, the exponential (EX) distortion
depends only on the single parameter c and is given by

(gEXo0S) (X) 1 -eS(X)/c cŽ>O. (7)
1- e-1/c
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This distortion corresponds to an exponential random variable restricted to the interval [0, 1].
The question with which we concern ourselves in this paper is, "Why may one of

the distortion functions be preferable to the others in a given context?" The answer to this
question is that it depends upon the risk scenario under consideration. In Figure 1, each
of the single-parameter distortions is applied to an exponentially distributed risk X with
rate parameter A = 3.5. The gamma-beta distortion is also included since it uses all three
parameters a, b, and c. The undistorted exponential density is depicted by the solid line.
Among the single-parameter distortions, the proportional hazard (PH) distortion has the
greatest effect on the right tail of the distribution, thickening it considerably. The dual
power (DP) distortion, while inflating the right tail slightly, has a much more noticeable
effect on the left side of the distribution, shifting the mode away from zero. The exponential
(EX) distortion can best be described as a combination of the effects of the PH and DP. In
general, these effects are consistent for the other distributions considered in this paper.

3.50

3.00

, 2.50

S2.00
LL
>, 1.50 • ,. .

S1.00 - ,-

0.50 / - -

0.00
0.00 0.50 1.00 1.50 2.00

Risk

Figure 1: Distorted density when X Exp(3.5) with distortion parameters a = 0.6,
b = 1.5, and c = 0.8 for GB (solid is no distortion, - - - GB, ... PH, -.-- DP, .

EX).

From this plot, we can clearly observe why a particular distortion function might
be preferred over another. One may be more concerned with inflating the right tail rather
than altering the left-hand side of the distribution. In what follows, we compute the dis-
torted expectation risk measure using the three single-parameter distortion functions and
four common, parametric probability distributions. These will be used to study the effects
of distortions and their parameters in section 3.

2.3 Computing Distorted Measures

In order to elucidate the effects of distortion, we now apply the single-parameter dis-
tortions to a set of parametric probability distributions. The four distributions we consider
are: 1) exponential with rate parameter A (denoted Exp(A)); 2) Weibull with shape parame-
ter I0 and scale parameter 0 (denoted Weib(fl, 0)); 3) triangular on the closed interval [01, 02]

with mode m (denoted Tria(01, 02, m)); and 4) continuous uniform on the closed interval



[01, 02] (denoted U(0 1 , 02)). We select these four distributions because they are representa-
tive of risk distributions from a variety of disciplines including actuarial science, financial
and insurance risk, as well as reliability. Moreover, they span a range of distribution shapes
on both bounded and unbounded intervals. Finally, they have a relatively small number of
parameters that may be easily estimated using information that is likely to be available from
subject matter experts.

For each combination of distribution and distortion, we have attempted to summarize
analytical expressions for the distorted expectation risk measure given by equation (3). In
some cases, explicit expressions are attainable, while others remain as integral expressions
that may be evaluated numerically using standard methods. These results are recorded in
Tables 1 through 4.

First suppose the risk X is exponentially distributed with rate parameter A > 0. In
such case, the survivor function is given by

S( { e- ifx>0, A>0
0 otherwise (8)

The undistorted risk measure is p0 E(X) = A- 1 . Table 1 provides a summary of the
distorted survivor function and the distorted risk measure computed by equation (3).

Table 1: Distorted risk measures when X ,- Exp(A).

Distortion function S(x) E[X]

gPH -Aax (Aa)-1

gOP 1 - (1 -- eA)b f0[1 x)(1 - -x)b] dx

1-exp(-e-,'/c) 00 1-exp(-e-"/c) dxgEX 1-exp(-1/c) f0o 1-exp(-1/c)

Next, suppose the risk follows a Weibull distribution with parameters /3 and 0. In such case,
the survivor function is

S) exp((-x/O)") if x >0, /3> 0, 0> 0
S(x) 0 otherwise ' (9)

and the undistorted expectation is po = (0/83)r(,3-1), where r(.) is the gamma function.
Similarly, the distorted risk measures are summarized in Table 2.
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Table 2: Distorted risk measures when X " Weib(13, 0).

