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ABSTRACT

The MUCI oncoprotein is aberrantly overexpressed in 80-90% of human breast carcinomas,.
Little, however, is known about the role of MUCi in the development of breast cancer. The
Specific Aims of this Idea Award are:, 1) To determine if MUCI overexpression is sufficient
to induce transformation; and 2) To assess whether MUdc localizes to the nucleus *and
thereby regulates gene expression. Work supported by this Award has demonstrated that the
MUCI cytoplasmic domain (MUC!-CD) is sufficient to induce transformation and that the
oncogenic effects of MUCI' are mediated at least in part by. stabilization of the Wnt
effector A-catenin. Our work has als6 shown that MUC, interacts with the p53 tumor
suppressor and contributes to the regulation of p53-dependent transcription. More recent
studies show.that MUCI binds to estrogen receptor a (ERa) and that MUCI increases ERa
levels by blocking its ubiquitination and degradation. *MUCI occupies the promoters of
estrogen responsive genes and activates ERa-mediated transcription. These findings
indicate that MUCI induces transformation, localizes to the nucleus and regulates gene'
expression in breast cancer cells.
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INTRODUCTION

The MUCI transmembrane glycoprotein is normally expressed on the apical borders of

secretory mammary epithelia (1). With transformation and loss of polarity, MUC I is aberrantly

overexpressed in the cytosol and on the entire surface of breast cancer cells (1, 2). The MUC 1

locus has been mapped to human chromosome 1 q21 in a region that is frequently affected by

genetic alterations in breast and other carcinomas (3, 4). MUC I is expressed as a stable

heterodimer following translation of a single polypeptide and cleavage into two subunits in the

endoplasmic reticulum (5). The MUCI N-terminal subunit (MUCI N-ter, MUC1-N) contains

variable numbers of 20 amino acid tandem repeats that are extensively modified by O-linked

glycans (6, 7). The MUC I C-terminal subunit (MUCI C-ter, MUC1-C) consists of a 58 amino

acid extracellular domain, a 28 amino acid transmembrane domain and a 72 amino acid cytoplasmic

tail (4). On the cell surface, MUC 1-N extends well beyond the glycocalyx and is tethered by

MUCI-C to the cell membrane. MUC1-C also accumulates in the cytosol of transformed cells and

is targeted to the nucleus (8-11) and mitochondria (12). The MUCI cytoplasmic domain (MUC1-

CD) associates with members of the catenin family (13, 14) and with the p53 tumor suppressor

(15). MUC1-CD is also subject to phosphorylation by the epidermal growth factor receptor

(EGFR) (16), c-Src (17) and glycogen synthase kinase 3p3 (GSK3p) (18). The finding that MUCI

interacts with ErbB2 has further supported a role for MUC 1 in both the ErbB receptor tyrosine

kinase and Wnt signaling pathways (10, 19). Of potential importance to the aberrant regulation of

MUC 1 in breast carcinomas, other studies have shown that MUC 1 overexpression is sufficient to

confer anchorage-independent growth and tumorigenicity (9, 20-22).

Most human. breast cancers are estrogen dependent and their treatment with estrogen

antagonists, particularly tamoxifen, has had a dramatic effect on mortality (23). Estrogen action is

mediated by two members of the nuclear receptor family, estrogen receptor a (ERa) and ERP3.

Both ERs contain a central DNA-binding domain (DBD), which binds to estrogen response

elements (EREs), and a C-terminal ligand binding domain (LBD). ERa and ERf3 have substantial
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homology in their DBDs and thus may regulate common sets of genes. However, in contrast to

ERp knockout mice, ERa knockout mice are infertile, supporting different roles for these receptors

(24, 25). Upon estrogen binding, ERa undergoes conformational changes and dimerization that

confer binding to EREs. Activation of ERa-mediated transcription is regulated by activation

function-I (AF-1) in the N-terminal region and AF-2 in the LBD. AF-1 is activated by growth

factors through the MAP kinase pathway (26), and AF-2 is activated by binding of estrogen (27).

In the response to estrogen, ERa transcription complexes on target promoters recruit coactivators

from i) the p160 family (SRC-1/NCoA-1, GRIP1/NCoA-2 and AIB I/RAC3/ACTR) (28, 29), ii)

non-p160 proteins (RIP 140, mSUG 1 and TIF 1) (30-32), and iii) histone acetylases (p300 and

CBP) and the p300/CBP-associated factor pCAF (33). The structural changes induced by binding

of estrogen to the ERa LBD promotes the recruitment of p160 coactivators (34). ERa also

interacts with basal transcription factors to increase the initiation of transcription (35, 36).

Notably, recruitment of p160 coactivators is sufficient for ERa-mediated gene activation and for

estrogen-induced growth stimulation (37). By contrast, tamoxifen competes with estrogen for

binding to ERa and induces conformational changes that block recruitment of coactivators (37,

38). In addition, tamoxifen bound ERa recruits corepressors to estrogen responsive-promoters

(37).

