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Airborne EO sensors possess several desirable properties for finding surface-laid anti-
vehicle mines. They are capable of stand-off operation and can quickly surveyv a large
area. This work focuses on signature modeling and detection algorithms, two topics
that are useful in realizing a real-time minefield detector using EO imagery.
Signature modeling helps to provide insight for sensor deployment. The model
addresses relevant issues in sources, targets, and sensors. Natural sources such as
thermal emission, solar radiation, and solar scattering were considered and incorpo-
rated using empirical models. A BRDF model that defines scattering and emission
from rough surfaces was developed that integrates geometric relations with intrinsic
surface properties. Stokes’ vectors are used throughout this work to describe incident

and scattered radiances, which permits a polarimetric study of the signatures. The



simulated signatures are compared with several measured data sets from different
scenarios and exhibit strong quantitative agreement.

Mine detection algorithms are a critical system component. The existing bascline
“RX" algorithm makes little use of signature information. An alternative to the RX
algorithm is constructed using an estimator-correlator formulation and uses spatial
target information to enhance the clutter rejection rate. A filter-bank configuration
was proposed to fuse results from multiple references to boost the mine detection
rate. A locally adaptive implementation was developed to obtain a reliable detection
in inhomogeneous backgrounds. The proposed detectors were used to process a large
measured data set. Substantial gains were observed for the techniques proposed here.
The advancements described throughout this work will serve to improve real-time

mine detection.
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ABSTRACT

Airborne EO sensors possess several desirable properties for finding surface-laid
anti-vehicle mines. They are capable of stand-off operation and can quickly survey a
large area. This work focuses on signature modeling and detection algorithms. two
topics that are useful in realizing a real-time minefield detector using EQO imagery.

Signature modeling helps to provide insight for sensor deployment. The model
addresses relevant issues in sources, targets, and sensors. Natural sources such as
thermal emission, solar radiation, and solar scattering were considered and incorpo-
rated using empirical models. A BRDF model that defines scattering and cmission
from rough surfaces was developed that integrates geometric relations with intrinsic
surface properties. Stokes” vectors are used throughout this work to describe incident.
and scattered radiances. which permits a polarimetric study of the signaturcs. The
simulated signatures are compared with several measured data sets from different
scenarios and exhibit strong quantitative agreement.

Mine detection algorithms are a critical system component. The existing baseline
“RX” algorithm makes little use of signature information. An alternative to the RN
algorithm is constructed using an estimator-correlator formulation and uses spatial
target information to enhance the clutter rejection rate. A filter-hank configuration
was proposed to fuse results from multiple references to boost the mine detection
rate. A locally adaptive implementation was developed to obtain a reliable detection
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in inhomogeneous backgrounds. The proposed detectors were used to process a large
measured data set. Substantial gains were observed for the techniques proposed here.
The advancements described throughout this work will serve to improve real-time

mine detection.
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CHAPTER 1

INTRODUCTION

Land mines are among the most dangerous forms of unexploded ordnance. With
tens of millions of landmines deployed in more than 70 countries, mine detection is of
critical importance in both humanitarian and military operations. In spite of more
than 40 vears of research [1], reliable mine detection remains an elusive goal.

In standard military operations, mines are deploved in minefields with the inteat
of reducing the mobility of ground forces. During wartime, finding minefields in a
timely fashion is critical to the safety and success of ground forces. EO sensors are
attractive for demining, because those sensors are capable of stand-off operation and
airborne sensors can rapidly survey a wide area. On the other hand, mine signa-
ture are ecasily lost in clutter (especially for buried mines), and the sensor resolution
varies with changes in aircraft altitude. The above advantages and limitations have
largely restricted the use of airborne EO demining sensors to detection of surface-laid
anti-vehicle (large) mines. Specialized EO sensors, including polarimetric sensors and
multi-spectral sensors, are available and have been investigated, but are still imma-
ture.

In this dissertation, basic studies are presented that address the performance of

minefield detectors. Two topics were explored: radiometric signature models and



mine detection algorithms. A physics-based radiometric model was developed, and
comparison of its simulations with measured EO imagery shows reasonable agreement.
A minefield detection svstem requires a reliable mine detection algorithm. A novel

algorithm was devised for this purpose and compared to a baseline algorithui.

1.1 Motivation

Work on EO signature modeling was motivated by the fact that, in general, the
performance of a detection algorithm can be improved by exploiting knowledge about
the signature of the intended target. For land mine detection, this requires a priori
knowledge of the mine signatures at the time of data collection.

Mine signatures are challenging to predict. It has long been observed that such
signatures are highly variable, depending strongly on sensor characteristics and cur-
rent and past environmental condition. Time-of-day, day-of-year, sensor bandwidth,
image resolution and viewing geometry are a few of the many parawmeters that affect
EO mine signatures. Predicting signatures as a function of these parameters requires
a sophisticated model that addresses both the thermal and radiometric aspects of the
processes involved.

Given knowledge of a mine’s signature, a detection algorithm capable of exploit-
ing the signature information is required. Because of the aforementioned signature
variability, the algorithms currently used to detect land mines exploit only the most
basic signature information (e.g., size and shape) by assuming, for example, a round
target of uniform contrast. More detailed signatures provided by the above-described

model could be integrated into a detection algorithm to improve its performance.



1.2 EO Mine Detection Sensors

A number of systems have been developed to process EO imagery for mine de-
tection. Early work on multi-spectral detectors was reported by VWitherspoon aund
Holloway [2] who fused six channels of imagery collected by a 400-900 nm camera
with a spinning filter wheel. That sensor was later used on an airborne platform
under the Coastal Battlefield Reconnaissance and Analysis (COBRA) program [3, <.
The REMIDS sensor [5] combined a passive thermal IR channel with two co-registered
linearly polarized near-IR sensor of laser reflectance. That combined passive/active
sensor concept later becomes part of the ASTAMIDS system [6].

There has also been extensive work in hyper-spectral imaging for demining. McFee

et al. developed a compact airborne spectrographic imager (casi) [7, 8. 9. 10|, which
emplovs up to 288 spectral bands over the 400-1000 nm range. An extensive experi-
mental studyv of hyper-spectral phenomenology has recently heen presented by Smith
et al. [11].

EO mine signature modeling has been attempted from a physics-based prospect.
A thermal model using FEM approach was developed by Sendur [12] for prediction
of temperature contrast among buried mines and surrounding soil. Cremer et al. [13]
adapted this model to estimate polarimetric signatures in the NWIR band for surface-

laid mines. Primary features of the temperature distribution due to insolation were

found in fair agreement with measurements.



1.3 Objectives

This work has two major objectives. First, a physically based mine signature
model will be developed with the capability of treating diverse sensors and environ-
mental conditions. To ensure that the model is useful in practice, it is validated
using measured signatures. As noted above, mine signatures are influenced by a large
number of factors, and the model must address many issues including the phvsics
of natural radiation sources (e.g., direct and scattered sunlight), sensor parameters
(bandwidth, resolution, and noise level), the imaging geometry, and scattering and
emission by rough random surfaces. Accurate modeling of scattering and cmission as
functions of source and observer directions is particularly important to the success of
the model. A model for a bi-directional reflectance distribution function (BRDF) of
rough surfaces is described that is based on physical optics (PO) and geometrical op-
tics (GO) approximations to classical random rough surface scattering formulations.

The second major objective of this dissertation is to develop a mine detection
algorithin that can exploit predicted signature information. The so-called “RX™ al-
gorithm of Reed and Yu [14, 15], which is based on a generalized likelihood ratio
test (GLRT), is currently employed by the US Army and will be used as a bascline
algorithm. RN makes relatively little use of mine signature information. It assumes
a deterministic circular signature of known size and unknown amplitude, and it as-
sumes spatially uncorrelated clutter. As an alternative, an estimator-correlator (EC)
approach is described. For the case of additive Gaussian noise, the IC algorithm
degenerates to a Wiener filter, which is capable of exploiting more detailed signature

and clutter information.



1.4 Organization

The organization and content of the dissertation are as follows:

Chapter 2 reviews physical issues that affect EO mine signature modeling. We
first review critical radiation sources and transmission paths used in mine detection.
Physical properties and modeling methods for random rough surfaces are described
along with a literature review of existing rough surface scattering models. The relation
of emissivity and BRDF is discussed. Three data sets used to validate and illustrate
the models are also described.

Chapter 3 presents the mine signature model. The problem geometry is defined.
The thermal model used to predict surface temperature profiles is described. The
MODTRAN code, developed by US Air Force, to compute spectral source radiance
from direct and scattered solar radiation, is discussed. The BRDF model used for
scattering and emission from rough surfaces is developed from classical BRDF models
based on physical and geometrical optics. The derivation and validation of the BRDF
model are provided in Section 3.3. Integration of the BRDFE model. the FEM thermal
model and MODTRAN are documented in Section 3.4. Section 3.5 contains studies of
an ideal sensor’s signatures. The significance of radiometric components and effects of
the sensor’s angle, orientation and passband are discussed. The effect of finite sensor
resolution, which is necessary for a comparison with measured data, is discussed in
Section 3.6.

In Chapter 4 simulated results are compared with measured signatures from three
different data sets. Temporal MWIR signature variations over a diurnal cycle are
studied, and polarimetric MWIR responses are investigated. In both cases, the model

exhibits qualitative agreement with major features observed in the measured images.



Mine signatures were also simulated in the visible band to identifv major radiometric
contributions, and qualitative agreement was also noted.

Chapter 5 reviews prior work on mine detection algorithms and describes the de-
velopment of an estimator-correlator mine detection algorithm. The baseline RX algo-
rithm is discussed along with some beneficial modifications. The estimator-correlator
(EC) approach is described in Sections 5.5 and 5.6. A locally adaptive EC detector
was developed to cope with spatially varying clutter environments. Processing results
from experimental data are used to demonstrate the effectiveness of the proposed al-
gorithms.

Conclusions, presented in Chapter 6, summarize the work and highlight its main

contributions. Suggestions for future work are also presented.



CHAPTER 2

ISSUES AFFECTING EO MINE SIGNATURE
MODELING

In this chapter we review some physical issues relevant to EO mine signature
modeling. We begin by defining the scattering geometry in Section 2.1. Radiation
sources and transmission paths involved in EO mine sensing are described in Section
2.2. Critical surface properties and models for random rough surfaces, which are
commonly assumed for landmines and natural clutter, are discussed in Section 2.3.
A critical target property, the bidirectional reflectance distribution function (BRDF)
is discussed in Sections 2.4. A review of previous attempts to derive analytical and
numerical BRDFE models for random rough surfaces appear in Section 2.5. Another
key property, the emissivity, 1s discussed in Section 2.6. The data sets used in this
dissertation are presented in Section 2.7. A review of basic radiometric concepts and

their application to mine detection can be found in Appendix A.

2.1 Definitions

[n electromagnetic scattering problems it is conventional to refer polarization di-
rections to the so-called “plane of incidence” defined by the surface normal and the

wave vector of the incident wave. Polarimetric components in this plane are referred



to as “vertically” polarized, and orthogonally polarized components are referred to

polarized. For a unit wave vector k,, where ; = 7.5 denoted to

¥

as “horizontally’

incident and scattered directions, its associated horizontal and vertical vectors are

i f i

By = o (2.1)
ijl’l|

¥, = hyxk, (2.2)

in which n is the surface normal.

The Stokes vector [16] uses four real quantities to accomplish the same purpose.
The vector components are the intensity I, the degree of polarization ), the plane ol
polarization U, and the ellipticity V' [17]. The complex electric ficld components, ¢,
and e, in the horizontal and vertical directions respectively, are related to the Stokes

vector components as follows:

1 < gper + BaEy >

1= | @2 1| <ereh—eve;> (2.3)
U 210 2he € e, = '
V 20 £ el >

All of the Stokes vector components have the units of radiance (i.e., W/m?sr), and
the quantity I is the total scattered radiance (also sometimes referred to as “specific
intensity” [18]). An EO sensor records irradiance (W/m?) received on its image planc,
but in this work we will evaluate radiometric signatures in terms of radiance because
for a small patch at the image plane (a pixel), the measured irradiance is proportional
to the incident radiance on the lens and is subject to changes in optical parameters
of the sensor [19] (f-number f, and lens diameter d). Comparisons of signatures
in radiance are invariant to sensor parameters and focus on physical propertics of

radiative transfer.



While the parameters I and () are evident, the meanings of the quantities U and
1" are less apparent. Egan [20] explains that U expresses the excess of radiation
polarized in the 4+45° direction over that in the —45° direction relative to the plane
of incidence, and V" indicates the amount of circularly polarized radiation.

In many of the calculations that follow it will also be convenient to use a modificd

Stokes vector [21]

g £ EpE] B
; 1 0 €
I e -[U i ot < €l)€/u >‘ (21)
U 27]0 2Re < epe >
i g 2Im < ejper =

in which the classical I and @) components have been replaced by the radiance in the h

and v polarizations respectively.! The classical Stokes vector is readily reconstructed

o

2.2 Radiation Sources and Paths

from

[h + 1,
[h - Iu

Passive EO images of landmines and clutter include radiometric contributions
that propagate to the sensor via different paths. This section provides information
on several common sources and their transmission paths.

The radiance received by an EO sensor includes both thermal emission and re-
flected illumination. In the first half of this section, we study the properties of thermal
emitters and the sun. Their polarization properties are also addressed.

The received radiance may propagate directly from the source to the detector or it
may propagate along a complicated path with scattering at multiple locations. One
can categorize the radiation paths as direct emission, single scattered or multiply

'Note the ordering of the horizontal and vertical components. Some authors (e.g.. [18]) use the
opposite convention.



scattered. In this analysis we will neglect the paths with more than two reflections,
since many objects in the environment tend to partially absorb the incident radiance.
Later in this section we describe viewing geometries in which direct emission, single

scattering, and multiple scattering are important.

2.2.1 Thermal Radiation

For passive infrared sensors, thermal emission from the target is the radiometric
component of primary interest. The amount and spectral dependence of thermal
emission are defined by the temperature of the target. Because solar radiation las
little energy at wavelengths longer than 3 pm, MWIR and LWIR sensors respond to
the solar illumination only to the extent that the target absorbs energyv and converts
it to thermal radiation.-

Thermal emission derives from blackbody radiation. As mentioned in Section
A4, a blackbody absorbs all incident radiation regardless of wavelength and incident
direction. During emission, a blackbody behaves like a perfect diffuse emitter with
a spectrum specified by its temperature and the Planck distribution. For any real
surface, the incident radiation is partially absorbed and partially reflected. In addition
the amount of emitted energy is always less than the incoming energy. Such a surface
is often referred as a graybody. The directional dependence of thermal emission for
a graybody is not necessarily diffuse, but is a function of several surface properties.

Thermal emission from graybodies is related to blackbody radiation via the emis-
sivity £. The emissivity is defined as the ratio of the actual emitted radiance L to
the radiance Lpp emitted by a blackbody at the same temperature. In general, emis-

sivity £ depends on the wavelength A, temperature 7" and viewing geometry (6, ¢).

10



We write
Ls(A,0,0.T)

E(NG,6,T) = T

(2.6)

The value of emissivity lies between zero and one. Other representations for emissivity
that involve spectral or spatial averages are commonly used. In this work the sen-
sors integrate over a relatively broad passband, and we will use the total directional
emissivity, in which the spectral variation has been averaged out. In addition, it will
be assumed that the emissivity is independent of the temperature and the surface is

isotropic (no dependence on ¢ in emission), leading to

_ JLa(A,0,T)dA
[ Lpp(A\,T)dA

£(6)

in which the integral extends over the sensor passband.

Some materials and viewing geometries [20] produce polarized thermal emissions.
For smooth surfaces the polarization can be explained by Fresnel’s equations. Re-
ferring to the parallel and perpendicular scattering planes, which are defined by the
surface normal and the incident wave direction, the parallel and perpendicular emis-

sivity components are given by

B 2sinf cos ¢ 2
& = [sin(l‘) + @) cos(¢ — 9)] (2.8)
~ |2sinfcos ¢ - (
= = [Sin(f) + ¢) } (2.9)

where # 1s the emission angle and ¢ is the angle of refraction in the medium given by
Snell’s law

sinf) = msin ¢ (2.10)

sl



in which m is the complex refractive index. The difference in the two polarization
planes increases as the emission angle diverges from the surface normal. For unpo-

larized sensors, the effective emissivity is the mean of the two polarizations.

1
2
For rough surfaces, the analysis is significantly more complex, and it appears in

Chapter 3.

2.2.2 Solar Radiation

Solar radiation is the dominant source for visible sensors, and it stronglv influences
IR sensors via surface heating. In this section we discuss the propertics of dircct solar
radiation (sunlight). Solar radiation that is scattered by the atmosphere (skyvlight) is
described in the next section.

Outside the earth’s atmosphere, the spectrum of solar radiation can be approx-
imated by a blackbody radiator at 5785K. The incident flux is approximately 1390
W/m? [22]. The insolation at the earth’s surface is affected by the celestial rela-
tion of the sun and the earth, which determines the slant path and the atmospheric
composition, which regulate absorption and scattering. The actual insolation may
change significantly due to various meteorological conditions. On a cloudless dav for
a near vertical sun, about 80 percent of the incident flux reaches the ground. Only
50 percent of incident flux may pass during a cloudy day [23].

Atmospheric scattering losses are quantified by the “optical thickness™ parameter
7, which is the integral of the volume scattering coefficient 3 [24]. For a vertical slant
path at altitude z, 7 is

o0
T\, 2) = / BN, )2 (2.12)

12



For a Rayleigh atmosphere, the volume scattering coefficient is a function of the

molecular number density N, the refraction index of air m, and the wavelength A.

1.3 7 2
s B (m 1) (2.13)

T ONA \m? 2
The optical thickness is highly sensitive to wavelength (o< 1/A*). A large optical
thickness, which arises for a shorter wavelength, implies more flux is lost to scattering.
For the U.S. standard atmosphere, the optical thickness for red light (700 nm) is only
a tenth that for blue light (400 nm) at sea level [25].
Solar radiation is unpolarized. It can become polarized when scattered by the

atmosphere, as discussed below.
2.2.3 Skylight (Atmosphere-Scattered Solar Radiation)

Solar radiation can reach the target via atmospheric scattering. This scattered
radiation is often referred to as skylight. In this section, we discuss the scattering
processes, polarization properties, and meteorological dependence of skylight.

Skylight includes both scattered solar radiation and thermal emission from the
atmosphere. At shorter wavelengths (visible and near IR), the effect of the latter is
small compared to the former except during night time.

The scattering process is illustrated in Figure 2.1. A concise representation of the

scattered spectral volume irradiance is [26]

ANy = Ey(N)71(A)Bsca(A, 0)Tra(A) cos odV’ (2.14)

2

where F(A) is the exoatmospheric spectral solar irradiance, [, Is the scattering
coefficient of a unit volume of the composite atmosphere, and 7(A) is the transmis-

sion coeflicient of the path. The angles, # and o, which define the relation between
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the sun, the scatterer and the target surface, affect the scattering coefficient and the
scattered irradiance as well. If the above parameters are known, the total irradi-
ance from scattered solar radiation can be derived via a volume integral over the
upper hemisphere, but exact solutions are not available. because of the complicated,
time-varyving atmosphere composition. Analytical models such as Ravleigh and Mie
scattering permit one to predict the scattering behavior under certain conditious. The
MODTRAN/LOWTRAN codes, which are simulation packages for light propagation
in the atmosphere, use numerical integrations to estimate the radiance received by
sensors under specified conditions. These programs take gas and aerosol composition

into account and are widely used in remote sensing.

Figure 2. 1. Scattered solar irradiance from a unit volume.
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An important property of skylight is its polarization. Solar radiation becomes
partially linearly polarized upon scattering. The degree of linear polarization is a
function of wavelength and the geometric relation of the sun, the scatterer and the
observer.

An explanation for the polarization and intensity of skylight was presented by Lord
Rayleigh based on the so-called Rayleigh atmosphere assumption, which specifies that
particles in the atmosphere are spherical, isotropic, nonionized, much smaller than the
wavelength of the incident light, and exhibit a significant density contrast with respect
to the surrounding medium. A simple expression for the degree of linear polarization
Dol.P(8) of skylight, which is the ratio of the difference and sum of intensities in the

perpendicular and parallel polarization planes, is derived from Rayleigh’s theory as

I, — 1, sin” @
DoLP{#) = — = .
el In+1, 1+cos®#

(2.15)

where # 1s the angle between source and observer, measured from a scattering particle.
This formula predicts a zero polarization in the sun’s direction and a total linear
polarization at 90 degrees away from the sun. Observation of skylight confirms that
it has a smaller polarization near § = 0 and reaches its maximum when 6#=90° as
predicted, but the degree of polarization is smaller than Equation (2.15) predicts.
The discrepancy becomes more significant as the observation wavelength decreases.
Rayleigh’s theory also fails to explain the neutral points mentioned earlier. These
failures arise because the Rayleigh theory does not consider multiple scattering, and
the Rayleigh atmosphere ignores larger aerosols.

More comprehensive models have been developed to describe scattering and ab-
sorption in planetary atmosphere. Coulson [24] lists analytical, approximate, and
computational methods. Among them, the radiative transfer approach [17] presented
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by Chandrasekhar provides a realistic estimate of scattering in stellar atmospheres.
Chandrasekhar introduces three non-linear integral equations involving H-, X'-, and
Y -functions for scattered radiation in a plane-parallel Rayleigh atmosphere. That
approach is applicable to an atmosphere with anisotropically distributed gases. The
difference in polarizability is accounted for by the optical thickness 7, which is a
function of wavelength. Evaluation of those nonlinear integral equations shows that
the degree of linear polarization for visible light reaches a maximum that is less than
unity, as seen in field measurements. At MWIR and longer wavelengths, the optical
thickness is small. Therefore, little depolarization occurs, and the simple Rayleigh
scattering equation shown in Equation (2.15) is sufficient to cstimate the degree of
polarization of skylight.

Although analytical methods provide physical insight into the nature of skylight,
they are seldom applicable in practice, because of the complex composition of real
atmospheres. Attempts have been made to predict atmospheric transmission and
absorption using computational methods. The LOWTRAN code and its descendant,
MODTRAN, were developed for this purpose. An extensive parameters set is input
to characterize the composition of atmospheric gases and aerosols. Corrections for
multiple scattering are used to generate estimates of the direct and scattered radiance.
This dissertation employs the LOWTRAN/MODTRAN codes to calculate unpolar-
ized (I, + I,) skylight radiance and solar irradiance. The polarization of skylight is

derived from Rayleigh scattering, as shown in Equation (2.15).
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2.2.4 Radiometric Sources Considered in This Work

As noted previously emitted and reflected radiance can reach the sensor via direct
and scattered routes. Both the direct and scattered paths are needed for a realistic
simulation. In general, the direct path and lower-order scattering dominate the ra-
diance, because these components have less attenuation. Their relative importance
depends on the sensor band, the source type, and the viewing geometry. Higher-
order radiation paths are often ignorable, because of their greater path length and
absorption and scattering losses that occur during reflection.

In this work, three sources are considered, which are thermal emission, solar reflec-
tion and skylight reflection. Figure 2.2 illustrates these primary radiation sources and
the ray paths that contribute to the radiometric signature. Because of the elevated
surface-laid mine structure, higher-order paths are possible to form among mine and
nearby soil surfaces. Direct and single-scattered components are examined first. A
few higher-order paths are then considered as possible corrections. The direct path
provides the largest contribution from thermal emission. Single-bounce solar reflec-
tion dominates the solar response in the visible and near IR bands. Single-bounce
skylight is also included. Even though its source radiance is small compared to the
sun, the hemispherical extent of skylight can result in a substantial contribution, par-
ticularly when polarization is important. When the scene includes special geometric
shapes (e.g., dihedrals and trihedrals) the importance of some higher-order paths can

be enhanced.
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Figure 2.2: Transmission paths of sensor received flux from various sources.
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2.3 Physical Properties and Geometric Structure

The most important target properties for a radiometric sensor are the surface
temperature and reflectance. In this section parameters that affect those properties
are reviewed. Terminology and common models used to describe the structure of a

surface are also introduced.

2.3.1 Thermal Properties

The thermal emission from a surface is specified by the surface temperature and
emissivity. The surface temperature is determined by solving the heat transfer equa-
tion, which takes into account conduction, and, via boundary conditions, convection,
absorption and emission. Temperature gradients within a medium cause conduction,
which transfers energy by diffusion. Convection transfers energy between solid sur-
faces and fluids. In the mine detection application, convection takes place at the
ground/air interface. Solar energy is absorbed while the thermal emission is radiated
from the surface.

The heat transfer equation describes thermal conduction in solid matter and is
given by [12]

0T (r, t)

C(r)T =57 - LK (2] 52 e, t))) (2. 13)

where K is the thermal conductivity of the material in units of [Wm™'K~'] and C is
the volumetric heat capacity in [Jm™K~']. The ratio of the thermal conductivity to
the volumetric heat capacity defines the thermal diffusivity & [m?s™'].

In the numerical approach used here, the semi-infinite soil region is truncated at
a finite distance, thereby introducing artifical boundaries where boundary conditions

must be applied. In addition, the heat transfer equation does not hold in the air above
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the mine and soil, so another boundary condition is required at the air interface. At

that interface, an energy balance is imposed as the boundary condition. Specifically,
the net heat flux into the ground is related to the spatial temperature gradient at the
surface as

T (x,t
B8] 5=t %

where the net heat flux comprises incident radiation from the sun and sky, thermal
emission to or from the ground, and convection that exchanges heat energy with the
air. We write

Fnet(t) — Fsun(t) =+ Fsky(t) o Fev’m(t) == Fcznv(t) (218)
Modeling approaches for radiation and convection are presented in Section 3.2
2.3.2 Small-Scale Surface Structure

The roughness of a surface at microscopic scales has a strong effect on surface scat-
tering and emission properties. In this section we present a mathematical description
of rough surfaces that can be used for the construction of a radiometric signature
model. Natural and man-made objects will be modeled as large-scale facets with a
material-specific roughness as shown in Figure 2.3.

Gaussian random processes are commonly used in random rough surface modeling.
For the convenience of model development, Gaussian correlation function is often used
to simplify the rough surface representation, although it is not necessarily a realistic
description for many natural surfaces. If the surface is assumed to have a Gaussian
correlation function, two parameters are critical in describing the surface: the surface
height standard deviation o, and the surface height correlation distance /. We will

employ a zero-mean normal distribution for the surface height as a function of spatial
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coordinates (z = f,(x,y)).

1 i ,
p(fo(2,y)) = = exp(—55) (2.19)
T 20
The joint probability density is
, 1 f2—2Cf.f + fP?
p(f.(z,y), (2, V) = —F——=exp(- F—— 2% 2.20
plfolm g e i) = s ep(- Ry 200)
For a stationary isotropic surface, a Gaussian correlation function C' can be expressed
in terms of the distance between two points in the local plane (7 = \/(z —2')? 4+ (y — ¥')?)
=
Clr) = exp(~T5) (2.21)

For a given o, a smaller [ implies a rougher surface.

LEFQE"&C_E"_? Zero mean small-
surface tilting scale roughness
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Figure 2.3: The small- and large-scale roughness of a surface.

2.4 Bidirectional Reflectance Distribution Function (BRDF)

The bidirectional reflectance distribution function (BRDE'), which was introduced
by Nicodemus [27], defines the directional reflectance of a surface. This reflectance
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is a function of several variables including the properties of the surface material, the
viewing geometry, and the incident and sensed polarization. For mine detection appli-
cations, the difference in reflectance between mines and clutter may produce contrast
in EO imagery. The polarization dependence of mine signatures is of particular inter-
est here, since it has been observed that polarimetric contrast may exist even when the
unpolarized contrast vanishes. Natural surfaces tend to produce unpolarized returns,
while (typically smooth) man-made surfaces tend to produce linear polarization.

In this section, we begin with a review of the definition of BRDF for unpolarized
sensors. The case of polarimetric sensors is treated in Section 2.4.2, where we intro-
duce the Stokes vector and Mueller matrix. Finally, we review a number of BRDF

models in Section 2.5, including those that treat rough surface scattering phenomeua.
2.4.1 BRDF for Non-Polarimetric Sensors

The BRDF of an unpolarized wideband sensor is defined [28] as the ratio of the dif-
ferential radiance dL,(6,, ¢,) reflected in a given direction to the differential incidence

(irradiance) dFE;(6;, ¢;) coming from a second direction:

dL.(6,, ¢, -

Using the relation between the differential radiance dL; and the differential incidence

dFE, on a surface
AE,(0:, 6;) = / AQL,(8, ¢) cos 8 = dS, L.(6,, 6,) cos b; (2.23)
s,

we can derive a relation between the incident and scattered radiance

dzL‘r(gr 1 d)T)
P 4 = : X l -2
F(6:, 65, 0r, ¢r) Li(6;, ®,) cos 6,d, .
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Figure 2.4 shows the incident and scattered wave vectors as well as their relations to
the three axes of a Cartesian coordinate system (Z, 7, Z) and a spherical coordinate
system (R, 6,¢). The subscript ¢ indicates a relation to the incident wave, while the

subscript s refers to the scattered field. The differential surface is assumed to be

planar, to lie at the origin, and to be oriented with 1 = 2.

Scattered field

FaY
F Wt 2N
—

V. 5

Incident
field

L 4
-

Figure 2.4: Geometric definitions.

By convention, the incident wave is defined in the x — z plane with 6, € [0,90°] and
¢ = 0. The scattering direction can lie anywhere in the upper hemisphere (8, € [0, 90
and ¢, € [—1807,180°]). The quantities that appear in these expressions are functions

of wavelength A. When narrow-band sensors are being used, it is appropriate to state
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this dependence explicitly

dL. (0., o, A) s
F(0i, ¢is 0r, 67, ) = W((Qw—)\) (2.25)

2.4.2 BRDF for Polarimetric Sensors

A concept similar to that underlying Equation (2.22) can be used to define a
polarimetric BRDF. We have [29]

B (B o)

fas,az(es-,(ﬁswuqbi?/\) = W

(2.26)

where the polarization angles of the incident and scattered waves are denoted «; and
o, respectively. These angles, which satisfy —7/2 < a < 7/2, are defined as positive
for an electric field polarization that makes an angle o measured counter-clockwise
from the plane of incidence for an observer seen looking toward the oncoming ray.
The BRDF components defined in Equation (2.26) completely describe the scattering
process and are the basis for most results presented in the literature.

The principle of reciprocity demands that the same response be obtained if we

interchange source and observer. Thus, the BRDF must satisfy [29, p. 5]°
Cos 95‘7:(!7',(15 (Hi? ¢i|057 ¢Sa )\) = COs eifas,ai (957 ¢.S‘021 (*’)‘iv )\) (227)

The Mueller matrix [30] is an alternative and widely accepted method to address
scattering. The Mueller matrix defines a linear transformation of Stokes vectors that
occurs during scattering (or transmission), such that the scattered Stokes vector is
the product of a differential incident Stokes vector dI; and the Mueller matrix M.
We write

dly(0s, ds) = M(by, ¢510;, ¢:)d1;(0;, &:) (2.28)
2Also see [18, p. 14].
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The Mueller matrix has also been referred to [17, 31, 32] as a “Stokes matrix”. a
"transformation matrix” and a “phase matrix.” When extended sources are involved,

the above expression must be written in integral form as

Life, ] = / / d0;dep; sin 0; cos ;M (8, 6,16:, 3L (65, ) (2.99)

= / dSY cos B;M(6,, b, |6, 6L (6,. 6,)

Since they relate the incident and scattered radiance, the elements of the Mueller ma-
trix are analogous to BRDF functions for the components of the Stokes vector. Both
quantities have units of reciprocal steradians. The four frequently used polarimetric
BRDFs: F.,, Fun, Fhy, are Fup, are the elements in the upper-left quadrant of the
Mueller matrix.

