

Large-Scale Integrated Process Modeling Simulations

Enabling Composite Materiel
Developments and Applications

by Brian J. Henz and Dale R. Shires

ARL-TR-3680 December 2005

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-3680 December 2005

Large-Scale Integrated Process Modeling Simulations
Enabling Composite Materiel

Developments and Applications

Brian J. Henz and Dale R. Shires
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

December 2005
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

2002–2004
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Large-Scale Integrated Process Modeling Simulations Enabling Composite
Materiel Developments and Applications

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5U03CC
5e. TASK NUMBER

6. AUTHOR(S)

Brian J. Henz and Dale R. Shires

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-CI-HC
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-3680

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

High Performance Computing Modernization Program Office
1010 North Glebe Road, Suite 510
Arlington, VA 22201

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A virtual manufacturing environment that provides modules for predicting the process-induced residual stresses in polymeric
composite materials has recently gone through extensive testing by the authors. The use of polymeric composite materials in
Department of Defense materiel developments has made it increasingly important to predict the service life and the mechanical
responses of such structures. Process-induced behavior plays a critical role in the accurate modeling of mechanical responses.
Predicting process-induced residual stresses of composite material structures requires the coupling of resin infusion, heat
transfer, and multiscale thermal residual stress models. The complexity of modeling the process-induced effects requires the
use of modern software engineering techniques with multiphysics coupled models. The model and software developmental
efforts are described in this report.

15. SUBJECT TERMS

resin transfer molding, finite-element method, parallel, OOP, beta test

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
Brian J. Henz

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

32

19b. TELEPHONE NUMBER (Include area code)
410-278-6531

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

List of Tables iv

Acknowledgments v

1. Introduction 1

2. The SPOOCEFEM Framework 1

3. Modeling the RTM Process 2
3.1 Resin Flow in Porous Media ...2

3.1.1 Software Development ..4
3.1.2 Test Results ...5

3.2 Convection, Conduction, and the Exothermic Resin Curing Process7
3.2.1 Heat Transfer...7
3.2.2 Resin Cure Model..8
3.2.3 Software Development ..9
3.2.4 Test Results ...10

3.3 Multiscale Residual Thermal Stress Analysis ...13
3.3.1 Software Development ..14
3.3.2 Test Results ...15

4. Computational Model Integration 15

4.1 Tightly Coupled Flow/Temperature/Cure ...15

4.2 Coupled Flow/Thermal/Cure/Stress Analysis ...18

5. Conclusions 19

6. References 20

Distribution List 23

 iv

List of Figures

Figure 1. SPOOCFEM building block framework. ..2
Figure 2. Hierarchy of the ComposeElement2dTri3 class showing multiple inheritance.4
Figure 3. Wall clock time required to solve two COMPOSE models on three different

architectures. ..6
Figure 4. Experimental validation results for Fortran 90 version of COMPOSE...........................6
Figure 5. Validation results for Fortran 90 version of COMPOSE using experimental data.7
Figure 6. Hierarchy of the PhoenixFlowElement2dTri3 class showing multiple

inheritance..10
Figure 7. Scalability of PhoenixFlow software on various architectures.11
Figure 8. Verification results for PhoenixFlow on three architecture and 1, 2, 4, 8, and 16

processors...12
Figure 9. Validation results of PhoenixFlow for experiment 1, showing window of valid

results around published results. ..13
Figure 10. Visual example of micro and macroscale MSStress models.......................................15
Figure 11. Thick geometry showing process induced residual stress effects on sample service

loading conditions..16
Figure 12. Stack of six-noded wedge elements for PhoenixFlow thermal/cure analysis.17
Figure 13. Comparison of previous connectivity graphs for resin flow vs. thermal/cure

models. ...18

List of Tables

Table 1. Function-oriented and OOD runtime comparison (in seconds)..5
Table 2. Scalability CTP from SOS test report given as an example. ..11

 v

Acknowledgments

This work was supported in part by a grant of computer time and resources by the Department of
Defense High Performance Computing Modernization Program Office. Additional support was
provided by the U.S. Army Research Laboratory Major Shared Resource Center.

 vi

INTENTIONALLY LEFT BLANK.

 1

1. Introduction

Accurate analysis of the mechanical response of composite structural components requires that
process-induced residual stresses be known. These process-induced residual stresses can be
computed by using multidisciplinary manufacturing process models. Modeling of complex
manufacturing processes under the liquid composite molding family, namely resin transfer
molding (RTM), requires the integration of multidisciplinary numerical analysis tools of the
physical models. These tools can be combined in many ways including common data file
formats or development in a common programming framework. For legacy codes that have been
developed, optimized, and debugged over time, it may be more economical to implement a
common data file format such as the eXtensible Data Model and Format (XDMF) from the U.S.
Army Research Laboratory (ARL) (1, 2). For new software tools being developed or
parallelized, the authors have created the Simple Parallel Object-Oriented Computing
Environment for the finite-element method (SPOOCEFEM) (3, 4). The SPOOCEFEM
framework is used exclusively for development of the engineering applications in this report.

