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ABSTRACT   
 
The literature on queueing with reneging is reviewed. Only random (Poisson) arrivals and 
unlimited capacity queues are considered, although some of the references also contain results 
for other arrival distributions or finite capacity queues. The paper focuses on the probability 
of service under steady state conditions; results for other metrics such as the expected waiting 
time may be found in the references. Analytic results, suitable for implementation in a 
spreadsheet model, are summarised. These formulae would be suitable for use in exploratory 
analysis, particularly in situations where queueing theory forms only a part of the model of a 
defence system. 
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Queueing Theory with Reneging     
 
 

Executive Summary    
 
There is an extensive literature on queueing theory, including several texts. However, 
most queueing theory is concerned with queues in which all customers eventually get 
served. There is much less published work on queueing with impatient customers, that 
is, customers who renege before service is completed. In defence applications reneging 
is particularly important. One example is an interception situation, in which arriving 
ships, aircraft or missiles take a finite time to transit an area where interception is 
possible, and they escape if they are not intercepted within this time. In queueing 
theory terms the arriving entities are considered as customers who renege if they are 
not served (intercepted) within a finite time. Another example is a surveillance 
situation. In this case service represents the classification or identification of tracks in a 
sonar or radar system. The queueing model is different here in that the tracks can be 
lost at any time – reneging can occur during service as well as in the queue. 
  
This paper contains a review of the literature on queueing with reneging. Only random 
arrivals and unlimited capacity queues are considered here, although some of the 
references also contain results for other arrival distributions or finite capacity queues. 
The paper focuses on the probability of service under steady state conditions; results 
for other metrics such as the expected waiting time may be found in the references. 
 
The review summarises analytic results, suitable for implementation in a spreadsheet 
model. These formulae would be suitable for use in exploratory analysis, particularly 
in situations where queueing theory forms only a part of the model of a defence 
system. 
 
Graphs of the probability of service as a function of traffic intensity are presented for 
all the queueing models with tractable solutions. These graphs should be helpful in 
understanding the various models, as in many cases the solutions found in the 
literature are presented as mathematical results only, with no graphs. In two cases 
involving reneging from both queue and server the results found in the literature have 
been extended to facilitate calculation of the probability of service for multiple servers. 
These calculations are presented in the appendices.  
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1. Introduction 

There is an extensive literature on queueing theory, including several texts [1,2,3,4,5]. 
However, most queueing theory is concerned with queues in which all customers 
eventually get served. There is much less published work on queueing with impatient 
customers, that is, customers who renege before service is completed. In defence 
applications reneging is particularly important. One example is an interception situation, 
in which arriving ships, aircraft or missiles take a finite time to transit an area where 
interception is possible, and they escape if they are not intercepted within this time. In 
queueing theory terms the arriving entities are considered as customers who renege if they 
are not served (intercepted) within a finite time. Another example is a surveillance 
situation. In this case service represents the classification or identification of tracks in a 
sonar or radar system. The queueing model is different here in that the tracks can be lost at 
any time – reneging can occur during service as well as in the queue. 
  
This paper contains a review of the literature on queueing with reneging. Only Poisson 
arrivals and unlimited capacity queues are considered here, although some of the 
references also contain results for other arrival distributions or finite capacity queues. 
Apart from a brief mention of other queue disciplines in Section 8, it is assumed that the 
queue discipline is first come first served. The paper focuses on the probability of service 
under steady state conditions; results for other metrics such as the expected waiting time 
may be found in the references. 
 
 

2. Queues with deterministic reneging 

The simplest arrival pattern to model is a random one1. If the arrivals come from many 
independent sources, the resulting pattern is likely to be random. The random arrival 
pattern has the following important properties: 
 

1. The probability of an arrival in any time interval is independent of the arrival 
pattern in preceding time intervals. Another way of expressing this is to say that 
the arrival process is a Markov process, or that it is memoryless. 

2. The probability of n arrivals in time t follows a Poisson distribution 

t
n

n e
n
ttp λλ −=
!
)()( , where λ is the mean arrival rate. 

