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1. Introduction

Let G = (V,E) be a planar graph embedded in the plane. We assume
that the embedding is specified by giving an orientation to G [11]. Planar
graph isomorphism can be reduced to finding the triconnected components of
the two graphs involved, partitioning these components into isomorphism
equivalence classes and testing the isomorphism of the correponding 3-
connected trees [8]. Since fast parallel algorithms for tree isomorphism are
known ([11],[{12]), we concentrate here on the problems of identifying the tri-
connected components of planar graphs and on testing the isomorphism of tri-
connected graphs. The latter can be viewed as a special case of the general

coarsest partitioning problem {1] which will also be considered in this paper.

We present several new efficient parallel algorithms for the above prob-
lems. The complexity of these algorithms will be examined in the context of
two models of parallel computation: the concurrent-read exclusive-write paral-
lel random access machine (PRAM), and the two dimensional array of proces-
sors. We assume in the rest of the paper that the reader is familiar with the
basic parallel techniques for both of these models. In addition, some familiar-

ity with graph theory will also be assumed.

For the array model, we have obtained optimal algorithms for several
nontrivial problems related to planar graph isomorphism and which are
important on their own. Suppose that the array of processors consists of an
vn X+v/n grid of processors where the input is of size n. Then an O (\/rT)
time algorithm for finding a good separating cycle was developed. This algo-

rithm can be used to find a depth-first spanning tree of a planar graph in



O (Vn ) time. The algorithm can also be implemented on a PRAM with O(n)
processors and O (log3n ) time, which is an improvement over the O (n*) pro-
cessors and O (log3n ) time of Smith [13] (even excluding the part that com-
puted the planar embeddings). Finding the triconnected components of a
planar graph can also be done in O (\/n_ ) time on the array which translates
into an O (log3n ) time algorithm with O (n) processors on the PRAM. Our
algorithm is based on a new divide-and-conquer strategy that uses several
nontrivial facts shown to hold for the triconnected components of planar
biconnected graphs. Independently Miller and Ramachandran [10] have
developed a fast parallel algorithm for finding the triconnected components of
an arbitrary graph with O (n) processors. However their algorithm does not

seem to be implementable on the mesh.

Another interesting implementation we developed is a fast array algo-
rithm for the single function coarsest partitioning problem [1]. None of the
known sequential algorithms seem to translate into O (\/n_ ) mesh algorithm.
Our O (Vn ) implementation makes use of several nontrivial constructions.
For example, given a sequence @ ,a,,....,0, , the mesh can find the smallest i
such that there exists a ] satisfying a,a, - ¢,= (a,a, - ¢;) in

O (Vn ) time.

We also present an isomorphism algorithm for triconnected planar
graphs which runs in time O (log?n) time with O (n?) processors. Notice
that the best known previous NC-algorithm uses O (n?) processors [11].
Therefore planar graph isomorphism can be done within the same time and

processor bounds. On the other hand, we show that the general coarsest par-



titioning problem is in NC. This algorithm can be used to solve the problem
of minimizing the states of a finite state automaton and the equivalence prob-

lem of any two finite state automata.

2. Finding a Separating Cycle

An important strategy for solving planar graph problems is based on a
divide-and-conquer approach that results from identifying a good separator.
Our method for determining the triconnected components of a planar graph
depends on finding a separating cycle C that, unlike other known separator
cycles, separates the edges of the planar graph in such a way that either C is
a face with a large number of edges or the number of edges inside or outside
C is a constant fraction of the total number of edges. The algorithm is given
below. For a given cycle C, Int(C) and Ext(C) denote the sets of edges in the

interior and exterior of C respectively.

Algorithm Cycle

Input: A biconnected planar graph G=(V,E) given by {(f,e)| e is an edge of
face f}, for all interior faces f.
Output: A set of edges C that form a cycle such that either

() C is a face such that | C | _>_-Z-:—

or

() ¢+ [It(C)| <1 and | Bat(0)| < -

-

where |E|=m.

1) If there exists a face f such that | f | 2%, then set C=f and exit. Else



go to step 2.

2) Construct a modified dual G * of G.
a; sort according to (e,f), where e is an edge of the face f.

b) create edge (f 1,/ o) for every pair (e,f ;) and (e ,f 5).
c) sort edges (f ;,f o) and delete duplicates.

3) Find a spanning tree T of G * and make it directed with an arbitrary root
/- For each node f in T, let size(f) be the number of edges in the face f.

