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Airborne EO sensors possess several desirable properties for finding surfare-laid ant i-

vehicle mines. They are capable of stand-off operation and can quickly survey a large

area. This work focuses on signature modeling and detection algorithms, two topics

that are useful in realizing a real-time minefield detector using EO imagery.

Signature modeling helps to provide insight for sensor deployment. The model

addresses relevant issues in sources, targets, and sensors. Natural sources such as

thermal emission, solar radiation, and solar scattering were considered an(l incorpo-

rated using empirical models. A BRDF model that defines scattering and einissiOn

from rough surfaces was developed that integrates geometric relations with intrinsic

surface properties. Stokes' vectors are used throughout this work to describe incident

and scattered radiances, which permits a polarimetric study of the signatures. The
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simulated signatures are compared with several measured data sets fromn diff'erent

scenarios and exhibit strong quantitative agreement.

Mine detection algorithms are a critical system component. The existing baseliie

"RI" algorithm makes little use of' signature information. An alternative to the 13X

algorithm is constructed using an estirnator-correlator formulation and uses spatial

target information to enhance the clutter rejection rate. A filter-bank configuration

was proposed to fuse results from multiple references to boost the mine detectiom

rate. A locally adaptive implementation was developed to obtain a reliable detection

in inhomogeneous backgrounds. The proposed detectors were used to procCess a large

measured data set. Substantial gains were observed for the techniques proposed here.

The advancements described throughout this work will serve to improve real-tine

mine detection.
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ABSTRACT

Airborne EO sensors possess several desirable properties for finding surface-laid

anti-vehicle mines. They are capable of stand-off operation and can quickly survey a

large area. This work focuses on signature modeling arid detection algorithinis. two

topics that are useful in realizing a real-time minefield detector using EO imagery.

Signature modeling helps to provide insight for sensor deployient.. The niodel

addresses relevant issues in sources, targets, and sensors. Natural sources such as

thermal emission, solar radiation, and solar scattering were considered and incorpo-

rated using empirical models. A BRDF model that defines scattering anl (,mission

from rough surfaces was developed that integrates geometric relations with intrinsic

surface properties. Stokes' vectors are used throughout this work to describe incident

and scattered radiances. which permits a polarimetric study of the signatures. The

simulated signatures are compared with several measured data sets from different

scenarios an(d exhibit strong quantitative agreement.

Mine detection algorithms are a critical system component. The existing baseline

"RX" algorithm makes little use of signature information. An alternative to the 1RX

algorithm is constructed using an estimator-correlator formulation and uses spatial

target information to enhance the clutter rejection rate. A filter-bank configuration

was proposed to fuse results from multiple references to boost the mine detection

rate. A locally adaptive implementation was developed to obtain a reliable detection
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in inhoniogeneous backgrounds. The proposed detectors were used to process a large

measured data set. Substantial gains were observed for the techniques proposed here.

The advancements described throughout this work will serve to improve real-time

mine dete(ction.
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CHAPTER 1

INTRODUCTION

Land mines are among the most dangerous forms of unexploded ordnance. \Vith

tens of millions of landmines deployed in more than 70 countries, mine detection is of

critical importance in both humanitarian and military operations. In spite of more

than 40 years of research [1], reliable mine detection remains an elusive goal.

In standard military operations, mines are deployed in mninefields with the intemt

of reducing the mobility of ground forces. During wartime, finding ininefields in a

timely fashion is critical to the safety and success of ground forces. EO sensors are

attractive for detnining, because those sensors are capable of stand-off operation and

airborne sensors can rapidly survey a wide area. On the other hand, mine signa-

ture are easily lost, in clutter (especially for buried mines), and the sensor resolution

varies with changes in aircraft, altitude. The above advantages and limitations have

largely restricted the use of airborne EO dernining sensors to detection of surface-laid

anti-vehicle (large) mines. Specialized EO sensors, including polarimetric sensors and

multi-spectral sensors, are available and have been investigated, but are still imna-

ture.

In this dissertation, basic studies are presented that address the I)erforinance of

minefield detectors. Two topics were explored: radiometric signature models and
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mine detection algorithms. A physics-based radiometric model was develop)ed, and

comJparison of its simulations with measured EQ imagery shows reasonable agreement.

A minefield detection system requires a. reliable mine detection algorithmn. A novel

algorithm was devised for this purpose and compared to a baseline algorithm.

1.1 Motivation

Work on EO signature modeling was motivated by the fact that, in general, the

performance of a detection algorithm can be improved by exploiting knowvledge about

the signature of the intended target. For land mhine detection, this requires a priori

knowledge of the mine signatures at the time of data collection.

Mine signatures are challenging to predict. It has long been observed that such

signatures are highly variable, depending strongly on sensor characteristics and cur-

rent and past environmental condition. Time-of-day, day-of-year, sensor bandwidth.

image resolution and viewing geometry are a few of the many parameters that affect,

EO mine signatures. Predicting signatures as a function of these parameters requires

a sophisticated model that addresses both the thermal and radiometric aspects of the

processes involved.

Given knowledge of a mine's signature, a detection algorithm capable of exploit-

ing the signature information is required. Because of the aforementioned signature

variability, the algorithms currently used to detect land mines exploit, only the niost,

basic signature information (e.g., size and shape) by assuming, for example, a round

target of uniform contrast. More detailed signatures provided by the above-described

model could be integrated into a detection algorithm to improve its performance.

2



1.2 EO Mine Detection Sensors

A number of systems have been developed to process EO imagery for mine de-

tection. Early work on multi-spectral detectors was reported by Witherspoon and

Holloway [2] who fused six channels of imagery collected by a 400-900 inn camera

with a spinning filter wheel. That sensor was later used on an airb)orne platform

under the Coastal Battlefield Reconnaissance and Analysis (COBRA) program [3, 4].

The REMIDS sensor [5] combined a passive thermal IR channel with two co-registered

linearly polarized near-IR, sensor of laser reflectance. That combined passive/active

sensor concept later becomes part of the ASTAMIDS system [6].

There has also been extensive work in hyper-spectral imaging for delnining. Mel(-F

et al. developed a compact airborne spectrographic imager (ca~si) [7, 8. 9. 10]. which

employs up to 288 spectral bands over the 400-1000 nm range. An extensive experi-

mental st udv of hyper-spectral phenomenology has recently been presented by Smith

et al. [L1.

EO mine signature modeling has been attempted from a physics-based prospect.

A thermal model using FEM approach was developed by Sendur [12] for prediction

of temperature contrast among buried mines and surrounding soil. Cremer et alo [13]

adapted this model to estimate polarimetric signatures in the MWI1R band for surface-

laid mines. Primary features of tihe temperature distribution due to insolationr were

found in fair agreement. with measurements.
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1.3 Objectives

This work has two major objectives. First, a physically based inne signature

model will be developed with the capability of treating diverse sensors and environ-

mental conditions. To ensure that the model is useful in practice, it is vali(late(l

using measured signatures. As noted above, mine signatures are influenced b1y a large

number of factors, and the model must address many issues including the physics

of natural radiation sources (e.g., direct and scattered sunlight), sensor parameters

(bandwidth, resolution, and noise level), the imaging geometry, and scattering and

emission by rough random surfaces. Accurate modeling of scattering and emission as

functions of source and observer directions is particularly important to the success of

the model. A model for a bi-directional reflectance distribution function (BaRDE) of

rough surfaces is described that is based on physical optics (PO) and geometrical op-

tics (GO) approximations to classical random rough surface scattering formulations.

The second major objective of this dissertation is to develop a mine d(etection

algorithm that. can exploit predicted signature information. The so-called "R'X" al-

gorithm of Reed and Yu F14, 15], which is based on a generalized likelihood ratio

test (GLRT), is currently employed by the US Army and will be used as a baseline

algorithm. RX makes relatively little use of mine signature information. It assumes

a deterministic circular signature of known size and unknown amplitude, and it as-

surnes spatially uncorrelated clutter. As an alternative, an estimator-correlator (EC)

approach is described. For the case of additive Gaussian noise, the EC algoritlim

degenerates to a Wiener filter, which is capable of exploiting more detailed signature

and clutter information.
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1.4 Organization

The organization and content of the dissertation are as follows:

Chapter 2 reviews physical issues that affect EO mine signature modeling. We

first. review critical radiation sources and transmission paths used in mine detection.

Physical properties and modeling methods for random rough surfaces are described

along with a literature review of existing rough surface scattering models. The relation

of ernissivitv and BRDF is discussed. Three data sets used to validate and illustrate

the models are also described.

Chapter 3 presents the mine signature model. The problem geornetry is defined.

The thermal model used to predict surface temperature profiles is described. The

NIODT1RAN code, developed by US Air Force, to compute spectral source radiance

from direct and scattered solar radiation, is discussed. The BRDF model useld for

scattering and emission from rough surfaces is developed from classical BRDF models

based on physical and geometrical optics. The derivation and validation of the BRDF

model are provided in Section 3.3. Integration of the BRDF model, the FEM thermal

model and MODTRAN are documented in Section 3.4. Section 3.5 contains studies of

an ideal sensor's signatures. The significance of radiometric components and effects of

the sensor's angle, orientation and passband are discussed. The effect of finite sensor

resolution, which is necessary for a comparison with rneasured data, is discussed in

Section 3.6.

In Chapter 4 simulated results are compared with measured signatures from three

different data sets. Temporal MWIR signature variations over a diurnal cycle are

studied, and polarimetric MWIR responses are investigated. In both cases, the model

exhibits qualitative agreement with major features observed in the measured images.

5



MIine signatures were also simulated in the visible band to identify major rad iotetric

contributions, and qualitative agreement was also noted.

Chapter 5 reviews prior work on mine detection algorithms and describes the de-

velopment of an estimator-correlator mine detection algorithm. The baseline [3X algo-

rithm is discussed along with some beneficial modifications. The estimator-correlator

(EC) approach is described in Sections 5.5 and 5.6. A locally adaptive EC detector

was developed to cope with spatially varying clutter environments. Processing results

from experimental data are used to demonstrate the effectiveness of the pro[)ose(l al-

gorithbms.

Conclusions, presented in Chapter 6, summarize the work and highlight its main

contributions. Suggestions for future work are also presented.
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CHAPTER 2

ISSUES AFFECTING EO MINE SIGNATURE
MODELING

In this chapter we review some physical issues relevant to EO mine signature

modeling. We begin by defining the scattering geometry in Section 2.1. Radiation

sources and transmission paths involved in EO mine sensing are described in Section

2.2. Critical surface properties and models for random rough surfaces, which arce

commonly assumed for landmines and natural clutter, are discussed in Section 2.3.

A critical target property, the bidirectional reflectance distribution function (BRDF)

is discussed in Sections 2.4. A review of previous attempts to derive analytical ain.d

numerical BRDF models for randorn rough surfaces appear in Section 2.5. Another

key property, the emissivity, is discussed in Section 2.6. The data sets used in this

dissertation are presented in Section 2.7. A review of basic radiometric concepts and

their application to mine detection can be found in Appendix A.

2.1 Definitions

In electromagnetic scattering problems it is conventional to refer polarization di-

rections to the so-called "plane of incidence" defined by the surface normal and the

wave vector of the incident wave. Polarimetric components in this plane are referred
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to as "verticallv" polarized, and orthogonally polarized components are referred to

as "horizontally" polarized. For a unit wave vector k) , where j i.s denoted to

incident and scattered directions, its associated horizontal and vertical vectors are

-= - (2.)

Ikj x fil
3 = •3 xkl• (2.2)

in which hi is the surface normal.

The Stokes vector [16] uses four real quantities to accomplish the same puirpose.

The vector components are the intensity I, the degree of polarization Q, the plane of

polarization U, and the ellipticity V [17]. The complex electric field conillpoilents, (,h

and e, in the horizontal and vertical directions respectively, are related to the Stokes

vector components as follows:

I [ < eheCh + eC, >
i= Q _ < tCh'[*, - e.vCe*) > (2.3)

I U 2r10  2Re < ehe (2, >

[VIL 21m < eChe* >

All of the Stokes vector components have the units of radiance (i.e., W/n'sr), and

the quantitY I is the total scattered radiance (also sometimes referred to as "specific

intensity" [18]). An EO sensor records irradiance (W/m 2) received on its image plane,

but in this work we will evaluate radiometric signatures in terms of radiance because

for a small patch at the image plane (a pixel), the measured irradiance is proportional

to the incident radiance on the lens and is subject to changes in optical parameters

of the sensor [19] (f-number fp and lens diameter d). Comparisons of signatures

in radiance are invariant to sensor parameters and focus on physical properties of

radiative transfer.



While the para.ieters I and Q are evident, the meanings of the quantities U and

V are less apparent. Egan [20] explains that U expresses the excess of radiation

polarized in the +450 direction over that in the -45' direction relative to the plane

of incidence, and IV indicates the amount of circularly polarized radiation.

In many of the calculations that follow it will also be convenient to use a modified

Stokes vector [21]

I < Ch,*, > (2.4)

U 2 7o 2Re < >h j(. >
V" 21Ir < Che*, >

in which the classical I and Q components have been replaced bv the radiance in the hi

and 9 polarizations respectively.' The classical Stokes vector is readily reconstructed

from

[ I ~ § (2.5)

2.2 Radiation Sources and Paths

Passive EO images of landmines and clutter include radiometric contribuLtiotls

that propagate to the sensor via different paths. This section provides information

on several common sources and their transmission paths.

The radiance received by an EO sensor includes both thermal emission and re-

flected illumination. In the first half of this section, we study the properties of thermal

emitters and the sun. Their polarization properties are also addressed.

The received radiance may propagate directly from the source to the detector or it

may propagate along a complicated path with scattering at multiple locations. One

can categorize the radiation paths as direct emission, single scattered or multiply

'Note the ordering of the horizontal and vertical components. Some authors (e.g. [18]) use the

opposite convention.
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scattered. In this analysis we will neglect the paths with more than two reflections,

since many objects in the environment tend to partially absorb the incident radianc'e.

Later in this section we describe viewing geometries in which direct emission, single

scattering, and multiple scattering are important.

2.2.1 Thermal Radiation

For passive infrared sensors, thermal emission from the target is the radionietric

component of primary interest. The amount and spectral dependence of thermal

emission are defined by the temperature of the target. Because solar radiation has

little energy at wavelengths longer than 3 /Im, MWIR and LWIR sensors respond to

the solar illumination only to the extent that the target absorbs energy and converts

it to thermal radiation.-

Thermal emission derives from blackbody radiation. As mentioned in Section

A.4, a blackbody absorbs all incident radiation regardless of wavelength and incident

direction. During emission, a blackbody behaves like a perfect diffuse emitter with

a spectrum specified by its temperature and the Planck distribution. For any real

surface, the incident radiation is partially absorbed and partially reflected. In addition

the amount of emitted energy is always less than the incoming energy. Such a surface

is often referred as a graybody. The directional dependence of thermal emission for

a graybody is not necessarily diffuse, but is a function of several surface properties.

Thermal emission from graybodies is related to blackbody radiation via the enis-

sivity S. The emissivity is defined as the ratio of the actual emitted radiance L>, to

the radiance LBB emitted by a blackbody at the same temperature. In general, enmis-