3. The probability distribution of the intervals between arrivals is exponential 
tetp λλ −=)(  

 
It can be inferred from the exponential distribution of arrival intervals that short intervals 
will be most common – the probability is greatest for t = 0 and decreases with increasing t 
– and therefore the arrivals will tend to cluster (Figure 1).  

                                                      
1 See Section 1.3 of reference 1 for a discussion of the properties of a random arrival pattern. 
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Figure 1. Random arrival pattern. 

 
The simplest queueing models assume that the length of time taken for service also follows 
an exponential distribution with mean μ, and the queue discipline is first come first 
served. Many applications of queueing theory are primarily concerned with situations 
where all customers eventually get served. In the absence of reneging or baulking, this 
requires λ < cμ for c service channels. Otherwise the queue length will grow indefinitely, 
and there is no steady state solution to the problem. However, reneging is important in a 
model of interception – the ‘customers’ do not wait to be intercepted. In this situation there 
can be a steady state solution for arbitrary arrival rate λ, and the probability of interception 
(service) is generally less than 1. If reneging is immediate, so that no queue forms, the 
probability of reneging equals the probability that all c service channels are busy. For 
random arrivals, 
 

∑
=

= c

k

k

c

c

kr

crp

0
!/

!/
 

 
where r = λ/μ is the traffic intensity. This is known as Erlang’s loss formula2. It was 
originally derived in 1917 by the Danish engineer A.K. Erlang as a measure of the calls lost 
by a busy telephone exchange. Erlang’s loss formula is most readily derived for the 
exponential service time distribution, but in fact it applies for any service time distribution 
with  mean μ,  provided  the  arrival  pattern is random3. The probability of service  
ps = 1 – pc. Figure 2 shows ps as a function of r for several values of c. For large r, ps ≈ c/r. 
 

                                                      
2 Reference 1, p.47; reference 3, Section 2.5; reference 4, Section 1.4.1. 
3 The proof is outlined in Section 5.2.2 of reference 3. 
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Figure 2. Probability of service calculated from Erlang’s loss formula. 

 
More generally the customers may wait for a maximum time τ before reneging. In this case 
the loss probability pl is the probability that the waiting time exceeds τ. For the 
interception problem, τ corresponds to the transit time for a target moving through the 
interception area. A formula for pl has been derived by several authors using different 
methods [4 (Section 1.7),6,7,8]. The derivation is not straightforward, but the final result is 
relatively simple: 
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Note that this reduces to Erlang’s loss formula when τ = 0. For large r, ps = (1 - pl) ≈ c/r. It 
turns out that ps approaches this limit more rapidly as τ increases. For large τ, 
 

crforrcp
crforp
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/
1

 

 
As τ increases, the fluctuations in the arrival rate are smoothed out more and more, so that 
service becomes certain if r < c, and all servers are fully occupied if r > c. Figure 3 shows 
the effect of varying T = μτ, for c = 1 and c = 4. 
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Figure 3. Effect of increasing waiting time on probability of service. 

 
Another situation of interest is the classification of sonar or radar contacts. In this case 
reneging corresponds to the loss of a contact. This can occur during service as well as in 
the queue, so the overall holding time is limited to τ, rather than just the waiting time. The 
loss probability for a single server with an exponential service time distribution is [6]: 
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Daley [13] and Gnedenko and Kovalenko [4, Section 1.8.1] point out that provided the 
arrival stream is orderly, so that the probability of two customers arriving simultaneously 
is negligible, each arrival obtains at least partial service – reneging always occurs from the 
server, not from the queue. Hence pl could also be described as the probability of partial 
service, and ps = (1 – pl) is the probability of full service. Figure 4 shows the full service 
probability for different values of T = μτ. In this case ps = 0 when τ = 0, and Erlang’s loss 
formula does not apply. In the limit r → 0 ps = 1 – e-μτ, which is the cumulative distribution 
function of the service time. For large r and τ ≠ 0, ps ≈ 1/r. As in the limited waiting time 
case, ps approaches this limit more rapidly as τ increases: for μτ » 1, 
 

1/1
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Unlike the limited waiting time case, ps is quite sensitive to the form of the service time 
distribution, and this limit only applies for exponential service.  
 