The overexpression of MUC 1 in most human breast carcinomas, the correlation between

MUCI and ERa levels in breast tumors (39) and the importance of ERa for breast cancer cell

growth prompted us to investigate whether MUC 1 interacts with ERa. The results demonstrate

that MUCI binds directly to the ERa DBD and stabilizes ERa. We also show that MUC1 is

present in the ERa transcription complex, stimulates ERa-mediated transcription and promotes E2-

mediated growth and survival of breast cancer cells.
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BODY

MUC1 associates with ERa. Human MCF-7 breast cancer cells were studied to

determine ifMUCI interacts with ERa. In MCF-7 and other cell types, the MUCI C-terminal

subunit (MUC1-C) is expressed as a -20-25 kDa protein and to a lesser extent as -17-12 kDa

fragments. Immunoblot analysis of anti-ERca immunoprecipitates with an antibody that reacts with

the MUC I cytoplasmic domain (MUC I-CD) demonstrated that ERa coprecipitates with MUC 1-C

(Fig. IA). As a control, there was no detectable MUCI-C in precipitates prepared with IgG (Fig.

IA). The results also demonstrate that the association between ERaI and MUCI-C is increased by

17p-estradiol (E2) stimulation (Fig. IA). Similar studies performed with ZR-75-1 breast cancer

cells confirmed that ERac associates with MUC 1-C and that the association is stimulated by E2

(Fig. 1B). A kinetic analysis of the interaction showed that MUC 1-ERa complexes increase at 3

to 6 h of E2 stimulation and then decline at 12 and 24 h (Supplemental Figs. SIA and B).

Densitometric scanning of the MUC I signals obtained from whole cell lysates as compared to that

after immunoprecipitation of the lysates with anti-ERa indicate that -3 and 5% of the total MUC 1-

C associates with ERa in control and E2-stimulated MCF-7 cells, respectively (Supplemental Fig.

SiC). In ZR-75-1 cells, -4 and 6% of total MUC1-C associated with ERa in the absence and

presence of E2, respectively (Supplemental Fig. SID). As a control, cell lysates were

immunoprecipitated with an antibody against the proliferating cell nuclear antigen (PCNA). There

was no detectable MUC 1-C in the anti-PCNA precipitates from MCF-7 (Supplemental Fig. S I E)

or ZR-75-1 (Supplemental Fig. SIF) cells. To define the region of MUC1-C responsible for the

interaction, Myc-tagged MUC 1 cytoplasmic domain (Myc-MUC 1-CD) was coexpressed with ERa

in COS-1 cells. Immunoblot analysis of anti-ERac precipitates with anti-MUC 1-CD demonstrated

that MUC 1-CD is sufficient for the association with ERa (Fig. IC). Moreover, stimulation of the

COS-1 cells with E2 increased binding of ERa and Myc-MUC 1-CD (Fig. IC). This association

was confirmed in the reciprocal experiment in which anti-Myc immunoprecipitates were

immunoblotted with anti-ERa (Fig. ID). These findings indicate that MUCI associates with ERa

constitutively and that this interaction is increased in the response to E2.
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MUC1-CD binds directly to ERa. To define the regions of MUC 1-CD (72 amino

acids) and ERa (595 amino acids) responsible for the interaction (Fig. 2A), GST or a GST-

MUC1-CD fusion protein was incubated with 35S-labeled ERa in vitro. Analysis of adsorbates to

glutathione beads demonstrated binding of full-length ERa.(1-595) to GST-MUC 1-CD and not

GST (Fig. 2B). By contrast, there was no detectable binding of MUC1-CD to ERU(1-185) that

contains the AFI domain (Fig. 2B). Moreover, the demonstration that MUC 1-CD binds to

ERa(1-282) indicated involvement of the DNA binding domain (DBD) (Fig. 2B). Consistent with

these results, binding of MUCI-CD was found with ERc(1I85-595), but not ERca(282-595) or

ERct(A186-281) devoid of the DBD (Fig. 2B). Binding was also observed with ERa(186-281),

confirming that MUCI-CD interacts directly with the ERa DBD (Fig. 2C). To localize the region

within MUCI-CD that interacts with ERos, 35S-labeled full length ERac was incubated with

deletion mutants ofMUCI-CD. The results demonstrate that ERCa binds to both full-length

MUCI-CD and MUC1-CD(1-51), indicating that the N-terminal region of MUCI-CD is sufficient

for the interaction (Fig. 2D). Consistent with those results, deletion of MUC1-CD amino acids 9

to 46 abrogated the association with ERa (Fig. 2D). Binding in vitro was also compared in the

absence and presence of E2. The results show an E2-dependent increase in the binding ofMUC1-

CD and full-length ERa (Fig. 2E). By contrast, 4-hydroxytamoxifen (TAM) had no apparent

effect on the formation of MUC 1 -CD-ERa complexes (Fig. 2E). These findings indicate that

MUC 1 -CD(9-46) binds directly to the ERac DBD and that this interaction is stimulated by E2.

MUC1 stabilizes ERa. To assess the effects of MUCI on ERa expression, MCF-7

cells were stably infected with a retrovirus expressing MUClsiRNA. Immunoblot analysis of two

separately isolated clones demonstrated partial (-80-90%) and complete down-regulation of MUC 1

in MCF-7/MUC 1 siRNA-A and MCF-7/MUC IsiRNA-B cells, respectively, as compared to that in

cells expressing a control siRNA (CsiRNA) (Supplemental Fig. S2A). Assessment of ERaX levels

in the MCF-7, MCF-7/CsiRNA and MCF-7/MUC 1 siRNA cells demonstrated that knocking-down
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MUCI is associated with decreases in ERca expression (Fig. 3A, left). Densitometric scanning of

the ERa signals in independent experiments and at different levels of exposure demonstrated that

MUC I increases ERa levels by 2.9+0.5-fold (mean+SD of three experiments) (Supplemental Fig.

