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1 Description of the effort

The goal of the effort was the development of a computational framework for
efficient application of high-frequency methods to scattering and radiation
problems involving realistic geometries. A particular class of applications
which motivated this work were problems involving antennas mounted on
large platforms modeled by smooth curved surfaces, in the cases where the
platform can be described by means of high-frequency asymptotic methods.
We aimed at developing methods which would allow description of asymp-
totic high-frequency solutions in terms of the induced surface currents, and
an economical representation of these currents, requiring a number of pa-
rameters growing with frequency f slower than 0(f 2).

The main purpose of the work carried out was to devise ray tracing and
ray-tube tracing methods which would not require generating a large number
of rays, comparable to the number of unknowns in the conventional Method
of Moments (MoM) computation, i.e., growing proportionally to the object
size in wavelength units. In order to achieve this goal, we implemented a
number of algorithms which allow us to describe a wavefront as a continuous
triangulated surface, consisting of curved, second-order triangles. During the
wavefront expansion, we maintain an approximately constant resolution of
the wavefront geometry by gradually increasing the number of triangles and
rays. Our algorithms also adaptively adjust the number and distribution
of rays in the cases when reflection of the wavefront from a curved surface
causes a strong divergence of the ray tubes. Such techniques eliminate the
need of generating an excessively large number of rays in the initial stage of
the ray-tracing process.

Equivalently, each triangle on the wavefront surface is described as a
smaller wavefront associated with a ray tube, formed by a triplet of rays.
The ray-tube and wavefront evolution algorithms we implemented ensure
continuity of the wavefront (or, equivalently, adjacency of the ray tubes).
These algorithms are implemented for the cases of free-space wavefront prop-
agation, reflection on smooth surfaces, and wavefront and ray tube splitting
at the shadow boundary. Together with similar methods developed in Phase
I for generating and evolving wavefronts due to edge diffraction, these tech-
niques allow description of the most important high-frequency scattering
mechanisms: (multiple) reflections and edge diffraction.

Further, we compute scattered fields and the resulting cross-sections by
first evaluating and then integrating over the induced surface currents. In
this context we developed algorithms for accurate second-order interpolation
of fields within ray tubes.
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The main benefit of the developed wavefront propagation method is a
relatively small number of rays and ray tubes necessary to obtain an accu-
rate description of the considered high-frequency phenomena. The required
wavefront resolution (or the width of a ray tube) is not limited to a frac-
tion of the wavelength A, but rather (in the case of multiple reflections on
smooth surfaces) is controlled by the surface curvature radius p. We found
that the accuracy of 1 dB in the cross-section is, typically, achieved with
the wavefront resolution h of order of h _- 0.5p, practically independently
of the wavelength, in the range p > 2 A.

We also applied the concepts of ray-tube evolution to modeling of prop-
agation of creeping waves on smooth, curved, convex surfaces. In this case
ray tubes become ray strips following the geodesics on the surface. We de-
veloped accurate numerical methods for constructing such ray strips and
for computing their divergence. The latter algorithm is based on numerical -

solution of the geodesic deviation equation, involving the curvature of the
scatterer surface.

We tested our creeping-ray algorithms and code to compute scattering
cross-sections on several bodies of revolution. In this case we can compare
our numerical results for ray-strip evolution on a discretized surface with the
semi-analytic evaluation based on analytically known geodesics. We found
a close agreement of the numerical computation and the semi-analytic re-
sults. We also found that our approach, which explicitly takes into account
creeping-ray propagation in the deep shadow region is significantly more ac-
curate than approximate techniques which only consider the shadow tran-
sition region and extrapolate the creeping-ray contributions based on the
local curvature information at the shadow boundary.

Our main results are briefly summarized in Section 2, and the technical
details are described in Sections 5 - 7.

The activities of the Yale University group are summarized in Section 8,
followed by two additional Sections.

1. The first part of the report (Section 9) is concerned with mathemati-
cal tools useful in evaluating prolate spheroidal wave functions. Such
band-limited functions may arise in constructing large-support basis
functions (or directional basis functions) as an alternative parameter-
ization of high-frequency solutions in scattering problems.

2. The second part of the report (Section 10) concentrates on develop-
ment of a unified Fast Multipole Method applicable to physical sys-
tems containing both electrically large portions, described by typi-
cal high-frequency discretizations, and parts characterized by highly
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sub-wavelength details. Such situations occur in problems involving
antennas on large platforms.