4) For each node f in T compute:

SIZE(f ) = 3 size (f 4)

fq v8 a descendant of f

5) Identify a node v of T such that
8
_;n_ <size (v)+ Y SIZE (v;) < E;ﬁ_

§ =1
where the set {v; | 1<1 <s }is a subset of the children of v.

6) Set C= the exclusive-OR of the edges in v and the edges in
{v; | 1<¢<s } and their descendants.

We are ready for our first theorem.

Theorem1l : Given a biconnected planar graph, Algorithm Cycle correctly
finds a separating cycle satisfying the conditions stated above. Moreover, the

algorithm can be implemented to run in O (Vn ) time on a Vo Xv/n  mesh.

Proof: Clearly if the condition in step 1 holds then we are done. Hence

assume that | f | <—1£—, for all faces f.

Clavm: v of step 5 exists.

Proof of Claim: Start from the root f, of T and go down the tree along

a path containing nodes such that SIZE (v) > —37"2— Let u be such that



SIZE (u ) > —:-;:? and for all sons u;! s,1<¢<t, SIZE (v;) < i;_n_ If
there exists a j such that SIZE (u;) > -’f-, then u; with all its children

satisfy the conditions of step 5. Else assume that SIZE (u;) < -'—:—, for all

i. Notice that

SIZE (u) = size (u) + zt; SIZE (v;) > M

1=1

size (u) < l;‘- and SIZE (v;) < -’5‘- for all i.
Clearly, v = u satisfies the condition stated in 5).

We now show that the cycle C produced at step 6) satisfies the desired

properties. It is clear that C satisfies

R<lc|+2lm(o)] <2

Using the above inequality, a simple argument will show that C is a

separating cycle.

Steps 1-3 can be easily implemented on the mesh in O (Vn ) time. Step
4 can be done by the Euler tour technique. Wrap a chain around the tree and
assign weights appropriately. Compute the rank of each node ([2]). Step 5 can

be done as follows. Sort the pairs (v, ,u ) according to u, where u; is the son
. 3m 3m
of u. Identify a node u such that SIZE (u )>T and SIZE (u;) < -

From this it is easy to complete step 5. °



3. Depth-First Spanning Tree

Smith has presented an algorithm in [13] to determine a depth-first span-
ning tree of a planar graph in O(log3n ) using O(n4) processors even excluding
the part that finds the planar embedding. Next we present an algorithm
essentially deduced from Smith’s that runs in O(Vn ) time on the mesh. This
algorithm can be implemented on 2 PRAM in O(log®n ) time and O(n) proces-

sors. A brief sketch of the algorithm is given below.

Algorithm Depth-First Search

Input: A planar connected graph given by {(f,e)| e belongs to face f} and a

vertex v to be the root of the Depth-First Spanning (DFS) tree.

Output: A set of edges forming a DFS tree T of G rooted at v.

1. Construct the block-cutpoint graph. All the bridges! belong to T. Root this
tree at v if v is a cutpoint or at the vertex b(v) corresponding to the bicon-
nected component containing v.

For each vertex i of T corresponding to a biconnected component B;, find a
cutvertex v; of B; that is closest to v (or b(v)).

2. For each (B;,v; ), do the following:

a) Use Algorithm Cycle to find a separating cycle C; of B;.
b) Find a path P; from v; to C;.

Remark: This can be obtained by finding a spanning tree T; of B; with
root v;. Find closest vertex w of C; to v;. P; is the path from v; to w
in T;.

(©) Construct path Q;, = P; C;-an edge e in C; with one endpoint in
P; . Root this path at v;. Include Q; in T. Find the depths of the ver-
tices in @; (needed laters.

d) Find the connected pieces of B; -Q; .

%e) From each connected piece, add an edge to T incident on @; and

n this case, 2 dridge is an edge whose removal disconnects the graph.



furthest from v, . A
(f) Remove all edges between the connected pieces and @; and apply the
algorithm recursively to each resulting connected component.

It is not hard to establish the above algorihtm’s correctness and complex-
ity. We next address the problem of finding the triconnected components of a

planar graph.

4. Determining the Triconnected Components

There are several ways of defining the triconnected components of a
graph, all of which are more or less equivalent. We will essentially adopt the

definitions given in [6].

