
An Application-Specific Compiler for High-Speed Binary Image Morphology
�

Scott Hemmert, Brad Hutchings and Anshul Malvi
Brigham Young University�

hemmert, hutch, amalvi � @ee.byu.edu

Abstract

This paper discusses a two-level compilation scheme
used for generating high-speed binary image morphology
pipelines from a textual description of the algorithm. The
first-level compiler generates a generic morphology machine
which is customized for the specified set of instructions by the
second-level compiler. Because the generic machine is re-
used, we are able to avoid long synthesis times and achieve
compile times similar to software compile times, while still
achieving a 10X speed-up over the software implementation.

1 Introduction

The Focus of Attention (FOA) algorithms are used by San-
dia National Laboratories as a preprocessing stage to their
Automatic Target Recognition engine. FOA is used to pro-
cess synthetic aperture radar (SAR) images with the goal of
finding regions in the image which contain likely targets. The
exact FOA algorithm used is dependent on the type and size
of targets as well as the radar system generating the images.
Weather conditions can also cause changes to be made to
the algorithm. The goal of FOA is to reduce the size of the
data set for the more computationally complex stages of ATR
which identify the existence and type of targets.

Because of its demanding computational requirements,
FOA was originally implemented on a specialized morphol-
ogy computer, called the CYTO computer [1], manufac-
tured by the Environmental Research Institute of Michigan
(ERIM). The CYTO computer was constructed using cus-
tom ASICs to create a semi-programmable, image-processing
pipeline computer. The CYTO computer could be pro-
grammed to perform a wide variety of image morphology op-
erations using an arcane language known as C4PL (CYTO
Portable Parallel Picture Processing Language)[2]. An FOA
script then is implemented as a list of C4PL operators per-
formed in sequence. Due to improvements in IC fabrication,
the CYTO computer quickly became obsolete and has been

�
Effort sponsored by the Defense Advanced Research Projects Agency

(DARPA) and Rome Laboratory, Air Force Materiel Command, USAF, un-
der agreement number F30602-97-1-0222. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon.

replaced by a software implementation. However, C4PL out-
lived the CYTO computer and is still in use as the program-
ming (or scripting) language used to describe FOA applica-
tions.

The current software implementation by Sandia National
Laboratories is a collection of optimized C functions which
emulate the operation of a subset of C4PL instructions. This
software reads the FOA script and chains together the opera-
tions specified in the script. Due to advances in microproces-
sors, this sequential software approach is many times faster
than the original CYTO computer.

Even though the software version of FOA was a vast im-
provement over the CYTO computer, it still did not reach the
performance goals set forth by Sandia, and accelerating FOA
with custom ASICs, as was done with the CYTO computer,
is not an option because the final solution must use COTS
(Commercial off-the-shelf) hardware. In addition to perfor-
mance requirements, Sandia also put some requirements on
programmability and programmer usability:

� Assume programmers have no hardware experience. Im-
age Processing specialists write the algorithm.� Actual FOA algorithms used are classified. The algo-
rithm must be specified and mapped to hardware without
involving unclassified personnel.� The algorithms are to be specified in the C4PL program-
ming language.� Because operating conditions may dictate an algorithm
change, in-field modifications must be possible. The
maximum compile time that can be tolerated is half a
work day (4 hours).� Final solution must be embeddable in an approved
ruggedized form factor.

To meet these requirements, we mapped the design to Xil-
inx XC4000 family FPGAs and utilized a two-level compi-
lation approach. The first stage of the compiler generates a
structural design specific to a particular platform, which pro-
vides the generic hardware structure sufficiently large to per-
form the desired operations. The second phase customizes the
generic pipeline to perform the specified C4PL operations.
This paper discusses the evolutionary steps along the path
leading to the final approach and implementation and com-
pares the various approaches both for circuit size and com-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
An Application-Specific Compiler for High-Speed Binary Image
Morphology

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Brigham Young University,Computer Science Department,33361
Talmage Building,Provo,UT,84602

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

pilation speed. We will also compare our final hardware ap-
proach with Sandia’s software implementation.

2 Background

The C4PL instructions have their roots in binary image
morphology. In this section, we will discuss some of the ba-
sics of binary image morphology as well as the general struc-
ture of the relevant C4PL instructions.

2.1 Binary Morphology

Binary morphology 1 consists of a set of operations used
to study and change geometric properties in binary images. It
can be used to find, enhance and/or remove certain geometric
features in an image. For example, it can be used to look for
corners, close small gaps in an object, etc. The most impor-
tant operations for our purposes are dilation, erosion and the
hit-and-miss transform. All of these operations are based on
operations on two or more sets. One of these sets is the image
on which we are operating and the members of the set repre-
sent the on pixels in the image; the other sets are referred to as
structuring elements. In general, a structuring element can be
any size and have its origin at any location within its bounds.
A possible 3x3 structuring element is shown in Figure 1.

Figure 1: Possible structuring element used in binary morphology.
The X indicates the origin of the image, and black squares indicate
on pixels.

