
Exploiting Instruction Level Parallelism in Geometry Processing for Three
Dimensional Graphics Applications

 Abstract

Three dimensional (3D) graphics applications have be-
come very important workloads running on today’s com-
puter systems. A cost-effective graphics solution is to
perform geometry processing of 3D graphics on the host
CPU and have specialized hardware handle the rendering
task. In this paper, we analyze microarchitecture and
SIMD instruction set enhancements to a RISC superscalar
processor for exploiting instruction level parallelism
(ILP) in geometry processing for 3D computer graphics.
Our results show that 3D geometry processing has inher-
ent parallelism. When ignoring cycle time effects, an 8-
issue processor can achieve up to 60% performance im-
provement over a 4-issue. However, certain application
attributes can hinder the exploitation of ILP on a super-
scalar processor. Adding SIMD operations improves
performance from 8% to 28% on a 4-issue processor that
can issue at most 2 floating-point operations. If processor
cycle time scales with the number of ports to the register
file, doubling only the floating-point issue width of a 4-
issue processor with SIMD instructions gives the best
performance among the architecture configurations that
we examine (the most aggressive configuration is an 8-
issue processor with SIMD instructions).

1 Introduction

The increasing number of multi-media applications
produces a commensurate increase in demand for cost-
effective multi-media processing [10]. Traditionally, me-
dia processing was implemented in expensive custom

hardware specialized for specific applications (e.g.,
speech, video, and graphics). Advances in conventional
microprocessor design now permit offloading some func-
tionality to a general-purpose processor, possibly sacri-
ficing performance in return for reduced cost. The key is
to minimize this performance degradation, potentially by
adding architectural support for media processing.

Many current microprocessors have Single Instruction
Multiple Data (SIMD) type instructions to accelerate
audio, video and 2D image processing, such as Intel
MMX [15], Sun UltraSPARC VIS [9] and HP PA-RISC
[8]. This type of SIMD instruction operates only on inte-
ger data. Today, several processor vendors, such MIPS
Technology Inc. [14], Cyrix, IDT, AMD [2], Intel [6], and
Motorola [18] are in various stages of incorporating
floating-point SIMD instructions to speedup geometry
processing for three dimensional (3D) graphics.

Typically, 3D graphics processing is a 3-stage pipeline
[5]: 1) database traversal, 2) geometry computation, and
3) rasterization. Display models representing graphics
scenes are generally stored in a database that must be
traversed (stage 1) to extract the appropriate information
for display, such as the drawing primitive (e.g., line or
triangle), lighting models, etc. The information is then
passed to the geometry subsystem (stage 2), which is re-
sponsible for transforming 3D coordinates to 2D coordi-
nates. Finally, the rasterization stage (stage 3) converts
transformed primitives into pixel values and stores them
in the frame buffer for display.

In high-end graphics systems [16][17], the host CPU is
only responsible for database traversal, and custom hard-
ware is used for geometry processing and rasterization.
The cost of building these high-end systems is generally
too high for the mass market. To reduce cost, the host
CPU could execute some, or all, of the graphics pipeline.
This paper focuses specifically on host CPU execution of
geometry computation using a single dynamically sched-
uled superscalar microprocessor. In particular, we exam-
ine the effects of microarchitectural changes and the bene-

 Chia-Lin Yang,1 Barton Sano,2 and Alvin R. Lebeck1

 1Department of Computer Science 2Western Research Lab
 Duke University Compaq Computer Corporation
 Durham, North Carolina 27708 USA sano@pa.dec.com
 {yangc,alvy}@cs.duke.edu

This work supported in part by NSF CAREER Award MIP-97-02547,
ARPA Grant DABT63-98-1-0001, NSF Grants CDA-97-2637 and DA-
95-12356, Duke University, and an equipment donation through Intel
corporation’s Technology for Education 2000 Program. The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of the U.S. Government

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Exploiting Instruction Level Parallelism in Geometry Processing for
Three Dimensional Graphics Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Duke University,Department of Computer Science,Durham,NC,27708

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

fits of recently proposed instruction set enhancements for
geometry computation.

Geometry computation is floating-point intensive.
Vertex coordinates, color and transformation matrices are
stored in single-precision floating-point format. Geometry
processing is an inherently parallel task, since each object
vertex can be processed independently. Dynamically
scheduled processors can exploit this parallelism by
looking ahead in the instruction stream to identify and
execute the operations associated with different vertices.
Recall that vertex computations require only 32-bit float-
ing-point values. Since most modern microprocessors
have 64-bit floating-point registers, geometry calculations
using 32-bit operands are utilizing only half the floating -
point datapath (registers, functional units, and busses).
Another way to exploit this parallelism is using SIMD
type instructions to perform operations on multiple verti-
ces in one instructioncalled paired-single instructions.
Paired-single instructions fully utilize the 64-bit datapath
by performing two independent 32-bit operations, each
using half the datapath.

As mentioned above, most processor vendors are in-
corporating paired-single instructions. AMD’s 3DNow!
Technology [2] is currently available. However, we are
unaware of any published quantitative evaluation of their
performance using full applications. In this paper, we
simulate Viewperf [19], an industry standard benchmark
suite, on an out-of-order superscalar processor both with
and without paired-single instructions. We modified the
geometry computation routines in MESA [12] (a public
domain implementation of OpenGL [24]) to utilize
paired-single instructions. We first analyze the effects of
increasing the resources available in a conventional proc-
essor for exploiting ILP. This is followed by a compari-
son to paired-single execution, both with and without
clock cycle time effects.