The elements of M can be derived from first-principles electromagnetic analysis.
A wave scattered from an elemental surface d4 with normal oriented at angle 8, 1o

the illuminating wave can be expressed as

kR
¢ [ Sv'u S’uh :lez

e (Hs’d)S) = R Sm, Sh,h

(2.30)

If one solves the electromagnetic scattering problem, then the quantities S;, are

known, and the Mueller matrix is given by [21, §2.12], [33, p. 13]

M e e (2.31)
COs 01'
<SSy, > < SpaSy, > Re < SppS3, > —Im < Sp, S3,
< Sha Sy > < SeupSiy > Re < SpySyy > — T £ SpeSgy
2Re < Spy 5‘/'” > Sile & Sep Bl = Be of SpiSh, F 95k H;;(” > T € Bra e + Sk 5"('.:
2Im < ShhS;” > 2hng Buplhe > Tl 5SS + 50k 9;! > Re < SkrSys + Sun S;Z

This equation is the basis for calculations of the Mueller matrix that appear below.
Equation (2.31) suggests that 16 unique quantities are needed to completely spec-

ify M for each source-viewer geometry. In the case of mine detection, the incideat
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polarization states of interest are (1) unpolarized (for solar radiation and surface
thermal emission), (2) partially linearly polarized (for skvlight), or (3) fully linearly
polarized (for an active (laser) illuminator ). Those sources have no circularly polar-
ized component, and their corresponding V' parameters are zero. This in turn reduces
the number of necessary elements from 16 to 12. Furthermore, mines typically have
no exposed bare metal surfaces, which implies that no circular polarization is excited
from those non-conductive surfaces without circularly-polarized sources. Therefore,
we can further reduce the number of required matrix elements from 12 to 9. In a large
data collection reported by Willow Run Laboratories [34], only four matrix elements
were recorded (those that relate parallel and orthogonal polarizations). Those four
components are sufficient to estimate scattered fields if only unpolarized or horizontal

or vertical polarized sources are used.
2.5 An Overview of Scattering Models

Although it is possible to determine a Mueller matrix through measurement, the
cost of the required data collection is enormous, since the matrix is a function of
wavelength and both the incident and reflected angles. As a result, many attempts
have been made to construct scattering models that are both physically correct and
computationally tractable. Due to the tremendous variations in the properties of nat-
ural and man-made surfaces, it is challenging to develop a universal scattering model.
Nonetheless, several acceptable models have been developed for specific surface prop-
erties. In this section we describe a number of those models. Although rigorous

numerical simulations of scattering from random surfaces have been presented, the
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most useful approaches to the problem employ some form of analvtical approxima-
tion. Unpolarized BRDF models are also of considerable interest to the computer
graphics (CG) community in their quest for photo-realistic imagery, although CG
BRDF models tend to be somewhat simplistic because of computational efficiency

requirements.

2.5.1 Specular Models for Smooth Surfaces

When the surfaces of interest are smooth (i.e., planar over regions very large com-
pared to a wavelength), the scattered fields can be approximated by reflected ravs,
which are determined from the classical Fresnel reflection coefficients. This approach,
which assumes that all reflections are specular, is easy to implement numerically, ard
it is the basis for many ray-based image simulators. As long as the electromagnetic
properties of the surface (i.e., the permittivity and permeability) are specified, the
reflected radiances are the product of the incident radiance and the reflection coeffi-

cient. The direction of the reflected radiation is given by Snell’s law. We have [18, p.

202-203]
| Bale)? 0 0 0
M = 0 | Rn (6;) 7 0 0
- 0 0 Re(R,(0.)R}(6.) —Lm(R,(8,)R;(6.)
0 0 Im(R,(0,)R};(6:))  Re(R,(6;)R;(6:))
" §(cos b — cos 6;)0(ps — ¢, + ) (2.32)
cos 0,

in which the Fresnel reflection coefficients (for nonmagnetic media) are given by

cosf, — \/m? — sin? 6,
Ry(0:) = — ‘ (2.33)
cos b, + \/m? —sin? 8,

R.(6) — m? cos f; — \/77'1,2 — sin? 6, (2.34)

; =g
m?cos B, + \/m? — sin” 4,

[
-J



In these expressions m is the complex refractive index of the surface, and 6, is the

incident angle measured with respect to the local surface normal.
2.5.2 Diffuse (Lambertian) Models

The specular model described above, in which all scattered energy leaves along
the specular direction, is the limiting case of a perfectly smooth surface. A perfectly
diffuse (Lambertian) scatterer represents the opposite extreme, in which the scattered
energy is equally distributed in all directions.

Diffuse scattering is not produced by scattering from an infinitely rough surface.
Instead, it is thought to be the result of multiple scattering that occurs below the
surface and, as a result, its modeling is somewhat more complex. The diffuse com-
ponent is, nonetheless, very important. Diffuse reflectance is commonly assumed in
radiative heat transfer, and it is also used in the well-known radiosity method [35].

The polarimetric properties of a scatterer are independent of its specular or diffuse
nature and, as a result, the Mueller matrix is not completely specified by a specifi-
cation that the material is simply a diffuse scatterer. We can, however, specify the

matrix for a scatterer which is completely depolarizing, non-absorbing, and diffuse:

1/2 1/2 0 0
1|12 12 0 0
M=l 6 o 88 (245)
0 0 00

This material converts all incident polarizations into equal components of the # and
h linear polarizations, and it reflects all incident radiance, absorbing nothing. An
analog of the above material is an optical depolarizer, which has the same Mucller

matrix [36].
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Studies of the physical basis for diffuse scattering are relatively uncommon, but a
work by Hanrahan and Krueger [37] treated the problem of subsurface scattering in
layered media. In that work it was asserted that many natural materials, including
leaves, skin, snow, and sand, were well described by thin layers of random media, and
a model for such materials was developed. The formulation involves a Monte Carlo
solution of a one-dimensional integral equation for the radiance. The results compare
favorably to experimental data.

Diffuse subsurface reflection from inhomogeneous media was examined by Wolff
[38]. By using the classical Fresnel transmission coefficients to describe the radiation
entering and exiting the medium and combining that result with Chandrasekhars’s
classical radiative transfer analysis of multiple scattering in planetary atmospheres
[17], Wolff was able to derive a more robust predictor of scattering from non-specular
surfaces.

A related topic was investigated by Oren and Nayvar [39]. It has been noted
that when an observer views an otherwise diffusely reflecting object along the in-
cident direction (a backscattering geometry), then the scattered field is decidedly
non-Lambertian. Specifically, the surface reflectance increases strongly at grazing
angles, instead of the cos @ attenuation predicted for a Lambertian surface. Using
an analysis similar to that of Torrance and Sparrow but giving each surface facet
a Lambertian (rather than specular) response, Oren and Nayar were able to show
that this effect could be explained by surface roughness. They present approximate
expressions for the BRDF which agree well with experiment. The models of Wolff

[38] and Oren and Nayar [39] have been compared in [40].
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2.5.3 The Phong Model

The Phong reflection model [41], widely known in computer graphics, is a purely
empirical construction for non-polarimetric returns. The scattered light is assumed to
be a combination of ambient light, diffuse reflection, and imperfect specular reflection.

The three terms are combined using weighting factors w,, wy and w; as follows:

Ii(k) = waly + I [wa(—k; - 0) +w, (k, k)| (2.36)

in which the scalar n is a user-defined parameter; the vector n is the local surface
normal, and lA<Z, lA(‘,, and RS are unit vectors in the direction of the incident rav, the
specular reflected ray, and observer, respectively. The weighting factors are con-
strained to sum to unity

Wy Wy + Wy =1 (2.37)

The power law n is chosen to simulate imperfect specular reflection. Typical values
range from 10 to over 100 depending on the surface roughness. Note that the addition

of the ambient light makes this model a nonlinear function of the incident radiance.
2.5.4 The Beckmann Model (Physical Optics)

Real surfaces are neither perfectly specular nor perfectly diffuse, and predicting
their behavior requires a more careful treatment. Beckmann [42] was among the
first to present a rough-surface scattering analysis based on rigorous electromagnetic
concepts. He assumed that the surface of interest was a perfect conductor with a
random surface height. The scattered field was derived using a physical optics (PO)

approach, which is also known as a “Kirchoff approximation.”
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The formulation begins by expressing the scattered field as an integral over a
dvadic Green’s function and the unknown current density. The integral is evalu-
ated by assuming that the local surface radius of curvature is large compared to the
wavelength, which in turn imposes an upper limit on the wavelength. A random
(Gaussian) surface height distribution with a finite correlation length is used to rep-
resent the rough surface. The PO model is applicable to surfaces ranging from very
smooth to moderately rough. The resulting expression for the scattered field contains
two terms which correspond to coherent and incoherent scattering. The coherent term
corresponds to the specular return from a smooth surface, and it vanishes in the small
wavelength limit. The incoherent term accounts for diffraction due to roughness. For
a perfectly smooth surface, an incident ray is reflected along the specular direction.
As the degree of surface roughness increases. the single reflected rav is reduced (o
a broad scattered lobe (the incoherent return) that is roughly centered about the
specular direction. If the surface is relatively smooth, the incoherent term tends to
a broad beam and is referred to as a specular lobe. That lobe becomes broader and
more diffuse as the surface roughness increases, and it may also shift away from the
specular direction.

Tsang et al. [18] presented an analysis that makes explicit the polarimetric depen-
dence of the PO model. The PO model can be reduced to an analytic form if the PO
integral is evaluated asymptotically using the method of stationary phase, which is
equivalent to the geometrical optics limit. The PO model is described in more detail

in Section 3.3.
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2.5.5 The Torrance-Sparrow (Geometrical Optics) Model

Another early approach to the rough surface scattering problem was described by
Torrance and Sparrow [43]. In that formulation specular and diffuse contributions
are combined in an ad hoc manner. The rough surface is modeled as a composition
of planar facets having random orientation. The facets are assumed to be much
larger than a wavelength, and a geometrical optics (specular) approximation to their
scattering is employed. The approach can be used to explain the off-specular maxima
observed in rough surface scattering. The work in [43] was developed for unpolarized
light. The results are somewhat involved, but its essential components are given by
the following BRDF

’ B F IA(/ lA{/ GV',OE/,RZ
f(ks‘kz) - 'LUd& + w, (1 q) P\
. 4k, -n)(~k, - n)

(2.38)

in which wy and w; are weights for the diffuse and specular components, p, is the
albedo for the diffuse component, F'is the (unpolarized) Fresnel reflection coefficient,
G is the self-shadowing correction, l;i and RS are unit vectors in the direction of
the source and observer respectively, n is the unit normal of the surface, v is angle
between the surface normal n’ and the normal of a surface facet that would produce

specular reflection in the direction of the observer. The latter normal vector is simply

the normalized mean of the incident and observer vectors, namely:

o =kpk
= (2.39)
‘ - k7 e ks|
and we have
cosa=n'-z (2.40)

The primed unit vectors have the same meaning as the unprimed vectors, but they
are expressed in the coordinate system centered about n’.
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Both the Beckmann (B) model and the Torrance-Sparrow (TS) model are based
(largely) on physical insight [44]. Both use Fresnel reflection coefficients to account for
reflections from locally smooth facets of arbitrary materials, and both use a normal
density to describe some random features of the surface. (For B, the surface height
is normally distributed. For TS, it is the number of facets at the angle o that is
normally distributed.) The TS model, however, includes two significant corrections
not present in the B model: (1) the empirical combination of diffuse and specular
components, and (2) the self-shadowing function G. It is apparent that the TS model
involves several free parameters that can be adjusted to replicate the appearance of
various surface materials. Cook and Torrance [45] adopted the TS BRDF as the
basis for their work in computer graphics. Those authors also included the scatterer’s
spectral dependence so that the spectral composition of the reflected light would be
correctly modeled.

The shadowing function G is an important component of the TS BRDF, since
it eliminates nonphysical behavior for grazing angles of observation. In developing
G, Torrance and Sparrow assumed that all facets formed “v”-shaped troughs, which
could both shadow the incident field and obscure the observer. This concept is also
used in other scattering models [16] involving observation near grazing.

A concise representation of the geometric attenuation function is given by Wolff
in [47] as

G(ks|k;) = min< 1, —

_ 2cosdcost; 2cosdcosh,
e (2.41)

cosy COS U’

where ¢ 1s the angle between the local surface normal n and the highlight vector h

= Rl), and 1 is the angle between the highlight vector and the incident vector

k,.
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As originally described, the TS formulation deals with unpolarized light. It can,
however, be extended to polarized light by using the appropriate Fresnel reflection
coefficients in the expression for the specular term. This approach was used by Wolff

[47] to infer surface orientation from measured depolarization.

2.5.6 The Beard-Maxwell Model

The Beard-Maxwell (BM) model, first described by Maxwell et al. [16]. is closely
related to the TS model, but it uses a number of additional empiricallv derived
constants to provide a more general modeling capability. In its non-polarimetric form

it employs both specular and diffuse components as follows:

F=Fo+Fy (2.42)

in which F; is the specular term in the form

and Fy is the diffuse contribution, for which one of two expressions is uscd

ﬂ:{PdMV (2.44)

(ks0)+(k,R)
The decision of whether to use the constant or ratio forms is determined by whether
the specular component adequately expresses the angle dependence observed in nica-
surements. As in the TS model, F' is the Fresnel reflection coeflicient and G is a
self-obscuration factor. The expression for G used by BM is somewhat different. than
that used by TS, and it involves a small number of empirical parameters. The [actor H

expresses the density of random facets and is inferred indirectly from measurcments.
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Some modifications to the BN model are presented by Westlund and Meyer [48],
who use their results in a public-domain BRDF database known as the Nonconven-
tional Exploitation Factors Data System (NEFDS).? That database, which is main-

tained by NIST, contains BM model parameters for some 400 materials.
2.5.7 Perturbation Methods

A number of perturbation techniques have also been used to derive rough-surface
scattering matrices. The Small Perturbation Method (SPM) [49] is a popular ana-
lytic approach for rough surface scattering, and it is widely used in satellite-based
remote sensing applications. Unlike the PO model, which assumes a large curvature
radius and a short wavelength, the SPM approach requires small (with respect to
wavelength) surface height and slope variations. Although it seems that the PO and
SPM approaches are valid in different limiting ranges, Holliday [50] shows that by
including higher-order terms in PO it converges to the SPAI solution in the small
height limit.

Other perturbation approaches have also been developed for analyzing rough sur-
face scattering. Voronovich [51] devised the Small Slope Approximation (SSA), in
which the surface slope is assumed to be a small parameter. Jackson et al. developed
the phase perturbation technique for a complex surface source density excited by an

incident field [52].
2.6 Relation of Emissivity and Scattering Properties
We can also relate the emissivity of a surface to its BRDF or its Mueller matrix.

For a surface element dA in thermal equilibrium with its surroundings, the absorbed

3http://math.nist.gov/ FHunt/appearance/nefds.htm)
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and emitted power must be equal. In addition, energv conservation requires that the

scattered and absorbed power must equal the incident power F;. Thus,

where P; and P, are the scattered and emitted power. The emissivity £4(6,, ¢,) 1s equal

to the ratio P,/ P,. The power incident on a surface of area dA4 is dA cos8,[|e'|*/2m0],

where 7 is the intrinsic impedence for the free space, and the scattered power is given

by the integral of cosf|e5|?/2ny over the hemisphere. We have

Sacon J dQs cos 0,72 €2 |2 /2m,

Ea6i0:) =1 d A cos 8;[|€4|?/2m0)

= H Zn-—‘v,h f df), cos 05.}5’“.5(0:’.’ ob; (9n,, (,')S)
a 47 cos b,
= Z / dstﬁa(()s; Dy 917 Cbl)

a=uv,h
where we have used Equation (2.27) and the relation between the bistatic scattering
coefficient and the BRDF. The above expression is consistent with the well known
emissivity-reflectivity relation:

E=1-R (2.47)

In remote sensing, the emissivity is often associated with the brightness temperature
Ty [53, 18]. Assuming the body of interest has a uniform physical temperature T, we
can write Tg as

Tp(0,¢) =T-£(0,0) (2.18)

Macelloni et al. [54] conducted emissivity measurements to compare the perfor-
mance of several classical BRDEF models. It was shown that analyvtical models can
produce reasonable agreement with measured data if used in valid surface roughness
regimes and frequency bands.
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Although we have shown that emissivity can be derived by integration of the
bistatic reflection coefficients, it may be difficult or expensive to carry out the integra-
tion directly. Yueh et al. [55] proposed an alternative scheme to compute brightness
temperatures for ocean surfaces. The scattering coefficients derived from SPM models
were integrated over all spectral length scales instead. This approach avoids errors
that result from large scattering cross sections in the original integration domain, and
it enhances emissivity calculation accuracy.

The emissivity received by a polarimetric sensor can also be expressed using the

modified Stokes parameters presented in Section 2.4.2.

Eh £ 6/16,*1 >
& < eyer >
e | iy & (2.49)
£ 2Re < ¢ €, >
Ve 2Im < epel >

where C is a constant and the expressions for £, and &£, are shown in Equation (2.46).
The Ug and Ve Stokes parameters are proportional to the real and imaginary parts
of the correlation of horizontal and vertical polarized fields [55]. Tsang et al. [18]
showed that for a reciprocal, isotropic surface, Us and V¢ reduce to the absorption,

and we can relate polarimetric emissivities with reflectivities [56, 12| as

B 1—"%y

g | | 1w ]
g | = T (2.50)
v, ¥

As suggested previously, emissivity can be computed via spatial integration. By
assuming an unpolarized source, Sendur expressed Ug and Ve in terms of elements in

the Muller matrix [12].

U0 5) = _/dQs[j\’131(9.57¢s|9ia¢i> + M32(0s, 0516:, ¢.)] (2.51)
Ve, ¢0) = _/dQs[A"[M(es»(fJ'SWiad’z’) + My (0, ¢516:, ¢.)] (2:52)
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where Mz, Mjsy, My, and My, are expressed in Equation (3.38) and are proportional

to

My My AREE S di. # 2RO & Fedl >
My My 2Im < fonfrp > 2Im < fou fr, >

where the horizontal and vertical polarization coupling terms ( fin. fou. fro. and fon)
are found in Equation (3.41) through (3.44). The above expression is similar to
the first-order scattering coefficients derived using SPM approach for Ty, and Ty
in [56, 57].

For perfectly flat surfaces, the integration can be done in closed form, since the
Mueller matrix for a flat surface contains a Dirac delta function in the specular direc-
tion. Hence, the emissivity can be expressed in terms of Fresnel reflection cocfficients.
For rough surfaces, the integral cannot be done in closed form, but several rules of
thumb have been formulated. Millikan [58], who conducted an extensive study of
the polarization of thermal emission in the late nineteenth century, found that the
largest partial polarization occurs at the most oblique angle to the surface normal.
He also found that in general, metals have a significantly higher partial polarization
than dielectrics. A forward-looking infrared (FLIR) band model, which is based on a
geometrical optics approach, was developed by Wolff [59]. His study showed that for
an isotropic rough surface, the degree of polarization decreased as the surface rough-
ness increased. This is the result of randomization of linear polarization components

and 1s consistent with Millikan’s observation.
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2.7 EO Imagery Data Sets

Measured IR and visible images from three different sites will be used for model
validation in this work. The Northern Temperate Site 1 (NT-S1) and Northern Tem-
perate Site 2 (NT-S2) are located in north America. The TNO site is at the TNO FEL
facility in The Netherlands. Environmental parameters from NT-S1 will be used as
baseline conditions for studies of the radiometric model. Polarimetric models of mine
signatures will be evaluated using the polarimetric TNO imagery. The NT-S2 data
set contains visible band images useful for validating the surface scattering model,
and an extensive MWIR collection that can be used to compare the performance of

mine detection algorithms.
2.7.1 Northern Temperate Site 1

Images at NT-S1 were acquired by the US Army Night Vision Electronic Sensors
Directorate (NVESD) during October, 2002. The latitude of NT-51 is approximately
40.3°N. The test site contains several types of surface-laid mines. Nadir-looking im-
ages were acquired by an MWIR sensor (3-5 pm) mounted on a surveillance heli-
copter. During each run over the test site 143 images were collected. Several runs
were conducted during mid day and afternoon. Images were acquired with and with-
out spectral filters to investigate the merits of certain bands.

Figure 2.5 shows a sample image collected by the sensor. In this scene, three
large plastic anti-vehicle (LP_B) mines were present (in the top row) along with three
fiducial markers (in the middle row) indicated by red diamonds. The image resolution

is about 1.1 inches per pixel and each image contains 640x512 pixels. Because the
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sensor’s response is not uniform across the scene, the measured images were calibrated

by subtracting the ensemble average of all images.

Figure 2.5: Sample surveillance image containing LP_B mines. Red diamonds are
added indicating positions of mines (top row) and fiducial markers (middle row).

2.7.2 Northern Temperate Site 2

A multi-spectral data set was collected at NT-S2 by the NVESD. Two cameras
were employed to acquire registered multi-channel imagery. Five channels were col-
lected by a visible band CCD camera, while a MWIR camera produced three channels
of IR imagery. The visible imagery contains 512 x 768 pixels with a resolution of 1.6
cm and covers an area of about 100 m2. The MWIR imager has 256 x 256 pixels

with 3 ¢cm resolution, which is equivalent to a 60 m? field of view. Both cameras were
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Name Color Case Size
MP_A Tan Plastic | 85" D, 3" H
SM_A Green Metal 5 1D, 225" H
LM_B Green Metal 12" 1, 2.5" H
LI B2 Pink Plastic 12° Tk 3" H
LP_B3 | Bright Green | Metal | 127 D, 2.75” H
LM_A | Dark green Metal | 12.25” D, 3.5" H

Table 2.1: Mine characteristics in the NT-S2 data set.

mounted on a scissors lift, and the platform was elevated about 60 feet above the
ground.

Six types of anti-tank mines were placed in 5 meters wide test lanes with four
ground cover types: short grass, tall grass, bare soil and sand. AT mines were laid on
the surface or buried within the lanes. Surface mines were placed in a zigzag pattern
and the nearest distance between mines was around 2.5 meters. AT mine dimensions,
colors, and casings are listed in Table 2.1 [60]. The LM_B, LP B2 and LP_B3 mines
are of similar size and shape, although their casings are made of metal or plastic. The
size of LM_A mines is around 12.25” in diameter, which is about the same as LM_B
mines. The MP_A mine has a 77 diameter, while the SM_A mine is the smallest
mine with a 57 diameter. Some man-made clutter objects were are also emplaced,
including soda cans, pizza boxes, and wooden sticks.

A total of 247 scenes from the image collection were used in this work. Image
collection time ranged from 8:30 AM to 7:00 PM. Because target signatures in the

MWIR. channels have a more consistent signal-to-clutter ratio than those in the vis-

ible channels, only the MWIR imagery is used for the comparison of mine detection
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T Ground Cover | MP_A [SM_A [LM B [ LP_.B2 [ LP.B3 | LM_A |
Bare soil 11 11 12 ]
Sand 13 1 | 12 | 1 | 1 |
Short grass 22 20 24 | 70
Tall grass 23 22 24 14 19 | |

Table 2.2: Mine distribution in the NT-S2 data set.

algorithms presented in Section 5.8. Among the 247 scenes, we have 103 scenes with a
tall grass background, 99 with short grass, 22 with sand and 23 with bare soil. There
are 315 surface mines® in these scenes. Table 2.2 documents the number of each mine

type in the four ground cover types.

2.7.3 TNO Polarimetric Imagery

The TNO data was acquired at The Hague, The Netherlands (52°N latitude) [13].
One set of imagery was collected at 1:31 PM, November 27th, 2001 and was processed
to yield I, @, and U channel images. The test site comprises a sand box contain-
ing several surface-laid dummy mines as shown in Figure 2.7. Thermocouples were
placed at several points on and under mine and soil surfaces. Meteorological param-
eters including air temperature, wind speed, and air pressure were collected. Cloud
conditions were measured via radiometers. Figure 2.6 displays data from the thermo-
couples, wind speed sensor, and air temperature sensor. Simulation parameters were
selected based on the meteorological data.

The camera, a 3-5 pum MWIR sensor, viewed the sandbox from a height of 2.88 m
with a 70° zenith angle and a FOV of 18° by 18°. A spinning polarization filter was

“The test site contains 32 buried mines, which are not labeled as targets in our ground truth
data due to their low signal-to-noise ratio and significant signature difference with surface mines
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Figure 2.6: Surface temperatures of soil and mine and meteorological data measured
at TNO on November 27th, 2001.

e —

shy o]

s e

= = . p—

im
p
(8]

r‘—'}‘i\
(D)

|

\ 3 N

i

]

,

.

|

.

]

[}

1}

[}

.

13

=)

.
m!

1}

|

|

1)

™,

D)

]

'
"\-r-l-

|
i * e | ) -
. ) o i
e |, . "l :'1. :
- : 4 ] 13 i
o T L X | e e
B L T e e e
- i S ' ir
l_ '—’}. . i = : i e g |
s it — o :'} \ ' A i
1 o ‘ ' 7
1 S0kt ] e :

]

«thermo couple  aradiometer @ pole

Figure 2.7: Layout of TNO test site.
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placed in front of the objective lens, and the camera acquired 30 images at 6° rotation
intervals. Stokes parameters were calculated as averages of measured radiance L(¢,)

using the following expressions:

’ 5 N
i = N;L(%) (2.54)
i 4
Q = 3 X L)) cos(2¢)) (2.65)
"
U = 2 L(#9)sin(2¢)) (2.56)

“
Il

where N=30 is the number of measurements. Since the camera measures only linear
polarization components, the V' component cannot be determined. Calibration was

performed via measurements of blackbodies in the field of view.

2.8 Summary

In this chapter, we reviewed issues that affect the modeling of EO wmine signa-
tures. The development of the radiometric model presented in Chapter 3 requires an
understanding of the subjects discussed here, which are summarized below. Also, the
model validation and performance comparison can be performed using the measured
data described at the end of this chapter.

Among radiation sources, thermal emission is critical to IR signatures and is
modeled as the product of blackbody radiation and surface emissivity. Solar radiation,
including sunlight and skylight, has a spectrum centered in the visible band and affects
the EO signature via surface reflections and heating. The MODTRAN code, which
(partially) accounts for the complex atmospheric effects, is useful for the computation

of solar radiance.
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Surface properties concerning the EO signature characteristics were discussed.
The random surface model used in this work has a Gaussian-distributed surface height
and correlation distance. Surface temperatures can determined with the heat transfer
equation using boundary conditions for the heat flux at the air-soil interface. Surface
scattering can be characterized by its BRDF. To describe polarimetric EO signature,
we will use a Mueller matrix formulation. Surface emissivity can be derived from
angular integration of the BRDF.

A review of scattering models showed that a moderately rough surface tends to
form a broad lobe in the specular direction, while internal scattering may result in a
diffuse return. The effects of multiple-scattering and self-shadowing become apparent
when either the incident or scattered direction is near grazing.

Three sets of EO imagery of different sensor types (MWIR and visible) and sensor
orientations (nadir and oblique viewing) were presented and will be used for signature

model validation and performance evaluation of detection algorithms.



CHAPTER 3

RADIOMETRIC MINE SIGNATURE MODEL
IMPLEMENTATION

The practical issues that arise in implementing a surface-mine radiometric-signature
model are described in this chapter. Section 3.1 presents the problem geometry. Sec-
tion 3.2 reviews the components of the sources, which include thermal emissions and
reflections of sunlight and skylight. The finite element method (FEM) is used to
determine the thermal emission by solving the heat transfer equation in a computa-
tional volume that includes the mine and adjacent soil. Incident sunlight and skylight.
are computed via the LOWTRAN/MODTRAN program. Reflections and emissions
require the BRDF or emissivity of the surface. A rough surface BRDE model de-
rived from physical optics (PO) and geometrical optics (GO) is described in Section
3.3. The effects of atmospheric transmission are reviewed. Issues relating the source-
target-sensor geometry to the Stokes vectors are addressed in Section 3.4. Examples
of the radiometric components are presented in Section 3.5 for different viewing ge-
ometries and sensor passbands. In Section 3.6 the effect of the sensor point spread

function is examined.
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3.1 Problem Geometry

Figure 3.1 illustrates the problem under investigation. The sensor is depicted
with a small off-nadir viewing angle ;. Some existing airborne IR mine sensors use a
small nadir angle to minimize obscuration of the mine by foliage. Conversely, vehicle
mounted sensors necessarily use a small grazing angle (large 6,). which can cause the

mine to be obscured by a rough surface.

& Nadir .

Sensor ,f g | GUM‘}
= U, 7 S
' d . ‘ .
Parlickes & A
Maweues
5
kY

Target (Mine)
Clutter (Soil}

Figure 3.1: Geometry of mine detection application.

The scene viewed by the sensor includes both the mine and clutter such as man-
made objects, soil, vegetation, rocks, and other natural materials. Both targets and
clutter are modeled as rough surfaces. As noted in Chapter 2, a Gaussian random

process height variation is assumed for surface roughness.
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3.2 Radiative Source Computation

Correct modeling and estimation of the source irradiance is the first step in con-
structing a physics-based radiometric signature model. In this section the components
of the radiometric sources are described in detail. We begin with a review of the FEN
method used in calculating surface temperature, the precursor to thermal emission.
We also outline the use of MODTRAN in computing the solar position and wrradiance

as well as the skylight distribution and polarization.
3.2.1 3-D FEM Thermal Model

As noted in Chapter 2, thermal emission is calculated as the product of the surface
emissivity and the blackbody radiation. The latter is determined by the surface
temperature. Temperatures within and on the mine satisfy the heat transfer cquation
(HTE), which can be solved numerically. Several numerical methods have been used
to solve this problem in the past. In this work we emplov a code written by I K.
Sendur [12]. In the remainder of this section we briefly review issues that arise in

temperature prediction.

Heat Transfer Equation

As noted in Chapter 2, the HTE (Equation (2.16)) can be used to predict the
temperature distribution in a thermally conductive region. Source conditions that
define the forcing functions are needed to solve that equation. The sources that drive
the problem enter via the boundary condition at the air interface. An energy balance

at that interface requires

oT (r, IL)‘

—K(r) 5

— ~7:sun Sl fsky e ~7:e7m El Fcomv (‘1])

|z. =0
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where the left-hand side expresses heat transfer due to the temperature gradient at
the smxfacey; atd Fows Ty Femiy 806l Foony devote bransier doe to solar Trradianes.
skylight irradiance, thermal emission, and convection. Below we list the models

employed in this work for these terms.

e Solar Irradiance

The heat flux deposited by solar irradiance is the product of the surface emis-
sivity € and the total irradiance reaching the ground F..(¢). An empirical

equation that matches the total irradiance computed by the LOWTRAN code

is [61]
Femld) = ST exp(—0.2819m,(t)) [W - m 2 (3.2)
™M ()
1
1 = =
ma(t) cos v/ (1) el

The air masses number m,(t) is the secant of the solar elevation angle (7).
Calculation of the solar elevation angle is described in Section 3.2.3.
e Skylight Irradiance

The total hemispherical emission from a planar blackbody surface satisfies

Stefan-Boltzmann law

E,=oT! (3.4)
where the Stefan-Boltzmann constant o is
o= 56T x 1" [ @2 K [3.8)
Similarly, the total flux from atmosphere emission can be expressed as

Fa= 8 Bagy = 80T 1) (3.6)

£ sky
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e Thermal Emission
Thermal emission from the surface is also described by the Stefan-Boltzimann
law. We have
F@y'ni = EUTLl([7 Z = 0) (3.7)
e Interface Convection
Convective heat exchange between the surface and the atmosphere is the prod-
uct of the temperature difference and the convection coefficient h(t)
b EI—— h(t)(Tazr(f) = T(t.{;‘ = 0)) (18)
An empirical expression for h(t) is given by Kahle [62]

h(t) = OuirCepnCa(W () +2) [W-m 2. K™ (3.9)

In simulations performed in this work, the air density o, is set to be 1.16
[kg/m?], the specific heat of air ¢, 1s 1007 [J kg™ K™Y, the wind drag coeffi-

cient C'y is 0.002, and W (¢) [mm/s] is the wind speed (a variable).

e Sky and Air Temperatures

In this work the above cited air and sky temperatures are modeled as peri-
odic functions over a diurnal cycle. An empirical model [62, 63] for the air

temperature derived from measurements by Kondratyev [64] is
Towlt) = Tose = Al c0s{ 20t —2) [24) (3.10)

where T,,, and AT,;, are the mean and maximum deviation of the air temper-

atures during a diurnal cycle.



