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1. Introduction 

Accurate analysis of the mechanical response of composite structural components requires that 
process-induced residual stresses be known.  These process-induced residual stresses can be 
computed by using multidisciplinary manufacturing process models.  Modeling of complex 
manufacturing processes under the liquid composite molding family, namely resin transfer 
molding (RTM), requires the integration of multidisciplinary numerical analysis tools of the 
physical models.  These tools can be combined in many ways including common data file 
formats or development in a common programming framework.  For legacy codes that have been 
developed, optimized, and debugged over time, it may be more economical to implement a 
common data file format such as the eXtensible Data Model and Format (XDMF) from the U.S. 
Army Research Laboratory (ARL) (1, 2).  For new software tools being developed or 
parallelized, the authors have created the Simple Parallel Object-Oriented Computing 
Environment for the finite-element method (SPOOCEFEM) (3, 4).  The SPOOCEFEM 
framework is used exclusively for development of the engineering applications in this report. 

2. The SPOOCEFEM Framework 

The SPOOCEFEM framework was developed expressly for the purpose of reducing the amount 
of time required for scientific software development, to promote code growth and maturation, 
and to improve code coupling capabilities.  The library avoids being overly generic but 
successfully compartmentalizes many of the functions common to the FEM approach.  It has 
been developed in the C++ language and has been ported to numerous computing platforms 
including Intel-based Linux clusters, the SGI Origin, and the IBM Power series machines.  While 
the initial ramp-up time to develop the fully functioning SPOOCEFEM library was significant, 
the library is already being successfully used in several codes. 

SPOOCEFEM uses numerous technologies to provide a complete development environment.  At 
the lower levels of the framework are high level language compilers for C++, C, and Fortran.  
On top of these compilers are the typically vendor supplied OpenGL visualization libraries, the 
Message-Passing Interface (MPI) library for parallel interprocessor communication, and linear 
algebra packages such as BLAS and LAPACK.  Next are the open source packages such as the 
visualization packages found in the Visualization Toolkit, binary and text file storage utilities, 
and linear system solver libraries.  SPOOCEFEM sits atop all of this, along with specialized 
matrix and vector templates as shown in figure 1, so that the low level library calls are obscured 
from the application developer. 
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Figure 1.  SPOOCFEM building block framework. 

 
SPOOCEFEM utilizes many of today's newest technologies to provide a complete integrated 
data file format.  It uses XDMF for data storage (1).  This data file format is extensible and 
designed for storing data used and generated by numerical applications.  SPOOCEFEM only 
utilizes a subset of the larger XDMF structure for unstructured grid problems as encountered in 
the FEM.  Data is segregated into descriptive text data (stored in XML) and large binary data sets 
(stored in the Hierarchical Data Format).  Using XDMF guarantees the ability to quickly use 
visualization tools already available such as Paraview from Kitware (www.kitware.com).  More 
details on SPOOCEFEM are outside the scope of this report but are referenced elsewhere (3, 4). 

3. Modeling the RTM Process 

Modeling of the RTM process includes the analysis of underlying physical phenomena of fluid 
flow, heat transfer, and induced material stresses.  Each of these models will now be briefly 
described, and then the integration within the SPOOCEFEM framework will be discussed. 

3.1 Resin Flow in Porous Media 

Initially, the RTM process may be modeled as isothermal flow of resin through a porous media, 
namely a fibrous preform.  An implicit algorithm for this purpose based on the Pure FEM was 
developed by Mohan et al. (5) and Ngo et al. (6).  This algorithm was then implemented and 
parallelized in three incarnations.  The first was a High Performance Fortran version utilizing 
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data parallelism.  The second version was developed with Fortran 90 and MPI for message-
passing parallelism (7, 8).  The current version utilizes SPOOCEFEM and is also based on 
message-passing parallelism, but with many of the bookkeeping routines managed by the 
SPOOCEFEM libraries (4).  This isothermal resin flow modeling application is called the 
Composite Manufacturing and Process Simulation Environment (COMPOSE). 