The contributions of this paper are as follows:
(1) Although geometry processing presents substantial

parallelism, we discover that certain aspects of ap-
plication implementations can significantly impact
the available instruction level parallelism (ILP)
that can be exploited by a superscalar processor.
In the best case, an 8-way issue processor can
achieve 60% performance improvement over a 4-
way with a 64-entry dispatch queue and 128 reg-
isters, but for certain benchmarks, the performance

only increases by 20%. Furthermore, if the CPU
cycle time scales with the number of ports to the
register file, the performance improvement is less
than 5% for all the benchmarks.

(2) We analyze the effect of adding paired-single in-
structions on a set of industry standard 3D graph-
ics benchmarks instead of small kernels. We
found that the performance improvement from
pairing up single-precision floating-point opera-
tions ranges from 8% to 28% on a 4-way issue
processor that can issue at most 2 floating-point
operations per cycle.

(3) We quantify the benefits of paired-single instruc-
tions over increasing only the floating-point issue
width in superscalar processors. Our results indi-
cate that adding paired-single instructions to 4-
issue processor performs within 7% of doubling
the floating-point issue width. For certain bench-
marks, the former even outperforms the latter. The
performance advantage of paired-single instruc-
tions increases when considering the clock cycle
time effect.

The remainder of this paper is organized as follows.
Section 2 provides background information on geome-
try computation, and presents benchmark characteris-
tics. We review paired-single instructions in Section
3. Section 4 presents our simulation infrastructure, and
Section 5 presents our simulation results. Section 6
concludes the paper.

2 Background

To understand the architectural aspects of geometry
processing, we first describe the six stages of the 3D ge-
ometry pipeline. Then we characterize a set of OpenGL
performance evaluation benchmarks (Viewperf [19]).

2.1 The Geometry Pipeline
Similar to the overall 3D computation, geometry proc-

essing can be divided into a set of pipeline stages. In a
typical geometry pipeline, there are six stages as shown in
Figure 1:
1. View and model transformation: graphics primi-

tives (e.g., line, triangle or polygon) are transformed
to the viewer’s frame of reference. Transformations

Viewing &
Modeling
Transform

Lighting Projection
Transform

Clipping Division
by w

Figure 1: 3D geometry pipeline.

Mapping
Vertex

involve vector matrix multiplication on either 1x4,
4x4 or 1x3, 3x3 vector and matrix sizes.

2. Lighting: the light position, color and material prop-
erties are used to calculate the object color.

3. Projection transformation: this stage determines
how objects are projected to the screen. This again
requires multiplication of a 1x4 vector and a 4x4 ma-
trix.

4. Clipping: objects are clipped to the viewable area to
avoid unnecessary rendering.

5. Division by w: the x, y, z components of each vertex
are divided by its w component. Geometry processing
usually works in the homogenous coordinate system,
where all the vertices are represented with four coor-
dinates (x, y, z, w).

6. Mapping vertex coordinates to screen coordinates:
vertices are mapped to the screen coordinates.

Note that lighting (stage 2) is optional. For those appli-
cations that only perform wireframe rendering or imple-
ment a global illumination algorithm (i.e., the color of
each vertex is precomputed), the lighting stage is unnec-
essary. However, the other 5 stages are mandatory.

Previous studies [1] have shown that 90 floating-point
arithmetic operations are required to process a single ver-
tex1. Current superscalar processors can issue 2 floating-
point operations per cycle. The above analysis implies
that a 500 MHz processor could theoretically process 11
million vertices per second. This value is close to the
computing capability of today’s specialized hardware
[17]. However, because of instruction scheduling and
resource limitations, a general purpose processor is un-
likely to achieve this theoretical rate. The goal of this
paper is to gain further insight into these limitations. The

1 Their model assumes that a single light and a viewer are at infinite
distance and Gouroud shading is applied.

remainder of this section begins this investigation by
characterizing a set of 3D applications.

2.2 Benchmark Characterization
To characterize the architectural aspects of 3D appli-

cations, we used ATOM’s pixie tool [3] to analyze the
Viewperf OpenGL performance evaluation benchmarks
[19]. OpenGL is an API for graphics hardware initially
defined by Silicon Graphics [24]. We use Mesa [12], a
public-domain software implementation of the OpenGL
specification, in this study. Mesa contains a complete
software implementation of the rendering pipeline, al-
lowing OpenGL applications to execute on machines
without specialized graphics hardware.

The Viewperf suite contains five different graphic
model sets including CAID (Computer Aided Industrial
Design) and digital content creation models. Each set has
seven to ten tests using different OpenGL primitives,
lighting models and rendering parameters. In this section,
we characterize three different aspects of the Viewperf
benchmark set: 1) the dynamic instruction distribution, 2)
the average number of vertices per glBegin/glEnd pair
and 3) the amount of execution time spent in the various
geometry pipeline stages.

Dynamic Instruction Distribution
The dynamic instruction distribution of the Viewperf

benchmarks (average over the five different benchmarks)
indicates that 42.5% of all of the instructions executed by
the geometry routines involve single-precision floating-
point instructions. A significant amount of integer in-
structions are needed for executing mode changes (e.g.
using different texture file or changing the lighting
model). The four most frequently executed instructions
are load (13.4%), multiply (12.2%), add (9.7%) and store
(6.8%) for single-precision floating-point data. Most of
the load instructions come from loading the transform
matrices and vertices. Similarly, the store instructions are
used to save the processed vertices back to memory. The
multiply and add instructions are primarily from the trans-
form and lighting operations.