sivity E depends on the wavelength A, temperature T and viewing geometry (0,(,5).
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\'Ve write

~~~~~c(A, 0 . )- (-A 0, 0. T)S(,g T~LG( A, 0, ,T T) (2.6)
LBB(A,T)

The value of einissivity lies between zero and one. Other representations for einissivitv

that involve spectral or spatial averages are commonly used. In this work the sen-

sors integrate over a relatively broad passband, and we will use the total directional

emissivity, in which the spectral variation has been averaged out. In addition, it will

be assumed that the emnissivity is independent of the temperature and the surface is

isotropic (no dependence on 0 in emission), leading to

E (0) f L,( A, 0, T)dA (2.7)
f LBB(A, T)ddA

in which the integral extends over the sensor passband.

Some materials and viewing geometries [201 produce polarized thermal emissions.

For smooth surfaces the polarization can be explained by Fresnel's equations. Re-

ferring to the parallel and perpendicular scattering planes, which are defined by tie

surface normal and the incident wave direction, the parallel and perpendicular elnis-

sivity components are given by

2 sin 0 cos 1

$11 = sint )cos(o 2 ) (2.9)

0isinstheosn( 0 '

where 0 is the emission angle and 0 is the angle of refraction in the medium given by

Snell's law

sin 0 - ni sin (2.10)
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in which rn is the complex refractive index. The difference in the two polarization

planes increases as the emission angle diverges from the surface normal. For unpo-

larized sensors, the effective emnissivity is the mean of the two polarizations.

11 = (5 1 + ) (2.11)

For rough surfaces, the analysis is significantly more complex, and it. appears in

Chapter 3.

2.2.2 Solar Radiation

Solar radiation is the dominant source for visible sensors, and it strongly inlulences

IR sensors via surface heating. In this section we discuss the properties of direct solar

radiation (sunlight). Solar radiation that is scattered by the atmosphere (skylight) is

described in the next section.

Outside the earth's atmosphere, the spectrum of solar radiation can be approx-

imated by a blackbody radiator at 5785K. The incident flux is approximately 1390

\V/m 2 [22]. The insolation at the earth's surface is affected by the celestial rela-

tion of the sun and the earth, which determines the slant path and the atmospheric

composition, which regulate absorption and scattering. The actual insolation niay

change significantly due to various meteorological conditions. On a cloudless day [or

a near vertical sun, about 80 percent of the incident flux reaches the ground. Only

50 percent of incident flux may pass during a cloudy day [23].

Atmospheric scattering losses are quantified by the "optical thickness" parameter

T, which is the integral of the volume scattering coefficient /3 [24]. For a vertical slant

path at altitude z, T is

T(A, z) j 3(A, z')dz' (2.12)
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For a Rayleigh atmosphere, the volume scattering coefficient is a function of the

molecular number density N, the refraction index of air at, and the wavelength A.

247r3 (M 2 - 1,2

~NA4 K7T2±2 (+ 23

The optical thickness is highly sensitive to wavelength (0( 1/A4). A large optical

thickness, which arises for a shorter wavelength, implies more flux is lost to scattering.

For the U.S. standard atmosphere, the optical thickness for red light (700 nn1) is only

a tenth that for blue light (400 nm) at sea level [25].

Solar radiation is unpolarized. It can become polarized when scattered bv the

atmosphere, as discussed below.

2.2.3 Skylight (Atmosphere-Scattered Solar Radiation)

Solar radiation can reach the target via atmospheric scattering. This scattered

radiation is often referred to as skylight. In this section, we discuss the scat tering

processes, polarization properties, and meteorological dependence of skylight.

Skylight includes both scattered solar radiation and thermal emission from the

atmnosphere. At, shorter wavelengths (visible and near IR.), the effect of the latter is

small compared to the former except during night time.

The scattering process is illustrated in Figure 2.1. A concise representation of the

scattered spectral volume irradiance is [26]

dE(A) = E,(A)TI (A)13s...(A, 0)T, 2 (A) (05 udl - (2.14)

.2 _

where E.,(A) is the exoatmospheric spectral solar irradiance, 0.,,, is the scattering

coefficient of a unit volume of the composite atmosphere, and T(A) is the transrnis-

sion coefficient of the path. The angles, 0 and a, which define the relation between
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the sun, the scatterer and the target surface, affect the scattering coefficient and the

scattered irradiance as well. If the above parameters are known. the total irradi-

ance from scattered solar radiation can be derived via a volume integral over the

upper hemisphere, but exact solutions are not available. because of the complicated,

time-varying atmosphere composition. Analytical models such as Rayleigh and _1ie

scattering permit, one to predict the scattering behavior under certain conditions. The

MODTRAN/LOWTRAN codes, which are simulation packages for light [)ropagat1io0

in the atmosphere, use numerical integrations to estimate the radiance received by

sensors under specified conditions. These programs take gas and aerosol composition

into account and are widely used in remote sensing.

d v

Figure 2 1. Scattered solar irradiance from a unit volume.
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An important property of skylight is its polarization. Solar radiation becomes

partially linearly polarized upon scattering. The degree of linear polarization is a

function of' wavelength and the geometric relation of the sun, the scatterer and the

observer.

An explanation for the polarization and intensity of skylight was presented by Lord

Rayleigh based on the so-called Rayleigh atmosphere assumption, which specifies that

particles in the atmosphere are spherical, isotropic, nonionized, much smaller than the

wavelength of the incident light, and exhibit a significant density contrast with respect

to the surrounding medium. A simple expression for the degree of linear polarization

DoLP(O) of skylight, which is the ratio of the difference and sum of intensities in the

perpendicular an(l parallel polarization planes, is derived from Rayleigh's theory as

[h -- Iv sin 2 0
DoLP(O) = +-- 1 + s 2 o (2.1 5)h +v 1, 1+ Cos-`0

where 0 is the angle between source and observer, measured from a scattering particle.

This formula predicts a zero polarization in the sun's direction and a total linear

polarization at 90 degrees away from the sun. Observation of skylight confirms that

it has a smaller polarization near 0 = 0 and reaches its maximum when 0=900 as

predicted, but the degree of polarization is smaller than Equation (2.15) predicts.

The discrepancy becomes more significant, as the observation wavelength decreases.

Rayleigh's theory also fails to explain the neutral points mentioned earlier. These

failures arise because the Rayleigh theory does not consider multiple scattering, and

the Rayleigh atmosphere ignores larger aerosols.

More comprehensive models have been developed to describe scattering and ab-

sorption in planetary atmosphere. Coulson [24] lists analytical, approximate, and

computational methods. Among them, the radiative transfer approach [17] presented
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by Chandrasekhar provides a realistic estimate of scattering in stellar atmospheres.

Chandrasekhar introduces three non-linear integral equations involving H-, N-, and

)"-functions for scattered radiation in a plane-parallel Rayleigh atmosphere. That

approach is applicable to an atmosphere with anisotropically distributed gases. The

difference in polarizability is accounted for by the optical thickness T, which is a

function of wavelength. Evaluation of those nonlinear integral equations shows that

the degree of linear polarization for visible light reaches a maximum that is less than

unity, as seen in field measurements. At MWIR and longer wavelengths, the optical

thickness is small. Therefore, little depolarization occurs, and the simple Rayleigh

scattering equation shown in Equation (2.15) is sufficient to estimate the degree of

polarization of skylight.

Although analytical methods provide physical insight into the nature of skylight,

they are seldom applicable in practice, because of the complex composition of real

atmospheres. Attempts have been made to predict atmospheric transmission and

absorption using computational methods. The LOWTRAN code and its descendant.,

MODTRAN, were developed for this purpose. An extensive parameters set. is input

to characterize the composition of atmospheric gases and aerosols. Corrections for

multiple scattering are used to generate estimates of the direct and scattered radiance.

This dissertation employs the LOWTRAN/MODTRAN codes to calculate unpolar-

ized (Ih + J,) skylight radiance and solar irradiance. The polarization of skylight is

derived from Rayleigh scattering, as shown in Equation (2.15).
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2.2.4 Radiometric Sources Considered in This Work

As noted previously emitted and reflected radiance can reach the sensor via direct

and scattered routes. Both the direct and scattered paths are needed for a realistic

simulation. In general, the direct path and lower-order scattering dominate the ra-

diance, because these components have less attenuation. Their relative importance

depends on the sensor band, the source type, and the viewing geometry. Higher-

order radiation paths are often ignorable, because of their greater path length and

absorption and scattering losses that occur during reflection.

In this work, three sources are considered, which are thermal emission, solar reflec-

tion and skylight reflection. Figure 2.2 illustrates these primary radiation sources and

the ray paths that contribute to the radiometric signature. Because of the elevated

surface-laid mine structure, higher-order paths are possible to form among mine and

nearby soil surfaces. Direct and single-scattered components are examined first. A

few higher-order paths are then considered as possible corrections. The direct path

provides the largest contribution from thermal emission. Single-bounce solar reflec-

tion dominates the solar response in the visible and near IR bands. Single-bounce

skylight is also included. Even though its source radiance is small compared to the

sun, the hemispherical extent of skylight can result in a substantial contribution, par-

ticularly when polarization is important. When the scene includes special geometric

shapes (e-g., dihedrals and trihedrals) the importance of some higher-order paths can

be enhanced.
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341

(a.) Thermal emission. (b) Solar reflection.

(c) Skylight, reflection-

Figure 2.2: Transmission paths of sensor received flux fromn various sources.
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2.3 Physical Properties and Geometric Structure

The most important target, properties for a radiometric sensor are the surface

temperature and reflectance. In this section parameters that affect those properties

are reviewed. Terminology and common models used to describe the structure of a

surface are also introduced.

2.3.1 Thermal Properties

The thermal emission from a surface is specified by the surface temperature and

emissivity. The surface temperature is determined by solving the heat transfer equa-

tion, which takes into account conduction, and, via boundary conditions, convection,

absorption and emission. Temperature gradients within a medium cause conduction,

which transfers energy by diffusion. Convection transfers energy between solid stir-

Faces and fluids. In the mine detection application, convection takes place at the

ground/air interface. Solar energy is absorbed while the thermal emission is radiated

from the surface.

The heat transfer equation describes thermal conduction in solid matter and is

given by [12]

C(r) T(r, t) V (K(r) 7 T(r, t))) (2.16)
Ot

where K is the thermal conductivity of the material in units of [Wrn-'K-'] and C is

the volumetric heat capacity in [Jm- 3K-1 ]. The ratio of the thermal conductivity to

the volumetric heat capacity defines the thermal diffusivity k [mi2s-I].

In the numerical approach used here, the semi-infinite soil region is truncated at

a finite distance, thereby introducing artifical boundaries where boundary conditions

must be applied. In addition, the heat transfer equation does not hold in the air above
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the mine and soil, so another boundary condition is required at the air interface. At

that interface, an energy balance is imposed as the boundary condition. Specifically,

the net heat flux into the ground is related to the spatial temperature gradient at the

surface as

Fnet(t) = -K OT(r, t)1  (2.17)
at

where the net heat flux comprises incident radiation from the sun and sky, theriial

emission to or from the ground, and convection that exchanges heat energy with the

air. We write

Fnet(t) =F8.. (t) + F~kY(t) - F6 ,,,(t) - FCIU),(t) (2.18)

Niodeling approaches for radiation and convection are presented in Section 3.2

2.3.2 Small-Scale Surface Structure

The roughness of a surface at microscopic scales has a strong effect on surface scat-

tering and emission properties. In this section we present a mathematical description

of rough surfaces that can be used for the construction of a radiometric signature

model. Natural and man-made objects will be modeled as large-scale facets with a

material-specific roughness as shown in Figure 2.3.

Gaussian random processes are commonly used in random rough surface modeling.

For the convenience of model development, Gaussian correlation function is often used

to simplify the rough surface representation, although it is not necessarily a realistic

description for many natural surfaces. If the surface is assumed to have a Gaussian

correlation function, two parameters are critical in describing the surface: the surface

height standard deviation a, and the surface height correlation distance 1. We will

employ a zero-mean normal distribution for the surface height as a function of spatial

20



cooridinates (z = (x, y)).

P(f2 (XY)) exp( " ) (2.19)

The joint probabilitv density is

P .2 - 2Cfzf. + f,'2

p() (x, (X ), fW(, ', y')) 2 /exp(- ) (2.20)
27ra72 1I-C2 2 ( 2 (1 C2)

For a stationary isotropic surface, a Gaussian correlation function C can be exp)ressed

in terms of the distance between two points in the local plane (r (r -- ') 2 + (y - 11)2)

C(7-) =exp(--- (2).21t)
1-2

For a given (T, a smaller I implies a rougher surface.

Large-scale Zero mean small-
surface Oiting scale roughness

AA•.

Figure 2.3: The small- and large-scale roughness of a surface.

2.4 Bidirectional Reflectance Distribution Function (BRDF)

The bidirectional reflectance distribution function (BRlDF), which was introduced

by Nicodernus [27], defines the directional reflectance of a surface. This reflectance
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is a function of several variables including the properties of the surface material, the

viewing geometry, and the incident and sensed polarization. For mine detection appli-

cations, the difference in reflectance between mines and clutter may produce contrast

in EO imagery. The polarization dependence of mine signatures is of particular inter-

est here, since it has been observed that polarimetric contrast may exist even when the

unpolarized contrast vanishes. Natural surfaces tend to produce unpolarized returns,

while (typically smooth) man-made surfaces tend to produce linear polarization.

In this section, we begin with a. review of the definition of BRDF for unpolarized

sensors. The case of polarinietric sensors is treated in Section 2.4.2, where we intro-

duce the Stokes vector and Mueller matrix. Finally, we review a number of BRDF

models in Section 2.5, including those that treat rough surface scattering phenomena.

2.4.1 BRDF for Non-Polarimetric Sensors

The BRDF of an unpolarized wideband sensor is defined [28] as the ratio of the dif-

ferential radiance dL,.(0, 0,) reflected in a. given direction to the differential incidence

(irradiance) dE (Oj, Oi) coming from a second direction:

dL, (0, 0,•) 2
YT(Oji, Oi, 0 r0) =~(rr (2.22)

Using the relation between the differential radiance dLj and the differential incidence

dE, on a surface

dE, (O, 0j) = J dQLj(O, ) cosO, dQ, L, (O,,) cos -i (2.23)

we can derive a relation between the incident and scattered radiance

(o, 0 0dL (O, 0)
Li (Or, L( ,) cos OOdi (22.1)
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Figure 2.4 shows the incident and scattered wave vectors as well as their relations t10

the three axes of a Cartesian coordinate system (1,9,,2) and a spherical coordinate

system (H, ), o). The subscript i indicates a relation to the incident wave, while the

subscript s refers to the scattered field. The differential surface is assumed to be

planar, to lie at the origin, and to be oriented with i i 2.

A Scattered field

Incident 
h JAI

field hi

OjO.s

Figure 2.4: Geometric definitions.

By convention, the incident wave is defined in the x - z plane with 0, G [0, 90"] and

0. The scattering direction can lie anywhere in the upper hemisphere (O E [0, 900]

and (b G [-180', 180']). The quantities that appear in these expressions are functions

of wavelength A. When narrow-band sensors are being used, it is appropriate to state

23



this dependence explicitly

F(Oi, 0j, 0,• 0, A) dL,(O, ., A) (2.25)
dE•(O0, 0j, A)

2.4.2 BRDF for Polarimetric Sensors

A concept similar to that underlying Equation (2.22) can be used to define a

polarimetric BRDF. We have [29]

_FlS S, (0, ý. l, 1S , A) dL•,(O., , ,0 A) (2.26)

dEaljO(, 0j, A)

where the polarization angles of the incident and scattered waves are denoted (Y. and

a,,, respectively. These angles, which satisfy -7r/2 < a < -F/2, are defined as positive

for an electric field polarization that makes an angle cv measured counter-clockwise

from the plane of incidence for an observer seen looking toward the oncoming ray.

The BRDF components defined in Equation (2.26) completely describe the scattering

process and are the basis for most results presented in the literature.

The principle of reciprocity demands that the same response be obtained if we

interchange source and observer. Thus, the BRDF must satisfy [29, p. 512

cos0,.T7•,, (0j, i 10s, 0, A) cos 0•SY0,"(0), 0.10i1, (N, A) (2.27)

The Mueller matrix [30] is an alternative and widely accepted method to address

scattering. The Mueller matrix defines a linear transformation of Stokes vectors that

occurs during scattering (or transmission), such that the scattered Stokes vector is

the product of a differential incident Stokes vector dI and the Mueller matrix M.

We write

dI8 (07, 0,) = M(0,0, 1 O,, O7)dV(O¢, I.•,) (2.28)

2Also see [18, p. 14].
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The Mueller matrix has also been referred to [17, 31, 32] as a "Stokes matrix", a

"transformation matrix" and a "phase matrix." When extended sources are involved,

the above expression must be written in integral form as

1O, 0, ) /J d0/dqsin O0 cosOiM(O,o.61i, Oi)I.(Oi, 0) (2.29)

IdQ cos O M(O , ,10,o (/,,)

Since they relate the incident and scattered radiance, the elements of the Mueller ma-

trix are analogous to BRDF functions for the components of the Stokes vector. Both

quantities have units of reciprocal steradians. The four frequently used polarimetric

BR.DFs: F,,, C,h, )Tb1,, are , are the elements in the upper-left quadrant of the

Mueller matrix.

The elements of M can be derived from first-principles electromagnetic analysis.

A wave scattered from an elemental surface dA with normal oriented at angle Oi io

the illuminating wave can be expressed as

es' S),? SR [e (2.30)

[f one solves the electromagnetic scattering problem, then the quantities Sj; are

known, and the Mueller matrix is given by [21, §2.12], [33, p. 131

M I X (2.31)

cos Oi
"L K Shh,qýh > < S,,hSh S > Re < S1,,S,-, > -I-r? < >

"< Sj,, S•. > < S.S', > Re < Sh,.S'[v > -1h < Si -S.>
MRe < Shh,-'h,, > Me• < S,,hS•,,, > Re < Sh1,S•,*t. + S, 'hST,,. > -- [TI• < Shk,', +} Sb,.h~qTl >

21,r < ShhSý, , > 2In < S5,hS•,, > Im < ShhS,, + .5,hS;,. > Re < S1, h S,,. + S, .hS',. >

This equation is the basis for calculations of the Mueller matrix that appear below.

Equation (2.31) suggests that 16 unique quantities are needed to completely spec-

ify M for each source-viewer geometry. In the case of mine detection, the incident
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polarization states of interest are (1) unpolarized (for solar radiation and surface

thermal emission), (2) partially linearly polarized (for skylight), or (3) fully linearly

polarized (for an active (laser) illuminator ). Those sources have no circularly polar-

ized component, and their corresponding V parameters are zero. This in turo reduces

the number of necessary elements from 16 to 12. Furthermore, mines typically have

no exposed bare metal surfaces, which implies that no circular polarization is excited

from those non-conductive surfaces without circularly-polarized sources. Therefore,

we can further reduce the nunhlber of required matrix elements from 12 to 9. In a large

data collection reported by Willow Run Laboratories [34], only four matrix elements

were recorded (those that relate parallel and orthogonal polarizations). Those four

components are sufficient to estimate scattered fields if only tnpolarized or horizontal

or vertical polarized sources are used.

2.5 An Overview of Scattering Models

Although it is possible to determine a Mueller matrix through mneasurement, the

cost of the required data collection is enormous, since the matrix is a function of

wavelength and both the incident and reflected angles. As a result,, many attempts

have been made to construct scattering models that are both physically correct and

computationally tractable. Due to the tremendous variations in the properties of nat-

ural and man-made surfaces, it is challenging to develop a universal scattering miodel.

Nonetheless, several acceptable models have been developed for specific surface prop-

erties. In this section we describe a number of those models. Although rigorous

numerical simulations of scattering from random surfaces have been presented, the
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most useful approaches to the problem employ some form of analytical approxinma-

tion. Unpolarized BRDF models are also of considerable interest to the computer

graphics (CG) community in their quest for photo-realistic imagery, although CG

BRDF models tend to be somewhat simplistic because of computational efficiency

requirements.

2.5.1 Specular Models for Smooth Surfaces

Wheii the surfaces of interest are smooth (i.e., planar over regions very barge con-

pared to a wavelength), the scattered fields can be approximated by reflected rays,

which are determined from the classical Fresnel reflection coefficients. This approach,

which assumes that all reflections are specular, is easy to implement numerically, and

it is the basis for many ray-based image simulators. As long as the electromagnetic

properties of the surface (i.e., the permittivity and permeability) are specified. the

reflected radiances are the product of the incident radiance and the reflection coeffi-

cient. The direction of the reflected radiation is given by Snell's law. We have [18, p.

202-203]

RF(R)2  0 0 0

M L ) Rh (0i)F 0 0j0 0 e(R,(Oi)R*(0i)) h rn(R,(0,)R*(0j))
o m(R (0,) R-(0,)) R e(,(OR;,(0j ))R

8(cos 0, - cos 0j) 60, - (2 +2)

Cos 0i

in which the Fresnel reflection coefficients (for nonmagnetic media) are given by

RhjA) = cos 0, - V7; - sin2 01- (2.33)
cos 0, - /m2 + sin 2 02

rr2
Mf Cos Oi - r"-1 Sin, 02 2.4/R, (0i) = - (2.34)
' 2 cos 02 + r7 2 - sin1 0,
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In these expressions m is the complex refractive index of the surface, and 0, is the

incident angle measured with respect to the local surface normal.

2.5.2 Diffuse (Lambertian) Models

The specular model described above, in which all scattered energy leaves along

the specular direction, is the limiting case of a perfectly smooth surface. A perfectly

diffuse (Lambertian) scatterer represents the opposite extreme, in which the scattered

energy is equally distributed in all directions.

Diffuse scattering is not produced by scattering from an infinitely rough surface.

Instead, it is thought to be the result of multiple scattering that occurs below the

surface and, as a result, its modeling is somewhat more complex. The diffuse com-

ponent is, nonetheless, very important. Diffuse reflectance is commonly assumed iII

radiative heat transfer, and it is also used in the well-known radiosity method [35].

The polarimetric properties of a. scatterer are independent of its specular or diffuse

nature and, as a result, the Mueller matrix is not completely specified by a specifi-

cation that the material is simply a diffuse scatterer. We can, however, specify the

matrix for a scatterer which is completely depolarizing, non-absorbing, and diffuse:

-1/2 1/2 0 0

S1/2 0 0(2.35)Tr 0 0 0 0

-0 0 0 0

This material converts all incident polarizations into equal components of the c and

h linear polarizations, and it reflects all incident radiance, absorbing nothing. An

analog of the above material is an optical depolarizer, which has the same Mueller

matrix [36].
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Studies of the physical basis for diffuse scattering are relatively uncommon, but a

work by Hanrahan and Krueger [37] treated the problem of subsurface scattering in

layered media. In that work it was asserted that many natural materials, inicluding

leaves, skin, snow, and sand, were well described by thin layers of random media, and

a model for such materials was developed. The formulation involves a Monte Carlo

solution of a one-dimensional integral equation for the radiance. The results compare

favorably to experimental data.

Diffuse subsurface reflection from inhomogeneous media was examined by Nkolff

[38]. By using the classical Fresnel transmission coefficients to describe the radiation

entering and exiting the medium and corribining that result wvith Clmandrasekhars's

classical radiative transfer analysis of multiple scattering in planetary atmospheres

[17], Wk'olff was able to derive a more robust predictor of scattering from non-specular

surfaces.

A related topic was investigated by Oren and Navar [39]. It has been note(]

that when an observer views an otherwise diffusely reflecting object along the in-

cident direction (a backscattering geometry), then the scattered field is decidedly

non-Lambertian. Specifically, the surface reflectance increases stronglY at grazing

angles, instead of the cos 0 attenuation predicted for a Larnbertian surface. Using

an analysis similar to that of Torrance and Sparrow but giving each surface facet

a Lambertian (rather than specular) response, Oren and Navar were able to show

that. this effect could be explained by surface roughness. They present approximate

expressions for the BRDF which agree well with experiment. The models of Wolff

[38] and Oren and Nayar [39] have been compared in [40].
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2.5.3 The Phong Model

The Phong reflection model [41], widely known in computer graphics, is a purely

empirical construction for non-polarimetric returns. The scattered light is assumed to

be a combination of ambient light, diffuse reflection, and imperfect specular reflection.

The three terms are combined using weighting factors wa, Wd and w, as follows:

I(l) I + Ij Wd(ki fi) + W, (k k,) (2.36)

in which the scalar in is a user-defined parameter, the vector fl is the local surface

normal, and k,, k,, and k, are unit vectors in the direction of the incident ray. the

specular reflected ray, and observer, respectively. The weighting factors are con-

strained to sum to unity

IV, + Wd v 'j+ = 1 (2.37)

The power law 'n is chosen to simulate imperfect specular reflection. Typical values

range from 10 to over 100 depending on the surface roughness. Note that the addition

of the ambient light makes this model a nonlinear function of the incident radiance.

2.5.4 The Beckmann Model (Physical Optics)

Real surfaces are neither perfectly specular nor perfectly diffuse, and predicting

their behavior requires a more careful treatment. Beckmann [42] was among the

first to present a rough-surface scattering analysis based on rigorous electromagnetic

concepts. He assumed that the surface of interest was a perfect conductor with a

random surface height. The scattered field was derived using a physical optics (PO)

approach, which is also known as a "Kirchoff approximation."
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The formulation begins by expressing the scattered field as an integral over a

dvadic Green's function and the unknown current density. The integral is evalu-

ated by assuming that the local surface radius of curvature is large compared to the

wavelength, which in turn imposes an upper limit on the wavelength. A randomn

(Gaussian) surface height distribution with a finite correlation length is used to rep-

resent the rough surface. The PO model is applicable to surfaces ranging from very

smooth to moderately rough. The resulting expression for the scattered field contains

two terms which correspond to coherent and incoherent scattering. The coherent term

corresponds to the specular return from a smooth surface, and it vanishes in the small

wavelength limit. The incoherent term accounts for diffraction due to roughness. For

a perfectly smooth surface, an incident ray is reflected along the specular direction.

As the degree of surface roughness increases, the single reflected ray is reduced Io

a broad scattered lobe (the incoherent return) that is roughly centered about. the

specular direction. If the surface is relatively smooth, the incoherent term tends to

a broad beam and is referred to as a specular lobe. That lobe becomes broader and

more diffuse as the surface roughness increases, and it may also shift away from the

specular direction.

Tsang et al. [18] presented an analysis that makes explicit the polarimetric depen-

deuce of the PO model. The PO model can be reduced to an analytic form if the PO

integral is evaluated asymptotically using the method of stationary phase, which is

equivalent to the geometrical optics limit. The PO model is described in more detail

in Section 3.3.
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2.5.5 The Torrance-Sparrow (Geometrical Optics) Model

Another early approach to the rough surface scattering problem was described tby

Torrance and Sparrow [43]. In that formulation specular and diffuse contributions

are combined in an ad hoc manner. The rough surface is modeled as a composition

of planar facets having random orientation. The facets are assurned to be inuch

larger than a wavelength, and a geometrical optics (specular) approximation to their

scattering is employed. The approach can be used to explain the off-specular maxima

observed in rough surface scattering. The work in [43] was developed for unpolarized

light. The results are somewhat involved, but its essential components are given iy

the following BRDF

ft(kIki) z Wd Pd + w kjGc/ 7a' (2.38)7 4 (ý . fi) (-ký,, fi)

in which Wd and w., are weights for the diffuse and specular components, pj is the

albedo for the diffuse component, F is the (unpolarized) Fresnel reflection coefficient,

G is the self-shadowing correction, k1 and k, are unit vectors in the direction of

the source and observer respectively, fi is the unit normal of the surface, (V is angle

between the surface normal fi' and the normal of a surface facet that would produce

specular reflection in the direction of the observer. The latter normal vector is simply

the normalized mean of the incident and observer vectors, namely:

n -(2.39)

-ki +k,

and we have

Cos a• = fl' • z (2.40)

The primed unit vectors have the same meaning as the unprimed vectors, but they

are expressed in the coordinate system centered about W'.
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Both the Beckmann (B) model and the Torrance-Sparrow (TS) model are based

(largely) on physical insight [44]. Both use Fresnel reflection coefficients to account for

reflections from locally smooth facets of arbitrary materials, and both use a normal

density to describe some random features of the surface. (For B, the surface height

is normally distributed. For TS, it is the number of facets at the angle a that is

norrnallv distributed.) The TS model, however, includes two significant corrections

riot present in the B model: (1) the empirical combination of diffuse and specular

components, and (2) the self-shadowing function G. It is apparent that the TS model

involves several free parameters that can be adjusted to replicate the appearance of

various surface materials. Cook and Torrance [45] adopted the TS BRDF as the

basis for their work in computer graphics. Those authors also included the scatterer's

spectral dependence so that the spectral composition of the reflected light would be

correctly modeled.

The shadowing function G is an important component of the TS BRDF, since

it, eliminates nonphysical behavior for grazing angles of observation. In developing

G, Torrance and Sparrow assumed that all facets formed "v"-shaped troughs, which

could both shadow the incident field and obscure the observer. This concept is also

used in other scattering models [46] involving observation near grazing.

A concise representation of the geometric attenuation function is given by Wolff

in [47] as

G(k~lki) =m {ln , 2 cos 6cos Oi 2 d c dos O } os (2.41)

where 6 is the angle between the local surface normal in and the highlight vector h

(k , - kJ), and 'V/, is the angle between the highlight vector and the incident vector

k?.
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As originally described, the TS formulation deals with unpolarized light. It can,

however, be extended to polarized light by using the appropriate Fresnel reflection

coefficients in the expression for the specular term. This approach was used by Wolff

[47] to infer surface orientation fromi measured depolarization.

2.5.6 The Beard-Maxwell Model

The Beard-Maxwell (BM) model, first described by Maxwell et al. [46], is closely

related to the TS model, but it uses a number of additional errpirically derived

constants to provide a more general modeling capability. In its non-polarimetric form

it employs both specular and diffuse components as follows:

.F = _t- +Fd (2.42)

in which E, is the specular term in the form

F (1k' . fi')GH (W' .- ) (2 A3)
4 (k, . f) (kj . f)

and -Fd is the diffuse contribution, for which one of two expressions is used

Ed- Pd 2p,, (2.44)
(k-.-i)+(k,.ii)

The decision of whether to use the constant or ratio forms is determined b1 whether

the specular component adequately expresses the angle dependence observed in niea-

surements. As in the TS model, F is the Fresnel reflection coefficient and G is a

self-obscuration factor. The expression for G used by BM is somewhat different than

that used by TS, and it involves a small number of empirical paramneters. The factor H

expresses the density of random facets and is inferred indirectly from iieasurements.
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Some modifications to the BNI model are presented by \Vestlund and Meyer [481,

who use their results in a public-domain BRDF database known as the Nonconven-

tional Exploitation Factors Data System (NEFDS).3 That database, which is main-

tained by NIST, contains BM model parameters for some 400 materials.

2.5.7 Perturbation Methods

A number of perturbation techniques have also been used to derive rough-surface

scattering matrices. The Small Perturbation Method (SPM) [49] is a popular ana-

lytic approach for rough surface scattering, and it, is widely used in satellite-based

remote sensing applications. Unlike the PO model, which assumes a large curvature

radius and a short wavelength, the SPM approach requires small (with respect to

wavelength) surface height and slope variations. Although it seems that the PO and

SPM approaches are valid in different limiting ranges, Holliday [50] shows that by

including higher-order terms in PO it, converges to the SPM solution in the small

height limit.

Other perturbation approaches have also been developed for analyzing rough sur-

face scattering. Voronovich [51] devised the Small Slope Approximation (SSA), in

which the surface slope is assumed to be a small parameter. Jackson et al. developed

the phase perturbation technique for a complex surface source density excited by an

incident field [52].

2.6 Relation of Emissivity and Scattering Properties

We can also relate the emissivity of a surface to its BRDF or its Mueller matrix.

For a surface element dA in thermal equilibrium with its surroundings, the absorbed

3http://math.nist.gov/- FHunt/appearance/nefds.html
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and emitted power must be equal. In addition, energy conservation requires that the

scattered and absorbed power must equal the incident power P.. Thus,

P, = Pý - P, (2.45)

where P, and P, are the scattered and emitted power. The emissivity $t (0,, 0,) is equal

to the ratio PI/P,. The power incident on a surface of area dA is dA COS 0,1(. 1/2t],

where 710 is the intrinsic impedence for the free space, and the scattered power is given

by the integral of cos ' /2!qo over the hemisphere. We have

Y1- =vh f dQ, cos 0,7- 2IC J2 /27/o

dA cosOf[ý1c (i/2rio]

1 o~~hfdQ' COS 0, f"4(0i, i10 0')
4wr cos 0,

= 1- Z /dJ9'O,•,O,)

0='h

where we have used Equation (2.27) and the relation between the bistatic scattering

coefficient and the BRDF. The above expression is consistent with the well known

emissivity-reflectivity relation:

E" = I - R (2.47)

In remote sensing, the emissivity is often associated with the brightness temperature

T1 [53, 18]. Assuming the body of interest has a uniform physical teemperature T, we

can write TB as

TB(O,) T. E(0, ) (2.48)

Macelloni et al. [54] conducted emissivity measurements to compare the p.)erfor-

mance of several classical BRDF models. It was shown that analytical models can

produce reasonable agreement with measured data if used in valid surface roughness

regimes and frequency bands.
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Although we have shown that ernissivity can be derived by integration of the

bistatic reflection coefficients, it may be difficult or expensive to carry out the integra-

tion directly. Yueh et al. [55] proposed an alternative scheme to compute brightness

temperatures for ocean surfaces. The scattering coefficients derived from SPM models

were integrated over all spectral length scales instead. This approach avoids errors

that result from large scattering cross sections in the original integration domain, and

it enhances emissivity calculation accuracy.

The emissivity received by a polarimetric sensor can also be expressed using the

modified Stokes parameters presented in Section 2.4.2.

[h < (-C/* >

US C v,, J 2Re < Ch CV• >(.4)

1'• 21m < ehC* >

where C is a constant and the expressions for 8 h and E, are shown in Equation (2.46).

The Ur and VC Stokes parameters are proportional to the real and imaginary parts

of the correlation of horizontal and vertical polarized fields [55]. Tsang et al. [18]

showed that for a reciprocal, isotropic surface, Us and V' reduce to the absorption,

and we can relate polarimetric emissivities with reflectivities [56, 12] as

Ell I - htH = R, (2.50)

As suggested previously, emissivity can be computed via spatial integration. By

assuming an unpolarized source, Sendur expressed US and VE in terms of elernents in

the Muller matrix [12].

L(J0, O) = -J dQ/[11 31 A, I Oj i(i) +1132(A, Os I , (2-51[)

VI (0Oi) = - J dQ, [1141 A ,Oi, Ol) 142 (0,,0, 1 Oi, 3)] (2.52)
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2.7 EO Imagery Data Sets

Measured IR and visible images from three different sites will be used for model

validation in this work. The Northern Temperate Site 1 (NT-Si) and Northern Tein-

perate Site 2 (NT-S2) are located in north America. The TNO site is at the TNO FEL

facility in The Netherlands. Environmental parameters from NT-S1 will be used as