The transient mass conservation of the infusing resin is considered with a state variable defining 
the infused state of a node.  Application of the Galerkin weighted residual to the physical model 
equation leads to a semidiscrete equation of the form shown in equation 1.  Further details can be 
found in Mohan et al. (5). 

 qKPC =+Ψ , (1) 

where 

 

 ∫
Ω

Ω= NdNC T  , (2) 

 ∫
Ω

Ω= BdKBK T

µ
, (3) 

 ∫
Γ

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅∇⋅= dnPKNq T

µ
 , (4) 

and 

 
t

nn

∆
Ψ−Ψ

=Ψ +1  . (5) 

 
Ψ is the nodal fill fraction, 10 ≤Ψ≤ , defining the infused state of a physical node location, K  
is the permeability tensor of the fibrous preform, and P  is the pressure measured at a node.  The 
boundary conditions for equation 1 are given as follows: 

 0=
∂
∂

n
P on mold walls, (6) 

 0=P at flow front, (7) 

and 

 0PP = prescribed pressure at inlet (8) 
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or 

 0qq = prescribed flow rate at inlet, (9) 

where 0P  and 0q  represent prescribed pressure and flow rate at the inlet(s), respectively.  
Initially, at time t = 0, 

 1=Ψ at the inlet (10) 

and 

 0=Ψ elsewhere. (11) 

In equation 2, N  is the elemental shape function, and in equation 3, NB ∇= . 

3.1.1  Software Development 

Utilizing the object-oriented design (OOD) of SPOOCEFEM the FEM problem is divided into 
classes.  Most of the computational work besides the linear equation solvers in COMPOSE takes 
place in the various element classes.  A diagram showing the ComposeElement2dTri3 class 
hierarchy is shown in figure 2.  COMPOSE is capable of modeling the RTM process with 2.5-D 
or full 3-D analysis.  For composite components typically seen in the aerospace industry, the  
2.5-D model is most heavily utilized.  The 2.5-D element types in COMPOSE are three-noded 
triangles and four-noded quadrilaterals.  Multiple inheritance is used in the COMPOSE element 
classes in order to make code development more efficient.  The ComposeElement class 
provides functionality common to all COMPOSE element types such as storage of viscosity data.  
The ComposeElement2d class provides mass matrix and local permeability computations.  
The functionality unique for each COMPOSE element type such as stiffness matrix computation 
is available in the ComposeElement2dTri3 class.  More details on the development of the 
SPOOCEFEM-based COMPOSE software are available in Henz and Shires (9). 

 

Figure 2.  Hierarchy of the ComposeElement2dTri3 class showing multiple inheritance.
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Development time has decreased with the utilization of OOD from 12 months for the Fortran 90 
version of COMPOSE to ~3 months for the C++ version (10).  In addition, code reuse of the 
OOD library is highlighted in the remainder of this report.  Use of OOD in scientific computing 
always brings with it performance concerns associated with the runtime system (11, 12).  Our 
own experience shows that OOD does not necessarily degrade performance.  The COMPOSE 
software that was originally developed in FORTRAN 77 was re-implemented with OOD in C++.  
Table 1 shows a break out of the three most time-consuming routines in COMPOSE, the first of 
which is the linear solver with ~96% of the total runtime.  The faster execution of the C++ 
version of the solver is most likely due to small enhancements performed during translation.  The 
other routines (calculate pressure and update) are noticeably slower in C++ than FORTRAN.  
The three fold increase in runtime for the update routine is due to the numerous accesses to 
values contained in the vector templates.  The advantage of these templates is that they allow 
quick use of numerous solvers.  Therefore, this overhead is not critical in many instances and 
considered a good trade-off with the increased software development productivity. 
 

Table 1.  Function-oriented and OOD runtime comparison (in seconds). 

Operation FORTRAN 77 C++ 
Linear solver 2766 2694 
Calculate pressure 114 128 
Update 22 71 
Core total time 2902 2893 

 

3.1.2  Test Results 

The isothermal resin flow model COMPOSE was comprehensively tested in October of 2001.  
This original parallel code used Fortran 90 with MPI for parallelism.  The COMPOSE software 
was tested for scalability, validity, and the results were verified across various numbers of 
processors.  The performance of the Fortran 90 version of COMPOSE can be seen in figure 3. 