Average Number of Vertices per glBegin/glEnd
Pair

OpenGL implements ten drawing primitives (e.g.,
GL_LINES, GL_TRIANGLES and GL_POLYGON). To
draw an object, a set of vertices are bracketed between a
call to glBegin() and glEnd(). The argument passed to
glBegin() determines which geometric primitive is con-
structed from the vertices. 3D surfaces are usually broken
down into triangles. The most efficient way for drawing a
series of triangles that are connected to each other is using
the GL_TRIANGLE_STRIP primitive (as shown Figure
2). However, some 3D content creation applications do

glBegin (GL_TRIANGLE_STRIP)
 glVertex3fv(x0,y0,z0); /* coordinates for vertex v0*/
 glVertex3fv(x1,y1,z1); /* coordinates for vertex v1*/
 glVertex3fv(x2,y2,z2); /* coordinates for vertex v2*/
 glVertex3fv(x3,y3,z3); /* coordinates for vertex v3*/
 glVertex3fv(x4,y4,z4); /* coordinates for vertex v4*/
glEnd();

Figure 2: Example of using GL_TRIANGLE_STRIP
primitive.

v0 v2 v4

v1 v3

not store objects in a format amenable to this drawing
method. In this case, the OpenGL viewing applications
may have to invoke a drawing primitive for each triangle.
Thus, the number of vertices per glBegin/glEnd will be
small. Profiling results show that the average number of
vertices per glBegin/glEnd pair varies across the Viewperf
benchmark. Awadvs uses the GL_POLYGON primitive
and has only 3.4 vertices on average, while some of the
CDRS tests use the GL_TRIANGLE_STRIP primitive
and have up to 400 vertices per glBegin/glEnd pair.

There are four ways to exploit parallelism in geometry
computation: 1) processing individual components of a
vertex (e.g., coordinate (x, y, z, w) or color (R, G, B, A)),
2) processing multiple vertices of each primitive within
the same pipeline stage, 3) processing vertices of each
primitive in different pipeline stages and 4) processing
different primitives. In the MESA implementation, the
computations for vertices of each primitive (i.e., those
vertices bracketed by glBegin/glEnd) in the same pipeline
stage are performed in loops. Several internal library rou-
tines are executed before starting the next stage or a new
set of geometry drawings.

A superscalar processor that can only exploit ILP from
instructions stored in the dispatch queue is more likely to
exploit the parallelism in the first two scenarios. A small
number of vertices between glBegin/glEnd indicates that
fewer independent floating-point instructions can be is-
sued close in time. Thus, we do not expect benchmarks
with very small number of vertices on average per glBe-
gin/glEnd pair to achieve IPC as high as benchmarks with
a large number of vertices, unless a very large dispatch
queue is used.

Execution Time Distribution of the Geometry
Pipeline
We divide the execution time for the geometry pipeline
into five portions:
 Light (gl_color_shade_vertices):2 This portion corre-
sponds to the lighting stage, which calculates the color for
each vertex.

XformV (gl_xform_normals_4fv): This portion in-
cludes the vertex transformation of both the view-
ing/modeling and projection transform stages. It performs
multiplication of a matrix by a vector.

XformN (gl_xform_normals_3fv): This portion in-
cludes the normal vector transformation in the view-
ing/modeling transform stages.

Div by w/Map (gl_transform_vb_part2): This por-
tion includes the computation of div by w and mapping
vertex stages. It selects the appropriate lighting routine
(e.g. line, polygon, and type of shading) and calls the fog,
texture, and clipping routines before finally projecting the
primitives to screen coordinates.

Other: This portion includes the clipping stage and the
library routines executed between different pipeline stages
and drawing primitives.

As shown in Figure 3, Light and XformV are the two
portions where geometry processing spends the most
time. Note that the Light benchmark gets its name be-
cause each vertex color is pre-computed using a global
illumination algorithm, therefore, it does not actually exe-
cute the lighting functions. Awadvs spends almost 15% of
the execution time in the routines executed between dif-
ferent pipeline stages and drawing primitives as indicated
by Other in Figure 3. This is significantly higher than the
other benchmarks. Awadvs has very small average num-
ber of vertices (3.4) per glBegin/glEnd pair, which im-
plies that switching between pipeline stages and glBe-
gin/glEnd pairs occurs more frequently.

3 SIMD Instruction Extensions

From the benchmark profiling discussed in the previ-
ous section, we observe that most of the arithmetic float-
ing-point instructions are multiply and add, and these op-
erations are all performed on single-precision values (32-
bit). Thus, the SIMD type instructions that perform mul-
tiply or add operations on two single-precision floating -
point values could fully utilize the 64-bit floating point
registers in current superscalar processors and potentially
eliminate a significant number of instructions. The MIPS
V ISA Extension [14] proposes adding a new data type
called paired-single, which packs two single precision
floating-point values into one 64-bit floating-point regis-
ter. The multiply and addition operations are performed

2 The corresponding routine name in the Mesa implementation is listed
in parenthesis.

Figure 3– Execution time distribution in the MESA
geometry pipeline.

0

25

50

75

100

DX DVR Light CDRS AW

Benchmark

%
 E

xe
cu

ti
o

n
 T

im
e Other

XformN

Project/Map

XformV

Light

on the paired-single data in the manner illustrated in Fig-
ure 4.