Distortion function S(x) J [X]

gPH a(/())

gDP 1 - (1 - e/(-x/Y))b fo[1 - (1 - e(-x/6)P)b] dx

1-exp(-e(-./O)O/c) oo1-exp(-e(-'/O)O /c) dx
gEX 1-exp(-1/c) fO 1-exp(-1/c)

The third distribution we considered was the triangular distribution on [01, 02] with mode
value m. The survivor function is given by

1 if x < 01

I- (X-01), if 01 < x < M
(02-01)(m-01)

S (X)= (10)
(02-_)

2  if m < X < 02
(02-01)(02-M)

0 if x > 02

where 01 < 02, 01 < x < 02, and 01 < m < 02. The undistorted expectation is po0 =

(01 + 02 + m)/3.
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Table 3: Distorted risk measures when X ", Tria(01, 02, M).

Distortion function S(x) k[X]

1- (2X_01)2 , 01 < m f< ( <- (X2-i)(m-2 )a dx

gPH
(82(2-X:)2 a M < _ 02 + (02-+M)(e -~

( 602 -el)e-m) ), m <x (02-++

.,(:_01)2 •b (•,_ 1)b+-

1 - ,(2-O1(m-O1) ) 01 < x < m m - O1 - (02Ol6)(2b+1) +

gDP

(02 (62-1)(62-m) m < X < 02 f -- (02-0)(02-M) dx

0, -- i f (O2-81)(m2-m) d
1 ex ¢-' = -°I) m• I- ( -1)

--exp(-1/c) ' 1 m1-exp(-1/c) dX
9EX

1--exp (2_m

1-exp(--/c) iM < x 5 02 + fm2 1-exp(-1/c) dx

Finally, when the risk X is distributed U(0 1, 02), the survivor function is given by

S =11- X-e1  if01•x 02  (11)S(x) 0 otherwise -

and the undistorted expectation is po = (01 + 02)/2. Table 4 summarizes the distorted
survivor function and risk measure.
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Table 4: Distorted risk measures when X - U(01 , 02)-

Distortion function S(x) E[X]

gPH (-02 -91)

9DP x (02-01)( )

E1-exp(-(1- 0,-, )/C) ( (1-c+ce'/-1
gEX 1-exp(-1/c) ( 1-e-)/c j

It is important to note that, for the intractable results in Tables 1-3, the distorted

risk measure may be approximated using standard numerical quadrature routines widely

available in standard computing environments. In section 3, we propose measures that may

be used to assess the effect of distortion and present a designed experiment to assist in

establishing guidelines for appropriate distortion function selection.

.3 Measuring Distortion Effects

In this section, we propose measures of effectiveness and efficiency to assist in select-
ing distortion functions and their associated parameters. But first we introduce a measure

of the magnitude of probability density displacement that results from the application of a
distortion function. This measure of density translation uses the median of the risk distri-

bution, namely that point at which the undistorted distribution is partitioned with equal
density on either side. After distorting the original risk distribution, the magnitude of den-
sity translated from the left of the undistorted median to the right of the median is computed

via the measure

Rg - (g oS)(0) (12)
S(O) (

where ¢ inf{x > 0 : S(x) = 0.5} denotes the median of the undistorted risk distribution,

S is the undistorted survivor function, and (g o S) is the distorted survivor function. Since

the distortion functions used in this research all shift density to the right, we see that

1 < Rg < 2,

since by this ratio measurement all of the density to the left of the median can theoretically

be shifted to the right of the median. However, R9 does not measure how "far" this density
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has been shifted - it only reflects the fact that it has been translated beyond the undistorted
median. Conversely, if Rg = 1, this implies that no distortion is applied whatsoever.

3.1 Effectiveness and Efficiency

The primary risk measure considered in this work is the expectation of the risk random
variable. Recall that expectation has a drawback in that low-frequency risk values tend to
be "dampened out" by the values with the greatest relative frequency. However, distortion
functions can provide the decision maker with the ability to control expectation to predictable
degrees. In choosing a distortion function for a specified risk distribution, the decision maker
would like to know how effective each candidate distortion function/parameter combination
is in inflating the expectation risk measure. After applying a distortion g and computing
the distorted expectation lig = E(X), the measures can be compared to determine which
distortion has the greatest effect on that risk distribution's mean. To develop the idea
further, we define the following measure.