2. The SPOOCEFEM Framework

The SPOOCEFEM framework was developed expressly for the purpose of reducing the amount
of time required for scientific software development, to promote code growth and maturation,
and to improve code coupling capabilities. The library avoids being overly generic but
successfully compartmentalizes many of the functions common to the FEM approach. It has
been developed in the C++ language and has been ported to numerous computing platforms
including Intel-based Linux clusters, the SGI Origin, and the IBM Power series machines. While
the initial ramp-up time to develop the fully functioning SPOOCEFEM library was significant,
the library is already being successfully used in several codes.

SPOOCEFEM uses numerous technologies to provide a complete development environment. At
the lower levels of the framework are high level language compilers for C++, C, and Fortran.
On top of these compilers are the typically vendor supplied OpenGL visualization libraries, the
Message-Passing Interface (MPI) library for parallel interprocessor communication, and linear
algebra packages such as BLAS and LAPACK. Next are the open source packages such as the
visualization packages found in the Visualization Toolkit, binary and text file storage utilities,
and linear system solver libraries. SPOOCEFEM sits atop all of this, along with specialized
matrix and vector templates as shown in figure 1, so that the low level library calls are obscured
from the application developer.

 2

Figure 1. SPOOCFEM building block framework.

SPOOCEFEM utilizes many of today's newest technologies to provide a complete integrated
data file format. It uses XDMF for data storage (1). This data file format is extensible and
designed for storing data used and generated by numerical applications. SPOOCEFEM only
utilizes a subset of the larger XDMF structure for unstructured grid problems as encountered in
the FEM. Data is segregated into descriptive text data (stored in XML) and large binary data sets
(stored in the Hierarchical Data Format). Using XDMF guarantees the ability to quickly use
visualization tools already available such as Paraview from Kitware (www.kitware.com). More
details on SPOOCEFEM are outside the scope of this report but are referenced elsewhere (3, 4).

3. Modeling the RTM Process

Modeling of the RTM process includes the analysis of underlying physical phenomena of fluid
flow, heat transfer, and induced material stresses. Each of these models will now be briefly
described, and then the integration within the SPOOCEFEM framework will be discussed.

3.1 Resin Flow in Porous Media

Initially, the RTM process may be modeled as isothermal flow of resin through a porous media,
namely a fibrous preform. An implicit algorithm for this purpose based on the Pure FEM was
developed by Mohan et al. (5) and Ngo et al. (6). This algorithm was then implemented and
parallelized in three incarnations. The first was a High Performance Fortran version utilizing

 3

data parallelism. The second version was developed with Fortran 90 and MPI for message-
passing parallelism (7, 8). The current version utilizes SPOOCEFEM and is also based on
message-passing parallelism, but with many of the bookkeeping routines managed by the
SPOOCEFEM libraries (4). This isothermal resin flow modeling application is called the
Composite Manufacturing and Process Simulation Environment (COMPOSE).

The transient mass conservation of the infusing resin is considered with a state variable defining
the infused state of a node. Application of the Galerkin weighted residual to the physical model
equation leads to a semidiscrete equation of the form shown in equation 1. Further details can be
found in Mohan et al. (5).

 qKPC =+Ψ , (1)

where

 ∫
Ω

Ω= NdNC T , (2)

 ∫
Ω

Ω= BdKBK T

µ
, (3)

 ∫
Γ

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅∇⋅= dnPKNq T

µ
 , (4)

and

t

nn

∆
Ψ−Ψ

=Ψ +1 . (5)

Ψ is the nodal fill fraction, 10 ≤Ψ≤ , defining the infused state of a physical node location, K
is the permeability tensor of the fibrous preform, and P is the pressure measured at a node. The
boundary conditions for equation 1 are given as follows:

 0=
∂
∂

n
P on mold walls, (6)

 0=P at flow front, (7)

and

 0PP = prescribed pressure at inlet (8)

 4

or

 0qq = prescribed flow rate at inlet, (9)

where 0P and 0q represent prescribed pressure and flow rate at the inlet(s), respectively.
Initially, at time t = 0,

 1=Ψ at the inlet (10)

and

 0=Ψ elsewhere. (11)

In equation 2, N is the elemental shape function, and in equation 3, NB ∇= .