The SIMD instruction extensions that we consider in
this paper are based on the MIPS V ISA Extensions [14].
The instruction formats and latency assumptions are
summarized in Table 1. The LDPS and STPS instructions
load/store a paired-single value (64 bits) from memory
ignoring alignment. The PMUL (PADD/PSUB) instruc-
tion performs multiplication (addition/subtraction) of
paired-single values. These paired-single instructions
have 4 cycle latency and are fully pipelined. CVT.S.PL
(CVT.S.PU) is used to extract the lower(higher) part of a
paired-single value, and CVT.PS.S is used to create a
paired-single value from two single-precision values.

The ADD_HL and LDS_HL instructions are not pres-
ent in the MIPS V instruction extensions. ADD_HL adds
the higher and lower parts of a paired-single value to-
gether. One example to show the usefulness of the
ADD_HL instructions is the inner product operation
commonly seen in the lighting stage. The inner product of
two vectors (x1, y1, z1) and (x2, y2, z2) is x1*x2 + y1*y2
+ z1*z2. The first two multiplication operations can be
paired up. But the results must be added together. Without
the ADD_HL instruction, we need to use the CVT.S.PU
or CVT.S.PL instruction to extract the higher or lower
half to a separate register before performing the addition.

 The LDS_HL instruction duplicates a single-precision
value to form a paired-single value. We use the computa-
tion of transforming normal vectors (multiplication of a
1x3 vector and 3x3 matrix) to illustrate the use of this
instruction. The pseudo C codes are as follows (u and m
represent an array of vertex coordinates and the transfor-
mation matrix respectively):

To exploit the parallelism across two vertices, we un-
roll the loops once and reorder instructions such that the

independent floating-point operations can be easily paired
up. The modified version is listed below:

To perform the paired-single multiplication over verti-
ces i and i+1, we need to form paired-single values for
each element of the transformation matrix (i.e.,
(m[0,0],m[0,0]), (m[1,0],m[1,0])…..). The instruction
LDS_HL is used for this purpose. Without the LDS_HL
instruction, it will require one load and CVT.PS.S in-
struction to form each pair.

4 Experimental Methodology

In this section, we describe the simulation environment
and processor models considered in this paper.

4.1 Simulation Framework
Our simulation environment (shown in Figure 5) uses

ATOM [23] to perform execution-driven simulation. This
simulation framework consists of two components. The
first component is MESA, a software implementation of
the OpenGL specification. A shared library that contains
all of the routines associated with geometry computation
is separated from the complete MESA implementation.
ATOM allows us to instrument only this geometry library

 A B C D

x x

A x C B x D

Figure 4: Operation of paired-single multiply.

Instruction Format Latency(cycle)
LDPS dest, index(base) 2
PMUL src1, src2, dest 4
PADD src1, src2, dest 4
PSUB src1, src2, dest 4
CVT.S.PL/U src, dest 1
CVT.PS.S src1,src2,dest 1
ADD_HL src, dest 4
LDS_HL dest index(base) 2

 Table 1: Instruction format and latency.
 All instructions are fully pipelined.

for (i=0;i< number of vertices;i++)
{ q[i][0] =u[i][0] * m[0,0]+u[i][1] * m[1,0]+u[i][2] * m[2,0];
 q[i][1] =u[i][0] * m[0,1]+u[i][1] * m[1,1]+u[i][2] * m[2,1];
 q[i][2] =u[i][0] * m[0,2]+u[i][1] * m[1,2]+u[i][2] * m[2,2];
}

For (i=0;i< number of vertices;i=i+2)
{
q[i][0] = u[i][0] * m[0,0] +
 u[i][1] * m[1,0] + u[i][2] * m[2,0];
q[i+1][0] = u[i+1][0] * m[0,0] +
 u[i+1][1] * m[1,0] + u[i+1][2] * m[2,0];
q[i][0] = u[i][0] * m[0,1] +
 u[i][1] * m[1,1] + u[i][2] * m[2,1];
q[i+1][0] = u[i+1][0] * m[0,1] +
 u[i+1][1] * m[1,1] + u[i+1][2] * m[2,1];
q[i][0] = u[i][0] * m[0,2] +
 u[i][1] * m[1,2] + u[i][2] * m[2,2];
q[i+1][0] = u[i+1][0] * m[0,2] +
 u[i+1][1] * m[1,2] + u[i+1][2] * m[2,2];
}

and the application itself. In this way, we can simulate the
environment where the host CPU is responsible for data-
base traversal and geometry processing, while specialized
hardware is used to process the remaining tasks in the
graphics pipeline. We modified four routines, which ac-
count for 75% to 90% of the total execution time for all
the benchmarks we ran, to incorporate paired-single in-
structions. These routines correspond to the Light,
XformV, XformN and Div by w/Map as described in
Section 2.2.

The second component of our simulation framework is
an ATOM-based simulator that models an out-of-order
superscalar processor with speculative execution [4],
whose instruction set is based on the DEC Alpha proces-
sor [22].

To simulate the new instructions, we place innocuous
(but unique) “marker” instructions where we want to re-
place the original code with new instructions. The oper-
ands of the marker instructions indicate different instruc-
tion types (e.g., LDPS, MULPS, etc). The appropriate
operands of the new instructions are passed through the
next 2 or 3 marker instructions, depending on the number

of the operands required. In this way, instruction depend-
encies are accurately maintained. The simulator decodes
each instruction and takes appropriate actions to simulate
the paired-single execution when it encounters the marker
instruction.