S21). Compared with MCF-7 cells, ERa expression was lower in ZR-75-1 cells (Supplemental

Fig. S2C). Moreover, silencing MUCI in ZR-75-1 cells (Supplemental Fig. S2D) was associated

with decreases in ERa expression (Fig. 3A, right). Quantification of the ERa signals in

independent experiments and at different levels of exposure showed that MUC I increases ERa

levels by 4.0+0.6-fold (mean+SD of three experiments) in ZR-75-1 cells (Supplemental Fig.

S2E). Semiquantitative RT-PCR analysis of the MCF-7 and ZR-75-1 cells demonstrated that ERaC

mRNA levels are similar in the presence and absence of MUCI (Supplemental Figs. S3A and B),

indicating that MUC I regulates ERa by a post-translational mechanism. In this regard, stability of

the ERai protein is controlled by ubiquitination and proteosomal degradation (40-42).

Consequently, ERa levels were assessed in the response of MCF-7 and ZR-75-1 cells to the

proteosomal inhibitor MG132. Inhibition of the proteosome was associated with increases in ERa

expression and this effect was more pronounced in cells silenced for MUC I (Fig. 3B).

Immunoblot analysis of anti-ERac precipitates with anti-ubiquitin (Ub) further showed that

downregulation of MUC 1 in MCF-7 cells is associated with increased ubiquitination of ERa (Fig.

3C, left). Similar results were obtained in ZR-75-1 cells (Fig. 3C, right). To further assess the

effects of MUC I on ERa stability, cells were pulsed with [35S]-methionine and ERa was

immunoprecipitated at various intervals during the chase period. Analysis of ERa by

autoradiography showed that the half-life of ERa is decreased in the absence of MUC 1 in both

MCF-7 (Fig. 3D) and ZR-75-1 (Supplemental Fig. $3C) cells. The estrogen antagonist

IC1182,780 (ICI) targets ERa to the proteosome (42, 43). Consistent with a role for MUCI in

stabilizing ERa, ICI-induced down-regulation of ERa was attenuated in the presence of MUC 1

(Supplemental Fig. S3D). These findings indicate that MUC 1 stabilizes ERa by blocking its

ubiquitination and proteosomal degradation.
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MUCI occupies estrogen-responsive gene promoters. To determine if MUCI is

present in the ERa transcription complex, we performed chromatin immunoprecipitation (ChIP)

assays with anti-MUC 1-C. Immunoprecipitation of the estrogen-responsive region in the promoter

of the pS2 gene (-353 to -30) (44) was analyzed by semiquantitative PCR. In both MCF-7 and

ZR-75-1 cells, occupancy of the pS2 promoter by MUCI was detectable in the absence of E2 and

was increased by E2 stimulation (Fig. 4A). As controls, there were no detectable pS2 promoter

sequences in immunoprecipitates performed with IgG (Fig. 4A). There was also no detectable

MUC I associated with a control region (CR; -2446 to -2125) of the pS2 promoter upstream to the

ERE (Fig. 4A). The chromatin immunoprecipitates were further analyzed for the estrogen-

responsive region (-295 to -54) of the cathepsin D gene promoter (45). As found for the pS2

promoter, MUC I occupancy of the cathepsin D promoter in MCF-7 cells was detectable

constitutively and was increased by E2 stimulation (Fig. 4B). By contrast, MUCI occupancy was

not detectable in a control region (CR; -4346 to -4105) of the cathepsin D promoter (Fig. 4B).

Similar results were obtained in ZR-75-1 cells (Fig. 4B). To assess whether MUCI occupies the

pS2 promoter with ERa, the anti-MUC I complexes were released, re-immunoprecipitated with

anti-ERa and then analyzed by PCR (Re-ChIP). As shown for both MCF-7 and ZR-75-1 cells,

anti-ERa precipitated the pS2 promoter after release from anti-MUC 1, indicating that MUC 1 is

present in the region occupied by the ERa transcription complex (Fig. 4C). The results also

demonstrate that the cathepsin D promoter is immunoprecipitated with anti-ERa after release from

anti-MUC 1 (Fig. 4D). In concert with the demonstration that E2 stimulates binding of ERa and

MUC 1, the Re-ChIP assays further showed that E2 increases complexes of ERa and MUC 1 on

the pS2 and cathepsin D promoters (Figs. 4C and D). The kinetics of MUC1 occupancy of the

EREs was also assessed by performing ChIPs at different intervals of E2 stimulation. As found

previously (37, 42, 46-48), ERa occupancy of the pS2 and cathepsin D EREs was detectable at

low levels in the absence of E2 and was increased with E2 stimulation (Fig. 4E). Like ERa,

increases in MUCI occupancy of the pS2 and cathepsin D EREs were detectable at 15 to 30 min of

E2 exposure (Fig. 4E). Moreover, maximal occupancy for both MUCI and ERa was observed
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when the cells were stimulated with E2 for I and 3 h (Fig. 4E). Other studies have reported that

ERa occupancy of EREs is cyclical following E2 stimulation (47). The absence of apparent ERa

cycling in the present studies is probably due to different experimental conditions; for example, use

of a 10-fold higher E2 concentration, no a-amanitin release and less frequent sampling. To

determine if MUC 1 occupancy of EREs is dependent on ERa, human MDA-MB-231 breast cancer

cells, which are negative for MUC I and ERa, were stably transfected to express an empty vector

or MUC1 (Supplemental Figs. S4A and S4B). The MDA-MB-231/MUCI transfectants expressed

MUCI at levels comparable to that in ZR-75-1 cells (Supplemental Fig. S4A). The MDA-MB-

23 1/vector and MDA-MB-231/MUCI cells were also transiently transfected to express ERa

(Supplemental Fig. S4B). Compared to MCF-7 cells, MUCI occupancy of the pS2 and cathepsin

D EREs was substantially decreased in the MDA-MB-231/MUC1 cells (Supplemental Fig. S4C).