The loss probability for multiple servers is complicated, because it is necessary to account 
for the different amounts of time customers in each service channel have spent in the 
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queue. An upper bound on pl can be obtained by treating each server independently, each 
having a separate queue with an arrival rate of λ/c. In this situation pl(c,r) = pl(1, r/c). The 
loss probability for a single queue with multiple servers will be less than this, particularly 
for small r, due to the possibility that when one server is busy another will be free. Thus 
ps(c,r) > ps(1, r/c) for multiple servers with a single queue. ps = 0 when τ = 0 as for the 
single server case, and in the limit of large τ 
 

crforrcp
crforp

s

s

>=
≤=

/
1

 

 
which is the same as the large τ limit for the situation where reneging occurs only in the 
queue, although here the limit only applies for exponential service. 
 
A solution for the multiple server case was obtained by Kovalenko [9], but the original 
paper contains several errors. The correct results are presented in the first edition of the 
book by Gnedenko and Kovalenko [10, Section 1.6]. (The second edition of this book 
contains only a brief summary [4, Section 1.8.3].) The probability of full service is 
presented as an integral of the waiting time distribution, which is only evaluated in the 
single server case. In Appendix A this integral is used to derive recurrence relations for the 
busy server probabilities. The probability of full service is then expressed in terms of these 
probabilities. The results are shown in Figure 4 for 1-4 service channels. 
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Figure 4. Effect of limited holding time and number of servers on full service probability.  
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3. Exponential waiting time distribution 

A relatively simple formula for the service probability can also be obtained if the waiting 
time limit, rather than being fixed, is a random variable with an exponential distribution 

τ
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This result was obtained by Ancker and Gafarian [11], although it is expressed somewhat 
differently here in order to show the relationship with Erlang’s loss formula (for τ = 0 
z = 0, and the Erlang formula is obtained). The Incomplete Gamma function γ(a,x) can be 
implemented in Microsoft Excel using the Log Gamma function and the cumulative 
distribution function for the Gamma distribution: 
 
γ(a,x) = EXP(GAMMALN(a))*GAMMADIST(x,a,1,TRUE) 
 
Figure 5 shows the probability of service for one and four service channels with varying 
mean waiting time T = μτ. The general form is very similar to the fixed waiting time case, 
and the limits T → 0 and T → ∞ are the same. 
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Figure 5. Probability of service with exponentially distributed waiting time for 1 and 4 service 
channels. 
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4. Exponential holding time distribution 

A relatively simple result can also be obtained if the total holding time in the system is 
exponentially distributed. Ancker and Gafarian [12] derived the probability of complete 
service and various other measures for the single server case. A formula for the multiple 
server case can be obtained using their method with the system state probabilities given by 
Gnedenko and Kovalenko [4, Section 1.8.4]: 
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For r = 0, ps = μτ/(1 + μτ). Details of the solution are given in Appendix B. Figure 6 shows 
the full service probability for one and four service channels with varying mean holding 
time T = μτ. For τ = 0, ps = 0, and the limit T → ∞ is the same as in the other cases described 
above. 
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Figure 6. Full service probability with exponentially distributed holding time for 1 and 4 service 
channels. 

 
 

5. General service time distributions 

Reneging in single server queues with general service time distributions has been studied 
by Daley [13,14], Rao [15], Cohen [16,17], Stanford [18] and Baccelli et al. [19]. An integral 
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equation for the waiting time distribution can be constructed, and this equation has been 
solved in particular cases. For Poisson arrivals, the general solution is a distribution 
function F(x) whose Laplace-Stieltjes transform φ(s) is [13,14] 
 

)(
)0()(

ss
sFs

λβλ
φ

+−
=  

 
where β(s) is the Laplace-Stieltjes transform of the cumulative service time distribution 
B(x). The waiting time distribution W(x) is obtained from F(x), with F(0) determined by the 
reneging behaviour. This is a generalisation of the Pollaczek-Khintchine formula for the 
standard queueing system with general service and no reneging, in which W(x) = F(x) for 
x ≥ 0, and F(0) = W(0) = 1 – r. (r = λ/μ is the traffic intensity as before.) For deterministic 
reneging after a time limit τ 
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In the case of reneging from the queue only, )(1)0( τrWW −=  [14]. 
 