4.2 Processor Models
The baseline processor model studied in this paper is a

4-way, out-of-order issue superscalar processor. The issue
rules and the functional unit latencies are summarized in
Table 2 and Table 3. The maximum number of instruc-
tions that can be inserted into the dispatch queue or com-
mitted is equal to the issue width. We assume a perfect
memory system (i.e., every memory reference and in-
struction fetch hit in the L1 cache)3, a unified dispatch
queue and separate register files for the integer and float-
ing-point functional units. Speculative execution is en-
abled by implementing the branch prediction scheme pro-
posed by McFarling [11] and precise exceptions are im-
posed.

To investigate the effect of a wider issue superscalar
processor on the performance of geometry processing, we
examine the following 4 models: 2xBase, 4xBase, 2xFP
and 4xFP as listed in Table 2. The 2xBase and 4xBase
models are 8-way and 16-way issue processors respec-

3 The miss rates for a 64-K, 2-way set associative D-cache and 8-K
direct-mapped I-cache are both less than 2% for most of the benchmarks.
Thus, we assume a perfect memory system to reduce simulation time.

Figure 5: Simulation framework.
libGEOM.so is a shared library including all the routines
associated with the geometry processing. We only in-
strument code in the highlighted boxes.

Data Sets: CDRS, Awadvs, DX

 OpenGL (MESA-2.2)

SuperScalar
Simulator

Simulation
Results

libGEOM.so : Two versions: Pair vs.
Non_Pair

Viewperf

 # of Integer Functional Units # of Floating-Point Functional UnitsProcessor
Model

 Total
 Issue Width Issue

Limit
loads&
stores

Control
flow

other Issue
Limit

mul div sqrt other

Base 4 4 2 2 4 2 1 1 1 1
2xBase 8 8 4 4 8 4 2 1 1 2
4xBase 16 16 8 8 16 8 4 1 1 4
2xFP 6 4 2 2 4 4 2 1 1 2
4xFP 10 4 2 2 4 8 4 1 1 4

 Table 2: Instruction issue rules (ready instructions are issued in fetch order).

Instruction Type latency pipeline
multiplication 6 yes
load 2 yes
store 1 yes
control flow 1 yes

Integer

other 1 yes
32-bit div 8 no
64-bit div 16 no
square root 33 no

Floating-
point

other 4 yes

 Table 3: Instruction latencies.

tively. The issue rules are similar to the Base model.
However, for most instruction types, two or four times the
number can be issued in one cycle. The exceptions are
division and square root, which remain the same as the
baseline model. The reason for not doubling these two
functional units is for a fair performance comparison be-
tween 2xFP and a baseline processor with the paired-
single instruction since the paired-single operations are
not implemented for division and square root. For the
2xFP (4xFP) configurations, we double (quadruple) only
the floating-point functional units and issue width. The

number of the integer functional units remains the same as
the baseline processor. Then total issue width becomes 6
and 10 for 2xFP and 4xFP respectively.

5 Simulation Results

We use CDRS, Awadvs and DX from Viewperf as our
benchmarks due to lengthy simulation time. Each of these
benchmarks is composed of several tests. For space rea-
sons, we only present test1 from each benchmark. These
three tests are chosen because they are representative of
all the tests (the complete simulation results are provided
in [25]). CDRS test1 is a wireframe rendering application
and both DX and Awadvs have at least one light source.
Awadvs has only 3.4 vertices on average per glBe-
gin/glEnd, while CDRS and DX test1 have 30 and 96
vertices respectively.

We present our simulation results in three parts. First,
we investigate how well conventional superscalar proces-
sors exploit the parallelism in geometry processing. Then
we present the performance of paired-single execution on
different processor models. Finally, we compare the rela-
tive performance of different processors with and without
paired-single instructions accounting for potential in-
creases in CPU clock cycle time.

5.1 Scaling Conventional Design
The dispatch queue and register file sizes have signifi-

cant impact on how much ILP can be exploited in a super-
scalar processor. A wider issue machine usually requires
a larger dispatch queue and register file. In order to evalu-
ate the potential performance improvement achieved by
increasing the issue width, the superscalar simulator is
first configured with 2048 floating-point and 2048 integer
registers. With such a large register file, the CPU never
stalls due to a lack of free registers. We then vary the dis-
patch queue size from 64 to 256. The commit IPC4 for the
various processor models is shown in Figure 6.

CDRS test1 has the highest IPC for all the configura-
tions among all the benchmarks we ran. With the largest
dispatch queue (256), the commit IPC of 2xBase (8-way
issue) is 6.5, almost twice that of Base (3.4). Doubling
only the floating-point issue width (2xFP) achieves 36%
performance improvement. However, quadrupling only
the floating-point issue width (4xFP) does not perform
any better than the 2xFP because the loads that read the
source operands for the floating-point operations become
the bottleneck. The commit IPC of the 4xBase processor
(16-way issue) is 9.7, about 2.7 times that of Base.