Definition 1 The effectiveness of a distortion function is defined as the ratio,

K = pg/po (13)

where pg is the distorted risk measure obtained by applying distortion g and Po is the undis-
torted risk measure.

This ratio can, for example, be used to directly compare a unique distortion func-
tion/parameter pairing over different distributions, measuring that pairing's effectiveness in
changing each distribution's expectation as a percentage increase. It is obvious that K > 1,
and whenever K = 1, no distortion has been applied. Similarly, two different distortion
function/parameter combinations applied to two dissimilar risk distributions having equal
K-values are deemed to be equally effective in distorting (increasing) the expectation risk
measure.

Through numerical experimentation, we have observed clear contrasts in the way
different distortion function/parameter pairs shift density. As applied to a single risk dis-
tribution, one combination may require significant density shift before its K-value matches
that of another pairing which has a greater effect on the distribution's tail. Prototypical
examples are the PH and DP distortions. The PH distortion accumulates density in the
right tail while the DP accumulates it closer to the mode, so the PH generally has a greater
effect on expectation. A measure to reflect the magnitude of density shift has already been
established, namely R.. For this reason, it seems beneficial to combine the two measures K
and R. into a single measure of efficiency.

Definition 2 The efficiency of a distortion function g is defined as the ratio of the normal-
ized change in the risk measure to the normalized change in density given by

E = K/R 9 . (14)

The measure E should not be confused with the concept of statistical efficiency related to
parameter estimation. Intuitively, if a distortion function/parameter combination has a large
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effect on the expectation risk measure while shifting a relatively small magnitude of density,
then that pairing is highly efficient when applied to the given distribution.

One might ask, "Why would a decision maker care about the amount of density being
shifted? Why isn't the effectiveness of the distortion function/parameter combination all he
or she needs to know in making a selection?" Note that without the efficiency measure,
there would be no need to distinguish between two pairings with identical effectiveness; the
decision maker would feel that one is just as good as the other, even though the underlying
distribution is being changed in an entirely different manner depending on the choice. As an
example, consider Figure 2, which shows an undistorted Weib(2,2) distribution along with
its PH (a = 0.2) and DP (b = 31) distortions. Both of the distorted distributions have
K z 2.24, but the densities are hardly similar.

0.80

0.70
8>0.60 ,

p- 0.50*

LL 0.40 "

> 0.30\

Z 0.20 . .. ...

0 .0 .............0.00 ,, ""-

0.00 2.00 4.00 6.00 8.00

Risk

Figure 2: Distorted densities when X ,-,Weib(2,2) with distortion parameters a = 0.2 and
b = 31 (solid is no distortion, .... PH, - .-. DP).

Furthermore, the decision maker should care a great deal about how much density is
being shifted to achieve a desired increase in the resulting risk measure. More specifically, the
decision maker has solicited risk distributions from subject matters experts who presumably
possess expertise the decision maker is lacking. For every unit increase of the measure Rg,
the decision maker is taking an additional "step" away from the recommendations of his or
her advisors. To illustrate this point, consider again Figure 2 in which the distortions have
altered the original Weibull risk distribution into two radically different ones. Thus it seems
likely that the decision maker would prefer one of two possible courses of action in choosing
a distortion function/parameter combination:

1. achieve the maximum amount of increase in the expectation while affecting the original
risk distribution by (no more than) a specified amount (say 20%); or

2. achieve a specified increase in expectation, but affect the original risk distribution as
little as possible.

In either case, efficiency is the measure which provides the appropriate answer.
In order to investigate the impact of the distortion parameters on these measures, we

carried out a 3k-factorial designed experiment. For this purpose, we arbitrarily selected the
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following distribution parameters for each of the four distributions noted earlier: Exp(3.5),
Weib(2,2), Tria(1,7,4), and U(1, 7). The factorial design was used to study the effects of
each parameter (a, b, and c) in the gamma-beta distortion, and within this factorial design,
each of the involved parameters was required to have relatively equal power over the Rg
measure so that the interaction effects could be analyzed in a "fair" manner. Since we
chose a face-centered cube design, three equally-spaced values were used for each parameter.
Table 5 summarizes the selected distortion parameter values (or treatments). Recall that
when a = 1, b = 1, and c -* oo, no distortion is applied. We note that distortion is inversely

proportional to the parameters a and c while it is proportional to the parameter b.