baseline conditions for studies of the radiometric model. Polarimetric models of mine

signatures will be evaluated using the polarimetric TNO imagery. The NT-S2 data

set contains visible band images useful for validating the surface scattering model,

and( an extensive MWIR collection that can be used to compare the performance of

mine detection algorithms.

2.7.1 Northern Temperate Site 1

Images at NT-S1 were acquired by the US Army Night Vision Electronic Sensors

Directorate (NVESD) during October, 2002. The latitude of NT-Si is approximately

40.3°N. The test site contains several types of surface-laid mines. Nadir-looking im-

ages were acquired by an MWVIR sensor (3-5 p/m) mounted on a surveillance heli-

copter. During each run over the test site 143 images were collected. Several runs

were conducted during mid (lay and afternoon. Images were acquired with and with-

out spectral filters to investigate the merits of certain bands.

Figure 2.5 shows a sample image collected by the sensor. In this scene, three

large plastic anti-vehicle (LPB) mines were present (in the top row) along with three

fiducial markers (in the middle row) indicated by red diamonds. The image resolution

is about 1.1 inches per pixel and each image contains 640x512 pixels. Because tihe
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sensor's response is not uniform across the scene, the measured images were calibrated

by subtracting the ensemble average of all images.

MCI

I W.) 41I OfS At)

Figure 2.5: Sample surveillance image containing LPB mines. Red diamonds are
added indicating positions of mines (top row) and fiducial mrarkers (middle row).

2.7.2 Northern Temperate Site 2

A multi-spectral data set was collected at NT-S2 by the NVESD. Two cameras

were employed to acquire registered multi-channel imagery. Five channels were col-

lected by a visible band CCD camera, while a MNJR, camera produced three channels

of IR. imagery. The visible imagery contains 512 x 768 pixels with a resolution of 1.6

cmn and covers an area of about 100 in 2 . The MWJR imager has 256 x 256 [pixels

with 3 cm resolution, which is equivalent to a 60 in 2 field of view. Both cameras wvere
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Name Color Case Size

MP-A Tan Plastic 8.5" D, 3" H
SN'JA Green Metal 5" D. 2.25" H
LNLB Green Metal 12" D, 2.5" H

LP_B2 Pink Plastic 12" D, 3" H
LPB3 Bright Green Metal 12" D, 2.75" H
LMA Dark green NMetal 12.25" D, 3.5" H

Table 2.1: Mine characteristics in the NT-S2 data set.

mounted on a scissors lift, and the platform was elevated about 60 feet above the

ground.

Six types of anti-tank mines were placed in 5 meters wide test lanes with four

ground cover types: short grass, tall grass, bare soil and sand. AT mines were laid on

the surface or buried within the lanes. Surface mines were placed in a zigzag pattern

and the nearest, distance between mines was around 2.5 meters. AT mine dimensions,

colors, and casings are listed in Table 2.1 [60]. The LM_B, IP _B2 and LP-B3 miins

are of similar size and shape, although their casings are made of metal or plastic. The

size of LMA mines is around 12.25" in diameter, which is about the same as LM_B

mines. The MPA mine has a 7" diameter, while the SMA mine is the smallest

mine with a 5" diameter. Some man-made clutter objects were are also emplaced,

including soda, cans, pizza boxes, and wooden sticks.

A total of 247 scenes from the image collection were used in this work. Image

collection time ranged from 8:30 AM to 7:00 PM. Because target signatures in the

MWIR channels have a more consistent signal-to-clutter ratio than those in the vis-

ible channels, only the MWIR imagery is used for the comparison of mine detection
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Ground Cover MPA SMA LMB LPB2 LPB3 LMA

Bare soil 11 11 12
Sand 13 15 12 1 1

Short grass 22 20 24 70
Tall grass 23 22 24 14 19

Table 2.2: Mine distribution in the NT-S2 data set.

algorithms presented in Section 5.8. Among the 247 scenes, we have 103 scenes with a

tall grass background, 99 with short grass, 22 with sand and 23 with bare soil. There

are 315 surface mines 4 in these scenes. Table 2.2 documents the number of each mine

type in the four ground cover types.

2.7.3 TNO Polarimetric Imagery

The TNO data was acquired at The Hague, The Netherlands (52°N latitude) _13].

One set of imagery was collected at 1:31 PM, November 27th, 2001 and was processed

to yield I, Q, and U channel images. The test site comprises a sand box contain-

ing several surface-laid dummy mines as shown in Figure 2.7. Thermocouples were

placed at several points on and under mine and soil surfaces. Meteorological paramn-

eters including air temperature, wind speed, and air pressure were collected. Cloud

conditions were measured via radiometers. Figure 2.6 displays data from the thernio-

couples, wind speed sensor, and air temperature sensor. Simulation parameters were

selected based on the meteorological data.

The camera, a 3-5 /tm MWIR sensor, viewed the sandbox from a height of 2.88 in

with a 700 zenith angle and a FOV of 180 by 18'. A spinning polarization filter was

4The test site contains 32 buried mines, which are not labeled as targets in our ground truth
data due to their low signal-to-noise ratio and significant signature difference with surface mines
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Figure 2.7: Layout of TNO) test site.
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placed in front of the objective lens, and the camera acquired 30 images at 6' rotation

intervals. Stokes parameters were calculated as averages of measured radiance L(4 .1 )

using the following expressions:

2 N

Y L (03 ) (2.54)
j=t

4 N

Q = - E L(f( )cs(203) (2.55)
Nj=l

4 N

U = - Y L(Ob)sin(20j) (2.56)
N j=1

where N=30 is the number of measurements. Since the camera measures only linear

polarization components, the V component cannot be determined. Calibration was

performed via measurements of blackbodies in the field of view.

2.8 Summary

In this chapter, we reviewed issues that affect the modeling of EO mine signa-

tures. The development of the radiometric model presented in Chapter 3 requires an

understanding of the subjects discussed here, which are summarized below. Also, the

model validation and performance comparison can be performed using the measured

data described at the end of this chapter.

Among radiation sources, thermal emission is critical to IR signatures and is

modeled as the product of blackbody radiation and surface emissivity. Solar radiation,

including sunlight and skylight, has a spectrum centered in the visible band and affects

the EO signature via surface reflections and heating. The MODTRAN Tcode, which

(partially) accounts for the complex atmospheric effects, is useful for the computation

of solar radiance.
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Surface properties concerning the EO signature characteristics were discussed.

The random surface model used in this work has a Gaussian-distributed surface height

and correlation distance. Surface temperatures can determined with the heat, transfer

equation using boundary conditions for the heat flux at the air-soil interface. Surface

scattering can be characterized by its BRDF. To describe polarimetric EQ signature,

we will use a Mueller matrix formulation. Surface emissivity can be derived from

angular integration of the BRDF.

A review of scattering models showed that a moderately rough surface tends to

form a broad lobe in the specular direction, while internal scattering may result in a

diffuse return. The effects of multiple-scattering and self-shadowing become apparent

when either the incident or scattered direction is near grazing.

Three sets of EO imagery of different sensor types (MNVIR and visible) and sensor

orientations (nadir and oblique viewing) were presented and will be used for signature

model validation and performance evaluation of detection algorithms.
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CHAPTER 3

RADIOMETRIC MINE SIGNATURE MODEL
IMPLEMENTATION

The practical issues that arise in implementing a surface-mine radiometric-signature

model are described in this chapter. Section 3.1 presents the problem geometry. Sec-

tion 3.2 reviews the components of the sources, which include thermal emissions and

reflections of sunlight and skylight. The finite element method (FEM) is used to

determine the thermal emission by solving the heat transfer equation in a computa-

tional volume that includes the mine and adjacent soil. Incident sunlight and skylight.

are computed via the LOWTRAN/MODTRAN program. Reflections and emissions

require the BRDF or emissivity of the surface. A rough surface BRDF model de-

rived from physical optics (PO) and geometrical optics (GO) is described in Section

3.3. The effects of atmospheric transmission are reviewed. Issues relating the source-

target-sensor geometry to the Stokes vectors are addressed in Section 3.4. Examples

of the radiometric components are presented in Section 3.5 for different viewing ge-

ometries and sensor passbands. In Section 3.6 the effect of the sensor point, spread

function is examined.
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3.1 Problem Geometry

Figure 3.1 illustrates the problem under investigation. The sensor is depicted

with a small off-nadir viewing angle Oi. Some existing airborne IR mine sensors use a

small nadir angle to minimize obscuration of the mine by foliage. Conversely, vehicle

mounted sensors necessarily use a small grazing angle (large 0,), which can cause the

mine to be obscured by a rough surface.

' Nadir
Sensor SU

Figure 3.1: Geometry of mine detection application.

The scene viewed by the sensor includes both the mine and clutter such as man-

irade objects, soil, vegetation, rocks, and other natural materials. Both targets and

clutter are modeled as rough surfaces. As noted in Chapter 2, a Gaussian random

process height variation is assumed for surface roughness.

47



3.2 Radiative Source Computation

Correct modeling and estimation of the source irradiance is the first step iII co-

structing a physics-based radiornetric signature model. In this section the comlponents

of the radiometric sources are described in detail. We begin with a review of the FEM

method used in calculating surface temperature, the precursor to thermal enmission.

We also outline the use of MODTRAN in computing the solar position and( irradiance

as well as the skylight distribution and polarization.

3.2.1 3-D FEM Thermal Model

As noted in Chapter 2, thermal emission is calculated as the product of the surface

emissivity and the blackbody radiation. The latter is determined by thie surface

temperature. Temperatures within and on the mine satisfy the heat transfer equation

(HTE), which can be solved numerically. Several numerical methods have been used

to solve this problem in the past. In this work we employ a code written 1)b I. K.

Sendur [12]. In the remainder of this section we briefly review issues that arise in

temperature prediction.

Heat Transfer Equation

As noted in Chapter 2, the HTE (Equation (2.16)) can be used to predict tile

temperature distribution in a thermally conductive region. Source conditions that

define the forcing functions are needed to solve that equation. The sources that drive

the problem enter via the boundary condition at the air interface. An energy balance

at that interface requires

/ T(r.,t) - + (3.1)
4=S8n + -Tky - C+ °3
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where the left-hand side expresses heat transfer due to the temperature gradient at

the surface, and FSr, r 5isky, ) e?,j, and o denote transfer due to solar irradiance,

skylight irradiance, thermal emission, and convection. Below we list the models

employed in this work for these terms.

"* Solar Irradiance

The heat flux deposited by solar irradiance is the product of the surface emis-

sivity S arnd the total irradiance reaching the ground E6.,,,,(t). An empirical

equation that matches the total irradiance computed by the LO\VTRAN code

is [61]

E,.,, (t) - 1089. exp(-0.28197nl(t)) [YY. ni-2] (3.2)
7-o (t)

1
mII(t) - c (3.3)Cos V7,(t)

The air masses number mri(t) is the secant of the solar elevation angle (.,(t).

Calculation of the solar elevation angle is described in Section 3.2.3.

"* Skylight Irradiance

The total hemispherical emission from a planar blackbody surface satisfies

Stefan-Boltzmann law

Eb = aT' (3.4)

where the Stefan-Boltzmann constant ar is

a =5.67 x 10-i [ .I- 2K-1] (3.5)

Similarly, the total flux from atmosphere emission can be expressed as

.Fsky = E - = (3.6)
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"* Thermal Emission

Thermal emission from the surface is also described by the Stefan-Boltziann

law. We have

= E T(t =- 0) (3.7)

"* Interface Convection

Convective heat exchange between the surface and the atmosphere is the prod-

uct of the temperature difference and the convection coefficient h1(t)

= h (t) (Tr,.(t) - T(t;- = 0)) (3.8)

An empirical expression for h(t) is given by Kahle [62]

h(t) = OairCsPh.d(lV(t) + 2) [W . 11-2 .K-
1 ] (3.9)

In simulations performed in this work, the air density 0(,P,- is set, to b)e 1.16

[kg/m 3 ], the specific heat of air c.,p, is 1007 [J kg-' K-'], the wind drag (oefti-

cient Cd is 0.002, and 14(t) [In/s] is the wind speed (a variable).

"* Sky and Air Temperatures

In this work the above cited air and sky temperatures are modeled as peri-

odic functions over a diurnal cycle. An empirical model [62, 63] for the air

temperature derived from measurements by Kondratyev (641 is

T,.,(t) = Tj - ATir, cos(27r(t - 2)/24) (3.10)

where Ta,., and ATai. are the mean and maximum deviation of the air temper-

atures during a diurnal cycle.
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The sky temperature is assumed correlated to the air temperature [62, 63].

Using Brundt's formula, we express the sky temperature as

Tky (t) T,,, (t) (0.61 + 0.05v,)'/4 (3.11)

where p is the water vapor pressure in mmHg. Values for p are availal)le from

meteorological data. Some examples include 4.58 [mmHg] for a saturated water

vapor at the freezing point and 26.7 [mmHg] at 300'IK.

Substituting the expressions presented above into Equation (3.1), the boundary

condition at the air interface becomes

-C(r) OT(rt) SEE (t) ± 8Tk.Y(t) - ET 4 (t, 0)

+I h (t) (Tj., (t) - T (t,z Z 0)) (3.12)

Watson [65] noted that the difference IT - TkyI was typically small. As a result.

T' can be well approximated by a first-order Taylor series about Tsk., leading to the

linear relation.

IC (r) OT(r,t) • T(t, z = 0)(h(t) + 4,cT kY(t))
at L

- (~E~r(t) + ( h(t)4T,,(1)) (3.13)

Above equation provides a detailed description about source conditions on our

interested computational space. Some local variations in source conditions such as

the blockage of sunlight due to the elevated mine structure are considered. However,

there are other localized source properties not modeled in the current thermal model

implementation. For example, there are differences in the amounts of thermal emis-

sion and convection for a surface facet placed near the edge of a mine's sidewall and
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a fiat region without elevated structures nearby. The lack in consideration of al)ove

issues imposes limitations to the accuracy of thermnal model results.

FEM Equations

The FEM solution of the HTE begins by dividing the computational volunle into

tetrahedral volume elements. The unknown temperature is computed at. the verti(ces

of the tetrahedra, referred to here as nodes. Tetrahedral volume elements can be

assigned different properties to approximate real objects.

The temperature of a point r within an element can be expressed via linear spatial

interpolation of the nodal temperatures T7(t) that surround the point,

At,
Tj.r, t) = L 7,(-t)O'(r) (3.14)

i=1

where 0'(r) are basis functions used to expand the spatial dependence of T(r,t:)

Using the standard FEM approach, we can write the HTE in a matrix forum as

MT(t) + K(t)T(t) = F(t) (3.15)

where T is the first derivative of nodal temperatures, and the elements of M, K, and

F can be found in [12, p. 65].

The matrix expression of the HTE involves time derivatives that are approximnated

using discrete differences. Assuming a small time step At and slow variations in

the temperature and boundary condition, we can use the Crank-Nicholson scheume

to express the HTE as a linear combination of the temperature at I an(I t + At.

Equation (3.15) can be rewritten as

T2 - T1 K+2 T 2 + KTIT1  F 2 + F, (3.16)

At 2 2
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where subscripts 2 and 1 represent conditions at t + At and t, respectively. By

collecting and rearranging terms, the above expression can be written as the time-

stepping equations

(2M + AtK 2 )T. 2 = At(F 2 + FI) + (2M AtKI)TI (3.17)

Extremely large number of unknowns are typically required and, lhence, LU decori-

position is not a practical approach to solving Equation (3.17). In this work a sparse

matrix solver, which makes efficient, use of memory, is employed for the solution.

Boundary and Initial Conditions

As noted in Chapter 2, boundary conditions should be specified at. the exterior ')f

the computation volume (F). Boundary conditions a.t the surface-air interface can 1)e

assigned using the source conditions described in Equation (3.13).

The zero normal gradient condition is imposed at the side walls which implies that

the temperatures of the soil surrounding F are invariant in the radial dimen'sion .

A zero gradient is also assumed at the bottom of the computation voluine. This

assumption is valid if the volume extends deep enough to reach the "diurnal depth",

at which the temperature is roughly invariant over the diurnal cycle.

Initial conditions are specified to begin the time-stepping scheme identified in

Equation (3.17), and the calculation continues until the solution reaches a steadyv-

state (periodic) function. Proper choices of initial conditions can accelerate the rate

of convergence. Using the time average of source flux over a 24 hour period, a rough

'Equivalently, we assume that the boundary of F lies beyond the mine's thermal region of influ-
ence.
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estimation for initial temperatures is derived via Equation (3.13) as

-1

T(r, t = 0) =SEs, + 4 $rT~ky + hTa. (3.18)
T + 4 ,&T ,ky

Spatial Discretization for Surface Mines

As noted above, the finite element method requires that we discretize space into an

ensemble of finite volume elements (tetrahedra in this work). The spatial discretiza-

tion, referred to herein as a mesh, has a critical effect oil the accuracy of the solution.

The mesh should have a high element density in regions with high field gradients,

and it should be as sparse as possible in other regions. The automatic definition of

optimal meshes is currently a research problem, and a heuristic approach is used here.

Three steps are used to construct the mesh. Throughout this work, the mine and

soil are assumed to be bodies of revolution, although the final 3-D mesh deviates from

that property slightly. First, a cross-sectional nodal profile of the mine's components

(i.e., the generating curves) is defined in the ý - E plane. An example appears in

Figure 3.2. The generating curves bound homogeneous regions. Each color repre-

sents a distinctive structure in the mine or a layer of the soil. Nodes are defined at

the corners in the generating curves and at user-selected intervals on straight line

segments.

Next, the generating curves (nodal profile) are rotated in the ý direction through

16 positions to create a 3-D nodal space. An automated mesh generator [66] is

employed to form tetrahedra by connecting nodes. Figures 3.3 shows a cross-section

of the mesh. The mine is centered over a large cylinder of soil. Figure 3.4 provides a

closer look at the mine's internal structure.
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Figure 3.2: Cross-sectional nodal profile ( p - planejfor soil and a LPB mine.

Figure 3.3: Cut-away 3-D view of the mnesh of soil and a LP B mine.
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Figure 3.4: Zoomed-in cut-away 3-D view of the LPB mine mesh.

The last step is to refine the mesh so that regions with strong gradients contain

higher tetrahedral densities. Strong gradients appear at, interfaces involving thermally

dissimilar media and, hence, finer vertical discretization is required a.t the air interface

on the model's top surface. Horizontal gradients appear at shadow boIundaries. which

also requires finer meshing on the surface. The mesh generator used here has the

ability to divide specified tetrahedra into smaller ones. and that capability is used

here. Figure 3.5 shows the top view of the original mnesh. Tetrahedra that require

sub-division are indicated in yellow. Figure 3.6 illustrates the refined mesh.

The mesh refining measure should also be applied to regions near boundaries.

Since we imposed the zero normal-gradient boundary condition and the temperature

of a point in the computational volume is found via linear interpolation of nolal
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Parameter name Value Unit
Mean air temperature 7 °C

Maximum air tem)p. 5 0C
deviation

Averaged wind speed 3 m/s
Water vapor pressure 0.76 mmHg

Table 3.1: Critical meteorological parameters used in the baseline simulation.

temlperatures, the nodal density around the sides and the bottom of the mesh have

to be dense enough to yield smooth transitions across the boundary.

3.2.2 Example Surface Temperature Calculations

The thermal model developed above was used to simulate the surface tempera-

tures of a LPB mine laid on soil. The simulations use as a baseline conditions from

the NT-Si data set. In this section we study the sensitivity of the inodel to vari-

ous environmental conditions and model parameters. (A quantitative comparison of

simulated and measured images appears in Section 3.4.)

Convergence of FEM Solutions

As noted in Section 2.7.1, the NT-Si data set, contains surface-laid laudmines of

various types. To simulate the measured image thermal and electromagnetic prop-

erties of soil and mine constituents were found in the literature [61, 67]. Important,

meteorological parameters and critical surface properties used in this simulation are

tabulated in Tables 3.1 and 3.2, respectively.

The simulated temperature distribution is computed at 6 minute intervals. The

temperature history of specific nodes on the mine and in the soil away frorn the mine,
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Thermal conductivity Volumetric heat capacity
(W m -' 1K) (106 J m 3 K-')

Sand (moist) 2.223 1.894
Nylon (mine case) 0.24 1.714

TNT 0.2341 2.53

Steel 14.25 1.1778
Air 26.3 0.0012

Table 3.2: Critical thermal properties of materials used in the baseline simulation.

indicated as red and blue Xs on Figure 3.8 respectively, are plotted in Figure 3.7.

A total simulation of 5 days was performed and convergence of the FEM solution

to steady-state is evident. It is also clear that, the mine's temperature swings are

significantly larger than those of the background soil. Twice daily (shortly after dusk

and dawn) the curves intersect. At those times, there is no thermal contrast between

the selected nodes, and mine detection is hampered. Following current practice, we

refer to those times as "crossovers"'. Finally, note that the soil temperature takes

more than three days to reach convergence, while mine surfaces achieve convergence

in less than two days. In what follows we show only the "steady state" solutions,

which correspond to the fifth simulated day.

Temperature "images" are formed by linearly interpolating surface nodal temper-

atures. Figure 3.9 shows the steady-state surface temperature of a LP-B mine on soil.

Images are displayed at two hour intervals from 7 AM through 5 PM, In general, the

hottest regions appear near the edges, but there are cooler regions adjacent to ele-

vated structures due to solar shadows. Differences in the temperature of the mine and

soil are evident in these images. The mine housing, which is made of plastic, responds
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Figure 3.7: Diurnal cycle convergence of surface temperattures.
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Figure 3.8: Boundaries (solid lines) of mine and soil regions in simulated thermal
images. Averages over gray regions are used for comparison.
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more rapidly to solar insolation than soil and dissipates its thermal energy faster after

sunset. Because the mine does not heat uniformly, it is clear that the "crossover"

concept cannot be used to make unambiguous statements about, detection.

East 304

292754

z 0 286 81

Ž2811 M

West 1275.35

Figure 3.9: Examples of surface temperature profiles during the day.

Sensitivity to Environmental Parameters

The simulation's dependence on some important environmental parameters was

studied via computed surface temperature histories. We first examined the seasonal

dependence of the temperature variation. The effect of the wind speed was then

studied. Temperature histories were plotted showing the average temperatures on

the mine housing anrd soil (at least 5 cm away from the mine). The gray regions

in Figure 3.8 indicate mine and background pixels used to calculate temperature
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Date Jun. 21st Aug. 21st Oct. 21st Dec. 21A

Mean air temperature [IC] 25 21 7 0
Maximum air temp. 5 5 55

deviation [°C] 5 5 5 0

Averaged wind speed [in/s] 3 3 3 _ 3

Table 3.3: Critical meteorological parameters used in the simulation for seasonal
changes in surface temperatures.

averages. The difference of mine and soil average temperatures was also plotted to

reveal the time of maximum contrast.

The air temperature, and duration and direction of solar insolation undergo sea-

sonal changes. Using the solar positions6 and weather conditions at the test site7

simulations were performed every two months froim late June through late Decem-

ber. Table 3.3 lists critical parameters used in the simulations. Results are shown

in Figure 3.10. Those curves indicate that during the summer both the mine (solid

lines) and soil (dashed lines) have higher surface temperatures due to longer daylight

hours and higher air temperature. The contrast shown in Figures 3.10 (b) reveals

that larger differences in surface temperatures occur around noon and inidnight. Ehe

greater summer insolation results in a maximum summier contrast that is twices large

as the one observed in winter.

Next, we study the effect of wind speed. Simulations were performed for both the

warm and cool winds implied by summer and winter conditions respectively. Fig-

ure 3.11 (a) shows the mine and soil temperatures during summer (late Jime) for

'The method used to find solar angles and solar irradiance is presented in Section 3.2.3

7 Mean and maximum deviation in air temperature were estimated from historical data at
http://wwvw.rnoaa.gov/climate.html.
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(a) Surface temperature. (b) Contrast.

Figure 3.10: Surface temperatures and contrast for different time of the year. Baseline
conditions: latitude-40.3°N, wind speed=3 m/s. Solid lines: mine. Dash hines: soil.

three wind speeds: no wind, mild wind (4 m/s), and strong wind (8 m/s). The green

curve is the air temperature. A comparison with the no-wind results shown in blue

indicates that the air is cooler than the soil (dashed line) at all times. The cool wind

removes heat from the soil through convection and reduces the maximum tempera-

ture. The mine surface is both cooler than the air in the evenings an(] warmer than

the air during the day. Hence, convection alternately heats and cools the mine. The

overall effect of the wind is to reduce the dynamic range of the mine's temperature.

VVind has an adverse effect on the temperature contrast as shown in Figure 3.11 (b).

During winter (late December), the air is warmer than the mine and soil surfaces

under caln conditions and, hence, both mine and soil surface temperatures increase

considerably if wind is present (see Figure 3.12). Again, wind causes the contrast to
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Dashed lines: soil.

Figure 3.11: Suir-face temperatures and contrast for different wvind speeds durinig stim-
met. Baseline conditions: latitude=40.30 N, air temiperatutre: rneaii=250 C maximal
deviat ion=50 C.

dlecrease It is significant that wvind accelerates the heating and cooling processes. W\e

see in Figure 3.12 (b) that the crossover timie for the no-w~ind case lags mnore than an

hour behind the strong-wind case.

The above experiments illustrate that, as expected, the surface temperature is do-

penident on the insolation and air temperature. The wvind speed alters this dependence

significantly. A higher wind tends to reduce thermal contrast.

3.2.3 Solar Spectral Irradiance

As stated in Section 2.2.2, solar radiation is an important source for passive remoote

sensing, especially for visible sensors. Althouh the extra terrestrial solar Irradiang ce
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(a) Surface temperature. The green curve (b) Miine-suil contrast.
is the air temperature. Solid lines: mine-
Dashed lines: soil.

Figure 3.12: Surface temperatures and contrast for different wind speeds during stun-
rier. Baseline conditions: latitude=40.3°N, air temperature: mean=O0 C maximal
deviation=5°C.

varies slightly from day-to-day as a result of solar activity, we can assumne it, is a

constant for this analysis.

Insolation is strongly affected by the solar position and the resulting slant palth

length. The slant path length and atmospheric composition determine the atuio-

spheric attenuation, while the solar position determines the geometric relation b)e-

tween the incident flux and target surfaces. The actual irradiance received by a

target is reduced by the ratio of the projected area to the physical area.

The solar irradiance is computed by first determining the angular position of the

sun given the time, date, and observer's geolocation. The NIODTRAN code is then

used to calculate the spectral solar irradiance for the given solar angles. Unlike the

thermal model, which must take into account the entire solar spectrum (for its effect
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in warming the soil), only spectral irradiance sensible by the detector is considered

in the radiometric model.

The celestial position of the sun is described by its declination angle and hour

angle. Due to the tilted and elliptical orbit of the earth, the declination Odc(± 2 3 .5°)

and the time ofrneridian8 passage of the sun (12 : 00±15 min.) are periodic functions

with a one year period. The Nautical Almanac tabulates the Greenwich hour angle

(OGHA) and declination angle of the sun and is updated annually to document small

drifts in the above angles. For example [68], the sun passes the meridian on .]an.

1st, 2003 at 11:56:50 with a -23'03' declination angle. On Jan. 1st, 2004, the time is

11:56:56 and the angle is -23'03'. Since the observed drift in solar position is negligible

for the purposes of this modeling, a look-up table was constructed from a prior year's

data to find the solar position for a given time and date.

The solar elevation and azimuth angles denoted (Oe1v,•,a•m.), are defined by the

declination and hour angles (Odec,O;HA) noted above with knowledge about the lati-

tude and longitude of the observer. We have

0,1, = 90 - Olat + Ode (3.19)

0aozim G 0GHA + Olong (3.20)

where 01o.g is positive for longitude east of Greenwich. As examples, Figures 3.13

and 3.14 depict the seasonal and diurnal variations in the solar elevation angle 0 .,,

at a mid-latitude location (43.5°N) and the Tropic of Cancer (23.5°N). The former

exhibits a significant change in the length of a day, while the latter is the highest

latitude where it is possible to observe a vertical sun (on June 21st or 22nd).

8The meridian is the highest point in the daily path of a celestial body,
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Figure 3.13: Solar elevation angle of different mnonths at latitude 43.5'N'.
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Figure 3.14: Solar elevation angle of'different months at, latitude 23.5nN.
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The radiornetric model uses LOWTRAN9 to calculate the solar irradiance for the

default atmosphere model. The spectral irradiance generated by LOWTRAN is then

numerically integrated over the sensor's passband. Figure 3.15 shows the total irradi-

ance in the MWIR band, which extends from 3 to 5 prm. Mid-latitude (45`N) winter

and mid-latitude summer atmospheric models are used in this calculation. Note that

more solar irradiance reaches the ground in the winter because the atmospheric mass

is smaller and provides less scattering and absorption, but the projected irradiance is

lower due to the lower declination angle.

12 -

i--summer

10-

•8

2 /

0 10 20 30 40 50 60 70 80 90
Efevalion Angle

Figure 3.15: Solar irradiance at MWIR band (3-5 pm) v.s. solar elevation angle in
mid-latitude winter and summer.

The daily solar elevation profiles shown in Figure 3.13 can be used to find the total

MWIR irradiance via interpolation of the data in Figure 3.15. Figure 3.16 shows the

9The LOWTRAN code, which is the predecessor of MODTRAN, has a lower spectral resolution
but requires less computation time.
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diurnal variations during December and June at latitude 43.5°N. Note that the two

curves predict. comparable maximum solar irradiances for summer and winter, but

50% more total solar energy is received during the summer due to the longer daylight

hours.

- - June

6 i

CuC II
4-8

Cs /

t

0 4 8 12 16 20 24
Time

Figure 3.16: Diurnal variations in solar irradiance at M\,VIR band (3-5 pin) in De-
cember and June at latitude 43.5'N.

3.2.4 Spectral Radiance of Skylight

Although skylight is much less intense than direct solar radiation, its overall effect,

is still substantial, because it exists over an entire hemisphere. The spectrum of'

skylight radiance depends strongly on the content of the atmosphere, but atmriospheric

scattering is difficult to predict, because of large variations in aerosol populations.
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Instead of using analytical models, we employ the LOWTRAN code to compute the

spectral radiance of skylight coming from different parts of the sky.

The calculation begins by finding the position of the sun, which is the ultimate

source for skylight. A mesh is defined for the upper hemisphere that represents the

sky, as shown in Figure 3.17. The mesh contains 668 nodes and 605 facets, and( the

largest facet is no larger than 0.0165 sr. The skylight arriving through each mesh

facet is computed individually using the LOWTRAN code. The spectral radiance

is numerically integrated to yield the total skylight radiance. Skylight is partially

polarized. Its polarimetric dependence is generated from the Rayleigh scattering

assumption described in Section 2.2.3.

North

East

Figure 3.17: Mesh used in skylight calculation.

70



Example calculations of skylight are shown in Figures 3.18 and 3.19 for latitude

32'N during Maly. The atmosphere is assumed to have rural extinction properties

and good visibility (23 kin). Figure 3.18 shows the skylight radiance at 8:30AM. ]n

general, skylight is stronger near the horizon than near zenith. Also, a peak appears

around the solar position, as shown in Figure 3.19 for a high solar elevation angle

(at noon during summer). The intensity and width of the skylight peak at. the solar

position are affected by the composition of the atmosphere. Atmospheres with higher

particle densities, which often appear above urban areas, not only produce shortor

extinction distance, but also introduce a broader skylight peak with a higher intensity,

because more sunlight is scattered by particles in the atmosphere.

West

Nrth

South

East

Figure 3.18: Sample skylight profile at 8:30AM in May at latitude 52°N.
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North

South
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Figure 3.19: Sample skylight profile at 12:30PM in May at latitude 52°N.

Adding Polarization Dependency

As mentioned in Section 2.2.3, skylight is partially polarized due to scatering

by air molecules and aerosols. To use Equation (2.15) for computing the degree of

linear polarization (DoLP), the scattering particles must be smaller than the sensor

wavelengths, so that Rayleigh scattering is dominant. This condition is satisfied

for TB wavelengths, since the optical thickness of the atmosphere is insignificant for

wavelengths longer than the visible band. Figure 3.20 shows the degree of linear

polarization for skylight in the MWIR band under a clear sky. Skylight is unpolarized

around the sun, and the degree of linear polarization increases as the observer moves

away from the sun. Skylight coming from directions orthogonal to the solar (irection is
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fulyv linearly polarized. In general, the DoLP would be smaller for turbid atlnospheros

and shorter wavelengths due to multiple scattering.

West 90

80

North 70

60

50

40

30

20

South 10

Sun East

Figure 3.20: Sample skylight degree of linear polarization based on Rayleigh scatter-
ing.
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3.3 A Mueller Matrix for Mine and Soil

Surface reflectivity and emissivity directly affect EO radiometric signatures. In

this dissertation a rough-surface bidirectional reflectance distribution function (BRDF)

has been developed using a combination of classical physical optics and geometric op-

tics approaches. Energy conservation permits the emissivity of a surface to be comn-

puted from the BRDF via spatial integration. This section documents the derivation

of the BRDF and its associated emissivity.

Sections 3.3.1 and 3.3.2 review the derivations of physical optics (PO) and geonmet-

rical optics (GO) rough-surface scattering models. A comparison of the two models in

Section 3.3.3 shows they have similar features for the roughness scales of interest here.

A polarimetric BRDF is proposed in Section 3.3.4. Simulations of the proposed BRDF

are performed for different amounts of surface roughness and surface EM parameters.

A discussion of those results appears in Section 3.3.5. Section 3.3.6 [)resents selected

measurements of the in-plane BRDF for various materials. A comparison of those

measurements with the proposed BRDF shows good agreement. Finally, emissivity

functions are computed via spatial integration of simulated BRDFs.

3.3.1 Physical Optics Model

As discussed in Section 2.5, the PO method (also sometimes referred to as the

Kirchhoff approximation), is often used to explore scattering from random rough sur-

faces. The PO approach to rough surface scattering was first used by Beckmann [42]

for perfectly conducting surfaces. Here, we present key equations and assumlptions

made in the derivation of the PO model. Measures required to use this model for

radiometric mine signature prediction are also addressed.
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The derivation begins by representing the scattered field in an integral form. I[n

order to evaluate the integral, a tangent plane approximation is made, which assumes

that the radius of surface curvature is large compared to the wavelength. Tsang et

al. [18] take the asymptotic limit of the integral resulting in a closed form expression

applicable to dielectric surfaces also. In that. result, only the incoherent terin survives,

which appears as a lobe in the specular direction. Tsang et al. also introduce the

Mueller matrix notation to express the polarimetric dependence.

Kirchhoff Approximation

Consider an incident plane wave impinging on a random rough surface. The

electric field of the incident wave is

Ej = ejEoc iki-r (3.2 [)

in which the time dependence ei"V is implied and suppressed. The polarization

vector 6i can be decomposed into perpendicular vjr and parallel h, terms with respect

to the local surface normal as stated in Equations (2.1-) and (2.2). The surface normal

vector can be expressed as

(X, (X. f , Y. +

1+ (.T, y) 2) ± (fv(x,,y) 2)

where f':(xr, y) and Jf'(x, y) represent the surface slopes at position (x, y) with respect

to the i- and ý axes.

Using the dyadic Green's function G and evaluating the electric and magnetic