3.1.1 Software Development

Utilizing the object-oriented design (OOD) of SPOOCEFEM the FEM problem is divided into
classes. Most of the computational work besides the linear equation solvers in COMPOSE takes
place in the various element classes. A diagram showing the ComposeElement2dTri3 class
hierarchy is shown in figure 2. COMPOSE is capable of modeling the RTM process with 2.5-D
or full 3-D analysis. For composite components typically seen in the aerospace industry, the
2.5-D model is most heavily utilized. The 2.5-D element types in COMPOSE are three-noded
triangles and four-noded quadrilaterals. Multiple inheritance is used in the COMPOSE element
classes in order to make code development more efficient. The ComposeElement class
provides functionality common to all COMPOSE element types such as storage of viscosity data.
The ComposeElement2d class provides mass matrix and local permeability computations.
The functionality unique for each COMPOSE element type such as stiffness matrix computation
is available in the ComposeElement2dTri3 class. More details on the development of the
SPOOCEFEM-based COMPOSE software are available in Henz and Shires (9).

Figure 2. Hierarchy of the ComposeElement2dTri3 class showing multiple inheritance.

 5

Development time has decreased with the utilization of OOD from 12 months for the Fortran 90
version of COMPOSE to ~3 months for the C++ version (10). In addition, code reuse of the
OOD library is highlighted in the remainder of this report. Use of OOD in scientific computing
always brings with it performance concerns associated with the runtime system (11, 12). Our
own experience shows that OOD does not necessarily degrade performance. The COMPOSE
software that was originally developed in FORTRAN 77 was re-implemented with OOD in C++.
Table 1 shows a break out of the three most time-consuming routines in COMPOSE, the first of
which is the linear solver with ~96% of the total runtime. The faster execution of the C++
version of the solver is most likely due to small enhancements performed during translation. The
other routines (calculate pressure and update) are noticeably slower in C++ than FORTRAN.
The three fold increase in runtime for the update routine is due to the numerous accesses to
values contained in the vector templates. The advantage of these templates is that they allow
quick use of numerous solvers. Therefore, this overhead is not critical in many instances and
considered a good trade-off with the increased software development productivity.

Table 1. Function-oriented and OOD runtime comparison (in seconds).

Operation FORTRAN 77 C++
Linear solver 2766 2694
Calculate pressure 114 128
Update 22 71
Core total time 2902 2893

3.1.2 Test Results

The isothermal resin flow model COMPOSE was comprehensively tested in October of 2001.
This original parallel code used Fortran 90 with MPI for parallelism. The COMPOSE software
was tested for scalability, validity, and the results were verified across various numbers of
processors. The performance of the Fortran 90 version of COMPOSE can be seen in figure 3.

The COMPOSE verification and validation included comparison with analytic and experimental
results. Figure 4 shows the analytic model geometry and some numerical results. Figure 5
shows the experimental comparison.

Verification of COMPOSE was performed using the data in figure 4 where results from various
processor counts are compared for consistency.

 6

Figure 3a: COMPOSE model with 135,492 DOFs. Figure 3b: COMPOSE model with 405,327 DOFs.

Figure 3. Wall clock time required to solve two COMPOSE models on three different architectures.

Figure 4a: Geometry of thin disk that has
analytic solutions for flow front and injection
pressure.

Figure 4b: Radial flow front position
comparing analytic and numerical results.

Figure 4. Experimental validation results for Fortran 90 version of COMPOSE.

 7

Figure 5a: Computational model of geometry
used in experimental validation of COMPOSE.

Figure 5b: Pressure sensor data from
computational model and experiment showing
excellent agreement.

Figure 5. Validation results for Fortran 90 version of COMPOSE using experimental data.

3.2 Convection, Conduction, and the Exothermic Resin Curing Process

For the RTM process, it is often only necessary to model the isothermal resin flow to analyze the
process accurately. In some cases, though, the heat transfer and resin cure kinetics must also be
considered in order to understand the manufacturing process to allow for the analysis and
computation of the thermally induced residual stresses. Extending the COMPOSE RTM model
to include heat transfer and resin cure kinetics resulted in the multidisciplinary software called
PhoenixFlow. PhoenixFlow utilizes the resin flow model developed for COMPOSE with
inheritance and OOD.