2 Main results

A. The initial emphasis of our work under this contract was to develop com-
putational methods for constructing high-frequency asymptotic solutions in
scattering on perfectly conducting objects. Our general approach was to
describe high-frequency phenomena in terms of numerically implemented
evolution of the wavefronts and ray tubes associated with the propagating
waves.

We put much effort in developing methods applicable to scattering on
curved surfaces. Typical ray-tracing techniques are based on independent
evolution of rays and do not involve the concept of a wavefront as a numer-
ically modeled surface. As a result they encounter difficulties in describing
wave reflection from curved surfaces, due to the divergence of rays and the
resulting lack of information on the wavefront geometry.

We avoid these difficulties by relying on the wavefront concept, and
implementing it numerically as a well-defined geometrical surface.

In the area of modeling wavefront and ray-tube evolution we developed
algorithms and computational tools for describing:

1. Free-space evolution of wavefronts in Geometric Optics (GO):

a. Modeling of wavefronts as continuous discretized (triangulated)
surfaces, with triangles associated with ray tubes.

b. Modeling of wavefront evolution in terms of evolution of a con-
tiguous set of ray tubes. Divergent ray tubes are automatically
split into narrower tubes to ensure an approximately constant
density of rays, and a sufficient resolution in the wavefront defi-
nition.

c. Piecewise quadratic parameterization and interpolation of the
wavefront and their segment, fully taking into account the wave-
front curvature.

2. Multiple reflection of wavefronts on curved surfaces, described in Ge-
ometrical Optics:

a. Fast and accurate evaluation of intersections of rays with a curved
surface.
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b. Computation of the curvatures of reflected ray tubes and the
wavefront based on the curvature of the incident wavefront and
the curvature of the scatterer surface.

c. Adaptive ray tube splitting reducing divergence angles of the re-
flected ray tubes, and ensuring sufficient resolution of the wave-
front. Ray-tube splitting is controlled by the curvature of the
scatterer surface and the incidence angle of the ray tube.

d. Quadratic interpolation techniques in reflected ray tube construc-
tion and splitting, ensuring continuity of the wave front, i.e.,
matching of boundaries of adjacent ray tubes.

3. Evaluation of currents induced by fields associated with wavefronts
and ray tubes:

a. Fast computation of intersections of ray tubes with the scatterer
surface, taking into account scatterer surface and wavefront cur-
vatures.

b. Accurate second-order interpolation of fields within ray tubes.

4. Numerical modeling of creeping waves propagating on convex surfaces
(smooth or with sharp edges) as "ray strips" - surface analogues of
ray tubes:

a. Techniques for describing evolution of creeping rays as geodesics
on general convex piecewise smooth surfaces.

b. A novel procedure efficient computing of the change in the ray
strip width, based on a numerical solution of the geodesic de-
viation equation. This method takes into account effects of ray
strip traversing edges on the surface (formally, lines of infinite
curvature).

c. Algorithms for evaluating currents associated with creeping rays,
taking into account their polarization- and curvature-dependent
attenuation.

We demonstrated the developed methods in computation of currents and
scattering cross-sections for a number of high-frequency processes involving
convex smooth curved-surface objects and sets of such objects. Particular
cases included multiple reflections on a system of two smooth convex objects,



and propagation of creeping waves in the shadow region on a single convex
object.

As technical tools, we developed codes and code modules implementing
algorithms for:

" Piecewise second-order parameterization of curved scatterer surfaces,
with computation of all standard surface characteristics, such as cur-
vatures, curvature tensor, and Christoffel symbols.

" A similar piecewise second-order parameterization of the wavefront
surface.

"* Fast location of intersections of rays and ray tubes with the scatterer
surface.

* Second-order interpolation of ray-tube fields, as required in ray-tube
splitting and induced current computation.

" Parameterization of creeping rays and their divergence in terms of
geodesic deviation equation.

B. In the later stage of the work we directed part of the effort towards meth-
ods applicable in developing novel fast rigorous (direct or iterative) solution
methods. We were considering solution methods based on construction of
economical parameterization of the high-frequency solutions (currents) in
terms of basis functions (a) defined on large supports (of at least several
wavelengths size), (b) characterized by collimated radiation patterns, and
(c) constructed numerically. We refer to these functions as "numerical" di-
rectional basis functions (DBFs). Their particularly important property is
the angular collimation of the radiated fields, which leads to sparsity of the
impedance matrix in the DBF representation.