Table 5: Selected distortion parameter treatments.

Distortion (Parameter) Selected Values R. (% density shift)

High 0.90 1.07 (7%)
Proportional Hazard (a) Mid 0.75 1.19 (19%)

Low 0.60 1.32 (32%)
Low 1.10 1.07 (7%)

Dual Power (b) Mid 1.30 1.19 (19%)
High 1.50 1.29 (29%)
High 3.60 1.07 (7%)

Exponential (c) Mid 2.20 1.11 (11%)
Low 0.80 1.30 (30%)

Table 6 records the efficiency and effectiveness measures for the risk distributions and
single-parameter distortions studied in this paper. In general, as the amount of distortion
is increased the efficiency is decreased. There are three exceptions to the general rule,
however, and the efficiency measures for these three cases are highlighted in bold face type.
Specifically, in the case of the exponential distribution, an increase in distortion results in
an increase in efficiency when using the PH and EX distortions. For the PH distortion
applied to the Weibull distribution, efficiency at first decreases as distortion is increased,
then changes course and begins to increase again; a brief investigation to verify this result
showed that the least efficiency occurs at about a = 0.72.

Using Table 6, some general rules (within the limits of this study) can be established
for selecting a distortion function to apply to a distribution. Recall that a decision maker
would likely be interested in either (i) achieving the largest possible increase in the mean
given a specified maximum shift in density, or (ii) shifting the density by the smallest amount
required to achieve a specified increase in mean. Using Table 6, some answers may be
available when objective (i) is of primary importance. Table 7 was created from Table 6 by
comparing efficiency across categorized values of Rg. For example, looking at the triangular
distribution in Table 6, the low-distortion efficiency values are 0.9602 for the PH (a = 0.9),
0.9614 for the DP (b = 1.1), and 0.9579 for the EX (c = 3.6). Since the DP value is the
highest, this was entered into the appropriate cell of Table 7. Thus in the case of objective
(i) when assuming a triangular risk distribution, the DP distortion is the most efficient
(although the values are relatively close in this case).
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Table 6: Effectiveness and efficiency measures for all distortion/distribution pairings.

Distortion -- PH DP EX

Measure af a=0.9 a =0.75] -=0.6 b b=1.11 b =1.3 b =1.5 c =3.6 c =2.2 c=0.8

Exp(3.5), [to = 0.285714
P.Lg 0.3175 0.3810 0.4762 0.3036 0.3363 0.3658 0.3058 0.3189 0.3791
Rg 1.0718 1.1892 1.3193 1.0670 1.1877 1.2929 1.0693 1.1131 1.3027
K 1.1111 1.3333 1.6667 1.0625 1.1772 1.2803 1.0704 1.1161 1.3270

K/R, 1.0367 1.1212 1.2633 0.9958 0.9911 0.9903 1.0010 1.0027 1.0186

Weib(2,2), pzo = 1.772454
fg 1.8683 2.0467 2.2882 1.8448 1.9713 2.0788 1.8449 1.8911 2.0971

Rg 1.0719 1.1895 1.3199 1.0670 1.1879 1.2932 1.0694 1.1133 1.3032
K 1.0541 1.1547 1.2910 1.0408 1.1122 1.1729 1.0408 1.0669 1.1831

K/Rg 0.9834 0.9707 0.9781 0.9755 0.9362 0.9069 0.9733 0.9584 0.9079

Tria(1,7,4), 4o = 4.000
Ag 4.1163 4.3218 4.5777 4.1033 4.2793 4.4246 4.0971 4.1586 4.4275
R9 1.0718 1.1892 1.3193 1.0670 1.1877 1.2929 1.0693 1.1131 1.3027
K 1.0291 1.0804 1.1444 1.0258 1.0698 1.1062 1.0243 1.0396 1.1069

K/Rg 0.9602 0.9086 0.8675 0.9614 0.9007 0.8556 0.9579 0.9340 0.8497
U(1, 7),40 = 4.000

lug 4.1579 4.4285 4.7500 4.1428 4.3913 4.6000 4.1387 4.2265 4.6093
R9 1.0718 1.1892 1.3193 1.0670 1.1877 1.2929 1.0693 1.1131 1.3027
K 1.0395 1.1071 1.1875 1.0357 1.0978 1.1500 1.0347 1.0566 1.1523