3.2.1 Heat Transfer

The resin flow modeled in COMPOSE and PhoenixFlow is based on an integral form of the mass
balance equation coupled with Darcy’s law by way of a pure finite-element-based methodology
(5, 13). The thermal model equations employ an energy balance equation based on a fiber-resin
thermal equilibrium model (14). Utilizing the FEM in order to discretize the problem domain for
the heat transfer model in PhoenixFlow is given as

 () Gqcondad QQTKKTC +=++ , (12)

where

 8

 ∫
Ω

Ω= NdcWC p
T ρ , (13)

 ()∫
Ω

Ω⋅= BdBucWK Np
T

ad ρ , (14)

 ∫
Ω

Ω= dkBBK N
T
Wcond , (15)

 ()∫
Γ

Γ⋅−= dnqWQ T
q , (16)

and

 ∫
Γ

Γ= dGWQ T
G φ . (17)

WB is the spatial derivative of the weighting function, ,W and NB is the spatial derivative of the

finite-element shape function, .N φ is porosity, ρ is density, pc is specific heat, k is the
thermal conductivity, u is the resin velocity, and G is the rate of heat generation by chemical
reactions or other sources. The subscripts f and r denote fiber and resin properties, respectively.
The boundary conditions required to solve equation 5 are given by

 WTT = at the mold wall, (18)

 0rTT = at the mold inlet, (19)

 () ()TTnuc
n
Tk fprr −⋅−=
∂
∂

01 ρφ at the resin front, (20)

and

 () WTtT == 0 initially. (21)

3.2.2 Resin Cure Model

In addition to the temperature calculations, the degree of resin cure is also computed in the
current developments. The discretized system of equations is given as

α

αα RQKC =+ , (22)

where

 9

 ∫
Ω

Ω= NdWC Tφ , (23)

 ()∫
Ω

Ω⋅= dBuWK N
Tφ , (24)

and

 ∫
Γ

Ω= dRWQ T
R αφ
α . (25)

NB in equation 24 is the spatial derivative of the finite element shape function, N . α is the
degree of cure, and αR is the rate of chemical reaction. The boundary conditions for equation 22
are given as

 0=α at the mold inlet (26)

and

 () 00 ==tα initially. (27)

The resin curing process is exothermic. The heat generated, G , is given by

 αRHG R= , (28)

where RH is the heat of reaction per unit volume for the pure resin (15–17).

3.2.3 Software Development

The first step in extending COMPOSE for nonisothermal analysis is to develop a new element
type that includes routines for computing and storing stiffness matrices for the additional thermal
models. Graphically, this extension is shown in figure 6. The PhoenixFlowElement class
contains routines required by all PhoenixFlow element types. These routines include calculating
effective material properties and the elemental viscosities. The PhoenixFlowElement2d
class does not contain any functionality at this time but is used for convenience in the class
hierarchy. The PhoenixFlowElement2dTri3 class provides functionality for computing
elemental stiffness matrices for heat transfer and resin cure.

 10

Figure 6. Hierarchy of the PhoenixFlowElement2dTri3 class showing multiple inheritance.

3.2.4 Test Results

The PhoenixFlow application was developed as part of the Common High Performance
Computing Software Support Initiative System of Systems (SOS) portfolio. This project,
managed by the Department of Defense High Performance Computing Modernization Program,
requires in-depth testing for correctness, scalability, and utility. Like COMPOSE, PhoenixFlow
was tested against these hallmarks. All of these metrics were defined in the test plan as Critical
Technical Parameters (CTPs) with the scalability CTP given as an example in table 2.

It is interesting to note that PhoenixFlow has superlinear speedup for all architectures on some
number of processors and for some architectures on any number of processors. The poor
scalability on the IBM machine for greater than 32 processors can be explained by the
communications system employed on that architecture. On the IBM, the processors are grouped
onto nodes with 32 processors and shared memory on the node. Between nodes, the memory is
not shared and the communication system between nodes is much slower than the on-node
system. This communication architecture manifests itself as the poor scalability results shown in
figure 7. In addition to scalability, PhoenixFlow has been validated with published experimental
results and subsequently verified across architectures and numbers of processors. Figure 8
contains the verification results for one experiment, three architectures, and one element type.
The full verification suite includes three experiments, three architectures, and two element types,
not to mention cross-architecture comparisons that were performed.

The scalability results for the PhoenixFlow software are given in figure 7.

 11

Table 2. Scalability CTP from SOS test report given as an example.

 Parameters

CTP Title
Optimum
Objectives

Minimum
Threshold

Worst Case Tested Value and Outcome

Scalable software
suites:

Demonstrate
reduction in clock
time as a function
of increased
central processing
units

Fixed speedup
exceeds 60% of
optimum on
64 processors

Fixed speedup
exceeds 50% of
optimum on
32 processors

Tested Value:
• SGI O3K: 120.75%
• Linux Cluster: 111.30%
• IBM SP4: 64.73%

Outcome:
___ Baseline established
___ Fails to meet minimum threshold
___ Meets minimum threshold
_ _ Meets optimum objective

Discussion:

As was stated in the Beta Test Plan, the timing data here do not include the time required to compute
the flow or compute post-filling cure. Rather, it involves only the time to compute the thermal solution.