Elements in the sets are represented by ordered pairs in a
two dimensional Euclidean space (���). An ordered pair in-
dicates the position relative to the origin of the image. For
example, the structuring element in Figure 1 would be repre-
sented by the set � (-1,0),(-1,1),(0,1),(1,1) 	 .

The following sections will briefly describe the purpose
and operation of the three morphological operations men-
tioned above. For a more detailed discussion of binary mor-
phology, please refer to [3] or [4].

2.1.1 Dilation

Dilation, denoted by the operator
 , combines the image set
with the structuring element set using Minkowski addition 2,

1Morphology is derived from morphmeaning shape and -ologymean-
ing the study of. Thus, morphology means the study of shape.

2Minkowski addition is an element wise addition. For example ����������������������������� �!�"�������#�$��%�� .

pairwise on all elements of one set with all elements of the
other. This is described mathematically as:

&
('*)+��,.-/� �10 ,2)43157698:3;- &
and 62-/'�	

As an example, consider the following sets:

&) �=<?>@8BADC�8�<E>D8BF@C�8G<�FH8BFDC�8�<FH8G>�C�	
') �=<?IJ>@8BKDC�8�<LK�8:KDC�8G<?>@8:K=CM	&
(') �=<KN8BADC�8�<LK�8BF@C�8G<?>@8BFDC�8�<E>@8G>�C�8G<E>D8:A=C�8

<FN8BFDC�O�<FH8G>�C�8BFH8BADC�8G<LA�8BFDC�8G<AN8G>�CM	
This is illustrated graphically in Figure 2(a).
Dilation is generally used to fill small gaps in images, or

to grow objects. It can also be used in conjunction with other
operations to remove noise, etc.

2.1.2 Erosion

Erosion, denoted by P , is the dual of dilation. It combines
the image and structuring element sets using a subtraction-
like operation. The operation is described mathematically as:

& P7'*)Q�$,R-/� �10 ,S5T6.-VU for every 6.-V';	
In practice, this means that the structuring element is com-

pared against every pixel in the image. If all on pixels in the
structuring element are also on in the image, then the pixel
under the origin of the structuring element is on in the output
image. An example of erosion is given in Figure 2(b).

2.1.3 Hit-and-Miss

The hit-and-miss transform is used to select pixels that have
particular geometric properties. The hit-and-miss transform
can be computed many different ways. The most intuitive
way to think of this transform is to look at it as a specialized
template match. Along with checking whether some points
belong to the image set, we can also check to make sure that
other points do not belong to that set. The template is spec-
ified by two sets, 'JW and ' � . The 'JW set specifies positions
which must match on pixels and the ' � set specifies posi-
tions which must match off pixels. The output set contains
all those points which match both the 'XW template with on
pixels and the ' � template with off pixels. We describe this
mathematically as follows:

&7Y <L' W 8B' � CS)Q��Z 0 ' W.[&
and ' � [&.\ 	

Since the elements of the 'XW and ' � sets are required to
be mutually exclusive, it is possible to specify the set of tem-
plates as a single template where each location has one of

2

A BA B

(a) Dilation

A B A B

(b) Erosion

A BA B

(c) Hit and Miss

Figure 2: Binary Morphology Examples. Dark squares denote on pixels. The white square in the hit-and-miss template denotes a pixel which
must match an off pixel.

three possible values: on, off and don’t care. Pixels in the ' W
set are marked as on, and pixels in the ' � set are marked as
off. All others are don’t care. We call this combined template
' .

An example of a hit-and-miss transform is given in Fig-
ure 2(c). The template in this example picks out pixels along
upper edges.

2.2 C4PL Instructions

As with morphological operations, C4PL instructions aim
to modify or enhance certain geometric properties. The C4PL
instructions are both a generalization and a narrowing of bi-
nary image morphology. They are more narrow than binary
morphology in that all C4PL instructions use only 3x3 tem-
plates with the origin in the center. This limits the size of
patterns that can be matched, but still leaves enough flexibil-
ity for the problem at hand.

However, C4PL instructions are much more general in that
an image may be separated into more than two sets. In binary
morphology, an image is divided into two sets, an on set and
an off set; CYTO allows the image to be split into multiple
sets. This means that each pixel in an image is assigned to
one of many possible sets. In this context, we refer to these
different sets as planes or states. For example, referring to
plane 3 would refer to all pixels in the image which have been
assigned to the set labeled 3.

There are two main ways to represent the assignment of
pixels to the different planes. The first and most straightfor-
ward approach, called pixel-level encoding, is to use a sin-
gle multi-bit value for each pixel. The value representing the
pixel would be set to the plane number to which that pixel has
been assigned. This method was used by the ERIM CYTO
Computer, and has the advantage of being compact, but the
disadvantage of requiring the instructions to decode the pixel
to determine if that pixel is or is not in a particular set.

The second approach, referred to as plane-level encoding,
is used by the Sandia software implementation and uses mul-
tiple mutually exclusive single-bit (binary) images. Each bi-
nary image represents one of the possible sets to which the
pixels can be assigned, and each pixel in the image has a cor-
responding pixel in each of these binary images. While this
approach takes more memory to represent a given image, it

is more computationally efficient for software, as each plane
can be packed into the native word size of the microproces-
sor, thus allowing the microprocessor to operate on multiple
pixels at a time.