K/Rg 0.9699 0.9310 0.9001 0.9707 0.9243 0.8895 0.9676 0.9492 0.8846

In examining Table 7, note once again that the difference in the R. values between the
PH and DP distortions (Rg ; 1.19) and the EX distortion (Rg z 1.11) at the "moderate"
distortion level could be significant in the final selection of a distortion function at that
level. In addition, note that decision maker objective (ii) could be answered just as easily
as objective (i), but the original response surface study which facilitated the distortion
parameter choices would have had to fix the distorted expectations rather than the amount
of density shift being applied.

Table 7: Suggested distortions for selected distributions (via efficiency).

Low Distortion Moderate Distortion Heavy Distortion
Risk Distribution (0-10%) (11-20%) (21-30%)

Exp(3.5) PH PH PH
Weibull(2,2) PH PH PH
Tria(1,7,4) DP EX PH

U(1, 7) DP EX PH
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3.2 Some Distortion Selection Guidelines

In this subsection, we summarize some conclusions that can be drawn from our simple
designed experiment regarding the selection of distortion functions and their associated pa-
rameters. It is important to note that these results are not generalizable to all risk scenarios,
but illustrate the means by which one might make such selections in a specific scenario.

1. When an exponential or Weibull distribution is appropriate for the risk scenario, the
PH distortion is drastically more efficient than the DP or EX. In the case of the
exponential distribution, the PH also leaves the mode in place at zero, while other
distortions "pull" the mode away from zero.

2. For the triangular and uniform distributions, no distortion appears to be as totally
dominant (in efficiency) as the PH is for the exponential and Weibull. For each of
these bounded distributions, the DP distortion is the most efficient in cases where only
a small amount of distortion is required; questionably, the EX is more efficient in the
vicinity of Rg = 1.15; and the PH is most efficient when larger amounts of distortion
are required.

3. If higher moments are desired from the distorted distribution (e.g., the variance may
well be of concern), then the DP and EX distortions may be preferred over the PH.
Particularly in the case of the Weibull and triangular distributions, the DP builds up
the area around the mean, likely reducing the impact on variance.

4. The parameter b of the DP distortion has a meaningful interpretation. In particular,
it corresponds to the expected value of the worst outcome when b samples are taken
from the random variable [12]. If the decision maker appreciates this interpretability
but wishes to use either the PH or EX distortion, a value of b can be obtained which
results in a DP match in pq to the specified a or c parameter. In this manner, the
interpretability can be "loaned" to the PH and EX distortions through a single extra
step.

In section 4, we illustrate the means by which distorted risk measures may be employed to
incorporate the risk of capability shortfalls to in a resource allocation problem.

4 Resource Allocation and Distortion

Suppose there are nine distinct areas of military capability that are of interest to
a decision maker. A shortfall in capability area i creates a risk (say Xi) with undistorted
risk measure E(Xi) and distorted risk measure E(Xj), i = 1, 2,..., 9. However, to address
shortfalls in capability (i.e., to mitigate risk), six distinct systems may be acquired. Let
mij, denote the percent shortfall mitigation to area i obtained from acquisition of system
j, for i = 1, 2,..., 9 and j = 1, 2,..., 6. For instance, if mi, = 0.50, then the purchase of
system j reduces the shortfall in capability area i by 50%. Let xj, j = 1, 2,..., 6, represent
the proportion of resource j to be acquired. These values are the decision variables in the
mathematical programming model. We assume the decision maker can choose to acquire
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some or all of a risk-mitigating capability so that 0 < xj < 1, j = 1, 2,..., 6. Next, define cj
as the cost of acquiring one complete unit of resource j. The decision maker's objective is to
maximize the risk mitigation by strategically choosing the proportion of various resources to
purchase, subject to a fixed budget B. This may be achieved by solving the linear program
(LP),

9 6

Maximize Y k
t= j=1

6

subject to E c. x3 _ B
j=1

xj C: [0, 1], j = 1, 2,..., 6. (15)