These results were computed using relative speedup which is defined as:

p

p
p T

Tp
S minminˆ = ,

where minp is the smallest number of processors that were used to compute a solution and T is the time
associated with the given processor count. The minimum processor count used on all architectures in
this case was eight. This seems to represent a good choice to try and mitigate possible hierarchical
memory effects and also to limit job waiting as these trials were conducted in a production
environment.

Figure 7. Scalability of PhoenixFlow software on
various architectures.

 12

Figure 8a: SGI, location 1. Figure 8b: IBM, location 1. Figure 8c: Linux Cluster,

location 3.

Figure 8d: SGI, location 2. Figure 8e: IBM, location 2. Figure 8f: Linux Cluster,

location 2

Figure 8g: SGI, location 3. Figure 8h: IBM, location 3. Figure 8i: Linux Cluster,

location 3.

Figure 8. Verification results for PhoenixFlow on three architecture and 1, 2, 4, 8, and 16 processors.

The validation of PhoenixFlow involved comparing numerical results with published
experimental results. These comparisons are shown in figure 9 for three parallel architectures.

The plots in figure 9 show that the PhoenixFlow model is accurate and consistently predicts
nonisothermal RTM results in real world experiments. The PhoenixFlow application was also
validated against three published geometries, three transient sets of data per publication, and
three architectures.

 13

Figure 9a: SGI, location 1. Figure 9b: IBM, location 1. Figure 9c: Linux Cluster,

location 3.

Figure 9d: SGI, location 2. Figure 9e: IBM, location 2. Figure 9f: Linux Cluster,

location 2.

Figure 9g: SGI, location 3. Figure 9h: IBM, location 3. Figure 9i: Linux Cluster,

location 3.

Figure 9. Validation results of PhoenixFlow for experiment 1, showing window of valid results around published
results.

3.3 Multiscale Residual Thermal Stress Analysis

Composite components manufactured with processes such as RTM often contain residual
stresses after processing. These residual stresses are typically produced during the cooldown
phase after the resin has cured. The model used to compute residual stresses in the current
developments is based on the Multiscale Elastic Thermal Stress software developed by Chung
et al. (18). The model also predicts homogeneous material properties for heterogeneous
materials through the Asymptotic Expansion Homogenization method (18).

 14

The thermal residual stresses are computed from the following equation:

 ∫∫∫∫∫
ΩΩ

+
Γ

+
Ω

++
Ω

Ω−Ω+Γ+Ω=∆⎥
⎦

⎤
⎢
⎣

⎡
Ω dBdFNdNdDBuDBdB n

T
n

T
n

Tth
n

T
n

T στε 1111 , (29)

where σ is the stress experienced by the body, F is the body force per unit volume, B is the
derivative of the shape function N , n⋅= στ , u is the nodal displacement, and ε is the
elemental strain. A detailed derivation of the preceding equation can be found in Ngo (14).

The software to compute the residual thermal stresses developed at ARL utilizes a baseline
academic code from Ngo (14). The original code was developed using FORTRAN 77, was
serial only, and did not contain a common data file format or output other than simple elemental
results in text files. A restructured, enhanced, and parallelized application was developed in
SPOOCEFEM to provide the same capabilities. The new SPOOCEFEM-based software
developed at ARL is called MSStress (MultiScale thermal residual Stress analysis).

3.3.1 Software Development

Since the MSStress software is currently coupled with COMPOSE and PhoenixFlow through
common data files (XDMF), no inheritance of classes from previous applications is used. The
key portion of the software development for MSStress is the implementation within the
SPOOCEFEM framework so that it can be parallelized and have a graphical user interface (GUI)
available for pre- and postprocessing capabilities. Some interesting details of the software
development for MSStress are provided. The microscale model in MSStress is a unit cell of the
composite component, as shown in figure 10a, that is used to compute the homogenized material
properties for the macroscale model, shown in figure 10b. As was soon discovered, the
microscale model was much more difficult to parallelize because of the symmetric boundary
conditions required in the numerical analysis. After considering this for some time, we
concluded that the microscale model was typically somewhat smaller than the macroscale model
and could therefore be computed in serial on each processor used in the parallel analysis. The
macroscale problem is subsequently solved in parallel with the computed material properties.
The adverse affect on performance from not parallelizing the microscale model is insufficient to
offset the extra effort that would be required to parallelize the symmetric boundary condition
routines at this time. A more detailed analysis of the MSStress software development is not in
the scope of this report and will appear in future work.

