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1. TECHNICAL SUMMARY

ABSTRACT

This project used analytical and experimental techniques derived from signal detection
theory to: (1) quantify the decision-making performance of individuals and teams; particularly
with respect to how information received from sources having different properties is chosen,
weighed and combined, (2) model the decision behavior of experienced teams of human operators
operating under incentives for decision speed and accuracy, and (3) describe how the accuracy
and speed of group deliberation depends on the aggregation rule and response protocol that
constrains the sequential order of information exchange among team members. The basic
(individual or group) decision task was to decide on the presence or absence of signals in noise.
Signals were presented to operators on individual graphical displays and the team then had to
reach a decision about signal occurrence. The project’s experiments show how individual and
team performance depends on team member signal-to-noise ratio, correlation among members’
inputs, efficiency of member updating of likelihood estimates, and constraints on member
interaction and communication. Specifically, the project experiments demonstrated that: (a)
members’ individual estimates are combined to form the team’s decision with high efficiency,
relative to the optimal Bayesian rule, (b) team performance depends, in a predictable way, on the
response protocols that constrain the sequential order of information exchange among team
members, and (c) team members choose (and evaluate) additional sources of information that
vary in signal-to-noise ratio, bias, cost, time, and correlation in a near optimal fashion. These
results have important potential applications for optimizing team decision making, particularly for
(a) structuring member communication so as to minimize the effects of interruptions, biases,
correlations, and other constraints, (b) enabling the optimal aggregation of information for team
decisions at maximum accuracy and minimal cost and time, (c) quantifying and training expert
team behavior, and (d) designing the most effective systems for spatially separated, networked
teams of human operators. These results were reported in two Master’s theses, two doctoral
dissertations, and a number of research articles and presentations.



Basic Theory and Experimental Procedure

This research (see, Sorkin, Luan & Itkowitz, 2004) employed an approach derived from
electrical engineering analyses of distributed (or decentralized) signal detection (see Pete et al.,
1993a,b; Sorkin & Dai,1994; and Viswanathan & Varshney, 1997) to model individual and team
decision behavior. This approach has generally not received attention in the traditional human
judgment and decision literature.

In the classic signal detection situation, the decision maker (DM) makes an observation,
x, and then must decide whether her observation was caused by a signal-plus-noise or a noise-
alone event (hereafter referred to simply as ‘signal’ and ‘noise’). Her ability to discriminate
between the two events is defined by the two distributions, f{x|n), the likelihood that the
observation was due to noise, and f{x|s), the likelihood that the observation originated from
signal. An ideal (or optimal) decision rule is the likelihood ratio, /(x)=f(x|s)/f{x|n). DM’s ability to
discriminate between the two events is given by the detection parameter, d’, the normalized
separation between the means of the two (assumed) normal distributions, as shown in figure 1.
All of the information that DM has about the existence of a signal on any trial is specified by the
value of the likelihood ratio, /(x). These distributions are sometimes plotted on a log-likelihood
ratio axis; this preserves their normal shape, generalizes the dimensions of the decision axis, and
simplifies subsequent updating of the likelihood estimate by additional observations.
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Figure 1.

By defining the payoffs (or penalties) for the four possible decision outcomes on a trial
(correct identification of signal or “hit”, correct identification of noise or “correct rejection”,
incorrect signal response or “false alarm”, incorrect noise response or “miss”), one can define an
optimal criterion (or threshold) for the value of In/(x). That optimal rule is

respond “signal” iff In/(x) > In[ F] (1

where fis defined by (Tanner & Swets, 1954)

_ I/L‘orrect—reje::tion + Vfalse—alarm )4 (nOiS e )
p= S (21
I/hil + Vmiss p(SIgnal)

where the V;; are the utilities of the four possible outcomes, and p(roise)/p(signal) is the prior
odds ratio of noise to signal.



The Advice Task

Suppose that additional information were available from an uncorrelated, external
advisor, A, a source with detection sensitivity d’y and criterion ;. (For discussion of correlated
sources and information aggregation, see Durlach, Braida, & Ito, 1986; Sorkin & Dai, 1994).
How and when should information from advisor A be incorporated into the DM’s decision? In the
continuous advice case, the advisor provides an estimate of signal occurrence that is summarized
by its likelihood estimate, /,(x). All of the information present is captured by combining DM’s
likelihood estimate with the advisor’s likelihood estimate, in In/{(xp, x4)]. If the DM and A

sources are independent, the joint likelihood estimate is given by the product of the likelihood
estimates and

[ (X005 %,0)] = I0[Z () -1, (3)] = In{Lyy,, (0)]+ InfZ, ()] [3]
Then DM’s decision rule is respond “signal” iff In[/,(x)] 2 In £ —In[/,,, (x)] (4]

The resulting hit probability is given by the volume under the bivariate normal signal distribution,
Snflpu(x), Inly(x)]|s}, defined by the area above the diagonal criterion line (a line with slope
equal to -1 and crossing the abscissa at /n(f9)). The false alarm probability is given by the (similar)
volume under the noise distribution, f{/In/Ip(x),Inly(x)]|n}.