The continuous growth of commit IPC as the issue
width increases indicates that a lot of parallelism does
exist in geometry processing for this benchmark. Note

4 The commit IPC is the ratio of the number of instructions that commit
to the total execution cycles.

CDRS

0.00

2.00

4.00

6.00

8.00

10.00

12.00

32 64 128 256
Dispatch Queue Size

C
o

m
m

it
 IP

C

Figure 6: The commit IPC of various processor
models with varying dispatch queue size.
(4xBase* represents the issue IPC of the 4xBase processor)

Awadvs

0.00

2.00

4.00

6.00

8.00

10.00

12.00

32 64 128 256
Dispatch Queue Size

C
o

m
m

it
 IP

C

Base
2xBase
4xBase
4xBase*
2xFP
4xFP

DX

0.00

2.00

4.00

6.00

8.00

10.00

12.00

32 64 128 256
Dispatch Queue Size

C
o

m
m

it
 IP

C

that the commit IPC grows with larger dispatch queue
size, but the degree of improvement diminishes after a
certain size. This point occurs around a dispatch queue
size of 32 for the Base model, 64 for both the 2xBase and
2xFP, and 128 for 4xBase.

For DX test1, the commit IPC of the processor models
smaller than 4xBase are comparable to CDRS test1, ex-
cept for 2xFP, which only achieves 13% performance
improvement. The ratio of floating-point arithmetic op-
erations to load instructions is 1:1 for DX test1 and 2:1 for

CDRS test1. Thus, increasing the floating-point issue
width alone does not improve the performance of DX as
much as that of CDRS. For DX test1, the commit IPC of
4xBase is 8.48, lower than CDRS test1 (9.7). The lower
commit IPC is due to more mispredicted branches. The
issue IPC for 4xBase is plotted in Figure 6 to illustrate
this scenario. Issued instructions can not commit if a pre-
ceding branch in the program order was mispredicted. DX
test1 has a larger difference between the issue and commit
IPC than CDRS test1. This is because the lighting com-
putation has more conditional branches than the trans-
form, thus the performance of a light-intensive applica-
tions like DX test1, is more subject to branch prediction
accuracy than a wireframe rendering application like
CDRS test1.

 Awadvs test1 has the lowest IPC, primarily because
of its small number of vertices (3.4) per glBegin/glEnd.
Observe that the commit IPC increases linearly with the
dispatch queue size, hence, for this benchmark, the dis-
patch queue is still the bottleneck even when it has 256
entries. Because the 4xFP processor performs equal to
2xFP for all the benchmarks we ran, we no longer con-
sider this configuration in the following analysis.

To evaluate how the register file size affects perform-
ance, we keep the dispatch queue size constant (64 entries
for Base, 2xFP and 2xBase and 128 entries for 4xBase)
while varying the register file size from 64 to 256. The
results are shown in Figure 7. The 2048 entry register file
size is shown as a reference point. Using more than 128
registers for Base, 2xFP and 2xBase and 256 registers for
4xBase does not improve performance significantly.

In the next section, we analyze the benefit of the
paired-single execution on the Base, 2xFP and 2xBase
processors. 4xBase is a 16-way issue machine and re-
quires a 128-entry dispatch queue and 256 registers. This
configuration is too large to achieve a practical imple-
mentation by simply scaling the Base configuration,
hence we do not consider it further.

5.2 The Performance Improvement of Paired-
Single Execution

Adding paired-single instructions not only reduces the
number of single-precision floating-point add and multi-
ply instructions, it can also eliminate load/store instruc-
tions if the LDPS instruction can be used to load two sin-
gle-precision floating-point values together. Table 4
shows the reduction amount for each instruction type. The
number of multiply and add instructions is reduced by
approximately 50% for CDRS test1, 40% for DX and
Awadvs test1. The number of load and store instructions
are reduced by 5% to 15% and 15% to 36%, respectively.
CDRS has the highest overall instruction reduction of
17%.

 Reducing the number of instructions has two potential
advantages. First, combining two floating-point opera-

CDRS

0.00

2.00

4.00

6.00

8.00

10.00

64 128 256 2048
Register File Size

C
o

m
m

it
 IP

C

DX

0.00

2.00

4.00

6.00

8.00

10.00

64 128 256 2048

Register File Size

C
o

m
m

it
 IP

C

Figure 7: The commit IPC for various processor
models with varying register file size.

Awadvs

0.00

2.00

4.00

6.00

8.00

10.00

64 128 256 2048
Register File Size

C
o

m
m

it
 IP

C

Base

2xFP

2xBase

4xBase

tions together effectively enables the CPU to look further
ahead to find independent instructions to issue. In other
words, adding paired-single instructions could achieve the
same effect as increasing the dispatch queue size. Second,
it can improve the instruction cache performance. We did
not analyze this due to the low instruction cache miss rate
for the benchmarks we ran. We can expect higher per-
formance impact on an embedded system, which is usu-
ally configured with a smaller instruction cache.

We evaluate the performance improvement of paired-
single execution on the Base, 2xFP and 2xBase models.
The simulation results are shown in Figure 8. The y-axis

shows the speedup of paired-single over non-paired exe-
cution. CDRS test1 has the best performance improve-
ment, 28% on the Base model, 13% on the 2FP and 20%
on the 2xBase. DX test1 has the smallest performance
improvement since it only reduces the number of instruc-
tions by 7%. Note that our speedups may not be optimal.
First, there are some routines required for geometry proc-
essing that we have not converted to use paired-single
instructions. However the impact on performance of
these procedures should not be substantial. Second, we
have not optimized the instruction schedule of the paired-
single sequence. Different computation sequences incur
different register allocation and instruction scheduling,
and analyzing these effects requires further research.