Let H=(S,T) be a subgraph of a given biconnected multigraph G=(V,E).
Suppose that E is partitioned into a set {E |,E,...,E; } such that two edges e
and g belong to the same partition if, and only if, e and g are on a path in
which none of its internal vertices belong to S. Then the sets E ,E,,...,E, are
called the bridges of G relative to H. A pair of vertices {u,v} form a separa-
tion pair if there are at least two bridges of G with respect to {u,v} except in
the following two cases: (i) G has exactly two bridges and one of them con-
sists of a single edge, (ii) there are exactly three bridges each of which consists

of a single edge.

A biconnected multigraph is iriconnected if it has no separation pairs.
Otherwise decompose the edges into two sets E’ and E” such that a bridge is

contained in only one of them and |E'|> 2, |[E”| >2. Augment each of the
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corresponding subgraphs G, and G, with the virtual edge {u,v}. G, and G,
are called split graphs with respect to {u,v}. We can continue the splitting
process until no more splits are possible. The subgraphs obtained are called
the split components of G. If the triple bonds and the triangles are merged to
bonds and polygons, the resulting components are called the triconnected

components of G. It is shown in [6] that these components are unique.

Since a graph may have ”"too many” separation pairs, we define a
minimal complete set of separation pairs to be a set S of separation pairs such

that :

(i) If {u,v} is a separation pair of G, then either {u,v} isin S or u and v

belong to two distinct bridges relative to some separation pair in S.

(ii) Given any two separation pairs {u,v} and {r,s} in S, then r and s

belong to the same bridge relative to {u,v}.

It is clear that such a set of separation pairs exists. Notice that in general
many such sets may exist. Our algorithm for identifying the triconnected

components will start by finding a complete set of separation pairs.

Identifying the separation pairs of a planar graph is a key step in deter-
mining the triconnected components. Our algorithm is based on several facts

that hold only for planar biconnected graphs.

Lemmal: Let {u,v} be a separation pair of a planar biconnected graph
G=(V,E). Then u and v must belong to a face { for any planar embedding of

G.
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Proof: Suppose u belongs to the faces f ;,f o,...,f, and suppose that v
belongs to f 4 ,fo ,..., [ , where all these faces are distinct. The
faces form a plane mesh. Since {u,v} is a separation pair, there must exist two
edges e; and e, incident on u such that every path containing e, and e,
must contain either u or v. Clearly, this is not the case here, and hence there

is a face containing u and v. o

Note that Lemmal does not hold if G is not biconnected.

Theorem?2: Suppose {u,v} is not a multiple edge. Then {u,v} is a separation

pair if and only if either (i) or (ii) holds.

(i) u and v belong to three or more distinct faces, one of which could be the

exterior face.

(ii) {u,v} is not an edge, u and v belong to two faces, one of which could be

the exterior face.
Proof: By Lemmal we know that u and v must belong to a face f.

Let {u,v} be a separation pair. Let C; be the cycle determined by f. Consider

the bridges of G relative to C; . Two cases arise:

(a) u and v are the only vertices of attachment of a bridge B. In this case,

it is clear that (i) holds.

(b) Let p, and p, be the segments of C; determined by u and v. Clearly
neither p,; nor p, consists of a single edge. All bridges must have their

vertices of attachment either in p, or in p 4. Clearly (ii) holds in this case.
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Now suppose that (i) holds, one of the bridges must have u and v as the only

vertices of attachment. Hence {u,v} is a separation pair.

Suppose (ii) holds. If the other face turns out to be the exterior face, then
{u,v} is clearly a separation pair. Otherwise, let 7 be the second face. Let w
be a vertex of C; that belongs to f— Since {u,v} is not an edge, w exists.

Hence {u,v} is a separation pair. o

We are ready to state the overall strategy.

Algorithm Separation Pairs
1) Find a separating cycle C.
2) Find separation pairs on C ( Cycle Separation Pairs ).

3) Find separation pairs {u,v} such that uis on C and v is on a bridge rela-
tive to C ( Cycle-Bridge Separation Pairs ).

4) Apply the algorithm recursively to each bridge with its vertices of attach-
ment collapsed to a big vertex. Remove all the separation pairs that include a
big vertex.

Before elaborating on how to do steps 2 and 3, we state the following
lemma that establishes the correctness of the above algorithm given that we

can do steps 2 and 3 correctly.

Lemma2: Let C be a cycle in a planar biconnected graph G, and let B be a
bridge of G relative to C with vertices of attachment « j,u o,...,%; , kK >2. Let
B be obtained from B by collapsing u,,u4,...,4; into a single vertex S. If

{x,y} is a separation pair of G, x and y are in B but neither is in C, then
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{x,y} is a separation pair in B.