The FOA algorithms use only a small subset of the avail-
able C4PL instructions. The operations used in FOA scripts
as well as a brief description of their functions are as follows:

� span: Dilation operation which uses a 3x3 structuring
element filled with 1’s.� spandisk: Dilation operation which alternates using an
8-way connected neighborhood and a 4-way connected
neighborhood as its structuring element.� tranb: Dilation or erosion using user specified structur-
ing elements.� skelrec8: Skeletonization operation.� cover: Moves pixels from one set into another.� exch: Exchanges two sets.

The above instructions can be grouped into two different
types of operations: neighborhood and scalar. Neighborhood
operations look at a pixel as well as its eight neighbors and
act dependent on some template criteria in the neighborhood
being met. Scalar operations act on a single pixel at a time
and are unconditional.

Since a general knowledge of the structure of these oper-
ations is necessary to understand the motivation for our im-
plementation, we will show the general form of each type of
instruction and give a detailed description of one instruction
of each type.

2.2.1 Neighborhood Operations

We will first look at a simple example of a neighborhood op-
eration, then we will look at the general form of this class of
instructions. The]:^_3=` instruction is a conditional dilation
and has the following form:

]:^_3=`baQcedgfihkj�l
The span operation simply passes through a pixel un-

changed unless the following conditions are met: First, the
pixel belongs to plane c , and second, at least one of the

3

pixel’s neighbors is in plane a . If these conditions are met,
then the pixel is moved to plane d . This operation is repeatedm nEo�p

times.
All neighborhood operations are similar to the]:^�3D` op-

eration, in that they simply pass a pixel through unchanged
unless a certain set of criteria is met. This criteria is very
similar to that used to determine if a pixel is turned on in the
output of a hit-and-miss transform. However, where the hit-
and-miss transform uses a single template, a neighborhood
operation can use any number of templates. The neighbor-
hood is said to match if any of the templates matches. Not
only must one of the templates match, but the pixel of inter-
est must also be in the specified plane. Thus, a neighborhood
instruction only effects pixels in a single plane.

2.2.2 Scalar operations

The scalar operations in the portion of C4PL we implement
are very simple operations. These operations depend only
upon the value of a single pixel and can typically be im-
plemented with a single gate. For example, the instruction
,�d$q o�p�m d would move any pixel in plane

m
into plane d . This

is essentially the d p of these two planes.

FOA
Compiler

Custom FOA
Machine

Platform
Information

FOA Script

C4PL Library

Figure 3: General approach for the FOA compiler.

3 General Approach

Our general approach to the problem was to create a com-
piler that would generate a highly parallel, deeply pipelined
circuit which implements a specified FOA script. This ap-
proach is described graphically in Figure 3. The compiler
takes as input a C4PL instruction library, information on the
platform to be compiled to and the FOA script of interest.
The road to our final solution led through three evolutionary
steps. The compilers progress from generating highly opti-
mized circuits with slow compile times to creating a more
generic circuit with extremely fast compile times. Each of
these steps uses a slightly different form of the three inputs.

The circuits generated by the compiler are capable of ac-
cepting and processing a new pixel every clock cycle. This
is done by streaming the image into the circuit in raster or-
der starting in the upper left hand corner of the image and
proceeding line by line. Each of the circuits has the same

general structure. Each one uses delay lines to generate a 3x3
neighborhood. The contents of this neighborhood are passed
to some calculation logic which actually computes the result
of the instruction. This structure is show in Figure 4.

Calculation
Logic

Delay Lines
Input

Stream

Output
Stream

Neighborhood

Figure 4: General structure of the FOA circuits.

A consequence of using delay lines to generate the neigh-
borhoods is the need to “pad” the image. Padding the image
consists of marking the end of each line so that the hardware
knows where one line ends and a new line begins.

The following section will discuss the two types of circuits
we used in our compiler implementations. The next section
will then discuss the three FOA compilers in greater detail.

4 FOA Circuits

We took two separate approaches to designing FOA cir-
cuits. The first approach was to create an optimized circuit
for each C4PL instruction; the second approach uses a more
generic circuit which has all the circuitry needed for all in-
structions and is easily specialized for specific instructions.
The following sections will discuss the general structure of
these two approaches, as well as approximate design times
for each. Specific information about a circuit implementation
will be discussed with the compiler(s) which use the circuit.

4.1 Instruction Specific Circuits

The instruction specific circuits consist of a different cir-
cuit description for each C4PL instruction used in writing
FOA scripts, both neighborhood and scalar operations. The
scalar operations can be implemented in a single gate or less.
The neighborhood operations are all similar and have the gen-
eral structure shown in Figure 4. The main difference in each
instruction is the logic found in the box labeled calculation
logic (see Figure 4). Each instruction uses the minimum
amount of logic to implement the desired function. In this
way, a given FOA script can be implemented in the smallest
circuit area possible.