fields on the surface, we can express the scattered electric field as

E,(r) = ,dS'{iwuloG(r, r') [fi x H(r')] + V x G(r, r') . [fi x E(r')]} (3.23)
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in which E and H are the total fields on S. In the far field, the dyadic Green's

Function becomes
?kr

G(r, r') -- (I - kl) e -•kr' (3.24)
47r I-

where I is the dyadic identity. With the substitution of Equation (3.24) in (3.23) we

obtain

jikr j

E.,(r) =ir (I - J<k1) dS'{l, x [n x E(r')] + rl[f- x H(r')]}I-C r' (3.25)

Tangent Plane Approximation

Evaluation of the integral in Equation (3.25) requires a description of the surface.

Beckmann [42] introduced the tangent plane approximation, which assurmes the sur-

face is locally planar. This approximation requires that the incident wavelength is

small compared to the surface's radius of curvature. With this approximnation and(

some algebraic manipulations, the scattered field can be expressed as

eik:r 1*

E, (r) = E• 0 (I - l, l,) dS F(oc,/3)-i(k,-k,) (3.26)

where F is the integrand in Equation (3.26) above and a and 13 are in-pl)ane an(l

out-of-plane tilting angles defined in Figure 3.21. Angles a• and 13 define the local

surface normal and are used to describe the surface roughness.

The function F can be expressed in terms of the tilting angles and the local Fresnel

reflection coefficients as follows: [18]

F(ca,. 3) = 1 + tan 2 
a + tan2 3. {-(6, l(fl . kL)1i(1 - Rh)

+ I~) (nx h,) (I + R,,) tý (i h?) (k, x (ni x h +(. R/,)

+ -'j(fi - k2)(k, x hj)(1 - R,,) (3.27)
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Local tilting surface normal
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Figure 3.21: Geometrical definitions of a locally tilted surface.

77



where h2i and -ýj are local unit horizontal and vertical polarization vectors, given by

lj - f, 
(3.28)

Iki x fil

h,• h-• x k (3.29)

The local Fresnel reflection coefficients, Rh, and R1, were defined in Equations (2.33)

and (2.34).

The classical approach to evaluation of Equation (3.26) is to expand F(oa, fI) in a

Taylor series about the mean slope (ca0, J3o). We have

OF OF
Fc, F F(a0, j•0) + a - 1 C_ J -ao,/3o + 133 - ,/0 za,/o +- (3.30)

This small slope approximation leads to considerable simplification for the special

case when slope angles a, and /3 are symmetrically distributed about the inean slope.

In that case, the linear terms vanish by symmetry, and we are left with

eikr -

E(r) E0 (I - k•ks)F( (ao, 13o)1 (3.31)

where

I = e dS(3.32)

Coherent and Incoherent Scattering

The scattered field intensity, which defines the radiant power, is the time average

of E• E*. It is conventional to invoke the ergodic hypothesis, replacing time averages

by ensemble averages. The quantity < E., -E > has both deterministic (mean) and

random components. We write

E, E- E* > =I< E, > 12 + [< I E,12 > -I < E, > 12]

4Fr"- ° ( )21- l{I <j > I[ -[ ITI 2 >-~I<I. >I7(3.338
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The frst term on the right-hand side is referred to as the coherent component. For

surfaces with zero-mean slopes, < E, > is simply the response of a fiat surface and,

hence, the coherent component dominates in the limit of a smooth surface. It con-

prises a ray in the specular direction. The variance < i 2 > -1 < > I' is referred

to as the incoherent component, which appears as a broad lobe in the specular dlirec-

tion. For a smooth surface, the coherent. component is dominant, but that component

disappears as the degree of surface roughness increases, leaving only the incoherent

component.

< III > is a delta function in the specular direction and its quantity is difficult to

evaluate in general, but progress can be made for Gaussian surfaces. Beckmann [42]

derived the result for a PEC surface. Tsang et al. [18] used the geometric optics

limit, which assumes an infinitesimally small wavelength, to derive the response of

a dielectric surface. Since the coherent term < I > 12 becomes negligible in the

small wavelength limit, only the incoherent term <1_2 > -1 < I > 12 < 112 > is

considered here.

The widely-used Gaussian surface model assumes surface heights that are Gaus-

sian distributed with zero mean and variance 0
2. The correlation C(r) between

surface heights measured between any two points separated by a distance -r is also

assumed to have a Gaussian form, namely:

T 2

C(T) exp(-T) (3.34)

where f is the surface's correlation length. The values of c, and P must be consistent

with the assumptions invoked above. Specifically, the surface height standard devi-

ation oa must be large compared to the wavelength A, and the correlation distance g
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should he large enough that no sharp edges are present on the surface. The ratio

S 2 = 2 (72 /e2 (3.:5)

is the mean-squared surface slope and is an important parameter for describing surface

roughness.

Although ,52 is a dimensionless parameter and is a constant for a given surface.

in the simulation, we vary the mean-squared surface slope value in proportion to the

change in sensor's wavelength as an indicator for the degree of surface roughness.

The reason that allows this change can be explained using the surface spectra [211.

Figure 3.22 illustrates a sample surface spectral density function 11', which is the

Fourier transform of a given surface correlation function. For a shorter wavelength,

the effective surface slope variance, which is the integral from D(' to the sensor's

passband, includes more energy so that the surface looks rougher.

II
I I
I I
I I

k IR kvisible log k

Figure 3.22: A sample surface spectral density function.
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t7sing the above model, Tsang et al. showed the incoherent term becomes

12 >-- e(3.36)

where ., and v. are respectively, projections of the vector (k, - k1,) onto the I -

plane and the --' axis.

Mueller Matrix Formulation of Reflection Coefficient

Using the result, in Equation (3.36), Tsang et al. derived a reflection coefficient

matrix to relate the scattered and incident Stokes vectors. We have

I(ý,) = R(k,J•jlk)(ýj) (3.37)

where the Mueller matrix R is

l s - k1d14 exp 2k'dIl 2 C (3.38)C ,,s O, 8 T.S 21k, X ý,14 (k• d. f,)' Z2ý52(k ,d . ,)2

in which

kid = li- k, - 2fi(f. k,) (3.39)

ýIt=kd- n~kId 'fl) (3.40)

an d

[ I fJf,ht > < fhKfý " > Re < fh,,fhh > -111- < fh,,f* >
* f t, ,f*,h > < f,,,f*,v > Re < f ,,,, > -Ira < f",,f", >

2Re < f'hfhth > 2Re < f,,f > Re < f 'LjIhh + ftf*,, > -Im < fI,'fth -- f,2,RhfR- >
2[m < f,,7f*, > 21m < f,,,,fh, > Im < f,•fhh -+- fhf*, > Re < fL,,f*, - fhft,. >

In this result fhh f,,, fl,., and f,,h describe couplings among horizontal and vertical

polarizations

f,, (t,= kl)(fi,, k,) Rh + (h .k-)(h .k,)R, (3.41)

=) = (vh k,) (h, - k,)R,,h- (+ . k,) (-. k.,)R, (3.43)

f,,h = ki)(v, k,)Rh - ( .k,)(hi, ki,)R, (3.44)
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In these expressions V' and h are unit vectors in the vertical and horizontal directions

with respect to the plane of incidence (see Equations (2.1) and (2.2)).

3.3.2 Geometrical Optics Model

A semi-empirical approach to geometrical optics rough surface scattering was de-

veloped by Torrance and Sparrow [43]. The rough surface is modeled as a composition

of planar facets with random orientations. The facets are assumed much larger than

the wavelength, and the geometrical optics (specular) approximation is employed to

model scattering. The GO formulation contains two principal terms: a "specular

lobe" term and a diffuse term. The "specular lobe" comprises multiple specular re-

flections from small facets that happen to be oriented as required by the incident and

observation directions. Clearly, the specular lobe is a function of the surface slope

distribution. The diffuse term, which is caused by internal scattering beneath the

reflecting surface, is invariant to incident and scattering angles.

This section describes the derivation of specular and diffuse terms. For Gaussian

surface statistics the specular lobe in the GO model shows characteristics similar to

the incoherent scattering component arising in the PO model.

Specular Lobe of GO Model

The GO specular term is derived by assuming that the surface facet's tilt angle v,

(measured with respect to 7.) has a probability density function p(j'€) and by defining

the reflectivity with a Fresnel reflectance F(O', in 2 ), which is determined by the di-

electric constant mn2 and the projection of <) on the incident plane 0' [431. Using the

BRDF definition given in Equation (2.24), we have the BRDF representation for the
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GO specular lobe

F(O,7 p(I, (3.4,5)
4,r cos 0,

The distribution of the surface normal vector is found [42] by assuming the random

surface slope is Gaussian distributed.

1 { t an•! }

P 4(u•/) s exp 4(t/an 2  (3.46)

where angle (i is the local incident angle 0'. The following relations are evident fronm

simple geometry

tan2 __d, 12 (kldtj42
tn(kid fl) 2  (3.47)

4 kId (3.48)
(kL[d fl) 4

and facilitate comparison with Equation (3.38).

The expressions for Fresnel reflectance F are given in [69] as a linear combination

of perpendicular and parallel Fresnel reflectances, which are actually the squared

magnitudes of the horizontal and vertical Fresnel reflection coefficients.

F4 -- I RhI1 (3.49)

F I = RI•l 2  (3.50)

A quick check can be performed by assuming a locally-flat surface (0'=0). Substi-

tuting Equations (3.46), (3.47), and (3.48) into Equation (3.45) yields a BRDF expres-

sion similar to Equation (3.38) in the PO model, which only includes the incoherent

return. This finding is not surprising, since we have assumed similar wavelength re-

strictions and used Gaussian distributions to describe the rough surface (the surface

height in PO and the slope in GO). Although the specular lobe expression presented
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above does not include a polarization dependence, a polarization sensitive expression

for the reflection coefficients was developed by Wolff [47] using the GO model. Note

that the self-scattering term G, which corrects for shadowing and multiple-scattering

near grazing angles and was described in Section 2.5.5, should be coupled with results

of the above derivation.

Diffuse Scattering of GO Model

To model multiple scattering occurring below the surface, Torrance and Sparrow

introduced a diffuse term with a Lambertian behavior. The term is invariant to

the direction of incident flux, and the scattered energy is equally distributed in all

directions. The diffuse component is especially important when the scattering angle

is far from the specular direction. Because no analytical models are available to

characterize non-Lambertian diffuse scattering, most diffuse models, including the

one presented here, use a Lambertian model as described in Section 2.5.2.

Using a Mueller matrix representation similar to the one presented in Eqtia-

tion (2.35), we can define a matrix for a diffuse scatterer with a certain degree of

depolarization as FPdc Pdx 00
SPd. Pdc 0 0 (3151)

27T 0 0 0 0
0 0 0 0

where Pd, and Pdx are diffuse albedos for co-polarized and cross-polarized scattering,

which are scalars ranging between one and zero.

3.3.3 Comparison of PO and GO Models

The above derivations show that the PO and GO approaches, which start from

different perspectives of rough surface scattering, end up with similar representations
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for the "specular lobe". Below we summarize the key assumptions made in the GO

and PO models.

In general, the PO approach is more rigorous, since it is based on a coherent

analysis of the fields. As a result, the PO method is applicable to very smooth and

very rough surfaces [44]. In contrast, the GO approach is based on art incohlerent

sum of facet contributions from the outset, and is only valid for relatively rough

surfaces that have a surface height standard deviation (a) that is large compared to

the incident wavelength.

Beckmann decomposes scattered fields into "coherent" and "incoherent." terms.

The coherent reflection comprises the specular ray reflected from a smooth surface.

The incoherent reflection, referred to here as the specular lobe, accounts for s(attering

from relatively rough surfaces. These two terms dominate in different ranges of surface

roughness. The geometrical optics limit is applied to the PO model in order to

evaluate the integral arising in the Kirchhoff approximation [18]. As a result, there

is no coherent term in our PO formulation, since no surface is perfectly smooth for

an infinitesimal wavelength. Therefore, the BRDF formulation developed here is only

valid for relatively rough surfaces (a >> A), which is the same condition imposed on

the GO model.

Another key assumption about the surface geometry made in the PO approach

is the tangent plane approximation, which requires the radius of surface curvature

to be large compared to the incident wavelength. This assumption simplifies the

evaluation of a required integral, but it also imposes a limit on the surface roughness.

Specifically, the surface should have no edges. This criterion imposes a lower limit on

the correlation distance (f) for Gaussian-distributed surface heights.
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Several assumptions are made for both the PO and GO models that lead to similar

BRDF formulations. First, the sources are assumed to be in the far-field. Therefore,

we can assume a. planar incident wave in the PO model while an equivalent incident

ray is used in the GO model. Second, Gaussian surface statistics are invoked (for lhe

surface height distributions in PO and for surface slope in GO) are assumed to be

Gaussian for both models. This assumption leads to a slope distribution that is a

function of the local incident angle (0') and the surface roughness pararneter (u/(').

In addition to the above differences, the GO approach involves two semi-empirical

factors not used in the PO approach. The GO model introduces a "geometric at-

tenuation function" to account for self-shadowing so that, the model is applicable in

near-grazing regimes. The diffuse term used in the GO imodel helps to account for

internal scattering by the media.

3.3.4 A Proposed Polarimetric Mueller Matrix

A polarimetric Mueller matrix can be derived by combining features from the PO

and GO approaches. It contains a broad specular lobe due to rough surface scatter-

ing and a Lambertian term that accounts for internal scattering. A self-shadowing

correction term is adopted to extend the use of the proposed model into grazing

regimes. Assumptions stated in the previous section define the limitations of the pro-

posed model. It is valid for relatively rough surfaces without edges. Also the incident

wavelength should be small compared to the variation in surface heights.

The proposed matrix combines three elements as follows:

M = R(IJk,)G(k8 ,Ik) + D (3.52)
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The component R was given in Equation (3.38). It includes scalar factors that de-

pend on the surface roughness and source-target-viewer geometry, as well as a matrix

factor that embodies the polarization dependence. Detailed descriptions of these

comlponents can be found in Equations (3.38) through (3.44).

As noted above, R is derived by taking the geometrical optics limit in the PO

formulation. As a result, the PO formulation becomes very similar to the GO form,

which unfortunately includes a non-physical response at grazing angles. The factor

G is the self-obscuration or geometric attenuation function described previously in

Equation (2.41). This function provides a needed correction when either the source

or viewing angle is near grazing.

The component D, which can be found in Equation (3.51), accounts for diffuse

scattering as a result of internal scattering beneath the reflecting surfaces. Polari-

metric diffuse albedos can have a great influence on radiometric signatures. Due to

a lack of measurement data, in this work those albedos are estimated empirically

by comparing with measurements in the off-specular regimes, which is presented in

Section 3.3.6.

3.3.5 Sample Rough-Surface BRDFs

We now use the model presented in Equation (3.52) to simulate the B1RDFs of some

rough surfaces and thereby illustrate some characteristics of the model. The results

shown are the sum of the first two components (1h and Lv) of the scattering Stokes

vector 1(k,), which is found by multiplying the Mueller matrix M by an unpolarized

incident Stokes vector 1(15 ) = [1/2 1/2 0 0 ]T.
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Figure 3.23 uses facet color to illustrate the BRDF relative magnitilde (i1i (1B)

over the upper hemisphere. The roughness parameter s' = 2(0/C;)2 was set to 0.01

in Figure 3.23, and the incident zenith angle was 220. The refractivc index (m) was

1.5. A reflectance lobe is observed near the specular direction. A small, constant off-

specular return is present elsewhere due to the diffuse scattering component. Based

on the value of' s2, one can categorize this surface as moderately rough.

ource direction

-:1

pecular Ion

-4

Figure 3.23: Moderately rough surface BRDF (0, 22', s2 0.01, n 1.5, pdI=0.01,

Pd, = 0.005).

Altering the surface roughness parameter can produce dramatic changes in thie

BRDE The value of s2 was reduced to 0.0025 in Figure 3.24(a), which makes the

surface more smooth and the specular lobe much more compact than observed in

Figure 3.23. The reflectance magnitude decreases significantly when the observer

moves away from the specular direction. Conversely, if we increase ,q to 0.05 as shiowni
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in Figure 3.24(b), the specular lobe becomes much broader and one even observes a

substantial reflectance in the back-scattering direction.

ource direction :orce diredion
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(a) Slightly rough surface. (b)) Very rough surface.

-2

Figure 3.24: BB:DFs of a. slight]ly rough surface (.s = 0.0025, m,. = 1.5), Pal,.=0.01,
Pd,• = 0.005) and a veryv rough surface (s 2 = 0.05, rlm = 1.5, Pd,=0.00757 p,,, = 0.0037)
at 0i = 22'.

Next, consider the mnodel's dependence on the incident zenith angle 0•. In Fi,--

tire 3.25(a), which was computed for ,i 2=0.0025, wve observe that (as expected) the

effect of moving the direction of incidence causes the scattered lobe t~o shift toward

the (new) specular direction. However, for the rougher surface (s 2=0 .05) showni 'it

Figure 3.25(b), the peak of' the scattered signal significantly deviates froim the specli-

lar direction. Ini this case, the BRDF mnaximum appears about 20' belowv the specular

angle. Trhe shift, of the maximum scattering direction away from the specular direc-

tion for near grazing incidence has been observed in measurements [43]. Because the
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effective surface height variance decreases in proportion to the cosine of I he oliservers

zenith angle, a surface looks smoother near grazing so that the specular lobe of the

BRDF becomes more compact and tends to shift toward grazing when a large incident.

angle is present. This phenornenom becomes more apparent for a rougher surfa'e.

ource direction Ource direaon

-~-0i ,,,-s ~~~pe le rection ,,- e :e.to

(a) Slightly rough surface. (b) Very rough surface.

Figure 3.25: BRDFs of a. slightly rough surface (,s2 = 0.0025, m i= 1.5, pd,=0.0l,

Pd, - 0.005) and a very rough surface (2 = 0.05, m = 1.5, pd,=0.0 0 75, Pd, = 0.0037)
at O = 4290

The effect of the geometric attenuation function G described in Equation (2.41) is

revealed by removing G from the model. Figure 3.26 shows the result, of this change.

Comparing Figure 3.26 with Figure 3.25(b) shows that G tends to shift tIhe rnaxiiiiuIII

away from grazing.

The foregoing simulations used a substantial diffuse component. Figure :3.27 shows

the result of removing the diffuse component (a, very small amnount of diffuse albedo

is still assigned to restrict the dynamic range of the plots). The result shows a sharp,
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ource direction

Figure 3.26: Very rough surface BRDF without the self-shadowing correction G (0,
42', S2 = 0.05, m n= 1.5, Pdc=0.00 75 , Pd, = 0.0037).

significant drop in scattering intensity as the observation angle moves away from the

specular direction.

3.3.6 Comparison to Experimental BRDF Data

An extensive body of experimental measurements on rough surface BRDFs was

collected by Willow Run Laboratories on a variety of materials, some of which are

relevant, to landinine detection [29, 34]. The materials examined included various

types of painted metal, wood, sand, concrete and other natural clutter. In most

experiments, four of the modified Mueller matrix entries were recorded, including

the co-polarized reflectance for horizontal and vertical polarizations and the cross-

polarized analogs (i.e., Thh, -Fh0 ,, ),,h., and 7.,). Figures 3.28 (a) and (b) show the

polarimetric reflectance of an aluminum surface with green paint and zinc chromate

coatings. Results for the incidence angles 200 and 60' are shown. Using the BRDF
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Figure 3.27: Slightly rough surface BRDF without the diffuse term (0, 42', s2
0.0025. Th- 1.5, PdP10-, =r L)X10-6

model described above, simulations were performed for user-defined surface parain-

eters that included roughness s2 , refractive index mn, and values for (o- and cross-

polarized albedos (Pd, and pd,). The simulated results in Figures 3.28 (c) an(I (d)

show the computed reflectance curves. The results are generally in good agreement,

although some discrepancies exist. Specific issues are as follows:

"* The measured and modeled BRDFs are similar near the specular direction,

but near backscattering the measurements show stronger reflectance, suggesting

that possibly the diffuse component or multiple scattering components are under

estimated.

"* The ratios of reflectance for the co-polarized components are in good agreeiment

around the specular lobe.
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"* The null in T.,, due to total reflection around the Brewster angle is observed inI

both (b) and (d) of Figure 3.2810.

"* For larger incident zenith angles, shifts in the angle of peak reflectance appear

in both Figures 3.28 (b) and (d).

The incident wavelength can have a strong effect on the BRDF, since all of the

surface features must be large compared to that wavelength. Figures 3.29 (a) and

(h) ' show the reflectance of a steel surface with green paint for visible (0.63 /im) and

L\VIR (10.6 [tm) illumination. As expected, the BRDF shows a sharp lobe with its

peak located around the specular direction for LWIR illumination, while the specular

lobe width is somewhat wider for visible illumination.

Parameters were again selected for the BRDF model ("- 0.015, 'i- 1.5) to

reproduce the measured reflectance curves of painted steel at LVIR. as shown in Figure

3.29 (d). Using the argument presented in Section 3.3.1 we rescaled the roughness

parameter ,82 according to the ratio of the LWIR and visible wavelengths. The derived

simulated co-polarized reflectance values Thh, and J.7,, agree with the experimental

data both in peak magnitude and shape. Nonetheless, the BRDF model again fails

to reproduce the measured behavior near backscattering.

Finally, we consider the reflectance of material with a large roughness. Figure 3.30

shows the reflectance of a concrete surface for 0, 200 and 0, = 60'. As the reflectance

curves suggest, the concrete surface acts like a diffuse reflector. The measured BRDFs

have small, near-constant values over a broad range of viewing angles. The surface

"°The Brewster angle at 53' is clear in Figure 3.28 (d), while only a dip is observed in Fig-
ure 3.28 (b). The discrepancy may be due to low angular resolution in the rneasurements(10° aparl).

"t Only Y,,, measurement are available in the LWIR case.
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Figure 3.28: Comparison of measured and modeled BRDF results in the incidenlt
plane. The measured surface is aluminum with green paint and zinc chromate coat,-

ings. The illumination is 0.63 mti wavelength. The simulated surface has the pa-
rarneters ,s2 = 0.01, mt. = 1.5. Co- and cross-polarized diffuse albedos are 0.015 and

0.0075. 94
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Figure 3.29: Comparison of measured and modeled BRDF results in the Incident

plane. The measured surface is metal with green paint at 0.63 p•,m and 10.6 /1'r.
The simulated surface has the parameters ni = 1.5, s 2=0.015 and 0.0009. Co- anrd

cross-polarized diffuse albedos are 0.03 and 0.015 for 0.63 gni and 0.01 and 0.005 for
10 .6 f a0. 95



is strongly depolarizing, since the cross-polarization terms -Y,, and F, are of the

same order as .fhh and Y•. The results suggest a good fit to the angle-independent.

Lambertian model assumed in the proposed BRDF model.

-- 1~ i
i t "

*no sona re siml cosans

t-kWN"" . OL WI

(a) Oi = 20*. (b) Oi = 60'.

Figure 3.30: Measured BRDF results in the incident plane. The measured surface
is confcrete. The illumination is 0.63 pirn wavelength. The corresponding simulations
(not shown) are simply constants.

3.3.7 Implementation of Emissivity Model

We stated in Section 2.6 that the directional emissivity of a surface can be found

via spatial integration of its BRDF using the reciprocity principle and the law of

energy conservation. For polarimetric sensors, the emissivities in the horizontal and
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vertical directions are computed separately as

/i•2 .27r

Elh(ki) 1O sin 0, dO,~hk, ~ -Tvh*(k, ks)] (3.5:3), /0 '0,
k) I 2 dO, sin (0, 27r = d [Y" 0 k,•,k•)+ ±-hV(ki, ks)] (3.54)

J0

where Yhhi, Tt, ,, , and h, are polarimetric BRDFs found as Mueller matrix entries

(Al 1 1, A1t2, 1112 1 , and A122 ) in the proposed model.

When the angular dependence of the BRDF is mild (certainly true for relatively

rough surfaces), the spatial integral can be approximated via numerical integration,

and Equations (3.53) and (3.54) become

Eh 1k, - m Z [m hh (ki, k, (70) +} , (i ks(n) (3.55)

E.(:, 1 - Z Qrn , [Zvk 8,(r,)) + J7,,,,(k,. k,(,,,))] (3.56)
rn

in which Q,, is an element of solid angle and kl(rn) is a unit vector in its direction.

A fine sampling of Q is used near the specular direction of the incident angle. Re-

flectances of nodes on the mesh are computed and summed to yield the emissivity

used in Equations (3.55) and (3.56). A bigger mesh is needed for a rougher surface

since its specular lobe is likely to be larger. A finer mesh is required for large incident

angles because the lobe near grazing tends to be narrow with large gradients.

The emissivity vector is combined with the blackbody emittance of the surface to

form the surface emission Stokes vector.

Is(.,) T, j [ 8 LBB =8(O) -LBB (3. 57)u us

The U and V components can be computed using Equations (2.51) and (2.52) and

the numerical integration stated above, but for surfaces simulated in this work, their
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values are nearly zero and are therefore neglected. Note that the dependence of

emissivity on observation direction is represented by the elevation angle 0, only ill

Equation (3.57), because the surface roughness is assumed isotropic.

To better understand the emissivity implied by the BRDF model, emissivity pro-

files were computed for various surface properties. The diffuse component of the

proposed BRDF model was ignored in these simulations, since its effect is trivial.

The refractive index affects the Fresnel reflection coefficients and, hence, the eruis-

sivity. Figure 3.31 plots the horizontal and vertical emissivity curves versus the obser-

vation (zenith) angle for a moderately rough surface (s2=0.01) and different refractive

indices. The curves reveal that a lower refractive index results in less reflection and,

hence, produces more emission. Also the effect of the Brewster angle is clearly visible

for the vertical component, which is shown with a local maximum near 500.

0 \\

04 .\-11< - 00

L -"! .... .° ......
0 104 n 0 7 WZ

o40 -0.44 , 000 •,

0 1'0 20 3>v4 50 0 0 0 4 0 2 4 0 0 4 4

(a) Sh (b) C.

Figure 3.31: Horizontal and vertical emnissivity for various refractive indices (,,;2

0.01, no diffuse component)
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Next, we examine in Figure 3.32 the effect. of surface roughness on emissivity. The

results show that as the roughness increases, the emissivity starts to drop at larger

observation angles, and the effect of the Brewster angle becomes less apparent, which

implies that emissions from rougher surfaces are less polarized.

a N

0 0

00 V 0 O .W

o0 -- 20 00 40 50 00. 70 80 0. 0 iC 20 10a 40 90 00 29 00O+

(a) S,. (b) £,.

Figure 3.32: Horizontal and vertical emissivity for various surface roughnesses
(rn=1.3. no diffuse component).

The surface properties of the mine and soil were also simulated. The parameters

used for these materials are within the ranges considered above. The contribution

of the diffuse component is displayed in Figure 3.33. Little change is observed near

nadir (less than 0.1), because the mine and soil are modeled as poor reflectors. The

solid [ines, which were computed with the diffuse component, are shifted downward

because of Lambertian scattering. With incorporation of the diffuse component, the

einissivities of the mine becomne comparable with those of the soil, because a slightly

larger diffuse component was added to the mine's BRDF.
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Figure 3.33: Horizontal and vertical emissivity of simulated mine and soil surfaces
with and without the diffuse component (mine: s2 = 0.0025 and in=1.4; soil: ,• 2

0.05 and m1=.6).

As indicated in Figure 3.33. the ermssivitv varies gradually as the observation

angle changes. Therefore, in the radiometric model implementation the emnissivity

vector of desired observation angle is calculated on the fly by linearly interpolating

a one-dimensional (Os) emissivity profile' 2 , which is computed off-line via the spatial

integration of BRDF described in the beginning of this section. A spatial discretiza-

tion like the sky mesh presented in Figure 3.17 is used to sample tihe BRDDF. Solid

angles Q, associated with mesh facets are coupled with the BRDF and summed using

Equation (3.55) and (3.56) to yield emissivities. This method saves computation timeo

and is valid if the surface is isotropic and if the change in the BRDF is gradual.

1 Profiles of horizontal and vertical emissivities of specified mine and soil surfaces are calculateod
every two degree.u
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3.4 Radiometric Model Construction

In this section we describe the integration of source models and surface scattering

properties to produce a signature simulator. For reasons of comrputational efficiency,

a ray tracing approach is used rather than a global illumination technique such as

radiosity.

An overview of the radiometric model is presented in Section 3.4.1. Steps needed

to initialize and execute the model are described. Key equations used to compute the

radiance of individual components are given in Section 3.4.2.

3.4.1 Simulation Procedure

Figure 3.34 shows the processes and data streams important in simulation. The

simulator performs three major functions: (1) setting up the model by defining the

source-target-viewer geometry and target surface properties, (2) computing and( Sum-

ming the components of the radiometric signature, and (3) simulating the effect of

the sensor. Implicit in this calculation is a loop over time and over all visible facets.

By far, the most computationally-intensive step is computing the received radio-

metric components. Five components are evaluated in the simulator as indicated n

Figure 3.34 and their contributions are computed separately. The direct thermal emis-

sion and single-bounce solar reflection have been found to dominate the signatures

of surface mines. These components are also easy to compute, since the transrnis-

sion paths contain at most one scattering event. The remaining three components

are far more difficult to compute, because they involve extended sources or multiple

scattering events.
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Figure 3.34: Block diagram of the activities and data sources used in generating
radiometric mine signatures. The principle functions of the simulator appear in the
left column. The radiometric components are given in the center column. The right
column shows external data sources.
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Surface Temperature History

As indicated on the right of Figure 3.34, thermal model arid the MODTRAN code

provide radiometric source information. Those codes are run prior to the execution

of the radiometric model.

Figure 3.35 illustrates the procedures used to compute the surface temperature

history. The thermal model requires as input the thermal properties for all materials

in the mine and soil, the date and the geolocation (latitude and longitude) of the

mine, albedos for all visible surfaces in the solar band, and meteorological conditions

such as the wind speed, humidity, and air temperature history. A mesh containing

the mine and soil is created to define the computational space. Next, the mesh is

refined near shadow boundaries and in other regions where high thermal gradients are

expected (e.g., near the soil-air interface). Incident solar irradiances at each surface

facet are computed for a 24 hour period with due consideration for surface shadowing.

Using the above facet insolation and environmental conditions as inputs, the thermal

model is run to convergence, and the surface temperature distribution for the final

24 hour segment is retained.

Illumination Spatial Profiles and Thermal Histories

The incident radiance due to sunlight and skylight are computedl using MOID-

TRAN. Figure 3.36 shows the basic steps in this process. The time-varying illulni-

nation must be computed for a complete 24 hour period. The MODTRAN code

requires an input file containing the solar zenith and azimuth angles and the atrno-

sphere model (specified by the season, latitude, and environment parameters). To

compute the skylight distribution, a hemispherical mesh that represents the sky is

103



Model Initialization
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jthermal. sfflce gedogical, It4e computaiona space)
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Compute solar irradiancer
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Execute the thermal model and retain
the final surface temperature profiles

Figure 3.35: Block diagram of the procedures used in generating surface temperature
profiles from the thermal model.

generated. The outputs of MODTRAN are the spectral insolation and the spectral

skylight. WVe employ an integration over the sensor band to comput.e incident, solar

and skylight radiances for surface facets.

Shadowing

In addition to the surface temperature history and illumination profiles, we also

need to know which surface facets are visible to the sources and sensor to initialize

the radiometric model. Visible surface determination is an important part of any

radiometric simulat.ion, and it is a critical component of this work. The basic proce-

dure is well known and is documented in common textbooks [70]. In order to save

computation time, the implementation used in this work is very basic, in that the
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Figure 3.36: Block dliagram of the procedu~res used in generating solar irradiance and
skYlight radiance from the M'ODTRAN code.
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decision regarding facet visibility is made entirely on the basis of the facet (centroid.

That decision is applied to the entire facet. No allowance is made for partially visible

facets.

A "visible facet" matrix and a corresponding "visible-facet projected solid angle'

matrix (approximation of dQi,m cos 0im in Equation (3.59)) are pre-computed using

above approach to save computation time for higher-order components. For each

observed point of the sensor, visibility tests are conducted by tracing rays emitted

from the point to centroids of all facets (a total of 1686 facets for the LPB mine

mesh simulated in this chapter). If the ray is not blocked by other facets. then the

entry in the "visible facet" matrix is set to be "true" (1) and the projected solid angle

is computed. The matrix is used when performing integration on extended sources,

only radiances from visible facets are included. A similar "visible sky facet" matrix

is computed to find visible sky mesh facets of observed points on the surface.

Radiation Integral

A relation used throughout this work is the Following integral, given previously as

Equation (2.29)

I1l~, r) = 12,7 dQ, cos Oi M lýli, r). 1,(lki, r) (3.58)

in which I,(kl.,r) is the Stokes vector reflected from point r in the direction k.,

dQ,cosOi is a differential projected solid angle in direction kl,, and Ii(ki, r) is the

incident Stokes vector arriving at location r along direction 1,. In general, this

integral must be evaluated numerically. In this work, we make the assumption that.

M(klk, r) is constant over a facet. In addition, when li(kl, r) arrives from another
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facet at. position r'. we assume that Ii(kc, r) is a constant over that facet. We have

1, (k<,r) M • (k,,•l<,,Ik r) -1i( .r) ff ace,,,1CoOS Oij, (3.-0'))

visible facet in
facet m

The remaining integral over projected solid angle is closely related to the so-called

"viewing factor" used in radiative heat transfer [71, Ch. 4]. A considerable amount of

effort has been devoted to the evaluation of these quantities in closed form for special

geometries. In the present work, however, quadrature has been used. The aforemen-

tioned facet-center based computation yields a fair approximation in projected solid

angle for two well separated facets, but it fails for adjacent facets. A facet-refining

algorithm is used to sub-divide nearby facets and recalculate projected solid angles.

The refinement continues until the distance (Or-r'j) is smaller than a preset threshold.

In performing this integration, it is often convenient to employ a facet-centered

coordinate system for the integral. Ultimately, however, the local Stokes vector mruist

be transformed to the sensor's coordinate system. For a rotation of angle V, about the

viewing direction 1., the required transformation has been derived by Ishimaru [21,

P. 36] and is given by

I' FI (3.60)

cos 2" sin2 V) -1/2 sin(2'q,) 0
sin 2 v; Cos 2 '¢ 1/2 sin (2'•/,) 0 (3.6:1)

s -sn(2') ci(2) os(2ý) 0
0 0 0 1

3.4.2 Derivation of Individual Components

In this section we derive the radiance received by the sensor from individual con-

ponlents. Each component is defined mathematically and its evaluation is discusse(,.
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Direct Thermal Emission

As noted above, the direct thermal emission is the easiest component to compute,

because it involves no reflections. Furthermore, we make the assumption that there

is no significant radiative exchange among facets. Hence, each "observed point" can

be regarded as an isolated gray-body radiator.

The calculation of this component involves two steps which must be executed for

each observed point r (corresponding to pixel exploited by the sensor) is trivial giv(en

the previously computed surface temperature profile. For a facet at temperature T,

we compute the blackbody emittance using Equation (A.14) and then weight by the

surface emissivity Stokes vector. We have

Ie., (l•, r) = E(O)LBB(T, A) (3.62)

The facet's observation angle 0, is used to find E by interpolating a previously coin-

puted emissivity profile.

Single-Bounce Solar Radiance

The single-bounce solar reflection is slightly more troublesome to compute than

the direct thermal emission, since the source position varies during the (lay and the

Mueller matrices for mine and soil surfaces are needed. The calculation for the re-

sponse at time t begins by using MODTRAN to compute the solar radiance Ls,, in

the sensor band. Then, for all facets that are both visible to the sensor and the sun,

we evaluate

Sr)- cos Mr). 1(3.63
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in which the solar Stokes vector is given by

1/2

I~ (.,,() = 1/2 j L.r(\(0) - 00)6((b, - 0o)/ coso (3.64)
0