If reneging occurs from both queue and server, )(/1)0( τWW =  [13,14]. 
 
For an Erlang service time distribution the cumulative distribution function is 
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and its Laplace-Stieltjes transform is ( ) kkss −+= μβ 1)(  
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where αi are the roots of the polynomial 1)1)(1()( −+−= kzzzP γ  with γ = k/r and 
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α0 = 0 and A0 = 1/(1 – r) for all k. In the case of exponential service (k = 1), α1 = r – 1 and 
A1 = r/(r – 1). For k > 1, P(z) does not factorise, but the roots may be found using radicals 
for k = 2, 3 and 4. 
 
In the case of a fixed waiting time limit (reneging from the queue only), the probability of 
service is rWps /))0(1( −= . W(0) is the probability that the waiting time is zero, in other 
words the probability that the server is empty. This relationship also applies to the limited 
holding time case (reneging from both the queue and server), but only for exponential 
service. 
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In the limit k → ∞ service is deterministic, requiring a time 1/μ for each customer 
[3, p128]. The cumulative distribution of the service time is a step function, although it is 
not easy to obtain this directly by taking the limit k → ∞ in the Erlang distribution. The 
Erlang distribution is a type of gamma distribution; for large k it tends to a normal 
distribution with variance 1/kμ2, according to the central limit theorem, so the 
variance → 0 as k → ∞. Deterministic service has been studied by Hokstad [20] and 
De Kok and Tijms [21]. In this case the waiting time distribution is 
 

∑
=

− −=
n

i

irxr ixireeWxW
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!)]([)0()( μμ  

 
n is the largest integer in μx, i.e. n ≤ μx < (n+1). 
 
Figure 7 shows the probability of service for a single server with Erlang and deterministic 
service and different waiting times T = μτ. The effect of changing the service time 
distribution is fairly small. Note that both the limits T → 0 and T → ∞ are independent of 
the service distribution.  
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Figure 7. Erlang and deterministic (k → ∞) service with a single server and different waiting time 
limits T = μτ. 

 
These results illustrate the effect of changing the standard deviation of the service time, 
but the Erlang distribution is not very flexible because the expected service time ε = 1/μ 
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and its standard deviation σ have the specific relationship k/εσ = , with k an integer, 
and the results become increasingly difficult to compute as k increases. De Kok and 
Tijms [21] propose a two-moment approximation for the loss probability pl (and other 
performance measures) in terms of the mean ε and standard deviation σ of the service time 
distribution, and the values of pl for deterministic and exponential service: 
 

exp2det2 )(])(1[ lll ppp εσεσ +−≈  
 
Their numerical results for several different service time distributions show that this 
approximation is accurate to two decimal places. 
 
Boots and Tijms [22] give an approximation for the loss probability in the limited waiting 
time case, based on the relationship between the waiting times for this case and the 
situation without reneging. Their approximation is valid for multiple servers, but it is only 
applicable for r/c < 1 because the waiting time is undefined for r/c > 1 in the standard 
queue without reneging. 
 
Daley [14] obtained the Laplace-Stieltjes transform of the virtual waiting time distribution 
for a single server queue with exponential reneging from the queue and general service, 
however the transform is difficult to invert except in the case of exponential service where 
the results of Ancker and Gafarian [11,12] are recovered. 
 
In the case of limited holding time (reneging from the server), the probability of complete 
service is the probability that the sum of the waiting time and the time required for service 
is less than or equal to τ. This can be defined in terms of the distribution of the total 
amount of unfinished work in the system U(x) as ps = U(τ). The unfinished work is also 
known as the virtual waiting time, because it is the time a hypothetical arrival would have 
to wait before commencing service. U(x) may be obtained by integrating W(x) with respect 
to the service time probability distribution, or vice versa: 
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Note that B(0) = 0, and hence U(0) = 0, whereas W(0) ≠ 0. W(0) is the probability that the 
waiting time is zero, in other words the probability that the server is empty. Alternatively, 
the Laplace-Stieltjes transform of U(x) can be obtained by solving an integral equation [16]. 
For an Erlang service time distribution the transform may be inverted by the same method 
used by Daley [13] to get W(x), with the result 
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Ai and αi are as defined previously for W(x). In the case of exponential service (k = 1), 
U(x) = [W(x) – W(0)]/r  and ps = U(τ) = [1 – W(0)]/r  since W(τ) = 1. 
 