In the "numerical" DBF approach the basis functions are not constructed
as analytic representations of predicted high-frequency behavior of the so-
lutions, but rather as eigenfunctions of a certain integral operator related
to the power radiated by all possible source (current) distributions on the
scatterer surface.

The two main advantages of the numerically constructed DBFs are (1)
their versatility and applicability to complex geometries and (2) a better
collimation of the radiation patterns, and hence higher degree of resulting
impedance matrix sparsity.
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However, at present, the drawback of the approach is a high compu-
tational cost of DBF construction. The DBF construction algorithms are
a subject of active research, which may result in total cost scaling, up to
logarithms, as the number of MoM unknowns.

The large problem size in the direct-solihtion approach utilizing DBFs
is related to the fact that full set of DBFs has to be constructed such as
to parameterize all possible solutions (current distributions) for all possible
incident waves. An alternative approach would be an iterative solution,
applicable to a single incident wave or a limited set of incident waves. In
this case one would construct only a subset of the DBFs, relevant to the
considered excitation(s), reducing in this way the problem complexity. Our
wavefront and ray-tube evolution techniques provide, in this context, an
efficient way of selecting those DBFs which strongly couple to the expected
solution. In order to generate a sufficiently large set of DBFs, it is important
to keep track of all relevant scattering processes, and hence to generate
complete sets of ray tubes and wavefronts. On the other hand, the accuracy
of the asymptotic theories (GDT, UTD) is of secondary importance, since
they are used only to estimate the significance of the individual processes,
and not for detailed predictions of the fields and currents.

3 Benefits of the developed approach

The main advantages of the approach we developed are as follows:

1. In the area of methods for spatial ray-tube and wavefront evolution, in-
volving free-space wavefront propagation and reflection on flat-faceted
and curved surfaces, we developed techniques allowing using a num-
ber of rays Nr growing with the frequency much more slowly than
in conventional ray tracing methods requiring spacing between rays
scaling proportionally to the wavelength. By using ray-tube partition
techniques, together with second-order methods for scatterer surface
and wavefront parameterization and interpolation, we were able to re-
duce the scaling in the number of rays with frequency f to Nr , f2/3

compared to Nr ,-, f 2 in the conventional approach.

2. In the area of problems involving creeping waves propagating on
smooth convex surfaces, we developed highly accurate techniques for
computing evolution of ray strips (the analogue of ray tubes). These
techniques allow an accurate computation of geodesics, evaluation of
ray-strip spreading, and, eventually, accurate numerical evaluation of
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the asymptotic theory predictions for the currents in the deep-shadow
region. We have shown that computations taking into account the ac-
tual asymptotic behavior of currents in the shadow region reproduce
effects that are missing in approximate methods based on extrapola-
tion of the solutions from the shadow boundary.

3. We developed an extensive set of software modules implementing the
techniques mentioned in the points 1 and 2 above. These modules
are available in the form of a library of modules, and two main pro-
grams, for modeling of scattering processes involving spatial ray-tube
evolution and evolution of creeping rays.

4. The methods we developed can be applied both to direct compu-
tation of asymptotic high-frequency solutions, and as a auxiliary
tool in numerical construction of systems of "directional basis func-
tions" (DBFs), characterized by large supports and narrow radiation
patterns. In the latter case wavefront and ray-tube evolution methods
allow pre-selection of the relevant DBFs, corresponding to dominant
scattering mechanisms in the given scattering problem.

4 Commercialization of the developed approach

The software tools developed during Phase I and II offer the following fea-
tures:

e A high-frequency solver based on wavefront evolution methods. It uses
as input the scatterer geometry and a definition of the initial wavefront (ra-
diation source), and generates as output evolved wavefronts, induced surface
currents, and radiated fields.

* The models, in a consistent way, multiple reflection processes and the
most important diffraction phenomena (edge and smooth-surface diffrac-
tion). The structure of the code allows later inclusion of other diffraction
mechanisms, such as crack and gap diffraction, as their UTD descriptions
become available.

* The solver is applicable to perfectly conducting scatterers described
either by facetized representations with flat facets, or by parametric repre-
sentations.

e The solver offers trade-offs between the accuracy and the computa-
tional cost by allowing the user to include or exclude specific scattering
mechanisms.
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* The software package includes basic tools for geometry manipulation
and preprocessing, as well as essential graphical tools for visualization of the
geometry, wavefronts, and induced currents.