An intuitive explanation of the LP is as follows. Our decision maker would like to selectively
apply distortion to the various risk distributions in order to better reflect his or her own risk
priorities. For this reason, in the above formulation, we weight each mij by the distorted

expectation risk measure, namely k(Xi), i = 1, 2,..., 9. If we instead use the undistorted
values, E(Xi), i = 1, 2,...., 9, this corresponds to solving the problem using only the infor-

mation provided by subject matter experts (i.e., ignoring the decision maker's preferences).
If we set E(X1 ) = 1 for each i in the above formulation, this is equivalent to ignoring the
risks altogether. It is worth noting that Woodward [13], used an integer programming (IP)
approach and a distorted expectation risk measure, but uniformly applied the DP distortion
function with a constant parameter b across all capability areas. Our approach permits the
decision maker to vary the type and level of distortion in each area.

We now illustrate solving the LP using a specific problem instance. We assume the
budget is fixed at B = 25 monetary units. Suppose the decision maker is least risk averse in
capability areas 8 and 9, somewhat risk averse in areas 4, 6, and 7, and most risk averse in
areas 1, 2, 3, and 5. The weights summarized in Table 8 reflect the decision maker's degree
of risk aversion in each area. In particular, a higher weight represents greater risk aversion.
Also included are nine distributions assumed to originate from nine teams of subject matter
experts. Specifically, these distributions correspond to the risk associated with shortfalls in
the respective areas of military or homeland security capability.

Table 8: Notional data for illustrative example.

Area (i) I Weight I Distribution I yo = E(Xi)
1 20 Weib(3.5,3.3) 2.9692
2 30 Tria(0,4.67,3.2) 2.6233
3 19 U(0,4) 2.0000
4 13 Tria(0,4,2) 2.0000
5 46 Weib(2.04,1.74) 1.5416
6 6 Weib(3.08,2.84) 2.5391
7 6 U(1, 3) 2.0000
8 0 Exp(0.45) 2.2222
9 0 Tria(0,1.875,0.5) 0.7917
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We assume the decision maker would like to impose one of two priorities: (i) obtain
the greatest possible increase in the expectation risk measure given a specified shift in den-
sity, or (ii) minimize the magnitude of density shifted to achieve a specified increase in the
expectation. While either priority may be considered, we will proceed on the assumption that
the decision maker prefers objective (i), and that the degree of risk aversion (i.e, the weights
in Table 8) assigned to an area corresponds to a specific shift in density Rg. For instance,
for Area 1, the risk distribution is assumed to be Weib(3.5,3.3), and the decision maker has
chosen, based on available intelligence and projections, to shift 20% of the density beyond
the median, or RF, ; 1.20. At this level, using this distribution, the PH distortion is the most
efficient. Setting a = 0.735 results in a distorted expectation of pg-= 3.2422. We continue
in this fashion for all risk distributions, applying distortions based on the recommendations
of Table 7. Table 9 summarizes the results of selectively distorting as per the pre-specified
preferences of the decision maker. In this table, the column entitled, "Distortion" is the
selected distortion function and its associated parameter value.

Table 9: Selection of distortion functions and parameters.

Area (i) I Distribution I R, Distortion I u, = E-(Xi)
1 Weib(3.5,3.3) 1.20 PH, a = 0.735 3.2422
2 Rria(0,4.67,3.2) 1.30 PH, a = 0.062 3.0197
3 U(0,4) 1.19 EX, c = 1.300 2.2539
4 Tria(0,4,2) 1.13 EX, c = 1.900 2.1223
5 Weib(2.04,1.74) 1.46 PH, a = 0.450 2.2801
6 Weib(3.08,2.84) 1.06 PH, a = 0.915 2.6134
7 U(1, 3) 1.06 DP, b = 1.090 2.0431
8 Exp(0.45) 1.00 N/A 2.2222
9 Tria(0,1.875,0.5) 1.00 N/A 0.7917

Table 10 summarizes the impact of each system on mitigating capability shortfalls. The
table elements correspond to the percent shortfall mitigation that each potential acquisition
addresses in all nine areas. For example, system 2 mitigates the risk of a shortfall in area 1
by 19%.
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Table 10: Percent shortfall mitigation.