The library of instruction specific circuits was created, op-
timized and verified by two undergraduate students in four

4

n

n

Center
Pixel

n

8Delay Lines

Plane
Decoders

Template
Matcher

Final
Calc

Neighborhood

Figure 5: Block diagram of generic C4PL instruction (SuperCell).
Bold lines represent multi-bit signals and regular lines represent sin-
gle bit signals. Elements drawn with dashed lines are the reconfig-
urable elements which are modified to create specific instructions.

months time. Much of this time is due to the general com-
plexity of writing parameterized VHDL, as well as gaining
an understanding of the algorithm.

4.2 Generic C4PL Circuit

The main feature of this type of circuit is that all instruc-
tions are represented by a single circuit with configurable ele-
ments which are used to implement specific instructions. Us-
ing a single generic circuit, instead of many custom circuits,
allowed a single graduate student to design and optimize the
first implementation of the circuit in only two weeks time,
which is one-eighth of the time needed to generate all the in-
struction specific circuits.

In order to create a Generic C4PL Instruction (which we
call a Supercell), it was necessary to identify the common
features in all the instructions used to write FOA scripts. As
was discussed in Section 2.2.1, all neighborhood instructions
must do the following:

1. generate an 8-way connected neighborhood,

2. retrieve the value of the center pixel of the neighbor-
hood,

3. match any number of templates based on the generated
neighborhood, and

4. calculate the output of the instruction based on the out-
put of the template matchers and the value of the center
pixel.

Of these four functions, the first two are identical for ev-
ery neighborhood instruction. In order to change the instruc-
tion, only the structure of the last two must change. Since
this circuit uses pixel-level encoding, decoders are needed at

the input of the neighborhood generation circuitry in order to
pick out pixels from the proper plane. The following sections
will describe the six main features of a Supercell as seen in
Figure 5. The circuitry can be split up into two main types:
fixed circuitry and programmable circuitry.

Fixed Circuitry The majority of the circuit is made up of
elements which are identical for all C4PL neighborhood in-
structions, and therefore need not change in order to imple-
ment different instructions. The following are brief descrip-
tions of this circuitry:

� Delay Lines. The delay lines are generated using
RAM16x1s (16x1 synchronous RAM) primitives and a
linear feedback shift-register (LFSR)[5].� Neighborhood. In conjunction with the delay lines,
the neighborhood circuitry builds the 8-way connected
neighborhood for a pixel. The circuit is built from 9 flip-
flops.� Center Pixel. This is simply a register used to delay the
center pixel two extra cycles so that it is synchronized
with the center pixel in the neighborhood generator.

Programmable Circuitry The programmable circuitry is
the heart of this implementation, and allows the generic cir-
cuit to implement any neighborhood operation. The circuit
uses lookup tables to generate all the programmable circuitry.
The generic instruction is made into a specific instruction by
modifying the contents of these tables.

As all the programmable elements are built from lookup
tables, it is interesting to look at the number of bits needed to
implements each unit. This number determines the size of the
lookup table as well the number of bits needed to reprogram
the generic instructions. Table 1 shows the size of the lookup
table required for each element. The following sections will
briefly discuss the purpose of each of the programmable cir-
cuit elements.

� Plane Decoders. The plane decoders convert the multi-
bit pixel to a single bit which indicates whether or not
the pixel was a member of the designated neighborhood
plane.� Template Matcher. The template matcher takes the
eight bits surrounding the center pixel and determines if
they match any of the templates given in the instruction
definition.� Final Calculation. The final calculation unit looks at
the output of the template matcher and the value of the
center pixel and decides what the output should be.

4.2.1 Scalar Folding.

Since the final calculation is implemented as a lookup table,
it is possible to use it to “fold” in any number of scalar op-
erations which follow it. This is easy to see if you consider

5

Lookup Table Size Number of Bits in the Table
Unit Input Bits Output Bits ` = bits per pixel `r)gA `/)gs `/)ut

Template Matcher v > FDtxw F@txw F@t@w FDtxw
Plane Decoder ` > F@y v >Gw A=F
Final Calculation `�54> ` `S<�F@yxz W C s=v >�Fxv ADF@K

Table 1: Details of the input and output width of the lookup tables used to implement the programmable circuitry, as well as the number of
programming bits needed to program each unit of a Generic C4PL instruction. This number corresponds directly to the size and number of
RAMs needed to implement the necessary logic. { represents the number of bits used to represent a pixel.

that any scalar operation can be implemented as an ` input `
output lookup table (where ` is again the number of bits used
to represent a pixel). This allows any plane to be mapped
to any other plane. The new lookup table is simply the cas-
caded result of the original final calculation unit followed by
the lookup tables associated with each scalar operation.

4.2.2 Control Characters

An advantage of using pixel-level encoding is that we are able
to use some of the pixel values as control characters. We need
only two control characters: valid character and edge char-
acter. The valid character is used to tag the beginning and
end of an image. This information is needed by the back-
end circuitry so that it can properly write the processed im-
age to memory. The edge character is used to pad the image
as discussed in Section 3. We use the two highest possible
pixel values for these signals. These values always get passed
through instructions unchanged. Further, plane decoders al-
ways output zero for either of these values. This ensures that
these characters will not effect the processing of the image.