* The solver and auxiliary programs are provided in the form of modu-
lax function libraries, to facilitate their interfacing with other software. In
particular, they will be amenable to use in the context of hybrid methods,
and methods based on asymptotic integral-equation formulations.

9 The solver is portable to Unix, Linux, and PC platforms.

The algorithms developed under this contract will form a backbone for
the commercial version of the high frequency electromagnetic simulation
software to be subsequently developed by Monopole Research. The software
will be packaged for

(i) defense applications: performance analysis of radio frequency (RF)
antennas installed and operating in the presence of realistic platforms,
far field and near field radar signature predictions, RF imaging), and

(ii) commercial applications: urban propagation, remote sensing of vehi-
cles.

There are over 500 organizations across the country using EM simulation
codes to produce and analyze scattering data for realistic aircraft, missiles,
ships, spacecraft, and ground vehicles. They include numerous government
organizations and major aerospace firms such as Lockheed Martin, Northrop
Grumman, Boeing, Sikorsky Aircraft, Raytheon, and TRW.

There are also several Government organizations sponsoring develop-
ments of novel solvers for realistic EM simulations; they include: the Defense
Advanced Research Projects Agency (DARPA), the Air Force Research Lab
(AFRL), the Air Force Office of Scientific Research (AFOSR), the Army
Research Lab (ARL), the Naval Research Lab (NRL), the Office of Naval
Research (ONR), Sensors, Space Vehicles or Human Effectiveness Direc-
torates, the Office of the Secretary of Defense/High Performance Computing
(OSD/HPC), the National Air Intelligence Center (NAIC), the Missile and
Space Intelligence Center (MSIC), the Naval Air Warfare Center (NAWC).

We intend to continue contacts with potential Government and com-
mercial customers, to identify their specific needs and to include in the code
development the capabilities of interest to prospective customers. Recently

the following companies have contacted us with respect to the future evalu-
ation/purchasing of the high frequency simulation software: TRW (software
for antenna applications involving wide-band pulses), Titan Corporation
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(modeling of antennas with dispersive surface parameters), Rockwell Scien-
tific (large scale computations of phase-array), Boeing Autometric (simula-
tion of urban propagation problems).
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5 Technical details: A. Scatterer surface and'
wavefront parameterization

We briefly summarize here the algorithms we developed and implemented in
order to describe curved surfaces as collections of second-order parametric
curved triangles. They were originally applied to wavefronts composed out of
wavefront segments associated with the individual ray tubes (in which case
only the second-order parameterization is available), but we found them
useful also in parameterizing smooth convex scatterer surfaces.

Our second-order parameterization uses as input vertices on the surface
(i.e., vertices of the curved triangles), and normals to the surface at the ver-
tex locations. This information allows us to determine uniquely the curved
(second-order) edges of the triangles, and the corresponding second-order
parameterization of the triangles themselves.

The details of the construction are described, for the general case, in
Appendix A of Report 1, and in Appendices B and C of that report for the
case of small-curvature triangles (or for ray tubes of small angular widths).
We summarize here the main points.

5.1 Construction of edges

We first consider two vertices, r 1 and r 2, and the corresponding normal
directions n 1 and n 2 (Fig. 1). On this basis we construct the edge connecting
the vertices as a parametric curve r(t), t E [0, 1], and a normal field n(t)
such that

r(0) = r, , r(1) = r 2 , (5.1)

n(O) = nt , n(1) = n2. (5.2)

Obviously, we also have to require that the normal field is orthogonal to the
tangent to the curve, i.e.,

iw(t)e n(t) = 0t, (5.3)

where i is the derivative of r.
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Figure 1: A curve interpolating vertices.

We construct the edge using the lowest order, quadratic parameterization
of the curve, and a close-to-linear parameterization of the normal field (the
latter is relevant only in applications to wavefronts).

Since a quadratic curve is planar, we have to define its plane, say P12.
If the normal nI and n 2 are coplanar they uniquely specify P12 - Otherwise,
we define P 12, by means of a least-squares procedure, to lie as closely as
possible to the normal n1 and n 2.