 15

(a) Woven fabric microstructure.

(b) Macroscale model of thick composite structure.

Figure 10. Visual example of micro and macroscale MSStress models.

3.3.2 Test Results

The MSStress software was not subject to the rigorous testing requirements of the other
components since it was not part of the original code development plan. MSStress was only
required to output data in a common format useable by a third-party application for analysis in a
continuum mechanics code. In this case, we used P-DINOSAURUS (19) as the continuum
mechanics application for service condition loading. Some of these results can be seen in
figure 11.

4. Computational Model Integration

This section discusses of some of the issues encountered while developing tightly coupled codes
(such as COMPOSE and PhoenixFlow) and when loosely coupling codes through data I/O only.
The first section discusses the tight coupling of the flow model in COMPOSE with the thermal
and cure models in PhoenixFlow. The second section provides details about using XDMF in
order to couple the thermal results from PhoenixFlow with the multiscale residual stress model in
MSStress.

4.1 Tightly Coupled Flow/Temperature/Cure

In modeling the RTM process, the fluid flow and thermal models must be tightly coupled. This
coupling is accomplished through software engineering. The COMPOSE fluid flow model is
implemented in the SPOOCEFEM framework (9) as a stand-alone code. The thermal and cure
models in PhoenixFlow then take advantage of the COMPOSE software through inheritance and
OOD.

 16

Figure 11a: Representative vehicle geometry showing region of blast loading.

Figure 11b: Representative part with no
residual stress information.

Figure 11c: Shear stress results from
P-DINOSAURUS at the 20th time step
(with no process induced residual stress).

Figure 11d: Initial shear stress computed by
MSStress.

Figure 11e: P-DINOSAURUS results of same
blast loading using the process induced initial
residual stresses in the material.

Figure 11. Thick geometry showing process induced residual stress effects on sample service loading conditions.

An example of this OOD is the three-noded triangular element in PhoenixFlow. The COMPOSE
three-noded triangular element has storage, computation, and assembly routines for the fluid
flow stiffness matrix. The PhoenixFlowElement2dTri3 class inherits these routines and
adds similar routines for thermal and cure analysis. In COMPOSE, the viscosity of the resin
inside an element remains constant, whereas the resin viscosity is computed at each flow time
step in PhoenixFlow. For the storage of the resin viscosity the ComposeElement class is

 17

utilized, and new routines for resin viscosity computation are added to the
PhoenixFlowElement class.

In addition to the element classes, the PhoenixFlowFEM class inherits functionality from the
ComposeFEM class. This inherited functionality includes the one-shot filling routine (20) and
sensitivity analysis for temperature independent parameters (21). The main loop in the
COMPOSE software computes filling at each time step until the mold is filled. Since
temperature and degree of cure must be computed in between filling time steps, a new routine in
PhoenixFlow has been developed that computes a single filling time step and then proceeds to
thermal and cure analysis before continuing the resin flow process.

Another issue in the thermal analysis includes heat transfer in the through-thickness direction
causing high temperature gradients. This requires that 3-D elements be built up on top of the
2-D flow elements, as seen in figure 12. These extra elements and nodes increase the complexity
and storage requirements of the linear equations many-fold in PhoenixFlow. As such, careful
attention is paid to the nodal numbering and elemental connectivity in order to improve
performance and reduce code complexity.

Figure 12. Stack of six-noded wedge elements for PhoenixFlow thermal/cure analysis.

The importance of the nodal numbering strategy shown in figure 12 is evident in the connectivity
graphs shown in figure 13. Figure 13a shows the nodal connectivity graph of a certain problem
for the resin flow model. In other words, this graph shows how the various nodes in the finite-
element mesh are connected by the elements. Locality of reference is an important consideration
in today’s parallel supercomputers as the memory systems used are highly complex and layered.
Minimization of the connectivity graph bandwidth can lead to improvements in the runtime and
cache efficiency of a code using these data structures (22). A Reverse Cuthill-McKee (RCM)
(23) pass can be used to optimize the locality and produce a tight diagonal for the connectivity

 18

(a) Resin flow model nodal
connectivity graph

(b) Built-up thermal/cure model
nodal connectivity graph
corresponding to numbering
strategy employed in figure 13a.

(c) Built-up thermal/cure model
nodal connectivity graph
corresponding to numbering
strategy employed in figure 13b.

Figure 13. Comparison of previous connectivity graphs for resin flow vs. thermal/cure models.

graphs. An RCM pass performed on the connectivity graph of the resin flow model (figure 13a)
will be maintained for the thermal/cure model (figure 13c) since they are of similar structure.