The sky temperature is assumed correlated to the air temperature [62, 63].

Using Brundt’s formula, we express the sky temperature as
Toy(t) = Tuir (£)(0.61 + 0.05,/p) '/ (3.11)

where p is the water vapor pressure in mmHg. Values for p are available from
meteorological data. Some examples include 4.58 [mmHg] for a saturated water

vapor at the freezing point and 26.7 [mmHg| at 300°/y..

Substituting the expressions presented above into Equation (3.1), the boundary

condition at the air interface becomes

= EFagult] + EOT:ky(t) — EFT ", 5= 1]

+ AT () ~ Ttz = 0) (3.12)

Watson [65] noted that the difference |T' — Ty,| was typically small. As a result,
T* can be well approximated by a first-order Taylor series about Ty, leading to the

linear relation.

Kr) —— ~ T(t,z=0)(h(t) + 450'T§ky(t))

— (EEoun(t) +4E0T4,(8) + h(OTuw (1)) (3.13)

Above cquation provides a detailed description about source conditions on our
interested computational space. Some local variations in source conditions such as
the blockage of sunlight due to the elevated mine structure are considered. However,
there are other localized source properties not modeled in the current thermal model
implementation. For example, there are differences in the amounts of thermal emis-
sion and convection for a surface facet placed near the edge of a mine’s sidewall and
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a flat region without elevated structures nearbyv. The lack in consideration of above

issues imposes limitations to the accuracy of thermal model results.

FEM Equations

The FEM solution of the HTE begins by dividing the computational volume into
tetrahedral volume elements. The unknown temperature is computed at the vertices
of the tetrahedra, referred to here as nodes. Tetrahedral volume elements can be
assigned different properties to approximate real objects.

The temperature of a point r within an element can be expressed via lincar spatial

interpolation of the nodal temperatures TF(¢) that surround the point

Ne
Th(r3) =3 Tr(0d5(r) (3.14)
=1

where ¢¢(r) are basis functions used to expand the spatial dependence of T'(r, 1)

Using the standard FEM approach, we can write the HTE in a matrix form as

where T is the first derivative of nodal temperatures, and the elements of M, K, and
F can be found in [12, p. 65].

The matrix expression of the HTE involves time derivatives that are approximated
using discrete differences. Assuming a small time step At and slow variations in
the temperature and boundary condition, we can use the Crank-Nicholson scheme
to express the HTE as a linear combination of the temperature at ¢ and t + At

Equation (3.15) can be rewritten as

__Ts—=T; KeTs+K/T, Fs+F
M Mg e o i (3.16)
At 2 2



where subscripts 2 and 1 represent conditions at ¢ + At and ¢, respectively. By
collecting and rearranging terms, the above expression can be written as the time-

stepping equations
(2M + AtK,) Ty = At(Fy + F) + (2M — AtK )T, (3.17)

Extremely large number of unknowns are typically required and, hence, LU decom-
2 5 D ) q
position is not a practical approach to solving Equation (3.17). In this work a sparse

matrix solver, which makes efficient use of memory, is emploved for the solution.

Boundary and Initial Conditions

As noted in Chapter 2, boundary conditions should be specified at the exterior of
the computation volume (I"). Boundary conditions at the surface-air interface can he
assigned using the source conditions described in Equation (3.13).

The zero normal gradient condition is imposed at the side walls which implies that
the temperatures of the soil surrounding I' are invariant in the radial dimension®.
A zero gradient is also assumed at the bottom of the computation volume. This
assumption is valid if the volume extends deep enough to reach the “diurnal depth”,
at which the temperature is roughly invariant over the diurnal cycle.

Initial conditions are specified to begin the time-stepping scheme identified
Equation (3.17), and the calculation continues until the solution reaches a steady-
state (periodic) function. Proper choices of initial conditions can accelerate the rate
of convergence. Using the time average of source flux over a 24 hour period, a rough

*Equivalently, we assume that the boundary of I lies beyond the mine’s thermal region of influ-
ence.



estimation for initial temperatures is derived via Equation (3.13) as

EE gy + 40T gy, + Rl iy
= = —= (3.18)
h+4EcT

sky

Tir t=0

Spatial Discretization for Surface Mines

As noted above, the finite element method requires that we discretize space into an
ensemble of finite volume elements (tetrahedra in this work). The spatial discretiza-
tion, referred to herein as a mesh, has a critical effect on the accuracy of the solution.
The mesh should have a high element density in regions with high field gradients,
and 1t should be as sparse as possible in other regions. The automatic definition of
optimal meshes is currently a research problem, and a heuristic approach is used here.

Three steps are used to construct the mesh. Throughout this work, the mine and
soil are assumed to be bodies of revolution, although the final 3-D mesh deviates from
that property slightly. First, a cross-sectional nodal profile of the mine’s components
(i.e., the generating curves) is defined in the 7# — 2 plane. An example appears in
Figure 3.2. The generating curves bound homogeneous regions. Each color repre-
sents a distinctive structure in the mine or a layer of the soil. Nodes are defined at
the corners in the generating curves and at user-selected intervals on straight line
segments.

Next, the generating curves (nodal profile) are rotated in the ¢ direction through
16 positions to create a 3-D nodal space. An automated mesh generator [66] is
employed to form tetrahedra by connecting nodes. Figures 3.3 shows a cross-section
of the mesh. The mine is centered over a large cylinder of soil. Figure 3.4 provides a

closer look at the mine’s internal structure.



Figure 3.2: Cross-sectional nodal profile (7 — Z plane)for soil and a LP_B mine.

Figure 3.3: Cut-away 3-D view of the mesh of soil and a LP_B mine.
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Figure 3.4: Zoomed-in cut-away 3-D view of the LP_B mine mesh.

The last step is to refine the mesh so that regions with strong gradients contain
higher tetrahedral densities. Strong gradients appear at interfaces involving thermally
dissimilar media and, hence, finer vertical discretization is required at the air interface
on the model’s top surface. Horizontal gradients appear at shadow boundarics, which
also requires finer meshing on the surface. The mesh generator used here has the
ability to divide specified tetrahedra into smaller ones, and that capability is used
here. Figure 3.5 shows the top view of the original mesh. Tetrahedra that require
sub-division are indicated in yellow. Figure 3.6 illustrates the refined mesh.

The mesh refining measure should also be applied to regions near boundaries.
Since we imposed the zero normal-gradient boundary condition and the temperature

of a point in the computational volume is found via linear interpolation of nodal
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Figure 3.5: 3-D view of original LP_B mine and soil surface mesh.
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Figure 3.6: 3-D view of refined LP B mine and soil surface mesh.



| Parameter name Value | Unit |
| Mean air temperature 7 g

Maximum air temp. "
deviation (

Averaged wind speed 3 m/s

Water vapor pressure | 0.76 | mmHg

Table 3.1: Critical meteorological parameters used in the baseline simulation.

temperatures, the nodal density around the sides and the bottom of the mesh have

to be dense enough to yield smooth transitions across the boundary.
3.2.2 Example Surface Temperature Calculations

The thermal model developed above was used to simulate the surface tempera-
tures of a LP_B mine laid on soil. The simulations use as a baseline conditions from
the NT-S1 data set. In this section we study the sensitivity of the model to vari-
ous environmental conditions and model parameters. (A quantitative comparison of

simulated and measured images appears in Section 3.4.)

Convergence of FEM Solutions

As noted in Section 2.7.1, the NT-S1 data set contains surface-laid landmines of
various types. To simulate the measured image thermal and electromaguetic prop-
erties of soil and mine constituents were found in the literature [61, 67]. Important
meteorological parameters and critical surface properties used in this simulation are
tabulated in Tables 3.1 and 3.2, respectively.

The simulated temperature distribution is computed at 6 minute intervals. The

temperature history of specific nodes on the mine and in the soil away from the mine,



‘ Materr’ia.l Thermal conductivity Volumetric heat capacity
(W m~! K71 (108 J g ® L)
Sand (moist) 2.223 - 1.894
Nylon (mine case) 0.24 1.714 K
- TNT 0.2341 2.53
' Steel 14.25 1.1778
| Air 26.3 ~0.0012

Table 3.2: Critical thermal properties of materials used in the baseline simulation.

indicated as red and blue Xs on Figure 3.8 respectively, are plotted in Figure 3.7.
A total simulation of 5 days was performed and convergence of the FEM solution
to steady-state is evident. It is also clear that the mine’s temperature swings are
significantly larger than those of the background soil. Twice daily (shortly after dusk
and dawn) the curves intersect. At those times, there is no thermal contrast between
the selected nodes, and mine detection is hampered. Following current practice, we
refer to those times as “crossovers”. Finally, note that the soil temperature takes
more than three days to reach convergence, while mine surfaces achieve convergence
in less than two days. In what follows we show only the “steady state” solutions,
which correspond to the fifth simulated day.

Temperature “images” are formed by linearly interpolating surface nodal temper-
atures. Figure 3.9 shows the steady-state surface temperature of a LP B mine on soil.
[mages are displayed at two hour intervals from 7 AM through 5 PM. In general, the
hottest regions appear near the edges, but there are cooler regions adjacent to ele-
vated structures due to solar shadows. Differences in the temperature of the mine and

soil are evident in these images. The mine housing, which is made of plastic, responds
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Figure 3.7: Diurnal cycle convergence of surface temperatures.
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Figure 3.8: Boundaries (solid lines) of mine and soil regions in simulated thermal
images. Averages over gray regions are used for comparison.
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more rapidly to solar insolation than soil and dissipates its thermal energy faster after
sunset. Because the mine does not heat uniformly, it is clear that the “crossover”

concept cannot be used to make unambiguous statements about detection.

East 304

) 29827

- |

| 29254

South

- 286.81

7 2681.08

West 275.35

Figure 3.9: Examples of surface temperature profiles during the day.

Sensitivity to Environmental Parameters

The simulation’s dependence on some important environmental parameters was
studied via computed surface temperature histories. We first examined the seasonal
dependence of the temperature variation. The effect of the wind speed was then
studied. Temperature histories were plotted showing the average temperatures on
the mine housing and soil (at least 5 ¢cm away from the mine). The gray regious

in Figure 3.8 indicate mine and background pixels used to calculate temperature
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Date Jun. 2Ist | Aug. 21st [ Oct. 21st | Dec. 21st ||

Mean air temperature [*C] [ 25 21 7 0

Maximum air temp. |
deviation [*C]

| Averaged wind speed [m/s] o 3 3 3

3 D ) o

Table 3.3: Critical meteorological parameters used in the simulation for seasonal
changes in surface temperatures.

averages. The difference of mine and soil average temperatures was also plotted to
reveal the time of maximum contrast.
The air temperature, and duration and direction of solar insolation undergo sca-

® and weather conditions at the test site’,

sonal changes. Using the solar positions
simulations were performed every two months from late June through late Deccm-
ber. Table 3.3 lists critical parameters used in the simulations. Results are shown
in Figure 3.10. Those curves indicate that during the summer both the mine (solid
lines) and soil (dashed lines) have higher surface temperatures due to longer daylight
hours and higher air temperature. The contrast shown in Figures 3.10 (b) reveals
that larger differences in surface temperatures occur around noon and midnight. The
greater summer insolation results in a maximum summer contrast that is twices large
as the one observed in winter.

Next, we study the effect of wind speed. Simulations were performed for both the
warm and cool winds implied by summer and winter conditions respectively. Fig-
ure 3.11 (a) shows the mine and soil temperatures during summer (late June) for

®The method used to find solar angles and solar irradiance is presented in Section 3.2.3

"Mean and maximum deviation in air temperature were estimated fromn historical data at
http://www.noaa.gov/climate.html.
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(a) Surface temperature. (b) Contrast.

Figure 3.10: Surface temperatures and contrast for different time of the vear. Baseline
conditions: latitude=40.3°N, wind speed=3 m/s. Solid lines: mine. Dash lines: soil.

three wind speeds: no wind, mild wind (4 m/s), and strong wind (8 m/s). The green
curve is the air temperature. A comparison with the no-wind results shown in blue
indicates that the air is cooler than the soil (dashed line) at all times. The cool wind
removes heat from the soil through convection and reduces the maximum tempera-
ture. The mine surface is both cooler than the air in the evenings and warmer than
the air during the day. Hence, convection alternately heats and cools the mine. The
overall effect of the wind is to reduce the dvnamic range of the mine’'s temperature.

Wind has an adverse effect on the temperature contrast as shown in Figure 3.11 (b).

During winter (late December), the air is warmer than the mine and soil surfaces
under calm conditions and, hence, both mine and soil surface temperatures increase

considerably if wind is present (see Figure 3.12). Again, wind causes the contrast to
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(a) Surface temperature. The green curve (b) Mine-soil contrast.
is the air temperature. Solid lines: mine.
Dashed lines: soil.

Figure 3.11: Surface temperatures and contrast for different wind speeds during sumn-
mer. Baseline conditions: latitude=40.3°N, air temperature: mean=25°C maximal
deviation=5°C.

decrease. It is significant that wind accelerates the heating and cooling processes. We
sec in Figure 3.12 (b) that the crossover time for the no-wind case lags more than an
hour behind the strong-wind case.

The above experiments illustrate that, as expected, the surface temperature is de-
pendent on the insolation and air temperature. The wind speed alters this dependence

significantly. A higher wind tends to reduce thermal contrast.
3.2.3 Solar Spectral Irradiance

As stated in Section 2.2.2, solar radiation is an important source for passive remote

sensing, especially for visible sensors. Although the extraterrestrial solar irradiance
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(a) Surface temperature. The green curve (b) Mine-soil contrast.

is the air temperature. Solid lines: mine.
Dashed lines: soil.

Figure 3.12: Surface temperatures and contrast for different wind speeds during sum-
mer. Baseline conditions: latitude=40.3°N, air temperature: mean=0°C maximal
deviation=5°C.

varies slightly from dayv-to-day as a result of solar activity, we can assume it is a
constant for this analysis.

Insolation is strongly affected by the solar position and the resulting slant path
length. The slant path length and atmospheric composition determine the atmo-
spheric attenuation, while the solar position determines the geometric relation be-
tween the incident flux and target surfaces. The actual irradiance received by a
target is reduced by the ratio of the projected area to the physical area.

The solar irradiance is computed by first determining the angular position of the
sun given the time, date, and observer’s geolocation. The MODTRAN code is then
used to calculate the spectral solar irradiance for the given solar angles. Unlike the

thermal model, which must take into account the entire solar spectrum (for its effect



in warming the soil), only spectral irradiance sensible by the detector is considered
in the radiometric model.

The celestial position of the sun is described by its declination angle and hour
angle. Due to the tilted and elliptical orbit of the earth, the declination #4..(£23.5%)
and the time of meridian® passage of the sun (12 : 00415 min.) are periodic functions
with a one year period. The Nautical Almanac tabulates the Greenwich hour angle
(¢gma) and declination angle of the sun and is updated annually to document small
drifts in the above angles. For example [68], the sun passes the meridian on Jan.
1st, 2003 at 11:56:50 with a -23°03” declination angle. On Jan. 1st, 2004, the time is
11:56:56 and the angle is -23°03". Since the observed drift in solar position is negligible
for the purposes of this modeling, a look-up table was constructed from a prior vear's
data to find the solar position for a given time and date.

The solar elevation and azimuth angles denoted (f¢jey,Pazim ), are defined by the
declination and hour angles (fge.,0cma) noted above with knowledge about the lati-

tude and longitude of the observer. We have

0(‘!&1' = 90 = glat ot Hdec- (319)
d)azz’m = ¢GHA o ¢lonq (320)

where ¢ony 1s positive for longitude east of Greenwich. As examples, Figures 3.13
and 3.14 depict the seasonal and diurnal variations in the solar elevation angle 6.,
at a mid-latitude location (43.5°N) and the Tropic of Cancer (23.5°N). The former
exhibits a significant change in the length of a day, while the latter is the highest
latitude where it is possible to observe a vertical sun (on June 21st or 22nd).

8The meridian is the highest point in the daily path of a celestial body.
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The radiometric model uses LOWTRAN? to calculate the solar irradiance for the
default atmosphere model. The spectral irradiance generated by LOWTRAN is then
numerically integrated over the sensor’s passband. Figure 3.15 shows the total irradi-
ance in the MWIR band, which extends from 3 to 5 pm. Mid-latitude (45"N) winter
and mid-latitude summer atmospheric models are used in this calculation. Note that
more solar irradiance reaches the ground in the winter because the atmospheric mass
is smaller and provides less scattering and absorption, but the projected irradiance is

lower due to the lower declination angle.

12 T T T T

— Winter e
| —-= Surimer |

Solar irradiance at MWIR band (3~5u m) [W/m?]

i 1 = 1 —
(o] 10 20 30 40 50 €0 0 8o 20
Elevation Angle

Figure 3.15: Solar irradiance at MWIR band (3~5 pum) v.s. solar elevation angle in
mid-latitude winter and summer.

The daily solar elevation profiles shown in Figure 3.13 can be used to find the total
MWIR irradiance via interpolation of the data in Figure 3.15. Figure 3.16 shows the

9The LOWTRAN code, which is the predecessor of MODTRAN, has a lower spectral resolution

but requires less computation time.
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diurnal variations during December and June at latitude 43.5°N. Note that the two
curves predict comparable maximum solar irradiances for summer and winter, but
50% more total solar energy is received during the summer due to the longer daylight

hours.
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Figure 3.16: Diurnal variations in solar irradiance at MWIR band (3~5 pm) in De-
cember and June at latitude 43.5°N.

3.2.4 Spectral Radiance of Skylight

Although skylight is much less intense than direct solar radiation, its overall effect
is still substantial, because it exists over an entire hemisphere. The spectrum of
skylight radiance depends strongly on the content of the atmosphere, but atmospheric

scattering is difficult to predict, because of large variations in aerosol populations.
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Instead of using analytical models, we employ the LOWTRAN code to compute the
spectral radiance of skylight coming from different parts of the sky.

The calculation begins by finding the position of the sun, which is the ultimate
source for skylight. A mesh is defined for the upper hemisphere that represents the
sky, as shown in Figure 3.17. The mesh contains 668 nodes and 605 facets, and the
largest facet is no larger than 0.0165 sr. The skylight arriving through each mesh
facet is computed individually using the LOWTRAN code. The spectral radiance
is numerically integrated to yield the total skylight radiance. Skylight is partially
polarized. Its polarimetric dependence is generated from the Rayleigh scattering

assumption described in Section 2.2.3.

Figure 3.17: Mesh used in skylight calculation.
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Example calculations of skylight are shown in Figures 3.18 and 3.19 for latitude
22°N during May. The atmosphere is assumed to have rural extinction propertics
and good visibility (23 km). Figure 3.18 shows the skvlight radiance at 8:30AN[. In
general, skvlight i1s stronger near the horizon than near zenith. Also, a peak appears
around the solar position, as shown in Figure 3.19 for a high solar elevation angle
(at noon during summer). The intensity and width of the skylight peak at the solar
position are affected by the composition of the atmosphere. Atmospheres with higher
particle densities, which often appear above urban areas, not only produce shorter
extinction distance, but also introduce a broader skylight peak with a higher intensity,

because more sunlight is scattered by particles in the atmosphere.

Figure 3.18: Sample skylight profile at 8:30AM in May at latitude 52°N.
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Figure 3.19: Sample skylight profile at 12:30PM in May at latitude 52°N.

Adding Polarization Dependency

As mentioned in Section 2.2.3, skvlight is partiallv polarized due to scattering
bv air molecules and aerosols. To use Equation (2.15) for computing the degree of
linear polarization (DoLP), the scattering particles must be smaller than the sensor
wavelengths, so that Rayleigh scattering is dominant. This condition is satisfied
for IR wavelengths, since the optical thickness of the atmosphere is insignificant for
wavelengths longer than the visible band. Figure 3.20 shows the degree of lincar
polarization for skylight in the MWIR band under a clear sky. Skylight is uvnpolarized
around the sun, and the degree of linear polarization increases as the observer moves

away from the sun. Skylight coming from directions orthogonal to the solar direction is

.



fully linearly polarized. In general, the DoLLP would be smaller for turbid atmospheres

and shorter wavelengths due to multiple scattering.

Figure 3.20: Sample skylight degree of linear polarization based on Rayleigh scatter-

ng.
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3.3 A Mueller Matrix for Mine and Soil

Surface reflectivity and emissivity directly affect EO radiometric signatures. In
this dissertation a rough-surface bidirectional reflectance distribution function (BRDF)
has been developed using a combination of classical physical optics and geometric op-
tics approaches. Energy conservation permits the emissivity of a surface to be com-
puted from the BRDFE via spatial integration. This section documents the derivation
of the BRDF and its associated emissivity.

Sections 3.3.1 and 3.3.2 review the derivations of physical optics (PO) and geomet-
rical optics (GO) rough-surface scattering models. A comparison of the two models in
Section 3.3.3 shows they have similar features for the roughness scales of interest here.
A polarimetric BRDF is proposed in Section 3.3.4. Simulations of the proposed BRDF
are performed for different amounts of surface roughness and surface EM parameters.
A discussion of those results appears in Section 3.3.5. Section 3.3.6 presents selected
measurements of the in-plane BRDF for various materials. A comparison of those
measurements with the proposed BRDF shows good agreement. Finally, emissivity

functions are computed via spatial integration of simulated BRDFs.
3.3.1 Physical Optics Model

As discussed in Section 2.5, the PO method (also sometimes referred to as the
Kirchhoff approximation), is often used to explore scattering from random rough sur-
faces. The PO approach to rough surface scattering was first used by Beckmann [42]
for perfectly conducting surfaces. Here, we present key equations and assumptions
made in the derivation of the PO model. Measures required to use this model for

radiometric mine signature prediction are also addressed.
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The derivation begins by representing the scattered field in an integral form. In
order to evaluate the integral, a tangent plane approximation is made, which assumes
that the radius of surface curvature is large compared to the wavelength. Tsang et
al. [18] take the asymptotic limit of the integral resulting in a closed form expression
applicable to dielectric surfaces also. In that result, only the incoherent term survives,
which appears as a lobe in the specular direction. Tsang et al. also introduce the

Mueller matrix notation to express the polarimetric dependence.

Kirchhoftf Approximation

Consider an incident plane wave impinging on a random rough surface. The

electric field of the incident wave is

E, = &EgelcT (3.21)

wt js implied and suppressed. The polarization

in which the time dependence e~
vector €, can be decomposed into perpendicular v; and parallel h, terms with respect
to the local surface normal as stated in Equations (2.1) and (2.2). The surface normal
vector can be expressed as

—fo(@,y)E — fla,y)g + 2
V1+ (il 9)?) + (f (2, 9)?)

n=

13.22)

where f;(z,y) and f,(z,y) represent the surface slopes at position (, y) with respect
to the & and 7 axes.
Using the dyadic Green’s function G and evaluating the electric and magnetic

fields on the surface, we can express the scattered electric field as

E.lx) = ./s' dS'{iwpeG(r,r') - [A x H(r')] + V x G(r, ') - [A x E(r')]} (3.23)



in which EE and H are the total fields on S. In the far field, the dvadic Green’s

function becomes
kT

— k) ek (3.24)

by

il

G(r,r) ~ (

where I is the dyadic identity. With the substitution of Equation (3.24) in (3.23) we
obtain

Ei(r) = — 1~k - S dS'{k, x [A x E(r')] + n[a x H{x)]}e ™ (3.25)

Tangent Plane Approximation

Evaluation of the integral in Equation (3.25) requires a description of the surface.
Beckmann [42] introduced the tangent plane approximation, which assumes the sur-
face is locally planar. This approximation requires that the incident wavelength is
small compared to the surface’s radius of curvature. With this approximation and
some algebraic manipulations, the scattered field can be expressed as

f,z'k-r

E,(r) = —Bo(I— kik,): [ dS'F(a, e i)™ (3.26)

= 4
where F is the integrand in Equation (3.26) above and a and g are in-plane and
out-of-plane tilting angles defined in Figure 3.21. Angles o and /3 define the local
surface normal and are used to describe the surface roughness.

The function F can be expressed in terms of the tilting angles and the local Fresnel

reflection coefficients as follows: [18]

F(e,0) = \/1 + tan® oo + tan? B - {— (& - h,) (i - k) (1 — Ry)
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Figure 3.21: Geometrical definitions of a locally tilted surface.

(il



where h; and v; are local unit horizontal and vertical polarization vectors, given by

: o

By mey i (3.28)
|kl'><ﬁ

v, = h,xk; (3.29)

The local Fresnel reflection coefficients, Ry, and R, were defined in Equations (2.33)
and (2.34).
The classical approach to evaluation of Equation (3.26) is to expand F(a, ) in a

Taylor series about the mean slope (cvg, ). We have
) , OF OF ,
F((.Y. j) = F(O.’(), j()) 21 015&|Q,J 0,80 o /3%|a‘ﬁ iy T (330)

This small slope approximation leads to considerable simplification for the special
case when slope angles o and 3 are symmetrically distributed about the mean slope.
In that case, the linear terms vanish by symmetry, and we are left with

eik'r

=l

E.(r) =

Ay

Eo(I — kk,)F(ao, o)l (3.31)

where

Fe / etk )t ggy (3.32)
Coherent and Incoherent Scattering

The scattered field intensity, which defines the radiant power, is the time average
of E - EX. It is conventional to invoke the ergodic hypothesis, replacing time averages
by ensermble averages. The quantity < E; - E¥ > has both deterministic (mean) and

random components. We write

<E;-Ei> = |<E,>P+[<|E*> —|<E; > |F

Ey p= ¢ ¢ . , :
= (ﬁ)m <l kMg Fe P [IB» < €'Y} (353
s
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The first term on the right-hand side is referred to as the coherent component. For
surfaces with zero-mean slopes, < E; > is simply the response of a flat surface and.
hence, the coherent component dominates in the limit of a smooth surface. It com-
prises a ray in the specular direction. The variance < |[I|> > —| < [ > |? is referred
to as the incoherent component, which appears as a broad lobe in the specular direc-
tion. For a smooth surface, the coherent component is dominant, but that component
disappears as the degree of surface roughness increases, leaving only the incoherent
component.

< |I]? > is a delta function in the specular direction and its quantity is difficult to
evaluate in general, but progress can be made for Gaussian surfaces. Beckmann [42]
derived the result for a PEC surface. Tsang et al. [18] used the geometric optics
limit, which assumes an infinitesimally small wavelength, to derive the response of
a dielectric surface. Since the coherent term | < I > |* becomes negligible in the

small wavelength limit, only the incoherent term < |[|> > —| < I > |? =< |I]? > is

considered here.

The widely-used Gaussian surface model assumes surface heights that are Gaus-
sian distributed with zero mean and variance ¢?. The correlation C(7) between
surface heights measured between any two points separated by a distance  is also
assumed to have a Gaussian form, namely:

2

T = exp(—%) (3.34)

where ¢ is the surface’s correlation length. The values of o and ¢ must be consistent
with the assumptions invoked above. Specifically, the surface height standard devi-

ation o must be large compared to the wavelength A, and the correlation distance ¢



should be large enough that no sharp edges are present on the surface. The ratio
& = Bo e (3.35)

is the mean-squared surface slope and is an important parameter for describing surface
roughness.

Although s? is a dimensionless parameter and is a constant for a given surface,
in the simulation, we vary the mean-squared surface slope value in proportion to the
change in sensor’s wavelength as an indicator for the degree of surface roughness.
The reason that allows this change can be explained using the surface spectra [21].
Figure 3.22 illustrates a sample surface spectral density function ', which is the
Fourier transform of a given surface correlation function. For a shorter wavelength,
the effective surface slope variance, which is the integral from DC' to the sensor’s

passband, includes more energy so that the surface looks rougher.

W [dB]

Figure 3.22: A sample surface spectral density function.
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Using the above model, Tsang et al. showed the incoherent term becomes

; A B
< |j|2 >= —/——= exp \: Lg :l (336)
§407 2522

where ., and v, are respectively, projections of the vector (ks — k,) onto the i — §

plane and the : axis.
Mueller Matrix Formulation of Reflection Coefficient

Using the result in Equation (3.36), Tsang et al. derived a reflection coefficient

matrix to relate the scattered and incident Stokes vectors. We have

I(k,) = R(k,|k;)I(k,) (3.37)

where the Mueller matrix R is

R(k,|k,) = " |l_‘}d|4 exp {- M;J & (3.38)
e cos 95 87T.S'2|k2’ X ks|4(l_{1d ; fl)él 252(kld ' ﬁ)Z
in which
kie = k —k, =2n(a-k,) (3.39)
ki = kig—f(ky-n) (3.40)
and
5 fh/zfl:h > < fhlrf;zv > Re < fhl'f;:h > —Im < fhvf/?h >
C = i f“hf:h > < fUU :U e Re < fl‘l f:h > —Im < fl‘l’f:h

2Re < fonfin > ERe< fuufl,> Re< full, tLaff, > ~Im < fflh— fonliy >
2Im < fuhf;h > 2Im < fvuf[:U > Im< fvuf}’:h =+ fvhf/’;u > Re < fz*vfl):h - fz'hfhz >

In this result fun, fou, fro, and fun describe couplings among horizontal and vertical

polarizations
fan = (V5 - ki) (¥ - ko) Ry + (B, - k) (s - k)R, (3.41)
fow = (hy - k) (b, - ko) Ry + (¥, - k) (V; - k)R, (3.42)
Fro = (Vs - k) (hy - ko )Ry — (g - ki) (V, - k) R, (3.43)
for = (hy - k) (¥ - Ko ) By — (Vs - ki) (hy - k)R, (3.44)



In these expressions v and h are unit vectors in the vertical and horizontal directions

with respect to the plane of incidence (see Equations (2.1) and (2.2)).
3.3.2 Geometrical Optics Model

A semi-empirical approach to geometrical optics rough surface scattering was de-
veloped by Torrance and Sparrow [43]. The rough surface is modeled as a composition
of planar facets with random orientations. The facets are assumed much larger than
the wavelength, and the geometrical optics (specular) approximation is employed to
model scattering. The GO formulation contains two principal terms: a “specular
lobe” term and a diffuse term. The “specular lobe” comprises multiple specular re-
flections from small facets that happen to be oriented as required by the incident and
observation directions. Clearly, the specular lobe is a function of the surface slope
distribution. The diffuse term, which is caused by internal scattering beneath the
reflecting surface, is invariant to incident and scattering angles.

This section describes the derivation of specular and diffuse terms. For Gaussian
surface statistics the specular lobe in the GO model shows characteristics similar to

the incoherent scattering component arising in the PO model.

Specular Lobe of GO Model

The GO specular term is derived by assuming that the surface facet’s tilt angle v
(measured with respect to z) has a probability density function p(4) and by defining
the reflectivity with a Fresnel reflectance F(8],m?), which is determined by the di-
electric constant m? and the projection of ¢ on the incident plane 8! [43]. Using the

BRDF definition given in Equation (2.24), we have the BRDEF representation for the
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GO specular lobe

.o F (68, m? ]
Fullefle) = T )y (3.45)

The distribution of the surface normal vector is found [42] by assuming the randomn

surface slope is Gaussian distributed.

o 1 ] tan? 1) -
) rmres O o) .

where angle ¢» is the local incident angle 8. The following relations are evident from

simple geometry

tany = Mz (3.47)
(kig - n)
; "V&
cos'y = _|174 (3.48)
(X g - )

and facilitate comparison with Equation (3.38).
The expressions for Fresnel reflectance F' are given in [69] as a linear combination
of perpendicular and parallel Fresnel reflectances, which are actually the squared

magnitudes of the horizontal and vertical Fresnel reflection coefficients.