4.2.3 Pixel Size

This implementation allows us to change the number of bits
used to represent a pixel. Choosing the size requires striking
a balance between the number of usable planes and the size
of the circuit. Using more bits to represent a pixel gives the
FOA programmer a larger number of planes to use, but also
greatly increases the size of the circuitry. From discussions
with Sandia, we determined that 3 bits per pixel would pro-
vide enough available planes for the FOA programmer. So,
all of our Supercell implementations use 3 bits per pixel.

5 FOA Compilers

As previously discussed, we went through three steps to
reach our final implementation. The first approach attempted
to make the most efficient use of circuit area and therefore
used custom instruction specific circuits. This first approach
met the desired performance goals, but did not meet the re-
quired compile times, so the next two approaches aimed at
speeding up the compile time. These approaches used the
Supercell circuit described in Section 4.2, and introduced a

two-level compilation scheme which would dramatically re-
duce the in-field compilation time.

The following sections will discuss the three compiler ap-
proaches in greater detail. In addition to providing a descrip-
tion of the compilers, we will also compare the implementa-
tions with respect to the following areas:

1. Average size (in Xilinx XC4000 CLBs) for a neighbor-
hood operation. The neighborhood size is dependent on
the width of the image to be processed. Typically, the
circuit would process a 1024 pixel width image. How-
ever, because of limited resources on the board, our cir-
cuitry was build to handle images with a width of 576
pixels. The image is then broken up and processed sep-
arately.

2. Compiler speed.

We will also compare the throughput of our final approach
with Sandia’s software implementation.

Platform/
Script

Compiler

Library
VHDL C4PL

Platform
Information

Sythesizable
VHDL

VHDL
Synthesis

Tool

Edif
Netlists

Xilinx
Tools

Bistream
Files

FOA Script

FOA Compiler

Figure 6: Structure of Direct Synthesis Compiler.

5.1 Direct Synthesis

Our first compiler generated a new custom machine for
each FOA script using instruction specific circuitry. The
C4PL library for this compiler consisted of synthesizable, pa-
rameterized VHDL models for each C4PL instruction of in-
terest. The library also includes the circuits which read image
data from memory and write the processed image to memory.
The platform information was built directly into the compiler
and targeted the Annapolis Microsystems Wildforce board.

6

This approach can be seen in Figure 6. The output of the
compiler was bitstreams which contained designs implement-
ing the input FOA script. To properly create these bitstreams,
the compiler was responsible for completing the following:

� Instruction sequencing. The main responsibility of the
compiler was to instance library elements in the order
specified in the FOA script.� Chip-level partitioning. Typical FOA scripts were too
large to fit in a single FPGA, so the compiler had to de-
termine how many instructions would fit in an FPGA,
and do chip-level partitioning of the design. The com-
piler would output multiple bitstreams, each one corre-
sponding to a single FPGA.� Unused plane synchronization. Since this implemen-
tation used plane-level encoding and planes used in an
instruction incur a latency equal to the width of the im-
age being processed plus 2, planes not used in instruc-
tions must be delayed this same number of cycles so that
the planes remain in synchronization.

Because the number of planes used is dependent on the
FOA script, the actual size of the circuit is also script depen-
dent. Typical FOA scripts generated average neighborhood
operation sizes of 81 CLBs. Because of the long tool flow,
the design did not meet the constraints given us for fast com-
pile times; average compile times were on the order of 10
hours for a typical script; 99+% of that time was spent in the
synthesis tool and Xilinx tools.

Platform
Compiler

Xilinx
Tools

Xilinx
Tools

JHDL C4PL
Library

Platform
Information

Bistream
FilesScript

Compiler

Modified
.ngd Files

Edif
Netlists

.ngd
Files

FOA Script

FOA Compiler

First−level Compiler

Second−level Compiler

Figure 7: Structure of the Generic FOA Machine compiler.

5.2 Generic FOA Machine

The second approach concentrated on reducing the com-
pile time. At this point, we introduced a two-level compila-
tion scheme as shown in Figure 7. The first stage generates
a platform specific, script generic FOA circuit. The generic
FOA circuit is made up of a linear array of Supercells as dis-
cussed in Section 4.2. The second stage uses the input FOA

script to customize the generic machine, by modifying the
contents of the lookup tables. The following sections will de-
scribe these two compilation stages in greater detail.

5.2.1 First-level Compiler

The first-level compiler used as input a Viewlogic- and
VHDL-based module library and targeted the Annapolis Mi-
crosystems Wildforce board. The module library included a
Supercell module designed in Viewlogic, as well as circuitry
to convert image data to/from the image streams needed by
the circuit, which was written in VHDL. The Supercells gen-
erated by this compiler use simple ROM cells to implement
the lookup tables used for reconfiguration.

The responsibility of the first-level compiler is to generate
a generic FOA machine built from Supercells which utilizes
all the available space on the Wildforce board, given the size
of parts available on the board. The output of this stage is
placed and routed .ngd3 files. To generate the .ngd file,
the Platform Compiler (see Figure 7) creates an edif netlist for
each FPGA on the Wildforce board. These netlists are then
passed through the Xilinx tools which generate the .ngd file.