If accessing the information has a cost, DM establishes advice purchase criteria on
In[/pa(x)]. That is, DM only purchases the advice when her observation is above a value In/£; and

below a value Ing,. The optimal settings for these criteria can be determined by calculation of the
expected value of the trial outcome minus the advice cost.

A number of interesting cases result when the information from A is binary rather than
continuous (advisor A’s response is either “signal” or “noise”). One such case is the so-called
“confirmation bias” problem: DM is faced by the option of choosing one of two advisors: advisor
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Figure 2. Binary advice situation.



A or B. Both advisors have the same cost and expertise; the only difference is the response
criteria that they employ, In(3,) and In(fs). Advisor A uses a liberal (low) criterion, and B uses a
conservative (high) criterion. The question is how DM’s choice of advisor should depend on the
magnitude of DM’s initial estimate. It can be shown that the optimal choice after making a high
estimate is to choose the liberal advisor, and the optimal choice after having made a low estimate
is to choose the conservative advisor. This is the so-called “confirmation” strategy, wherein the
advisor’s recommendation is usually expected to support DM’s initial estimate.

The situation can be understood graphically by examining figure 2. As in the continuous
case, DM’s goal is to maximize the volume of the correct regions under the respective signal and
noise distributions. How should the DM’s choice of an advisor depend on the location of her
likelihood estimate when her estimate is greater than In(3,,) but less than In(/fp,)? The respective
response regions for the two advisors are indicated by the horizontal lines in Figure 2; the liberal
advisor responds “signal” when his estimate is above In(3,), and the conservative advisor
responds “signal” when his estimate is above In(/3s). The following consulting strategy is optimal:
If the DM’s estimate is between In(f3p,) and In(/3), she should consult the conservative advisor
In(Bs), if her estimate is between In(f) and In(/fp,), she should consult the liberal advisor In(3,). It
can be seen that the alternative or disconfirming strategy, of reversing the choice of liberal and
conservative advisors, would result in a lower probability of correct responses. (Note the
optimum criterion line overlaid on the diagram. The square area with sides [In(£3,) to In(y)] by
[In(B) to In(fp;)] would be un-shaded in the disconfirming strategy, and the area with sides
[In(By) to In(By)] by [In(Fp,) to In(S3p)] would now be a shaded region resulting in an increase in
false alarm rate and decrease in hit rate.) The optimal strategy can be interpreted as a
“confirmation” strategy, since on most trials the DM will choose the advisor who is most likely to
agree with her initial estimate. An intuitive explanation of this is to realize that if DM has made a
high evaluation, only a negative (and unlikely) reply from the liberal advisor should cause her to
reject her initial estimate.

Team Decision Tasks

Our approach to modeling group decision making shares many features with the advice
or information acquisition problem. We assume that group performance depends not only on the
members’ individual expertise, but also on how member information is communicated,
aggregated, and converted to the group decision. Members may have different levels of expertise
(effective signal-to-noise ratios), biases (response criteria), correlations (degrees of shared noise),
and response rules. We assume that members generally update their estimates in an optimal
Bayesian fashion. However, the communication of member information is assumed to be
inherently imperfect. Figure 3 shows a general diagram of such a system. The team of local
decision makers (LDMs) must decide about the occurrence of a signal; the task is made difficult
by noise (both common and shared) and by the LDMs’ having a discrete response vocabulary.
After receiving the input, each member estimates the likelihood of signal occurrence and converts
that estimate to a categorical response 7;;. That response is communicated to the Decision Center
(DC) where the group's final decision is made. The DC uses a set algorithm, such as a specific
majority of signal or noise votes, to aggregate the members’ information. The DC also may
employ a deliberation process that involves additional interaction and feedback among the
members.
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Figure 3. [A(x;) indicates likelihood ratio.]

In a hypothetical jury, each member updates her opinion (and re-votes) upon hearing the
simultaneous, non-anonymous votes of the other jurors. All members vote at once, member
judgments are updated in an optimal fashion, and the updating and voting process is repeated
until a majority or stopping criterion is reached. The updating calculation of the juror’s response
is equivalent to the juror’s Bayesian recalculation of likelihood ratio. It is assumed that each juror
is knowledgeable about the expertise and bias of the other jurors. Under some conditions, jury
performance can closely approximate the maximum likelihood aggregation of the members’
continuous responses (Swaszek & Willett, 1995; Sorkin et al., 2004).