For deterministic service, the cumulative distribution of the service time is a step function: 
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Figure 8 shows the probability of complete service for Erlang and deterministic service 
time distributions. The asymptotic behaviour for large r depends strongly on k, unlike the 
limited waiting time case. For exponential service (k = 1) ps ≈ 1/r for large r; for k > 1, ps 
drops to zero much more rapidly with increasing r. For T < 1, ps decreases with increasing 
k for all r, whereas for T > 1 ps increases with increasing k at low arrival rates and then 
crosses over to decrease more rapidly with increasing k. The solution for T = 1 and k → ∞ 
is ps = e-r, which forms a kind of boundary between the two regimes. The probability of 
full service is zero for deterministic service and T < 1. 
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Figure 8. Full service probability for Erlang and deterministic (k → ∞) service with a single server 
and different holding time limits T = μτ. 

 
The rapid fall off in the full service probability for k > 1 is a consequence of the first come – 
first served queue discipline: for r > 1 the server becomes congested, so that each 
successive customer has waited long enough that service is unlikely to be completed 
before the customer reneges. This queueing model is described in the literature as having 
‘unaware’ customers. In the surveillance / classification context this description is rather 
misleading, because in this application it is assumed that the ‘customers’ don’t have a 
choice as to whether or not they join the queue, and if they did they would make that 
choice so as to avoid being served. In this application it might be better described as a 
‘dumb server’ model – an intelligent server would not stick to the first come – first served 
queue discipline in overload conditions. In the exponential service (k = 1) case, the 
congestion is mitigated by the fact that a significant proportion of customers require zero 
service time – probably not a realistic assumption, unless many ‘customers’ are 
automatically dismissed as irrelevant. 
 
 

6. Restricted access queues 

It might be more realistic to apply a last come – first served queue discipline to the 
classification problem, but this is mathematically intractable, because the waiting time for 
a customer depends in general on the arrival and service times of both preceding and 
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following customers. Hence the system has ‘memory’ and cannot be modelled as a 
Markov process. An alternate model which is more amenable to solution is the ‘aware’ 
customer model, in which customers only join the queue if both waiting and service can be 
completed within the allowed time. In the classification problem this corresponds to 
automatically ignoring tracks which are about to disappear, or about to cross a ‘last 
chance’ threshold. In this model the probability of service is the probability of joining the 
queue. Solutions were found for exponential service by Gavish and Schweitzer [23], and 
for deterministic service by Hokstad [20]. In the case of exponential service 
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In the case of deterministic service 
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Figure 9 shows the full service probability with restricted and unrestricted access to the 
queue, for exponential service. Figure 10 shows the case of deterministic service. In both 
cases the full service probability is significantly greater with restricted access to the queue. 
The restriction means that server work is not wasted on partially servicing customers who 
renege before service is completed. The deterministic service model with restricted access 
and the exponential service model with unrestricted access both have the same limit as 
T → ∞, that is 
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Figure 9.  Probability of full service for exponential service and limited holding time T = μτ with 
restricted and unrestricted (asterisk) access to the queue. 
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Figure 10. Probability of full service for deterministic service and limited holding time T = μτ with 
restricted and unrestricted (asterisk) access to the queue. 

 
The restricted access queue is used as a model for buffer design in communication 
systems. Here the service time represents the message length, and the holding time τ 
becomes the buffer capacity K. The model is used to determine the buffer size required to 
keep the rejection probability 1 – ps below a specified level. De Kok and Tijms [24] used 
the solutions for exponential and deterministic service to construct a two moment 
approximation for the buffer size with a general service (message length) distribution. The 
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rejection probability must be kept very small in order to make the communications system 
reliable - this approximation applies to T > 1 and r < 1. 
 