The COMPOSE verification and validation included comparison with analytic and experimental 
results.  Figure 4 shows the analytic model geometry and some numerical results.  Figure 5 
shows the experimental comparison. 

Verification of COMPOSE was performed using the data in figure 4 where results from various 
processor counts are compared for consistency. 
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Figure 3a:  COMPOSE model with 135,492 DOFs. Figure 3b:  COMPOSE model with 405,327 DOFs. 

Figure 3.  Wall clock time required to solve two COMPOSE models on three different architectures. 

 
 

  

  
Figure 4a:  Geometry of thin disk that has 
analytic solutions for flow front and injection 
pressure. 

Figure 4b:  Radial flow front position 
comparing analytic and numerical results. 

Figure 4.  Experimental validation results for Fortran 90 version of COMPOSE.
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Figure 5a:  Computational model of geometry 
used in experimental validation of COMPOSE. 

Figure 5b:  Pressure sensor data from 
computational model and experiment showing 
excellent agreement. 

Figure 5.  Validation results for Fortran 90 version of COMPOSE using experimental data. 

 

3.2 Convection, Conduction, and the Exothermic Resin Curing Process 

For the RTM process, it is often only necessary to model the isothermal resin flow to analyze the 
process accurately.  In some cases, though, the heat transfer and resin cure kinetics must also be 
considered in order to understand the manufacturing process to allow for the analysis and 
computation of the thermally induced residual stresses.  Extending the COMPOSE RTM model 
to include heat transfer and resin cure kinetics resulted in the multidisciplinary software called 
PhoenixFlow.  PhoenixFlow utilizes the resin flow model developed for COMPOSE with 
inheritance and OOD. 

3.2.1  Heat Transfer 

The resin flow modeled in COMPOSE and PhoenixFlow is based on an integral form of the mass 
balance equation coupled with Darcy’s law by way of a pure finite-element-based methodology 
(5, 13).  The thermal model equations employ an energy balance equation based on a fiber-resin 
thermal equilibrium model (14).  Utilizing the FEM in order to discretize the problem domain for 
the heat transfer model in PhoenixFlow is given as 

 ( ) Gqcondad QQTKKTC +=++ , (12) 

where
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 ∫
Ω

Ω= NdcWC p
T ρ , (13) 

 ( )∫
Ω

Ω⋅= BdBucWK Np
T

ad ρ , (14) 

 ∫
Ω

Ω= dkBBK N
T
Wcond , (15) 

 ( )∫
Γ

Γ⋅−= dnqWQ T
q , (16) 

and 

 ∫
Γ

Γ= dGWQ T
G φ . (17) 

 
WB is the spatial derivative of the weighting function, ,W  and NB  is the spatial derivative of the 

finite-element shape function, .N   φ  is porosity, ρ is density, pc  is specific heat, k is the 
thermal conductivity, u is the resin velocity, and G is the rate of heat generation by chemical 
reactions or other sources.  The subscripts f and r denote fiber and resin properties, respectively.  
The boundary conditions required to solve equation 5 are given by 

 
 WTT =  at the mold wall, (18) 

 0rTT =  at the mold inlet, (19) 

 ( ) ( )TTnuc
n
Tk fprr −⋅−=
∂
∂

01 ρφ  at the resin front, (20) 

and 

 ( ) WTtT == 0  initially. (21) 
 

3.2.2  Resin Cure Model 

In addition to the temperature calculations, the degree of resin cure is also computed in the 
current developments.  The discretized system of equations is given as 

 
α

αα RQKC =+ , (22) 

where
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 ∫
Ω

Ω= NdWC Tφ , (23) 

 ( )∫
Ω

Ω⋅= dBuWK N
Tφ , (24) 

and 

 ∫
Γ

Ω= dRWQ T
R αφ
α . (25) 

NB  in equation 24 is the spatial derivative of the finite element shape function, N .  α  is the 
degree of cure, and αR  is the rate of chemical reaction.  The boundary conditions for equation 22 
are given as 

 0=α at the mold inlet (26) 

and 

 ( ) 00 ==tα initially. (27) 

 
The resin curing process is exothermic.  The heat generated, G , is given by  

 
 αRHG R= , (28) 

 
where RH  is the heat of reaction per unit volume for the pure resin (15–17). 