This compilation stage takes about 10 hours to complete.
However, this stage need only be done once for a given Wild-
force board. The .ngd files created by this stage are stored
and used as input to the next compilation stage.

5.2.2 Second-level Compiler

The inputs to the second-level compiler are the .ngd files
generated by the first level compiler and the FOA script to
be implemented. In order to customize the generic machine
created in the first stage, the second-level compiler must com-
plete the following:

� Determine Programming Bits. For each neighborhood
instruction in the FOA script, the compiler determines
the contents of the lookup tables for the plane decoders,
template matcher and final calculation unit, which will
implement that instruction.� Scalar Folding. Each scalar operation is folded into the
final calculation unit of the neighborhood operation pre-
ceding it. If there are multiple consecutive scalar opera-
tions, they are folded in one at a time.� Modify .ngd Files. The script compiler (as seen in Fig-
ure 7) parses the .ngd files looking for the proper ROM
cells to modify. As it finds each ROM, it modifies its
contents to reflect the operations specified in the FOA
script.� Generate Bitstreams. After the script compiler modi-
fied the .ngd files, they are passed through the remain-
ing Xilinx tools to generate bitstreams.

3A .ngd file is a Xilinx proprietary file which represents mapped, placed
and/or routed designs targeting Xilinx FPGAs.

7

This compilation stage takes, on average, 30 minutes to
complete, about 95% of this time is spent in the Xilinx tools.
Although this method was much faster than our previous ap-
proach, it has one large disadvantage: the .ngd file is a pro-
prietary Xilinx file, and we have no guarantee that the for-
mat will not be changed in the future. If this file format was
changed, the second-level compiler may no longer work cor-
rectly.

5.2.3 Compiler Speed and Circuit Size

As only the second stage was needed to customize a circuit in
the field, this approach greatly decreased our “in-field” com-
pile time; however, to accomplish this, we had to sacrifice
some circuit size. Average compile time for this approach
was about 30 minutes, a 20 times decrease over our previ-
ous approach. However, the size of a neighborhood operation
grew to 88 CLBs, a vNO w=| increase over the direct synthesis
approach. Although the compile times were well within the
maximum dictated by Sandia, the uncertainty of future com-
patibility with the .ngd file format made us look at other
options.

Platform
Compiler

Xilinx
Tools

JHDL C4PL
Library

Platform
Information

Edif
Netlists

Bistream
Files

Script
Compiler

Data
Format

Program
Data

Formatted
Program

Data

FOA Compiler

First−level Compiler

Second−level Compiler

FOA Script

Figure 8: Structure of the Generic FOA Machine with Runtime Re-
configuration compiler.

5.3 Generic FOA Machine with Runtime Reconfig-
uration

Our final approach is similar to that discussed in Sec-
tion 5.2. The main difference is that the ROMs containing the
computation logic of the Supercell were converted to RAM
cells so that the contents could be changed at runtime. This
simple change allowed us to move from device-level config-
uration to user-level configuration. This meant that we could
use fine-grain logic reconfiguration to change the function of
our circuit at runtime.

The first-level compiler creates bitstreams which imple-
ment the generic FOA machine. The second-level compiler
generates the programming bits needed to program this ma-
chine for a specific script. This compiler structure can be seen

in Figure 8. The remainder of this section will discuss each
part of this two-level compilation scheme in greater detail.

5.3.1 First-level Compiler

The first-level compiler is responsible for creating the generic
framework for a specific hardware platform. The compiler
originally targeted the Wildforce board, as did the other two
compilers, but was later abstracted so that it might support
other boards as well, although we did not retarget the com-
piler to any other XC4000 based configurable computing
boards. The C4PL library for this compiler was written in
JHDL[6, 7] and included the Supercell module generator, as
well as the circuits used to convert image data to/from a raster
stream readable by the FOA circuit.

The Supercell used by this compiler was slightly different
than that used in the previous compiler. There are two major
differences:

1. Runtime Programmable Lookup Tables. This version
of Supercell used RAM cells instrumented such that they
could operate in two modes: programming mode and
lookup table mode. This was accomplished by inserting
circuitry as shown in Figure 9.

2. Cell ID. Each Supercell is assigned a unique ID so that
it is possible for the hardware to determine which pro-
gramming bits belong in which Supercell. Programming
bits will be ignored by all Supercells except the one
which matches the specified ID. For more information,
see Section 5.3.2.

A

WE

DOProgram Addr

Data

Prog Enable

Lookup Result

DIProgram Data

RAM

Figure 9: RAM cell instrumented to be a runtime programmable
look-up table. Program mode is entered by asserting the Prog En-
able signal. This will assert the write enable signal of the RAM as
well as force the mux to pass the Program Addr signal to the address
pins of the RAM.

The output of the first-level compiler is a set of bitstreams
which implement a generic FOA machine capable of reading
programming bits from memory and using this data to repro-
gramming itself for a specific FOA script. This process can
take several hours to complete, but again, it need only be done
once for each platform.