F. = |Ry (3.49)

By = |By* (3.50)

A quick check can be performed by assuming a locallv-flat surface (,=0). Substi-
tuting Equations (3.46), (3.47), and (3.48) into Equation (3.45) yields a BRDF expres-
sion similar to Equation (3.38) in the PO model, which only includes the incoherent
return. This finding is not surprising, since we have assumed similar wavelength re-
strictions and used Gaussian distributions to describe the rough surface (the surface

height in PO and the slope in GO). Although the specular lobe expression presented
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above does not include a polarization dependence, a polarization sensitive expression
for the reflection coefficients was developed by Wolff [47] using the GO model. Note
that the self-scattering term G, which corrects for shadowing and multiple-scattering
near grazing angles and was described in Section 2.5.5, should be coupled with results

of the above derivation.

Diffuse Scattering of GO Model

To model multiple scattering occurring below the surface, Torrance and Sparrow
introduced a diffuse term with a Lambertian behavior. The term is invariant to
the direction of incident flux, and the scattered energy is equally distributed in all
directions. The diffuse component is especially important when the scattering angle
is far from the specular direction. Because no analytical models are available to
characterize non-Lambertian diffuse scattering, most diffuse models, including the
one presented here, use a Lambertian model as described in Section 2.5.2.

Using a Mueller matrix representation similar to the one presented in Equa-
tion (2.35), we can define a matrix for a diffuse scatterer with a certain degree of

depolarization as

Pde  Pdx 0 0
= L Pdz  Pdc 0 0 0
D=6 o 00 B
0 0O 0 0

where p,. and pg, are diffuse albedos for co-polarized and cross-polarized scattering,

which are scalars ranging between one and zero.
3.3.3 Comparison of PO and GO Models

The above derivations show that the PO and GO approaches, which start from

different perspectives of rough surface scattering, end up with similar representations
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for the “specular lobe”. Below we summarize the key assumptions made in the GO
and PO models.

In general, the PO approach is more rigorous, since it is based on a coherent
analysis of the fields. As a result, the PO method is applicable to very smooth and
very rough surfaces [44]. In contrast, the GO approach is based on an incoherent
sum of facet contributions from the outset, and is only valid for relatively rough
surfaces that have a surface height standard deviation (o) that is large compared to
the incident wavelength.

Beckmann decomposes scattered fields into “coherent” and “incoherent™ terms.
The coherent reflection comprises the specular ray reflected from a smooth surface.
The incoherent reflection, referred to here as the specular lobe, accounts for scattering
from relatively rough surfaces. These two terms dominate in different ranges of surface
roughness. The geometrical optics limit is applied to the PO model in order to
evaluate the integral arising in the Kirchhoff approximation [18]. As a result, there
is no coherent term in our PO formulation, since no surface is perfectly smooth for
an infinitesimal wavelength. Therefore, the BRDFE formulation developed here is only
valid for relatively rough surfaces (o > A), which is the same condition imposed on
the GO model.

Another key assumption about the surface geometry made in the PO approach
is the tangent plane approximation, which requires the radius of surface curvature
to be large compared to the incident wavelength. This assumption simplifies the
evaluation of a required integral, but it also imposes a limit on the surface roughness.
Specifically, the surface should have no edges. This criterion imposes a lower limit on

the correlation distance (¢) for Gaussian-distributed surface heights.



Several assumptions are made for both the PO and GO models that lead to shinilar
BRDF formulations. First, the sources are assumed to be in the far-field. Therefore,
we can assume a planar incident wave in the PO model while an equivalent incident.
ray is used in the GO model. Second, Gaussian surface statistics are invoked (for the
surface height distributions in PO and for surface slope in GO) are assumed to be
Gaussian for both models. This assumption leads to a slope distribution that is a
function of the local incident angle (#.) and the surface roughness parameter (o/¢).

In addition to the above differences, the GO approach involves two semi-empirical
factors not used in the PO approach. The GO model introduces a “geometric at-
tenunation function” to account for self-shadowing so that the model is applicable in
near-grazing regimes. The diffuse term used in the GO model helps to account for

internal scattering by the media.

3.3.4 A Proposed Polarimetric Mueller Matrix

A polarimetric Mueller matrix can be derived by combining features from the PO
and GO approaches. It contains a broad specular lobe due to rough surface scatter-
ing and a Lambertian term that accounts for internal scattering. A self-shadowing
correction term is adopted to extend the use of the proposed model into grazing
regimes. Assumptions stated in the previous section define the limitations of the pro-
posed model. It is valid for relatively rough surfaces without edges. Also the incident
wavelength should be small compared to the variation in surface heights.

The proposed matrix combines three elements as follows:

M = R(k,|k,)G(k,[k;) + D (3.52)
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The component R was given in Equation (3.38). It includes scalar factors that de-
pend on the surface roughness and source-target-viewer geometry, as well as a matrix
factor that embodies the polarization dependence. Detailed descriptions of thesc
components can be found in Equations (3.38) through (3.44).

As noted above, R is derived bv taking the geometrical optics limit in the PO
formulation. As a result, the PO formulation becomes very similar to the GO formn,
which unfortunately includes a non-physical response at grazing angles. The factor
G is the self-obscuration or geometric attenuation function described previously in
Equation (2.41). This function provides a needed correction when either the source
or viewing angle is near grazing.

The component D, which can be found in Equation (3.51), accounts for diffuse
scattering as a result of internal scattering beneath the reflecting surfaces. Polari-
metric diffuse albedos can have a great influence on radiometric signatures. Due to
a lack of measurement data, in this work those albedos are estimated empirically
bv comparing with measurements in the off-specular regimes, which is presented in

Section 3.3.6.
3.3.5 Sample Rough-Surface BRDF's

We now use the model presented in Equation (3.52) to simulate the BRDFs of some
rough surfaces and thereby illustrate some characteristics of the model. The results
shown are the sum of the first two components (I, and I,) of the scattering Stokes

vector I(k;), which is found by multiplying the Mueller matrix M by an unpolarized

incident Stokes vector I(k;) = [1/21/200]".
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Figure 3.23 uses facet color to illustrate the BRDI relative magnitude (in d3)
over the upper hemisphere. The roughness parameter s* = 2(a/¢)? was set to 0.01
in Figure 3.23, and the incident zenith angle was 22°. The refractive index (m) was
1.5. A reflectance lobe is observed near the specular direction. A small. constant off-
specular return is present elsewhere due to the diffuse scattering component. Bascd

on the value of s, one can categorize this surface as moderately rough.

source direction

Figure 3.23: Moderately rough surface BRDF (6, = 22°, 52 = 0.01, m = 1.5, pg.=0.01,
Pdr — 0005)

Altering the surface roughness parameter can produce dramatic changes in the
BRDF. The value of s*> was reduced to 0.0025 in Figure 3.24(a), which makes the
surface more smooth and the specular lobe much more compact than observed in
Figure 3.23. The reflectance magnitude decreases significantly when the obscrver

moves away from the specular direction. Conversely, if we increase s% to (.05 as shown
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in Figure 3.24(b), the specular lobe becomes much broader and one even observes a

substantial reflectance in the back-scattering direction.

ource direction ource direction

(a) Slightly rough surface. (b) Very rough surface.

Figure 3.24: BRDFs of a slightly rough surface (s* = 0.0025, m = 1.5, pg.=0.01,
par = 0.005) and a very rough surface (s = 0.05, m = 1.5, ps.=0.0075, pgr = 0.0037)
at 9,‘ =

Next, consider the model’s dependence on the incident zenith angle 8,. In Fig-
ure 3.25(a), which was computed for s°=0.0025, we observe that (as expected) the
effect of moving the direction of incidence causes the scattered lobe to shift toward
the (new) specular direction. However, for the rougher surface (s’>=0.05) shown in
Figure 3.25(b), the peak of the scattered signal significantly deviates from the specn-
lar direction. In this case, the BRDF maximum appears about 20° below the specular
angle. The shift of the maximum scattering direction away from the specular direc-

tion for near grazing incidence has been observed in measurements [43]. Because the
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effective surface height variance decreases in proportion to the cosine of the observer’s
zenith angle, a surface looks smoother near grazing so that the specular lobe of the
BRDF becomes more compact and tends to shift toward grazing when a large incident

angle is present. This phenomenom becomes more apparent for a rougher surface.

ource direction source diraction

pegular direction spegular titection

o -10

(a) Slightly rough surface. (b) Verv rough surface.

Figure 3.25: BRDFs of a slightly rough surface (5® = 0.0025, m = 1.5, pg.=0.01,
paz = 0.005) and a very rough surface (s2 = 0.05, m = 1.5, pg.=0.0075. pgr = 0.0037)
at 9, = 42",

The effect of the geometric attenuation function GG described in Equation (2.41) is
revealed by removing G from the model. Figure 3.26 shows the result of this change.
Comparing Figure 3.26 with Figure 3.25(b) shows that G tends to shift the maximum
away from grazing.

The foregoing simulations used a substantial diffuse component. Figure 3.27 shows
the result of removing the diffuse component (a very small amount of diffuse albedo

is still assigned to restrict the dynamic range of the plots). The result shows a sharp,
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ource direction

pegular thkection

Figure 3.26: Very rough surface BRDF without the self-shadowing correction G (6, =
£2°. 5= 005, mu = 1.5 gs=0.0075; i = Q0037).

significant drop in scattering intensity as the observation angle moves away from the

specular direction.
3.3.6 Comparison to Experimental BRDF Data

An extensive body of experimental measurements on rough surface BRDFs was
collected bv Willow Run Laboratories on a variety of materials, some of which are
relevant to landmine detection [29, 34]. The materials examined included various
tvpes of painted metal, wood, sand, concrete and other natural clutter. In most
experiments, four of the modified Mueller matrix entries were recorded, including
the co-polarized reflectance for horizontal and vertical polarizations and the cross-
polarized analogs (i.e., Fun, Froy Fon, and F,,). Figures 3.28 (a) and (b) show the
polarimetric reflectance of an aluminum surface with green paint and zinc chromate

coatings. Results for the incidence angles 207 and 60° are shown. Using the BRDF



ource diraction

>guldr digaction
_35

8 a0

Figure 3.27: Slightly rough surface BRDF without the diffuse term (6, = 42°, s°
0.0098, o = 1.5, gau=1l"% gu=05x10"%).

model described above, simulations were performed for user-defined surface param-
eters that included roughness s?, refractive index m, and values for co- and cross-
polarized albedos (pg and pg.). The simulated results in Figures 3.28 (¢) and (d)
show the computed reflectance curves. The results are generally in good agreement,

although some discrepancies exist. Specific issues are as follows:

e The measured and modeled BRDFs are similar near the specular direction,
but near backscattering the measurements show stronger reflectance, suggesting
that possibly the diffuse component or multiple scattering components are under

estimated.

e The ratios of reflectance for the co-polarized components are in good agreement

around the specular lobe.
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e The null in F,, due to total reflection around the Brewster angle is observed in

both (b) and (d) of Figure 3.280.

e For larger incident zenith angles, shifts in the angle of peak reflectance appear

in both Figures 3.28 (b) and (d).

The incident wavelength can have a strong effect on the BRDF, since all of the
surface features must be large compared to that wavelength. Figures 3.29 (a) and
(b)'" show the reflectance of a steel surface with green paint for visible (0.63 an) and
LWIR (10.6 pm) illumination. As expected, the BRDF shows a sharp lobe with its
peak located around the specular direction for LWIR illumination, while the specular
lobe width is somewhat wider for visible illumination.

Parameters were again selected for the BRDF model (s* = 0.015, m = 1.5) %o
reproduce the measured reflectance curves of painted steel at LWIR as shown in Figure
3.29 (d). Using the argument presented in Section 3.3.1 we rescaled the roughness
parameter s> according to the ratio of the LWIR and visible wavelengths. The derived
simulated co-polarized reflectance values F,; and F,, agree with the experimental
data both in peak magnitude and shape. Nonetheless, the BRDF model again fails
to reproduce the measured behavior near backscattering.

Finally, we consider the reflectance of material with a large roughness. Figure 3.30
shows the reflectance of a concrete surface for 8, = 20° and 8, = 60°. As the reflectance
curves suggest, the concrete surface acts like a diffuse reflector. The measured BRDF's
have small, near-constant values over a broad range of viewing angles. The surface

OThe Brewster angle at 53° is clear in Figure 3.28 (d), while only a dip is observed in Fig-
ure 3.28 (b). The discrepancy may be due to low angular resolution in the measurements(10® apart ).

"Only F,, measurement are available in the LWIR case.
.y ks
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Figure 3.28: Comparison of measured and modeled BRDF results in the incident
plane. The measured surface is aluminum with green paint and zinc chromate coat-
ings. The illumination is 0.63 pm wavelength. The simulated surface has the pa-

rameters s> = 0.01, m = 1.5. Co- and cross-polarized diffuse albedos arc 0.015 and
0.0075. 94
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Figure 3.29: Comparison of measured and modeled BRDI results in the incident
plane. The measured surface is metal with green paint at 0.63 pm and 10.6 pm.
The simulated surface has the parameters m = 1.5, s°=0.015 and 0.0009. Co- and
cross-polarized diffuse albedos are 0.03 and 0.015 for 0.63 pm and 0.01 and 0.005 for
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is strongly depolarizing, since the cross-polarization terms Fj,, and F,, arc of the
same order as Fy;, and JF,,. The results suggest a good fit to the angle-independent

Lambertian model assumed in the proposed BRDF model.
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Figure 3.30: Measured BRDF results in the incident plane. The measured surface
is concrete. The illumination is 0.63 pm wavelength. The corresponding simulations
(not shown) are simply constants.

3.3.7 Implementation of Emissivity Model

We stated in Section 2.6 that the directional emissivity of a surface can be found
via spatial integration of its BRDF using the reciprocity principle and the law of

energy conservation. For polarimetric sensors, the emissivities in the horizontal and
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vertical directions are computed separately as
& 7t/ 29 W = o
Eolhel e = / 46, sinfy [ do, [Fnlki k) + Funllei k)] (3.59)
Jo

27r

£,(k) = 1—/0'” dBysind [ db, [Falkik) + Faollei k)] (359

where Fupn, Fro, Fon, and F,, are polarimetric BRDF's found as Mueller matrix entries
(My,, My, M), and M) in the proposed model.

When the angular dependence of the BRDF is mild (certainly true for relatively
rough surfaces), the spatial integral can be approximated via numerical integration,

and Equations (3.53) and (3.54) become

Enll) 1= 3 Q- [Fanlhes, K (m) + Fon (s ke ()] (3.55)

Q

5v(kz) I ZQm . [ vv R R ( )) + fhv(f(i;l;s("l'))] (356)

in which €2,, is an element of solid angle and l;é(m) is a unit vector in its direction.
A fine sampling of € is used near the specular direction of the incident angle. Re-
flectances of nodes on the mesh are computed and summed to yield the emissivity
used in Equations (3.55) and (3.56). A bigger mesh is needed for a rougher surface
since its specular lobe is likely to be larger. A finer mesh is required for large incident
angles because the lobe near grazing tends to be narrow with large gradients.

The emissivity vector is combined with the blackbody emittance of the surface to

form the surface emission Stokes vector.

gh

Iy
I i =%

Ie(0,) = g = Us +Lpp =E&(0;) - Lpp (3.57)
V

Ve
The U and V components can be computed using Equations (2.51) and (2.52) and

the numerical integration stated above, but for surfaces simulated in this work, their
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values are nearly zero and are therefore neglected. Note that the dependence of
emissivity on observation direction is represented by the elevation angle #, only in
Equation (3.57), because the surface roughness is assumed isotropic.

To better understand the emissivity implied by the BRDF model, emissivity pro-
files were computed for various surface properties. The diffuse component of the
proposed BRDF model was ignored in these simulations, since its effect is trivial.

The refractive index affects the Fresnel reflection coefficients and, hence, the emis-
sivity. Figure 3.31 plots the horizontal and vertical emissivity curves versus the obser-
vation (zenith) angle for a moderately rough surface (s°=0.01) and different refractive
indices. The curves reveal that a lower refractive index results in less reflection and,
hence, produces more emission. Also the effect of the Brewster angle is clearly visible

for the vertical component, which is shown with a local maximum near 50°.

T 0 20 30 40 50 &0 70 80 0 R 1 20 30 4 5¢ 60
Otssrvation Angle Observaton Angle

(a) & (b) &,.

Figure 3.31: Horizontal and vertical emissivity for various refractive indices (s* =
0.01, no diffuse component)-
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Next, we examine in Figure 3.32 the effect of surface roughness on emissivity. The
results show that as the roughness increases, the emissivity starts to drop at larger
observation angles, and the effect of the Brewster angle becomes less apparent, which

implies that emissions from rougher surfaces are less polarized.

(a) &n. (b) &

Figure 3.32: Horizontal and vertical emissivity for various surface roughnesses
(m=1.5. no diffuse component).

The surface properties of the mine and soil were also simulated. The parameters
used for these materials are within the ranges considered above. The contribution
of the diffuse component is displayed in Figure 3.33. Little change is observed near
nacir (less than 0.1), because the mine and soil are modeled as poor reflectors. The
solid lines, which were computed with the diffuse component, are shifted downward
because of Lambertian scattering. With incorporation of the diffuse component, the
emissivities of the mine become comparable with those of the soil, because a slightly

larger diffuse component was added to the mine’s BRDF.
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(a) En- (b) E,.

Figure 3.33: Horizontal and vertical emissivity of simulated mine and soil surfaces
with and without the diffuse component (mine: s? = 0.0025 and m=1.4; soil: s* -
0.05 and m=1.6).

As indicated in Figure 3.33. the emissivity varies gradually as the observation
angle changes. Therefore, in the radiometric model implementation the cmissivity
vector of desired observation angle is calculated on the fly by linearlv interpolating
a one-dimensional (9;) emissivity profile!?, which is computed off-line via the spatial
integration of BRDF described in the beginning of this section. A spatial discretiza-
tion like the sky mesh presented in Figure 3.17 is used to sample the BRDI'. Solid
angles €2, associated with mesh facets are coupled with the BRDF and summed using
Equation (3.55) and (3.56) to yield emissivities. This method saves computation time

and 1s valid if the surface is isotropic and if the change in the BRDE is gradual.

"2Profiles of horizontal and vertical emissivities of specified mine and soil surfaces are calculated
every two degrecs
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3.4 Radiometric Model Construction

In this section we describe the integration of source models and surface scattering
properties to produce a signature simulator. For reasons of computational efficiency,
a ray tracing approach is used rather than a global illumination technique such as
radiosity.

An overview of the radiometric model is presented in Section 3.4.1. Steps needed
to initialize and execute the model are described. Key equations used to compute the

radiance of individual components are given in Section 3.4.2.
3.4.1 Simulation Procedure

Figure 3.34 shows the processes and data streams important in simulation. The
simulator performs three major functions: (1) setting up the model by defining the
source-target-viewer geometry and target surface properties, (2) computing and suni-
ming the components of the radiometric signature, and (3) simulating the effect of
the sensor. Implicit in this calculation is a loop over time and over all visible facets.

By far, the most computationally-intensive step is computing the received radio-
metric components. Five components are evaluated in the simulator as indicated n
Figure 3.34 and their contributions are computed separately. The direct thermal emis-
sion and single-bounce solar reflection have been found to dominate the signatures
of surface mines. These components are also easy to compute, since the transmis-
sion paths contain at most one scattering event. The remaining three components
are far more difficult to compute, because they involve extended sources or multiple

scattering events.
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Figure 3.34: Block diagram of the activities and data sources used in generating
radiometric mine signatures. The principle functions of the simulator appear in the
left column. The radiometric components are given in the center column. The right
column shows external data sources.
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Surface Temperature History

As indicated on the right of Figure 3.34, thermal model and the MODTRAN code
provide radiometric source information. Those codes are run prior to the execution
of the radiometric model.

Figure 3.35 illustrates the procedures used to compute the surface temperature
history. The thermal model requires as input the thermal properties for all materials
in the mine and soil, the date and the geolocation (latitude and longitude) of the
mine, albedos for all visible surfaces in the solar band, and meteorological conditions
such as the wind speed, humidity, and air temperature history. A mesh containing
the mine and soil is created to define the computational space. Next, the mesh is
refined near shadow boundaries and in other regions where high thermal gradients are
expected (e.g., near the soil-air interface). Incident solar irradiances at each surface
facet are computed for a 24 hour period with due consideration for surface shadowing.
Using the above facet insolation and environmental conditions as inputs, the thermal
model is run to convergence, and the surface temperature distribution for the final

24 hour segment is retained.

INlumination Spatial Profiles and Thermal Histories

The incident radiance due to sunlight and skylight are computed using MOD-
TRAN. Figure 3.36 shows the basic steps in this process. The time-varying illumi-
nation must be computed for a complete 24 hour period. The MODTRAN code
requires an input file containing the solar zenith and azimuth angles and the atmo-
sphere model (specified by the season, latitude, and environment parameters). To

compute the skylight distribution, a hemispherical mesh that represents the sky is
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Figure 3.35: Block diagram of the procedures used in generating surface temperature
profiles from the thermal model.

generated. The outputs of MODTRAN are the spectral insolation and the spectral
skylight. We employ an integration over the sensor band to compute incident solar

and skylight radiances for surface facets.

Shadowing

In addition to the surface temperature history and illumination profiles, we also
need to know which surface facets are visible to the sources and sensor to initialize
the radiometric model. Visible surface determination is an important part of any
radiometric simulation, and it is a critical component of this work. The basic proce-
dure is well known and is documented in common textbooks [70]. In order to save

computation time, the implementation used in this work is very basic, in that the
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Figure 3.36: Block diagram of the procedures used in generating solar irradiance and
skvlight radiance from the MODTRAN code.
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decision regarding facet visibility is made entirely on the basis of the facet centroid.
That decision is applied to the entire facet. No allowance is made for partially visible
facets.

A “visible facet” matrix and a corresponding “visible-facet projected solid angle”
matrix (approximation of d€; ,,, cos8;,,, in Equation (3.59)) are pre-computed using
above approach to save computation time for higher-order components. For cach
observed point of the sensor, visibility tests are conducted by tracing rays emitted
from the point to centroids of all facets (a total of 1686 facets for the LP_B minc
mesh simulated in this chapter). If the ray is not blocked by other facets. then the
entry in the “visible facet” matrix is set to be “true” (1) and the projected solid angle
is computed. The matrix is used when performing integration on extended sources,
only radiances from visible facets are included. A similar “visible sky facet” matrix

is computed to find visible sky mesh facets of observed points on the surface.

Radiation Integral

A relation used throughout this work is the following integral, given previously as

Equation (2.29)

I(k,,r) = [ d,cos8,M(k,|k;,r) - Lk, 1) (3.58)

27

in which IS(lA{S.,r) is the Stokes vector reflected from point r in the direction k.
dS), cos B; is a differential projected solid angle in direction k,, and Ii(llz-,r) is the
incident Stokes vector arriving at location r along direction k,. In general, this

integral must be evaluated numerically. In this work, we make the assumption that

M(l;5|l/{1,r) is constant over a facet. In addition, when I;(k;, r) arrives from another
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facet at position r’. we assume that I;(k;,r) is a constant over that facet. We have

Likor)~ 30 Mk, mlki) 'If(k-17r)/f | Ay cos by (3.59)
visible acet m
facet m

The remaining integral over projected solid angle is closely related to the so-called
“viewing factor” used in radiative heat transfer [71, Ch. 4]. A considerable amount of
effort has been devoted to the evaluation of these quantities in closed form for special
geometries. In the present work, however, quadrature has been used. The aforemen-
tioned facet-center based computation yields a fair approximation in projected solid
angle for two well separated facets, but it fails for adjacent facets. A facet-refining
algorithm is used to sub-divide nearby facets and recalculate projected solid angles.
The refinement continues until the distance (|r-r’|) is smaller than a preset threshold.
In performing this integration, it is often convenient to employ a facet-centered
coordinate svstem for the integral. Ultimately, however, the local Stokes vector must
be transformed to the sensor’s coordinate system. For a rotation of angle 1 about the
viewing direction k; the required transformation has been derived by Ishimaru [21,

P. 36] and is given by
I' = IT (3.60)

cos® ¢ sin®¢p  —1/2sin(2v))

0
r - siny  cos®1y  1/2sin(2y) O
N sin(2¢y) —sin(27) cos(24) 0

1

0 0 0

3.4.2 Derivation of Individual Components

In this section we derive the radiance received by the sensor from individual com-

ponents. Each component is defined mathematically and its evaluation is discussed.
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Direct Thermal Emission

As noted above, the direct thermal emission is the easiest component to compute,
because it involves no reflections. Furthermore, we make the assumption that there
is no significant radiative exchange among facets. Hence, each “observed point” can
be regarded as an isolated gray-body radiator.

The calculation of this component involves two steps which must be executed for
each observed point r (corresponding to pixel exploited by the sensor) is trivial given
the previously computed surface temperature profile. For a facet at temperature T,
we compute the blackbody emittance using Equation (A.14) and then weight by the

surface emissivity Stokes vector. We have

Iemzs(kavr) = g(QS)LBB(T/\) (362)

The facet’s observation angle 6, is used to find £ by interpolating a previously com-

puted emissivity profile.

Single-Bounce Solar Radiance

The single-bounce solar reflection is slightly more troublesome to compute than
the direct thermal emission, since the source position varies during the day and the
Mueller matrices for mine and soil surfaces are needed. The calculation for the re-
sponse at time ¢ begins by using MODTRAN to compute the solar radiance Lg,, in
the sensor band. Then, for all facets that are both visible to the sensor and the sun,
we evaluate

I.sun,-ref(f(s’ I‘) — dS; cos QiMd{S“}z» I‘) ’ Isun(f(z) (363>

2%
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in which the solar Stokes vector is given by

1/2

1/2
0
0

Loun(k:) = Loun(N)6(8, — 00)8(; — bo)/ cos by (3.64)
where (8,¢0) are the sun angles and the vector [1/2 1/2 0 0]” indicates that solar

radiance i1s unpolarized. The integral immediately evaluates to

I,S'LLn,'r'ef(l;s, I‘) = M(f(s“A(Os I‘) : Isun(k()) (363>
Single-Bounce Skylight Radiance

The calculation of reflected skylight follows the approach defined above for the
reflected sunlight, but the implementation is significantly different, because of the

extended nature of the source. We write

Isky,*ref(f(s: I‘) = | sz COs Hz'M(lA(s“A(z» I‘) ’ Islcy(f{i> (366)

J 2w

The intensity of Isky(f(l) is obtained from MODTRAN while its polarization is found
via Equation (2.15). The integral over solid angle is done numerically using the

hemispherical grid defined earlier. Using a rectangle rule for the quadrature produces

s 5

Isky,‘ref(ks-, l‘) ~ Z AQm Cos gmM(f{s|f(7n~, I‘) ' Ii(km)

~ Y AQu €080 M(K, [k, 1) - LK) (3.67)

gy
in which the subscript m ranges over all facets in the hemispherical grid and m' is
a subset of sky facets viewable to r. Pre-calculated matrices for “visible sky facets”
and associated projected solid angles described in Section 3.4.1 is used to find ' and

A, cos b,
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Single-Bounce Thermal Emission

In addition to the direct path, thermal emission can reach the seusor via reflection
from nearby facets. In this section we describe the procedure used to calculate single-
bounce thermal emission. Like reflected skylight, single-bounce thermal emission

involves extended sources. For each observed point r in the scenc we must evaluate

Il.her,'ref(km I‘) = / dQL cos QZM(Rs |Ria I‘) ' If,hm-mal(f(u I‘) (3()8)

= 3 / A€ s €08 0, M (kg Ky e, 1) - £ (Ki . 20V Lg ()
— J facet n’

where n' loops over all facets that can be seen from the observed point r, which is
found in the “visible facet” matrix, and r’ is the intersection (if any) of surface facet,
n' with km starting from r. By assuming the emissivity Stokes vector is constant
across the facet, approximating the integrated projected solid angle as A cos @),

and neglecting the effects of partially obscured facets, we write

Linerrer(ksy 1) & 3 AQp 08 8, M(k, |k, v) - E (ki e, vl ) L (Tly) (3.69)

.’1/

An observed point in the scene reflects emission from visible nearby facets. Due
to the short distance between facets, the projected solid angle of another facet varies
dramatically as the observed point changes and, hence, the integral over the source
distribution must be re-calculated for each point in the scene. The required calcula-
tions are very time consuming, since one must identify all facets visible from every
visible point in the scene, and one must integrate over those facets. In general. how-
ever, this term does not have a significant contribution to the total radiance, since

the surfaces involved are poor reflectors.
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Double-Bounce Solar Radiance

Higher-order scattering events contribute to radiometric mine signature, but in
general the impact of those events is likely to be small, because the surfaces involved
tend to be poor reflectors, and because the contribution of higher-order events de-
cavs geometrically with each scattering. Solar reflections are the strongest scattering
events and, to investigate the contribution of higher-order scattering the double-
bounce solar reflection has been evaluated.

The double-bounce solar contribution is given by
Isol,-ref?(f{sa I‘) = / dQL COs HLM(IA{S“A(H 1‘) ! ISOZ‘T(ifl(Ris I‘) (370)

where

Isol\r(?fl (kiv I‘) = / dQIL COs QJM(IA(L“{;) I‘/) : Isun (IA{O)

= M(R7‘k0 I‘,) ’ Isun(ko) (37[)

was evaluated previously. In this expression r’ indicates the location of the facet

producing the first reflection. Thus
Isol,ref?(f(s, I‘) = / sz Cos ezM(f(s |kiv I‘) ' M(Rllko, rl)lsun (RO) (372)

The contributions of higher-order terms can be derived in an analogous fashion in-
volving additional integrations. Using assumptions similar to those made for the

single-bounce thermal emission, we write

Isol,'ref‘z(f{s, I‘) = Z/f . in,n COs ez‘nM(Rs|Rz,'na I‘) ) M(f{i,n|lﬁ{0> r;-;,)lsun(l:(o)

=2 AQ, cos H.HIM(IA(SHA(Z,HI, r)- M(l}i‘,l/

’

RO)r;’)ISZLTL(RO> (37‘3)

n
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Like the single-bounce thermal emission, the double-bounce solar component is
expensive to compute, since it requires that one identify all facets (points) r’ visible

from r and integrate their contributions.

3.5 Simulated Signatures For Ideal Sensors

In an effort to understand the behavior of the signature model, a number of
idealized simulations were done in this section to assess the significance of different
radiation components in nadir and oblique sensor orientations. Section 3.5.1 presents
the individual radiometric components of a nadir-looking sensor and a discussion
of their impact on the model. The case of an oblique-viewing sensor is studied in
Section 3.5.2. The relation of surface reflection and the orientation of oblique-viewing
sensor is presented in Section 3.5.3. Section 3.5.4 examines total and individual
responses in different sensor bands. An analysis of temporal contrast of mine and
background signatures is also presented.

The simulations have been performed using the environmental conditions from
the “NT-S1” data set described in Section 2.7.1 and the target simulated is a LP_B
mine. The simulations in this section contain three images: The nadir-looking 1,
@, and U Stokes parameters. (In the absence of circularly polarized sources, no V'
component is produced for this geometry.) The sensor is assumed to be 10 meters
above the mine. Each image chip contains 128 x 128 pixels, which leads to a high
resolution signature. However, for some higher-order components, the sampling rate

was reduced in uninteresting image regions to save computation time.
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3.5.1 Comparative Study of Radiometric Components

Figure 3.37 displays the direct thermal emission. The [ component exhibits fea-
tures similar to the surface temperature shown earlier in Figure 3.9, since the surface
emissivities of mines and soil are similar at normal incidence. The @ and U images
indicate that those Stokes parameters emphasize the horizontal /vertical and diagonal
polarization, respectively. This is the result of the Stokes transformation described
in Equations (3.60) and (3.61) that rotates local Stokes vectors to the fixed sensor’s
coordinate system. For points on a concentric circle under a nadir sensor, &, and &,
are the same since the surfaces simulated are isotropic. However, the angle ¢ relative
to the sensor’s coordinate system varies from 0 to 27 and yields the pattern seen in
2 and U components after transformation.

Wee see the energv in () and U components is very small compared to the [
image. (Recall that thermal emission at normal angles is nearly unpolarized for most

materials.) Soil regions in the @ and U images show small values while those of the

ni '.

(a) L (b) Q. () U.