More specifically, we define the curve as

r(t) = r, (l-t) +r 2 t+Bt(1-t), (5.4)

and parameterize B as

B(7 ) =/61 nj + 32 n 2 +Ym, (5.5)

with

m=D 1 +D 2 , (5.6)

where

D 1 =R x n1 , D 2 = R x n 2 , (5.7)

are normal to the planes specified by the ray directions ni and the edge R

R = r1 - r 2 . (5.8)

To determine the parameters fAi and y we now require, according to
Eq. (5.3), that the tangent to the curve,

i(t) = -R + B (1 - 2t) (5.9)
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is orthogonal (at t = 0 and t = 1) to the normal vectors n1 and n 2 (Eq. (5.3)),
i.e.,

n, • B = n, -R, n 2 -B = -n 2 • R. (5.10)

These conditions specify a one-parameter set of vector B, determined by the
intersection of the planes defined by Eq. (5.10). The remaining parameter is
found by minimizing the least-squares error

D -- (D1• B)2 + (D2•- B)2 .(5.11)

As a result, we obtain as set of linear equations for the coefficients 01, P2,

and -.
In the case of (n, • n 2)2 : 1 the coefficients 83i are given by

[1] = 1 [ 1 -nl'n2 [ n2] l ] R (5.12)
18- (n I n) -n1l • n2 1 n2 • R

and -y is found from the equation

092 D 1 " n 2 D 1 " m +,-1 D 2 " nD 2 "m + [(D 1 _m) 2 + (D 2 .m) 2 ] 7=0.
(5.13)

If the vectors R, n1 , and n 2 are coplanar, D 1 • n2 = D 2  --n, 0, and
gamma = 0.

In the case of (n1 -n 2)2 - 1 the only possible configuration for a convex
surface is n1 = n 2 and nI• R = n2• R 0, representing a flat surface; hence
a geometrically justified solution is B - 0.

Given the boundary curve r(t), we construct now the normal field n(t)
as a linear interpolation modified by a small correction term,

n(t)=nI(1-t)+n 2 t-f(t)[R-B(1-2t)] , (5.14)

where, as follows from Eqs. (5.3) and (5.9),

f (t) = 2 R.- (n, + n2) t (1 0 )(5.15)[R - B (1 - 2t)12

5.2 Construction of faces

Having determined curved edges, we construct faces by means of second-
order surface interpolation, i.e., we define curved second-order faces having
as boundaries the quadratic curves parameterized as in Eq. (5.4). In terms
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of the barycentric coordinates u1 > 0, u2 > 0, and u3 > 0, satisfying
u 1 + u2 + u3 = 1, the surface can be represented as

r(u 1 , u 2 , u 3 ) = r1 u + r 2 u
2 + r 3

+ b 1 u1 (1 - u1 ) +b 2 u2 (1 -u 2 ) +b 3u3 (1 -u 3 ) ,(5.16)

where

b, = (-B 1 + B 2 + B3 ), (5.17)

b 2 = i (_B 2 + B 3 + B1 ), (5.18)

b 3 = ½ (-B 3 + B1 + B 2), (5.19)

and the vectors Bi are determined as described in the previous Section. Here
B 2 is associated with the boundary curve (rl, r 2), and similarly for other
vectors, by cyclic permutations. Relations converse to Eqs. (5.17), (5.18),
and (5.19) are

B1 = b 2 + b 3 , (5.20)

B 2 =b 3 + b , (5.21)

B 3 = b 1 +b 2 . (5.22)

5.3 Limitations of the second-order parameterization

As follows from the nature of the second-order surface parameterization, it
is directly applicable to convex surfaces only: in order to describe a non-
convex surface near its inflection points, at least a cubic parameterization
would be necessary.

The second-order parameterization described above may also be, for
some purposes, not fully satisfactory, since the obtained interpolation is
only CO continuous along the boundaries of faces. The normals and cur-
vatures are not continuous, i.e., the normals computed in two-dimensional
interpolation on the face may not precisely converge to normals computed
on an adjacent face, or determined from one-dimensional interpolation along
the edge.

G1 or G2 continuity (i.e., continuity of the normals or curvature) can be
achieved by utilizing higher-order (typically, rational) surface interpolations.
In particular, a Gl-continuous surface can be constructed by using the al-
gorithm introduced by Nielsen [3]. The method uses as input three curved
edges together with the specified normal fields, and constructs a curved face
spanned by the edges and having the normal approaching the prescribed
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normal along the edges. This procedure ensures thus that the normals of
two faces joined along the edge are continuous. Similarly, G2-continuous
faces can be generated using the method of Ref. [4].