Moreover, MUCI occupancy of the pS2 and cathepsin D EREs was markedly increased by

transfection of ERa (Supplemental Fig. S4C). These findings indicate that i) MUCI is a

component of the ERa transcription complex, ii) E2 stimulation is associated with increases in

occupancy of both ERa and MUC I on EREs, and iii) MUC I occupancy of EREs is dependent on

ERa.

MUC1 activates ERa-mediated transcription. ChIP assays performed on the

MCF-7/CsiRNA and MCF-7/MUC I siRNA-A cells showed that ERa occupancy of the pS2

promoter is decreased by knocking-down MUC I expression (Fig. 5A, left). As expected, E2

stimulation was associated with increased occupancy of the pS2 promoter by ERa; however, this

response was attenuated in the MCF-7/MUC 1 siRNA cells (Fig. 5A, left). Similar effects of

MUC 1 were observed when analyzing the cathepsin D promoter (Fig. 5A, right). As a control,

silencing MUCI decreased MUCI occupancy of the pS2 and cathepsin D promoters (Supplemental

Fig. S5A). Densitometric scanning of the signals obtained from multiple experiments also showed

that MUC 1 increased ERa occupancy of the pS2 and cathepsin D promoters by -2-fold in the

presence of ligand (Supplemental Fig. S5B). To assess the effects of MUC1 on ERa-mediated
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transcription, the MCF-7/CsiRNA and MCF-7/MUC I siRNA-A cells were transfected with an

ERE-tk-Luc reporter and then stimulated with E2. MUCI expression was associated with little if

any activation of the ERE promoter in the absence of E2 stimulation (Fig. 513). By contrast,

MUC 1-dependent activation of ERE-tk-Luc was increased -5-fold when the cells were stimulated

with E2 (Fig. 5B). Further increases in MUCI-dependent stimulation of ERa-mediated

transcription were found when the MCF-7 cells were transfected with different amounts of the

ERa vector (Fig. 5B). To determine ifMUCI exhibits similar effects in ZR-75-1 cells, we used

ZR-75-1/vector and ZR-75-1/MUCIsiRNA cells (12). Knocking-down MUC1 expression in ZR-

75-1 cells decreased ERa occupancy of.the pS2 promoter in both the absence and presence of E2

stimulation (Fig. 5C, left). Similar results were obtained when analyzing the cathepsin D ERE

(Fig. 5C, right). As found in MCF-7 cells, silencing MUCI in ZR-75-1 cells decreased MUCI

occupancy of the pS2 and cathepsin D promoters (Supplemental Fig. S5C). Quantitation of the

ERa signals showed that MUCI increases ERa occupancy of the pS2 and cathepsin D promoters

by -2-fold in the presence of ligand (Supplemental Fig. S5D). Silencing MUCI in ZR-75-1 cells

also decreased E2-mediated activation of the ERE-tk-Luc reporter (Fig. 5D). These findings

indicate that MUC 1 increases ERa occupancy of EREs and ERa-mediated transcription.

MUC1 increases occupancy of p160 coactivators on estrogen-responsive

promoters. To determine if MUC 1-dependent stabilization of ERCa affects recruitment of

transcriptional coactivators, we asked if MUC 1 occupies EREs with the p160 family members,

SRC-I and GRIP1. In Re-ChIP assays performed on MCF-7 cells, release of anti-MUC1

immunoprecipitates and re-precipitation with anti-SRC- 1 demonstrated that SRC- 1 is present in

MUCI complexes on both the pS2 and cathepsin D promoters (Fig. 6A, upper panels). Similar

results were obtained when the Re-ChIP assays were performed on soluble chromatin from ZR-

75-1 cells (Fig. 6A, upper panels). Also, in both cells, promoter complexes of MUC1 and SRC-l

were increased by E2 stimulation (Fig. 6A, upper panels). The results of Re-ChIP assays further

showed that MUCI is present with GRIP I on the pS2 and cathepsin D promoters and that these
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complexes are increased by E2 (Fig. 6A, lower panels). By contrast, there was no detectable

MUC I associated with control regions of the pS2 and cathepsin D promoters that are upstream to

the EREs (Fig. 6A). To further assess the effects of MUC I on coactivator occupancy of EREs,

ChIP assays were performed on the MCF-7/CsiRNA and MCF-7/MUClsiRNA cells. Occupancy

of the pS2 and cathepsin D promoter by SRC-1 was more pronounced in the MUC1-positive cells

in both the absence and presence of E2 stimulation (Fig. 6B, upper panels). Similar results were

obtained for GRIP I occupancy (Fig. 6B, upper panels). Moreover, TAM was substantially more

effective in decreasing SRC-1/GRIPI occupancy of the pS2 and cathepsin D promoters in MCF-7

cells with downregulation of MUC I expression (Fig. 6B, upper panels). Consistent with these

findings, down-regulation of E2-induced transcription by TAM was attenuated in MCF-

7/CsiRNA, as compared to that in MCF-7/MUCIsiRNA, cells (Fig. 6B, lower panel). Our in

vivo studies were performed at saturating levels of E2 (37). Whole MCF-7 cell binding assays

demonstrated that saturation with [3H]-E2 occurs at an approximately 2-fold higher level in the

presence of MUC 1, consistent with MUC 1-induced increases in ERa (Supplemental Fig. S6A).