Figure 3.37: Simulated signatures in the I, ¢), and U components for direct thermal
emission and nadir viewing.
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mine are zero. These ) and U responses are produced by two causes: first, the mine
surface 1s smoother than the soil and as a result, the mine has a smaller difference
between horizontal and vertical emissivities near nadir. Figure 3.38 shows that the soil
has a larger difference between vertical and horizontal emissivities. Second, for a finite
sensor height, the mine’s observation vector k, has a smaller zenith angle than the
soil’s which accentuates the soil’s apparent polarization. Since the sensor is assumed
placed 10 meters above the target, there are small changes in observation vector across
the scene. The distance between the center and the edge of the scenc is approximately
35 ¢m, which produces a zenith angle around 2°. In contrast, the zenith angle at the
mine’s edge is approximately 1°. This example shows that small differences in surface

properties and viewing gecometry can produce variations in polarimetric signatures.

El

Emissity difference [E

VieMng ahéle

Figure 3.38: Emissivity difference (£,-&) for mine and soil surfaces.

Next, we examine the single-bounce solar reflection, which is shown in Figure 3.39.
The sunlight comes from the right of the image with a 40° zenith angle. Because the
sensor is directed away from the specular direction, the reflected-solar I component is
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much smaller than the I component for direct thermal emission. The reflection from
soil is stronger than that from the mine surface, since we assume that the soil surface
is rougher and produces strong diffuse scattering. The shadow introduced by the 3-D
mine structure is clear and oriented as required by the solar position. Because solar
radiation is an unpolarized source, the () and U images are weak. Note that the )
image is entirely negative, which occurs because the solar irradiance arrives from the

right.

02
b qets
01
008

(a) L (b) Q. (©) U

Figure 3.39: Simulated signatures in the I, @), and U components for single-hounce
solar racdiation and nadir viewing.

The Stokes components for skylight, an extended source, are shown in Figure 3.40.
The I component is uniform across most of the computation surface, but the response
is reduced near the mine’s side wall, because the skylight is partially blocked. Imn-
mediatelv adjacent to the side wall, the reduction is 50%. The Q and U components
exhibit similar patterns as seen in direct thermal emission signatures, which can be
attributed to the Stokes rotation operation. Because skylight is partially polarized,

the @ and U images contain more energy (relative to the I component) than thermal
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emission or solar reflection. This finding is best quantified by the degree of lincar

polarization (DoLP). which is essentially the ratio @/[.

[h. == ]’U
Ih <+ Iv

DoLP = (3,70

Figure 3.41 presents the DoLP for skylight, (direct) thermal emission, and (single-
bounce) solar reflection, respectively. We note that the maximum of the skvlight
DoLP is about 0.15, which is much greater than the other two sources. However.
the DoLLP in the total Stokes vector is still small, since skvlight is a relatively weak

source.

(a) L. (b) Q. fe) U

Figure 3.40: Simulated signatures in the [, @, and U components for single-bounce
skylight radiation and nadir viewing.

Higher-Order Components

As alluded to previously, higher-order radiometric components tend to be weak.
[Figure 3.42 shows the Stokes parameters for single-bounce thermal emission. The [/
component is largest near the mine walls, because the adjacent wall presents large

projected solid angles to the adjacent soil, leading to a strong thermal interaction.
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(a) Skylight. (b) Solar reflection. (¢) Thermal emission.

Figure 3.41: Degree of linear polarization (DoL.P) for skylight, reflected sunlight, and
thermal emission for nadir viewing.

Nonetheless, its magnitude is small compared to the direct thermal emission. Figure
3.43 shows the sum of direct and single-bounce thermal emission, which is essentially

the same as the direct emission shown in Figure 3.37.

(a) L (b) Q. (¢) U.

Figure 3.42: Simulated signature in the I, @), and U components for single-bounce
thermal emission and nadir viewing.
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(a) L. (b) Q (c) U.

Figure 3.43: Simulated signature in the I, @), and U components for total thermal
emission and nadir viewing.

The double-bounce solar reflection shown in Figure 3.44 is also small in mag-
nitude, making a small correction to the total solar reflection in Figure 3.15", The
double-bounce solar reflection exhibits stronger depolarization than the single-bounce
component, but its DoLP is still small. The @ and U components of the double-
bounce solar reflection dominate the total solar reflection shown in Figures 3.45 (b)
and (c).

Figure 3.46 shows the combined radiometric signature from all five components.
The I signature is dominated by direct thermal emission, while the single-bounce
solar reflection introduces a strong shadow. The remaining components have little
effect on the total signature as shown in Figure 3.47 which presents the direct thermal
and single-bounce solar signatures only. The I image from those two dominant com-
ponents is virtually indistinguishable from the sum of all five components shown in
Figure 3.46, but the skylight contribution has a strong effect on the @ and U images.

M The complex fractal-like pattern near the mine walls in the double-bounce solar reflection sig-
nature is the result of the mesh formulation. A polygon of 16 sides was used to approximate the
mine’s cylindrical shape.
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(a) L. (b) Q. (c) U.

Figure 3.44: Simulated signature in the I, @, and U components for double-bounce
solar radiation and nadir viewing.

(a) L. (b) Q. (c) U.

Figure 3.45: Simulated signature in the I, @), and U components for total solar
radiation and nadir viewing.

(a) 1. (b) Q. () U.

Figure 3.46: Simulated signature in the I, ¢), and U components for total radiation
and nadir viewing.
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(a) L (b) Q. (¢) U.

Figure 3.47: Simulated signature in the I, @), and U components for the sum of direct
thermal and single-bounce solar radiation and nadir viewing.

3.5.2 Radiometric Signatures of an Oblique Sensor

The simulations in Section 3.5.1 considered a nadir-looking sensor. For that geom-
etry the dominant thermal emission component exhibits little or no depolarization.
As a result, the polarimetric () an U Stokes components of the signature contain
much less energy than the intensity component and may be difficult to detect. In this
section we study the oblique sensor case (6,=45°) pointed toward east and its effect on
the radiance components. The change in simulation geometry required the calculation
of viewable surface facets and the visible facet matrix mentioned in Section 3.4.1.

Simulations were performed using same environmental parameters used in Sec-
tion 3.5.1. The direct thermal emission component shown in Figure 3.48 reveals both
the top and side walls of the mine. The oblique viewing angle has produced Q) and
U images that are two orders of magnitude larger than observed for the nadir sensor
illustrated in Figure 3.38. The symmetric nature of these polarimetric components is

the result of the viewing geometry and the symmetry of the mine.
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Figure 3.48: Simulated signatures in the I, @, and U components for direct thermal
emission and oblique viewing (#; = 45°).

The single-bounce solar reflection is shown in Figure 3.49. The Stokes vector coni-
ponents indicate that the return from the mine is unpolarized (only diffuse scattering
is significant), since the mine’s BRDF is localized in the specular direction. but the
sensor is viewing the mine in an off-specular direction. In contrast. the return from
soi1l is slightly polarized due to its rougher surface, which results in a broader specu-
lar lobe. Note that the shadow region is also unpolarized, because it reflects no solar
incidence.

The oblique-viewing skylight reflection signatures in Figure 3.50 are also signifi-
cantly different from the nadir-looking component in Figure 3.40. The return from
horizontal facets remains largely constant across the scene, while the return of vertical
panels varies significantly due to the viewing geometry.

The DoL.P for the above three radiometric components is shown in Figure 3.51. All
three components have larger DoLP values in the oblique sensor case. The maxima
in DoLP are increased approximately by the factors of 2, 10, and 100 for skvlight,

solar reflection, and thermal emission, respectively.
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{a) L (b) Q. (c) U.

Figure 3.49: Simulated signatures in the I, (), and U components for single-bounce
solar radiation and oblique viewing (6, = 45°).

Figure 3.50: Simulated signatures in the I, @), and U components for single-bounce
skylight radiation and oblique viewing (6, = 45°).
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(a) Skylight. (b) Solar reflection. (c¢) Thermal emission.

Figure 3.51: Degree of linear polarization (DoLP) for skylight, reflected sunlight, and
thermal emission for oblique viewing (6s = 45°).
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Figures 3.52 and 3.53 show the higher-order components. Their intensities are
weak, but some very localized “glints” appear. Some glints from the double-bounce

solar reflection are visible in the total signature in Figure 3.54.
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(a) L. (b) Q. (c) U.

Figure 3.52: Simulated signature in the I, @), and U components for single-bounce
thermal emission and oblique viewing (6, = 45°).

(a) L b) Q. (¢) U.

Figure 3.53: Simulated signature in the I, @, and U components for double-bounce
solar radiation and oblique viewing (6, = 45°).
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By combining the above five components, we obtain the total signaturc shown
in Figure 3.54. The intensity variation observed in the [ image is verv similar to
that found in the nadir viewing case of Figure 3.46, but the shape is changed by the
viewing angle. The polarimetric () and U) components are again dominated by direct
thermal emission, but the oblique viewing angle greatly increases the magnitudes of
the ¢ and U components. The mine’s shape becomes visible in the () and U7 immages.

which implies that off-nadir viewing is valuable for passive polarimetric sensors.

Ty

(a) L (b) Q. (c) U

Figure 3.54: Simulated signature in the I, ¢, and U components for total radiation
and oblique viewing (6, = 45°).

3.5.3 Radiometric Signature and Sensor Orientation

In this section simulations of an oblique-viewing sensor, which was studied in
Section 3.5.2, are performed with the sensor oriented toward east. south, west. and
north directions to study the impact of sensor orientation. Only signatures of the
single-bounce solar reflection are presented because its significant intensity in MWIR
signatures. The direct thermal emission compornent has no ¢ preference and is there-
fore invariant to the sensor orientation.
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We first examine the intensity (/) umages in Figure 3.55. The orientations of the
sensor were set in four directions and can be associated with the orientation of the
shadow, which is imposed by a 11 AM sun (coming from south-east-south). The inten-
sity of mine is constant over four images (about 0.15 [W/m?sr|) because the specular
lobe of the mine’s surface is narrow and above four sensors only receive returns from
the diffuse component. On contrast, returns from soil surfaces is particularly strong
(around 0.45 [W/m?sr]) in the south-looking sensor, which is closer to the specular

region of the solar incidence.

(a) East. (b) South. {c) West. (d) North.

Figure 3.55: Simulated [ images of an oblique sensor (6, = 45) oriented toward east,
south, west and north.

The @ images in Figure 3.56 are proportional to the degree of linear polarization.
We see the () components from the mine’s returns are essentially zero at all sensor
directions. This result confirms that returns from the mine are diffuse in off-specular
regions. The dynamic range of soil’s returns experiences greater changes in different
sensor orientations. The maximum @ in a south-looking sensor (near specular) is
about ten times larger than those in east- and west-looking sensors and two orders

larger than that in a north-looking sensor (near backscattering). Note that the sign
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in @ is different to that in a sensor of opposite direction because the horizontal and
vertical directions are defined differently as the sensor’s orientation changes. Above
result shows passive polarimetric sensors should be placed in (or near) the specular

direction of its primary source of reflection to maximize the contrast in its polarimetric

P .

(a) East. (b) South. (c) West. (d) North.

signatures.

Figure 3.56: Simulated @ images of an oblique sensor (6, = 45) oriented toward cast,
south, west and north.

(a) East. (b) South. {(c) West,. (d) North.

Figure 3.57: Simulated U images of an oblique sensor (6, = 45) oriented toward cast,
south, west and north.
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The U images in Figure 3.57 exhibit similar features seen in Figure 3.56 except
the sign changes in east- and west-looking sensors since the U component emphasizes

the linear polarization 45° away from the () componeunt.
3.5.4 Comparative Study of Sensor Bands

The foregoing simulations were performed for an MWIR sensor (3-5 pm), and
suggest that both thermal emissions and solar reflections contribute to a mine’s ra-
diometric signature. To understand the role of the sensor passband, a comparative
study is presented in this section for MWIR, SWIR (1-3 pm), and LWIR (8-12 jum).

Changes in sensor passband require changes in source radiance and parameters
used for surface roughness. A surface’s degree of roughness varies with the wavelength
of the incident radiation. Table 3.4 lists the values of kev surface roughness parameters
used in the three bands. Both the surface slope variance and the diffuse component

of the BRDF model were adjusted in proportion to the mid-band wavelength.

. - SWIR MWIR TWIR
ST (1-3 pum) (3-5 pum) (8-12 pm)
‘Surface type Mine | Soil | Mine | Soil | Mine | Soil
byt 14 | 16| 14 | 16 | 14 | 16
index (m) I I
Slope 6605 | 0.1 | 0.0025 | 0.05 | 0.001| 0.02
variance (s°) |
I 0.04 | 0.03| 0.02 |0.015]| 0.01 | 0.0075
component | I |
| Depolariaation. | o | g5e | 65 | 55 | 08 | 68
ratio

Table 3.4: Surface scattering parameters for the mine and soil used in SWIR, NTWIR,
and LWIR sensor simulations.
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The source radiance was re-calculated for each sensor band. For thermal emission,
we simply changed the lower and upper limits in the integral in Equation (A.14).
Sunlight and skylight spectral radiances were computed by modifying the MODTRAN
input file. Figure 3.58 plots the solar irradiance versus the solar zeunith angle for a
mid-latitude winter atmosphere. We see that the attenuation of solar irradiance
increases with wavelength. For an oblique sun (fs,,=45°) the amount of irradiance
in the LWIR band is approximately one-tenth that in the MWIR band, and less than
one percent that in the SWIR band. This agrees with the common obscrvation that

sunlight is significant in the SWIR band but negligible in the LWIR band.

Solar irradiance [w/mz]

g S

TR R
iy 21 a0 40 50 B
Solar zenith angle

Figure 3.58: Solar irradiance versus solar zenith angle in various IR bands for a
mid-latitude winter atmosphere.

Figure 3.59 illustrates the skylight intensity on the solar meridian. The spike in
the SWIR (blue) curve indicates the location of the sun. The skylight radiance falls
off away from that peak. The MWIR (black) curve shows a similar trend but is much

weaker in magnitude. In the LWIR band, the skylight shows no spike at the solar
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position, which means that skylight at LWIR is mainly thermal emission from air

particles.

 Skylight radiance [w/m°sr) '

,i
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Zenith angle

Figure 3.59: Skylight radiance at the solar meridian in various IR bands for a mid-
latitude winter atmosphere.

Simulations were performed for SWIR and LWIR sensors to proceed comparisons
with MWIR results. Figure 3.60 shows individual components and the total intensity
(1) signature of an SWIR sensor. The direct thermal emission signature is the same
as that in Figure 3.37 (a), but the magnitude is much smaller. In contrast, the
single-bounce solar reflection component dominates the total signature with minor
corrections from double-bounce sunlight and skylight. With the surface parameters
listed in Table 3.4, returns from mine and soil surfaces are comparable and make the
shadow a high-contrast mine feature.

At LWIR wavelengths, thermal emission becomes the primary source for the re-

ceived radiance. As seen in Figure 3.61, solar reflection is insignificant, and skylight
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(a) Direct thermal. (b) Single-bounce solar. (¢) Single-bounce  skyv-
light.

(d) Single-bounce ther- (e) Double-bounce solar. (f) Total.
mal.

Figure 3.60: Simulated intensity images (/) of individual components and the total
signature in the SWIR band (1-3 pm) for nadir viewing.
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reflection is only a fraction of thermal emission. The shadow in the total L\WIR signa-
ture is more diffuse and poorly defined because the nodal distribution of the thermal

model mesh is coarse in this region.

Q 1

(a) Direct thermal. (b) Single-bounce solar. (¢) Single-bounce sky-
light.

e
I

(d) Single-bounce ther- (e) Single-bounce solar. (f) Total.
mal.

Figure 3.61: Simulated intensity images (I) of individual components and the total
signature in the LWIR band (8-12 pm) for nadir viewing.

Temporal Dependence of Signature Contrast

To study the temporal dependence of the mine’s signature, sequences of simula-
tions in different sensor bands were conducted for a 24 hour period. To save compu-
tation time, only the direct thermal emission and single-bounce solar reflection were
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considered because we have seen that other components have small contributions and
they are expensive to compute. One practical objection of this study is an assessment
of mine detection performance as a function of time and passhand. As a surrogate
for detector performance, we use contrast, the difference between signal intensities
over the target and over the background. Target and background regions used in this
calculation were defined previously in Figure 3.8.

First consider the MWIR band. Figure 3.62 (a) shows the received radiances
from different regions of the simulated scene. For reference, the insolation is plotted
as a green dashed line to indicate the daylight hours. The blue curve is the average
radiance from the background region (soil) defined in Figure 3.8. The maximum
radiance in the mine region and the minimum in the potential shadow region arc
plotted in red and black curves. The radiance from the mine exceeds the background
during daytime and the contrast is reversed during the night. Also, if the shadow
is present, its radiance tends to be smaller than that of other soil regions. Because
the deviation of the mine’s signature from the background is proportional to its
detectability, we plot Figure 3.62 (a) the maximum difference (from either the mine
surface or the shadow) over the diurnal cycle in . It is evident that the maximum
contrast is achieved around mid day.

In the SWIR band, solar reflection is the dominant source. The zero contrast,
observed in darkness in Figure 3.63 (a) shows that the SWIR sensor cannot work
without insolation. Because reflections from the surfaces of the mine and soil arce
similar in magnitude, the maximum deviation comes from the shadow as indicated in
Figure 3.63 (b). The insolation {green dashed line) follows the maximum return from

the mine (red line) but deviates slightly from the background (blue line). This result
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(a) Received Radiance. (b) Max. Difference.

Figure 3.62: (a) Received radiance in the MWIR band (3-5 gm) on soil (average),
mine (maximum), and soil next to mine (minimum) where the shadow may be present.
(b) Maximum deviation (from average soil radiance) for the mine or its shadow. The
green dashed line indicates the incident solar irradiance.

was expected, mine reflection is mostly the diffuse component of the BRDE model.,
while the specular lobe of the rougher soil surface provides a different response.

The radiance and contrast curves for the LWIR sensor are shown in Figure 3.64,
which is determined solely by the surface temperature history. Features of these
curves are similar to the MWIR curves, except the difference between the shadow
and the soil is smaller, and the interval between sunrise/sunset and the “cross over”
events (equal intensities in mine and soil regions) is longer because very little solar

reflection has little role in the LWIR band.

3.6 Sensor Point Spread Function

Sensor characteristics have a strong effect on mine signatures. The signature

dependence on the spectral passband has already been discussed. The viewing angle
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Figure 3.63: (a) Received radiance in the SWIR band (1-3 pm) on soil (average), mine
(maximum), and soil next to mine (minimum) where the shadow may be present. (D)
Maximum deviation (from average soil radiance) for the mine or its shadow. The
green dashed line indicates the incident solar irradiance.

g S ?
= ¢
T =
Time [hi] Time [hr)
(a) Received Radiance. {(b) Max. Difference.

Figure 3.64: (a) Received radiance in the LWIR band (8-12 um) on soil (average),
mine (maximum), and soil next to mine (minimum) where the shadow may be present.
(b) Maximum deviation (from average soil radiance) for the mine or its shadow. The
green dashed line indicates the incident solar irradiance.
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also has a strong, obvious effect, with nadir viewing preferred for capturing the mine’s
circular shape.

The optical path of an imaging sensor will also affect image quality. At this time
the optical response of the sensor is summarized by its point spread function. The
principal characteristic addressed by this function is the sensor resolution. In this
section, we describe a simple Gaussian filter model for the impulse response of the
sensor. The filtered response can be down-sampled to yield images at the desired

resolution.

Figure 3.65: Gaussian impulse response of sensor.

The ground sample distance in the “NT-S1” data set is about 1.1 inches, but the
resolution of the image is slightly worse at approximately 1.65 inches (approximately
1.5 pixels). In contrast, the resolution of simulated signatures is approximately 0.19

inches. A Gaussian filter of 1.65 inch half-width was applied to the simulated images
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to mimic the impulse response of the sensor. Figure 3.65 illustrates the Gaussian

filter, which has a half width of approximately 8.5 pixels in the simulation resolution.

2 ‘ .

(a) Original response. (b) Gaussian-filtered
response.

Figure 3.66: Radiometric mine signature before and after applying Gaussian filter
that mimics the impulse response of the sensor

Figure 3.66 shows the effect of applying the Gaussian filter. High frequency infor-
mation (e.g., edges) is suppressed, resulting in a blurred mine signature. The original
detailed simulation has been replaced by a blob with a more uniform brightness dis-
tribution, and the shadow region is enlarged. The result was then down sampled
to replicate sensor pixels. A rotation has also been introduced to facilitate later
comparisons with measurements. Figure 3.67 shows the final product, which will be

compared with measured images in Section 4 1.1.
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Figure 3.67: Down-sampled and rotated simulated radiometric mine signature.

3.7 Summary

The implementation of the radiometric model was presented in this chapter.
Source conditions, surface properties, and the viewing geometry are the major fac-
tors that define a mine’s signature. It has been observed in prior studies that EO
signatures are subject to changes in the operation time, weather, insolation condi-
tions, thermal and roughness properties of mine and soil, sensor’s impulse response,
passband, orientation, and many other factors. A summary of key elements exploited
in this radiometric model is presented below.

The thermal model provides the temperature histories required to calculate ther-
mal emission. Computational meshes were built for mines that are bodies of revo-
lution. Mesh refining techniques were applied to increase the nodal density in areas
of large temperature gradients. Temperature histories were computed using the heat
transfer equation and a time-stepping scheme. User supplied boundary conditions,

which are time functions of the insolation and meteorological conditions, were defined.
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A study of the temperature dependence on environmental conditions shows that the
temperature contrast between the mine and background increases with increasing in-
solation. Convection, introduced mainly by the wind, tends to reduce the contrast.
In general, the maximum contrast is achieved near mid day.

Solar radiation, either from direct (sunlight) or scattered (skylight), is the primary
source for surface reflections. We employed the MODTRAN code to account for
complex atmospheric scattering and absorption effects. The spectral transmittance
and skylight radiance were integrated over the sensor passband to yield desired source
radiances.

A polarimetric BRDF model was developed to address surface reflection and emis-
sion. This approach follows the classical PO model and adopts correction terms from
the GO model. The proposed model contains three components: a term for rough
surface scattering near the specular direction, a geometric attenuation function that
accounts for self-shadowing and multiple scattering, and a diffuse term representing
internal scattering. The surface was described by a Gaussian-distributed height and
a Gaussian correlation function. A comparison with measured data shows that the
model is valid for relatively rough mine-like surfaces. Directional emissivities for the
surface were computed via a hemispherical integration of the surface’s BRDF.

The radiometric model was assembled from the above source conditions and sui-
face properties with consideration for the problem geometry. Thermal emission and
solar reflection are basic components of the model and are computed in a straight-
forward manner. Calculation of the skylight reflection, which comes from an extended
source, involves a spatial integration. Higher-order radiance components, which in-

volve multiple scattering events, arise from the elevated surface-laid mine structure.
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The ray tracing techniques was employed, but only the single-bounce thermal emission
and double-bounce solar reflection were included because of the intensive computa-
tions involved and their limited influence on the signature.

Simulations of various sensor scenarios were conducted to study their effects. The
sensor’s zenith angle affects not only the mine’s apparent shape, but also the po-
larimetric properties of the signature. An off-nadir sensor exploits differences in
the horizontal and vertical polarimetric emissivities to vield significant polarization
contrasts and, hence, oblique viewing is desirable for a passive polarimetric senscr.
Furthermore, the study of sensor orientation shown that passive polarimetric sensors
should be placed near the specular direction of insolation to receive a greater contrast.
in polarimetric signatures. Three IR sensor bands were explored using a common set
of condition. A comparison of individual radiometric components shows that a SWIR
signature is dominated by solar and skylight reflection, a MWIR signature is mainly
comprised of thermal emission (and a solar reflection that highlights the shadow),
and a LWIR signature is overwhelmingly dominated by thermal emission. We also
examined the temporal dependence of the signature for the SWIR, MWIR and LWIR
bands and found that maximum contrast is achieved during mid day for all bands.
According to simulations, SWIR sensors have signatures of the greatest contrast be-
cause of the shadow, but their operation is limited to daylight hours. On the contrary,
MWIR and LWIR sensors can be operated at all time, but the mine-to-clutter con-
trast is only a fraction of the received radiance (less than 33%). Finally, we modeled
the sensor’s point spread function with a Gaussian filter to replicate the blurring

introduced by a low-resolution sensor.
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CHAPTER 4

MODEL VALIDATION AND SIGNATURE ANALYSIS

In this chapter results are presented that validate the radiometric model. Sim-
ulations were conducted and successfully compared with images from several sites.
Additional results are provided to explain the behavior of the signature.

Section 4.1 presents simulations of the NT-S1 data described in Section 2.7.1. A
comparison of data at a specific time are presented first, followed by temporal signa-
ture variations for day time, night time, and the so-called “crossover”. Polarimetric
signatures are investigated in Section 4.2. Simulations of obliquely viewed mines
were performed and compared with polarimetric MWIR imagery collected by TNO.
Finally, in Section 4.3 the performance of the model at visible wavelengths is explored
using data collected at NT-S2 (see Section 2.7.2). Simulations designed to explore
the relation of viewing angle and surface BRDE demonstrate good agreement with

measurement and verify the BRDF model.

4.1 Case 1: Temporal Response of Non-Polarimetric Sensor

For the NT-S1 data introduced in Section 2.7.1 one run was selected as the basis

for the simulations, which was collected at 11 AM, Oct. 21st, 2002. In Section 4.1.1
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the model is validated using data from that run. We also consider a second run
collected under similar conditions except that the time was 3:30 PN

In the remainder of this section, additional simulations are reported for similar
conditions. A sequence of simulations was conducted with evenly spaced time steps
to examine temporal features of the signatures. Three series of simulation were per-
formed. First, simulations during daylight show that the size and orientation of the
mine’s shadow tracks the solar position. A second series of simulations studies ther-
mal crossover, which occurs twice daily at dawn and dusk. Finally, simulations after

dusk demonstrate different cooling rates for mine and soil.

4.1.1 Radiometric Model Validation

Simulation results for LP_B mines at NT-S1 at 11:00AM, October 21st were pre-
sented previously in Section 3.5.1 and are repeated in Figure 4.1 for convenience.
Only the [ component is shown, since only intensity data were measured. Figure 4.2
shows the total simulated intensity after reducing its resolution and rotating to match
the sensor orientation.

Figure 4.3 illustrates seven chips containing LP_B mines from the aforementioned
sensor measurement run. Three plastic-cased LP_B mines appear in three frames. [n
general, they agree well with the simulated result, including the mine size, shadow
size, and general shape of the signatures. The shadow is observed in both simulated
and measured images, but some measurements show a shadow that is extended or
poorly defined, which we attribute to surface roughness or vegetation.

A quantitative comparison of the model and data is now presented. The measured

images comprise pixel readout counts, which are not easily related to radiometric
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(a} Direct thermal. (b) Single-bounce ther- (¢) Single-bounce sky-

mal. light.
015
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o

(d) Single-bounce Solar. (e) Double-bounce solar. (f) Total.

Figure 4.1: I component of individual and total signatures for “NT-S1" data sct. at
11:00, Oct. 21st.

Figure 4.2: Simulated mine signature with cross-section line for radial profile analysis.
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Scene 2 Scene 1

Scene 3

Figure 4.3: Sample mine chips collected at NT-S1, 11:30AM, October 21st, 2002.
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units. For this reason, normalized values will be compared. Figure 4.4 compares pixcl
intensities in simulated and measured images along a cross-section that starts from
the maximum (mine’s center) and passes through the minimum (shadow’s center) of
the image (see Figure 4.2). The ensemble average of the measured chips shows that
the measured shadow is larger than that seen in the simulation. This effect mayv be
caused by an off-nadir sensor orientation'? or by large-scale tilts on the soil surface.
A thermal simulation of uneven soil by Sendur [12] reported a significant contrast
in surface temperatures if large scale slopes were present on the simulated surface.
Motion blur may also be present, but a meaningful analysis of platform motion has
not been done to date. Overall, the simulator yields a fair approximation to measured
data.

Next, simulations were done for 3:00 PM using same surface parameters and ap-
propriate values for the time sensitive parameters (surface temperature profiles, solar
angle and irradiance, and skylight distribution). The mine signature is shown in Fig-
ure 4.5. Comparing to Figure 4.1 (f), it is clear that the signature at 3:00 PM has a
longer shadow and its orientation has rotated roughly 90 degrees. These changes are
consistent with the shifts in solar elevation and hour angles.

It is also clear from the magnitude of the radiometric components that direct,
thermal emission is still the dominant contribution while single-bounce solar reflec-
tion provides a secondary correction, especially in the shadow. Therefore, as noted
previously, it is sufficient to simulate those two components to obtain a reasonable
signature.

YA nadir sensor was assumed in the simulation. The actual sensor angle in the measurement is
unknown but is less than 10°
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Figure 4.4: Intensity profiles of simulated and measured signatures along a cross-
section.

Degrading the simulation’s resolution with the same point spread function in the
11:30 ANI case and applying a rotation consistent with the camera heading produces
the signature in Figure 4.6. This output compares favorably with the measured data
in Figure 4.7, which shows three LP_B mines in three scenes collected during the run
at 3:30 PM. Individual mine signatures were consistent across different scencs, but
the size of the shadow varied significantly. This phenomenon is better revealed in the
cross-sections in Figure 4.8, which may be attributed to large scale soil roughness.
Again, we conclude that the proposed radiometric model yields signatures having

reasonable agreement with the measured data.
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(a) Direct thermal. (b) Single-bounce ther- (¢) Single-bounce  sky-

mal. light.

(d) Single-bounce Solar. (e) Double-bounce solar. (f) Total.

Figure 4.5: I component of individual and total signatures for “NT-S1" data set at
15:00, Oct. 21st.

)

Figure 4.6: Simulated signature for the 3:30 PM run and the cross-section line used
for radial profile analysis.
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Figure 4.7: Sample mine chips collected at "NT-517, 15:29, Oct. 21, 2002.
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Figure 4.8: Intensity profiles of simulated and measured signatures along a ¢ross-
section.

4.1.2 Signatures for Sunlit Conditions

Additional simulations were performed hourly for a 24 hour period to study the
variation of signatures with time. In this section we present a study of signatures for
sunlit conditions. Cases of darkness and crossover are presented subsequently. The
signatures of direct thermal emission are shown in Figure 4.9, and the single-bounce
solar reflections are added to form Figure 4.10. Comparison of these figures makes
the solar contribution evident.

Figure 4.9 (b) shows a mosaic composed of thermal emission signatures simulated
hourly from 8 AM through 3 PM. A common scale has been used for each block of 8
images to facilitate comparisons. Several signature features are evident. As expected,

the soil is hotter during the afternoon (12 PM to 3 PM). The mine, which was cooler
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Figure 4.9: NMosaic of “direct thermal emission” during morning (24:00-7:00), noon
(8:00-15:00) and evening (16:00-23:00).
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Figure 4.10: Mosaic of total radiometric signatures during morning (24:00-7:00), noon

(8:00-15:00) and evening (16:00-23:00).
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than the soil in the morning, was also heated by insolation, but the rate of change in
the mine surface temperature was larger. This occurs because the mine contains an
air space'”, which isolates the top of the mine from the remainder below. Solar driven
heating of the small thermal “mass” on top of the mine produces a larger temperature
rise than the soil.

Because of computational limitations, the thermal model output does not accu-
rately reproduce the shape of the shadow. The nodal density of the mesh decreases
as the distance from the mine center increases and, hence, the spatial sampling den-
sity eventually becomes too low to accurately represent the shadow boundaryv. With
sufficient memory and computation power, a more refined mesh should avoid this
problem.

The mine’s shadow provides another potentially detectable thermal feature. Fig-
ure 4.11 plots the solar elevation angle and the amount of solar irradiance during
a diurnal cvcle, both of which are critical in determining the size and contrast of
the shadow. The mine structure is clearly revealed by the reflected solar radiation
(see Figure 4.12). When the soil near the mine is shadowed, its normal temperature
evolution is stalled or reversed. The second deck of the mine also imposes a small
shadow on the top of the first deck.