An interesting and important deviation from the jury aggregation model occurs when the
LDM information arrives sequentially rather than simultaneously; such as in a group of
electronically networked LDMs. We’ve tested the effects of different sequential response rules on
simulated group performance and have shown that the order of arrival of member information has
a potentially large effect on the accuracy and speed of the decision. We assume a member’s vote
is conveyed to the group in an individual, sequential fashion. As each member’s response is
made, the other members update their individual estimates in a Bayesian fashion. A fixed
aggregation rule is then used to either arrive at a group decision via a hidden vote. Members don’t
speak again until all have spoken. This ‘deliberation’ process continues until a group decision is
made or time runs out. Table 1 shows some possible protocols that could be used to determine the
next team member to speak.



Table 1.

The next speaker to access the network is:

Random Ran(i)

Most/l east expert Max(d’), Min{d’)

Most/least biased Max |inf), Min (inf)|
Largest/smallest estimate ~ Max |InAfx )|, Min |inAk)|
Most/least confident Max | inAfx)-inf |, Min |InAfx)-inf |
Largest/small est weight Max wr,) where:

wrg=in[1-p(r, [Is JJ/[(1- p(r, ||s))]
w it J=in{p(r; (|s Jlp(r, lso)]

Experimental Method

The basic decision task is to judge whether the stimulus present on an experimental trial
was generated by a signal-plus-noise or noise-alone condition. Each participant is presented with
a graphical display like the set of analog gauges shown in figure 4, and the group must report
whether the displays were due to a signal or noise. The setting of each display (vertical) element
is determined by a normal distribution whose mean depends on the parameters of the experiment.
Versions of this task have been studied extensively in our laboratory (Luan, Sorkin, & Itzkowitz,
2004; Montgomery and Sorkin, 1996; Sorkin & Dai, 1994; Sorkin, Hays, & West, 2001; Sorkin,
Mabry, Weldon, & Elvers, 1991; and Sorkin, West, & Robinson, 1998). The difficulty of the task
is determined by the display’s physical and statistical parameters. The major physical parameters
are the display duration and the visual angle subtended by the display. The statistical factors are the
means of the signal-plus-noise and noise-alone distributions and the value of their common
standard deviation. In our experiments, the main factor that determines task difficulty is the
display signal-to-noise ratio (SNR), which is the difference between the distribution means
divided by their (common) standard deviation. The individual SNR for each member can be
controlled, as can the correlation between member displays. We record the mean value, x;;, of the
trial-by-trial display presented to each member i on each trial j. The monetary payoff to the
participants depends on the accuracy of the group s detection performance. Sometimes the
monetary payoff also depends on the accuracy of the individual members’ performance on their
first response; this manipulation serves to control their initial response criterion. This general
decision task can be run under different rules for member interaction and information display.
More complex displays can be employed to convey the expertise and criterion of information
sources and the correlation of different sources.

if

Figure 4. Example of a typical display (signal-plus-noise trial).



Results

Effect of Consistency and Correlation of Information Sources

This experiment tested how decision makers weigh the estimates received from different
sources when those sources vary in their (a) number, (b) reliability or expertise, (c) apparent
consistency (internal correlation), and (d) correlation with the decision maker’s initial estimate.
The human decision makers performed the graphical decision task, aided by simulated team
members. The decision maker observed a display of a signal-plus-noise or noise-alone event and
then made an estimate of the likelihood of signal occurrence. The decision maker was then
supplied with a graphical display of several estimates made by one or two sets of simulated team
members. The decision maker was then required to make a final yes-no decision about the
occurrence of signal on that trial. The payoff to the decision maker was based on the accuracy of
the final yes-no decision. Performance was assessed when the estimates of the virtual team
members were either pair-wise uncorrelated or correlated (among themselves) at some level, or
had differing overall indices of detection. By computing the correlation over trials between the
decision and the source’s magnitude, the experiment assessed how much decision weight the
decision maker gave to each information source.