 

7. General reneging distributions 

Yurkevich [25] evaluated the loss probability and waiting time for reneging from the 
queue only with a general reneging distribution, multiple servers and exponential service. 
The arrival process is Poisson, with the arrival rate dependent on the number of busy 
servers. The solution is quite complex and contains an integral which must be evaluated 
numerically. Movaghar [7] has also studied this model. Baccelli et al. [19] consider general 
reneging from a single server queue with a general service distribution. They obtain the 
Laplace-Stieltjes transform of the virtual waiting time distribution for an Erlang reneging 
distribution. Baccelli et al. also obtain the relationship between the virtual and actual 
waiting time distributions for a general arrival process. In the case of exponential arrivals 
with reneging only from the queue the virtual waiting time equals the actual waiting time. 
 
 

8. Queue discipline and priorities 

So far it has been assumed that the queue discipline is ‘first come first served’. Barrer [6] 
compared this with a situation where the customers are served at random, and found that 
the steady state probability of service is slightly less for random selection. Another 
situation of interest has two classes of customer with different priorities. Choi et al. [8] 
obtained analytic results for a model with a single server, exponential service and priority 
customers with either limited waiting time or limited holding time. 
 
 

9. Conclusion 

The theory of queueing with reneging has been reviewed, with two situations relevant to 
defence analysis in mind. The first situation is an interception problem, where ships, 
aircraft or missiles must be intercepted within a limited time. This case is described by 
fairly straight forward formulae which can be implemented in a spreadsheet, and the 
results are only weakly dependent on the form of the service time distribution. The second 
situation is a surveillance problem, where contacts must be identified, and tracks may be 
lost at any time. In this situation a simple mathematical description is more difficult, 
because the result is strongly dependent on the form of the service time distribution and 
on the queue discipline. A restricted access queue, where tracks which cannot be 
processed in the available time are ignored, may provide the most realistic simple model 
for this case. The relatively simple formulae are particularly useful for exploratory analysis 
in situations where queueing theory describes only part of the problem, as they can be 
readily combined with other mathematical models describing the other aspects. 
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Graphs of the probability of service as a function of traffic intensity are presented for all 
the queueing models with tractable solutions. These graphs should be helpful in 
understanding the various models, as in many cases the solutions found in the literature 
are presented as mathematical results only, with no graphs. In two cases involving 
reneging from both queue and server the results found in the literature have been 
extended to facilitate calculation of the probability of service for multiple servers. These 
calculations are presented in the appendices.  
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Appendix A: Multiple server queueing system with 
exponential service and limited holding time 

The solution is expressed in terms of the probabilities n
kπ  that k out of n servers are busy. 

For k < n, at least one server is free, and there is no waiting [10, Section 1.6, eqn (10)]: 
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The probability that all servers are busy equals the probability that a customer has to wait 
any amount of time, that is 
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The waiting time probability density is [4, Section 1.8.3; 10, Section 1.6, eqn (12)]: 
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The single server case is easily evaluated: 
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The general formula for n servers (n > 1) is complicated: 
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This formula has singularities at r = 1 and r = k+2. Recurrence relations can be derived 
from the integral for n

nπ  which are easier to use. After a change of variable 
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and the use of  integral tables [26, §2.111] the following recurrence relations for 
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for r = n+1. Note that 1+n

nφ  is obtained from the formula for n
kπ  above. The empty system 

probability n
0π  is obtained from the normalisation condition 
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The probability of full service ps equals the probability that at least one server is free and 
service is completed within the time limit τ, plus the probability that the customer waits a 
time x and service is completed within the remaining time τ – x, which may be expressed 
in terms of n

nπ : 
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Appendix B: Multiple server queueing system with 
exponential service and exponential holding time limit 

The probabilities for k customers present in a system with c servers are [4, Section 1.8.4] 
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The empty system probability p0 is determined by the normalisation 1
0

=∑
∞

=k
kp . 

In the steady state the probability of service is the average number of busy servers divided 
by r: 
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(The method used by Ancker and Gafarian [12] to calculate ps is more involved, but the 
result is the same.) The infinite sum may be evaluated using an identity for the incomplete 
gamma function [11, Eq. 20]  (see also [12, Eq. 12; 26, §8.356]): 
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The second term on the right hand side goes to zero as n → ∞. Hence 
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which can be used to evaluate the probability all servers are busy: 
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The final result is obtained by substitution into the expression for ps, with 
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