4.2 Coupled Flow/Thermal/Cure/Stress Analysis

The thermal residual stress analysis software (MSStress) requires temperature profiles from the
nonisothermal RTM software (PhoenixFlow). The integration of the MSStress software with
PhoenixFlow is accomplished by storing data in the XDMF file format. This format standardizes
the storage and description of data so that MSStress can read temperature results from
PhoenixFlow.

There are two ways in which the residual stresses can be computed in the RTM process. In the
first, the stresses are computed incrementally at each thermal time step as the resin cures, which
would require tight coupling of the PhoenixFlow and MSStress codes. In the second method, the
residual stresses are assumed to be insignificant prior to completion of the curing process, at
which time residual stresses begin to develop from cooling of the completely cured composite
component. MSStress computes residual stresses using the second method, thus allowing for
this loose coupling.

Currently, MSStress only supports eight-noded hexahedral elements. This requires that the
thermal analysis be performed with 8-noded hexahedral, 6-noded wedge, or 4-noded tetrahedral
elements in a full 3-D analysis or with quadrilateral elements that are built-up for thermal
analysis as described earlier. This method is often preferable since many composite structures in
the aerospace industry are thin. In order to accurately and efficiently model the flow and thermal
problems, a 2.5-D method is employed. Full 3-D models are available in COMPOSE and
PhoenixFlow, but these often require large finite element models compared to an equivalent
2.5-D model when applicable.

 19

Even though software tools were previously available to model the flow/thermal/cure mold
filling process and to compute the subsequent thermal residual stresses, these codes were
immature and resided only in the academic world. They lacked optimization, GUIs, standardized
I/O, and parallelism. All of these beneficial components are part of the SPOOCEFEM
framework and hence are now part of the COMPOSE, PhoenixFlow, and MSStress codes. The
basic functionality of these codes has also been easily increased beyond the initial capabilities of
the academic codes due to the constructive nature of the SPOOCEFEM framework. We feel
these developments represent a compelling case for the use of OOD in multidisciplinary
computational software.

5. Conclusions

As demonstrated here, SPOOCEFEM provides a framework for the development of coupled
multidisciplinary computational codes. In conjunction with XDMF, SPOOCEFEM facilitates
the coupling of developmental and legacy scientific codes. This coupling of codes is required in
order to model complex processes such as the RTM process. In addition, the software developed
with SPOOCEFEM can be easily parallelized and ported in order to take advantage of high-
performance computers including clusters of personal computers. The combination of
COMPOSE/PhoenixFlow/MSStress models the RTM manufacturing process from resin injection
through curing and finally outputs process-induced residual stresses in a composite component.
The residual stresses can then used by codes such as DYNA3D (24) or P-DINOSAURUS (19) as
an initial material stress configuration for subsequent dynamic loading analysis. This coupling
process is becoming more important as multiscale and multiphysics problems are analyzed.

 20

6. References

1. Clarke, J. A.; Namburu; R. R. A Distributed Commuting Environment for Interdisciplinary
Applications. Concurrency and Computation: Practice and Experience 2002, 14, 1–14.

2. Clarke, J. A.; Schmitt, C. E.; Hare, J. J. Developing a Full Featured Application From an
Existing Code Using the Distributed Interactive Computing Environment. DOD High
Performance Computing Modernization Program Users Group Conference, Houston, TX,
1998.

3. Henz, B. J.; Shires, D. R.; Mohan, R. V. A Composite Manufacturing Process Simulation
Environment (COMPOSE) Utilizing Parallel Processing and Object-Oriented Techniques.
International Conference on Parallel Processing, Vancouver, B.C., Canada, 2002.

4. Shires, D. R.; Henz, B. J. An Object-Oriented Approach for Parallel Finite Element
Analysis. International Conference on Parallel and Distributed Processing Techniques and
Applications, Las Vegas, NV, 2003.

5. Mohan, R. V.; Ngo, N. D.; Tamma, K. K. On a Pure Finite Element Methodology for Resin
Transfer Mold Filling Simulations. Polymer Engineering and Science 1999, 39, (1), 26–43.

6. Ngo, N. D.; Mohan, R. V.; Chung, P. W.; Tamma, K. K. Recent Developments
Encompassing NonIsothermal/Isothermal Liquid Composite Molding Process
Modeling/Analysis: Physically Accurate, Computationally Effective and Affordable
Simulations and Validations. Journal of Thermoplastic Composite Materials 1998, 11 (6),
493–532.

7. Shires, D. R.; Mohan, R. V.; Mark, A. Optimization and Performance of a Fortran 90
MPIBased Unstructured Code on Large Scale Parallel Systems. International Conference on
Parallel and Distributed Processing Techniques and Applications, Las Vegas, NV, June
2001.