One experimental condition tested which of two equal-information sources (sources with
equal aggregate-d’) would be given the higher weight: the one with the internal pair-wise
correlation and higher individual d’s, or the one with the zero pair-wise correlation and lower
component d’s. Thus, this condition tested for the presence of a bias toward sub-source
consistency or sub-source expertise. Further conditions were run comparing sources with
differing overall informational value. The results of these experiments indicated that there is a
small but significant bias toward information sources that have higher consistency and higher
component expertise, even though the information available from such sources is identical to or
less than that received from lower consistency sources. This is an important result because it
shows the existence of a here-to-fore unreported bias toward information sources that have higher
component expertise or internal consistency. Such a bias will result in inefficiency in decision
performance; performance will decrease as a function of the discrepancy between actual and
optimal weighting of input sources. It may be possible to provide a decision maker with the
estimates received from different sources so that the overall information display adjusts for such a
pre-existing weighting bias.

Effect of Correlation Between Decision-maker and External Information Sources

When information from two external sources is available to help a decision-maker (DM)
make her final decision, following the majority choice of the two sources and decision-maker can
be a useful decision heuristic for rapidly achieving a final decision. The advantage of this
heuristic is greatest when the information from the three sources arises from independent
observations and the sources are equal in expertise. However, when one of the source’s
information is correlated with the DM’s (which would result in more agreement between that
source and the DM), the statistical advantage of information aggregation is reduced. Therefore, as
the correlation between one source and the DM increases, the DM should assign less final
decisional weight to that source (and herself), relative to the estimate from the other, independent,
source. In this experiment, two information sources with nearly equal detection abilities to the
participants were presented after the DM made an initial estimate. We manipulated the correlation
(pra) between one information source (A) and the participants’ decision estimates at three
different levels: 0, 0.4 and 0.7, and kept the other source (B) independent (ppg = 0,



pas =0). The results indicated that when pp, increased, participants (1) assigned significantly
more decision weight to information from themselves and source A, and failed to assign
appropriate decision weight to source B; (2) continued to use the simple majority decision rule to
make their final decision and usually did not follow source B’s estimates when B’s estimates
were counter to the estimates of the participant and source A; and (3) consequently had reduced
final decision efficiencies as pps was increased. We concluded that the simple majority decision
heuristic was extensively used when decision-makers integrated information from different
sources and that they weighed information from agreeing (and correlated) sources much more
than information from disagreeing sources. This type of bias results in a loss in the benefit of
information contained in the disagreeing source as well as in a reduced accuracy in the final
decision.

Information Acquisitiont .

Seeking advice from other people or sources is a common practice in making real-life
decisions and in command and control decision making. We developed a normative model that
describes how advice-taking should depend on the decision maker’s own estimate, as well as the
cost, expertise, and decision bias of the potential advisors. Three experiments were conducted to
examine how human participants took and utilized advice in different decision environments, and
whether their observed behaviors were consistent with the model’s prescriptions. In the
experiments, a decision maker (DM) first observed a visual stimulus and then made an initial
estimate of the nature of the stimulus: signal-plus-noise (S) or noise-alone (N). Then, information
from external sources was available for the DM to purchase regarding the decision event. After
the DM made her consulting decision and integrated the advice with her own, she made a final
decision. On each trial of one experiment, participants were asked to make a decision about
whether or not to consult an advisor. Both the cost (High or Low) and the displayed content of the
advice were manipulated (Continuous or Binary). It was found that participants consulted the
advisor more frequently when their own estimates were uncertain and also when the advice was
expressed in the continuous mode rather than the binary mode.

In a further experiment, two advisors with equal expertise and consulting costs but
different decision biases (criteria, B) were presented. Four hypothesized consulting strategies
were first tested in computer simulations: (a) a Low Estimate followed by a choice of a Liberal
Advisor or a High Estimate followed by a choice of a Conservative Advisor, (b) a Low Estimate
followed by a choice of a Conservative Advisor or a High Estimate followed by a choice of a
Liberal Advisor, (c) Always choose Liberal Advisor, and (d) Always choose Conservative
Advisor. The (a) strategy of “Low-C-High -L”, which has a similar working rationale as the so-
called “confirmation-bias” strategy, was the best in simulations and theory (see figures 2.,5. and
earlier theoretical description of the Advice problem). This strategy prescribes that: if a DM has
an observation that is more likely to lead her to make a N decision, she should consult a
“Conservative” advisor; otherwise, she should consult a “Liberal” one. Because a Conservative
advisor was defined in this study as the advisor who was biased to make more N decisions than S
(tended to give more N than S opinions to the DM) and a Liberal advisor was defined to do the
contrary, “Low-C-High-L” is actually a “confirming” strategy: a DM should always consult the
advisor who is more likely to agree with her own decision estimate. The results are shown in
figure 6. Most subjects followed the optimal strategy; none followed the non-optimal strategy. It
can be concluded that people have certain behavioral tendencies when taking advice from
external sources and that these generally confirm to optimal behavior. Our advice model can be
used to identify precisely how those observed behaviors deviate from the optimal, and may
contribute additional insight into understanding human advice-acquisition and decision-making.