The contrast between the mine and soil is strongly influenced by their BRDFs and
the solar elevation angle. For sensors that do not see a specular glint, solar reflections
from the (relatively smooth) mine come mainly from the diffuse component, whese
magnitude varies approximately as the cosine of the solar elevation angle. Conversely,
the soil surface, which is assumed rougher, has a very broad scattering lobe that

15The air space is often the result of a construction process or the void required for a pressure
activated trigger.
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approximates a diffuse return. Figure 4.13 compares the radiance reflected from
mines and soil surfaces at 8 AM and 12 PM at the solar meridian for nadir viewing.
At 8 AM the nadir sensor only observes the diffuse components from both surfaces,
and the mine provides a stronger reflection as required by its surface parameters
(see Table 3.4). At 12 PM the main lobe of the soil BRDF encompasses the nadir
direction and its intensity exceeds the mine’s reflection. Hence, we see in Figure 4.12

that reflections from the soil are stronger around mid day (11:00-13:00).
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Figure 4.13: Reflected radiance on the solar meridian from mine and soil surfaces at
8 AM and 12 PM, Oct. 21st.

Figure 4.10 (b) illustrates the combined effect of direct thermal emission and
single-bounce solar reflection. As noted in Chapter 3, the signatures are dominated
by thermal emission, while the solar reflection provides a well-defined shadow. The
simulations suggest that in the MWIR band surface landmines produce a stronger
response in the early afternoon, because of higher surface temperatures.
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4.1.3 Signatures During Darkness

Simulations were performed for the “NT-S17 conditions at 11 PN when no inso-
lation is present. Of the five radiance components included in our model, only three
components are present in this scenario: thermal emission (direct and single-bounce
paths) and reflected skylight. Figure 4.14 shows the three components and indicates
that direct thermal emission is the dominant factor. (Maxima of reflected skvlight and
single-bounce thermal emission are about 2% and 5% respectively of the maximum
direct thermal emission.) Figure 4.15 compares the total signature and the surface
temperature. Their features are essentially the same, and we conclude that during

the night, only direct thermal emission is needed to simulate MWIR signatures.

(a) Direct thermal. (b) Single-bounce ther- (¢) Skylight.
mal.

Figure 4.14: Simulated signatures of direct thermal, single-bounce thermal, and re-
flected skylight for “NT-S1” conditions at 23:00.

During darkness. stored energy is dissipated via emission and convection. A wine
stores far less thermal energy than the surrounding soil, and it releases that energy
more quickly. Note also that the upper deck of the mine, which has a larger surface-
area/volume ratio because of the internal void, cools at an even faster rate. We
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(a) Total signature. (b) Surface temperature.

Figure 4.15: The total radiometric signature and surface temperature for “NT-S1”
conditions at 23:00.

also find that the mine signature is symmetric in ¢ during darkness as shown in
Figures 1.10 (a) and (c¢). This arises since the structure is symmetric, and there is no

directional preference for thermal emission or convection in the model'®.

4.1.4 Signatures at Dawn and Dusk

An important phenomenon in IR surface mine detection is “thermal crossover”,
which occurs when the surface temperatures of mine and soil are equal. During
crossover, which occurs twice daily around dawn and dusk, EO sensors are less ca-
pable of differentiating mines from background, since thermal emission dominates
the signature and the contrast vanishes. From previous simulations and discussious,
however, we know that other components contribute to the radiometric signature. [n
this section we review simulations performed for dawn and dusk to better understand
the underlving physics at these important times.

6 Asymnietries in heating caused by the setting sun tend to be weak and rapidly decay in the
absence of continued heating



Simulations around dawn can be found in Figures 4.10 (a) and (b). At 6 AN the
sun has not risen, and the mine is cooler than the surrounding soil. At 7 AN the
low angle sun casts a very long shadow while the radiance from the mine surface is
still weaker than the soil. Thermal crossover occurs near 8 AN, when the intensity
of mine and soil are largely equal except in the shadow. At 9 AM the mine surface is
heating rapidly and shows a distinctive contrast.

The image at 8 AM has an interesting implication. Since the morning thermal
crossover occurs after sunrise, the mine signature is still detectable because of the
shadow. If mine detection is required around the morning crossover, it is appropriate
to search for the shadow instead of the mine.

Next, we examined the afternoon thermal crossover. Simulation results around
dusk are illustrated in Figure 4.10 (¢). We found that thermal crossover occurs soou
after sunset, since mines cool more rapidly than soil. Due to the lack of insolation, the
night-time radiometric features are produced solely by thermal emission. Figure 4.10
(c) indicates that thermal crossover happens between 6 PM and 7 PM. Although
the temperature is not homogeneous across the mine, detection is extremely difficult
during the evening crossover, because no other helpful information (e.g., the shadow)

1s present.



4.2 Case 2: Polarimetric MWIR Signatures

Polarimetric imaging sensors are finding broader use in remote sensing, hecause
they provide more information per pixel. Polarimetric sensors are also being ex-
plored for mine detection, and for this reason our radiometric model was built with
polarimetric capabilities.

Various methods have been used to collect polarimetric imagery, including rotating
polarizers or splitters that separate horizontally and vertically polarized light. A
particularly convenient method of acquiring polarimetric data is to use a rotating
linearly polarized filter at 0°, 45°, 90°, and 135°. The I, @, and U parameters can be
derived using those four channels and appropriate transformations. Measurciments
made with two orthogonal filters (0° and 90°) will produce the I and () parameters.
Such measurement cannot be used to acquire the circularly polarized V7 component.
since they comprise incoherent samples of linear polarization.

Polarimetric measurements of land mines were conducted by the TNO Phyvsics
and Electronics Laboratory [13| at the Netherlands during late November, 2001. The
TNO data set was described briefly in Section 2.7.3. In this section, we present
simulations performed to reproduce those measurements. The relative importance of
individual radiometric components is discussed. Comparisons of simulated signatures

and measured data appear at the end of this section.
4.2.1 Parameter Selection for TNO Data

Similar to what was done for the NT-S1 data set, model parameters had to be
selected to describe the TNO environment. The viewing geometry requires a more

precise description. Unlike the NT-S1 case, which involves long-range viewing at
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near-nadir angles, the TNO sensor was positioned a shorter distance from the test
site with a large nadir angle. This geometry can produce large variations in viewing
angles across the scene, which must be taken into account during simulations.

The images used here are from the TNO surrogate LP mine indicated by the red
box in Figure 2.7. The nominal viewing angle for this mine is 70° (with respect to
nadir), but because of the aforementioned variation in viewing angles across the scenc,
as well as the potential for small site surface deviations from planarity, a 68° angle
was found to better replicate the data.

Surface roughness depends on the degree of soil compaction. The BRDE model
requires the surface roughness, the refractive index, the albedo ratio py./pq. for the
diffuse term and the relative magnitudes of surface and diffuse scatterers. Becausc
these properties of the site were not measured, they were estimated from the mea-
surements.

The TNO surrogate mine has a case made with commercially available PVC pipe
and flat sheets,and it was filled with RTV. Because of unavoidable construction dif-
ferences between real and surrogate mines, it is reasonable to expect some differences
in their signatures. To date, there have been few comparisons of real and surrogate
mine signatures [6]. The scattering and thermal properties used for the surrogate
mine were taken from the literature and adjusted to fit the measured data. Table 4.1
gives the mine and soil surface parameters used in this simulation. Note that slightly
different surface parameters were used for the PVC plate (used for the mine's top
surface) and pipes (side walls), corresponding to material with different finishes, or

from different vendors.
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Surface PVC pripe PVC plate Soil
type (mine sidewall) (mine top) :
Refractive
ind@x i) 1.4 1.4 1.6
Son
S 0.01 0.005 0.35
variance (s°) i |
g 0.01 0.005 | 0.005
component
Depolar.ization 0.5 05 0.5
ratio ‘

Table 4.1: Surface parameters used in simulations of TNO’s surrogate LP mines.

4.2.2 Comparison to Measured Polarimetric Images

As observed in Section 3.6, it is important to consider the finite resolution of the
sensor when comparing simulations to measurements. Because the TNO sensor is
located close to the test site and the sensor resolution is relatively high, we a point
spread function as described in Section 3.6 with a compact resolution (1.1 pixels)
then down sample the simulations to yield the final product seen in the second rew
of Figure 4.16. The simulations are similar to the signatures in Figure 4.23, although
some glints in the simulation do not appear in the measurements.

The measured TNO images are shown in the first row of Figure 4.16 with a color
scale common to the simulated results, and they are in qualitative agreement with
the simulations. High intensity regions, such as the side wall facing the sun, and cool
regions, such as the shadow, appear in both sets of images. It is apparent, however,

that the simulation predicts heated regions that are weaker than measured. Reasons
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Figure 4.16: Simulated (first row) and measured (second row) [, ), and U parameters
for the “I'NO” data set with reduced sensor resolution.

for this difference may include incorrect thermal properties or solar-bands albedos for
the mine's PVC case.

Spot checks of the images suggest that good quantitative agreement in the back-
ground regions has been obtained, although the measured results show some variation
that is probably related to large scale surface roughness in soil and soil inhomo-
geneities. A limitation of the simulation is that random large-scale variations in local
surface tilt and thermal properties of soil have been ignored. In the measured data.
the background area appears somewhat “blotchy” while the simulated signature cap-
tures only the average properties of the rough surface. Fine scale graininess in the

measurement is the result of sensor noise.
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4.2.3 Evaluation of Signature Components

In an effort to gain insight, the model was used to simulate the individual ra-
diometric signature components. In this section the resulting Stokes parameters are
shown.

Figure 4.17 illustrates the I, @), and U parameters for the direct thermal emission
component. Because an MWIR sensor was used, thermal emission was expected to
dominate the signature. The intensity (/) parameter suggests that the south side
of the mine’s side wall is heated by the low-angle winter sun in The Netherlands.
The soil (dry sand), which responds more quickly to insolation than the mine, pro-
duce a strong, well-defined shadow. For the @ and U parameters, the signatures
were comparatively weak, since thermal emissions were only slightly polarized by the
limited difference in horizontal and vertical emissivities. The signature reveals the
local surface shape of the mine. High values in the ) parameter correspond to facets
on the mine wall oriented to maximize depolarization. For a smooth surface, that
orientation corresponds to the Brewster angle. For horizontal planar surfaces (i.c.,
the mine top and soil surface), differences in the ) parameter of mine and soil come
from differences in the ratio of co- and cross-polarized emissivities near grazing. The
U parameter, which indicates the degree of linear polarization in 45° planes, produces
different signs across the axis of symmetry.

We next examined the single-bounce solar reflection, shown in Figure 4.18. The
I parameter takes on only a few discrete values, because the camera was positioned
and oriented far from the specular glints. As a result, the simulated results come
mostly from the diffuse component. The () parameter exhibits interesting features.

The figure shows that ¢ values for the mine and its shadow are near zero, while

161



Figure 4.17: Simulated I, @, and U parameters for direct thermal emission for the
“TNQO” data set.

the rest of the soil shows a small negative value. Insight into this result is available
from the DoLP plot shown in Figure 4.19, which can be explained by the BRDFs
involved and their relation to the solar position. The illuminated surfaces of the
mine in Figure 4.19 are relatively smooth. For those surfaces, the specular return is
highly localized, producing very little radiance at the sensor. Therefore, the Dol of
the illuminated mine surface is dominated by the diffuse term, which produces zero
DoL.P. Conversely, surface scattering from the rough soil has a preferred polarization,
resulting in a DoLP around -10%. The negative sign is a result of the solar position.
The same logic can be used to explain the U image. Note that the DoLP in the
shadow region in Figure 4.19 is not defined, since both I and @ are zero.

Figure 4.20 illustrates the single-bounce skylight reflection. This component has
a weak intensity in the IR band, because air particles scatter weakly for longer waves.

The single-bounce skylight signature at a point 1s approximately the product of the
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Figure 4.18: Simulated I, @, and U parameters for single-bounce solar radiation for
the “TNQO” data set.

Figure 4.19: DoLP of single-bounce solar radiation for the “I'NO” data set.
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visible sky area and the incident diffuse skylight. Recall that skvlight is partiallv lin-
early polarized, which leads to a nontrivial polarimetric response. The (Q and U7 levels

are comparable to those of the direct thermal and single-bounce solar components.

Figure 4.20: Simulated I, @, and U parameters for single-bounce skylight radiation
for the “TNO” data set.

The single-bounce thermal emission i1s shown in Figure 4.21. In the [ image,
brighter pixels such as those on the side wall are the result of nearby facets that present
larger projected solid angles and, hence, collect more reflected thermal eniission.
Nonetheless, even the strongest reflected thermal contribution is negligible compared
to the direct thermal emission.

The @ image has many of the features described in Figure 4.17 (b). Because the
mine’s side walls are orthogonal to horizontal soil surfaces, the polarizations of facets
near where the mine contacts the soil switches as one moves from the the soil to the
mine’s side walls Point pairs across the axis of symmetry have emissions with the
same vertical field but horizontal fields of different signs, which leads to an inversion

of the DoLP.
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Figure 4.21: Simulated I, @, and [ parameters for single-bounce thermal emission
for the “TNO” data set.

Figure 4.22 shows the double-bounce solar reflection. The most intense pixels
in these images are located on one panel of the mine’s polygonal side wall on both
lower and upper decks and are caused by (imperfect) specular reflections of the sun
by the soil and side wall in turn. Although the intensity I of this component is small

compared to other components, its () and U parameters are relatively strong.

Figure 4.22: Simulated I, @, and U parameters for double-bounce solar radiation for
the “TNO” data set.
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Stokes parameters corresponding to the sum of all five components are displaved
in Figure 4.23. As expected, the direct thermal emission dominates the I image, with
corrections from the single-bounce solar reflection. For the @ and U umages, every
radiometric component makes a significant contribution, since they are all of the same
order. The polvgonal approximation of the mine is clearly evident, which suggests
that a finer discretization is appropriate. Finally, the shadow of the mine is visible,

because of strong scattering of the insolation by the rough soil surface.
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Figure 4.23: Simulated I, @, and U parameters for total radiation for the “TNO”
data set.

Concluded from the comparison to measured signatures and the cvaluation of
individual components, we see that under an obliquelv viewing sensor, polarimetric
components are mostly the results of the viewing geometry and are less subjective
to changes in temperature. Therefore, polarimetric signatures are prone to be more
stationary features of mine and can be regarded as auxiliary channels to the intensity
signature. Multispectral image processing techniques are applicable to enhance the

signal-to-noise ration and improve the detection performance

166



4.3 Case 3: Non-polarimetric Visible Band Imagery

Sensors of visible band radiance are commonly used in mine detection, and in this
section simulations of mine signature for visible cameras are presented. We noted
that visible sensors are attractive for some applications, since they can be made
compact with high resolution and low noise. (See Appendix B for further discussion.)
Unfortunately, their effectiveness depends greatly on the environmental conditions.
They cannot detect thermal emission. Passive visible sensors rely solely on reflected
solar radiation, which is subject to greater absorption by hydrosols (clouds and fog).
As a result, their use is restricted to daylight hours and clear weather.

As noted in Section 2.7.2, the US Army performed measurements on surface-laid
mines using a visible camera during late May 2000 at site NT-52. Multispectral
imagery was collected by using a spinning wheel with five filters in front of the ob-
jective lens. Many measurements were performed including a series of images taken
at the same site at different times. That image sequence forms the basis for the
present study. Simulations were performed under similar conditions to further test

the simulator.
4.3.1 The NT-S2 May 2000 Data

Section 2.7.2 gives a detailed description of the test site. In this section we discuss
some properties of the visible imagery.

The VNIR camera (visible and near IR) used at NT-52 acquired imagery in five
sub-bands. In this work images from three sub-bands, denoted red, green and blue,

were combined to cover most of the visible band. Figure 4.24 illustrates the frequency
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responses of the blue, green, and red sub-bands. The actual responses are shown as

solid lines, while the dashed line shows the sum of all three channels.

Response

\
-~ |
S

550 600 650 700 750 800 850
Wavelength [nm]

Figure 4.24: ¥requency response of R, GG, and B channels of the visible camera.

The raw imagery is pixel “counts” (C), which are converted into radiance (L)
using an equation given by [72] as follows:

e
Bt 1L
TR,

(4.1)
where T and Tp are camera exposure time and shutter delay time respectively, O
is the offset parameter, and G is the in-band radiance gain. Table 4.2 lists values of
above parameters for the images in Figure 4.25.

Figure 4.25 shows blue, green and red sub-band images taken around 11 AM on
May 24th, 2000. The responses in individual sub-bands are similar to one another.

The synthesized broadband visible image, denoted “fused”, also shown in Figure 4.25,
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Sensor channel Red | Green | Blue |
Radiance Gain G | 0.299 | 0.207 | 0.096
Radiance Offset O | 35.1 35.1 35.1
Exposure Time T | 23 35 13

Shutter Delay Tp | 12.88 | 12.88 | 12.88

Table 4.2: Radiometric calibration parameters for visible band images at 11 AM, May
24th, NT-52.

is, of course, similar to the sub band images. The broad horizontal region that fills
most of the images is bare sand, which reflects the insolation. The top and bottom
edges are covered with short grass, which absorbs strongly. Five surface-laid LM_B
mines show high contrast with the sand background. Several square fiducial markers
with strong responses appear near the lane boundaries. The lower right corner shows
the tires of the scissors lift used to elevate the sensor.

In addition to the 11 AM images shown in Figure 4.25, three more fused images
were composed to study the temporal variation of visible band mine signatures. Fig-
ure 4.26 shows the same scene at 12 PM, 3:30 PM, and 5 PM. The 5 PM image shows
an unknown object in the lower-left corner, which will not affect the present study.
During image collection the sensor’s FOV shifted slightly from one scene to another.
The mine signatures were compared using image chips that were extracted manually

from each scene.

4.3.2 Illumination and Scattering Properties in the Visible
Band

In addition to the sensor frequency response presented above, the simulation also

requires a description of the incident radiance and the surface scattering properties of
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Figure 4.25: Measured response in R-, G-, and B-channels and fused image collected
by the visible camera from the “NT-S2” data set at 11:00 AM, May 24th, 2000.
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(a) 12:00 PM. (b) 3:30 PML

(c) 5:00 PM.

Figure 4.26: Fused measured images collected by the visible camera from the “NT-52”
data set at 12:00 PM, 3:30 PM, and 5:00 PM on May 24th, 2000.
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the target and environment. In this section we first describe the visible band sources:
sunlight and skylight. We next present surface roughness parameters in the visible
band.

Procedures similar to those presented in Sections 3.2.3 and 3.2.4 were used to
estimate the total (spectral) solar and skylight radiance. Planck’s law predicts that
thermal emission from objects near ambient temperatures (~290°K) will be small at

visible wavelengths. As an example consider the ratio

LBB(ii 0.5pum, T = 290K)
LBB(/\ - E)um,T = ZQUK)

= [ (4.2)
which shows that thermal emissions at visible wavelength are vastly weaker than
those at MWIR. For this reason, thermal emissions are ignored in what follows.
The solar irradiance calculation, which was performed for a mid-latitude summer
atmosphere, is documented in Figure 4.27 for a sun at zenith. The blue curve is
the extraterrestrial solar irradiance spectrum produced by MODTRAN. The spectral
transmittance coefficients generated by MODTRAN are plotted in green, and the
product of the two curves, shown in red, is the spectral solar irradiance on the ground.
As done previously for broadband sensors, the spectral irradiance is integrated over
the sensor pass-band to yield the total solar irradiance used in the radiometric model.

The solar irradiance varies with solar elevation angle as shown in Figure 4.28. In
this result the spectral integration has already been done. Two atmospheric models
are shown in the figure. The blue curve is the result of a rural extinction model,
which contains fewer aerosols and allows more transmission of solar incident flux.
The red curve, which represents an urban atmosphere is modeled by a greater acrosol
density (from pollutants) and yields both a shorter extinction distance and a lower

transmittance. In general, the total solar irradiance is much greater in the visible band
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Figure 4.27: Sample visible band extraterrestrial and ground solar irradiance spec-
trum and atmosphere transmittance for a zenith sun.

than in the MWIR band (see Figure 3.15), primarily because of the sun’s spectral
signature (a 5900° K blackbody radiator).

Like the solar irradiance spectrum, the skylight spectral and angular distributions
must be recalculated for each time. Figure 4.29 shows a sample skylight profile for
12 PM, May 24th, at NT-S2. The figure shows that the total skylight irradiance is
about one third of the solar irradiance. Therefore, skylight, which can be neglected
in the IR band. is an important source in the visible band.

The degree of linear polarization at visible wavelengths should be somewhat
smaller than predicted by a simple Rayleigh model, because multiple scattering
happens more frequently at shorter wavelengths and thus cancels the polarization.
Nonetheless, we will continue to use the Rayleigh model [17] in Equation 2.15 to pre-

dict skylight polarization for two reasons. First, we use a clear-sky atmosphere model,
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Figure 4.28: Sample visible band total solar irradiance versus solar elevation angle of
rural and urban extinction at mid-latitude summer.

which contains fewer aerosols. Hence, multiple scattering is less common. Second,
the received signature is the result of reflections from the entire skv. DPolarimetric
contributions from different parts of the sky tend to cancel. so that the residual is
only slightly polarized in general. Thus, errors in skylight polarization tend to have
a small effect on the overall solution.

As noted previously, for scattering purposes, surface roughness is quantified in
terms of wavelength. A given surface appears rougher at shorter wavelengths because
the effective surface slope variance includes more energy for a broader band in the
spectral density function. Since visible wavelengths are much shorter than MWIR
wavelengths, significant differences in scattering can arise, and new BRDF parameters
will be required. Little information about mine surface properties is available. The

parameters used in the visible band model, which are listed in Table 4.3, were derived
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Figure 4.29: Sample visible band skylight radiance profile at 12 PM, Mav 24th, for
NT-52.

from the MWIR parameters and modified to improve agreement with measured data.
The first two properties in the table (the refractive index and the slope variance)
are critical in any description of surface scattering using the PO approach. The last
two parameters define the magnitudes of co- and cross-polarized terms for the diffuse
component. These parameters show that the mine’s surface is smoother and has a

stronger specular lobe, while most solar scattering comes from the diffuse component.
4.3.3 Comparison of Radiometric Components

Using the surface parameters and source components described above, we simu-
lated of visible band signatures. Figure 4.30 shows both the individual radiometric

components (intensity I only) and the total signature. The polarimetric parameters



JUCIE0E Mine | Soil
type | |
Refractive ;
index (n) il e
Slope ”
: 5 0.015 | 0.3
variance (s%)
ST 0.015 | 0.06
component i |
Depolar'lzat,lon 0.5 0.5
| ratio

Table 4.3: Surface parameters for LM_B mine simulations at NT-52 using a visible
band camera.

2, U and V" have been omitted, since we do not have measured data for comparison.
(Those parameters should be small, since the mines were viewed near normal inci-
dence.) The simulation was performed for the environmental conditions of 12 PN,
May 24th, at NT-52.

A comparison of the individual radiometric components and the total signature in
Figure 4.30 (f) shows that only the single-bounce solar and skylight reflections have
significant roles in the visible band signature. Therefore, in what follows simulations
were conducted using those components only. The results show that reflections from
soil are stronger than those from the mine for both skylight and solar components.
since the soil is assumed rough with a larger diffuse reflectance. The simulated images
show two darker concentric rings on the mine caused by sloping surfaces that separate

planar decks at three elevations.
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{(a) Direct thermal. (b) Single-bounce ther- (c) Single-bounce sky-
mal. light.

(d) Single-bounce solar. (e) Double-bounce solar. (f) Total.

Figure 4.30: [ component of individual and total signatures for “NT-52” data set at
12 PN, May 24th.
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4.3.4 Model Validation for the Visible Band

In this section we compare measured and simulated mine signatures in the visi-
ble band. A careful study of the measurements in Figure 4.25 and 4.26 reveals that
the reflected intensity is not the same for different mines in the same scenc. Fur-
thermore, mine signatures are not consistent from scene to scene. For example, in
Figure 4.25 (d), the upper-left mine is the brightest while the upper-right mine in
Figure 4.26 (a) is the brightest in that image. It was observed in the discussion of the
TNO data that a large sensor FOV will produce different viewing geometries in differ-
ent parts of the scene. Therefore, before comparing measured and simulated images.
we investigate the effects of viewing geometry on the measured mine signatures.

Figure 4.31 presents a measured image (taken at 11 AM) with information on
sensor and sun positions. The square boxes indicate three mine locations. Simula-
tions were performed with viewing geometries corresponding to those locations. The
apparent motion of the sun is also indicated. At 11 AM, the sun, the sensor, and
mine “A” approximate a specular geometry. At 12 PM, it is mine “B” that forms a
possible specular geometry.

The sensor FOVs in the horizontal and vertical directions are reported to be 30°
and 20°, respectively. Using the known sensor height and the mine positions in the
images, we manually estimated the approximate sensor nadir angles in proportion
to the sensor FOVs for the mines denoted “A”, “B”, and “C”. Those approximate
angles were modified slightly (less than two degrees to original estimates) to umprove
agreement with the measured data. The zenith and hour angles of mine locations

“A”, “B”, and “C” determined using the above method are given in Table 4.4.
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Figure 4.31: Geometric relations of the sensor, the sun and mine positions in the
measured image.

Site [A] B [ C |
Zenith | 0. | 1650 | 13°
angle

Hour | yuc | 90 | 10° |
angle |

Table 4.4: Sensor zenith and hour angles for simulation sites “A”, “B” and “C”.
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Using the angles in Table 4.4 and the surface parameters reported in Table 4.3,
we performed simulations for the three mine locations at 11 AM, 12 PM, 3 PM, and
5 PM. Figure 4.32 exhibits the results. We found that at 11 AM, mine “A”, which
forms a specular relation with the sun, produces the highest intensity. Mine “B”,
which is farther from the specular angle yields a weaker response, but still shows high
contrast. Scattering from mine “C” is dominated by the diffuse component and shows
a negative contrast with respect to background. The second row, which shows results
at 12 PM, indicates that the shift in solar position changes the strongest “target”
from mine “A” to “B”. Mine “C”, which is closer to mine “B”, also shows a stronger
reflection compared to the 11 AM results.

In the afternoon, the sun appears at a small elevation angle, and none of the
mines form a specular geometry. Therefore, all three mines show low contrast. The
mine’s shadow also grows compared to the images acquired earlier in the day. Bright
spots appear on the tapered rim of the mine structure, where the surface form a
specular geometry. At 5 PM the shadow is extended further, and the mine intensity
is suppressed due to the reduction in solar irradiance.

Figure 4.33 shows measured mine chips for locations A, B, and C. It is evident that
the simulations are in good agreement with the measurements. The most significant
features in the measurement are largely replicated in the simulations. The maximum
radiance observed in Figure 4.33 is 55 [W/m?r], while the background radiances
(the average around the chip’s boundaries) for the four times are 30, 36, 26, and 12.
For the simulated results in Figure 4.32, the maximum is 37.4 and the background
averages are 20, 21, 17, and 8, respectively. The measured values are roughly 50%

more than the simulated ones, but ratios among measured data and simulated results
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Figure 4.32: Simulated signatures for LM_B mines at location “A”, “B”, and “C" at
four times (11 AM, 12 PM, 3 PM, and 5 PM) on May 24th, at NT-52.
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are consistent. The difference in reflected radiance mayv be the result of crrors in
estimating the incident solar irradiance. As indicated in Figure 4.28, changes in the
atmosphere model result in great variations in incident solar and skvlight radiances.
Other disagreements observed include (1) the brighter central disk (the mine’s trigger
assembly) for mines A and B at 11 AM and 12 PM, (2) a pronounced asymietry
in reflections from mine B’s sloping sections at 11 AM and 12 PM, and (3) multiple
glints from those sections at 3 PM and 5 PM.

The comparison presented in this section showed that visible band signatures
are dominated by surface scattering of sunlight and skylight. Unlike IR (MWIR and
beyond) signatures, which are determined by surface temperature and gradual varving
emissivity profiles (except the grazing region), visible signatures are very sensitive to
source and viewing directions. A larger variation in scattered radiance from mine

surfaces is observed due to a greater importance in mine’s specular lobe return.

4.4 Summary

In this chapter we exercised the simulator on three sets of measured data in
different scenarios. The goals of this effort were both model validation and further
insight into the nature of mine signatures. The dominant features of mine signatures
seen in the NT-S1 data (collected with a nadir-looking airborne MWIR sensor) arce
replicated by the model. A study of the mine’s temporal dependence was conducted
for the environmental conditions of NT-S1. It was found that the maximum mine-
background contrast appears around mid-day, which is the optimal time to operate

the sensor. The solar reflection contributes a strong shadow and makes it possible to
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Figure 4.33: Measured signatures for LM_B mines at location “A”, “B”, and “C" at

four times (11 AM, 12 PM, 3 PM, and 5 PM) on May 24th, at NT-S2.
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detect mines during the crossover in the morning. The absence of a shadow during
the evening crossover makes detection particularly difficult at that time.

The polarimetric properties of mine signatures were explored through simulations
of the TNO data. The off-nadir viewing geometry introduced stronger depolarization
for thermal emissions, leading to higher contrast for the polarimetric signatures, which
could enhance mine detection rates.

A study of measured signatures in the visible band revealed that the characteristics
of a mine vary greatly as the sensor and solar positions change. Simulations were
conducted, and good agreement was found with measured images. This outcome
increases confidence in the BRDE model, since essentially all visible band radiance is
a result of rough surface scattering of insolation.

Although the simulator showed good agreement with the three data sets in general,
several areas for improvement were identified. For the NT-S1 data set we observed
discrepancies in the size of the shadow which may be related to limitations in com-
putational resources. For the TNO data, the predicted thermal solution was larger
than measured, which may stem from errors in the assumed properties of the mine’s
case. For the visible-band NT-52 data, the mine’s trigger assembly appears brighter
than the simulation, which may also be an error in the mine’s assumed properties.
The difference in received radiance indicates error in the estimation of atmospheric
attenuation. In addition, disagreement was seen in simulated and measured back-
grounds. Most natural objects are multi-scale rough surfaces, and measured images
often exhibit a blotchy background due to decimeter scale surface tilts. The existing
rough surface model describes single-scale surfaces only, which can only replicate the

average behavior of a true surface.
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Through comparisons with measurements we confirmed that [R sensors are greatly
imfluenced by surface temperatures and less subjective to current illumination con-
ditions, which can be dramatically changed by the sensor position and the presence
of clouds. Above characteristics make IR signatures a more reliable feature for mine
detection that can be seen at all time except at crossovers, although we have shown
that mid day is a more favorable operational time. On contrast, since visible signa-
tures are more sensitive to illumination conditions and the viewing geometry, their
features are more volatile and the operation is limited to daylight hours. However,
the contrast between scattering from mine and soil surfaces can be large if the sensor
is setup carefully. The choice of knowledge about potential mines and deplovment
conditions. Therefore, a multi-sensor suite might be an attractive choice for detection

systems.



CHAPTER 5

MINE DETECTION ALGORITHMS FOR EO IMAGERY

In this chapter we present studies of algorithms for mine detection in EO imagery.
An effective detection algorithm is a key element of a successful mine detection system.
In order to cope with changing environmental conditions, background and target
estimation techniques are used to make the algorithms adaptive.

This chapter is organized as follows: Section 5.1 reviews the literature on mine
detection using EO sensors. The RX algorithm [14, 15] served as the mine detector
for the US Marines Coastal Battlefield Reconnaissance and Analysis (COBRA-ATD)
program. That well-known algorithm, which is reviewed in Section 5.2 and derived
in a slightly more general form in Appendix C, is an anomaly detector that cannot
exploit the modeling information described in Chapters 2 through 4. Alternative
implementations of the RX algorithm are presented in Section 5.3, including a com-
putationally efficient approach. Two performance improving techniques are described
in Section 5.4. The first is a modified RX algorithm that uses a multi-component ref-
erence to better estimate the target amplitude. The second is a whitening filter that
decorrelates the clutter, as required by the RX algorithm.