3.2.3  Software Development 

The first step in extending COMPOSE for nonisothermal analysis is to develop a new element 
type that includes routines for computing and storing stiffness matrices for the additional thermal 
models.  Graphically, this extension is shown in figure 6.  The PhoenixFlowElement class 
contains routines required by all PhoenixFlow element types.  These routines include calculating 
effective material properties and the elemental viscosities.  The PhoenixFlowElement2d 
class does not contain any functionality at this time but is used for convenience in the class 
hierarchy.  The PhoenixFlowElement2dTri3 class provides functionality for computing 
elemental stiffness matrices for heat transfer and resin cure. 
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Figure 6.  Hierarchy of the PhoenixFlowElement2dTri3 class showing multiple inheritance. 

3.2.4  Test Results 

The PhoenixFlow application was developed as part of the Common High Performance 
Computing Software Support Initiative System of Systems (SOS) portfolio.  This project, 
managed by the Department of Defense High Performance Computing Modernization Program, 
requires in-depth testing for correctness, scalability, and utility.  Like COMPOSE, PhoenixFlow 
was tested against these hallmarks.  All of these metrics were defined in the test plan as Critical 
Technical Parameters (CTPs) with the scalability CTP given as an example in table 2. 

It is interesting to note that PhoenixFlow has superlinear speedup for all architectures on some 
number of processors and for some architectures on any number of processors.  The poor 
scalability on the IBM machine for greater than 32 processors can be explained by the 
communications system employed on that architecture.  On the IBM, the processors are grouped 
onto nodes with 32 processors and shared memory on the node.  Between nodes, the memory is 
not shared and the communication system between nodes is much slower than the on-node 
system.  This communication architecture manifests itself as the poor scalability results shown in 
figure 7.  In addition to scalability, PhoenixFlow has been validated with published experimental 
results and subsequently verified across architectures and numbers of processors.  Figure 8 
contains the verification results for one experiment, three architectures, and one element type.  
The full verification suite includes three experiments, three architectures, and two element types, 
not to mention cross-architecture comparisons that were performed. 

The scalability results for the PhoenixFlow software are given in figure 7.
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Table 2.  Scalability CTP from SOS test report given as an example. 

 Parameters  
 

CTP Title 
Optimum 
Objectives 

Minimum 
Threshold 

 
Worst Case Tested Value and Outcome 

Scalable software 
suites: 
 
Demonstrate 
reduction in clock 
time as a function 
of increased 
central processing 
units 

Fixed speedup 
exceeds 60% of 
optimum on  
64 processors 

Fixed speedup 
exceeds 50% of 
optimum on  
32 processors 

Tested Value: 
• SGI O3K:  120.75% 
• Linux Cluster:  111.30% 
• IBM SP4:  64.73% 

 
Outcome: 
___   Baseline established 
___   Fails to meet minimum threshold 
___   Meets minimum threshold 
_ _  Meets optimum objective 

Discussion: 
 
As was stated in the Beta Test Plan, the timing data here do not include the time required to compute 
the flow or compute post-filling cure.  Rather, it involves only the time to compute the thermal solution. 
 
These results were computed using relative speedup which is defined as:  

p

p
p T

Tp
S minminˆ = ,

 
where minp is the smallest number of processors that were used to compute a solution and T is the time 
associated with the given processor count.  The minimum processor count used on all architectures in 
this case was eight.  This seems to represent a good choice to try and mitigate possible hierarchical 
memory effects and also to limit job waiting as these trials were conducted in a production 
environment.   

 

 

Figure 7.  Scalability of PhoenixFlow software on 
various architectures.
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Figure 8a:  SGI, location 1. Figure 8b:  IBM, location 1. Figure 8c: Linux Cluster, 

location 3. 