where (00,0) are the sun angles and the vector [1/2 1/2 0 0]T indicates that solar

radiance is unpolarized. The integral immediately evaluates to

Isa1n,ref (ks, r) = M( ko, r) I.ýo,(1 0 ) (3.65)

Single-Bounce Skylight Radiance

The calculation of reflected skylight follows the approach defined above for the

reflected sunlight, but the implementation is significantly different, because of the

extended nature of the source. We write

Iskzj,ref(ks, r) = dQj cos 0jM(k, k,, r) I-k (1i) (3.6 G)

The intensity of ISk,(kl) is obtained from MODTRAN while its polarization is found

via Equation (2.15). The integral over solid angle is (lone numerically using the

hemispherical grid defined earlier. Using a rectangle rule for the quadrature produces

Ilskyref(lks, r) A Q, Am cos 0,M(k• Ikl r) - Ii(kl,)

S• ZQm, cos 0,,M(kI k'•,, r). I(k,,,) (3.67)

in which the subscript m ranges over all facets in the hemispherical grid and tn' is

a subset of sky facets viewable to r. Pre-calculated matrices for "visible sky facets"

and associated projected solid angles described in Section 3.4.1 is used to find m' and

AQ-n' Cos 07'.
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Single-Bounce Thermal Emission

In addition to the direct path, thermal emission can reach the sensor via reflection

from nearby facets. In this section we describe the procedure used to calculate single-

bounce thermal emission. Like reflected skylight, single-bounce thermal emission

involves extended sources. For each observed point r in the scene we must evaluate

Jther,re (ks , r) JdQ, cos OiM(k,, ki, r) *I,,crmcal(kz, r) (3. (8)

nJ facet Wi

where n' loops over all facets that can be seen from the observed point r, which is

found in the "visible facet" matrix, and r' is the intersection (if any) of surface facet,

n' with li,•, starting from r. By assuming the emissivity Stokes vector is constant

across the facet, approximating the integrated projected solid angle as -YY,, cos 0$,

and neglecting the effects of partially obscured facets, we write

Itherref (k., r) AQ,,, cos 0,,M(k, ls.,, , r) S(ki,r,,,r•,)LBB(r.,,) (:..69)

An observed point in the scene reflects emission from visible nearby facets. Due

to the short distance between facets, the projected solid angle of another facet varies

dramatically as the observed point changes and, hence, the integral over the source

distribution must be re-calculated for each point in the scene. The required calcula-

tions are very time consuming, since one must identify all facets visible from every

visible point in the scene, and one must integrate over those facets. In general. how-

ever, this term does not have a significant contribution to the total radiance, sHiC(e

the surfaces involved are poor reflectors.

110



Double-Bounce Solar Radiance

Higher-order scattering events contribute to radiometric mine signature, but, in

general the impact of those events is likely to be small, because the surfaces involved

tend to be poor reflectors, and because the contribution of higher-order events de-

cays geometrically with each scattering. Solar reflections are the strongest scattering

events and, to investigate the contribution of higher-order scattering the double-

bounce solar reflection has been evaluated.

The double-bounce solar contribution is given by

Isoi.,f2(1s, r) J dQ. cos O.M(k,1k•, r) Isor,,et(li, r) (3.70)

wvhere

IsorefI (k , r) J dY, cos O$M(ki k, r') I.(kl 0 )

- M(k I ko, r') I.(ko) (3.7[)

was evaluated previously. In this expression r' indicates the location of the facet

producing the first reflection. Thus

I8,0/,.f 2 (kt, r) J dQj cos OiM(l 8lk, r). M(l.jI k0 , r')I1,,r(ko) (3.72)

The contributions of higher-order terms can be derived in an analogous fashion in-

volving additional integrations. Using assumptions similar to those made for the

single-bounce thermal emission, we write

Is°olr/ 2 (rsfr) Zi dQjr, cos 0,,s M ( r) M, M( Ijkl0 , 1,171(ko)
Sfacet n.

S• AQL�, cos 0,,Ml(kl k8, 0•, r) M(k 2 ,• ko, r',)IS?,,,(ko) (3.73)
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Like the single-bounce thermal emission, the double-bounce solar cornponent is

expensive to compute, since it requires that one identify all facets (points) r' visilble

from r and integrate their contributions.

3.5 Simulated Signatures For Ideal Sensors

In an effort to understand the behavior of the signature model, a nulnber of

idealized simulations were done in this section to assess the significance of different

radiation components in nadir and oblique sensor orientations. Section 3.5.1 presents

the individual radiometric components of a nadir-looking sensor and a discussion

of their impact on the model. The case of an oblique-viewing sensor is studied iu

Section 3.5.2. The relation of surface reflection and the orientation of oblique-viewing

sensor is presented in Section 3.5.3. Section 3.5.4 examines total and individual

responses in different sensor bands. An analysis of temporal contrast of uiie and

background signatures is also presented.

The simulations have been performed using the environmental conditions from

the "NT-SI" data set described in Section 2.7.1 and the target simulated is a LP_B

mine. The simulations in this section contain three images: The nadir-looking I,

Q, and U Stokes parameters. (In the absence of circularly polarized sources, no V

component is produced for this geometry.) The sensor is assumed to be 10 meters

above the mine. Each image chip contains 128 x 128 pixels, which leads to a high

resolution signature. However, for some higher-order components, the sampling rate

was reduced in uninteresting image regions to save computation time.
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3.5.1 Comparative Study of Radiometric Components

Figure 3.37 displays the direct thermal emission. The I component exhibits [ea-

hures similar to the surface temperature shown earlier in Figure 3.9, since the surface

emissivities of mines and soil are similar at normal incidence. The Q and U images

indicate that those Stokes parameters emphasize the horizontal/vertical and diagonal

polarization, respectively. This is the result of the Stokes transformation described

in Equations (3.60) and (3.61) that rotates local Stokes vectors to the fixed sensor's

coordinate system. For points on a concentric circle under a nadir sensor, Ch and E,,

are the same since the surfaces simulated are isotropic. However, the angle 0 relative

to the sensor's coordinate system varies from 0 to 27r and yields the pattern seen in

Q and U components after transformation.

Wee see the energy in Q and U components is very small compared to the I

image. (Recall that thermal emission at normal angles is nearly unpolarized for most,

materials.) Soil regions in the Q and U images show small values while those of the

I, I050

(a) J. (b) Q. (c) U.

Figure 3.37: Simulated signatures in the I, Q, and U components for direct thermal
emission and nadir viewing.
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mine are zero. These Q and U responses are produced by two causes: first, the iruine

surface is smoother than the soil and as a result., the mine has a smaller difference

between horizontal and vertical emissivities near nadir. Figure 3.38 shows that t lie soil

has a larger difference between vertical and horizontal emissivities. Second, [or a inilte

sensor height, the mine's observation vector 1, has a smaller zenith angle than the

soil's which accentuates the soil's apparent polarization. Since the sensor is assunled

placed 10 meters above the target, there are small changes in observation vector across

the scene. The distance between the center and the edge of the scene is approxiinately

35 cm, which produces a zenith angle around 20. In contrast, the zenith angle at the

mine's edge is approximately 10. This example shows that small differences in surface

properties and viewing geometry can produce variations in polarirnetric signatures.

02

E

Vewirng angle

Figure 3.38: Emissivity difference ( f.-Sh) for mine and soil surfaces.

Next, we examine the single-bounce solar reflection, which is shown in Figure 3.39.

The sunlight comes from the right of the image with a 40' zenith angle. Because he

sensor is directed away from the specular direction, the reflected-solar I conlponent is
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much smaller than the I component for direct thermal emission. The reflection from

soil is stronger than that from the mine surface, since we assume that the soil surface

is rougher and produces strong diffuse scattering. The shadow introduced by the 3-D

mine structure is clear and oriented as required by the solar position. Because solar

radiation is an unpolarized source, the Q and U images are weak. Note that the Q

image is entirely negative, which occurs because the solar irradiance arrives from the

right.

(a) 1. (b) Q (c) U

Figure 3.39: Simulated signatures in the I, Q, and U components for single-bounce
solar radiation and nadir viewing.

The Stokes components for skylight, an extended source, are shown in Figure 3.40.

The I component is uniform across most of the computation surface, but. the response

is reduced near the mine's side wall, because the skylight is partially blocked. in-

mediately adjacent to the side wall, the reduction is 50%. The Q and U componentts

exhibit, similar patterns as seen in direct thermal emission signatures, which can be

attributed to the Stokes rotation operation. Because skylight is partially polarized,

the Q and U images contain more energy (relative to the I component) than thermal
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emission or solar reflection. This finding is best quantified by the degree of linear

polarization (DoLP), which is essentially the ratio Q/I.

DoLP - A (3.71)

+I- +

Figure 3.41 presents the DoLP for skylight, (direct) thermal emission, and (single-

bounce) solar reflection, respectively. W¥e note that the mnaximnumn of the skylight

DoLP is about 0.15, which is much greater than the other two sources. However,

the DoLP in the total Stokes vector is still small, since skylight is a relatively weak

source.

(a) I. (b) Q. (c) [.

Figure 3.40: Simulated signatures in the I, Q, and U components ofor single-bounce
skylight radiation and nadir viewing.

Higher-Order Components

As alluded to previously, higher-order radiometric components tend to be weak.

Figure 3.42 shows the Stokes parameters for single-bounce thermal emission. The I

component is largest near the mine walls, because the adjacent wall presents large

projected solid angles to the adjacent soil, leading to a strong thermal interaction.
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L A
(a) Skylight. (b) Solar reflection. (c) Thermal emission.

Figure 3.41: Degree of linear polarization (DoLP) for skylight, reflected sunlight, and
thermal emission for nadir viewing.

Nonetheless, its magnitude is small compared to the direct thermal emission. Figure

3.43 shows the sum of direct and single-bounce thermal emission, which is essentially

the same as the direct emission shown in Figure 3.37.

(a) I. (b) Q. (c) _

Figure 3.42: Simulated signature in the I, Q, and U components for single-bounce
thermal emission and nadir viewing.
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(a) I. (b) Q. (c) U.

Figure 3.43: Simulated signature in the I, Q, and U components for total thernial
emission and nadir viewing.

The double-bounce solar reflection shown in Figure 3.44 is also small in inag-

nitude, making a small correction to the total solar reflection in Figure 3.45i'. The

double-bounce solar reflection exhibits stronger depolarization than the single-bounce

component, but its DoLP is still small. The Q and U components of the doubIle-

bounce solar reflection dominate the total solar reflection shown in Figures 3.15 (b)

and (c).

Figure 3.46 shows the combined radiometric signature fromn all fiNe ('onl)oulents.

The I signature is dominated by direct thermal emission, while the single-bounce

solar reflection introduces a strong shadow. The remaining components have little

effect on the total signature as shown in Figure 3.47 which presents the direct thermial

and single-bounce solar signatures only. The I image from those two dominant co(n-

ponents is virtually indistinguishable from the sum of all five components shown in

Figure 3.46, but the skylight contribution has a strong effect on the Q and U ilhages.

t3The complex fractal-like pattern near the mine walls in the double-bounce solar reflection sig-
nature is the result of the mesh formulation. A polygon of 16 sides was used to approximate the
mine's cylindrical shape-
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(a) I.(b) Q. ()U

Figure 3.44: Simulated signature in the I, Q, and U components for douible-bounce
solar radiation and nadir viewing.

(a) 1.(b) Q~ l i
Figure 3.45: Simulated signature in the 1, , and U components for total solar
radiation and nadir viewing.

(a) 1.(b) Q. (C.) U.

Figure 3.46: Simulated signature in the 1, Q, and U components for total radiatioii
and nadir viewing.
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(a) I. (b) Q. (c) U.

Figure 3.47: Simulated signature in the I, Q, and U components for the sum of direct
thermal and single-bounce solar radiation and nadir viewing.

3.5.2 Radiometric Signatures of an Oblique Sensor

The simulations in Section 3.5.1 considered a nadir-looking sensor. For that geomn-

etry the dominant thermal emission component exhibits little or no depolarization.

As a result, the polarimetric Q an U Stokes components of the signature contain

much less energy than the intensity component and may be difficult to detect. In this

section we study the oblique sensor case (0s=45°) pointed toward east and its effect on

t~he radiance components. The change in simulation geometry required the calculation

of viewable surface facets and the visible facet matrix mentioned in Section 3.4.1.

Simulations were performed using same environmental parameters used in Sec-

tion 3.5.1. The direct thermal emission component shown in Figure 3.48 reveals both

the top and side walls of the mine. The oblique viewing angle has produced (2 and

U images that are two orders of magnitude larger than observed for the nadir sensor

illustrated in Figure 3.38. The symmetric nature of these polarimetric components is

the result of the viewing geometry and the symmetry of the mine.
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(a) I. (b) Q. (c) U.

Figure 3.48: Simulated signatures in the I, Q, and U components for (irect tlhernml
emission and oblique viewing (0, = 450).

The single-bounce solar reflection is shown in Figure 3.49. The Stokes vector coin-

ponents indicate that the return from the rriine is unpolarized (only diffuse scattering

is significant), since the mine's BRDF is localized in the specular direction, but the

sensor is viewing the mine in an off-specular direction. In contrast. the return from

soil is slightly polarized due to its rougher surface, which results in a broader specu-

lar lobe. Note that. the shadow region is also unpolarized, because it. reflects no solar

incidence.

The oblique-viewing skylight reflection signatures in Figure 3.50 are also signifi-

cantlv different from the nadir looking component in Figure 3.40. The return from

horizontal facets remains largely constant across the scene, while the return of vertical

panels varies significantly due to the viewing geometry.

The DoLP for the above three radiometric components is shown in Figure 3.51. All

three components have larger DoLP values in the oblique sensor case. The maxinta

in DoLP are increased approximately by the factors of 2, 10, and 100 for skylight,

solar reflection, and thermal emission, respectively.
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(a) 1. (b) Q. (c) U.

Figure 3.49: Simulated signatures in the I, Q, and U components for single-bounce
solar radiation and oblique viewing (0, 450).

(a) 1, (b) Q. (c) U.

Figure 3.50: Simulated signatures in the I, Q, and U components for single-bounce
skylight radiation and oblique viewing (0, 450).

(a) Skylight. (b) Solar reflection. (c) Thermal emission.

Figure 3.51: Degree of linear polarization (DoLP) for skylight, reflected sunlight, and
thermal emission for oblique viewing (0, = 45').
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Figures 3.52 and 3.53 show the higher-order components. Their intensities are

weak, but. some very localized "glints" appear. Some glints from the double-bounce

solar reflection are visible in the total signature in Figure 3.34.

J rI;

(a) I. (b) Q. (c) U.

Figure 3.52: Simulated signature in the I, Q, and U components for single-bounce
thermal emission and oblique viewing (0, = 45').

p it

(a) I (b) Q. (c) U.

Figure 3.53: Simulated signature in the I, Q, and U components for double-bounce
solar radiation and oblique viewing (0. = 450).
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BY combining the above five complonents, we obtain the total signature shown

in Figure 3.54. The intensity variation observed in the I image is very similar to

that found in the nadir viewing case of Figure 3.46, but the shape is clhanged bY the

viewing angle. The polarimetric (Q and U) components are again dominated by (direct

thermal emission, but the oblique viewing angle greatly increases the magnitludes of

the Q and U components. The mine's shape becomes visible in the Q and U' inages.

which implies that off-nadir viewing is valuable for passive po]ariiietric sensors.

(a) L. (b) Q. (c) ti.

Figure 3.54- Simulated signature in the 1, Q, and U components for total radiation
and oblique viewing (0, = 45).

3.5.3 Radiometric Signature and Sensor Orientation

In this section simulations of an oblique-viewing sensor, which was studied in

Section 3.5.2, are performed with the sensor oriented toward east south, west. and

north directions to study the impact of sensor orientation Only signatures of the

single-bounce solar reflection are presented because its significant intensity in NIYIN

signatures. The direct thermal emission component has no 0 preference and is there-

fore invariant to the sensor orientation.
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"We first examine the intensity (I) images in Figure 3.5-. The orientations of the

sensor were set in four directions and can be associated with the orientation of the

shadow, which is imposed by a 11 AM sun (coming from south-east-south). The inten-

sity of mine is constant over four images (about 0.15 [W/m 2 sr]) because the specular

lobe of the mine's surface is narrow and above four sensors only receive returns from

the diffuse component. On contrast, returns from soil surfaces is particularly strong

(around 0.45 [W/m 2sr]) in the south-looking sensor, which is closer to the specular

region of the solar incidence.

(a) East. (b) South. (c) West. (d) North.

Figure 3.55: Simulated I images of an oblique sensor (0, 45) oriented toward east,
south, west and north.

The Q images in Figure 3.56 are proportional to the degree of linear polarization.

We see the Q components from the mine's returns are essentially zero at all sensor

directions. This result confirms that returns from the mine are diffuse in off-specular

regions. The dynamic range of soil's returns experiences greater changes in different

sensor orientations. The maximum Q in a south-looking sensor (near specular) is

about ten times larger than those in east- and west-looking sensors and two orders

larger than that in a north-looking sensor (near backscattering). Note that the sign
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in Q is different to that in a sensor of opposite direction because the horizontal an(I

vertical directions are defined differently as the sensor's orientation changes. Above

result shows passive polarimetric sensors should be placed in (or near) the specular

direction of its primary source of reflection to maximize the contrast in its polarinietric

signatures.

(a) East. (b) South (c) West. (d) North.

Figure 3.56: Simulated Q images of an oblique sensor (0,= 45) oriented toward east,
south, west and north.

ILI
(a) East, (b) South. (c) West. (d) North.

Figure 3.57: Simulated U images of an oblique sensor (0, = 45) oriented toward east,
south, west and north.
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The U images in Figure 3.57 exhibit similar features seen in Figure 3.56 except

the sign changes in east- and wvest-looking sensors since the U component emphasizes

the linear polarization 450 away from the Q component.

3.5.4 Comparative Study of Sensor Bands

The foregoing simulations were performed for an MWIR sensor (3-5 pim), and

suggest that both thermal emissions and solar reflections contribute to a mine's ra-

diometric signature. To understand the role of the sensor passband, a comparative

study is presented in this section for MWIR, SWIR (1-3 /im), and LWIR (8-12 uin.).

Changes in sensor passband require changes in source radiance and parameters

used for surface roughness. A surface's degree of roughness varies with the wavelength

of the incident radiation. Table 3.4 lists the values of key surface roughness parameters

used in the three bands. Both the surface slope variance and the diffuse component

of the BRDF model were adjusted in proportion to the mid-band wavelength.

Sensor band SWIR MWIR LWIR
(1-3 pm) (3-5 Im) (8-12 jim)

Surface type Mine Soil Mine Soil Mine Soil
Refractive 1.4 1.6 1.4 1.6 1.4 1.6
index (in)

Slope(II
variance (s2) 0.005 0.1 0.0025 0.05 0.001 0.02

Diffuse 0.04 0.03 0.02 0.015 0.01 0.0075
component

Depolarization 0.5 0.5 0.5 0.5 0.5 0.5
ratio

Table 3.4: Surface scattering parameters for the mine and soil used in SWIR, MWIR,
and L\WIR. sensor simulations.

127



The source radiance was re-calculated for each sensor band. For thermal emission,

we simply changed the lower and upper limits in the integral in Equation (A.14).

Sunlight and skylight spectral radiances were computed by modifying the MODTRAN

input file. Figure 3.58 plots the solar irradiance versus the solar zenith angle [or a

mid-latitude winter atmosphere. We see that the attenuation of solar irradiance

increases with wavelength. For an oblique sun (0,,,=45°) the amount of irradiance

in the LWIR band is approximately one-tenth that in the MWIIR band, and less than

one percent that in the SWIR band. This agrees with the common observation that

sunlight is significant in the SWIR band but negligible in the LWIR band.

, a ................ ......... c ...... ....... .........

e 3 : S r r-n iaIR
-- MWI•

mid-latiSolar zenitr anglehre

Figure 3.59 illustrates the skylight intensity onl the solar meridian. The spike inl

the SWIR. (hlue) curve indicates the location of the sunt. The skylight radiance falls

off away from that peak. The MWIR (black) curve shows a similar trend but is mutch

weaker in magnitude. In the LWIR band, the skylight shows no spike at the solar
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position, which means that skylight at LXVIB is mainly thermal emission from 8ir

particles.

-- MWH

to

-• -6 -0 -20 Co 00 4,3 C 6 0

Zenith angle

Figure 3.59: Skylight radiance at the solar meridian in various IR bands for a mid-
latitude winter atmosphere.

Simulations were performed for SYVIR and LWIR sensors to proceed comparisons

with IMWIR results. Figure 3.60 shows individual components and the total intensity

(I) signature of an SWIR sensor. The direct thermal emission signature is the same

as that in Figure 3.37 (a), but the magnitude is much smaller. In contrast, the

single-bounce solar reflection component dominates the total signature with mino,)r

corrections from double-bounce sunlight and skylight. With the surface parameters

listed in Table 3.4, returns from mine and soil surfaces are comparable and make the

shadow a high-contrast mine feature.

At LWIB wavelengths, thermal emission becomes the primary source for the re-

ceived radiance. As seen in Figure 3.61, solar reflection is insignificant, and skylight
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(a) Direct thermal. (b) Single-bounce solar. (c) Single-bounce sky-
light.

I

(d) Single-bounce ther- (e) Double-bounce solar. (f) Total.
rnal.

Figure 3.60: Simulated intensity images (I) of individual components and the total
signature in the SWIR band (1-3 pmr) for nadir viewing.
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reflection is only a fraction of thermal emission. The shadow in the total LWVIRt signa-

ture is more diffuse and poorly defined because the nodal distribution of the thermal

model emesh is coarse in this region.

mm

(a) Direct thermrial. (b) Single-bounce solar. (c) Single-bounce sky-
light.

(d) Single-bounce ther- (e) Single-bounce solar. (f) Total.
mal.

Figure 3.61: Simulated intensity images (I) of individual components and the total
signature in the LWIR, band (8-12 pmn) for nadir viewing.

Temporal Dependence of Signature Contrast

To study the temporal dependence of the mine's signature, sequences of siniula-

tions in different sensor bands were conducted for a 24 hour period. To save compu-

tation time, only the direct thermal emission and single-bounce solar reflection were
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considered because we have seen that other components have small contrilbtions and

they are expensive to compute. One practical objection of this study is an assessment

of mine detection performance as a function of time and passband. As a surrogate

for detector performance, we use contrast, the difference between signal intensities

over the target and over the background. Target and background regions used in this

calculation were defined previously in Figure 3.8.

First consider the MWIR band. Figure 3.62 (a) shows the received radiances

from different regions of the simulated scene. For reference, the insolatioln is plotted

as a green dashed line to indicate the daylight hours. The blue curve is the average

radiance from the background region (soil) defined in Figure 3.8. The maxiumni

radiance in the mine region and the minimum in the potential shadow region are

plotted in red and black curves. The radiance from the mine exceeds the background

during daytime and the contrast is reversed during the night. Also, if the shadow

is present, its radiance tends to be smaller than that of other soil regions. Bec'ause

the deviation of the mine's signature from the background is proportional to its

detectability, we plot Figure 3.62 (a) the maximum difference (from either the mine

surface or the shadow) over the diurnal cycle in . It is evident that the maxnnmilu

contrast is achieved around mid day.

In the S\VIR band, solar reflection is the dominant source. The zero contrast

observed in darkness in Figure 3.63 (a) shows that the SWVIR sensor cannot work

without insolation. Because reflections from the surfaces of the mine and soil are

similar in magnitude, the maximum deviation comes from the shadow as indicated in

Figure 3.63 (b). The insolation (green dashed line) follows the maximum return from

the mine (red line) but, deviates slightly from the background (blue line). This result
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.4444 M 1 ...............

Time [hr] Time (h,]

(a) Received R~adianice. (b) Max. Difference.

F~igure 3.62: (a) Received radiance in the IM\IR band (3-5 /in)) oil soil (ave-rage),
mine (maximum), and soil next. to mine (minimumn) where the shadow niay be present,.
(b) Maximumn deviation (from average soil radiance) for the inine or its shadow. The
green (lashed line indicates the incident solar irradiance.

was expected, rnine reflect~ion is mostly the diffuise component of the BRDF model.

while the specular lobe of the rougher soil surface provides a different response.

The radiance and contrast curves for the LNVIR sensor are shown in Figure 3.64,

whichi is determined solely by the surface temperature history. Features of these

curves are similar to the NIWIR curves, except the difference between the shadow

and the soil is smaller, aid the interval bet-ween sunrise/suniset. and the "c'ross over"

events (equal intensities in mine and soil regions) is longer because very little solar

reflection has lit:tle role in the LNVIR band.

3.6 Sensor Point Spread Function

Sensor characteristics have a strong effect on mine signatures. The signat~ure

dependence on the spectral passband has already been discussed. The viewving angle
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Time [hr] Time [hri

(a) Received Radiance. (b) Max. Difference.

Figure 3.63: (a) Received radiance in the SWIR band (1-3 pm) on soil (average), mine
(maximum), and soil next to mine (minimum) where the shadow may be present. (b)
Maximum deviation (frorm average soil radiance) for the mine or its shadow. The
green dashed line indicates the incident solar irradiance.

13 . 3

Time Iho] Time 3ht]

(a) Received Radiance (b) Max. Difference,

Figure 3.64: (a) Received radiance in the LWIR band (8-12 pini) on soil (average),
mine (maximum), and soil next to mine (minimum) where the shadow may' he present.
(b) Maximum deviation (from average soil radiance) for the mine or its shadow. The
green dashed line indicates the incident solar irradiance.
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also has a strong, obvious effect,, with nadir viewing preferred for capturing the mine's

circular shape.

The optical path of an imaging sensor will also affect image quality. At, this time

the optical response of the sensor is summarized by its point spread function. The

principal characteristic addressed by this function is the sensor resolution. In this

section, we describe a simple Gaussian filter mode] for the impulse response of the

sensor. The filtered response can be down-sampled tmo yield images at the desired

resolution.

t7

Figure 3.65: Gaussian impulse response of sensor.

The ground sample distance in the "NT-S1" data set is about 1.1 inches, but the

resolution of the image is slightly worse at approximately 1.65 inches (approximately

1.5 pixels). In contrast, the resolution of simulated signatures is approximately 0.19

inches. A Gaussian filter of 1.65 inch half-width was applied to the simulated images
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to mirnic the impulse response of the sensor. Figure 3.65 illustrates the Gaussian

filter, which has a half width of approximately 8.5 pixels in the sinmulation resolution.

(a) Original response. (b) Gaussian-filtered
response

Figure 3.66: Radiometric mine signature before and after applying Gaussian filter
that mimics the impulse response of the sensor

Figure 3.66 shows the effect of applying the Gaussian filter. High frequency infor

mation (e.g., edges) is suppressed, resulting in a blurred mine signature. The original

detailed simulation has been replaced by a blob with a more uniform brightness dis-

tribution, and the shadow region is enlarged. The result was then down sampled

to replicate sensor pixels. A rotation has also been introduced to facilitate later

comparisons with measurements. Figure 3.67 shows the final product, which will be

compared with measured images in Section 4 1.1.
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Figure 3.67: Down-sampled and rotated simulated radiometric mine signature.

3.7 Summary

The implementation of the radiometric model was presented in this chapter.

Source conditions, surface properties, and the viewing geometry are the major fac-

tors that define a mine's signature. It has been observed in prior studies that, EO

signatures are subject to changes in the operation time, weather, insolation condi-

tions, thermal and roughness properties of mine and soil, sensor's impulse response,

passband, orientation, and many other factors. A summary of key elements exploited

in this radiometric model is presented below.

The thermal model provides the temperature histories required to calculate ther-

mal emission. Computational meshes were built for mines that are bodies of revo-

lution. Mesh refining techniques were applied to increase the nodal density in areas

of large temperature gradients. Temperature histories were computed using the heat

transfer equation and a time-stepping scheme. User supplied boundary conditions.

which are time functions of the insolation and meteorological conditions, were defined.
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A study of the temperature dependence on environmental conditions shows that the

temperature contrast between the mine and background increases with increasing in-

solation. Convection, introduced mainly by the wind, tends to reduce the contrast.

In general, the maximum contrast is achieved near mid day.

Solar radiation, either from direct (sunlight) or scattered (skylight), is the primary

source for surface reflections. We employed the MOODTRAN code to accolint for

complex atmospheric scattering and absorption effects. The spectral transmittance

and skylight radiance were integrated over the sensor passband to yield desired source

radiances.

A polarimetric BRDF model was developed to address surface reflection and enis-

sion. This approach follows the classical PO model and adopts correction terms from

the GO model. The proposed model contains three components: a term for rough

surface scattering near the specular direction, a geometric attenuation function that

accounts for self-shadowing and multiple scattering, and a diffuse term representing

internal scattering. The surface was described by a Gaussian-distributed height and

a Gaussian correlation function. A comparison with measured data shows that, the

model is valid for relatively rough mine-like surfaces. Directional emissivities for the

surface were computed via a hemispherical integration of the surface's BRDF.

The radiometric model was assembled from the above source conditions and sur-

face properties with consideration for the problem geometry. Thermal emission and

solar reflection are basic components of the model and are computed in a straight-

forward manner. Calculation of the skylight reflection, which comes from an extended

source, involves a spatial integration. Higher-order radiance components, which in-

volve multiple scattering events, arise from the elevated surface-laid mine structure.
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The ray tracing techniques was employed, but only the single-bounce thermal emission

and double-bounce solar reflection were included because of the intensive comnputa-

tions involved and their limited influence on the signature.

Simulations of various sensor scenarios were conducted to study their effects. The

sensor's zenith angle affects not only the mine's apparent shape, but also the po-

larimetric properties of the signature. An off-nadir sensor exploits differences in

the horizontal and vertical polarimetric emissivities to yield significant polarization

contrasts and, hence, oblique viewing is desirable for a passive polarinetric sensor.

Furthermore, the study of sensor orientation shown that passive polarinietric sensors

should be placed near the specular direction of insolation to receive a greater contrast

in polarimetric signatures. Three IR sensor bands were explored using a common set

of condition. A comparison of individual radiometric components shows that a SWIR

signature is dominated by solar and skylight reflection, a M\¥IR signature is mainly

comprised of thermal emission (and a solar reflection that highlights the shadow),

and a LWIR signature is overwhelmingly dominated by thermal emission. \We also

examined the temporal dependence of the signature for the SWIR, MNIR, and LW'VIR

bands and found that maximum contrast is achieved during mid day for all bands.

According to simulations, SWIR sensors have signatures of the greatest contrast be-

cause of the shadow, but their operation is limited to daylight hours. On the contrary,

MWIR. and LWIR. sensors can be operated at all time, but the mine-to-clutter con-

trast is only a fraction of the received radiance (less than 33%). Finally, we modeled

the sensor's point spread function with a Gaussian filter to replicate the blurring

introduced by a low-resolution sensor.
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CHAPTER 4

MODEL VALIDATION AND SIGNATURE ANALYSIS

In this chapter results are presented that validate the radlionetric model. Sun-

ulations were conducted and successfully compared with images from several sites.

Additional results are provided to explain the behavior of the signature.

Section 4.1 presents simulations of the NT-Si data described in Section 2.7.1. A

comparison of data at, a specific time are presented first, followed by temporal signa-

ture variations for day time, night tirme, and the so-called "crossover". Polarinietr}C

signatures are investigated in Section 4.2. Simulations of obliquely viewed mines

were performed and compared with polarimetric Mi IJR imagery collected by TN().

Finally, in Section 4.3 the performance of the model at visible wavelengths is exl)iored

using data collected at NT-S2 (see Section 2.7.2). Simulations designed to explore

the relation of viewing angle and surface BRDF demonstrate good agreement with

measurement and verify the BRDF model.

4.1 Case 1: Temporal Response of Non-Polarimetric Sensor

For the NT-S1 data introduced in Section 2.7.1 one run was selected as the basis

for the simulations, which was collected at 11 AM, Oct. 21st, 2002. In Section 4.1.1
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the model is validated using data from that run. \\e also consider a second run

collected under similar conditions except that the time was 3:30 PM.

In the remainder of this section, additional simulations are reported for similar

conditions. A sequence of simulations was conducted with evenly spaced time steps

to examine temporal features of the signatures. Three series of simulation were per-

formed. First, simulations during daylight show that. the size and orientation of the

mine's shadow tracks the solar position. A second series of' simulations studies ther-

mal crossover, which occurs twice daily at dawn and dusk. Finally, simulations after

dusk demonstrate different cooling rates for mine and soil.

4.1.1 Radiometric Model Validation

Simulation results for LPB mines at NT-S1 at 11:00AM, October 21st were pre-

sented previously in Section 3.5.1 and are repeated in Figure 4.1 for convenience.

Only the I component is shown, since only intensity data were measured. Figure 4.2

shows the total simulated intensity after reducing its resolution and rotating to match

the sensor orientation.

Figure 4.3 illustrates seven chips containing LPB mines from the aforementioned

sensor measurement run. Three plastic-cased LPB mines appear in three frames. [n

general, they agree well with the simulated result, including the mine size, shadow

size, and general shape of the signatures. The shadow is observed in both simulated

and measured images, but some measurements show a shadow that is extended or

poorly defined, which we attribute to surface roughness or vegetation.

A quantitative comparison of the model and data is now presented. The measured

images comprise pixel readout counts, which are not easily related to radioruetnic
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(a) Direct thermal. (b) Single-bounce ther- (c) Single-bounce sky-
real. light.

(d) Single-bounce Solar. (e) Double-bounce solar. (f) Total.

Figure 4.1: I component of individual and total signatures for "NT-SI" data set at
11:00, Oct. 21st.

Figure 4.2: Simulated mine signature with cross-section line for radial profile analysis.
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Figure 1.3: Sample mine chips collected at NT-Si, 11:30AMI, October 21st, 2002.
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units. For this reason, normalized values will be compared. Figure 4.4 compares pixel

intensities in simulated and measured images along a cross-section that starts froom

the maximum (mine's center) and passes through the minimum (shadow's center) of

the image (see Figure 4.2). The ensemble average of the measured chips shows that

the measured shadow is larger than that seen in the simulation. This effect may be

caused by an off-nadir sensor orientation' or by large-scale tilts on the soil surface.

A thermal simulation of uneven soil by Sendur [12] reported a significant contrast.

in surface temperatures if large scale slopes were present on the simulated surface.

Motion blur may also be present, but a meaningful analysis of platform motion has

not been done to date. Overall, the simulator yields a fair approximation to measured

data.

Next, simulations were done for 3:00 PM using same surface parameters and ap-