An estimator-correlator (EC) algorithm is introduced in Section 5.5 as an alter-
native to RX. Several features make the EC algorithm attractive. It uses a random

186



signal model to account for mine signature variations caused by clutter and environ-
mental conditions. Simulated signatures can be exploited directly. Implementation
issues are discussed in Section 5.6. A locally adaptive version of the EC algorithm
i1s described in Section 5.7 for nonstationary clutter such as abrupt transitions in
background textures.

Performance evaluations of the RX and EC algorithms are presented in Section 5.8
using a multispectral IR data set described in Section 2.7.2. Through a comparison
of RX and EC ROC curves, we demonstrate that the locally adaptive EC detector

provides a significant performance gain.
5.1 Prior Works

Many researchers have explored target detection in multi- and hyper-spectral im-
agery. A widely referenced approach to this problem is the RX algorithm presumably,
named for its authors Reed and (Xiaoli) Yu [14]. This algorithm has been extended
to include spectrally correlated (but spatially uncorrelated) clutter [15]. The spec-
tral covariance matrix is estimated with an adaptive algorithm and used to design a
spectral pre-prewhitening filter. It was found that a priori knowledge of the target
spectral distribution often makes little difference in performance [15]. Those authors
and their co-workers have proposed several forms of the algorithm [73, 74, 75], and, as
noted above, RX is used in the COBRA-ATD system [76]. An application of RX to
hyper-spectral detection of military and cultural features was described by Stellman
et al. [77].

Other detection approaches using EO sensor imagery have been examined. Schweizer

and Moura [78] developed a CFAR algorithm based on a first-order Gauss-Markov
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random field (GMRF) model for the clutter. In that algorithm a maximum likelihood
(ML) technique was used to estimate the clutter parameters, which were then used
in a GLRT detector. Solberg et al. [79, 80, 81|, who used the Markov random ficld
model to develop a land-use classifier for satellite imagery, noticed that temporal vari-
ations of target signatures could be utilized to enhance detector performance. Chen
et al. [82] designed detectors that exploit the difference in temperature histories of
mine and soil.

Several authors have attempted to exploit target spectral characteristics. Ash-
ton [83] used clustering algorithms to find sub-pixel anomalies in multi-spectral IR ter-
rain imagery. Ashton and Schanm [84] used RX to search for anomalies in background-
suppressed spectral signatures.

In addition to algorithms developed from classical statistical detection theory
(GLRT, etc.), many unconventional detectors have been explored for mine detection.
A unique approach was explored by Banerji and Goutsias [85], who used mathemat-
ical morphology to detect mines in individual bands followed by fusion of the band
information. Correlation among the bands was addressed by using a maximum noisc
fraction transform to generate independent bands. Agarwal et al. [86] proposed a
false alarm mitigation scheme using gray-scale moments, which preserved the shape
and intensity profiles of mine signatures. Support vector machines [87, 88|, which
differentiate patterns formed by feature vectors in a multi-dimensional space, have
also been applied [89].

Another popular choice for EO mine detectors is the neural network. Daud ct
al. [90] developed a feed-forward neural network to recognize mines in EQ imagery.

[nvestigations of the position, rotation, and scaling invariance (PRSI) propertics of
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a higher-order neural network (HONN) [91, 92, 93] have shown that a third-order
HONN will exhibit PRSI. A wavelet-based HONN detector [94] was recently trained
to discriminate mines and clutter. The input of the neural network is not limited to
spatial patterns. A mine detection scheme proposed by Ramaswary et al. [95] used
a feed-forward neural network to fuse confidence parameters extracted from multiple

SENSsoOrs.
5.2 RX Algorithm (GLRT Approach)

The RX algorithm has become the standard algorithm for mine detection, because
of its simple implementation and its robust (albeit not entirely satisfactorv) perfor-
mance. In this section the basics of the RX algorithm are described. Iimplementation
issues and performance improving techniques are presented in later sections.

The RX algorithm, which is based on a generalized likelihood ratio test (GLRT),
comprises a locally adaptive constant false alarm rate (CFAR) detector. It uses
maximum likelihood estimation (MLE) to find both the unknown target amplitude
and clutter covariance in multispectral imagery.

The algorithm processes multispectral imagery by converting it into an equivalent
vector representation. Signals in an interesting region of size N; x N, pixels are
scanned column-wise into vectors of size N x 1, where N = N, - N,. In a similar
manner, multi-channel imagery of .J channels is reformed into a matrix y of dimensions
N % J.

The RX algorithm is based on several assumptions about the properties of targets

and clutter in EO imagery. It assumes that the shape of the target is given by

a known N x 1 matrix S with an unknown 1 x .J spectral amplitude B. Many
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mines have a circular or square shape with a uniform signature amplitude. However,
when the image resolution is sufficiently high, some mines are better described by
multiple regions of uniform intensity. In particular, the central trigger mechanisi
may have a different signature. A modified RX algorithm with a multi-componeut
signature is devised in Section 5.4.1. Like the original RX algorithm it also requires
that the clutter N be Gaussian-distributed, zero-mean and spatially uncorrelated
with an unknown correlation between spectral channels. The Gaussian distribution
requirement is not met for most EO imagery. Indeed, in real images. pixels have
spatial correlation and are non-Gaussian distributed [74, 14]. Nonetheless, Reed
and Yu [14] showed that by removing the image’s local mean, the residual intensity
does approximate a Gaussian distribution. The requirement of spatially uncorrelated
clutter is only fulfilled when the image resolution is low. In high resolution images,
which are used in most mine detection applications, the correlation between adjacent
pixels is not negligible. In order to eliminate clutter correlation, a whitening filter,
which is presented in Section 5.4.2, was developed as a preprocessor for the RN
algorithm.

For reference, a derivation of the likelihood ratio test used in the RX detector is

provided in Appendix C.

5.3 Implementations of the RX Algorithm

In this section, we describe several RX implementations, each of which has ad-

vantages in specific circumstances.
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Figure 5.1: Block diagram of standard RX algorithm implementation.

5.3.1

Standard RX Algorithm

Figure 5.1 shows the block diagram of the standard RX algorithm. As mentioned

before, it is necessary to remove the local mean to obtain Gaussian distributed clutter.

The local mean is estimated by convolving the raw image with a uniform kernel. The

estimated local mean is then subtracted pixel-wise from the raw image. For a multi-

channel image, this process is performed on each channel.

Next, the likelihood ratio estimates are computed via Equation (5.3) using a sliding

window process. At each position in an image of .J channels, a Ny x N, subimage is

extracted and scanned column-wise into a vector y of N rows and J columns. We

have

y:

y(n) =

The likelihood ratio is given by [14]

A"(y)
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where B is the aforementioned target magnitude estimate. Given the normalized
target signature S, it is straightforward to evaluate the likelihood ratio within the
window. The covariance estimate is formed using pixels that appear in the window.
In the standard RX implementation, all pixels in the window are used, but some
variants of that scheme are described below. In many cases, the calculation of B can
be made more efficient. The target S is typically nonzero only within a small portion
of the window, referred to hereafter as the “target region”. The calculation of y”'S can
be restricted to those pixels. By shifting the window across the scene, we construct
a likelihood ratio estimate at each position (a “map”) for scoring. Figure 5.2 (a)
shows a sample IR raw image. The demeaned image shown in Figure 5.2 (b) has a
somewhat more uniform background although the edges are not correctly estimated
by the convolution. The resulting likelihood ratio map'” in Figure 5.2 (¢) reveals the

target locations as local maxima.
5.3.2 Modified RX Algorithm

A modified RX algorithm was devised by Holmes et al. [76] for use in the US
Marines COBRA-ATD program. The major feature introduced by Holmes ot al. was
the use of a “guard-band” mask in covariance estimation. In this context, a guard
band kernel is a uniform annular kernel, for which the size of the interior void is
strictly larger than the target region. The annular region is used to estimate the
background covariance around the target.

The guard-band region is defined as the pixels between the target region and the
background pixels. Pixels within the guard-band are ignored and have no effect on

"The likelihood ratio map shown was generated with the modified RX algorithm presented below.
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(a) Sample raw image. (b) Sample demeaned image.

(c¢) Sample likelihood ratio map.

Figure 5.2: Sample RX processing results.
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the resulting estimates. Figure 5.3 shows the target and covariance masks used to

generate Figure 5.2.

. 11 Pixels
s —

7 Pixels

A\
L

37 Pixels ) 37 Pixels

(a) Target mask. (b) Background mask.

Figure 5.3: Target and background covariance estimation masks.

A mine detection mission may encounter a variety of mines, and a practical mine
detector should respond to all such mines. As noted above, the RX algorithm can
be regarded as an anomaly detector, which tolerates some variation in mine size and
shape. Examining Equation (5.3), we see that for single-channel data, the likelihood

ratio can be rewritten as'®

AIII( ) _ BTB Z 7'”'7 then H[
Y yly < 7", then Hy

We noted previously that the above expression is the ratio of signal energv to signal

plus noise energy. If the target is larger than anticipated the target will contami-

nate the covariance estimate. The concept of a guard band avoids this problem by

excluding a region slightly larger than the nominal target. By masking the window
¥For multi-channel data, y7y is not a scalar.
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pixels we eliminate the additional variance due to the target, thereby increasing the
likelihood ratio. The price of this change is that our estimate of the covariance M
will be based on fewer pixels, and it will therefore have higher variance.

The performance of the standard and modified RX algorithms was evaluated by
processing the NT-S2 sensor described in Section 2.7.2. Recall that six types of anti-
vehicle mines were placed in those test lanes, the largest of which was around twelve
pixels in diameter while the smallest was approximately five pixels.

Because of the mine size variation described above, a circular target of 5 pixels in
diameter was used. The background window was chosen to be a square of 36 pixels in
length. For the modified RX algorithm, a guard band of 14 pixels was chosen so that
even the largest mine was excluded from the covariance estimation. Figure 5.4 shows
the ROC curves!? for the standard and modified RX algorithms. Apparently, the
modified RX detector provides better performance in the low FARs region. Hence,
the modified detector will be used as the baseline in performance comparisons with

other algorithms developed herein.
5.3.3 Frequency-Domain RX Implementation

Although the RX algorithm has been described with processing done in a slid-
ing window, a moment’s consideration reveals that virtually all of the operations are
equivalent to convolution. Pointwise evaluation on S”B is obviously so. The co-
variance estimation is also equivalent to a convolution of the relevant mask with the
pixel-wise squared image. A significant increase in speed is obtained by performing
these convolutions in the Fourier domain using FFTs. In tests it was found that

By definition, a ROC curve plots the probability of detection versus the probability of false
alarm. Because the size of a false alarm event is difficult to define in images, false alarm rate
(number of false alarms/scanned area size) is used instead.
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Figure 5.4: Performance comparison of standard and modified RX algorithms.

the frequency-domain RX implementation was significantly faster than the original

implementation, but the improvement is strongly dependent on the kernel sizes.

5.4 Performance Enhancements

The performance of RX is ultimately limited by the assumptions on which it is
based. In this section modifications to the algorithm are described that remove the

restrictions imposed by more complex targets and spatially-correlated clutter.
5.4.1 Multiple Target Components

In the original RX formulation, S was taken to be a region (a circle or a square)
of constant pixel intensities. As noted previously, many types of mines do not possess
such a homogeneous signature, and it is natural to explore whether a more complex
signature S would improve performance.
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The problem can be overcome by using a target model with multiple components.
The derivation of a multi-component RX algorithm begins by re-defining the tar-
get reference S. For single-component RX algorithm, S is a binary column vector
defining the target region. For the multi-component case, S contains several columns
describing different sections of the target. Expressions appearing in Equations (C.2)
through (C.14) are still valid for the multiple component case. The likelihood ratio
in Equation (C.14) can be formed by taking the determinants of covariance estimates
M, and M, which appear in Equations (C.9) and (C.10).

Compared to the single-component RX detector, the multi-component RX al-
gorithm provides better detection performance on non-uniform targets and equal
performance on uniform targets. Applying a single-component reference to a multi-
component target introduces estimation errors and yields a lower likelihood ratio.
In the worst case scenario, a multi-component target may go unseen by the single-
component RX detector even though its signal-to-noise ratio is high?".

Although the concept has a number of theoretical advantages, several factors limit.
the benefit of using a multi-component RX detector. Although many types of land-
mines show uniform regions of different intensities, the contrast among regions is
smaller than the contrast between the average amplitude of the mine and the back-
ground. Hence, a single-component S may be adequate to detect mines, since tae
whole target average does not deviate significantly from averages in individual sec-
tions. Unless the extreme example mentioned earlier is possible, the single-component
S may be preferred for an unknown minefield because of its simpler implementation.

20This extreme case would require the average mine signature to be similar to the background
average, a situation never encountered by the author in practice.
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Furthermore, the multi-component RX works best onlv when the section bound-
aries in S are good approximations to those of actual mines. In gencral, the multi-
component RX algorithm will demonstrate an advantage only when the minefield is

dominated by a known mine type having multiple sections.
5.4.2 Clutter Whitening

As mentioned in Section 5.2, the RX algorithm assumes spatially uncorrelated
clutter, which may not be satisfied by high-resolution EO imagery. Figures 5.5 (a)
and 5.5 (¢) show sample image chips and power spectra for a surface mine (NP _A)
and clutter. It is apparent that the clutter is not white, and that its power spectrum
overlaps the mine spectrum.

A classical whitening filter was investigated to reduce the clutter spatial correla-
tion. The filter was constructed from the local covariance matrix in a manner simnilar
to the concept used in the generalized matched filter. If the local clutter covari-
ance estimate X is available, one can use a Cholesky factorization or an eigenvector

decomposition of its inverse to construct the whitening filter 1.
BTNy (5.5)

Before applying the RX algorithm, the whitening filter V is applied to both the input
imagery y and the reference S as follows
¥ = %y
S - VS (5.6)
y's = (V.y)'(V-S)
The approach described above is theoretically sound but impractical, because of the
difficulty in estimating the local clutter covariance matrix 3. An image chip of V

pixels and J channels requires at least J/N chips to make a valid estimate. Since
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{a) MP_A mine. (b) Clutter.

(¢) MP_A spectra. (d) Clutter spectra.

Figure 5.5: Sample mine and clutter chips and their power spectra.
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the local clutter is nonstationary (due to changes in terrain, vegetation or weather
conditions), it is virtually impossible to find enough samples to form ¥. Furthermore,
the matrix inversion and decomposition are time consuming.

In this work, an alternative approach was used, which is based on an assumption
about the clutter. If the clutter is first-order Markov, then a pixel’s intensity is only
correlated with its adjacent pixels. In this case the clutter correlation is described by
an exponential function that can be described analytically in terms of a correlation
coefficient p. Arcess et al. [96] show that the whitening filter can be expressed as a

3 % 3 matrix

PP =p(l+p%) %
—p(1+p%) (1+0%° —p(l+,) (5.7)
p’ ~p{L+ g P’

To find the correlation coefficient p, we first computed the auto-correlation matrix
of a zero mean clutter chip and then estimated the coefficient p of an exponential
function that approximated the computed correlation. By using the coefficient value
in Equation (5.7), we formed the whitening filter. This filter was the convolved with
the input image and the reference. Note that the correlation coefficient estimation and
whitening preprocessing were done separately for each channel. Although estimation
error (as well as errors in the Gauss-Markov assumption) can prevent this whitening
approach from eliminating all colored noise, it still manages to reduce clutter spatial

correlation and to improve RX performance with a modest computation cost.

5.5 Random Signal Approach (Estimator Correlator)

In this section we introduce an alternative to the RX algorithm based on a random
signal model. We assume the signature of a given mine is largely known, but is

distorted by the viewing geometry, illumination conditions and environmental factors.
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The image data = (at a single pixel) is modeled by the target signature h convolved
with a random distortion term t plus noise 7.

B 1@t +n; H =
{ . (5.8)

| H,
Consider next an image of size Ny x N, and let N = N, N,. By reshaping the image
data and model components into column vectors, we can rewrite the above ecquation
as

where x, t and n are N x 1 column vectors and h is a N x N matrix. Using N,

sub-matrices hg hy -+ hy,_;, h can be expressed as
[ hO thﬁl hN-)_-'Z B hl ]
h, hy hy, 1 -+ hy
h=| ho h, hg w5 v Mg (5.10)
hy,—y hy,o hw,—3 --- hg |
and the sub matrices are
[ h(k,0) h(k,Ny —1) h(k,N, —2) -+ h(k,1) |
h(k, 1) h(k, Q) hik, N, —1) -+ h(k,2)
h, = | h(k,2) hik, 1) h(k,0) o h(k.3) (5.11)
| All Ny = 1) Bk D=3} B(E & =3 = BB |

The real matrix h has a block circulant form. A real block circulant matrix is syin-

metric and can be represented via the eigen-decomposition
h = ¥HV (5.12)

where V is the matrix of column eigenvectors and H is a diagonal matrix containing
eigenvalues of h. Gray [97] has shown that the eigenvalues of a large N X N symmetric
Toeplitz matrix uniformly sample values of the power spectral density P as

Tk

Yy = Pl
=R

) (5.13)
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At the same time, its eigenvectors approximate the discrete Fourier basis, so that the

eigenvector matrix V becomes an N x N unitary DFT matrix. The entries of 'V are

1 g2
[Vikp = N L (5.14)

-

Therefore V in Equation (5.12) can be a unitary DFT matrix and H is the discrete
Fourier transform of h in the form of a diagonal matrix.

For the above-described problem involving a random signal in additive noise, one
can employ an estimator-correlator (EC) detector [98]. This approach involves first
filtering the input data to estimate the unknown random signal, and theu correlating
the estimated signal with the input data. The clutter is assumed to be zero-mean
Gaussian distributed noise n ~ N (0, C,) where C, is the clutter covariance. We
noted in Section 5.4.2 that EO imagery is not zero-mean Gaussian in general, but
when the local clutter mean is removed the residual intensities are approximately
Gaussian.

We now review the derivation of the EC detector. We first consider the simple
case h — I for a Gaussian distributed signal s ~ A (u,, C,).

The likelihood ratio of the two hypotheses can be expressed as

A(x) Pr(x|£h) [det(C,)]'/* e (=) T (Cn+Cs) ™ (x—p1s ) /2 _—
X) = e ! -
1 PI‘(X‘Ho) [det(cn A= Cs)]Jz o—xT(Cn)~'x/2 3. 15

in which i, and p, are the respective (vector) means of the signal and clutter, and

similarly for the covariance matrix C; + C,. The log of Equation (5.15) yields
2InA(x) = In[det(C,)] — In[det(C, + C,)]
3% (C) 7' — (2 — B (o B ] 2 50 ] (5.16)
Using the matrix identity
C) - (C,+C,) =C1C(C, +C) (B.L7)
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we find

2ln A(x) = In[det(C,)] — In[det(C,, + C;)]
T (O ) "l — i (G Gl e (5.18)

S OO G - ) e

Bv omitting the data invariant terms, the likelihood ratio reduces to the equivalent
quantity

1 :
T(x) = xT(C, + Cs) s + §XTC7.:1CS/.IZ (Cs + C)'x (5.19)

Covariance matrices for stationary processes have a block circulant form [99],
which is svmmetric and positive definite, so that the existence of a symmetric cigen-
vector decomposition is guaranteed. As the number of samples approaches infinity,
the covariance matrix C becomes real and Toeplitz. Thus a covariance matrix C is
asymptotically determined by its power spectral density P.

Generalizing the above results to an arbitrary signature h simply requires the

substitutions
G = hWoh*
ps = hy
and yields
I'(x) = x'(C,+hCh™) " hy

1 .
—kéxTC;thLhT(hCth 0] T (5.20)

which is the likelihood ratio of the estimator-correlator expressed in the spatial do-
main. Using the eigen-decompositions of C;, C, and h, the estimator-correlator in
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Equation (5.20) becomes

Ix) = AYVIE CHBH] " H V¥ 5)

+%(XTV)(Pn)“H*PtH(H*PZH + P,) Y (Vx) (5.21)
where we used the following properties of the DFT matrix V
Vvi = VIV =1
vk wE
(VAVH)~l = vA~IvH
After recognizing the Fourier transform of x and p,,
X = Vix
M, = VHIM.
and recognizing that only scalar operations remain, Equation (5.21) can be expressed
as:
I(x) S XITHPE (5.22)

~ P, +[H}P, ' 2P,(HPP, + P,)
Hunt [100] has shown that the above 1-D transforms of the column vectors in X
are equivalent to the standard 2-D transforms of the original image. Hence, we
can formulate the likelihood ratio test using 2-D Fourier transforms analogous to

Equation (5.22). The random signal model in the spatial-spectral domain is
Xk, byy) = H ik, kg )T (B, k) = Nk, k) [5.23)

and the transform of the likelihood ratio test I'(x) at frequencies (A, k,) becomes

X (ka, k) H* (ks by )E[T" (kas k)]
sl b, B = o s s o 59
. ( ,Ay) SN(kr:ky) S |H(/€r>ky)‘zs’l‘('lﬂ;raky) 5
X (ka, ky) [P H (ks ky) [ St (ke by )

251\’(k17 Ay)(|H(}”cv ky)‘QST(k;m, l”y) P SN(/"J" /""1/))
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where &£ is the expectation operator, and Sp(ks,k,) and Sy(kg, k,) are the power
spectral densities. For mine detection the signal variance is small compared to the
signal mean, and the above equation is dominated by its first term. In this scenario.
Equation (5.24) can be approximated as

Xk, k) H* (ks k) ET* (ki k)]
S[\’(klfa ky) E |H('Ifx7 ky)iz‘s’]"(k':ra Ay)

= X (kg k)W (ky, ky) (5.25)

Rx(k'l"7 ’1”7,/)

which is the product of the input signal Fourier transform A" and a Wiener filter 11

similar to that derived by Pratt [10]]

H*('l’ara ku)g[Tx(kN ’l‘(l/)1
Snks, ky) + | H kg, k,)|2Sr (k2 Ky)

W (ky, ky) = (5.26)

In the case of high signal-to-noise ratio, the Wiener filter 11" performs deconvolution
of X. It whitens the signal and results in an impulse in the spatial domain, which can
be used in target detection. For a low signal-to-noise environment, the Wiener filter
degenerates to a generalized matched filter, which whitens the clutter. These two
features combine to enhance the contrast between target and clutter, which makes

the estimator-correlator an attractive approach for mine detection.

5.6 Implementation of EC Algorithm

The implementation of the EC algorithm for mine detection is primarily the con-
struction of the Wiener filter shown in Equation (5.26). The filter requires that we
estimate power spectra for targets and clutter, as described in Section 5.6.1. Sample
Wiener filters are presented in Section 5.6.2. A filter-bank configuration, which allows
the EC algorithm to function in minefields containing diverse mines, is detailed in
Section 5.6.3.
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5.6.1 Construction of EC Detector Elements

Figure 5.6 depicts the block diagram of an estimator-correlator implementation.
Four quantities are needed to construct the Wiener filter: the target signature H.
the target distortion T, the target PSD Sy and the clutter PSD Sy. Models and

estimation methods for the above quantities are described in what follows.

Deterministic Offline Processin
S : 9 Adaptive Processing

Distribution PSD S
e 7; Filter Construction
H E[TTH"
Reference g = 3
Signature S, |H[ S +8§,
Normalization /
Mean Removal / Output
Single Channel —> S @ FHT [=9  Injage
tnputimage | WI Ciutter 2
X Correlation | || Ciutter PSD
Estimation s I
T

Figure 5.6: Block diagram of EC algorithm.

Construction of Target Signature

The performance of the EC algorithm improves when the reference H matches
the input signal. An ideal reference template not only matches the mine’s overall size
and shape but also mimics the spatial variation of pixel intensity.

Real minefields, however, may contain multiple mine types with different sizes
and shapes. In addition, differences in paints and construction materials can produce
different thermal and scattering properties. As a result, it is impossible to match all

tvpes of mines with one reference H, and multiple reference signatures are of interest.
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In this section we discuss the task of creating a reference. In Section 5.6.3 we
discuss a technique for processing multiple references in parallel.

The Wiener filter attempts to decorrelate the clutter, which has the byvproduct
of enhancing the target edges. From prior experience, edges are known to play a
dominant role in detector performance. Mines of similar sizes and shapes (and. hence,
similar edges) can often share a common reference. This fact reduces the number of
references and makes EC a more practical algorithm.

In our implementation, two reference templates were created for detection of large
and small mines. We first extracted sample mine image chips and removed the back-
ground clutter. Centering the chips and averaging the pixel intensities along concen-
tric circles allowed us to estimate the signature’s radial profile. A circularly svinmetric
reference was constructed with this profile.

Figure 5.7 shows the spatial variation of the two reference templates. The template
diameters are roughly 11 and 7 pixels respectively. Note that pixel intensities in the
templates have been normalized to a unit peak. The actual target signature h can be

modeled by a normalized signature h times an unknown mine amplitude o

hiz.y) = a- h(z,y) (9.5

{3

[\

-l
Bt

Substituting Equation (5.27) into Equation (5.26), we have

H (ky, k)E[T* (K, k,
‘/Vi(ka:,/fry) e —— ﬂQ]—-’v( 2 L)‘/[ & - /)]

L (5.28)
Sn (ke 'lgy) 3 &JZ'|HJ'(}‘71) ky)PST(kr, /fy)

in which the subscript 7 represents the reference type, which is either a small or large

reference in our implementation.
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(a) Amplitude-normalized template (b) Amplitude-normalized template

hy(x,y) for the small mines. ho(z,y) for the larger mines.

Figure 5.7: EC algorithm templates.

Imagery Normalization

Variations in environmental conditions change the amplitudes of hoth targets and
clutter. Image intensities are mainly affected by incident (solar and sky) light and
surface temperature (thermal emission). The latter is also determined by recent
solar insolation. Because the images were taken at different times and under different
meteorological conditions, the image dynamic range might vary significantly from one
scene to another. To address this problem, a two step procedure is used in processing
the imagery. We first removed the mean of the image, and then normalized the
residual intensities (mostly clutter) to unit variance. Therefore, the PSD estimated
from the normalized image Sy must be multiplied by the clutter variance 3% to vield
the clutter PSD, Sy = 32Sy.

Figure 5.8 shows the signature amplitudes after image mean removal and normal-

ization of the clutter to unit variance. This result indicates that the resulting mine
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signatures have consistent amplitudes. Reading from the plots, the ratios /3 of
large mines are around 3, while the ratios of small mines are about 4. This finding
permits off-line estimation of a; /3 for reference j. A detailed study reveals that op-
timum detection performance is achieved when ovgmeu/8 = 0.39 and cyp4e/3 = 0.81,
for small and large mine, respectively. These values are roughly consistent with the
ratios of the reference areas (72/112=0.40 and Csrnit | Chpge 0.48). Multiplving
the normalized signatures ﬁj by the «;/3 values identified above vields the desired

results.

~

Percentage
Percentage

2 3 . 3 é 1 s 3 4
Max| Target)/Var{Clutter) Ratio Max(Target)/Var(Clutter) Hatio

{a) Large mines. (b) Small mines.

Figure 5.8: Histograms of the ratios of mine amplitudes to clutter standard deviations.

Estimation of Target Distortion

The reference template h represents the target signature in an ideal environment,
while the distortion term T accounts for the effects of random factors such as mine

tilt, shadowing by ground vegetation, dirty mine surfaces, illumination conditions,
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viewing angles, etc. In our implementation, the random distortion is assumed to

have a Gaussian power spectral density of the form
PE2 2y 2 .
Splky, ky) = e~ ket (5.29)

and a mean given by

pp = g~ @1/ (5.30)

When the variance o? approaches zero, the distortion # becomes a §-function implving
that no distortion is present. We empirically determined o to have the value 1.4 pixels,

and we apply this value for every mine type in all scenes.

Estimation of Clutter Spectrum

The construction of reference templates and the distortion PSD are deterministic
processes that can be done off-line as illustrated in Figure 5.6. On the other hand, the
clutter spectrum needs to be estimated on the fly, because it is nonstationary. In the
discussion of the RX pre-whitening filter (presented in Section 5.4.2). we estimated
the clutter correlation using a first-order Markov model. The same assumption can
be employed here. The PSD of a two-dimensional first-order Markov process is given
by [101]

2

< E4 T ), T — (5.31
vk, £y) P2+ k2 + ke A

where p is the correlation coefficient estimated by approximating the radial profile of

the image autocorrelation matrix with an exponential distribution.
5.6.2 Sample Wiener Filter

Using the parameter estimates described above, a Wiener filter can be constructed
as in Equation (5.28). Figure 5.9 shows the four filter components, and Figure 5.10
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gives the resulting Wiener filter. The ring structure indicates that the Wiencr filter

has a band-pass response.

n .
. 1 [T '] [ r
¥ T

(a) E(T (k2 ky)) (b) St(ky, ky)
(¢) Sn(ks, ky) (d) H(kz, ky)

Figure 5.9: Essential components of the Wiener flter.
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Figure 5.10: The Wiener filter for LM_B mine.

Figure 5.11 shows sample input and output images. The filtered output shows that
the Wiener filter deconvolves the target signature and vields impulsc-like responses
at the target locations.

Figure 5.12 provides a closer look to the response around the mine position be-
fore and after Wiener filtering. The two images are normalized to unit cnergy for
comparison. It is evident that most energy is concentrated in the mine region by the

filtering process.
5.6.3 Filter-Bank Configuration

The use of a filter bank boosts the performance of the EC algorithim when diverse
mines are present, because the Wiener filter is sensitive to the reference templates,
and cach template can only be used to detect anomalies of similar shape and size.
Since the computational cost of forming and applying additional filters is relatively
low, it is practical to simultaneously process the input data with multiple references.

Furthermore, since the filter tends to respond to only one tvpe of mine, the results
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(a) Raw image. (b) Filtered image.

Figure 5.11: Sample raw and filtered images.

002 008 0.1 D14

(a) Raw image. (b) Filtered image.

Figure 5.12: Normalized images around the mine position before and after Wiener
filtering.
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of different templates are likely to be disjoint. In addition, because we construct
each Wiener filter using normalized signature h and clutter Sy, the mine amplitude
parameter o, and clutter variance  described in Section 5.6.1 are required to estimate
the likelihood ratio. Thus, the likelihood ratio of a mine using multiple references can
be approximated by fusing the inverse transform of the filtered result Ry ;(k,, k) of
each reference with a maximum operator.

The number of mine references should be minimized in the interest of efficicncy.
Prior knowledge of the mine types in a given locale can help determine what ref-
erences should be included. Figure 5.13 illustrates the EC detector in a filter-bauk

configuration.

Adaptive i -
' pv Fusion over Scoring
Filtering References
EC w/ ref. hy ———
Input
Image
X EC w/ ref. h2 Local o
Maxima .
Detector kg
EC w/ ref. hy —— Detection
List

Figure 5.13: Block diagram of the filter-bank configuration.

5.7 Locally Adaptive EC Detector

In this section, we describe a locally adaptive version of the EC detector to reduce
clutter estimation errors due to inhomogeneous background. When the background
clutter is homogeneous, the clutter PSD S’N can be estimated for the whole input
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image. If an abrupt transition of background type occurs within the image, this
estimate is not valid. Figure 5.14 (b) shows an image that has bare soil at the center
and rough grass at the top and bottom of the image. Figure 5.14 (c¢) shows the filtered
result with a global Sy estimate. The soil area is relatively smooth, while the grass
area contains inhomogeneities that may trigger false alarms. Another scenario that
benefits from local clutter estimation is the presence of a large clutter object that
occupies a significant portion of the image.

To deal with nonstationary clutter, we employed a sliding window to locally per-
form clutter estimation and Wiener filtering. In our implementation, the sliding
window size was 48 x 48 pixels. This window was further divided into 9 sub-windows
and a pixel correlation p, was estimated in each 16 x 16 pixel sub-window exceot
the center sub-window (to avoid the potential target signature). The effective p was
the average of the eight values p; estimated from the sub-windows. After filtering at
one window position, the window was shifted by 16 pixels, and the above process re-
peated. This 16 pixels step size was chosen to correspond to the scale of local clutter
variations and to improve efficiency. Figure 5.14 (d) demonstrates that this locally
adaptive EC algorithm can reduce the false alarm rate.