 
Figure 8d:  SGI, location 2. Figure 8e:  IBM, location 2. Figure 8f:  Linux Cluster, 

location 2 

 
Figure 8g:  SGI, location 3. Figure 8h:  IBM, location 3. Figure 8i:  Linux Cluster, 

location 3. 

Figure 8.  Verification results for PhoenixFlow on three architecture and 1, 2, 4, 8, and 16 processors. 

 
The validation of PhoenixFlow involved comparing numerical results with published 
experimental results.  These comparisons are shown in figure 9 for three parallel architectures. 

The plots in figure 9 show that the PhoenixFlow model is accurate and consistently predicts 
nonisothermal RTM results in real world experiments.  The PhoenixFlow application was also 
validated against three published geometries, three transient sets of data per publication, and 
three architectures.
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Figure 9a:  SGI, location 1. Figure 9b:  IBM, location 1. Figure 9c:  Linux Cluster, 

location 3. 

 
Figure 9d:  SGI, location 2. Figure 9e:  IBM, location 2. Figure 9f:  Linux Cluster, 

location 2. 

 
Figure 9g:  SGI, location 3. Figure 9h:  IBM, location 3. Figure 9i:  Linux Cluster, 

location 3. 

Figure 9.  Validation results of PhoenixFlow for experiment 1, showing window of valid results around published 
results. 

 
3.3 Multiscale Residual Thermal Stress Analysis 

Composite components manufactured with processes such as RTM often contain residual 
stresses after processing.  These residual stresses are typically produced during the cooldown 
phase after the resin has cured.  The model used to compute residual stresses in the current 
developments is based on the Multiscale Elastic Thermal Stress software developed by Chung  
et al. (18).  The model also predicts homogeneous material properties for heterogeneous 
materials through the Asymptotic Expansion Homogenization method (18).
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The thermal residual stresses are computed from the following equation: 

 ∫∫∫∫∫
ΩΩ

+
Γ

+
Ω

++
Ω

Ω−Ω+Γ+Ω=∆⎥
⎦

⎤
⎢
⎣

⎡
Ω dBdFNdNdDBuDBdB n

T
n

T
n

Tth
n

T
n

T στε 1111 , (29) 

where σ  is the stress experienced by the body, F  is the body force per unit volume, B  is the 
derivative of the shape function N , n⋅= στ , u  is the nodal displacement, and ε  is the 
elemental strain.  A detailed derivation of the preceding equation can be found in Ngo (14). 

The software to compute the residual thermal stresses developed at ARL utilizes a baseline 
academic code from Ngo (14).  The original code was developed using FORTRAN 77, was 
serial only, and did not contain a common data file format or output other than simple elemental 
results in text files.  A restructured, enhanced, and parallelized application was developed in 
SPOOCEFEM to provide the same capabilities.  The new SPOOCEFEM-based software 
developed at ARL is called MSStress (MultiScale thermal residual Stress analysis). 

3.3.1  Software Development 

Since the MSStress software is currently coupled with COMPOSE and PhoenixFlow through 
common data files (XDMF), no inheritance of classes from previous applications is used.  The 
key portion of the software development for MSStress is the implementation within the 
SPOOCEFEM framework so that it can be parallelized and have a graphical user interface (GUI) 
available for pre- and postprocessing capabilities.  Some interesting details of the software 
development for MSStress are provided.  The microscale model in MSStress is a unit cell of the 
composite component, as shown in figure 10a, that is used to compute the homogenized material 
properties for the macroscale model, shown in figure 10b.  As was soon discovered, the 
microscale model was much more difficult to parallelize because of the symmetric boundary 
conditions required in the numerical analysis.  After considering this for some time, we 
concluded that the microscale model was typically somewhat smaller than the macroscale model 
and could therefore be computed in serial on each processor used in the parallel analysis.  The 
macroscale problem is subsequently solved in parallel with the computed material properties.  
The adverse affect on performance from not parallelizing the microscale model is insufficient to 
offset the extra effort that would be required to parallelize the symmetric boundary condition 
routines at this time.  A more detailed analysis of the MSStress software development is not in 
the scope of this report and will appear in future work.
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(a) Woven fabric microstructure. 