5.3.2 Second-Level Compiler

The second-level compiler is responsible for computing the
programming bits needed to represent a given FOA script. It

8

is also responsible for generating any control signals needed
for programming. The second level compiler is accomplished
in two stages. The first stage is platform independent and is
responsible for the following:

� Determine Programming Bits. The compiler parses
the FOA script and determines the contents of the lookup
tables in each Supercell.� Scalar Folding. The compiler folds scalar operations
into the final calculation unit of the neighborhood oper-
ation preceding it.� Generate Intermediate Format. The first stage outputs
an intermediate format, either as a file or a data structure,
which simply contains the contents of the lookup tables
that would implement the given FOA script.

The second stage takes the intermediate format produced
by the first stage and information on the target platform
and then formats the programming data, adding extra con-
trol/addressing data as necessary. This output is loaded into
a memory on the board and the circuit uses it to reprogram
itself. For the Wildforce board, we used a programming word
as shown in Figure 10. Each control word specifies which cell
(by ID number), element (plane decoder, template matcher, or
final calculation) and address within the lookup table the data
is intended for.

Both stages of the second-level compiler are completed in
1-2 seconds, depending on the size of the script.

Programming
Data

Ele−
ment Addr

16438

Cell ID

Figure 10: Programming format for the Wildforce implementation
of FOA. The numbers represent the number of bits in each field.

5.3.3 Circuit Size and Compiler Speed

Because of the extra circuitry needed for the runtime repro-
gramming of the instruction pipeline, the size of a neighbor-
hood operation grew 19.3% over the size for the last approach
to 105 CLBs. However, by sacrificing some circuit area we
were able to reach compile times of 1-2 seconds. This is a
900 times improvement over the previous two-level compila-
tion scheme.

This improvement in compiler speed was made possible
by the move away from device-level configuration to user-
level configuration. This change was important because of
the proprietary format of the .ngd file and other intermediate
files. Because we cannot easily generate or modify a design
at the bitstream level, device-level configuration requires us

to use vendor tools to generate the bitstreams. Even if it were
possible to modify the bitstream directly, we would need to
map all the logical elements in the circuit to physical locations
in the bitstream.

For our purposes, user-level configuration also gives us an-
other advantage: With user-level configuration, the vendor
tools are not needed to reprogram the machine for a specific
script, and it may not be easy to make the vendor tools read-
ily available once the platform is deployed. User-level con-
figuration in this manner is only feasible for the application,
because we did not need to change any of the routing in the
circuit. Since the routing programming bits are not user ac-
cessible at runtime, any routing changes would need to be im-
plemented with tri-state or muxes, which would require extra
circuitry.

Moving to user-level configuration also allowed us to re-
duce the size of the data used to represent the essential data
of an FOA script. In the first approach, the script was repre-
sented by the complete set of bitstreams used to implement
the script. This means that we required 7,169,020 bits to
represent a script 4. The subsequent approaches represented
the pertinent information as the contents of the lookup tables.
Each Supercell can be reprogrammed using 312 bits. An av-
erage script uses about 125 Supercells; this would correspond
to 39,000 bits. This is only 0.5% of the size needed to repre-
sent a script with the first approach.

5.3.4 Hardware vs Software Implementation

All of our approaches ran at about the same clock frequency.
The last approach ran slightly slower because of the muxes
needed on the input to all the programmable cells. The Xilinx
tools reported that our final implementation would operate at
50 MHz. However, the memories on the Wildforce board we
were using were limited to operating at 46 MHz, so the circuit
was never tested faster than this.

Because the circuit is pipelined and capable of process-
ing a new pixel every clock cycle, the 46 MHz circuit would
have a peak throughput of 46 MegaPixel per second. Aver-
age throughput, taking into account the control overhead is
about 44 MegaPixel per second. This throughput is the same
no matter what FOA script is used. The software written by
Sandia does not exhibit this same behavior. Because of the
inherently sequential nature of the software implementation,
the throughput is script dependent. On average, we measured
the software implementation to get 4.3 MegaPixel per second
on typical length scripts using a G4 PowerPC operating at 450
MHz. We chose to compare to this processor, as it is easily
embeddable. For comparison, Table 2 includes numbers for
other common microprocessors. This means that the hard-
ware implementation has a 10X performance increase over
the software implementation, for average size scripts.

4An XC4062 bitstream contains 1,433,804 bits[8], and our designs used
5 such FPGAs

9

Approach Neighborhood Size (In CLBs) Size Increase Compile Time Compiler Speedup

Direct Synthesis vN> I >�K hours I
Generic Machine vDv v�O w�| ADK minutes F@KxU
Generic Machine with runtime config. >�KDt F@}NO w=| F seconds >GvDK@KDKxU
Table 3: Comparison of approaches for FOA mapping. Size increase and compiler speedup are given relative to the first implementation.

Throughput Hardware
Processor (MegaPixel) Speedup

G4 PPC @450 MHz 4.3 10X
Pentium III @400 MHz 3.3 13X
Pentium III @750 MHz 4.2 10X

Table 2: Throughput of the software implementation of FOA on dif-
ferent processors. Of these processors, only the G4 is easily embed-
dable.