In practice, however, the discontinuities are small, especially since our
construction criteria ensure that curvature radii p axe large compared to the
transverse RT sizes h (typically, h < .2 p), and discontinuities are of second
order in h/p.

5.4 Errors in second-order surface parameterization

In applications to scatterer surface parameterization, we partition the sur-
face into relatively large curved triangles, and use piecewise second-order
parameterizations of the individual triangles. The sizes of the curved tri-
angles are dictated by the surface curvature, and by the wavelength in the
considered scattering problem.

The errors in the surface definition due to the quadratic approximation
are of the order e - h3/p 2, where h is the triangle size and p the surface
curvature. In order for this approximation to be adequate, we have to require
that the error in the phase

e V
(5.23)

is sufficiently small (6 <K 1). This condition imposes a limitation on the
triangle size,

h < (6A p2)1/3 ,(5.24)

i.e., the triangle size has to decrease (although rather slowly) with the in-
creasing frequency. For a more general surface parameterization of the n-th
order (n = 2 for the quadratic parameterization), the restriction on the
triangle size is

h < (pn)1/(n+l) .(5.25)

5.5 Numerical examples of surface parameterization

We have tested the interpolation procedure on a number of examples of
smooth convex objects, including ellipsoids and ellipsoid-like surfaces, as
well as ogives. We found that the accuracy of the interpolation strongly
depends on the accuracy with which the normals are determined. That
sensitivity is particularly high in regions in which the surface curvature
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varies rapidly (although the curvature itself may be relatively small). The
problem stems from the fact that, as follows from Eq. (5.12) the components
of the curvature parameter B along the edge direction may be relatively
large, even if the surface curvature is small:

(n, +n 2 )-R
R BfR(n, - n2)- (5.26)

where we assumed coplanar normals. Hence, as long as n 1 • R > 0 and
n2 ' R < 0 (which is always the case for a convex surface), we have

IRt BI < R, (5.27)

but the component of B along R may remain finite even in the limit ni •
R -4 0, when the normal components of B and the edge curvature n_
(n1 - n 2 ) R A/R become small.

In view of the strong dependence of the surface parameterization on
the normals, the normal vectors should be evaluated, whenever possible, by
using the exact surface parameterization. If such a parameterization is not
available, we use the finest available triangulation of the surface. Only as
the last resort would we use the coarse triangulation on which the curved
triangle parameterizations are based.

If the normals are to be determined from a surface discretization with flat
triangles, we evaluate them, for each vertex, as weighted averages of normals
of triangles sharing the considered vertex (with the weights proportional to
the angles spanned by the edges of the triangles). We note, however, that
any procedure of computing normals from a surface triangulation may be
unreliable: in particular, a triangulation of smooth convex surface may not
even be convex.

We illustrate now our surface interpolation procedure with some exam-
ples.

As the first case, we consider a slightly irregular ellipsoidal-type object,
shown in Fig. 2, of size 12 x 8 x 3.2 mi3 . The original surface representation
was obtained from a CAD program in the form of an IGES file. As the basis
of the interpolation procedure we have assumed a fine-resolution discretiza-
tion of that surface, in the form of a triangulation with 135,736 flat facets.
This discretization was used to determined the normals to the surface in our
interpolation procedure, in which we partitioned the object surface into 376
rather large triangles with the average edge length about 7.5 cm.

Fig. 2 shows the surface with color-coded errors in the surface interpo-
lation, defined as the deviation between the original (finely discretized) and
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the interpolated surface. It is seen that the largest deviations seem to occur
in the areas where the surface curvature changes most rapidly, consistently
with the fact that the quadratic parameterization is in these cases most sen-
sitive to the definition of normals. The maximum deviation is about 1.7 cm
and the average deviation only 2.6 mm.
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0.0098

0.0098

0.0084

0.0057

0. 0056

0. 0042

0.0028

0.0014

0

Figure 2: Color-coded error in the piecewise-quadratic surface approxima-
tion for the ellipsoidal-type object. The boundaries of the large curved
triangles are superimposed on the surface.