 
(b) Macroscale model of thick composite structure. 

Figure 10.  Visual example of micro and macroscale MSStress models. 

3.3.2  Test Results 

The MSStress software was not subject to the rigorous testing requirements of the other 
components since it was not part of the original code development plan.  MSStress was only 
required to output data in a common format useable by a third-party application for analysis in a 
continuum mechanics code.  In this case, we used P-DINOSAURUS (19) as the continuum 
mechanics application for service condition loading.  Some of these results can be seen in  
figure 11. 

 

4. Computational Model Integration 

This section discusses of some of the issues encountered while developing tightly coupled codes 
(such as COMPOSE and PhoenixFlow) and when loosely coupling codes through data I/O only.  
The first section discusses the tight coupling of the flow model in COMPOSE with the thermal 
and cure models in PhoenixFlow.  The second section provides details about using XDMF in 
order to couple the thermal results from PhoenixFlow with the multiscale residual stress model in 
MSStress. 

4.1 Tightly Coupled Flow/Temperature/Cure 

In modeling the RTM process, the fluid flow and thermal models must be tightly coupled.  This 
coupling is accomplished through software engineering.  The COMPOSE fluid flow model is 
implemented in the SPOOCEFEM framework (9) as a stand-alone code.  The thermal and cure 
models in PhoenixFlow then take advantage of the COMPOSE software through inheritance and 
OOD.
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Figure 11a:  Representative vehicle geometry showing region of blast loading. 

 
 

Figure 11b:  Representative part with no 
residual stress information. 

Figure 11c:  Shear stress results from  
P-DINOSAURUS at the 20th time step  
(with no process induced residual stress). 

  
Figure 11d:  Initial shear stress computed by 
MSStress. 

Figure 11e:  P-DINOSAURUS results of same 
blast loading using the process induced initial 
residual stresses in the material. 

Figure 11.  Thick geometry showing process induced residual stress effects on sample service loading conditions. 

 
An example of this OOD is the three-noded triangular element in PhoenixFlow.  The COMPOSE 
three-noded triangular element has storage, computation, and assembly routines for the fluid 
flow stiffness matrix.  The PhoenixFlowElement2dTri3 class inherits these routines and 
adds similar routines for thermal and cure analysis.  In COMPOSE, the viscosity of the resin 
inside an element remains constant, whereas the resin viscosity is computed at each flow time 
step in PhoenixFlow.  For the storage of the resin viscosity the ComposeElement class is 
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utilized, and new routines for resin viscosity computation are added to the 
PhoenixFlowElement class. 

In addition to the element classes, the PhoenixFlowFEM class inherits functionality from the 
ComposeFEM class.  This inherited functionality includes the one-shot filling routine (20) and 
sensitivity analysis for temperature independent parameters (21).  The main loop in the 
COMPOSE software computes filling at each time step until the mold is filled.  Since 
temperature and degree of cure must be computed in between filling time steps, a new routine in 
PhoenixFlow has been developed that computes a single filling time step and then proceeds to 
thermal and cure analysis before continuing the resin flow process. 

Another issue in the thermal analysis includes heat transfer in the through-thickness direction 
causing high temperature gradients.  This requires that 3-D elements be built up on top of the  
2-D flow elements, as seen in figure 12.  These extra elements and nodes increase the complexity 
and storage requirements of the linear equations many-fold in PhoenixFlow.  As such, careful 
attention is paid to the nodal numbering and elemental connectivity in order to improve 
performance and reduce code complexity. 

 
 

 

Figure 12.  Stack of six-noded wedge elements for PhoenixFlow thermal/cure analysis. 