Proof: Since {x,y} is a separation pair, x and y must belong to at least 2 or 3
distinct faces. Notice that if {x,y} is not an edge in B, {x,y} will not be an

edge in B . Hence the lemma follows. ®

We now show how to do each of steps 2 and 3. Before we need to intro-

duce some more terms.

Let B,,B,,...,B; be the bridges relative to a cycle C of G. The segments
of B; are the partitions of C induced by the vertices of attachments of B;.
Two bridges conflict if the vertices of attachment of one are contained in at
least two segments of the other. The transitive closure of the relation
”conflict” yields the big bridges of C. We are now ready for describing the

implementation of step 2 above.

Algorithm Cycle Separation Pairs

Input: A planar embedding of a planar biconnected graph G and a separating
cycle C.

Output: A minimal complete set of separation pairs which lie on the cycle C.

1) Find all the bridges of G relative to C.

2) Collect all adjacent degree two vertices on C and identify a corresponding
set of separation pairs. Remove all such vertices and replace each adjacent set
by a virtual edge.

Remark: Let 74,2 1,002, ,2; 41 b® 2 maximal set of adjacent vertices (in order)
on C such that z; is of degree two, 1<t <t. Then output {zo,z; }, + >2 as
separation pairs, remove all the degree two vertices, and add the virtual edge

{z o,l't+1}-

3) For each bridge that has exactly two vertices of attachment u and v and



15

Claim: The segments induced by u and v are not connected by a path outside
C if and only if the vertices of attachment of any big bridge belong only to
one of the segments.

It follows from the above that if u and v to the same bridge they will be
identified as a separation pair in step 6. Otherwise step 9 will either determine
that {u,v} is a separation pair or that u and v belong to two distinet bridges

relative to some other identified separation pair.

Finding the bridges and the big bridges can be done in O(\/n_) time fol-
lowing the connected components strategy .If we make a rooted tree out of C
(with an extra edge from the root to a node), we can implement steps 6-9

efficiently. e

We now show how to do step 3 of the algorithm Separation Pairs.

The following fact will be needed.

Lemma 4: Let C be a cycle and let B be an outerbridge of C with vertices of
attachment u,u,...,u; , k >2. Suppose that {u;,u} and {u;,v} (15%7) are
separation pairs such that u; and v are in two distinct bridges of the edges in
B and C relative to {u;,u}. Then there exists a face { containing v;, u;,u and

V.

Proof: Suppose that {u;,u} is not an edge. Consider the interior faces
f 15 2./ containing u; and u. Each bridge relative to {v; ,u} must consist
of a segment q determined by {u; ,u} in one of the faces f;' s plus all the
faces sharing an edge with q and all faces connected to these faces in the dual

graph. u; and v must be in one face. Hence u; and u must be in one of the
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fi' s e

Algorithm Cycle-Bridge Separation Pairs
Input: A planar embedding of a planar graph G and a separating cycle C.

Output: The set of separation pairs with one endpoint on C and the other out-
side C.

1) Identify the set F of interior faces that contain a vertex on C and another
outside C.

2) For each face f in F, create the triplets (u,v,f), where u is a vertex of
attachment in f, v is a vertex of f but not on C, and u and v belong to a
bridge. Notice that any face f in F can contain at most two vertices of attach-
ment in a single bridge.

3) Sort the triplets {(u,v,f)}.

4) Identify pairs {u,v} such that there are two or three triplets of the form
(u,v,f,; ), 2<t <3. Identify the corresponding separation pairs.

5) For each face f in F with two vertices of attachment v, and u,, and con-
taining separation pairs {u,,v; } (1<{<s) and {u,w; }, (1<k <t), reduce
the set of separation pairs to a minimal complete set (i.e. no pair will be con-
tained in two distinct bridges with respect to any other pair).

Lemmab: The above algorithm correctly finds the separation pairs {u,v} -
such that u is on C and v is on a bridge relative to C. The algorithm runs in

time O(Vn ).

Proof: By theorem 1 a separation pair must belong to two or three distinct
faces. Steps 1-4 of the above algorithm determine all such pairs such that one
vertex is on C and the other is on a bridge. Based on Lemma4, step 5

correctly eliminates the redundant separation pairs. It is a simple matter to
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establish the running time. ®

Theorem3: Given a planar embedding of a planar graph, it is possible to
determine a complete set of separation pairs in O(\/_n—) time on a vVn Xvn

mesh of processors.