propriate values for the time sensitive parameters (surface temperature profiles, solar

angle and irradiance, and skylight distribution). The mine signature is shown in Fig-

ure 4.5. Comparing to Figure 4.1 (f), it is clear that the signature at 3:00 PM has a

longer shadow and its orientation has rotated roughly 90 degrees. These changes are

consistent with the shifts in solar elevation and hour angles.

It is also clear from the magnitude of the radiometric components that direct,

thermal emission is still the dominant contribution while single-bounce solar reflec-

tion provides a secondary correction, especially in the shadow. Therefore, as noted

previously, it is sufficient to simulate those two components to obtain a reasonable

signature.

"14A nadir sensor was assumed in the simulation. The actual sensor angle in the measurement is
unknown but is less than 10°
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Figure 4.4: Intensity profiles of simulated and measured signatures along a cross-
section.

Degrading the sinmuilation's resolution with the same point spread [unction in the

11:.30 AM case and applying a rotation consistent with the camera heading produces

the signature in Figure 4.6. This output compares favorably with the measured data

in Figure 4.7, which shows three LPB mines in three scenes collected during the run

at 3:30 PM. Individual mine signatures were consistent across different scenes, but

the size of the shadow varied significantly. This phenomenon is better revealed in the

cross-sections in Figure 4.8, which may be attributed to large scale soil roughness.

Again, we conclude that the proposed radiometric model yields signatures having

reasonable agreement with the measured data.
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(a) Direct thermal. (b) Single-bounce ther- (c) Single-bounce sky-
mal. light.

(d) Single-bounce Solar. (e) Double-bounce solar. (f) Total.

Figure 4.5: 1 component of individual and total signatures for "NT-SI" data set at.
15:00, Oct. 21st-

Figure 4.6: Simulated signature for the 3:30 PM run and the cross-section line used
fo~r radial profile analysis.
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Figure 4.7: Sample mine chips collected at "NT-SI", 15:29, Oct.. 21, 2002.
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Figure 4.8: Intensity profiles of slimulated and measured signatures along ai cross-

sec tion.

4.1.2 Signatures for Sunlit Conditions

Additional simulations were performed hourly for a 24 hour period ro studyv the

variation of signatures wNi th1 time. In this section we present a study of signatures for

sunlit conditions. Cases of darkness and crossover are presented subsequently. The

signatures of direct thermal emission are shown in Figure 4.9, a~nd the single-Ibounee

solar reflections are added to form Figure 4.10. Comparison of these figures makes

the solar contribution evident[

Figure 4.9 (b) shows ap mosaic composed of thermal emission signatures simulated(

hourly from 8 AM through 3 P r. A cormon scale has been used for each block of 8

images to facilitate comparisons. Several signature f. eatures are evident. As expected,

the soil is hotter during the afternoon (12 PM to 3 PM[). The mine, which was cooler
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Figure 4.9: Mosaic of "direct thermal emission" during morning (24:00-7:00), noon
(8:00-15:00) and evening (16:00-23:00).
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Figure 4.10: Mosaic of total radiometric signatures during morning (24:00-7:00), noon
(8:00-15:00) and evening (16:00-23:00).
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than the soil in fhe morning, was also heated by insolation, but the rate of change in

the mine surface temperature was larger. This occurs because the mine contains an

air space'•5, which isolates the top of the mine from the remainder below. Solar driven

heating of the small thermal "mass" on top of the mine produces a larger temperature

rise than the soil.

Because of computational limitations, the thermal model output does not, accu-

rately reproduce the shape of the shadow. The nodal density of the mesh decreases

as the distance from the mine center increases and, hence, the spatial sampling den-

sity eventually becomes too low to accurately represent the shadow boundary. With

sufficient memory and computation power, a more refined mesh should avoid this

problem.

The mine's shadow provides another potentially detectable thermal feature. Fig-

ure 4.11 plots the solar elevation angle and the amount of solar irradiance during

a diurnal cycle, both of which are critical in determining the size and contrast of

the shadow. The mine structure is clearly revealed by the reflected solar radiation

(see Figure 4.12). When the soil near the mine is shadowed, its normal temperature

evolution is stalled or reversed. The second deck of the mine also iriposes a small

shadow on the top of the first deck.

The contrast between the mine and soil is strongly influenced by their BRDFs arid

the solar elevation angle. For sensors that do not see a specular glint, solar reflections

from the (relatively smooth) mine come mainly from the diffuse component, whose

magnitude varies approximately as the cosine of the solar elevation angle. ConverseLy,

the soil surface, which is assumed rougher, has a very broad scattering lobe that,

15The air space is often the result of a construction process or the void required for a pressure
activated trigger.
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Figure 4.12: Mlosaic of %single-bounce solar reflection" signatures, during day tille(

(8:00-15:.00).
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approximates a diffuse return. Figure 4.13 compl)ares the radiance reflected from

mines and soil surfaces at 8 AM and 12 PM at the solar meridian for nadir viewvin,.

At. 8 AM the nadir sensor only observes the diffuse components from both surfaces,

anu( the mnine provides a stronger reflection as required by its surface parameters

(see Table 3.4). At 12 PM the main lobe of the soil BRDF encompasses the nadir

direction and its intensity exceeds the mines reflection. Hence, we see in Figure 4.1-2

that reflections from the soil are stronger around mid day (11:00-13:00).

r#I 0

3-U

0 I

-8 :t' -- .' 0 - --- - -- 0 01ý

Viewing angle 0, Viewing angle 0.

(a) 8 AM. (b) 12 PM.

Figure 4.13: Reflected radiance on the solar meridian from mine and soil surfaces at
8 AM and 12 PM, Oct. 21st.

Figure 4.10 (b) illustrates the combined effect of direct thermal emission and

single-bounce solar reflection. As noted in Chapter 3, the signatures are dominiuatod

by thermal emission, while the solar reflection provides a well-defined shadow. The

simulations suggest that in the MWIR. band surface landmuines produce a stronger

response in the early afternoon, because of higher surface temperatures.
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4.1.3 Signatures During Darkness

Simulations were performed for the "NT-SI" conditions at A. PMI when no i1so0-

lation is present. Of the five radiance components included in our model. only three

components are present in this scenario: thermal emission (direct and single-bountce

paths) and reflected skylight. Figure 4.14 shows the three cormponents and indicates

that direct thermal emission is the dominant factor. (Maxima of reflected skylight and

single-bounce thermal emission are about 2% and 5% respectively of the maxinInIm

direct thermal emission.) Figure 4.15 compares the total signature an(l the surface

temperature. Their features are essentially the same, and we conclude that during

the night, only direct thermal emission is needed to simulate MWIR signatures.

(a) Direct thermal. (b) Single-bounce ther- (c) Skylight,.
mal.

Figure 4.14: Simulated signatures of direct thermal, single-bounce thermal, and re-
flected skylight for "NT-Si" conditions at 23:00.

During darkness stored energy is dissipated via emission and] convection. A mine

stores far less thermal energy than the surrounding soil, and it releases that energy

more quickly. Note also that the upper deck of the mine, which has a larger surface-

area/volume ratio because of the internal void, cools at an even faster rate. We
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(a) Total signature. (b) Surface temperature.

Figure 4.15: The total radiometric signature and surface temperature for "NT-Si
conditions at 23:00.

also find that the mine signature is symmetric in C0 during darkness as shown in

Figures 4.10 (a) and (c). This arises since the structure is symmetric, and there is no

directional preference for thermal emission or convection in the lnode1l1.

4.1.4 Signatures at Dawn and Dusk

An important phenomenon in IJ, surface mine detection is "thermal crossover",

which occurs when the surface temperatures of mine and soil are equal. During

crossover, which occurs twice daily around dawn and dusk, EO sensors are less ca--

pable of differentiating mines from background, since thermal emission dominates

the signature and the contrast vanishes. From previous simulations and discussions,

however, we know that other components contribute to the radiometric signature. [n

this section we review simulations performed for dawn and dusk to better understand

the underlying physics at these important times.

"t6 Asyvnmetries in heating caused by the setting sun tend to be weak and rapidly decay in the
absence of continued heating
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Simulations around dawn can be found in Figures 4.10 (a) and (b). At 6 AM the

sun has not risen, and the mine is cooler than the surrounding soil. At 7 AM thc

low angle sun casts a very long shadow while the radiance from the mine surface is

still weaker than the soil. Thermal crossover occurs near 8 AM. when the intensity

of mine and soil are largely equal except in the shadow. At 9 AM the mine surface is

heating rapidly and shows a distinctive contrast.

The image at 8 AM has an interesting implication. Since the morning thermal

crossover occurs after sunrise, the mine signature is still detectable because of the

shadow. If mine detection is required around the morning crossover, it is appropriate

to search for the shadow instead of the mine.

Next, we examined the afternoon thermal crossover. Simulation results around

dusk are illustrated in Figure 4.10 (c). We found that thermal crossover occurs soon

after sunset, since mines cool more rapidly than soil. Due to the lack of insolation, the

night-time radiometric features are produced solely by thermal emission. Figure 4.] 0

(c) indicates that thermal crossover happens between 6 PM and 7 PM. Although

the temperature is not homogeneous across the mine, detection is extremely difficult

during the evening crossover, because no other helpful information (e.g., the shadow)

is present.
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4.2 Case 2: Polarimetric MWIR Signatures

Polarimetric imaging sensors are finding broader use in remote sensing, because

they p)rovide more information per pixel. Polarimetric sensors are also being ex-

plored for mine detection, and for this reason our radiometric model was built, witi

polarimetric capabilities.

Various methods have been used to collect polarimetric imagery, including rotating

polarizers or splitters that separate horizontally and vertically polarized light. A

particularly convenient method of acquiring polarimetric data is to use a rotating

linearly polarized filter at 0', 450, 900, and 135'. The I, Q, and U parameters can be

derived using those four channels and appropriate transformations. Measurements

made with two orthogonal filters (00 and 900) will produce the I and Q parameters.

Such measurement cannot be used to acquire the circularly polarized I component,

since they comprise incoherent samples of linear polarization.

Polarimetric measurements of land mines were conducted by the TNO Physics

and] Electronics Laboratory [13] at the Netherlands during late November, 2001. The

TNO data set was described briefly in Section 2.7.3. In this section, we present

simulations performed to reproduce those measurements. The relative importance of

individual radionmetric components is discussed. Comparisons of simulated signatures

and measured data appear at the end of' this section.

4.2.1 Parameter Selection for TNO Data

Similar to what was done for the NT-Si data set, model parameters had to be

selected to describe the TNO environment. The viewing geometry requires a more

precise description. Unlike the NT-Si case, which involves long-range viewing at
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near-nadir angles, the TNO sensor was positioned a shorter distance from the test

site with a large nadir angle. This geometry can produce large variations in viewing

angles across the scene, which must be taken into account during simulations.

The images used here are from the TNO surrogate LP mine indicated bY the red

box in Figure 2.7. The nominal viewing angle for this mine is 700 (with respect to

nadir), but because of the aforementioned variation in viewing angles across the scene,

as well as the potential for small site surface deviations from planarity. a 68' angle

was found to better replicate t.he data.

Surface roughness depends on the degree of soil compaction. The BRDF model

requires the surface roughness, the refractive index, the albedo ratio Pdc/Pd, for the

diffuse term and the relative magnitudes of surface and diffuse scatterers. Because

these properties of the site were not measured, they were estimated from the inea-

surements.

The TNO surrogate mine has a case made with commercially available PVC pipe

and flat sheets,and it was filled with RTV. Because of unavoidable construction dif-

ferences between real and surrogate mines, it is reasonable to expect some. differences

in their signatures. To date, there have been few comparisons of real and surrogate

mine signatures [6]. The scattering and thermal properties used for the surrogate

mine were taken from the literature and adjusted to fit, the measured data. Table 4.1

gives the mine and soil surface parameters used in this simulation. Note that, slightly

different surface parameters were used for the PVC plate (used for the inine's top

surface) and pipes (side walls), corresponding to material with different, finishes, or

from different vendors.
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Surface PVC pipe PVC plate Soil
type (mine sidewall) (mine top)

Refractive 1.4 1.4 1.6
index (nn)

Slope 0.01 0.005 0.35
variance (s2 )

Diffuse 0.01 0.005 0.005
component

Depolarization 0.5 0.5 0.5
ratio

Table 4.1: Surface parameters used in simulations of TNO's surrogate LP mines.

4.2.2 Comparison to Measured Polarimetric Images

As observed in Section 3.6, it is important to consider the finite resolution of the

sensor when comparing simulations to measurements. Because the TNO sensor is

located close to the test site and the sensor resolution is relatively high, we a point

spread function as described in Section 3.6 with a compact resolution (1.1 pixels)

then down sample the simulations to yield the final product seen in the second row

of Figure 4.16. The simulations are similar to the signatures in Figure 4.23, although

some glints in the simulation do not appear in the measurements.

The measured TNO images are shown in the first row of Figure 4.16 with a color

scale common to the simulated results, and they are in qualitative agreement with

the simulations. High intensity regions, such as the side wall facing the sun, and cool

regions, such as the shadow, appear in both sets of images. It is apparent, however,

that the simulation predicts heated regions that are weaker than measured. Reasons

159



$ 4'

08 1 1 2 -0 01 0 0C -0,04 -0 02 0 002

(a) I. (b) Q. (c) U.

Figure 4.16: Simulated (first row) and measured (second row) I, Q, and t/ parameters

for the "TNO" data set with reduced sensor resolution.

for this difference may include incorrect thermal properties or solar-bands albedos for

the mine's PVC case.

Spot checks of the images suggest that good quantitative agreement in the back-

ground regions has been obtained, although the measured results show some variation

that, is probably related to large scale surface roughness in soil and soil inhomno-

geneities. A limitation of the simulation is that random large-scale variations in local

surface tilt and thermal properties of soil have been ignored. In the measured data.

the background area appears somewhat "blotchy" while the simulated signature cap-

tures only the average properties of the rough surface. Fine scale graininess in the

measurement is the result of sensor noise.
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4.2.3 Evaluation of Signature Components

In an effort to gain insight, the model was used to simulate the individual ra-

diometric signature components. In this section the resulting Stokes parameters are

showvn.

Figure 4.17 illustrates the I, Q, and U parameters for the direct thermral emission

component. Because an MWIR sensor was used, thermal emission was expected to

dominate the signature. The intensity (I) parameter suggests that the south side

of the mine's side wall is heated by the low-angle winter sun in The Netherlands.

The soil (dry sand), which responds more quickly to insolation than the mine, pro-

duce a strong, well-defined shadow. For the Q and U parameters, the signatures

were comparatively weak, since thermal emissions were only slightly polarized by the

limited difference in horizontal and vertical emissivities. The signature reveals the

local surface shape of the mine. High values in the Q parameter correspond to facets

on the miine wvall oriented to maximize depolarization. For a smooth surface, that

orientation corresponds to the Brewster angle. For horizontal planar surfaces (i.e..

the mine top and soil surface), differences in the Q parameter of mine and soil come

from differences in the ratio of co- and cross-polarized emissivities near grazing. The

U paramneter, which indicates the degree of linear polarization in 450 planes, produces

different signs across the axis of symmetry.

We next examined the single-bounce solar reflection, shown in Figure 4.18. The

I parameter takes on only a few discrete values, because the camera was positioned

and oriented far from the specular glints. As a result, the simulated results comne

mostly from the diffuse component. The Q parameter exhibits interesting features.

The figure shows that Q values for the mine and its shadow are near zero, while
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(a) I. (b) Q. (c) U.

Figure 4.17: Simulated I, Q, and U parameters for direct thermnal e(mission for the
"TNO" data set.

the rest of the soil shows a small negative value. Insight into this result is available

from the DoLP plot shown in Figure 4.19, which can be explained by the BBDFs

involved and their relation to the solar position. The illuminated surfaces of ftin

mine in Figure 4.19 are relatively smooth. For those surfaces, the specular return is

highly localized, producing very little radiance at the sensor. Therefore, thc DoLP of

the illuminated mine surface is dominated by the diffuse term, which produc(e's z'ro

DoLP. Conversely, surface scattering from the rough soil has a preferred polarization,

resulting in a DoLP around -10%. The negative sign is a result of the solar position.

The same logic can be used to explain the U image. Note that, the DoLP in thme

shadow region in Figure 4.19 is not defined, since both I and Q are zzero.

Figure 4.20 illustrates the single-bounce skylight reflection. This component lhas

a weak intensity in the IR band, because air particles scatter weakly for longer wavcs.

The single-bounce skylight signature at a point is approximately the product, of the
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(a) [.(b) Q. (c) U.

Figure 4.18: Simulated I, Q, and U parameters for single-bounce solar radiation for
the "TNO" data set.

Figure 4.19: DoLP of single-bounce solar radiation for the "TNO" data set.

163



visible sky area and the incident diffuse skylight. Recall that, skylight is partially li'-

early polarized, which leads to a nontrivial polarimetric response. The Q and U levels

are comparable to those of the direct thermal and single-bounce solar conmpone(nts.

(a) I. (1)) Q. (c) U.

Figure 4,20: Simulated I, Q, and U parameters for single-bounce skylight radiation
for the "TNO" data set.

The single-bounce thermal emission is shown in Figure 4.21. In the I image,

brighter pixels such as those on the side wall are the result of nearby facets that present

larger projected solid angles and, hence, collect, more reflected thermal emission.

Nonetheless, even the strongest reflected thermal contribution is negligible compar.ed

to the direct thermal emission.

The Q image has many of the features described in Figure 4.17 (b). Because the

mine's side walls are orthogonal to horizontal soil surfaces, the polarizations of facets

near where the mine contacts the soil switches as one moves from the the soil to the

mine's side walls Point pairs across the axis of symmetry have emissions with the

same vertical field but horizontal fields of different signs, which leads t.o an inversion

of the DoLP.
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(a) I (b) Q. (c) U.

Figure 4.21: Simulated I, Q, and ( parameters for single-bounce thermal emission
[or the "TNO" data set.

Figure 4.22 shows the double-bounce solar reflection. The most intense pixels

in these images are located on one panel of the mine's polygonal side wall on borh

lower andt upper decks and are caused by (imperfect) specular reflections of the sun

by the soil and side wall in turn. Although the intensity I of this component is sinall

compared to other components, its Q and U parameters are relatively strong.

(a) I. (b) Q. (c) U.

Figure 4.22: Simulated I, Q, and U parameters for double-bounce solar radiation for
the "TNO" data set.
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Stokes parameters corresponding to the sum of all five components are disl)lavyed

in Figure 4.23. As expected, the direct thermal emission dominates the I image, with

corrections from the single-bounce solar reflection. For the Q and U images, every

radiometric component makes a significant, contribution, since they are all of the saime

order. The polygonal approximation of the mine is clearly evident., which suggesds

that a finer discretization is appropriate. Finally, the shadow of the mine is visible,

because of strong scattering of the insolation by the rough soil surface.

(a) 1. (b) Q (c) V.

Figure 4.23: Simulated I, Q, and U parameters for total radiation for the `"'!

data set.

Concluded from the comparison to measured signatures and the evaluatlion of

individual components, we see that under an obliquely viewing sensor, polarilletric

components are mostly the results of the viewing geometry and are less subjective

to changes in temperature. Therefore, polarimetric signatures are prone to be more

stationary features of mine and can be regarded as auxiliary channels to the intensity

signature. Multispectral image processing techniques are applicable to enhance the

signal-to-noise ration and improve the detection performnan e
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4.3 Case 3: Non-polarimetric Visible Band Imagery

Sensors of visible band radiance are commonly used in mine detection, and] in this

section simulations of mine signature for visible cameras are presented. We noted

that visible sensors are attractive for some applications, since they can be made

compact with high resolution and low noise. (See Appendix B for further discussion.)

Unfortunately, their effectiveness depends greatly on the environmental conditions.

They cannot detect thermal emission. Passive visible sensors rely solely on reflected

solar radiation, which is subject to greater absorption by hydrosols (clouds and fog).

As a result, their use is restricted to daylight hours and clear weather.

As noted in Section 2.7.2, the US Army performed measurements on surface-laid

mines using a visible camera during late May 2000 at site NT-S2. Multispectral

imagery was collected by using a spinning wheel with five filters in front of the ob-

jective lens. Many measurements were performed including a series of images taken

at, the same site at different times. That image sequence forms the basis for the

present study. Simulations were performed under similar conditions to further test

the simulator.

4.3.1 The NT-S2 May 2000 Data

Section 2.7.2 gives a detailed description of the test site. In this section we discuss

some properties of the visible imagery.

The VNIR camnera (visible and near IR) used at NT-S2 acquired imagery in five

sub-bands. In this work images from three sub-bands, denoted red, green and blue,

were combined to cover most of the visible band. Figure 4.24 illustrates the frequency
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responses of' the blue. green, and red sub-bands. The actual responses are shown as

solid lines, while the dashed hine shows the sum of all three channels.

'I
ji

I !

I I
-, !

0)

0-

0 , -

0)

350 400 450 500 550 600 650 700 750 800 850
Wavelength [nm]

Figure 4.24: Frequency response of R, G, and B channels of the visible camera.

The raw imagery is pixel "counts" (C), which are converted into radiance (L)

using an equation given by [72] as follows:

C-o(4)L = G Cr + 0D(41
TE + TD)

where TE and TD are camera exposure time and shutter delay time respectively, ()

is the offset parameter, and G is the in-band radiance gain. Table 4.2 lists values of

above parameters for the images in Figure 4.25.

Figure 4.25 shows blue, green and red sub-band images taken around 11 AMI on

May 24th, 2000. The responses in individual sub-bands are similar to one another.

The synthesized broadband visible image, denoted "fused", also shown in Figure 4.25,

168



Sensor channel Red Green Blue
Radiance Gain G 0.299 0.207 0.096
Radiance Offset 0 35.1 35.1 35.1
Exposure Time TE 23 35 13
Shutter Delay TD 12.88 12.88 12.88

Table 4.2: Radiometric calibration parameters for visible band images at 11 AM, May
24th., NT-S2.

is, of course, similar to the sub band images. The broad horizontal region that fills

most of the images is bare sand, which reflects the insolation. The top and bottom

edges are covered with short grass, which absorbs strongly. Five surface-laid LMB

mines show high contrast with the sand background. Several square fiducial markers

with strong responses appear near the lane boundaries. The lower right corner shows

the tires of the scissors lift used to elevate the sensor.

In addition to the 11 AM images shown in Figure 4.25, three more fused images

were composed to study the temporal variation of visible band mine signatures. Fig-

ure 4.26 shows the same scene at 12 PM, 3:30 PM, and 5 PM. The 5 PM image shows

an unknown object in the lower-left corner, which will not affect the present study.

During image collection the sensor's FOV shifted slightly fr'om one scene to another.

The mine signatures were compared using image chips that were extracted manually

from each scene.

4.3.2 Illumination and Scattering Properties in the Visible
Band

In addition to the sensor frequency response presented above, the simulation also

requires a description of the incident radiance and the surface scattering properties of
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(a) Blue. (b) Green.

(c) Red. (d) Fused-

Figure 4.25: Measured response in R,-, G-, and B-channels and fused image collected

by the visible camera from the "NT-S2" data set at. 11:00 AM, MaY 24th, 2000.

170



(a) 12:00 PM. (b) 3:30 PM-

(c) 5:00 PM.

Figure 4.26. Fused measured images collected by the visible camera [rom the "NT-S2"
data set. at 12:00 PM, 3:30 PM, and 5:00 PM on May 24th, 2000.
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the target and environment. In this section we first describe the visible band sources:

sunlight and skylight. We next present surface roughness parameters in the visible

band.

Procedures similar to those presented in Sections 3.2.3 and 3.2.4 were used to

estimate the total (spectral) solar and skylight radiance. Planck's law predict.s that

thermal emission fromn objects near ambient temperatures (,-x290 0TK) will be small at

visible wavelengths. As an example consider the ratio

LBB(A = 0.5111n, T 290tK) = 10- 5  (4.2)
LBB(A = 5/im, T 290K)

which shows that thermal emissions at visible wavelength are vastly weaker than

those at MWIR. For this reason, thermal emissions are ignored in what follows.

The solar irradiance calculation, which was performned for a mid-latitude summer

atmosphere, is documented in Figure 4.27 for a sun at zenith. The blue curve is

the extraterrestrial solar irradiance spectrum produced by MODTR.AN. The spectral

transmittance coefficients generated by MODTRAN are plotted in green, and the

product of the two curves, shown in red, is the spectral solar irradiance on the ground.

As done previously for broadband sensors, the spectral irradiance is integrated over

the sensor pass-band to yield the total solar irradiance used in the radiometric model.

The solar irradiance varies with solar elevation angle as shown in Figure 4.28. hi

this result the spectral integration has already been clone. Two atmospheric models

are shown in the figure. The blue curve is the result of a rural extinction model,

which contains fewer aerosols and allows more transmission of solar incident flux.

The red curve, which represents an urban atmosphere is modeled by a greater aerosol

density (from pollutants) and yields both a shorter extinction distance and a lower

transmittance. In general, the total solar irradiance is much greater in the visible band
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Figure 4.27: Sample visible band extraterrestrial and ground solar irradiance spec-
trum and atmosphere transmittance for a zenith sun.

than in the 'M[VIR band (see Figure 3.15), primarily because of the sun's spectral

signature (a 59000 K blackbody radiator).

Like the solar irradiance spectrum, the skylight spectral and angular distributions

must, be recalculated for each time. Figure 4.29 shows a sample skylight profile for

12 PM, May 24th, at NT-S2. The figure shows that the total skylight irradiance is

about one third of the solar irradiance. Therefore, skylight, which can be neglected

in the IR band, is an important source in the visible band.

The degree of linear polarization at visible wavelengths should be somewhat

smaller than predicted by a simple Rayleigh model, because multiple scattering

happens more frequently at shorter wavelengths and thus cancels the polarization.

Nonetheless, we will continue to use the Rayleigh model [17] in Equation 2.15 to pre-

dict skylight polarization for two reasons. First, we use a clear-sky atmosphere model,
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Figure 4.28: Sample visible band total solar irradiance versus solar elevation angle of
rural and urban extinction at mid-latitude summer.

which contains fewer aerosols Hence, multiple scattering is less conmnmon. Second,

the received signature is the result of reflections from the entire sky. lPolariinet.ric

contributions from different parts of the sky tend to cancel. so that the residual is

only slightly polarized in general. Thus, errors in skylight, polarization tend to have

a small effect on the overall solution.

As noted previously, for scattering purposes, surface roughness is quantified in

terms of wavelength. A given surface appears rougher at shorter wavelengths because

the effective surface slope variance includes more energy for a broader band in the

spectral density function. Since visible wavelengths are much shorter than MININR

wavelengths, significant differences in scattering can arise, and new BIRDF parameters

will be required. Little information about mine surface properties is available. The

parameters used in the visible band model, which are listed in Table 4.3, were derived
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Figure 4.29: Sample visible band skylight radiance profile at 12 PM, May 24th, for
NT-S2.

from the MWIR parameters and modified to improve agreement with measured data.

The first two properties in the table (the refractive index and the slope variance)

are critical in any description of surface scattering using the PO approach. The last

two parameters define the magnitudes of co- and cross-polarized terms for the diffuse

component. These parameters show that the mine's surface is smoother and has a

stronger specular lobe, while most solar scattering comes from the diffuse componert.

4.3.3 Comparison of Radiometric Components

Using the surface parameters and source components described above, wve sinm-

lated of visible band signatures. Figure 4.30 shows both the individual radiometric

components (intensity I only) and the total signature. The polarimetric parameters
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Surface Mine Soil
type

Refractiveindex(TI)1.4 1.6index (in)

Slope 2 .U15 0.3
variance (s 2)

Diffuse 0.015 0.06
corn ponent

Depolarization 0.5 0.5
ratio

Table 4.3: Surface parameters for LMB mine simulations at NT-S2 using a visible
band camera.

Q, U and V have been omitted, since we do not have measured data for cornparison.

(Those parameters should be small, since the mines were viewed near normal inci-

dence.) The simulation was performed for the environmental conditions of 12 PMi,

May 24th. at NT-S2.

A comparison of the individual radiometric components and the total signature in

Figure 4.30 (f) shows that only the single-bounce solar and skylight reflections have

significant roles in the visible band signature. Therefore, in what follows simulations

were conducted using those components only. The results show that reflections from

soil are stronger than those from the mine for both skylight and solar components.

since the soil is assumed rough with a larger diffuse reflectance. The simulated images

show two darker concentric rings on the mine caused by sloping surfaces that separate

planar decks at three elevations.
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(a) Direct thermal. (b) Single-bounce ther- (c) Single-bounce sky-
reat. light.

4 2

2 SI

(d) Single-bounce solar. (e) Double-bounce solar. (f) Total.

Figure 4.30: 1 component of individual and total signatures for "NT-S2' data set at
12 PM, May 24th.
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4.3.4 Model Validation for the Visible Band

In this section we compare measured and simulated mine signatures iII the visi-

ble band. A careful study of the measurements in Figure 4.25 and 4.26 reveals that

the reflected intensity is not the same for different mines in the same scene. Fur-

thermore, mine signatures are not consistent from scene to scene. For example, in

Figure 4.25 (d), the upper-left mine is the brightest while the upper-right mine in

Figure 4.26 (a) is the brightest in that image. It was observed in the discussion of the

TNO data that a large sensor FOV will produce different viewing geometries in differ-

ent parts of the scene. Therefore, before comparing measured and simrulated images,

we investigate the effects of viewing geometry on the measured mine signatures.

Figure 4.31 presents a measured image (taken at 11 AM) with information on

sensor and sun positions. The square boxes indicate three mine locations. Simula-

tions were performed with viewing geometries corresponding to those locations. The

apparent motion of the sun is also indicated. At 11 AM, the sun, the sensor, and

mine "A" approximate a specular geometry. At 12 PM, it, is mine "B" that forms a

possible specular geometry.

The sensor FONs in the horizontal and vertical directions are reported to be 300

and 200, respectively. Using the known sensor height arid the mine positions in the

images, we manually estimated the approximate sensor nadir angles in proportion

to the sensor FOVs for the mines denoted "A", "B", and "C"'. Those approximate

angles were modified slightly (less than two degrees to original estimates) to improve

agreement with the measured data. The zenith and hour angles of mine locations

"A", "B", and "C" determined using the above method are given in Table 4.4.
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Figure 4.31: Geometric relations of the sensor, the sun and mine positions in the
measured image.

Site A B C
Zenith 19Zenth 190 16.50 130

angle
HoulrHour 450 200 10'
angle -_______

Table 44: Sensor zenith and hour angles for simulation sites "A", "B", and "C"
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Using the angles in Table 4.4 and the surface parameters reported in Table 4.3,

we performed simulations for the three mine locations at 11 AM, 12 PM, 3 PM, and

5 PM. Figure 4.32 exhibits the results. We found that at 11 AM, mine "A", which

forms a specular relation with the sun, produces the highest intensity. Mine "B",

which is farther from the specular angle yields a weaker response, but still shows high

contrast. Scattering from mine "C" is dominated by the diffuse component and shows

a negative contrast with respect to background. The second row, which shows results

at 12 PM, indicates that the shift in solar position changes the strongest "target"

from mine "A" to "B". Mine "C", which is closer to mine "B", also shows a stronger

reflection compared to the 11 AM results.

In the afternoon, the sun appears at a small elevation angle, and none of the

mines form a specular geometry. Therefore, all three mines show low contrast The

mine's shadow also grows compared to the images acquired earlier in the day. Bright

spots appear on the tapered rim of the mine structure, where the surface form a

specular geometry. At 5 PM the shadow is extended further, and the mine intensity

is suppressed due to the reduction in solar irradiance.

Figure 4.33 shows measured mine chips for locations A, B, and C. It is evident that

the simulations are in good agreement with the measurements. The most significant.

features in the measurement are largely replicated in the simulations. The maximum

radiance observed in Figure 4.33 is 55 [W/m 2 sr], while the background radiances

(the average around the chip's boundaries) for the four times are 30, 36, 26, and 12.

For the simulated results in Figure 4.32, the maximum is 37.4 and the background

averages are 20, 21, 17, and 8, respectively. The measured values are roughly 50%

more than the simulated ones, but ratios among measured data and simulated results
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Figure 4.32: Simulated signatures for LMB mines at location "A", "B", and "C" at
four fimes (11 AM, 12 PM, 3 PM, and 3 PM) on May 24th, at NT-S2.
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are consistent. The difference in reflected radiance may be the result of errors in

estimating the incident solar irradiance. As indicated in Figure 4.28, changes in the

atmosphere model result in great variations in incident solar and skylight radianices.

Other disagreements observed include (1) the brighter central disk (the mine's trigger

assembly) for mines A and B at 11 AM and 12 PM, (2) a pronounced asynmmetry

in reflections from mine B's sloping sections at 11 AM and 12 PM, and (3) multiple

glints from those sections at 3 PM and 5 PM.

The comparison presented in this section showed that visible band signatures

are dominated by surface scattering of' sunlight and skylight. Unlike IR (NIW-VIR and

beyond) signatures, which are determined by surface temperature and gradual varvinig

emissivity profiles (except the grazing region), visible signatures are very sensitive to

source and viewing directions. A larger variation in scattered radiance from mine

surfaces is observed due to a greater importance in mine's specular lobe return.

4.4 Summary

In this chapter we exercised the simulator on three sets of measured data in

different scenarios. The goals of this effort were both model validation and further

insight into the nature of mine signatures. The dominant features of mine signatures

seen in the NT-S1 data (collected with a nadir-looking airborne MWIR, sensor) are

replicated by the model. A study of the mine's temporal dependence was conducted

for the environmental conditions of NT-S1. It was found that the maximum mine-

background contrast appears around mid-day, which is the optimal time to operate

the sensor. The solar reflection contributes a strong shadow and makes it possible to