The importance of the nodal numbering strategy shown in figure 12 is evident in the connectivity 
graphs shown in figure 13.  Figure 13a shows the nodal connectivity graph of a certain problem 
for the resin flow model.  In other words, this graph shows how the various nodes in the finite-
element mesh are connected by the elements.  Locality of reference is an important consideration 
in today’s parallel supercomputers as the memory systems used are highly complex and layered.  
Minimization of the connectivity graph bandwidth can lead to improvements in the runtime and 
cache efficiency of a code using these data structures (22).  A Reverse Cuthill-McKee (RCM) 
(23) pass can be used to optimize the locality and produce a tight diagonal for the connectivity 
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(a) Resin flow model nodal 
connectivity graph 

(b) Built-up thermal/cure model 
nodal connectivity graph 
corresponding to numbering 
strategy employed in figure 13a. 

(c) Built-up thermal/cure model 
nodal connectivity graph 
corresponding to numbering 
strategy employed in figure 13b. 

Figure 13.  Comparison of previous connectivity graphs for resin flow vs. thermal/cure models. 

 
graphs.  An RCM pass performed on the connectivity graph of the resin flow model (figure 13a) 
will be maintained for the thermal/cure model (figure 13c) since they are of similar structure.   

4.2 Coupled Flow/Thermal/Cure/Stress Analysis 

The thermal residual stress analysis software (MSStress) requires temperature profiles from the 
nonisothermal RTM software (PhoenixFlow).  The integration of the MSStress software with 
PhoenixFlow is accomplished by storing data in the XDMF file format.  This format standardizes 
the storage and description of data so that MSStress can read temperature results from 
PhoenixFlow. 

There are two ways in which the residual stresses can be computed in the RTM process.  In the 
first, the stresses are computed incrementally at each thermal time step as the resin cures, which 
would require tight coupling of the PhoenixFlow and MSStress codes.  In the second method, the 
residual stresses are assumed to be insignificant prior to completion of the curing process, at 
which time residual stresses begin to develop from cooling of the completely cured composite 
component.  MSStress computes residual stresses using the second method, thus allowing for 
this loose coupling. 

Currently, MSStress only supports eight-noded hexahedral elements.  This requires that the 
thermal analysis be performed with 8-noded hexahedral, 6-noded wedge, or 4-noded tetrahedral 
elements in a full 3-D analysis or with quadrilateral elements that are built-up for thermal 
analysis as described earlier.  This method is often preferable since many composite structures in 
the aerospace industry are thin.  In order to accurately and efficiently model the flow and thermal 
problems, a 2.5-D method is employed.  Full 3-D models are available in COMPOSE and 
PhoenixFlow, but these often require large finite element models compared to an equivalent  
2.5-D model when applicable.
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Even though software tools were previously available to model the flow/thermal/cure mold 
filling process and to compute the subsequent thermal residual stresses, these codes were 
immature and resided only in the academic world.  They lacked optimization, GUIs, standardized 
I/O, and parallelism.  All of these beneficial components are part of the SPOOCEFEM 
framework and hence are now part of the COMPOSE, PhoenixFlow, and MSStress codes.  The 
basic functionality of these codes has also been easily increased beyond the initial capabilities of 
the academic codes due to the constructive nature of the SPOOCEFEM framework.  We feel 
these developments represent a compelling case for the use of OOD in multidisciplinary 
computational software. 

5. Conclusions 

As demonstrated here, SPOOCEFEM provides a framework for the development of coupled 
multidisciplinary computational codes.  In conjunction with XDMF, SPOOCEFEM facilitates 
the coupling of developmental and legacy scientific codes.  This coupling of codes is required in 
order to model complex processes such as the RTM process.  In addition, the software developed 
with SPOOCEFEM can be easily parallelized and ported in order to take advantage of high-
performance computers including clusters of personal computers.  The combination of 
COMPOSE/PhoenixFlow/MSStress models the RTM manufacturing process from resin injection 
through curing and finally outputs process-induced residual stresses in a composite component.  
The residual stresses can then used by codes such as DYNA3D (24) or P-DINOSAURUS (19) as 
an initial material stress configuration for subsequent dynamic loading analysis.  This coupling 
process is becoming more important as multiscale and multiphysics problems are analyzed. 
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