The main problem with determining the triconnected components using a
separating cycle is that we need to identify the triconnected pieces of each
bridge plus the segments of C determined by the bridge. However, the result-
ing straightforward divide-and-conquer approach algorithm will be inefficient.
For the separating cycle found by our algorithm, we need only to worry about
outer bridges. What we do is to collapse the vertices of attachment of each
outer bridge into a big vertezx. In this case, the triconnected components of an

outer bridge may have been altered. We handle this problem as follows.

Algorithm Split Components of a Modified Bridge

Input: A bridge B of a planar graph G relative to a cycle C with its segments
on C and the split components of B when all its vertices of attachment have
been collapsed into a big vertex S.

Output: The split components of the subgraph of G determined by B and its
corresponding segments on C.

1) If B has exactly two vertices of attachment with C, then replace C with a
virtual edge connecting the two vertices of attachment.

2) Remove all the split components that do not contain the big vertex S. Add
a virtual edge for every separation pair in the remaining piece. Let B be the

resulting subgraph.

3) Remove all edges e=(v,w) such that {v,w} is a separation pair. Identify the
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correct new faces of B .
4) For each face [ of B containing at least one separation pair, do

If f contains one vertex of attachment v and the separation pairs {v,u,},
{v,ug},..., {v,u; } (See figure below), then create k+1 new faces as shown
in the figure. Each f; consists of virtual edges (v,u;_,) and (v,u;) plus
segment [u;_;,u;] of the cycle C,; determined by f. (v,4;_;) and (v,%;)
belong to f; and to the exterior face, 1<t <k +1. Similarly we can
define f ; and f; ., each containing one virtual edge only.

If f contains two vertices of attachment, then a similar scheme will work.
5) Remove duplicate pieces (i.e. pieces that have the same sets of edges).
6) Find the connected pieces of the dual of the subgrpahs obtained. Each such

a piece determines a splitting component. Put back all the edges whose end-
points form a separation pair.

Lemma6: The above algorithm correctly identifies the splitting components

of the subgraph determined by the bridge B and its segments on the cycle C.

Proof: It is clear from Lemma2 that the modifications done in step 1 will not
change the splitting components of the subgraph. Now observe the following

facts:

Factl: There exist no separation pairs with neither endpoint on C.
Fact2: Let {u,v} be a separation pair such that u eC. Then for any splitting
corresponding to {u,v}, one split component will contain no vertex of C

except u.

It is clear that the splitting process performed at step 4 is legal with the
exception of creating duplicate split components. Step 5 takes care of the
duplicates. Step 6 identifies the pieces obtained after the splitting process.
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It is easy to deduce the triconneted components once the splitting com-

ponents have been identified. The overall algorithm is given below.

Algorithm Triconnected Components
Input: An embedding of a planar biconnected graph G=(V,E).
Output: The triconnected components of G.

1) If the graph is a set of multiple edges, or a triangle or empty, then exit.
Else do the following.

2) Find a partitioning cycle C and identify the corresponding cycle and cycle-
bridge separation pairs.

3) Identify the triconnected pieces induced in steps 2,4, and 9 of algorithm
Cycle Separation Pairs.

4) Split off each big bridge and add to it the appropriate virtual edges.

5) Decompose each subgraph introduced in step 3 into inner and outer parts,
putting the corresponding segments of C in the inner parts. For each outer
part that does not consist only of multiple edges, collapse the vertices of
attachment into one big vertex.

6) For each of the subgraphs formed in step 4, recursively find their tricon-
nected components

7) Apply algorithm Split Components of a Modified Bridge to obtain the
correct triconnected components of each outerbridge.

8)All the triconnected components with exactly two vertices of attachment
should be removed (and identified as triconnected pieces) and a virtual edge
should connect the two vertices of attachment.

9) Identify the triconnected components that conflict with each other. Find
the transitive closure of the relation "conflict” using the connected com-
ponents strategy.

10) Merge multiple edges and triangles as much as possible. The resulting
pieces from this and previous steps are the triconnected components of G.
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Theorem4: The above algorithm correctly identifies the triconnected com-
ponents of a planar biconnected graph in O(\/rT) time on a vVn Xvn array
of processors. On a PRAM, this algorithm takes O (log3n ) time with O (n)

processors.