8. Shires, D. R.; Mohan, R. V.; Mark, A. An Evaluation of HPF and MPI Approaches and
Peformance in Unstructured Finite Element Simulations. Journal of Mathematical Modeling
and Algorithms 2002, 1, 153–167.

9. Henz, B. J.; Shires, D. R. Development and Performance Analysis of a Parallel Finite
Element Application Implemented in an Object-Oriented Programming Framework.
International Conference on Parallel and Distributed Processing Techniques and
Applications, Las Vegas, NV, June 2003.

 21

10. Shires, D. R.; Henz, B. J. Lessons Learned and Perspectives on Successful HPC Software
Engineering and Development. International Conference on Software Engineering Research
and Practice, Las Vegas, NV, June 2004.

11. Post, D.; Kendall, R. Software Project Management and Quality Engineering Practices for
Complex, Coupled Multi-Physics Massively Parallel Computational Simulations: Lessons
Learned from ASCI; LA-UR-03-1274; Los Alamos Laboratory: Los Almos, NM, 2003.

12. Veldhuizen, T. L.; Jurnigan, M. E. Will C++ be Faster than FORTRAN? First International
Scientific Computing in Object-Oriented Parallel Environments (ISCOPE), 1997.

13. Mohan, R. V.; Shires, D. R.; Mark, A.; Tamma, K. K. Advanced Manufacturing of Large
Scale Composite Structures: Process Modeling, Manufacturing Simulations and Massively
Parallel Computing Platforms. Journal of Advances in Engineering Software 1998, 29
(3–6), 249–264.

14. Ngo, N. D. Computational Developments for Simulation Based Design: Multi-Disciplinary
Flow/Thermal/Cure/Stress Modeling, Analysis, and Validation for Processing of
Composites. Ph.D. Thesis, University of Minnesota, MN, 2001.

15. Sourour, S.; Kamal, M. R. SPE technical paper, 18 (93), 1972.

16. Kamal, M. R.; Sourour, S. Integrated Thermo-Rheological Analysis of the Cure of
Thermosets. SPE technical paper, 18 (187), 1973.

17. Kamal, M. R.; Sourour, S. SPE technical paper, 13 (59), 1973.

18. Chung, P. W.; Tamma, K. K.; Namburu, R. R. Asymptotic Expansion Homogenization for
Heterogeneous Media: Computational Issues and Applications. Composites - Part A:
Applied Science and Manufacturing 2001, 32 (9), 1291–1301.

19. Kanapady, R; Tamma, K. K. P-DINOSAURUS: Parallel Dynamic INtegration Operators
for Structural Analysis Using Robust Unified Schemes; Department of Mechanical
Engineering: University of Minnesota, MN, 2002.

20. Voller, V. R.; Chen, Y. F. Prediction of Filling Times of Porous Cavities. International
Journal for Numerical Methods in Fluids 1996, 23, 661–672.

21. Henz, B. J.; Tamma, K. K.; Kanapady, R.; Ngo, N. D.; Chung, P. W. Process Modeling of
Composites by Resin Transfer Molding: Sensitivity Analysis for Isothermal Considerations.
AIAA-2002-0790, 40th Aerospace Sciences Meeting, Reno, NV, January 2002.

22. Kumfert, G.; Pothen, A. Two Improved Algorithms for Envelope and Wavefront Reduction.
BIT, 1997, 37 (3), 559–590.

 22

23. Cuthill, E.; McKee, J. Reducing the Bandwidth of Sparse Symmetric Matrices. Proceedings
of the 24th National Conference, Association for Computing Machinery, 1969, pp 157–172.

24. Lin, J. I. DYNA3D: A Nonlinear, Explicit, Three-Dimensional Finite Element Code for
Solid and Structural Mechanics; Lawrence Livermore National Laboratory: Oak Ridge, TN,
1998.

NO. OF
COPIES ORGANIZATION

 23

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 ONLY) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 US ARMY RSRCH DEV &
 ENGRG CMD
 SYSTEMS OF SYSTEMS
 INTEGRATION
 AMSRD SS T
 6000 6TH ST STE 100
 FORT BELVOIR VA 22060-5608

 1 INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS
 AT AUSTIN
 3925 W BRAKER LN
 AUSTIN TX 78759-5316

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC IMS
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS IS T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

NO. OF
COPIES ORGANIZATION

 24

 1 HIGH PERFORMANCE COMPUTING
 MODERNIZATION PROG OFFICE
 A MARK
 1010 GLEBE RD STE 510
 ARLINGTON VA 22201