The most significant drawback of the locally adaptive approach is the increase
in computational time. Hence, this approach is only recommended when the back-
ground texture is changing abruptly. Otherwise, a global EC detector is sufficient for

detection in homogeneous backgrounds.
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(¢) Global estimation filtering. (d) Locally adaptive filtering.

Figure 5.14: Sample EC processing results with global and local clutter estimation.
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5.8 Performance Evaluation

In this section, receiver operating characteristic (ROC) curves were computed
showing probability of target detection (F,) and clutter false alarm rate (FAR [#/mn7])
plotted as the ordinate and abscissa respectively. Because very low FARs are of
interest, the z-axis is plotted with a logarithmetic scale. The data set used here was
the NT-S2 collection described in Section 2.7.2.

After several necessary but uninteresting preprocessing steps?', the NT-S2 MWI1R
data set was processed by the RX, EC and locally adaptive EC algorithms to pro-
duce the results shown in Figure 5.15. The EC result with global clutter estimation
is inferior to the results for the RX algorithm and the EC algorithm with local clit-
ter estimation. This is a result of clutter PSD errors introduced by inhomogeneous
backgrounds, which produce false alarms in the offending areas. Figure 5.15 also
indicates that by using local clutter estimation, the EC algorithm can outperform
the RX algorithm. One noticeable feature of the locally adaptive EC is its maximum
P;. Because the (modified) RX algorithm uses a large annular region to estimate
the clutter variance, it cannot detect targets near the image edges. The width of the
blind region is related to the radius of the annulus. The EC algorithm, however, uses
Fourier transforms for applying the filter. As a result, mines near the edges are mcre
likely to be detected, although the periodic extension properties inherent in Fourier
approach can introduce other errors.

It was noted above that the locally adaptive EC detector performs better in chal-
lenging clutter, but it is more expensive to compute than the EC algorithm with a

2lPigure 5.14 (b) shows a processed example with correction of corrupted pixels and saturation of
highly reflective clutter.
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Figure 5.15: Performance of RX and EC algorithms.
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global clutter estimation and unnecessary in homogeneous environments. To demon-
strate this fact. Figure 5.16 shows ROC curves obtained by processing images that
have had the top and bottom edges cropped to avoid the lane boundary and other
unintended clutter. For those cropped images the EC algorithm is seen to produce a

higher detection rate at low FARs.
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Figure 5.16: Performance of RX and EC algorithms with global clutter estimation in
homogeneons background.

Finally, we examine the benefit of using a filter-bank with the EC implementaticn.
Figure 5.17 illustrates the difference between using a single reference and the fused

results of large and small references. Apparently, the EC algorithm performance is
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improved by using multiple references. Note that the false alarm rate of the fused
detector is increased at low FARs due to the strong clutter present in large and
small reference results. Nonetheless, fusion helps detect both small and large mines

efficiently.
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Figure 5.17: Performance of EC algorithm with fused and single references.

Above results demonstrated that the EC algorithm achieve a significant improve-
ment compared to the existing RX algorithm. However, it still not meet the specified
detection criteria®® for scanning sensors, which is 0.95 P, at 0.02 false alarm per
square meter®®, because only two references are used to detect six tvpes of mine at

*?http://www.uxocoe.brtrc.com/Archived/1999/A53.htmn
23The locally adaptive EC and RX achieved 0.81 and 0.66 P, at 0.02 FAR for the NT-S2 collection.
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various times. The EC algorithm performance is expected to be improved by using
more specialized references that matches the mine response under different environ-
mental conditions. The radiometric model explored in this work mayv be useful for
above application. The integration of the EC algorithm and the radiometric model

can be an interesting future work topic.
5.9 Summary

In this chapter we examined two mine detection algorithms of different strategies.
The RX algorithm detects anomalies introduced by surface-laid mines with a general
reference that includes only size and shape information. The EC algorithm uses
specialized references, which can be generated by the radiometric model presented in
previous chapters, to capture specific types of mine. Although slightly more complex
(two components) mine models were considered here, the use of results from this
radiometric model is left as future work.

The RX algorithm requires minimal knowledge about potential mines. The de-
tector can be easily implemented and tolerates variations in mine signatures. The
performance of the RX detector is limited by the similarities among mine and clutter
signatures. Since RX is an anomaly detector, it may suffer a high false alarm rate
if the clutter is similar in size and shape to the mine. Performance improving tech-
niques for the RX algorithm were investigated. The clutter whitening scheme helps
to reduce the clutter correlation to improve RX performance. The multi-component
RX is theoretically sound but may have limited improvement in practice.

The EC algorithm can make use of information about the mine including its type,

time of operation, date of the year, and environmental conditions. That knowledge
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can be utilized to produce well-matched references (and better performance) using
the radiometric model developed in this work. However, highly detailed, very specific
references are not always favorable for general mine detection, since variation in mine
shape and surface properties are commonly observed. A filter bank configuration
is recommended to make the EC detector adaptive across different mine tvpes. An
adaptive EC detector was developed using a localized clutter estimation scheme to
maintain reliable detection performance.

The EC detector with a filter-bank implementation was shown to provide a sub-
stantial performance gain compared to the RX detector. A locallv adaptive EC
detector is needed for the imagery used here, because it contains inhomogencous
backgrounds that trigger false alarms.

In practice, the EC detector requires more tune-up to adapt a new set of mine
imagery. For RX detectors, the operator only needs to adjust the reference and win-
dow sizes for potential mine types. For EC detectors, the spatial profile of the mine,
which is subject to changes in sensor passhand and environmental conditions., is de-
sired to construct a matched reference. Furthermore, if a multi-reference EC detector
is implemented, the selection of the amplitude weights « described in Scction 5.6.1
need to be tuned to achieve optimal performance. However, the pay back for the

extra efforts of EC implementation is the superior detection performance.
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CHAPTER 6

CONCLUSION

In this work the problem of mine detection using EO imagerv was explored. This
work presents several contributions: (1) A polarimetric radiometric model was con-
structed and used to produce detailed mine signatures. The predicted signatures
were validated with multiple sets of measured data. (2) General guidelines for sensor
deplovment were defined to improve mine target-to-clutter ratios. (3) An attractive
detection algorithm based on an estimator-correlator formulation was devised and
tested with measured imagery. Comparisons to the baseline algorithm (the *RX”
algorithm of Reed and Yu) show significant performance gains.

The findings of this dissertation are useful to both sensor svstem designers and
algorithm developers. By simulating mine signatures under different environmen-
tal conditions, system designers can identify deployment conditions that will ensure
high image quality. For algorithm developers, the estimator-correlator algorithm can
provide immediate performance improvements. The algorithm’s ability to use more
detailed signature information can provide additional gains, but has not been explored

here in any detail.
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In the remainder of this section we elaborate on the above remarks. In Sections 6.1
and 6.2 we highlight major findings of the work. Potential topics for future work are

presented in Section 6.3.

6.1 Summary of and Findings for the Radiometric Model

A simulator was developed to predict polarimetric properties of passive EO mine
signatures. Source radiances considered by the simulator are surface temperatures
predicted by a thermal model and solar radiation computed by NODTRAN. It ad-
dresses the source-target-sensor geometry, atmospheric effects, and statistical descrip-
tions of rough surfaces. In this model environmental conditions and scusor parameters
such as passband, orientation, viewing angle, and impulse response are adjustable.
A polarimetric BRDF model was developed for scattering of mine-like (moderately
rough) surfaces and validated with published data. Primary radiation sources such
as thermal emission, direct and scattered solar radiation were modeled with realistic
temporal dependences so that designers can simulate signatures at any time of the
day to develop guidelines for sensor deployment. An extensive body of simulation
was conducted to study the significance of radiometric components under different
sensor passbands, the temporal variation in mine signatures, effects of environmen-
tal conditions on thermal signatures, and effects of sensor geometry. The resulting
signatures show good agreement with measurements of several data sets.

Specific findings drawn from the the work are listed below.

e Polarimetric properties of passive signatures: Simulations show that the
source-target-sensor geometry is the primary factor in signature polarization.

An obliquely viewing sensor is advantageous for passive polarimetric sensing.
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Effects of higher-order scattering components have little contribution to the

total image.

Component significance and sensor passbands: The significance of each
radiometric component was examined to understand the spectral properties of
mine signatures. Thermal emission becomes important as the wavelength in-
creases, and we see it dominate in the NWIR band and bevond. Mine detection
at longer wavelengths (MWIR and LWIR) is based on temperature confrast and
differences in thermal properties and emissivity. Direct and scattered solar radi-
ation are the dominant sources in the visible and SWIR bands. but thev become
negligible at longer wavelengths. Visible and SWIR sensors only work during

davlight hours and the shadow is often an important feature in detection.

Temporal variation in mine signatures: EOQ mine signatures vary strongly
with time. Solar reflections only appear during dav time and are proportional
to the insolation. The surface temperature of a mine (a thermal insulator)
is greater than that of the background during the day, and the temperature
contrast is inverted after sunset. Around dawn and dusk. thermal “crossovers”
occur, which correspond to equal temperatures on mine and soil surfaces. (Since
mines and clutter do not show a uniform temperature, this concept must be
interpreted loosely.) The shadow produced by sunlight is an important feature
of daytime signatures. In particular, the shadow is the only detectable signature

component during the morning crossover.

Mueller Matrices for Mine and Soil Scattering: By combining a polari-

metric version of Beckmann’s model with concepts described by Torrance and
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Sparrow, a Mueller matrix was developed that is capable of predicting scat-
tering from rough surfaces encountered by demining sensors. The proposed
model produced BRDF's in good agreement with measured data. An extensive
comparison made for visible wavelengths suggests that the model 1s valid for
moderately rough (mine) surfaces. For natural surfaces (background). which
tend to have a multi-scale roughness, a composite rough surface model (not.
implemented in this work) could be used by emploving tilted FEA mesh facets

to reproduce decimeter-scale blotches seen in the background.

Effects of environmental conditions on thermal signatures: The effect of
environmental conditions on surface temperatures was studied via simulations of
different time-of-day, day-of-vear and wind speeds. The greatest target contrast
was found near mid-day. Wind was shown to reduce the range of temperature

difference as a result of greater convection.

Effects of sensor geometry: Several sensor parameters are examined to sce
their impacts on signatures. DoLPs of solar reflection are sensitive to the sen-
sor’s orientation toward the source. DoLLPs near specular regions are two orders

greater than those in backscattering regions.

Guidelines for sensor deployment: Operational guidelines can be derived
from this work. The insolation is at its peak and the temperature contrast
is greatest around mid-day. Shadows can be a useful cue for operations near
sunrise. Operation at sunset is particular challenging and should be avoided.
Low wind speeds are preferred, since convection reduces the contrast. Passive

polarimetric sensors should use an oblique viewing angle. Also, a polarimetric
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sensor should be oriented very close to the solar specular direction to take

advantage of the mine’s large DoLP.

e Use of a multi-sensor suite: Simulations conducted in this work show that
sensors of different passbands exhibit distinctive features in signatures. Some
easily detectable features only show at certain time or environmental and op-
erational conditions. A detection system with a multi-sensor suite (of visible,
SWIR. MWIR, and LWIR) may take advantage of those features to enhance

the detection rate with multispectral image processing techniques.
6.2 Summary of and Findings for Mine Detection Algorithms

In the second part of this dissertation, algorithms were studied for mine detection
in EO imagery. An estimator-correlator approach was used to develop an alternative
to the current baseline (RX algorithm). The estimator-correlator exploits the spatial
structure of clutter and mines. It degenerates to a Wiener filter when the clutter is
Gaussian distributed. Unlike the RX detector, which is an anomaly detector useful
when knowledge about the mines is limited, the EC detector can be adapted to find
specific mines in certain circumstances. The development of the radiometric model
make it possible (in principle) to use carefully tuned references to achieve a superior

detection rate. Some specific findings are as follows:

e RX performance enhancements: Several techniques were described (and
tested) for improving the performance of the RX algorithm. A clutter whiten-
ing filter was used to reduce correlation in adjacent pixels. Another modification

for multicomponent targets will improve detection if reliable information about
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potential mine types is available. Finally, a frequency domain RX implementa-

tion was found to greatly improve computational efficiency.

e Performance studies of the EC detector: The EC detector deseribed above
was implemented and tested on measured imageryv. Two major modifications to
the basic concept were found to improve performance. First. by applving the
algorithm in a sliding window, the algorithm can be adapted to local clutter
statistics. Second, multiple reference targets can be processed in parallel, mak-
ing the algorithm effective against diverse target sets. Comparisons of the RX
and EC algorithm showed a significant advantage to EC when these modifica-

tions were used.

6.3 Future Work

In the course of preparing this dissertation, it became apparent that several topies

require further investigation.

e Modeling of vegetation: Simulations conducted in this work assume back-
ground a flat, homogeneous soil, which simplifies the modeling. In reality, how-
ever, most site contain some vegetation, which has distinctive thermal and sur-
face roughness properties. For example, grass may have non uniform densities
and preferred scattering directions. Spatial, spectral and polarimetric models

for vegetation backeground are needed to simulate real EO signatures.
o o

e Mesh Generation: Solar shadows can produce strong surface temperature
differences over distances on the order of one centimeter. Creating a FEM mesh

with a sufficient node density strains one’s computational resources, cspecially
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when it is noted that the shadow boundary moves with time. The meshes used
in the work were derived from a body of revolution model and subsequently
refined off-line to include more nodes at large radial distances. The improvement
derived from that refinement process was limited. An iterative mesh refining
scheme should be explored that will sub-divide facets with larger temperature

gradients on the flv.

Modeling of localized source conditions: The current implementation of
the thermal model only includes a few localized source conditions introduced by
the geometric structure of a surface-laid mine. Variations in thermal emission
and convection on a surface point due to nearby landmine structure should be

considered to improve the accuracy of the thermal model results.

Active sensors: The simulations presented in this work all involve natural
radiation sources and passive sensors. Active sensors, involving laser illumi-
nations, are also being considered for mine detection. Since lasers are easily
polarized, the polarimetric properties of surface scattering are better revealed
by such sensors. The proposed radiometric model can be readilv modified to
simulate active sensor signatures. Most active sensors view back-scattered ra-

diation, which simplifies the BRDF modeling task considerably.

Integration of the radiometric model and mine detection algorithms:
The proposed EC detector can utilize the detailed signatures simulated by the
radiometric model. An adaptive scheme that updates the reference target on
the fly according to changes in sensor geometry and environmental conditions

could further improve the mine detection rate.
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6.4 Concluding Remarks on EO Mine Detection

Mine detection with airborne EQO sensors is meant to be a fast and safe approach.
However, a great variation in EO mine signatures due to the changes in environmental
conditions prevents a reliable detection performance that is essential to achieve the
goal of a real-time minefield detection system. Accuracyv and computational efficiency
of the current mine detection algorithm needs to be improved. Furthermore, deplov-
ment guidelines are necessary to ensure image quality. Throughout this work, we
demonstrated that the radiometric signature model is capable of predicting realistic
mine signatures and providing physical insights to the EO mine detection process so
that system designers can optimize the detector under different operation conditions.
The benefits of the signature model can be forwarded to the estimator-correlator
detection algorithm to improve and ensure mine detection and clutter rejection per-
formance. The achievements made in this work provides one step forward to construct

a real-time airborne EQ minefield detector.
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APPENDIX A

RADIOMETRY

EO mine detection is based in radiometry, which is the measurement of quantities
associated with radiant energy and process of radiative transfer. Definitions of ba-
sic radiometric quantities and properties are given here. as well as the fundamental
equation of radiative transfer. A brief description of the elements of an EQ sensor
svstem 1s also presented in this section. The blackbody radiation law, which forms

the fundamental thermal emission model, is briefly reviewed in the end of this section.

A.1 Radiometry Terms

Radiometric terms are essential to describe an optical syvstemn. They includes
definitions of energy, power, and geometric characteristics that arise during radiative

transfer. Listed below are some critical radiometric quantities.
A.1.1 Solid Angle and Projected Solid Angle

Solid angle is a critical concept in radiative transfer. Similar to the definition of
angle, which is the ratio of an arc length to its radius, a solid angle is the ratio of a

spherical area to the square of its radius.

Q= (A.1)




Solid angle has the dimensionless units of steradians.

Most surfaces are not spherical, and solid angle 1s commonly expressed in differ-
ential form. The differential solid angle of surface 1 viewed from surface 2 is given
bv

dA;cosb
i, o BEEDEE) (A.2)

r2
The surface area visible to an observer is reduced as the surface normal tilts away
from the line of sight. The effective area is termed the “projected” area. The same
concept is used to define a “projected” solid angle. If 8, is in the angle of the surface
normal with respect to the direction of radiation, and 6, is the angle of the surface

normal with respect to the observer, the projected solid angle €2,, is given by

14, cos 6
d$2y10 = dQyocosfy = & cos 6, (A.3)

72

This quantity is helpful in simplifying the expression of radiative transfer.
A.1.2 Flux, Radiance, and Irradiance

The rate of change of radiant energy (i.e., the power) is referred to as flux @ in
radiometry.
oQ

=5 (W] (Ad)

The flux density, which is the area density of power, is referred to as irradiance.
In some cases, the irradiance is further specified as “radiant exitance” or “radiant
incidence” if the energy is emitted from or incident on the surface, respectively.

p— a([) 7 2 A5

The fundamental radiometric quantity is radiance, which 1s the quantity of Aux per
unit solid angle leaving or arriving at a surface. Its propagation direction is confined
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to an elementary cone containing a specific direction. Radiance is defined as the flux
per unit projected area and per unit solid angle.

0o

L= S cosb00

A.1.3 Spectral Dependency

Spectral variables are often used in radiometric analvsis, since the surface prop-
erties of most materials and the transmittance of the atmosphere vary across the
spectrum. To stress the spectral dependency, radiometric quantities arc often ex-
pressed as functions of wavelength or frequency. The spectral radiance below is an

example.
dL

L
AT oM

(AT)
A.2 Radiative Transfer

The fundamental equation of radiative transfer, which appears in Equation (A.8),
provides a means to calculate the energy propagating from one surface to another.

A, = le;ﬂqos 8,dA, cos B

(A.8)

2
The relation defines the time rate of change of radiant flux leaving surface 1 to surface
2 in a vacuum space.

Using definitions stated in Section A.1.1, we can show the radiance exchanged

between two surfaces in a vacuum is invariant. Define the quantities

d(I)z]

g = A9

’ d.Ay cos OpdSY, (A.9)
dA cosf

ffly = S (A.10)
dAs cos 05

Ay = T (A1)

8
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Substituting Equations (A.8) and (A.10) into (A.9), we have
leQl2 = L‘Z(IQ‘ZJ (\12)

which shows that the radiance emitted from surface 1 toward surface 2 (L) equals
the radiance surface 2 receives from surface 1 (L-).

The fundamental equation of radiative transfer can be applied to more complicated
scenarios. Say we want to know the radiance arriving on surface 2. which includes
not only a direct emission (L) from some surface 1, but also reflections from other
sources by surface 1. Then L, can be expressed as the sum of the direct emission and
the integral of radiance (Lgyx7) over the hemisphere viewable from surface 1. With
the help of the geometric parameters (6, ¢, and r) and the bidirectional reflectance

distribution function F, which is defined in Section 2.4, we can specify L, as
/2 p2m
Ly(0,¢,r) = L(0,¢,r) + / df' sin 9'/ d¢'F(9,0,0',¢" ) Lpxr(8'.0'.r) (A13)
Jo 0

In this result it is assumed that radiant sources other than surface 1 are placed far
away, so that mutual coupling between sources and surfaces can be neglected. Also,
other sources are assumed to not be viewable from surface 2, and surface 1 is presumed

infinitesimally small to simplify the expression.

A.3 Radiometric Framework of EO Sensors

Figure A.1 illustrates basic elements of radiometric measurement for EO sen-
sors [102, 27, 103], and it is applicable to landmine detection.

The EO sensor, which is usually a CCD camera, receives reflected and cmitted
radiances as shown by the blue and red lines in Figure A.1. The radiation sources
include illuminators, targets, and background. The illuminator can be the sun in a
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Figure A.1: Radiometric framework of EO Sensors.

passive sensor system or a laser beam in an active sensor svstem. Thermal emission
from targets and background located within the detector’s field of view (FO\') reaches
the sensor directly. The radiance emitted from illuminators may reach the detector
directly or via reflection. Note that the figure doesn’t show multiple scattering, which
is important in some environments. The atmosphere can also be an important factor,

since it contains particles and molecules that emit, scatter, and absorb radiance.
A.4 Blackbody Radiation

Because passive radiation sources encountered in remote sensing generate radiance
via thermal emission, it is appropriate to discuss the basic mechanism for thermal
emission: blackbody radiation. Also described as Planck’s radiation law, it predicts
the spectral radiance of a perfect cmitter. A convenient expression of Planck’s radi-

ation law is given by Rybicki [104] who writes the spectral radiance as a function of
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wavelength and surface temperature,

2c?h 1

o phv/KET _

L\, T) = [Wm™sr ™ um™'] (A1)

where ¢ is the speed of light in a vacuum, A 1s Planck’s constant, » is the frequency,
and k is Boltzmann’s constant. This function serves as the basic model for thermal
emitters. The spectrum of a real surface is less than that predicted by Planck’s law.
Such surfaces are referred to as graybodies, and the ratio of the true and blackbodv
emission is denoted the emissivity £, which is a number between zero and onc. Thus,
the thermal emission from a surface is known if one has knowledge of both the surface

temperature and surface emissivity.
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APPENDIX B

ELECTRO-OPTIC SENSORS

Optical sensors are devices that can convert radiant electromagnetic energy into
other forms. For example, a conventional camera, an imaging optical sensor, storcs
photometric information via chemical reactions. In this work, we are interested in

electro-optic (EO) sensors that convert optical energy into electric energyv.
B.1 Physics of EO sensors

A typical EO sensor is a semiconductor device that changes its conductivity ac-
cording to the number of photons impinging on it. Its spectral sensitivity is deter-
mined by the type and amount of impurity dopings. Sensors that reacts to a narrow
bandwidth are good for observing laser backscattering while broadband sensors are
sultable for passive terrestial observations.

Three types of semiconductor components are found in EO sensors: photocon-
ductive (PC), photovoltaic (PV), and charge coupled devices (CCD). A PC detector,
whose resistance is inversely proportional to the radiation exposure, is connected in
series with a load resistor. The signal is read out as the voltage across the detector or
the load resistor. The advantages of a PC detector are its fast response time and its
ability to work at longer wavelengths. Its primary disadvantage is that the change in
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detector resistance is a function of the substrate temperature, which leads to frequent
calibration. The PV detector is a diode that produce a current proportional to the
number of incoming photons. It is usually used in an operational amplifier feedback
circuit. Many devices that work in the visible or near IR ranges are made of PV
detectors.

Unlike the single element devices described above, array devices have become
popular due to their imaging efficiency and higher resolution. The CCD detector
is the most popular of the array sensors, and airborne mine detection syvsteimns are
likely to use CCD detectors. A CCD detector comprises an arrav of NOS capacitors
aligned in rows. FEach capacitor represents a pixel and it creates electro-hole pairs
during exposure, then the charges are shifted sequentially to the output register and
read out via an output amplifier. The simple structure of a CCD detector makes
it possible to produce high-resolution imaging sensors. Silicon-based CCD detectors
are suitable for making visible and near IR sensors, but, it is more challenging and

expensive to manufacture infrared sensors responding to longer wavelengths.
B.2 Types of EO sensors

EO sensor systems can be categorized according to their spectral bandwidth,
spatial resolution, radiation source, and polarimetric dependence. In this section we

summarize the types of EO sensors commonly used in mine detection.
Visible, TR, and UV Sensors
Wide-band EQO sensors can be roughly divided into UV (10-400 nin), visible (400-

750 nm), near IR (750-1000 nm), short wavelength TR (1-3 pum), mid wavelength

IR (3-5 pm), long wavelength IR (8-14 pm), and very long wavelength IR (14-20
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jun). The choice of sensor bandwidth should be made according to the properties of
the radiation source and reflection/emission characteristics of the intended targets.
As an example, solar radiation, which is well approximated by a 5800°K blackbody,
is strongest in the visible band, while thermal emission from terrestrial objects at
285+30°K dominates near 10 pm wavelengths. Therefore visible cameras work best
with daylight or artificial light sources, while night-vision goggles employv IR sensors.

Other differences between visible and IR sensors include their resolutions and
optical components [102]. Because IR sensors respond to longer waves, the resolving
power of IR optics is much coarser than visible optics. Although similar optical
components (i.e., prisms, lenses and mirrors) are emploved in both visible and IR
sensors. the materials used are different. Ordinary glass is transparent in the visible
band but is opaque in IR. On the other hand, germanium is opaque to visible light
but is transparent to IR waves.

Ultraviolet (UV) or even x-ray sensors are also used in remote sensing, and are
popular choices for sensors mounted on space platforms. Several advantages come
with their short wavelengths [105], which permits optical lenses to be made smaller
and detector arrays to be constructed with higher densities. Furthermore, internal
noise is not as severe at UV as as IR, and no active cooling equipment is needed.
However, the atmosphere has a greater impact on the scattering and absorption of
UV radiation than visible or IR radiation. Limited studies and experiments have
been done in the UV band, which prevents UV sensors from seeing more extensive

use.
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B.2.1 Passive and Active Sensors

EO sensor systems can be grouped into passive and active {vpes based on the
illumination source. Passive systems employ natural radiation sources such as sunlight
and thermal emission, leading to a simple sensor configuration. A CCD camera with
a shutter control is essentially a passive sensing system. The disadvantages of passive
sensors are a lack of control over the source radiance and complicated radiation paths.
As an example, when a visible camera is used to scan the reflected solar radiation
from a minefield during the day. the magnitude and direction of sunlight varies with
time and weather conditions (i.e. the presence of clouds and other acrosols) during
the measurement. As a result, calibration is needed to process unages collected at
different times and locales. Furthermore, it is challenging to construct a signature
model for passive sensors, because the sensor output is a summation of irradiance
from various sources and different transmission mechanisms. A detailed discussion of
the radiation sources observed by passive sensors is given in Section 2.2

Active sensors typically relv on target backscattering. which involves the reflection
characteristic of the target surfaces. In mine detection, an active sensor could employ
a laser source that generates a beam of narrow-band radiation. Although this type
of sensor requires a separate source, it has some desirable properties not available to
passive sensors. Specifically, the scattering geometry is simplified because the source
and the receiver are co-located. Hence, only backscattering from the target needs to
be considered, while the complete BRDF must be known to model passive seusors.
In addition, smooth (man-made) and rough (natural) objects can be differentiated

via the de-polarization that occurs preferentially for rough objects illuminated by
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polarized sources. Also, the dependence on environmental conditions is reduced sinee

the sensor carries it own source.
B.2.2 Single- and Multi-Spectral Sensors

A single-channel sensor reports the integrated spectral irradiance received within
the passband of the sensor, while a multi-channel sensor records data in parallel in sev-
eral sub-bands. Multi-spectral sensors are desirable when the reflection and emission
properties of the target and clutter are strongly wavelength dependent. More target
features such as the sub-band correlation can be extracted by using multi-spectral
sensors. This extra information is often helpful in detection and classification, since
one can develop processing algorithms to exploit multiple channels. Sensors used in
space exploration usually contain several channels to utilize everv bit of information.

Multispectral sensors are made either by combining individual spectral senscors
from different bands or by placing several filters in front of the same EO sensor.
The first approach involves integrating different systems and may require registration
of images from different sensors while the latter approach needs onlv a few extra
components. The benefit of the first method, however, is the parallel acquisition of

cata.
B.2.3 Polarimetric Sensors

Polarimetric sensors are another method of maximizing the amount of informa-
tion in each pixel. Polarimetric sensors preserve the polarization information in the
received signal for later processing.

In surface-laid mine detection, polarimetric sensors provide a means to improve

target discrimination, since man-made objects (i.e. smoother surfaces) depolarize
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less than natural clutter (i.c. rougher surfaces). A model for the polarimetric signa-
tures of potential targets and clutter can help identifv the polarimetric parameters
that are critical to target classification, thereby reducing the number of necessary

measurements.



APPENDIX C

DERIVATION OF THE RX ALGORITHM

Here we review the derivation of the RX algorithm, which is a GLRT approach.

The hypotheses of the mine and clutter are modeled by

Hoi y—'N

in which B and the covariance of N are unknown.
The detection problem defined by Equation C.1 can be treated with the generalized
likelithood ratio test. An application of this well known techniques yields the following

likelihood ratio
_ P(Y|B1, Mu Hl)
p(Y|B0-,Mo- Ho)

La(y) (C.2)

where B and M are the ML estimates for the target amplitude and covariance re-
spectively.

The clutter probability density function (PDF) conditioned on B and M is given
by
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Using the values for E[y] defined above vields:
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The maximum likelihood estimate B is readily derived. Because the conditional pdf

in Equation (C.5) is continuous and nonsingular, it is sufficient to consider

0log(p (Y|B-. M,))
0B

= SM'(y -~ SB)" - (-$) (C.6)

The maximum value is found by setting the right hand side to zero. Since M, is

positive definite, the only solution occurs when

y'S - B"STS = (C.7)
Hence, the maximum likelihood estimate of B for H, is

B” = y7s(sTS)"! (C.8)

The corresponding estimate for covariance matrix M, is found by using Lemma 3.2.2

of [106]. We find
i

== SB”)"(y — SB") (C.9)
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Similarly, the estimate for covariance matrix My is

« 1 o
M, = “V;y’y (C.10)

Substituting Equations (C.8), (C.9), and (C.10) into Equations (C.4) and (C.5) vields

1 —NJ ‘

B{II\I/E}RLT)](YIB“M) - 2#“"7/2'[1\711\4""2. exp(T> (C.11)
1 NJ .

RO = e (g ) o
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and the likelihood ratio test becomes

, o |].\A/.[Q|'\ = Z - then H/ e
Aly) = |M1|\2 <7, then Hy (C.13)

Taking the log of A(y) produces an equivalent LRT .\’
M| (>, then H,
l T ] =i 1 %
/\ (}’) = ’1\/11‘ & 7_!7 thell H(} (Cl-l)
For a target with uniform amplitude, which has S as a vector, the estimate B
can be written as
G
y'sS .
STS (Ch1a)

since ST'S is a scaler. Reed and Yu [14] went on by substituting B in Equation (C.8)

B=

to the expression for M, in Equation (C.9).

= __ yTS 7 yTS
M, = S-S5y -85
1 { ¢ (yT8)T(y¥y"S)
ﬁ Y Y o

Sre (C.16)

which leads to

\ 7 , ly"y] > 7', then H, ‘
Ay) T . FEIT T8 « ', then Hy L
|y Yy STg | ?

Factoring the scalar |y”y| from both the nominator and denominator leads to

Ay) - |yTY|

’ ) . TSV (yIv)-1(yT§

lyTy] ‘1 B uyslys)—(YJ‘
1

[ ST GTS) (C.18)
STS

where the last expression is done with a determinant identity given in [74].

Finally, an equivalent test can be derived by recognizing that 1/(1 — ) is a non-

linear but one-to-one transform. Hence, a simpler likelihood ratio test is

s 8 ) [v'8) [ =47, then H
Al STS < 7", then H, (C.19)
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Multiplving Equation (C.19) by the constant (1/S”S) and using the estimated am-
plitude B in Equation (C.8), the likelihood ratio test can be written in the equivalent

form

" ol T A1 RT > 7'”/, then H/ -
A(y)=B-(y'y)”" -B { T phen (C.20)

& g
For a multi-channel image, the dimensions of target amplitude estimate B are J x 1.
and those of the reference S are NV x J. This results in a scalar value for A", The
above likelihood ratio test can be interpreted as the ratio of the integrated target
energy and the integrated input energy. The latter may include clutter and targets.
Since ST'S is a constant, Equation (C.19) shows that the performance of RX is largely
determined by the simple projection (y’'S). As a result, RX tends to be relatively
insensitive to fine structure in the shape S, and it is sometimes referred to as a “bloh”

or “anomaly” detector.
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