10
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Figure 5. The expected payoff (EV) as the function of k (an index of consulting frequency) resulted from
the four tested strategies in the optional consulting condition. The optimal strategy has the highest payoff;
always choosing one source is in between,; the reverse strategy is the worst.
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Figure 6. The number of participants who used each consulting strategy in the two experimental conditions

of the advisor experiment. (None of the participants used the Low-L-High-C strategy).
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Team Deliberation

A series of experiments studied collaborative detection in decision making groups.
Collaboration is defined as the process by which group members sequentially share their private
information with the group. The many factors that influence the group during this process can be
grouped into two categories: group composition (the accuracies, biases, and correlation of
members’ opinions) and organizational structure (speaking rules, response protocols, and decision
criteria). Using a normative model, we studied the effects of the team decision criteria (simple
majority and unanimity) and the response protocols (member properties determining who speaks
next), as well as the effects of group composition and organizational structure on performance.
Real and simulated group performance was evaluated in a number of ways (accuracy, post-
deliberative bias, deliberation length, and deliberation efficacy). The model makes some very
specific assumptions: members attempt to optimize the group payoff/performance, members are
rational decision makers with appropriate motivation, and members update their estimates and
combine information from other group members’ public votes in a Bayesian manner. The general
architecture of the model is shown in figure 7.
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Figure 7. Computational architecture of group decision process.

One experiment tried to determine which, if any, response protocols were used in groups
when members’ participated according to a voluntary structure. Because we desired speaking
orders that reflected group members’ desire to share their information with the group, we set the
governing response protocol to sequence speakers in ascending order of their response time to
their initial stimulus. Previous research indicated that group members who are certain (or
confident) of their decision are the most likely to participate (Carlston, 1977; Sneizek & Henry,
1989). We found that a members’ observation magnitude, relative to their own individual
decision criterion, had a small but clear impact on the speed of a group members’ decision.

Team deliberation, even with a requirement for unanimity, was relatively rapid. This was

consistent with the predictions of Swaszek & Willett (1995). Second, group performance was
better than that of the best member in the group, providing evidence consistent with the model
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(and simulations) and contrary to some previous human studies that found that groups rarely
perform better than their best member (Gigone & Hastie 1997; Einhorn, Hogarth, & Klempner,
1977). Third, group deliberation with a requirement for unanimity had the effect of “debiasing”
the most extreme group members. Even when two-thirds of the group members began
deliberation with an initial bias (either liberal or conservative), the group decision had a generally
neutral bias.

All of the groups tested had higher decision performance than that of the group’s best
member, indicating that the groups were using the information provided in deliberation. None of
the protocols produced results having both the highest detection accuracy and the minimum
deliberation duration. Thus, these two performance metrics are not optimized by the same
protocol. Simulated and actual groups using a Minimum 4’ rule and a unanimous decision
criterion had higher detection ability than the other groups. Simulated and actual groups (see
figure 8) requiring unanimity and using a Minimum d’ protocol, had the slowest performance,
e.g., highest number of votes than other groups.

3.5 4

Avg Votes
Avg Votes
N

0.5 4

0

[
Rand-Majority Rand-Unan Mind" Max d' Difference

Figure 8. Mean deliberation times and associated standard errors for actual groups (left panel) and
simulated groups (right panel). The left-most column is for a simple majority rule; the right
four columns are for unanimous rule groups using, respectively, a random, minimum d’,
maximum d’ and maximum observation-criterion protocol.

Conclusions and Possible Applications

It is clear that team performance is a function both of the team members’ characteristics
and the organizational structure used to reach consensus decisions. Whereas the former mostly
affects individuals’ private judgments, the latter affects how these judgments are integrated with
information received from other team members. Our approach provides an integrated model for
addressing individual and team decision making behavior in deliberative groups and provides a
consistent account of such behavior in the laboratory. In general, individuals within the groups
tested updated their own opinions according to the normative, Bayesian, predictions. Moreover,
groups closely matched the predictions of group accuracy and deliberation length provided by
simulated groups. Although our experimental procedure was simplified and did not reflect the

complexity of actual deliberative teams, our results indicate that groups act in a largely rational
way.
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The basic issues addressed by our model (and the additional questions raised here) have
important implications. Because so many important decisions are made by both face-to-face and
networked deliberative groups (e.g., juries, military teams, and corporate boards), it is essential
that we discover ways to maximize the performance of these groups. In some situations, it is clear
that adding some automated control of the “deliberation” process in a networked group could
result in small but measurable increases in accuracy or important decreases in decision time.
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