5. Isomorphism of Triconnected Planar Graphs

Whitney ([14]) has shown that a triconnected planar graph has two
embeddings in the plane such that for each vertex v the order of the edges
around v in one embedding is the reverse of the order of the edges around v
in the other embedding. Therefore two triconnected planar graphs G; and G,
are isomorphic if a plane embedding of G, is isomorphic to one of the two
planar embeddings of G ,. Let’s direct the edges of G, and G, by replacing
each undirected edge by the corresponding two directed arcs. For the rest of
this section, we will assume that G, and G, represent the corresponding

directed graphs.

Let e, and e, be two arcs of G such that e, = (a,b)and e, = (b,c).
We define d (e ,,e4) = ¢ if €, is the ith arc in a clockwise ordering of the arcs
out of b such that the first arc is the one to the immediate left of e,. Let
P={e,,€4,...,¢; } be a directed path in G, such that no two arcs are the
same. A path P'={f,,f gesSJy } is similar to P i t=t’ and
d(e;e; 1) =d(f;sfi41) #=12,.,t-1. The isomorphism algorithm con-
sists of (i) finding an arbitrary Euler circuit C in G, (ii) identifying a set of
similar circuits {Q; } in G4, and (iii) checking whether C and one of the @;’s

induce an isomorphism between G, and G ,. We provide the details below.



21

Algorithm isomorphism of triconnected planar graphs

Input: Two triconnected planar graphs G, = (V,E,) and G, = (V,,E,)
with their embeddings.
Output: An isomorphism between G'; and G, if the two graphs are iso-

morphic.

1. Find an arbitrary Euler circuit C in G,. Starting with an arbitrary arc
e = ¢€,, let €,,6,,...,6 be the sequence of arcs of G in the order given by
C. Determine the sequence of positive intergers t,,1,, ..., ¢, such that

i, =d(ej,e;4), 1< <t-land i = d(e,e,)

2. Identify similar Euler circuits in G, as follows. Assume without loss of gen-
erality that t is a power of 2. If ¢t <16, then use any brute force method. Else,

find the paths in G, with the corresponding sequences t;,29,...,8; . and

o l,...,z't _1- Two such paths P, and P, can be combined if (1) no two arcs in
—+
2

P, and P, are the same, (2) the first arc on P, is the 1,th arc following the
2

last arc on P, and (3) the ¢ th arc of the last arc on P, is the first arc on
P . If no two such paths could be combined then stop the two graphs are not

isomorphic.

3. Let Q,,Q,,...,Q, be the paths obtained from step 2. Number the vertices
in the order they ocecur in C and the @;s. Two identical sequences define an

isomorphism.



22

Theorem5 : The above algorithm tests whether two triconnected planar

graphs are isomorphic on 2 PRAM with O (n?2) processors in time O (log 2n ).

Proof: Using the algorithms in ({3],[4]) the Euler circuit C can be found in
O (log?n ) time using O (n ) processors. The sequence {i; } can be determined
within these bounds from the planar representation. The recursion of step 2
runs O (logn ) times such that the merging in each iteration takes O (logn )
time and requires O (ng) processors. Notice that the number of paths arising
in each iteration is O (n) since similar paths with the same first arc are
identical. It is not hard to see that step 3 can be done in O (log?n ) time with

O (n ) processors. ]

6. The Single Function Coarsest Partitioning Problem

Given a set S={1,2,...,n}, an initial partition of S, B={B,...,By, }, and
a function f :9—S, we want to find the equivalence classes of the following

relation A :

e¢AB iff fP(a)and f "(b) are in the same partition for all 1

We can translate this to the following graph problem. Create n nodes,
named 1,2,...,n, and label each vertex i by j if i belongs to B;. For every i,
create the directed edge (i,{(i)). In this node labelled graph G, the outdegree of
each node is 1. Any two nodes a and b are equivalent if and only if for every

i, the length i paths from a and b terminate at nodes with the same label. We
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want to relabel the nodes so that any two nodes get the same label if and only

if they are equivalent.

Now we briefly outline the main steps of the algorithm. Note that G con-
sists of one or more components (undirected version) and each component

consists of a tree and an additional edge.

Algorithm Coarsest Partitioning

Input: S={1,2,...,n }, a partition of S, {B;,B,, . . ., B, } and the function f,
{(,f () |1<i Sn )

Output: label the elements of S such that two elements get the same label if

and only if they are equivalent.