At a 10-fold molar excess of TAM to E2 as used in the transcription studies, [3H]-E2 saturation

was decreased by -40% in both MCF-7/CsiRNA and MCF-7/MUC I siRNA cells (Supplemental

Fig. S6A). Thus, with the addition of TAM, ERa/E2 complexes remained -2-fold higher in the

presence of MUC 1 (Supplemental Fig. S6A). Scatchard analysis of the binding data further

demonstrated equilibrium dissociation constants (Kd) values that are similar in the absence and

presence of MUC I, indicating that silencing MUC I has little if any effect on ligand binding affinity

(Supplemental Fig. S6B). TAM-induced decreases of SRC-1/GRIP1 occupancy on the pS2 and

cathepsin D promoters were also attenuated by MUCI expression in ZR-75-1 cells (Fig. 6C, upper

panels). Moreover, down-regulation of E2-induced transcription by TAM was attenuated in ZR-

75-1/vector, as compared to that in ZR-75-1I/MUClsiRNA, cells (Fig. 6C, lower panel). In

concert with these results, E2 stimulation of pS2 and cathepsin D expression at the mRNA (Fig.

6D) and protein levels (Fig. 6E) was attenuated by downregulation of MUCI in both MCF-7 and

ZR-75-1 cells. As a control, treatment with TAM for 3 to 48 h had no detectable effect on MUCI
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expression in the MCF-7 and ZR-75-1 cells (Supplemental Figs. S6C and D). To further assess

the effects of MUC I on ERoc-dependent transcription, MCF-7/CsiRNA and MCF-7/MUC 1 siRNA

cells were transfected with ERE-tk-Luc and SRC-1 or GRIP]. Coactivation of ERE-tk-Luc by

SRC-1 was enhanced to a greater extent in MCF-7/CsiRNA, as compared to MCF-

7/MUCisiRNA, cells (Supplemental Figs. S7A and B). MUCI also enhanced GRIPI-mediated

coactivation of ERE-tk-Luc (Supplemental Figs. S7A and B). Similar results were obtained in ZR-

75-1 cells, confirming that MUC I increases coactivation of ERa-dependent transcription by SRC-

I and GRIPI (supplemental Figs. $7C and D). These findings indicate that MUCI i) increases

occupancy of EREs by ERo/E2-coactivator complexes, ii) stimulates E2-mediated transcription

and iii) antagonizes the inhibitory effects of TAM.

MUC1 enhances E2-dependent cell growth and survival. To assess the

potential relevance of our results to the biology of breast cancer cells, we compared E2-mediated

cell proliferation in MCF-7/CsiRNA and MCF-7/MUC 1 siRNA cells. E2 treatment was associated

with an increase in MCF-7/CsiRNA cell growth (Fig. 7A). By contrast, E2 had little effect on

growth of MCF-7/MUC 1 siRNA cells (Fig. 7A). E2 stimulation of ZR-75-1 cell growth was also

attenuated by silencing MUC I expression (Fig. 7B). To investigate the effects of silencing MUC I

on E2-dependent survival, we used a cell death ELISA detection system. Cell death of MCF-

7/CsiRNA, but not MCF-7/MUC 1 siRNA, cells was decreased by E2 stimulation (Fig. 7C). E2-

dependent decreases in ZR-75-1 cell death were also detectable in the presence, but not the

silencing, of MUCI expression (Fig. 7D). These findings indicate that MUCI contributes to E2-

dependent growth and survival of MCF-7 and ZR-75-1 cells.

KEY RESEARCH ACCOMPLISHMENTS

Our results demonstrate that MUCI induces transformation by stabilizing the Wnt

effector 13-catenin (Cancer Research, in press). We have also found that MUCI interacts with

p53 and regulates p53-dependent gene transcription (Cancer Cell 7:167-178, 2005). In more
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recent work, we show that the MUCI C-terminal subunit associates with estrogen receptor a

(ERa) and that this interaction is stimulated by 17j3-estradiol (E2). MUCI binds directly to the

ERa DNA binding domain and stabilizes ERa by blocking its ubiquitination and degradation.

Chromatin immunoprecipitation assays further demonstrate that MUC I i) associates with ERa

complexes on estrogen-responsive promoters, ii) enhances ERa promoter occupancy and iii)

increases recruitment of pl160 coactivators, SRC- I and GRIP 1. In concert with these results, we

show that MUCI stimulates ERa-mediated transcription and contributes to E2-mediated growth

and survival of breast cancer cells. These findings provide the first evidence that MUCI

stabilizes ERa and that this oncoprotein is of importance to the activation of ERa function.

REPORTABLE OUTCOMES

1. Huang L, Chen D, Liu D, Yin L, Kharbanda S, Kufe D. MUC I oncoprotein blocks

GSK3p3-mediated phosphorylation and degradation of 3-catenin. Cancer Res. 2005; (in press).