5.3 Paired-Single vs. Wider Issue

In this section, we discuss the relative performance of
various processor models with and without the paired-
single instruction set. First, we compare relative perform-
ance assuming that CPU cycle time remains the same for
all processor models. Then, we investigate how changes
in cycle time affect overall performance. All the processor
models are configured with a 64-entry dispatch queue and
128 registers. These numbers are chosen such that the
performance of an 8-way issue (2xBase) processor is not
constrained too much by the dispatch queue and register
file and the processor configuration is within a reasonable
range.

The simulation results, assuming no changes in CPU
cycle time, are shown in Figure 9. The y-axis is the
speedup of the various processor models over the Base
configuration. Adding paired-single instructions effec-
tively doubles the floating-point issue width so a Base
processor with the paired-single instruction extension can
potentially achieve the same floating-point processing
capability as 2xFP.

Our results show that Base+Pair performs within 7%
of 2xFP for CDRS and DX and it even outperforms 2xFP
for Awadvs test1. Besides the advantage of doubling
floating-point processing rate, adding paired-single in-
structions can better utilize the dispatch queue, as men-
tioned in the previous section. For an application where
the dispatch queue is the performance bottleneck, like
Awadvs test1, Base+Pair has a performance advantage
over 2xFP. An 8-way issue processor using paired-single
instructions (2xBase+Pair) can achieve 1.9 speedup over
Base for CDRS test1.

Benchmark CDRS DX Awadvs
Instruction
Type

add mul ld sts total add mul ld sts total add mul lds sts total

Reduction % 48 47 5 36 17 43 39 9 15 7 40 37 15 21 11

Table 4: Instruction reduction of different instruction type for paired-single execution.

Figure 8: Performance improvement of paired-
execution.

1.00

1.10

1.20

1.30

Base 2xFP 2xBase

Processor models

S
p

ee
d

u
p

CDRS

Awadvs

DX

Figure 9: Relative speedup of various processor
models over the Base with a dispatch queue of
64 entries and 128 registers.

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

CDRS Awadvs DX
Benchmark

S
p

ee
d

u
p

Base+Pair

2xFP

2xFP+Pair

2xBase

2xBase+Pair

5.3.1 Effects on Clock Cycle Time

Previous studies have shown that increasing issue
width has significant impact on the processor cycle time
[4][20]. Palacharla et al. [20] studies how the instruction
dispatch, issue logic and data bypass delay varies with
different issue width. Their results show that the issue
logic determines the critical path delay in a 0.35um tech-
nology for both 4-way and 8-way issue processors (not
considering cache and register files) and the wakeup logic
delay (part of issue logic) grows linearly with the issue
width. Farkas et al. [4] shows that the issue width deter-
mines the number of read/write ports to a register file, and
thus can have significant impact on the cycle time.

The percentage increase of issue logic delay and reg-
ister file access time over the Base model are summarized
in Table 5. We use a modified version of CACTI [7] de-
veloped by K. Farkas in [4] to generate the register file
access time. Note that the floating-point register file of
2xFP has the same number of read/write ports as the inte-
ger register file of Base. Thus, the register file access
time of 2xFP is equal to the Base access time. The
2xBase model increases the register file cycle time by
50% in a 0.35mu technology. We use the data provided in
[21] to derive the issue logic delay. Linear extrapolation is
used to obtain the data for configurations not studied in

that paper. The 2xFP model increases the issue logic de-
lay by 7%, and 2xBase by 14%.

We present simulation results in two sets. The first set
assumes that issue logic (wakeup+selection) determines
the critical path delay (Figure 10) and the second set as-
sumes that register file access does (Figure 11). The y-
axis is the speedup of the various processor models over
the Base configuration. If the issue logic determines criti-
cal path delay, Base+Pair outperforms 2xFP for all the
benchmarks. The performance difference is most substan-
tial for Awadvs test1. The 2xBase+Pair processor model
achieves 1.6 speedup for CDRS test1. However, if the
CPU cycle time is determined by the register file access,
increasing the issue width up to 8-way (2xBase) has
negative impact on the performance for Awadvs and DX
test1 as shown in Figure 11. Thus, 2FP+Pair becomes the
best design choice, achieving 1.5 speedup over the Base
processor model for CDRS and 1.2 for both Awadvs and
DX.

6 Conclusion

The widespread use of multi-media applications pres-
ents new design challenges for system designers. In this
paper, we examine the performance of geometry compu-
tation in three dimensional graphics applications on future
superscalar processors. Geometry computation is single-
precision (32-bit) floating-point intensive. We investigate
the performance of recently proposed instructions that
perform two independent 32-bit operations by packing the
operands in 64-bit registers and exploiting the existing 64-
bit datapath. We use simulation to compare the perform-
ance of these new instructions, called paired-single to that
achieved by increasing a conventional out-of-order proc-
essor’s issue-width.

Processor
Model

Register File
Access Time(%)

Issue Logic
Delay (%)

2xFP 0 7%

2xBase 50% 14%

1.50

1.60 Base+Pair

2xFPTable 5: Cycle time increase over the
Base model assuming 0.35um technol-
ogy.

Figure 10: Relative performance of various
processor models assuming that the window
issue logic determines processor cycle time.

Figure 11: Relative performance of various
processor models assuming that the register
file access delay determines processor cycle
time.

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

CDRS Awadvs DX
Benchmark

S
p

ee
d

u
p

Base+Pair

2xFP

2xFP+Pair

2xBase

2xBase+Pair

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

CDRS Awadvs DX

Benchmark

S
p

ee
d

u
p

Base+Pair

2xFP

2xFP+Pair

2xBase

2xBase+Pair

From our simulation results, we found that paired-
single instructions improve performance by up to 28% on
a 4-issue processor and 20% on an 8-issue. These im-
provements are comparable to those achieved by doubling
only the floating-point issue width (2xFP). Our results
reveal that 4xFP performs equal to 2xFP because load
instructions that read source operands of floating-point
operations become the bottleneck, and hence require a
commensurate increase in the integer issue width.