6 Summary and Conclusions

This paper discussed three evolutionary approaches to
mapping FOA circuits to FPGAs. These approaches tar-
geted increased throughput as well as reasonable compile
times. All of the circuits we designed were capable of about
46 MegaPixel throughput. This is a 10 times increase over
the fastest software implementation on average sized scripts.
Moving from highly optimized designs to more general de-
signs, as well as the introduction of runtime reprogrammable
circuit elements allowed us to move from device-level config-
uration to user-level configuration. This in turn allowed us to
bypass all of the back-end vendor tools, increasing compile
times by a factor of 18000, while only sacrificing a 29.6%
increase in circuit area. Table 3 shows the changes in cir-
cuit size and compiler speed for each of the three approaches.
Note that these percentage increases would be much smaller
for circuits designed for images with a 1024 pixel width, only
17.5%.

The two level compilation scheme we adopted allows us to
generate a generic FOA machine which can be reprogrammed
in the manner of seconds. This allowed us to generate a cir-
cuit with 10 times greater throughput than the software im-
plementation, while still allowing the FOA programmer the
same flexibility in quickly changing the script being used.

The two-level compilation scheme achieves both high per-
formance and fast compilation times because it reuses a
generic hardware structure that can be customized to imple-
ment a specific FOA script. High performance is achieved
because the generic FOA image-processing pipeline has been
carefully designed to meet the needs of basic FOA operations.
Fast compilation times are achieved because only a very small
amount of hardware (RAM content) is modified, based on
the operations that comprise the FOA script. This is some-
what analogous to the situation that arises when programming
a conventional microprocessor. Here, compilation times are
quick (at least relative to general hardware synthesis) because
the core hardware (the microprocessor) gets reused in every

program generated by the compiler. Rather than synthesiz-
ing new hardware operations each time the compiler is run, a
’C compiler (for example) simply implements a given com-
putation by selecting from a set of previously-implemented
operations (microprocessor instructions).

Contrast this with the typical configurable-computing ap-
plication where the entire hardware organization is usually
generated from scratch each time the compiler runs, usu-
ally involving some form of hardware synthesis. Thus, fast
compilation will always be a challenge for configurable com-
puting because it requires a basic tradeoff between design
reuse (to reduce compile time) and hardware customization
(to achieve high performance). This paper presented a ba-
sic two-level compiler strategy that worked because any of
the operations found in an FOA script could be implemented
with generic computational modules that require only a small
amount of customization. Future applications of configurable
computing that require fast compilation times will likely need
to develop multi-level compilation schemes similar to that de-
scribed in this paper in order to achieve reasonable compila-
tion times.

7 Future Work

There are many more optimizations that can be done to
the circuit implementation to increase throughput and/or de-
crease circuit size. We are currently working on porting Su-
percell to Xilinx Virtex family FPGAs, and are looking at op-
timizations that take advantage of new architectural features.
We are also looking at modifying the circuit to accept more
than one pixel per clock cycle. We have determined that such
a modification would add only a small amount of circuitry.

We are currently taking advantage of the generic circuit to
rewrite the second-level compiler to make it easily extensible
by the end-user. This would make it possible for the end user
to add instructions to the compiler in a straightforward, intu-
itive way. All the user need do is extend a class we provide
and give us the details of the neighborhood plane, templates
and final calculation. This is an important step forward, as
adding instructions to the direct synthesis approach required
circuit design. Now, the user need only describe instructions
in software, in terms with which they are familiar.

We are also looking into other algorithms to see if the two-
level compiler approach we used here would have application
to other types of algorithms.

10

References

[1] S. R. Sternberg, “Automatic image processor.” U.S.
Patent 4,167,728, September 1979.

[2] ERIM (Environmental Research Institute of Michigan),
Ann Arbor, Michigan, C4PL Advanced Ptogramming
Manual, 3 ed., February 1993.

[3] M. Sonka, V. Hlavac, and R. Boyle, Image Processing,
Analysis, and Machine Vision. PWS Publishing, 1999.

[4] R. M. Haralick and L. G. Shapiro, Computer and Robot
Vision, vol. Volume I. Addison-Wesley Publishing Com-
pany, 1992.

[5] P. Alfke, “Efficient shift registers, lfsr counters, and long
pseudo-random sequence generators,” Tech. Rep. XAPP
052, Xilinx, San Jose, CA, July 1996.

[6] P. Bellows and B. L. Hutchings, “JHDL - an HDL for
reconfigurable systems,” in Proceedings of IEEE Work-
shop on FPGAs for Custom Computing Machines (J. M.
Arnold and K. L. Pocek, eds.), (Napa, CA), pp. 175–184,
Apr. 1998.

[7] B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert,
B. Nelson, and M. Rytting, “A cad suite for high-
performance fpga design,” in Proceedings of the IEEE
Workshop on FPGAs for Custom Computing Machines
(K. L. Pocek and J. M. Arnold, eds.), (Napa, CA), p. n/a,
IEEE Computer Society, IEEE, April 1999.

[8] Xilinx, The Programmable Logic Data Book, 1999.

11