2. Wei X, Xu H, Kufe D. Human MUC 1 oncoprotein regulates p53-responsive gene

transcription in the genotoxic stress response. Cancer Cell 2005; 7:167-178.

3. The results obtained regarding the interaction between MUC I and ERa have been

integrated into a manuscript that is being submitted for publication.

CONCLUSIONS

We conclude that MUC 1 induces transformation and that the cytoplasmic domain is

sufficient for this function by stabilizing p3-catenin (Task 1). We also conclude that MUCI

associates with p53 and ERa and thereby contributes to the regulation of gene expression (Task 2).

Work performed over the next year is being directed toward a more precise understanding of how

MUC 1 regulates gene expression and how these effects contribute to the induction of

transformation.
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Figure Legends

Figure 1. MUCI associates with ERa. A and B. Human MCF-7 (A) and ZR-75-

I (B) breast cancer cells were grown in phenol red-free medium supplemented with 10% charcoal-

dextran-stripped FBS for 3 d. The cells were then left untreated or stimulated with 100 nM E2 for

3 h. Lysates were subjected to immunoprecipitation (IP) with anti-ERa or a control IgG. The

immunoprecipitates were analyzed by immunoblotting (IB) with anti-MUC 1-C and anti-ERa. C

and D. COS-1 cells expressing Myc-MUC 1-CD and ERa were stimulated with 100 nM E2 for 3

h. Anti-ERa (C) or anti-Myc (D) IPs were immunoblotted with anti-MUC 1-C or anti-ERa.

Lysates not subjected to IP were immunoblotted with anti-MUC 1-C or anti-ERa (lower panels).

Figure 2. MUC1-CD binds directly to the ERa DNA binding domain. A.

Schema depicting the structures of MUCI-CD and ERa. Also shown for MUCI-CD are the p-

catenin binding motif (boxed) and the c-Src, GSK3p and PKC6 phosphorylation sites. H: hinge

region. B-E. GST and GST-MUCI-CD(1-72) were bound to glutathione agarose and incubated

with 35 S-labeled ERa or the indicated ERa deletion mutants (B and C). GST, GST-MUC1-

CD(1 -72) or the indicated GST-MUC 1-CD deletion mutants bound to glutathione agarose were

incubated 3 5S-labeled ERa (D). GST-MUC 1-CD was incubated with the indicated 3 5 S-labeled

ERa proteins in the absence of ligand (Control) and in the presence of 100 nM E2 or 100 nM TAM

(E). After washing, bound proteins were eluted and separated by SDS-PAGE. The gels were

fixed, dried and subjected to phosphoimager analysis.

Figure 3. MUC1 stabilizes ERa. A. Lysates from the indicated MCF-7 (left) and

ZR-75-1 (right) cells were immunoblotted with anti-ERa, anti-MUCI -C and anti-p3-actin. WT:

wild-type cells. B and C. The indicated MCF-7 (left) and ZR-75-1 (right) cells were treated

with 5 IxM MG132 for 24 h. Lysates were subjected to immunoblotting with the indicated

antibodies (B). Anti-ERa immunoprecipitates were analyzed by immunoblotting with anti-Ub or

anti-ERa (C). D. MCF-7/CsiRNA (N) and MCF-7/MUC 1 siRNA (0) cells were pulsed with
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[3 5S]-methionine, washed and incubated in the presence of 10 nM E2 for the indicated times.

Lysates were immunoprecipitated with anti-ERa and the precipitates were analyzed by SDS-PAGE

and autoradiography. A higher amount of MCF-7/MUC 1 siRNA cell lysate was used for

immunoprecipitation to increase the ERa signals. Lysates not subjected to immunoprecipitation

were immunoblotted with anti-3-actin. Intensity of the signals as determined by densitometric

scanning is presented as the percentage of ERa remaining over time relative to control at 0 h.

Figure 4. MUC1 occupancy of estrogen-responsive gene promoters. A and

B. Cells were grown in phenol red-free medium supplemented with 10% charcoal-dextran-

stripped FBS for 3 d. Following treatment with 100 nM E2 for 1 h, cells were cross-linked with

1% formaldehyde and monitored by ChIP assays. Soluble chromatin from control and E2-treated

MCF-7 or ZR-75-1 cells was immunoprecipitated with anti-MUCI-C or a control IgG. The final

DNA extractions were amplified by PCR using pairs of primers that cover the indicated EREs or

control regions (CRs) of the pS2 (A) and cathepsin D (B) gene promoters. C and D. In Re-

ChIP experiments, soluble chromatin from the indicated cells was immunoprecipitated with anti-

MUC 1-C. The immune complexes were eluted by incubation with 10 mM DTT for 30 min at

370C. After centrifugation, the supernatant was diluted 30 times with Re-ChIP buffer, followed

by reprecipitation with anti-ERa and then detection of the indicated EREs or CRs in the pS2 (C)

and cathepsin D (D) gene promoters. E. MCF-7 and ZR-75-1 cells were treated with 100 nM E2

for the indicated times. Soluble chromatin was immunoprecipitated with anti-MUC1-C or anti-

ERa and analyzed for pS2 and cathepsin D ERE sequences.