We also found that the average number of vertices
processed in each stage of the geometry pipeline (i.e.,
vertices per glBegin/glEnd) is the primary factor deter-
mining performance on superscalar processors. For
benchmarks that have a large number of vertices per
glBegin/glEnd, the speedup of an 8-way issue processor
over a 4-way is 1.6 with a 64-entry dispatch queue and
128 registers. However, for benchmarks that have a small
average number of vertices per glBegin/glEnd, the
speedup is only 1.2.

Considering the impact of the issue width on the CPU
cycle time, we looked at two pipeline stages that can be
on the critical timing path. One is the register file access
and the other is the issue logic. If the issue logic is on the
critical path, an 8-way issue processor with paired-single
instructions provides 20% to 65% performance improve-
ment over a 4-way issue. However, if the register file ac-
cess is on the critical path, the processor cycle time in-
creases by almost 50% going from 4-way to 8-way. Thus
doubling only the floating-point issue width of a 4-issue
processor (2xFP) with paired-single instructions becomes
the best design choice. The improvement over a 4-way
issue processor ranges from 20% to 50%.

Acknowledgements

We thank Keith Farkas for providing his superscalar
simulator and his comments and suggestions on this work.
Special thanks go to Subbarao Palacharla for his helpful
answers to our questions about the clock cycle time analy-
sis. We also thank Norman Jouppi, Gershon Kedem,
David Raymond, Srikanth Srinivasan, Mithuna Thotteth-
odi, and the anonymous reviewers for providing useful
comments on this paper.

References
[1] K. Akeley, and T. Jermoluk. High-Performance Polygon

Rendering. Computer Graphics, Volume 22, pages 239-
249, August 1988.

[2] AMD 3DNow! Technology.
http://www.amd.com/product/cpg/k623d/inside3d.html

[3] Digital Unix V4.0 Programmer’s Guide, pages 8-13.
[4] K. Farkas. Memory-system Design Considerations for Dy-

namically-scheduled Microprocessors. Ph.D. thesis, De-
partment of Electrical and Computer Engineering, Univer-
sity of Toronto, January 1997.

[5] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer
Graphics – Principles and Practice. Addison-Wesley, 1996.

[6] Intel MMX2.
http://developer.intel.com/drg/news/katmai.html.

[7] N. Jouppi and S. Wilson. An enhanced access and cycle
time model for on-chip caches. Technical Report 93.5,
DEC Western Research Laboratory, July 1994.

[8] G. Kane. PA-RISC 2.0 Architecture. Prentice Hall PTR,
1996.

[9] L. Kohn, G. Maturana, M, Tremblay, A. Prabhu, and G.
Zyner. Visual Instruction Set (VIS) in UltraSPARC™. In
Proceedings of COMPCON’95, pages 462-469, March
1995.

[10] R. Lee and M. Smith. Media Processing: A New Design
Target. IEEE Micro, pages 6-9, August 1996.

[11] S. McFarling. Combing Branch Predictors. Digital Equip-
ment Corporation Western Research Lab Technical Note
TN-36, 1993

[12] MESA library.
http://www.ssec.wisc.edu/~brianp/Mesa.html

[13] Microprocessor Forum, October 1997.
[14] MIPS V ISA Extension.

http://www.sgi.com/MIPS/arch/ISA5/
[15] MMX™ Technology. Intel Architecture MMX Technology

Programmer’s Reference Manual. Intel Corporation, March
1996

[16] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-Speed
Rendering Using Image Composition. In Proceedings of
SIGGRAPH ’92, pages 231-240, August 1992.

[17] J. Montrym, D. Baum, D. Dignam, and C. Migdal. In-
finiteReality: A Real-Time Graphics System. In Proceed-
ings of SIGGRAPH ’97, pages 293-302, August 1997.

[18] Motorola AltiVec Technology.
http://www.mot.com/SPS/PowerPC/AltiVec

[19] OpenGL Performance Benchmark – Viewperf.
http://www.specbench.org/gpc/opc.static/vp50.html

[20] S. Palacharla, N. Jouppi, and J. Smith. Complexity –Effec-
tive SuperScalar Processors. In Proceedings of the 24th An-
nual International Symposium on Computer Architecture,
pages 206-218, 1997.

[21] S. Palacharla, N. Jouppi, and J. Smith. Quantifying the
Complexity of Superscalar Processors. Technical Report
CS-TR-96-1328, University of Wisconsin-Madison, No-
vember 1996.

[22] R. Sites. Alpha Architecture Reference Manual. Digital
Press, 1992.

[23] A. Srivastava and A. Eustace. ATOM: A system for build-
ing customized program analysis tools. In Proceedings of
the ACM SIGPLAN ’94 Conference on Programming Lan-
guages, March 1994.

[24] M. Woo, J. Neider, and T. Davis. OpenGL Programming
Guide. Addison-Wesley, 1997.

[25] C. Yang, B. Sano, and A. Lebeck. Exploiting Instruction
Level Parallelism in Geometry Processing for Three Di-
mensional Graphics Applications. Technical Report CS-
1998-14, Computer Science Department, Duke University,
September 1998.