Area (i) II ] mi,2 [ mi,3 mi,4 ?fmi,5 ____,_

1 0.00 0.19 0.00 0.26 0.26 0.00
2 0.46 0.21 0.00 0.12 0.00 0.00
3 0.34 0.19 0.00 0.05 0.00 0.23
4 0.14 0.42 0.00 0.36 0.00 0.05
5 0.10 0.21 0.92 0.30 0.00 0.10
6 0.00 0.00 0.54 0.00 0.00 0.11
7 0.16 0.00 0.00 0.00 0.25 0.00
8 0.19 0.00 0.00 0.00 0.31 0.48
9 0.00 0.00 0.00 0.00 0.33 0.36
cj 7.0 7.0 10.0 8.0 8.0 9.0

The last row of Table 10 is the cost associated with the purchase of a complete system.
Assuming a budget of 25 units, Table 11 summarizes the optimal solution to the resource

allocation problem. The "Unweighted" solution assumes that we do not weight the mitigation

terms by a risk measure at all. The rows entitled, "Weighted, Undistorted" and "Weighted,
Distorted" provide the solutions using undistorted and distorted risk measures, respectively.
In Table 11, an entry of 1.0 represents a recommendation to purchase a complete system, a

decimal represents a partial purchase, and 0.0 represents no purchase.

Table 11: Optimal solutions under various scenarios.

Weighting Scheme I X1 I X2 X3 I X4 X5 I X6

Unweighted 1.000 1.000 0.200 0.000 0.000 1.000
Weighted, Undistorted 1.000 1.000 0.300 1.000 0.000 0.000

Weighted, Distorted 1.000 1.000 1.000 0.125 0.000 0.000

The different optimal solutions for the three scenarios agree with intuition. In particular,
we note that systems 1 and 2 are consistently chosen because they significantly mitigate
the risk of shortfalls in capability areas 2-5 which the decision maker has deemed to be

relatively important areas. On the contrary, systems 5 and 6 are seldom chosen due to the
fact that they do not impact the critical areas (2-5) in a significant way. System 3 becomes

an important asset once the decision maker's preferences are included because it has the
potential to mitigate risks in a shortfall of capability area 5, the area in which the decision

maker is most risk averse. In section 5, we provide some concluding remarks.

5 Conclusions

The properties of distortion functions have been well documented in the current risk

analysis literature. However, the appropriate selection of a distortion function and its cor-

responding parameters is a problem that has not yet received much attention. This paper
takes a small, initial step toward addressing this important issue. Our primary objective
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was to provide some practical recommendations for risk analysts who seek to use distor-
tion functions to adjust the expectation risk measure to better account for low-likelihood
yet potentially catastrophic events. For our purposes, we considered risks that may arise
from shortfalls in military or homeland security capabilities which may result in obvious
detrimental outcomes.

We have provided a procedure, via analytical and empirical methods, for the selection
of distortion functions and their parameters on a set of common risk distributions. The
use of distortion functions provides a tractable and documentable procedure to investigate
the shifting of risk in the face of catastrophic events. Two new measures, efficiency and
effectiveness, were proposed to distinguish the effects of different distortions and to make
basic recommendations regarding the appropriateness of certain distortion functions and
parameters using specific risk distributions. Additionally, a linear programming model was
formulated to illustrate the means by which the distorted expectation risk measure can be
used to influence the acquisitions plan of a risk-averse decision maker.

There are some obvious shortcomings in this work, and we note those here. First,
the selection guidelines that we provide are limited to the risk distributions considered in
this paper. Of course, it will be important to consider a wider range of distributions and
to study the interaction between distribution and distortion function parameters. More-
over, we considered only the expectation risk measure, and it may prove useful to consider
other coherent measures in the future. Another limitation stems from the use of the quan-
tity Rg which measures only the magnitude of density shifted beyond the median of the
undistorted risk distribution. This measure really does not tell us how "far" beyond the
median the density has been translated. Other measures should be considered, as should a
more comprehensive risk measure such as those described in [7]. It may also be instructive
to investigate the relationship between the skewness of the risk distribution (perhaps using
Pearson's skewness coefficient) and either the percent change in expectation or R.. There ap-
pears to exist some correlation between Pearson's coefficient and the normalized mean. That
is, it appears that certain distributions (the exponential is one case) provide more change in
mean than others when distortion is applied. Finally, further research regarding the effects
of distortion on variance may significantly impact the selection of distortion functions for
specific risk scenarios.
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