Figure 5. MUC1 increases ERa occupancy of EREs and ERa-mediated

transactivation. A. MCF-7/CsiRNA and MCF-7/MUCl siRNA-A cells were treated with 100

nM E2 for 1 h. Soluble chromatin was immunoprecipitated with anti-ERa and analyzed for pS2

and cathepsin D ERE sequences. B. MCF-7/MUC 1 siRNA-A (open bars) and MCF-7/CsiRNA

(solid bars) cells were transfected with 500 ng ERE-tk-Luc (Chen et al., 1999), an internal control
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LacZ expression plasmid (pCMV-LacZ) and the indicated amounts of an ERa expression vector.

At 18 h after transfection, the cells were left untreated or stimulated with 100 nM E2 for 24 h.

Luciferase activity was normalized to that obtained for LacZ and is presented as relative luciferase

activity (mean+SD of 3 separate experiments) compared to that obtained with the E2-stimulated

MCF-7/MUCIsiRNA cells (open bar; normalized to 1) in lane 2. C. ZR-75-1/vector and ZR-75-

1/MUC lsiRNA cells were treated with 100 nM E2 for 1 h. Soluble chromatin was

immunoprecipitated with anti-ERa and analyzed for pS2 and cathepsin D ERE sequences. D.

ZR-75-1/MUCIsiRNA (open bars) and ZR-75-1/vector (solid bars) cells were transfected with

ERE-tk-Luc, pCMV-LacZ and ERa as indicated, stimulated with E2 and analyzed for luciferase

activity as described for MCF-7 cells in B.

Figure 6. MUCI enhances recruitment of p160 coactivators and stimulates

ERa-mediated gene transcription. A. Soluble chromatin from the indicated cells was

immunoprecipitated with anti-MUC 1-C, released and reimmunoprecipitated with anti-SRC- 1 or

anti-GRIP I and monitored for detection of the indicated EREs or CRs in the pS2 and cathepsin D

promoters. B and C. Upper panels. Soluble chromatin from the indicated cells left untreated,

treated with 100 nM E2 for 1 h or treated with 1 [tM TAM for 1 h was immunoprecipitated with

anti-SRC-1 or anti-GRIP 1 and analyzed for pS2 (left) and cathepsin D (right) gene promoter

sequences. Lower panels. MCF-7/MUC 1 siRNA-A (B; open bars), MCF-7/CsiRNA (B; solid

bars), ZR-75-1/MUC1siRNA (C; open bars) and ZR-75-1/vector (C; solid bars) cells were

transfected with 500 ng ERE-tk-Luc and 10 ng pCMV-LacZ. At 18 h after transfection, the cells

were left untreated or stimulated with 100 nM E2 in the absence or presence of 1 IxM TAM for 24

h. Relative luciferase activity is presented as the mean+SD of 3 separate experiments compared to

that obtained with the E2-stimulated MUC 1-negative cells (open bar; normalized to 1). D and E.

The indicated cells were left untreated, treated with 100 nM E2 or 1 [tM TAM for 24 h. RT-PCR

was performed for analysis of pS2, cathepsin D and p-actin mRNA levels (D). Lysates were

subjected to immunoblotting with the indicated antibodies (E).
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Figure 7. A-D. MUC1 increases E2-dependent growth and survival. MCF-

7/CsiRNA (solid bars), MCF-7/MUC1siRNA (open bars) (A and C), ZR-75-1/vector (solid bars)

and ZR-75-1/MUClsiRNA (open bars) (B and D) were seeded at 104 cells/well in 24 well plates.

After culturing in phenol red-free medium with 10% charcoal-dextran-stripped FBS for 2 d, the

cells were maintained in medium without serum in the absence and presence of 100 nM E2 for 3 d.

Cell growth was assessed by the Alamar Blue staining assay (A and B). The results are expressed

as the percentage of cell growth (mean+SD of three separate experiments) as compared to that

obtained for the MUCI-positive cells maintained in the absence of E2. Cell death was assessed

using the cell death detection ELISAPLUS system (C and D). The results are expressed as the

percentage of dead cells (mean+SD of three separate experiments). E. Schema depicting the

proposed interactions between MUCI and ERa.
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Supplemental Figure Legends

Figure S1. ERa associates with MUC1-C and not PCNA. A-F. MCF-7 (A

and C) and ZR-75-1 (B and D) breast cancer cells were grown in phenol red-free medium

supplemented with 10% charcoal-dextran-stripped FBS for 3 d. The cells were then left untreated

or stimulated as indicated with 100 nM E2 for the indicated times (A and B) or for 3 h (C-F).

Cells were also treated with 1 [M TAM for 3 h (C and D). Lysates were subjected to

immunoprecipitation (IP) with anti-ERa (A-D), anti-PCNA (E and F) or a control IgG. The

immunoprecipitates were analyzed by immunoblotting (IB) with the indicated antibodies. Whole

cell lysates (WCL) not subjected to IP were immunoblotted with the indicated antibodies.

Figure S2. Silencing of MUCI in MCF-7 and ZR-75-1 cells. A. MCF-7

cells were stably infected with retroviruses expressing a MUC I siRNA or a control siRNA

(CsiRNA). Lysates were subjected to immunoblotting with anti-MUC1-C and anti-p-actin. B.

Lysates from the indicated MCF-7 cells were immunoblotted with anti-ERa and anti-f3-actin.