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Figure 4.33: Mleasured signatures for LNILB mines at location " ,"Bad"C" at,
four times (11 AIM, 12 PM,ý 3 PM, and 5 PM) on MIay 24th, at NT-S2.
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detect mines during the crossover in the morning. The absence of a shadow during

the evening crossover makes detection particularly difficult at that time.

The polarimetric properties of mine signatures were explored through sinuilations

of the TNO data. The off-nadir viewing geometry introduced stronger depolarization

for thermal emissions, leading to higher contrast for the polarirnetric signatures, which

could enhance mine detection rates.

A study of measured signatures in the visible band revealed that the characteristics

of a mine vary greatly as the sensor and solar positions change. Simulations were

conducted, and good agreement was found with measured images. This outcome

increases confidence in the BRDF model, since essentially all visible band radiance is

a result of rough surface scattering of insolation.

Although the simulator showed good agreement with the three data sets in general,

several areas for improvement were identified. For the NT-S1 data set we observed

discrepancies in the size of the shadow which may be related to limitations inI Co0-

putational resources. For the TNO data, the predicted thermal solution was larger

than measured, which may stem from errors in the assumed properties of the mine's

case. For the visible-band NT-S2 data, the mine's trigger assembly appears brighter

than the simulation, which may also be an error in the mine's assumed properties.

The difference in received radiance indicates error in the estimation of atmospheric

attenuation. In addition, disagreement was seen in simulated anrd measured back-

grounds. Most natural objects are multi-scale rough surfaces, and measured images

often exhibit a blotchy background due to decimeter scale surface tilts. Tile existing

rough surface model describes single-scale surfaces only, which can only replicate the

average behavior of a true surface.
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Through comparisons with measurements we confirmed that JR sensors are greatly

influenced by surface temperatures and less subjective to current illumination con-

ditions, which can be dramatically changed by the sensor position and the presence

of clouds. Above characteristics make IR signatures a more reliable feature for mine

detection that can be seen at all time except at crossovers, although we have shown

that mid day is a more favorable operational t, ime. On contrast, since visible signa-

tures are more sensitive to illumination conditions and the viewing geometry, their

features are more volatile and the operation is limited to daylight hours. However,

the contrast between scattering from mine and soil surfaces can be large if the sensor

is setup carefully. The choice of knowledge about potential mines and deployment

conditions. Therefore, a. multi-sensor suite might be an attractive choice for detection

systems.
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CHAPTER 5

MINE DETECTION ALGORITHMS FOR EO IMAGERY

In this chapter we present studies of algorithms for mine detection in E0 ilnagerly.

An effective detection algorithm is a key element of a successful mine detection system.

In order to cope with changing environmental conditions, background and target

estimation techniques are used to make the algorithms adaptive.

This chapter is organized as follows: Section 5.1 reviews the literature on mine

detection using EO sensors. The RX algorithm [14, 15] served as the mine detector

for the US Marines Coastal Battlefield Reconnaissance and Analysis (COBRA-ATD)

program. That well-known algorithm, which is reviewed in Section 5.2 and derived

in a slightly more general form in Appendix C, is an anomaly detector that cannot

exploit the modeling information described in Chapters 2 through 4. Alternative

implementations of the RX algorithm are presented in Section 5.3, including a coin-

putationally efficient approach. Two performance improving techniques are described

in Section 5.4. The first is a modified RX algorithm that uses a multi-component ref-

erence to better estimate the target amplitude. The second is a whitening filter that

decorrelates the clutter, as required by the RX algorithm.

An estimator-correlator (EC) algorithm is introduced in Section 5.5 as an alter-

native to RX. Several features make the EC algorithm attractive. It uses a randoiii
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signal model to account for mine signature variations caused by clutter and environ-

mental conditions. Simulated signatures can be exploited directly. Implementation

issues are discussed in Section 5.6. A locally adaptive version of the EC algorithm

is described in Section 5.7 for nonstationary clutter such as abrupt transitions in

background textures.

Performance evaluations of the. RX and EC algorithms are presented in Section 5.8

using a multispectral IR data set described in Section 2.7.2. Through a comparison

of RX and EC ROC curves, we demonstrate that the locally adaptive EC detector

provides a significant performance gain.

5.1 Prior Works

Many researchers have explored target detection in multi- and hyper-spectral im-

agery. A widely referenced approach to this problem is the RX algorithm presumably,

named for its authors Reed and (Xiaoli) Yu [14]. This algorithm has been extended

to include spectrally correlated (but spatially uncorrelated) clutter [15]. The spec-

tral covariance matrix is estimated with an adaptive algorithm and used to design a

spectral pre-prewhitening filter. It was found that, a priori knowledge of the target

spectral distribution often makes little difference in performance ý15]. Those authors

and their co-workers have proposed several forms of the algorithm [73, 74, 75], and, as

noted above, RX is used in the COBRA-ATD system [76]. Ari application of RX to

hyper-spectral detection of military and cultural features was described by Stellman

et al. [77].

Other detection approaches using EQ sensor imagery have been examined. Schweizer

and Moura [78] developed a CFAR algorithm based on a first-order Gauss-Markov
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random field (GMRF) mode] for the clutter. In that algorithm a maximum likelihood

(ML) technique was used to estimate the clutter parameters, which were then used

in a GLRT detector. Solberg et al. [79, 80, 81], who used the Markov random field

model to develop a land-use classifier for satellite imagery, noticed that temporal vari-

ations of target signatures could be utilized to enhance detector performance. Chen

et al. [82] designed detectors that exploit the difference in temperature histories of

mine and soil.

Several authors have attempted to exploit target spectral characteristics. Ash-

ton [83] used clustering algorithms to find sub-pixel anomalies in multi-spectral IB ter-

rain imagery. Ashton and Schaum [84] used RX to search for anomalies in backgrounid-

suppressed spectral signatures.

In addition to algorithms developed from classical statistical detection theory

(GLRT, etc.), many unconventional detectors have been explored for mine detection.

A unique approach was explored by Banerji and Goutsias [85], who used mathemat-

ical morphology to detect mines in individual bands followed by fusion of the band

information. Correlation among the bands was addressed by using a i-naximumu noise

fraction transform to generate independent bands. Agarwal et al. [86] propose(] a

false alarm mitigation scheme using gray-scale moments, which preserved the shape

and intensity profiles of mine signatures. Support vector machines [87, 88]. which

differentiate patterns formed by feature vectors in a multi-dimensional space, have

also been applied [89].

Another popular choice for EO mine detectors is the neural network. Daud et

al. [90] developed a feed-forward neural network to recognize mines in EO imagery.

Investigations of' the position, rotation, and scaling invariance (PRSI) properties of
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a higher-order neural network (HONN) [91, 92, 93] have shown that a third-order

HONN will exhibit PRSI. A wavelet-based HONN detector [94] was recently trained

to discriminate mines and clutter. The input of the neural network is not limited to

spatial patterns. A mine detection scheme proposed by Ramaswarv et al. [95] used

a feed-forward neural network to fuse confidence parameters extracted from multiple

sensors.

5.2 RX Algorithm (GLRT Approach)

The RX algorithm has become the standard algorithm for mine detection, because

of its simple implementation and its robust (albeit not entirely satisfactory) perfor-

rnance. In this section the basics of the RX algorithm are described. Implementation

issues an(] performance improving techniques are presented in later sections.

The R• algorithm, which is based on a generalized likelihood ratio test (GLRT),

comprises a locally adaptive constant false alarm rate (CFAR) detector. It uses

maximum likelihood estimation (MLE) to find both the unknown target amrplitude

and clutter covariance in rnultispectral imagery.

The algorithm processes multispectral imagery by converting it into an equivalent

vector representation. Signals in an interesting region of size N1 x N2 pixels are

scanned column-wise into vectors of' size N x 1, where N = NI - N2. In a similar

iranner, multi-channel imagery of J channels is reformed into a matrix y of dimensions

Nx J.

The RX algorithm is based on several assumptions about the properties of targets

and clutter in EO imagery. It assumes that the shape of the target is given by

a known N x 1 matrix S with an unknown 1 x J spectral amplitude B. Many
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mines have a circular or square shape with a uniform signature amplitude. However,

when the image resolution is sufficiently high, sonme mines are better described1. I

multiple regions of uniform intensity. In particular, the central trigger mechanism

may have a different signature. A modified RX algorithm with a inulti-componeut

signature is devised in Section 5.4.1. Like the original RX algorithm it also requires

that the clutter N be Gaussian-distributed, zero-mean and spatially uncorrelated

with an unknown correlation between spectral channels. The Gaussian distribution

requirement is not met for most EO imagery. Indeed, in real images, pixels have

spatial correlation and are non-Gaussian distributed [74, 14]. Nonetheless, Reed

and Yu [14] showed that by removing the image's local mean, the residual intensity

does approximate a Gaussian distribution. The requirement of spatially uncorrelated

clutter is only fulfilled when the image resolution is low. In high resolution images,

which are used in most mine detection applications, the correlation between adjacent

pixels is not negligible. In order to eliminate clutter correlation, a whitening filter,

which is presented in Section 5.4.2, was developed as a preprocessor for the RX

algorithm.

For reference, a derivation of the likelihood ratio test used in the RX detector is

provided in Appendix C.

5.3 Implementations of the RX Algorithm

In this section, we describe several RX implementations, each of which has ad-

vantages in specific circumstances.
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Figure 5.1: Block diagramn of standard RX algorithnm implementation.

5.3.1 Standard RX Algorithm

Figure 5.1 showvs the block diagram of'the standard RX algorithm. As m-en-tioned

before., it is niecessary to remove the local mean to obtain Gaussian distributed chlutter.

The local mean is estlimated by convolving the raw linage wvith a uniformn kernel. The

estimiated local mean is then subtracted pixel-wise frora the raw image. For a multi-

channel image, this process is performed on each channel.

Next, the likelihood ratio estimates are computed via Equation (5.3) using a sliding

window process. At each position in an image of Jl channels. a N, x A"\, subirnage is

extracted and scanned coluni-wise into a vector y of N rows and I columns. WVe

have

y = [y(1), y(jY))T (5.1)

=(n) [yi (r-1) Y2(7) ... YJ (5.2)

The likelihood ratio is given by [14]

\jfl~yT I _a > T"', then H1  53
A'"..(y) = B . (y y) -t.B ->< r"r" h nte /H (5.-3)

L< T"', then H
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where Bý is the aforementioned target magnitude estimate. Given the normalized

target signature S, it is straightforward to evaluate the likelihood ratio within the

window. The covariance estimate is formed using pixels that appear in the window.

In the standard RX implementation, all pixels in the window are used, but sonic

variants of that scheme are described below. In many cases, the calculation of3 B can

be made more efficient. The target S is typically nonzero only within a small portion

of the window, referred to hereafter as the "target region". The calculation of y"'S can

be restricted to those pixels. By shifting the window across the scene, we construct

a likelihood ratio estimate at each position (a "map") for scoring. Figure 5.2 (a)

shows a sample IR raw image. The demeaned image shown in Figure 5.2 (b) has a

somewhat more uniform background although the edges are not correctly estimated

by the convolution. The resulting likelihood ratio map 17 in Figure 5.2 (c) reveals the

target locations as local maxima.

5.3.2 Modified RX Algorithm

A modified RX algorithm was devised by Holmes et al. [76] for use in the U'S

Marines COBBA-ATD program. The major feature introduced by Holmes eto al. was

the use of a "guard-band" mask in covariance estimation. In this context, a gguard

band kernel is a uniform annular kernel, for which the size of the interior void is

strictly larger than the target, region. The annular region is used to estimate the

background covariance around the target.

The guard-band region is defined as the pixels between the target region and the

background pixels. Pixels within the guard-band are ignored and have no effect, on

17The likelihood ratio map shown was generated with the modified R.X algorithm presented below.
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(a) Sample raw image. (b) Sample demeaned image.

(c) Sample likelihood ratio map-

Figure 5.2: Sample RX processing results.
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the resulting estimates. Figure 3.3 shows the target anl covariance masks used to

generate Figure 5.2.

11 Pixels

7 Pixels

37 Pixels 37 Pixels

(a) Target mask, (b) Background mask.

Figure 5.3: Target and background covariance estimation masks.

A mine detection mission may encounter a variety of mines, and a practical mine

detector should respond to all such mines. As noted above, the RX algorithm can

be regarded as an anomaly detector, which tolerates some variation in mine size and

shape. Examining Equation (5.3), we see that for single-channel data, the likelihood

ratio can be rewritten as' 8

SB T B > T"', then H(

yTy " < T"', then Ho

WVe noted previously that the above expression is the ratio of signal energy to signal

plus noise energy. If the target is larger than anticipated the target will contami-

nate the covariance estimate. The concept of a guard band avoids this problen) bY

excluding a region slightly larger than the nominal target. By masking the window

' 8For multi-channel data, yTy is not a scalar.
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pixels we eliminate the additional variance due to the target, thereby increasing the

likelihood ratio. The price of this change is that our estimate of the covariance M

will be based on fewer pixels, and it will therefore have higher variance.

The performance of the standard and modified RX algorithms was evaluated bv

processing the NT-S2 sensor described in Section 2.7.2. Recall that six types of anti-

vehicle mines were placed in those test lanes, the largest of which was around twelve

pixels in diameter while the smallest was approximately five pixels.

Because of the inine size variation described above, a circular target. of 5 pixels in

diameter was used. The background window was chosen to be a square of 36 pixels in

length. For the modified RX algorithm, a guard band of 14 pixels was chosen so that

even the largest mine was excluded from the covariance estimation. Figure 5.4 shows

the ROC curves"9 for the standard and modified RX algorithms. Apparently, the

modified RX detector provides better performance in the low FARs region. Hence,

the modified detector will be used as the baseline in performance comparisons with

other algorithms developed herein.

5.3.3 Frequency-Domain RX Implementation

Although the RX algorithm has been described with processing done in a slid-

ing window, a moment's consideration reveals that virtually all of the operations are

equivalent to convolution. Pointwise evaluation on STB is obviously so. The co-

variance estimation is also equivalent to a convolution of the relevant mask with tihe

pixel-wise squared image. A significant increase in speed is obtained by performing

these convolutions in the Fourier domain using FFTs. In tests it was found that

' 9 By definition, a ROC curve plots the probability of detection versus the probability of false
alarm- Because the size of a false alarm event is difficult to define in images, false alarm rate
(number of' false alarms/scanned area size) is used instead.
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Figure 5.4: Performance comparison of standard and modified RX algorithms.

the frequency-domain RX implementation was significantly faster than the original

implementation, but the improvement is strongly dependent on the kernel sizes.

5.4 Performance Enhancements

The performance of R.X is ultimately limited by the assumptions on which it is

based. In this section modifications to the algorithm are described that remove the

restrictions imposed by more complex targets and spatially-correlated clutter.

5.4.1 Multiple Target Components

In the original RX formulation, S was taken to be a region (a circle or a square)

of constant pixel intensities. As noted previously, many types of mines do not possess

such a homogeneous signature, and it is natural to explore whether a more complex

signature S would improve performance.
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The problem can be overcome by using a target model with multiple components.

Tbe derivation of a multi-component RX algorithm begins by re-defining the tar-

get reference S. For single-component RX algorithm, S is a binary column vector

defining the target region. For the multi-component, case, S contains several columns

describing different sections of the target. Expressions appearing in Equations (C.2)

through (C.14) are still valid for the multiple component case. The likelihood ratio

in Equation (C.14) can be formed by taking the determinants of covariance estimates

M 0 and MV, which appear in Equations (C.9) and (C.10).

Compared to the single-component RX detector, the multi-component RX al-

gorithm provides better detection performance on non-uniform targets and equal

performance on uniform targets. Applying a single-component reference to a muitri-

component target introduces estimation errors and yields a lower likelihood ratio.

In the worst case scenario, a multi-component target nmav go unseen by the single-

component RX detector even though its signal-to-noise ratio is high20 .

Although the concept has a number of theoretical advantages, several factors limit,

the benefit of using a multi-component RX detector. Although many types of land-

mines show uniform regions of different intensities, the contrast amnong regions is

smaller than the contrast between the average amplitude of the mine and the back-

ground. Hence, a single-component S may be adequate to detect mines, since Lie

whole target. average does not deviate significantly from averages in individual sec-

tions. Unless the extreme example mentioned earlier is possible, the single-component

S may be preferred for an unknown minefield because of its simpler implementation.

20This extreme case would require the average mine signature to be similar to the background
average, a situation never encountered by the author in practice.
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Furthermore, the multi-component RX works best only when the section bound-

aries in S are good approximations to those of actual mines. In general, the multi-

component RX algorithm will demonstrate an advantage only when the minefield is

dominated by a known mine type having multiple sections.

5.4.2 Clutter Whitening

As mentioned in Section 5.2, the RX algorithm assumes spatially uncorrelated

clutter, which may not be satisfied by high-resolution EO irnagery. Figures 5.5 (a)

and 5.5 (c) show sample image chips and power spectra for a surface mine (MPA)

and clutter. It is apparent that the clutter is not white, and that its power spectrum

overlaps the mine spectrum.

A classical whitening filter was investigated to reduce the clutter spatial correla-

tion. The Filter was constructed from the local covariance matrix in a. manner similar

to the concept used in the generalized matched filter. If the local clutter covari-

ance estimate E is available, one can use a Cholesky factorization or an eigenvector

decomposition of its inverse to construct the whitening filter 1'.

E- V = vTV (5.5)

Before applying the RX algorithm, the whitening filter V is applied to both the input

imagery y and the reference S as follows

y -- Vy
S -* VS (5.6)

yTs -- (V.y)T(V.S)

The approach described above is theoretically sound but impractical, because of the

difficulty in estimating the local clutter covariance matrix E. An image chip of N

pixels and J channels requires at least JN chips to make a valid estimate. Since
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(a) XIPA mine. (b) Clutter-

(c) MP-A spectra.. (d) Clutter spectra.

Figure 5.5: Sample mine and clutter chips a.nd their power spectra.
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the local clutter is nonstationary (due to changes in terrain, vegetation or weather

conditions), it is virtually impossible to find enough samples to form E. Furtherinore,

the matrix inversion and decomposition are time consuming.

In this work, an alternative approach was used, which is based on an assumption

about the clutter. If the clutter is first-order Markov, then a pixel's intensity is only

correlated with its adjacent pixels. In this case the clutter correlation is described by

an exponential function that can be described analytically in terms of a correlation

coefficient p. Arcess et al. [96] show that the whitening filter can be expressed as a

3 x 3 matrix P2 -P(l-+P 2 )

-)(1 ++ p) 2  -p(l + p 2) (5.7)

-p(1 + p2 ) p2

To find the correlation coefficient p, we first computed the auto-correlation matrix

of a zero mean clutter chip and then estimated the coefficient p of an exponential

function that approximated the computed correlation. By using the coefficient value

in Equation (5.7), we formed the whitening filter. This filter was the convolved with

the input image and the reference. Note that the correlation coefficient estimation and

whitening preprocessing were done separately for each channel. Although estimation

error (as well as errors in the Gauss-Markov assumption) can prevent this whitening

approach from eliminating all colored noise, it still manages to reduce clutter spatial

correlation and to improve RX performance with a modest computation cost.

5.5 Random Signal Approach (Estimator Correlator)

In this section we introduce an alternative to the RX algorithm based on a random

signal model. We assume the signature of a given mine is largely known, but is

distorted by the viewing geometry, illumination conditions and environmental factors.
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The image data :x (at a single pixel) is modeled by the target signature h convolved

with a random distortion term t plus noise n.

x h, Ii, o (5.8)

Consider next an image of size N1 x N'2 and let N = NIN 2 . By reshaping the image

data and model components into column vectors, we can rewrite the above equation

as

x = ht + n (5.9)

where x, t and n are N x I column vectors and h is a N x N matrix. Using N2

sub-matrices h0 h, '" hN2- I h can be expressed as

ho h -2 -I hN 2-2 hi
h, ho hN,ý I ... h2

h h2 h ho .. (.10)

hN-1- hN2-2 hN.,-3 "- ho

and the sub matrices are

h.(k, 0) h(k, N, - 1) /,(h:, N,- 2) ... h (k, 1)
h(A,1) h(k, 0) h(k, N. 1) h(k, 2)

hk h!(k,( 2) h(k, 1) h(k,0) ... h(k,3) (5.11)

h(k, N1 - 1) h(k, N- - 2) h(k, N, -3) ... h (k, 0)

The real matrix h has a block circulant form. A real block circulant matrix is svIn-

metric and can be represented via the eigen-decomposition

h = VHVH (5.12)

where V is the matrix of column eigenvectors and H is a diagonal matrix containing

eigenvalues of h. Gray [97] has shown that the eigenvalues of a large N x A svmmnnet.ric

Tueplitz matrix uniformly sample values of the power spectral density P as

= rk (5.13)

N

201



At the same time, its eigenvectors approximate the discrete Fourier basis, so that tit(e

eigenvector matrix V becomes air N x N unitary DFT matrix. The entries of V are

1 -j kp 
(5. 14)[vlk,p-7 V

Therefore V in Equation (5.12) can be a unitary DFT matrix and H is the discrete

Fourier transform of hI in the form of a diagonal matrix.

For the above-described problem involving a random signal in additive noise, one

can employ an estimnator-correlator (EC) detector [98]. This approach involves birst

filtering the input data to estimate the unknown random signal, and then correlating

the estimated signal with the input data. The clutter is assumed to be zero-mean

Gaussian distributed noise n - NA(0, C,) where C, is the clutter covariance. \'Ve

noted in Section 5.4.2 that EO imagery is not zero-mean Gaussian in general, but

when the local clutter mean is removed the residual intensities are approximately

Gaussian.

We now review the derivation of the EC detector. \Ve first consider the simiple

case h -- I for a Gaussian distributed signal s -, (tt,, C).

The likelihood ratio of the two hypotheses can be expressed as

A(x) Pr(xlH1) [det(C)]/ L/2 (c(x-5.15)

Pr(x H0 ) - [det(C, + C,)]'/ 2  ,X-(C)-x/2 (.15)

in which ti, and p., are the respective (vector) means of the signal and clutter, and

similarly for the covariance matrix C, + C,. The log of Equation (5.15) yields

2 In A(x) ln[det(C++i] - ln[det(Cn + C,)]

+xT(C )-x - (X - , (C,ý + C,)' (x -/) (5.16)

Using the matrix identity

C - (C', + C)-' - CnIC.s(Cr + C.) -1 (3.17)
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we find

2 in A(x) =ndeC[det(C,,)1- ln[det(C, + C,,)]

+2x T(C, + c,) -_.IT(Cc _ C,)- I, (5.8

+xTCnICs(C 1 1 + C,)-

By omitting the data invariant terms, the likelihood ratio reduces to the equivalent

quantity

P(x) = xT(C,, + C +Yp - +x C'C I,/'(C 5 + C (5.9)2 n

Covariance matrices for stationary processes have a block circulant forn [99),

which is svrnmetric and positive definite, so that the existence of a symmetric cigen-

vector decomposition is guaranteed. As the number of samples approaches infinity,

the covariance matrix C becomes real and Toeplitz. Thus a covariance matrix C is

asymptotically determined by its power spectral density P.

Generalizing the above results to an arbitrary signature h simply requires the

substitutions

C, = hC~hT

/-t = hp~t

and yields

F1(x) xv xT(C.H + hCthT)h--phl

S2Ix T C'hCth T (hCthT + C<)- t x (5.20)
2

which is the likelihood ratio of the estimator-correlator expressed in the spatial do-

main. Using the eigen-decompositions of Ct, C, and h, the estimator-correlator in
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Equation (5.20) becomes

F(x) = (xTV)(P,, + H*PtH)-lH*(V-It)

+±(xTV)(P,,)-'H*PtH(H*P/H + P,)-' (V"x) (5.21)
2

where we use(] the following properties of the DFT matrix V

VVH = VHV=I

(VAVH)- t = VA-1 V'

After recognizing the Fourier transform of x and Itt,

X = VHX

Mt= V /1 tt

and recognizing that only scalar operations remain, Equation (5.21) can he expresse(I

as:

XH*M* IX[21HJ2pt
Pr, + IH 2P, + 2P(IH 2P, + P,,) (5.22)

Hunt [100] has shown that the above 1-D transforms of the column vectors in X

are equivalent to the standard 2-D transforms of the original image. Hence, we

can formulate the likelihood ratio test using 2-D Fourier transforms analogous to

Equation (5.22). The random signal model in the spatial-spectral domain is

X(kr, k-) = H(kk, ky)T(k•;, ky) + N(k,. ky) (5.23)

and the transform of the likelihood ratio test P(x) at frequencies (A:., kV) be'oiies

Rx(k,,kV) X (kx, ky) H+ (k, k) C S[T(k,(, kl) (5.24)r~x~Skv -- S(k•, ky + I H(k,,,, kvl 2S-, (kx, .y)

IX (k., k) 12 H(k (, k.I 2 ,5,(k1, k.)
2SN (k, ky)(I H((k, ky1) ST(k., ky) + SN.(k,, ky,))
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where C is the expectation operator, and S1,(k,, k.) and SAT(k,, k,,) are the power

spectral densities. For mine detection the signal variance is small compared to the

signal mean, and the above equation is dominated by its first term. In this scenario.

Equation (5.24) can be approximated as

R,, ký IkY) X (k,, kj pH* (k,, kv) S[T' (k,, kj)

SAT (k, ky) + IH(k., ký)I12Sr(k,,ky)

X(kL, kk)w(k., k,) (5.25)

which is the product of the input signal Fourier transform X and a Wiener filter I V

similar to that derived by Pratt [10]]

H*(k,, k,)C[T * (k., k)j (5.26)
W~~kTA k~ (k.,, ky) +± lH(k., ky 2 S,1_(k,, Iiy) (.6

In the case of high signal-to-noise ratio, the Wiener filter H" performs deconvolution

of X. It whitens the signal and results in an impulse in the spatial domain, which can

be used in target detection. For a low signal-to-noise environment, the Wiener filter

degenerates to a generalized matched filter, which whitens the clutter. These two

[eatures combine to enhance the contrast between target and clutter, which makes

the estimator-correlator an attractive approach for mine detection.

5.6 Implementation of EC Algorithm

The implementation of the EC algorithm for mine detection is primarily the con-

struction of the Wiener filter shown in Equation (5.26). The filter requires that we

estimate power spectra for targets and clutter, as described in Section 5.6.1. Sample

Wiener filters are presented in Section 5.6.2. A filter-bank configuration, which allows

the EC algorithm to function in minefields containing diverse mines, is detailed in

Section 5.6.3.
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5.6.1 Construction of EC Detector Elements

Figure 5.6 depicts the block diagram of an estimator-correlatot, implementation.

Four quantities are needed to construct the Wiener filter: the target signature H.

the target distortion T, the target PSD ST and the clutter PSDS,. 5 xModels and

estimation methods for the above quantities are described in what follows.

Deterministic Offline Processing Adaptive Processing

Distribution PSD I

Mean D Fstnbution T Filter Construction

Figue 56 BrH E[T]'H m

Connsrreui o H TageS, +Sgauh, NormaliationI

Single Channel B go r c m t
Input Image Cl ttea r th

X 
Correlation: 

Clutter PS!D y]Estimation S I

Figure 5.6: Block diagramn of EC algorithmn.

Construction of Target Signature

The performance of the EC algorithm improves when the reference H inatches

the input signal. An ideal reference template not, only matches- the mine's overall size

and shape but. also mimics the spatial variation of pixel intensity.

Real minefields, however, may contain multiple mine types with different sizes

and shapes. In addition, differences in paints and construction materials can produce

different thermal and scattering properties. As a result, it is impossible to nmatch all

types of mines with one reference H, and multiple reference signatures are of interest.
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In this section we discuss the task of creating a reference. In Section 5.6.3 we

discuss a technique for processing multiple references in parallel.

The Wiener filter attempts to decorrelate the clutter, which has the byproduct

of enhancing the target edges. From prior experience, edges are known to play a

dominant role in detector performance. Mines of similar sizes and shapes (and. hence,

similar edges) can often share a common reference. This fact reduces the number of

references and makes EC a more practical algorithm.

In our implementation, two reference templates were created for detection of large

and small mines. We first extracted sample mine image chips and removed the back-

ground clutter. Centering the chips and averaging the pixel intensities along concen-

tric circles allowed us to estimate the signature's radial profile. A Circularly synimnetric

reference was constructed with this profile.

Figure 5.7 shows the spatial variation of the two reference templates. The template

diameters are roughly 11 and 7 pixels respectively. Note that pixel intensities in the

templates have been normalized to a unit peak. The actual target signature h can be

modeled by a normalized signature i). times an unknown mine amplitude (a

h(v, y Y) = a ' h,(X y) (5.27)

Substituting Equation (5.27) into Equation (5.26), we have

IVý(k,, k - a (kx kET * (k., (5.28)
SN(k, ky) + a3 , (ýj(k.,, kj) (k, ky)

in which the subscript .) represents the reference type, which is either a small or large

reference in our implementation.
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(a) Amplitude-normalized template (b) Amplitude-normalized temlplaIv

ht (x, y) for the small mines. h2 (x, y) for the larger mines.

Figure 5.7: EC algorithm templates.

Imagery Normalization

Variations in environmental conditions change the amplitudes of 1oth targets and

clutter. Image intensities are mainly affected by incident (solar and sky) light and

surface temperature (thermal emission). The latter is also determined bY recent

solar insolation. Because the images were taken at different times and( under different

meteorological conditions, the image dynamic range might, vary significantly froni one

scene to another. To address this problem, a two step procedure is used in processing

the imagery. We first removed the mean of the image, and then normalized the

residual intensities (mostly clutter) to unit variance. Therefore, the PSD estimated

from the normalized image S'N must be multiplied by the clutter variance '2 to yield

the clutter PSD, SN = /32 SN.

Figure 5.8 shows the signature amplitudes after image mean removal an(l normal-

ization of the clutter to unit variance. This result indicates that the resulting mine
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signatures have consistent amplitudes. Reading from the plots, the ratios O'%/4 of

large mines are around 3, while the ratios of small mines are about 4. This finding

permits off-line estimation of aj//3, for reference j. A detailed study reveals that op-

timmn detection performance is achieved when C.srnal// 3 = 0.39 and (~iar,/3 0.81,

for small and large mine, respectively. These values are roughly consistent with tfle

ratios of the reference areas (72/112=0.40 and asrna/c•oog = 0.48). . IultiplyiNig

the normalized signatures H2j by the %ai,/ values identified above yields the desired

results.

70 45 -_ _

30

4a 5 4, -- 13

1 2 7 A 5 2 2 4

MaxlTafget}Nar(Clutter) Ratio Max(Targel)Na1{Clutler) Ratio

(a) Large mines. (b) Small mines.

Figure 5.8: Histograms of the ratios of mine amplitudes to clutter standard deviations.

Estimation of Target Distortion

The reference template h represents the target signature in an ideal environment,

while the distortion term T accounts for the effects of random factors such as mine

tilt, shadowing by ground vegetation, dirty mine surfaces, illumination conditions,
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viewing angles, etc. In our implementation, the random distortion is a~ssumied to

have a Gaussian p)ower spectral densityv of the form

StL- k) = • (k•,t •k•) (5.29)

and a mean given by

-T, e-(x +y •/2U (5.30)

When the variance a2 ap~proaches zero, the distortion t becomes a -fi fn('tion inply[inlg

that no distortion is present. We empirically determined a t~o have the value 1.4 pixels,

and we apply this vahle for every mine type in all scenes.

Estimation of Clutter Spectrum

The construction of reference templates and the distortion PSD are deterministic

processes that can be done off-line as illustrated in Figure 5.6. On the other hand, the

clutter spectrum needs to be estimated on the fly, because it is nonstationarv, in the

discussion of the R.X pre-whitening filter (presented in Section 5.4.2). we estimiatedl

the clutter correlation using a first-order Markov model. The same assumption can

be employed here. The PSD of a two-dimensional first-order Markov process is given

by [101]

o 2

where p is the correlation coefficient estimated by approximating the radial profile of

the image autocorrelation matrix with an exponential distribution.

5.6.2 Sample Wiener Filter

Using the parameter estimates described above, a Wiener filter can be constructed

as in Equation (5.28). Figure 5.9 shows the four filter components, and Figure 5.10
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gives the resulting Wiener filter. The ring structure indicates that the Wiener filter

has a band-pass response.

I I,

r r

(a) S(T(k., ky) (b) STr(k,., k:y)

r r

(C) sN (k.ý, kl) (d) H(k.,, k,,)

Figure 5.9: Essential components of the Wiener fliter.
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Figure 5.10: The Wiener filter for LMB mine.

Figure 5.11 shows sample input and output images. The filtered output shows that

the Wiener filter deconvolves the target signature and vields impulse- like responses

at the target locations.

Figure 5.12 provides a closer look to the response around the mine position I)e-

fore and after Wiener filtering. The two images are normalized to unit energy for

comparison. It is evident that most energy is concentrated in the mine region 1v the

filtering process.

5.6.3 Filter-Bank Configuration

The use of a filter bank boosts the performance of the EC algorithm when diverse

mines are present, because the Wiener filter is sensitive to the reference tenmplates,

and each template can only be used to detect anomalies of similar shape and size.

Since the computational cost of forming and applying additional filters is relatively

low, it is practical to simultaneously process the input data with multiple references.

Furthermore, since the filter tends to respond to only one type of mine, the results
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(a) Raw image. (b) Filtered image.

Figure 5.11: Sample raw and filtered images.

q

i*- mf- -

Q0lS 00i7 O01B 0019 002 006 01 014

(a) Raw image. (b) Filtered image.

Figure 5.12: Normalized imnages around the mine position before and after Wiener
filtering.
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of different templates are likely to be disjoint. In addition, because we construct

each Wiener filter using normalized signature h and cltutter '•,, the mine amnplitude

parameter a, and clutter variance 0 described in Section 5.6.1 are required to estimate

the likelihood ratio. Thus, the likelihood ratio of a mine using multiple references cau

be approximated by fusing the inverse transform of the filtered result 7 Zxj (kr, k,,) of

each reference with a maximum operator.

The number of mine references should be minimized in the interest of efficiency.

Prior knowledge of the mine types in a given locale can help determine what ref-

erences should be included. Figure 5.13 illustrates the EC detector in a filter-bank

con figuii ration.

Adaptive Fusion over Scoring
Filtering References

EC w/ ref. h2

EC w ref hN - -- Detection

List

Figure 5.13: Block diagram of the filter-bank configuration.

5.7 Locally Adaptive EC Detector

In this section, we describe a locally adaptive version of the EC detector to reduce

clutter estimation errors due to inhomogeneous background. When the background

clutter is homogeneous, the clutter PSD SN can be estimated for the whole inl)ut
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image. If an abrupt transition of background type occurs within the image, this

estimate is not valid. Figure 5.14 (b) shows an image that has bare soil at the center

and rough grass at the top and bottom of the image. Figure 5.14 (c) shows the filtered

result with a global Sýv estimate. The soil area is relatively smooth, while the grass

area contains inhomogeneities that may trigger false alarms. Another scenario that

benefits from local clutter estimation is the presence of a large clutter object that