1) Find the spanning forest of G (undirected version) [12]. Note that one edge

from each component will be excluded.

2) If the excluded edges of the directed G are (r 1,4 )ees(Tm ,Uy, ) then choose

the r;' s as the roots of the trees.
3) Mark the nodes on each tree path from u; to r;.

4) We have isolated m cycles, one for each G;. Let the ith cycle be
u; (=%, Ju;, -+ - 4 (=r;). Move a copy of each cycle into a separate area. In

the ith area find the smallest t such that there exists a k£ >1 satisfying

(ui,u, - - Y Y = v, %, ¥ . Denote u;...u; as period. Fold so that the
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new cycle of G; is u; u;,...u; . At this stage we can assume that for every G;

its cycle and the period of its cycle are the same.

5) Define two cycles as cyclic shift equivalent iff one is a cyclic shift of the

other. Partition the cycles of the G;’s into equivalence classes.

6) "Merge” equivalent cycles (and the corresponding G;’s become connected).
Relabel the nodes so that any two nodes in two different components get
different labels; however any two nodes in the same component will have the

same label if they had the same labels before.

7) Now each connected component can be considered separately.

It is not hard to see how to implement the above steps except steps 4 and
5 in O (vVn ) time. Step 5 can be done within the same time bound by using
the pattern matching algorithm of [5] to test whether two cycles are cyclic
shift equivalent. Below we show how to compute the period of step 4 quickly.
The algorithm presented was discovered jointly with S. Krishnamurthy and is
a simpler version of the authors’ original algorithm. Before we present the

algorithm we need a couple of lemmas.

Let z be a given string over a certain alphabet. y is periodof z if z is a
concatenation of k copies of y for some positive integer k. The period of z is

the shortest such y.

Lemma7: Let a string = be split into two parts y and z. If yz =2y, then
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both y and z have a common period.

Proof: Without loss of generality assume that |z | > |y |. Clearly z con-
sists of y followed by some string w. Substituting yw for z in yz=zy, we
obtain that ¥y and w commute. We can continue in this fashion until we
obtain two substrings that are identical. One can show by induction that the

final substring is a period of both y and z. L

Lemma8: Let z be a string of length n and let n; and n, be divisors of n
such that n;>n, and n, does not divide n,. Suppose that = =yyw , where
| ¥ | =n, and that y is not a period of z. Then the prefix of z of length ng

cannot be a period of z.

Proof: Let z be the prefix of  of length n,. Suppose that z is a period of
z . Then one can check that z can be written as z =pq =g¢p , for some sub-
strings p and ¢. Using Lemma7 we find that y and z have the same period

which is a contradiction to the fact that y is not a period of z. ®

We are ready to state our algorithm. If ¢ is a given positive integer, we

use z; to denote the prefix of z of length 1.

Algorithm Finding the Period
Input: A string z and its length n .

Output: The period y of z.
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1. Find all divisors d ;<d,<...<d; of n.

2. Check if z,, is a period. If yes, repeat the procedure recursively on this sub-

string. Otherwise go to step 3.

3. Go down the divisors until the largest ¢ is found such that z; 7, is a prefix
of z.If no such ¢ exists, then z is the period. Else, check if z; is a period. If

yes, repeat the procedure recursively on this substring. Otherwise, output z

as the period.

Theorem®8: The above algorithm correctly finds the period of the string = in

time O (Vn )ona vn XVn mesh.

Proof: Let y be the period of z and let |y | =d, . Let d, be the largest mul-
tiple of d, among the divisors of n . Using Lemma8 it is clear that z; will be

the first substring to satisfy the condition in step 3 of the algorithm. The

recursive application of the algorithm will go down to ¥ and stop there.

The running time of the algorithm can be easily shown by observing that
the input length at each recursive call is a constant fraction of the previous
input length and that the time it takes to execute each step is optimal in the

input length. o

One can easily develop an NC algorithm for the multiple function coar-
sest partitioning problem by creating equivalence sets for each pair of ele-

ments and applying standard merging procedure for log n iterations. However
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the number of processors involved is O (n%). This yields an O (log?n) algo-
rithm with O (n*) processors for minimizing the number of states of a finite
automaton or determining whether two automata are equivalent!. An interest-
ing open problem is whether there exist fast parallel algorithms for the multi-

ple function coarsest partitioning problem using only O (n ) processors.

lBet,t.er processor bounds can be obtained for these two problems.
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