Intensity of the signals was determined by densitometric scanning. The results (mean+SD of three

separate experiments) represent relative ERa levels normalized to that in wild-type (WT) MCF-7

cells (assigned a value of 1). C. Lysates from the indicated MCF-7 and ZR-75-1 cells were

immunoblotted with anti-ERa and anti-p3-actin. D. ZR-75-1 cells were stably infected with an

empty retrovirus (Vector) or one expressing MUC 1 siRNA. Lysates were subjected to

immunoblotting with anti-MUC 1-C and anti-f3-actin. E. Lysates from the indicated ZR-75-1 cells

were immunoblotted with anti-ERa and anti-p3-actin. Intensity of the signals was determined by

densitometric scanning. The results (mean_+SD of three separate experiments) represent relative

ERa levels normalized to that in wild-type (WT) ZR-75-1 cells (assigned a value of 1).

Figure S3. MUCI attenuates ERa degradation. A and B. Semi-quantitative

RT-PCR for ERa mRNA levels was performed on the indicated MCF-7 (A) and ZR-75-1 (B)

cells. C. ZR-75-1/vector (A) and ZR-75-1/MUClsiRNA (A) cells were pulsed with [35S]-



methionine, washed and incubated in the presence of 10 nM E2 for the indicated times. Lysates

were immunoprecipitated with anti-ERa and the precipitates were analyzed by SDS-PAGE and

autoradiography. A higher amount of ZR-75-1/MUC1siRNA lysate was used for

immunoprecipitation to increase the ERa signals. Lysates not subjected to immunoprecipitation

were immunoblotted with anti-p3-actin. Intensity of the signals as determined by densitometric

scanning is presented as the percentage of ERa remaining over time relative to control at 0 h. D.

The indicated ZR-75-1 cells were treated with 1 [M ICI for 6 and 12 h. Lysates were

immunoblotted with anti-ERct and anti-l3-actin.

Figure S4. Exogenous MUC1 in MDA-MB-231 cells occupies EREs by a

mechanism dependent on ERa. A. MDA-MB-231 cells were transfected to stably express

the empty vector or MUC 1. Lysates from the transfectants and from ZR-75-1 cells were

immunoblotted with the indicated antibodies. B. MDA-MB-23 1/vector and MDA-MB-

231/MUC I cells were transiently transfected to express ERa. Lysates from the transfectants were

immunoblotted with the indicated antibodies. C. Soluble chromatin from the indicated cells was

immunoprecipitated with anti-MUC 1-C and analyzed for pS2 and cathepsin D promoter sequences.

Figure S5. Silencing MUC1 decreases MUC1 and ERa occupancy of

EREs. A. MCF-7/CsiRNA and MCF-7/MUCGsiRNA-A cells were treated with 100 nM E2 for

1 h. Soluble chromatin was immunoprecipitated with anti-MUC 1 and analyzed for pS2 and

cathepsin D ERE sequences. B. MCF-7/CsiRNA (solid bars) and MCF-7/MUC 1 siRNA (open

bars) cells were treated with 100 nM E2 for 1 h. Soluble chromatin was immunoprecipitated with

anti-ERa and analyzed for pS2 and cathepsin D occupancy. Intensity of the anti-ERa ChIP

signals was determined by scanning densitometry. The results are expressed as relative ERa

occupancy (mean+SD of three separate experiments) compared to that obtained in MUCI -positive

cells without E2 stimulation (assigned a value of 1). C. ZR-75-1/vector and ZR-75-

1/MUCIsiRNA cells were treated with 100 nM E2 for 1 h. Soluble chromatin was



immunoprecipitated with anti-MUCI and analyzed for pS2 and cathepsin D ERE sequences. D.

ZR-75-1/vector (solid bars) and ZR-75-1/MUC IsiRNA (open bars) cells were treated with 100 nM

E2 for I h. Soluble chromatin was immunoprecipitated with anti-ERa and analyzed for pS2 and

cathepsin D occupancy. Intensity of the anti-ERa ChIP signals was determined by scanning

densitometry. The results are expressed as relative ERa occupancy (mean+SD of three separate

experiments) compared to that obtained in MUC 1-positive cells without E2 stimulation (assigned a

value of 1).

Figure S6. MUC1 has little if any effect on ERa ligand binding affinity.

A. Lysates from MCF-7/CsiRNA (AM) and MCF-7/MUCIsiRNA (A,[:) cells were incubated

with the indicated concentrations of [3H]-E2 in the absence (A,A) and presence (E,O) of a 10-

fold excess of TAM. The binding data shown are representative of three separate experiments.

B. The binding data were transformed by the Scatchard method. C and D. MCF-7 (C) and'

ZR-75-1 (D) cells were treated with I [tM TAM for the indicated times. Lysates were

immunoblotted with anti-MUC 1-C and anti-j3-actin.

Figure S7. MUCI potentiates coactivation of ERa-dependent transcription

by SRC-1 and GRIP1. A-D. MCF-7/CsiRNA (solid bars), MCF-7/MUClsiRNA (open

bars) (A) and ZR-75-1/vector (solid bars) and ZR-75-1/MUC1siRNA (open bars) (C) cells were

transfected as indicated with 500 ng ERE-tk-Luc and 300 ng SRC-1 or 300 ng GRIP1. pCMV-

LacZ was used an internal control. At 18 h after transfection, the cells were left untreated or

stimulated with 100 nM E2 for 24 h. Relative luciferase activity is presented as the mean+SD of 3

separate experiments compared to that obtained with the E2-stimulated MUCG -negative cells (open

bar; normalized to 1) in lane 2. Lysates from the transfected MCF-7 (B) and ZR-75-1 (D) cells

were immunoblotted with the indicated antibodies.
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