occupies a significant portion of the image.

To deal with nonstationary clutter, we employed a sliding window to locally per-

form clutter estimation and Wiener filtering. In our implementation, the sliding

window size was 48 x 48 pixels. This window was further divided into 9 sub-windows

and a pixel correlation p, was estimated in each 16 x 16 pixel sub-window excet

the center sub-window (to avoid the potential target signature). The effective p was

the average of the eight values pi estimated from the sub-windows. After filtering at

one window position, the window was shifted by 16 pixels, and the above process ie-

peated. This 16 pixels step size was chosen to correspond to the scale of local clutter

variations and to improve efficiency. Figure 5.14 (d) demonstrates that this locallY

adaptive EC algorithm can reduce the false alarm rate.

The most significant drawback of the locally adaptive approach is the increase

in computational time. Hence, this approach is only recommended when the back-

ground texture is changing abruptly. Otherwise, a global EC detector is sufficient for

detection in homogeneous backgrounds.
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(a) Raw image. (b) Saturated input image.

(c) Global estimation filtering. (d) Locally adaptive filtering.

Figure 5.14: Sample EC processing results with global and local clutter estimation.

216



5.8 Performance Evaluation

In this section. receiver operating characteristic (ROC) curves were computed

showing probability of target detection (Pd) and clutter false alarm rate (FAR [#/in-])

plotted as the ordinate and abscissa respectively. Because very low FARs are of

interest, the xc-axis is plotted with a logarithmetic scale. The data set used here was

the NT-S2 collection described in Section 2.7.2.

After several necessary but uninteresting preprocessing steps" t , the NT-S2 NI\V]R

data set was processed by the RX, EC and locally adaptive EC algorithms to pro-

duce the results shown in Figure 5.15. The EC result with global clutter estimation

is inferior to the results for the RX algorithmn and the EC algorithm with local clut-

ter estimation. This is a result of clutter PSD errors introduced by inhomogeneous

backgrounds, which produce false alarms in the offending areas. Figure 5.15 also

indicates that by using local clutter estimation, the EC algorithm can outperform

the RX algorithm. One noticeable feature of the locally adaptive EC is its maximum

Pdj. Because the (modified) RX algorithm uses a large annular region to estimate

the clutter variance, it cannot detect targets near the image edges. The width of the

blind region is related to the radius of the annulus. The EC algorithm, however, uses

Fourier transforms for applying the filter. As a result, mines near the edges are more

likely to be detected, although the periodic extension properties inherent in Fourier

approach can introduce other errors.

It was noted above that the locally adaptive EC detector performs better in chal-

lenging clutter, but it is more expensive to compute than the EC algorithm with a

2 'Figure 5.14 (b) shows a processed example with correction of corrupted pixels and saturation of

highly reflective clutter.
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Figure 5.15: Performance of RX and EC algoritnhms.
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global clutter estimation and unnecessary in hornogeneous environments. To demon-

strate this fact. Figure 5.16 shows ROC curves obtained by processing images that

have had the top and bottom edges cropped to avoid the lane boundary and other

unintended clutter. For those cropped images the EC algorithm is seen to produce a

higher detection rate at low FARs.
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Figure 5.16: Performance of RX and EC algorithms with global clutter estimation in
homogeneous background.

Finally, we examine the benefit of using a filter-bank with the EC implementation.

Figure 5.17 illustrates the difference between using a single reference and the fused

results of large and small references. Apparently, the EC algorithm performance is
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improved by using multiple references. Note that the false alarm rate of the fused

detector is increased at low FARs due to the strong chitter present in large and

small reference results. Nonetheless, fusion helps detect both small and large mines

efficiently.
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Figure 5.17: Performance of EC algorithm with fused and single references.

Above results demonstrated that the EC algorithm achieve a significant improve-

ment compared to the existing RX algorithm. However, it still not meet the Specified

detection criteria 22 for scanning sensors, which is 0.95 Pd at, 0.02 false alarm per

square meter 23 , because only two references are used to detect six types of miine at

22 http://www.uxocoe.brtrc.co-n/Archived/1999/A53.htrn

2'The locally adaptive EC and RX achieved 0.81 and 0-66 Pj at 0.02 FAR for the NT-S2 collection.
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various times. The EC algorithm performance is expected to be improved by using

more specialized references that matches the mine response under different environ-

mental conditions. The radiometric model explored in this work may be useful for

above application. The integration of the EC algorithm and the radiometric model

can be an interesting future work topic.

5.9 Summary

In this chapter we examined two mine detection algorithms of different strategies.

The RX algorithm detects anomalies introduced by surface-laid mines with a general

reference that includes only size and shape information. The EC algorithin uses

specialized references, which can be generated by the radiometric model presented in

previous chapters, to capture specific types of mine. Although slightly more complex

(two components) mine models were considered here, the use of results from this

radiometric model is left as future work.

The RX algorithm requires minimal knowledge about potential mines. The de-

tector can be easily implemented and tolerates variations in mine signatures. The

performance of the RX detector is limited by the similarities among mine and clutter

signatures. Since RX is an anomaly detector, it may suffer a high false alarm rate

if the clutter is similar in size and shape to the mine. Performance improving tech-

niques for the RX algorithm were investigated. The clutter whitening scheme helps

to reduce the clutter correlation to improve RX performance. The multi-component

RX is theoretically sound but may have limited improvement in practice.

The EC algorithm can make use of information about the mine including its type,

time of operation, date of the year, and environmental conditions. That, knowledge
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can be utilized to produce well-matched references (and better performlance) ulsilng

the radiornetric model developed in this work. However, highly detailed, very speci lic

references are not always favorable for general mine detection, since variation in miiIe

shape and surface properties are commonly observed. A filter bank configuratioii

is recommended to make the EC detector adaptive across different, mine tylpes. An

adaptive EC detector was developed using a localized clutter estimation scheme to

mnaintain reliable detection performance.

The EC detector with a filter-bank implementation was showmn to provide a sub)-

stantial performance gain compared to the RX detector. A locally adaptive EC

detector is needed for the imagery used here, because it contains inhonaogeneous

backgrounds that trigger false alarms.

In practice, the EC detector requires more tune-up to adapt a new set of mine

imagery. For RX detectors, the operator only needs to adjust the reference and win-

dow sizes for potential mine types. For EC detectors, the spatial profile of the mine,

which is subject to changes in sensor passband and environmental conditions., is (le-

sired to construct a matched reference. Furthermore, if a multi-reference EC detector

is implemented, the selection of the amplitude weights ca' describe([ in Section 5.6.1

need to be tuned to achieve optimal performance. However, the pay back for the

extra efforts of EC implementation is the superior detection performance.
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CHAPTER 6

CONCLUSION

In this work the problem of mine. detection using EO inmagery was explored. This

work presents several contributions: (1) A polarimetric radiornetric model was con-

structed and used to produce detailed mine signatures. The predicted signatures

were validated with miultiple sets of measured data. (2) General guidelines for sensor

deployment were defined to improve mine target-to-clutter ratios. (3) An attractive

detection algorithm based on an estimator-correlator formulation was devised and

tested with measured imagery. Comparisons to the baseline algorithm (the "R.X"

algorithm of Reed and Yu) show significant performance gains.

The findings of this dissertation are useful to both sensor system designers and

algorithm developers. By simulating mine signatures under different environmen-

tal conditions, svstem designers can identify deployment conditions that will ensure

high image quality. For algorithm developers, the estimator-correlator algorithm can

provide immediate performance improvements. The algorithm's ability to use more

detailed signature information can provide additional gains, but has not been explored

here in any detail.
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In the remainder of this section we elaborate on the above remarks. In Sections 6. 1

and 6.2 we highlight major findings of the work. Potential topics for future work are

presented in Section 6.3.

6.1 Summary of and Findings for the Radiometric Model

A simulator was developed to predict polarimetric properties of passive EO mine

signatures. Source radiances considered by the simulator are surface temperatures

predicted by a thermal model and solar radiation computed by TMODTRAN. It ad-

dresses the source-target-sensor geometry, atmospheric effect's, and statistical descri p-

tions of rough surfaces. In this model environmental conditions and sensor parameters

such as passband, orientation, viewing angle, and impulse response are adjustable.

A polarimetric BRDF model was developed for scattering of mine-like (moderately

rough) surfaces and validated with published data. Primary radiation sources such

as thermal emission, direct and scattered solar radiation were modeled with realistic

temporal dependences so that designers can simulate signatures at, any time of the

clay to develop guidelines for sensor deployment. An extensive body of simulation

was conducted to study the significance of radiomnetric components under different.

sensor passbands, the temporal variation in mine signatures, effects of environmnen-

tal conditions on thermal signatures, and effects of sensor geometry. The resulting

signatures show good agreement with measurements of several data sets.

Specific findings drawn from the the work are listed below.

Polarimetric properties of passive signatures: Simulations show that t.he

source-target-sensor geometry is the primary factor in signature polarization.

An obliquely viewing sensor is advantageous for passive polarimetric sensing.
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Effects of higher-order scattering components have little contribution to the

total image.

" Component significance and sensor passbands: The significance of each

radiornetric component was examninedl to understand the spectral properties of

mine signatures. Thermal emission becomes important as the wavelength in-

creases, and we see it dominate in the MVWIR band and beyond. Mine detection

at longer wavelengths (M'WIR. and LWIR) is based on temperature contrast and

differences in thermal properties and emissivity. Direct, and scattered solar radi-

ation are the dominant sources in the visible and SWIIR bands. but they become

negligible at longer wavelengths. Visible and SWIR sensors only work during

daylight hours and the shadow is often an important feature in detection.

"* Temporal variation in mine signatures: EO mine signatures vary strongly

with time. Solar reflections only appear during day time and are proportiornal

to the insolation. The surface temperature of a mine (a thermal insulator)

is greater than that of the background during the day, and the temperature

contrast is inverted after sunset. Around dawn and dusk. thermal "crossovers"

occur, which correspond to equal temperatures on mine and soil surfaces. (Since

mines and clutter do not show a uniform temperature, this concept must be

interpreted loosely.) The shadow produced by sunlight is an important [eature

of daytime signatures. In particular, the shadow is the only detectable signature

component during the morning crossover.

"* Mueller Matrices for Mine and Soil Scattering: By combining a polari-

metric version of Beckmann's model with concepts described by Torrance anic
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Sparrow, a Mueller matrix was developed that is capable of predicting scat-

tering from rough surfaces encountered by demaining sensors. The proposed

model produced BRDFs in good agreement with measured data. An extensive

comparison made for visible wavelengths suggests that the model is valid for

moderately rough (mine) surfaces. For natural surfaces (background), which

tend to have a multi-scale roughness, a composite rough surface model (riot.

implemented in this work) could be used by employing tilted FEM mesh facets

to reproduce decimeter-scale blotches seen in the background.

"* Effects of environmental conditions on thermal signatures: The effect of

environmental conditions on surface temperatures was studied via simulations of

different time-of-day, day-of-year and wind speeds. The greatest target contrast

was found near mid-day. Wind was shown to reduce the range of temperature

difference as a result of greater convection.

"* Effects of sensor geometry: Several sensor parameters are examined to see

their impacts on signatures. DoLPs of solar reflection are sensitive to the sen-

sor's orientation toward the source. DoLPs near specular regions are two orders

greater than those in backscattering regions.

"* Guidelines for sensor deployment: Operational guidelines can be derived

from this work. The insolation is at. its peak and the temperature contrast

is greatest around mid-day. Shadows can be a usefu] cue for operations near

sunrise. Operation at, sunset is particular challenging and should be avoided.

Low wind speeds are preferred, since convection reduces the contrast. Passive

polarimnetric sensors should use an oblique viewing angle. Also, a polarimetric
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sensor should be oriented very close to the solar specular direction to take

advantage of the rnirie's large DoLP.

* Use of a multi-sensor suite: Simulations conducted in this work show that

sensors of different passbands exhibit distinctive features in signatures. Some

easily detectable features only show at certain time or environmental and op-

erational conditions. A detection system with a multi-sensor suite (of visible,

S\VIB. NIWIR, and LBVJR) may take advantage of those features to enhance

the detection rate with multispectral image processing techniques.

6.2 Summary of and Findings for Mine Detection Algorithms

In the second part of this dissertation, algorithms were studied for mine detection

in EO imagery. An estimator-correlator approach was used to develop an alternative

to the current baseline (RX algorithm). The estimator-correlator exploits the spatial

structure of clutter and mines. It, degenerates to a WAiener filter when the clutter is

Gaussian distributed. Unlike the RX detector, which is an anomaly detector useful

when knowledge about the mines is limited, the EC detector can be adapted to find

specific mines in certain circurmstances. The development, of the radiounetric model

make it possible (in principle) to use carefully tuuned references to achieve a superior

detection rate. Some specific findings are as follows:

e RX performance enhancements: Several techniques were described (and

tested) for improving the performance of the R.X algorithm. A clutter whiten-

ing filter was used to reduce correlation in adjacent pixels. Another modification

for multicomponent targets will improve detection if reliable information about
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potential mine types is available. Finally, a frequency domain RX iNnpolelnenta-

tion was found to greatly improve computational efficiency.

* Performance studies of the EC detector: The EC detector described al)ove

was implemented and tested on measured imagery. Two major Inodifi(catinns to

the basic concept were found to improve performance. First, I)v applying the

algorithm in a sliding window, the algorithm can be adapted to local clutter

statistics. Second, multiple reference targets can be processed in parallel, mak-

ing the algorithm effective against diverse target sets. Comparisons of the BX

and EC algorithm showed a significant advantage to EC when these modifica-

tions were used.

6.3 Future Work

In the course of preparing this dissertation, it, became apparent that several t.oplics

require further investigation.

"* Modeling of vegetation: Simulations conducted in this work assume back-

ground a fiat, homogeneous soil, which simplifies the modeling. In reality, how-

ever, most site contain some vegetation, which has distinctive thermal and sur-

face roughness properties. For example, grass may have non uniform d(ensities

and preferred scattering directions. Spatial, spectral and polarimetric models

for vegetation background are needed to simulate real EO signatures.

"* Mesh Generation: Solar shadows can produce strong surface temperature

differences over distances on the order of one centimeter. Creating a FEN] mesh

with a sufficient node density strains one's computational resources, especially
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when it is noted that the shadow boundary moves with time. The meshes used

in the work were derived froom a body of revolution model and subsequently

refined off-line to include more nodes at large radial distances. The improvement

derived from that refinement process was limited. An iterative mesh refining

scheme should be explored that will sub-divide facets with larger temperature

gradients on the fly.

o Modeling of localized source conditions: The current implemnentation of

the thermal model only includes a few localized source conditions introduced byv

the geometric structure of a surface-laid mine. Variations in thermal emission

and convection on a surface point clue to nearby landmine structure should be

considered to improve the accuracy of the thermal model results.

o Active sensors: The simulations presented in this wNork all involve natural

radiation sources and passive sensors. Active sensors, involving laser illumi-

nations, are also being considered [or mine detection. Since lasers are easily

polarized, the polarimetric properties of surface scattering are better revealed

by such sensors. The proposed radiometric model can be readily modified to

simulate active sensor signatures. Most active sensors view back-scattered ra-

diation, which simplifies the BRDF modeling task considerably.

o Integration of the radiometric model and mine detection algorithms:

The proposed EC detector can utilize the detailed signatures simiulated by the

radiometric model. An adaptive scheme that updates the reference target, on

the [ly according to changes in sensor geometry and environmental conditions

could further improve the mine detection rate.
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6.4 Concluding Remarks on EO Mine Detection

Mine detection with airborne EQ sensors is meant to be a fast and safe approach.

However, a great variation in EO mine signatures due to the changes in environmental

conditions prevents a reliable detection performance that is essential to achieve t he

goal of a real-time minefield detection system. Accuracy and computational effi('v

of the current mine detection algorithm needs to be improved. Furthermore, deploy-

rment gidelines are necessary to ensure image quality. Throughout this work, we

demonstrated that the radiometric signature model is capable of predicting realistic

mine signatures and providing physical insights to the EO mine detection process so

that system designers can optimize the detector under different operation conditions.

The benefits of the signature model can be forwarded to the estinator-correlator

detection algorithm to improve and ensure mine detection and clutter rejection per-

formance. The achievements made in this work provides one step forward to construct

a real-time airborne EO minefield detector.
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APPENDIX A

RADIOMETRY

EO mine detection is based in radiometry, which is the measurenient of quiantities

associate(] with radiant energy and process of radiative transfer. Definitions of ba-

sic radiornetric quantities and properties are given here, as well as the fundamental

equation of radiative transfer. A brief description of the elements of an EO sensor

system is also presented in this section. The blackbody radiation law, which forms

the fundamental thermal emission model, is briefly reviewed in the end of this section.

A.1 Radiometry Terms

Radiornetric terms are essential to describe an optical system. They includes

definitions of energy, power, and geometric characteristics that arise during radiative

transfer. Listed below are some critical radiomnetric quantities.

A.1.1 Solid Angle and Projected Solid Angle

Solid angle is a critical concept in radiative transfer. Similar to the definition of

angle, which is the ratio of an arc length to its radius, a solid angle is the ratio of a

spherical area to the square of its radius.

A cosO (A.1)

231



Solid angle has the dimensionless units of steradians.

Most surfaces are not spherical, and solid angle is commonly expressed in differ-

ential form. The differential solid angle of surface 1 viewed from surface 2 is given

bv
d(10 2 -d 1 cos 0L (A. 2)

The surface area visible to an observer is reduced as the surface normal tilts away

from the line of sight. The effective area is termed the "projected" area. The same

concept is used to define a "projected" solid angle. If 01 is in the angle of the surface

normal with respect to the direction of radiation, arid 02 is the angle of the smrfacc
normal with respect to the observer, the projected solid angle Q{1, is giveu 1y

dA1 cos 01

dQp 12 = dQ12 cos 02 ` rd co s 02 (A.3)

This quantity is helpful in simplifying the expression of radiative transfer.

A.1.2 Flux, Radiance, and Irradiance

The rate of change of radiant energy (i.e., the power) is referred to as flux (1) in

radiometry.

DOQ [W] (A.4)

at
The flux density, which is the area density of power, is referred to as irradiance.

In some cases, the irradiance is further specified as "radiant exitance" or "radiant

incidence" if the energy is emitted from or incident on the surface, respectively.

E O(D [NNI/m2] (A\.5)

The fundamental radiometric quantity is radiance, which is the quantity of flux per

unit solid angle leaving or arriving at a surface. Its propagation direction is confined
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to an elementary cone containing a, specific- direction. Radiance is defined as the flux

per unit projected area and per unit solid angle.

L = 0A cos O(6)

A.1.3 Spectral Dependency

Spectral variables are often used in radiornetric analysis, since the surface prop-

erties of most materials and the transmittance of the atmosphere vary across the

spectrum. To stress the spectral dependency, radiometric quantities arc often ex-

pressed as functions of wavelength or frequency. The spectral radiance below is an

example.
OL

LA

A.2 Radiative Transfer

The fundamental equation of radiative transfer, which appears in Equation (A-8),

provides a means to calculate the energy propagating from one surface to another.

d4)21 = LI dA cos 01dý 2 (05 2 (A.8)

The relation defines the time rate of change of radiant flux leaving surface I to surface

2 in a vacuum space.

Using definitions stated in Section A.1.1, we can show the radiance exchanged

between two surfaces in a vacuum is invariant. Define the quantities

L2 = dA 2cos1 2d 2  (A.9)
dA2 COS 02 l 21

dQ1 2 = d. 1 c (A. 10)r'2
dA,•cos 02(A1)

d 21 =- 2 S2 (A.11)
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Substituting Equations (A.8) and (A.10) into (A.9), we have

LldQt 2 = L2dQ2J (A. t2)

which shows that the radiance emitted from surface 1 toward surface 2 (LI) equals

the radiance surface 2 receives from surface 1 (L 2).

The fundamental equation of radiative transfer can be applied to more complicated

scenarios. Say we want to know the radiance arriving on surface 2. which includes

not only a direct emission (LI) from some surface 1, but also reflections from other

sources by surface 1. Then L 2 can be expressed as the sum of the direct emission anu(

the integral of radiance (LExT) over the hemisphere viewable frorn surface 1. With

the help of the geometric parameters (0, 0, and r) and the bidirectional reflectance

distribution function ,F, which is defined in Section 2.4, we can specify L2 as

L2 (,0, r) =Lt1(0, 0, r) +/.,/2 d /sn '27 0', r) (A. 1:)
.,10" 0O

In this result it is assumed that radiant sources other than surface 1 are placed far

away, so that mutual coupling between sources and surfaces can be neglected. Also,

other sources are assumed to not be viewable fron surface 2, and surface 1 is L)'r(suiled(l

infinitesimally small to simplify the expression.

A.3 Radiometric Framework of EO Sensors

Figure A.1 illustrates basic elements of radiometric measurement for EO sell-

sors [102, 27, 103], and it is applicable to landrnine detection.

The EO sensor, which is usually a CCD camera, receives reflected anid einittedl

ra~dianrces as shown by the blue and red lines in Figure A.l. The radiation sources

include illuminators, targets, and background. The illuminator can be the sun in a
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Figure A.I: Radiometric framework of EO Sensors.

passive sensor systern or a laser beam in an active sensor systeL. Thermal emission

from targets and background located within the detectors field of view (FOV) reaches

the sensor directly. The radiance emitted from illuminators may reach the detector

directlv or via reflection. Note that the figure doesn't show multiple scattering, which

is important in some environments. The atmosphere can also be an important factor,

since it contains particles and molecules that emit, scatter, and absorb radiance.

A.4 Blackbody Radiation

Because passive radiation sources encountered in remote sensing generate radiance

via thermal emission, it is appropriate to discuss the basic mnechanism for thermal

emission: blackbody radiation. Also described as Planck's radiation law, it predicts

the spectral radiance of a perfect emitter. A convenient expression of Planck's radi-

ation law is given by Rybicki [104] who writes the spectral radiance as a function of
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wavelength and surface temperature,

2c'2h 1
L[B(AT) - 2c [2/ n1"m-sr l-in-I] (A.14)

A5 Chv/k7 - I

where c is the speed of light in a vacuum, h is Planck's constant, v is the [requn(.cY,

and k: is Boltzmann's constant,. This function serves as the hasic model [or thermal

emitters. The spectrum of a real surface is less than that. predicted by Planck's law.

Such surfaces are referred to as graybodies, and the ratio of the true and hlackl)odv

emission is denoted the emissivity S, which is a number bet.ween zero and one. Thus,

the thermal emission from a surface is known if one has knowledge of both the surface

temJperature and surface emissivityv.
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APPENDIX B

ELECTRO-OPTIC SENSORS

Optical sensors are devices that can convert radiant electromagnetic energy into

other forms. For example, a conventional camera, an imaging optical sensor, stores

photometric information via chemical reactions. In this work, we are interested in

electro-optic (EO) sensors that convert optical energy into electric energy.

B.1 Physics of EO sensors

A typical EO sensor is a semiconductor device that changes its condunctivitv ac-

cording to the number of photons impinging on it. Its spectral sensitivity is deter-

mined by the type and amount of impurity dopings. Sensors that reacts to a narrow

bandwidth are good for observing laser backscattering while broadband sensors are

suitable for passive terrestial observations.

Three types of' semiconductor components are found in EO sensors: photocon-

ductive (PC), photovoltaic (PV), and charge coupled devices (CCD). A PC detector,

whose resistance is inversely proportional to the radiation exposure, is connected in

series with a load resistor. The signal is read out as the voltage across the detector or

the load resistor. The advantages of a PC detector are its fast response time and its

ability to work at longer wavelengths. Its primary disadvantage is that the change in

237



detector resistance is a function of the substrate temperature, which leads to frequent

calibration. The PV detector is a diode that produce a current proportional to the

number of incoming photons. It, is usually used in an operational amplifier feedback

circuit. Many devices that work in the visible or near I1 ranges are made of' PN'

detectors.

Unlike the single element devices described above, array devices have become

popular due to their imaging efficiency and higher resolution. The CCD detelcor

is the most popular of the arrav sensors, and airborne mine detection systems are

likely to use CCD detectors. A CCD detector comprises an array of MNIOS capacitors

aligned in rows. Each capacitor represents a pixel and it creates electro-hole pairs

during exposure, then the charges are shifted sequentially to the output register( and

read out via an output amplifier. The simple structure (f a CCD detector makes

it possible to produce high-resolution imaging sensors. Silicon-based CCD detectors

are suitable for making visible and near IR sensors, but, it is more challenging and

expensive to manufacture infrared sensors responding to longer wavelengths.

B.2 Types of EO sensors

EO sensor systems can be categorized according to their spectral bandwidth,

spatial resolution, radiation source, and polarimetric dependence. In this section we

summarize the types of EO sensors commonly used in mine detection.

Visible, IR, and UV Sensors

Wide-band EO sensors can be roughly divided into UV (10-400 nun), visible (400-

750 nm), near IR (750-1000 nm), short wavelength IR (1-3 tm), inid wavelength

IR (3-5 pm), long wavelength IR (8-14 pm), and very long wavelength lB (14-20
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pin). The choice of sensor bandwidth should be made according to the properties of

the radiation source and reflection/emission characteristics of the intended targets.

As an example, solar radiation, which is well approximated by a 58001Kt blackbody,

is strongest in the visible band, while thermal emission from terrestrial objects at

285±30tK dominates near 10 jitm wavelengths. Therefore visible cameras work best

with daylight or artificial light sources, while night-vision goggles employ IR sensors.

Other differences between visible and IR sensors include their resolutions and

optical components [102]. Because IR sensors respond to longer waves, the resolving

power of IR optics is much coarser than visible optics. Although similar optical

components (i.e., prisms, lenses and mirrors) are employed in both visible and IR

sensors, the materials used are different. Ordinary glass is transparent in the visible

band but is opaque in IR. On the other hand, germanium is opaque to visible light

but is transparent to IB waves.

Ultraviolet, (UV) or even x-ray sensors are also used in remote sensing, and are

popular choices for sensors mounted on space platforms. Several advantages coine

with their short wavelengths [105], which permits optical lenses to be made smaller

and detector arrays to be constructed with higher densities. Furthermore, internal

noise is not as severe at UV as as IR, and no active cooling equipment is needed.

However, the atmosphere has a greater impact on the scattering and absorption of

UN/ radiation than visible or IR radiation. Limited studies and experiments have

been done in the UN/ band, which prevents UV sensors from seeing more extensive

use.
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B.2.1 Passive and Active Sensors

EO sensor systems can be grouped into passive anrd active types based on the

illumination source. Passive systems employ natural radiation sources such as sunlight

and thermal emission, leading to a simple sensor configuration. A CCD camera with

a shutter control is essentially a passive sensing systen. The disadvantapes of passive

sensors are a lack of control over the source radiance and colnJplicated radiation paths.

As an example, when a visible camera is used to scan the reflected solar radiation

from a minefield during the day, the magnitude and direction of sunlight varies with

time and weather conditions (i.e. the presence of clouds and other aerosols) during

the measurement. As a result, calibration is needed to process images collected at

different times and locales. Furthermore, it is challenging to construct a signature

model for passive sensors, because the sensor output is a summation of irracliance

from various sources and different transmission mechanisms. A detailed discussion of

the radiation sources observed by passive sensors is given in Section .2-

Active sensors typically rely on target backscattering. which involves the reflection

characteristic of the target, surfaces. In mine detection, an active sensor could emplov

a laser source that generates a beam of narrow-band radiation. Although this type

of sensor requires a separate source, it has some desirable properties not available to

passive sensors. Specifically, the scattering geometry is simplified because the source

and the receiver are co-located. Hence, only backscattering from the target needs to

be considered, while the complete BRDF must be known to model passive sensors.

In addition, smooth (man-made) and rough (natural) objects can be differentiated

via the de-polarization that occurs preferentially for rough objects illumirnatedl by
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polarized sources. Also, the dependence on environmental conditions is reduced sin.'e

the sensor carries it own source.

B.2.2 Single- and Multi-Spectral Sensors

A single-channel sensor reports the integrated spectral irradiance received within

the passband of the sensor, while a multi-channel sensor records data in parallel in sev-

eral sub-bands. Multi-spectral sensors are desirable when the reflection and emission

properties of the target and clutter are strongly wavelength dependent. More target

features such as the sub-band correlation can be extracted by using multi-spectral

sensors. This extra information is often helpful in detection and classification, since

one can develop processing algorithms to exploit. multiple channels. Sensors used in

space exploration usually contain several channels to utilize every bit. of information.

Multispectral sensors are made either by combining individual spectral sensors

from different bands or by placing several filters in front of the same EO sensor.

The first approach involves integrating different systemns and may require registration

of images from different sensors while the latter approach needs only a few extra

components. The benefit of the first method, however, is the parallel acquisition of

data.

B.2.3 Polarimetric Sensors

Polarinetric sensors are another method of maximizing the amount of informa-

tion in each pixel. Polariinetric sensors preserve the polarization information in tHie

received signal for later processing.

In surface-laid mine detection, polarimetric sensors provide a means to improve

target discrimination, since man-made objects (i.e. smoother surfaces) depolarize
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less than natural clutter (i.e. rougher surfaces). A model for the polarilnetric signa-

tures of potential targets and clutter can help identify the polarinetric parameters

that are critical to target classification, therebi reducing the numler of necessary

measurements.
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APPENDIX C

DERIVATION OF THE RX ALGORITHM

Here we review the derivation of the RX algorithm, which is a GLRT approach.

The hypotheses of the mine and clutter are modeled I)

Ho y=N (C.l)
H,: y=N+SB

in which B arid the covariance of N are unknown.

The detection problem defined by Equation C.1 can be treated with the generalized

likelihood ratio test. An application of this well known techniques yields the [ollowving

likelihood ratio

LG(y) = p(ylB0, M, !-I) (C.2)
p(y B0 . Mo. H-0)

where B and M are the ML estimates for the target amplitude and covariance re-

spectively.

The clutter probability density function (PDF) conditioned on B and M is given

by

1
p(ylB•,M ) 2r-~'/21M~l/2

- exp{f Tr[Ml-'(y- E[y]) T (y- E[y])]} (C.3)
2
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Using the values for E[y] defined above yields:

pO(y MO) 1

exp{ Tr[Mo yT yjI (C.4)
2

Sexp{ 1Tr[M; t (y - SB)j(y - SB)]} (C.5)
2

The maximum likelihood estimate B is readily derived. Because the conditional pd1

in Equation (C.5) is continuous and nonsingular, it is sufficient to consider

0 log(p,(yIB, Mj)) 1M___B_-__2_l__y_ SB)T. (-S) (C.G)
oB 2

The maximum value is found by setting the right hand side to zero. Since M, is

positive definite, the only solution occurs when

y - _TSTS = 0 (C. 7)

Hence, the maximum likelihood estimate of B for H1 is

Br = yTs(sTs)-I (C. 8)

The corresponding estimate for covariance matrix M1 is found by using Lemma 3.2.2

of [106]. We find

SI N(y - SB')'T(y - sB_ ) (C.9)

Similarly, the estimate for covariance matrix MV0 is

MO = y y (C1 0)

Substituting Equations (C.8), (C.9), and (C.10) into Equations (CA) and (C.5) yields

B,MA, p '(yjBM 27rN,/2I [ expt IN1(C 1)

max po(yIM) - eX ")
MC Ao 2 7rNIVJ/2 1\'Io N/,2 2

244



and the likelihood ratio test becomes

10(Y= v/2 { T, then H, (C. 13)
MIy)- IN12 < r then Ho

Taking the log of A(y) produces an equivalent LRT A'

A()=1M-O~ J> T', then H, C 4
_IM I < T', then Ho

For a target with uniform amplitude, which has S as a vector, the estimate BT

can be written as
srs (C.1.5)

since STS is a scaler. Reed and Yu [14] wvent on by substituting B in Equation (C.8)

to the expression for M1 in Equation (C.9).

1 yTS yTS

1 (Y7_Y _ (yTS)T(yTS)).

=N (yTy ST-S

which leads to

A'(y) =yTyl > T', then HI
yTy -(yS)T(YS)I< T', then Ho (C.17)

STS

Factoring the scalar lyT y from both the nominator and denrominator leads to

yTy

A'(y ) =- Y I
[ry(y 1 S T  I(YT S)

1
1 (yTS)T(yTy) I(y T S) (C.18)

STS

where the last expression is done with a determinant identity given in [74].

Finally, an equivalent test can be derived by recognizing that 1/(1 - :r) is a non-

linear but one-to-one transform. Hence, a simpler likelihood ratio test is

A" (y) (YT S) T(YY)-I (yT S) >< ", thent H, (C.19)
Si's < T", then HI0
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Multiplying Equation (C.19) bv the constant (1/S"S) and using the (stiinate(l am-

plitude B in Equation (C.8), the likelihood ratio test, can be writt en in thie equivalent

formi

A.'(y) = B-(y'y) ,. BT -> T', then H, (C.20)
< T"', then H0

For a multi-channel image, the dimensions of target amplitude estimate B are .1 x 1.,

and those of the reference S are N x J. This results in a scalar value for V"'. The

above likelihood ratio test can be interpreted as the ratio of the integrat.ed target

energy and the integrated input energy. The latter may include clutter and targets.

Since ST S is a constant, Equation (C.19) shows that, the performance of -X is largevly

determined by the simple projection (y"S). As a result, R.X tends to be relatively

insensitive to fine structure in the shape S, and it is sometimes referred to as a "'llob"

or "anomaly" detector.
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