As the second example, we show in Fig. 3 interpolation errors for an
ogive of length 10 m and diameter 2 m, with the surface interpolated using
800 curved triangles of average edge length 38 cm. In this case we computed
normals using the exact surface parameterization.
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Figure 3: Color-coded error in the piecewise-quadratic surface approxima-
tion for the ogive, showing also boundaries of the curved triangles superim-
posed on the surface.
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Figure 4: Errors in the quadratic surface approximation near a tip of the
ogive.
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Deviations between the original and approximated surface are most vis-
ible neat the ogive's tips, and along the junctions between the geometry
segments (as the "exact" geometry was constructed by joining reflections,
in the three symmetry planes, of the 1/8-th of the object). The latter
deviations are evidently an artifact of the slight inaccuracies of the CAD
program we used. The interpolation errors near the tip (Fig. 4) are more
significant. However, the maximum error is only 0.65 mm, and the average
error is 0.065 mm.

6 Technical details: B. Spatial ray-tube and wave-
front evolution

Our general approach is to compute evolution of a wavefront incident on a
scatterer by using geometrical optics (GO), and Uniform Geometrical The-
ory of Diffraction (UTD), to evaluate and parameterize in an efficient way
currents induced on the scatterer's surface, and to use the currents to com-
pute the scattered fields.

Our work concentrated on scattering on smooth objects in the scope
of Geometrical Optics, and in the context of creeping waves (as described
in Sec. 7). Since our algorithms use sparsely distributed rays, they neces-
sitate development of accurate algorithms for ray interpolation. Numerical
implementation of these algorithms was a major part of code development.

6.1 Wavefront and ray tube evolution in geometrical optics

We define a wavefront (WF) as a surface of constant phase (evolution pa-
rameter s) of the field, orthogonal to a set of rays. For a given value of the
evolution parameter s (defined as the optical patch length) we implement
the WF numerically as a discretized triangulated surface defined by a set of
points ri, and a set of unit ray directions ni.

We consider a ray, for a given evolution parameter s, as specified by
the position (ray vertex) r, the direction n, two principal curvatures KI and

r2 (we assume Ir.11 > Vr21), and the principal curvature direction a =_ a1
associated with the first curvature (the other principal curvature direction
is then given by a2 = n x a,).

The geometric optics (GO) evolution of the WF is determined by the
evolution of the rays (ray tracing). Our general strategy was to implement
WF evolution in terms of evolution of ray tubes (RTs), defined as triplets
of rays whose positions form a triangle of the WF surface (Fig. 5). We
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formulated the evolution algorithm in such a way that the individual RTs
can be evolved independently. There are several advantages of this approach
compared to the algorithm based on the simultaneous evolution of all rays
constituting the WF:

1. Evolution of separate RTs allows us to relax the restrictions on the
length of the evolution steps. A RT may be evolved in steps whose
length is controlled only by

(a) the transverse spreading of the RT, which requires RT subdivi-
sion, and

(b) scattering (reflection or diffraction) events, controlled by the in-
tersections of the RT with the scatterer geometry.

2. Separate evolution of RTs leads to a significant simplification of the -

WF evolution algorithm.

3. Independent RT evolution leads to an algorithm that allows straight-
forward parallelization.

We stress that the independent evolution of RTs does not in any way
compromise the generality and accuracy of the approach based on the evo-
lution of a WF as a whole. The only feature of the original WF evolution
scheme which cannot be implemented by means of independent RT evolution
is a reduction of the number of rays by merging several RTs into a single RT
in the case when transverse sizes of the RT decrease. In practice, however,
this does not seem to be a serious limitation, since the RTs typically expand
rather than contract. In any case, the lack of a mechanism for reducing the
number of RTs does not affect the accuracy of the algorithm, and can only
lead to a minor increase in the computational cost.

6.2 Ray tube partitioning and ray interpolation

RT evolution in GO involves free-space propagation and reflection from the
scatterer. In order to ensure an adequate accuracy of ray tracing, we impose
two conditions on the RTs:

(A) A RT should not be too divergent, i.e., the maximum angle between
the ray should not exceed some predefined values a0 . This condition
is necessary to ensure sufficient accuracy of WF interpolation.



20

(B) A RT should not be too wide, i.e, the maximum transverse distance
between the rays should not exceed some specified value h0 . The
purpose of this condition is to achieve sufficient accuracy in resolution
of scatterer geometry details.

These conditions imply the necessity of partitioning RTs in the course of
their evolution. Other processes that lead to RT partition and to creation
of new RTs are reflection events (which we discuss later in this report) and
diffraction.

In these RTs subdivision processes it is necessary to create new rays
that will form (together with some original rays) new RTs. To these new
rays have to assign their attributes: position, propagation direction, prin-

cipal curvatures and curvature directions, and field values. This requires
interpolation of the ray properties within the RT.

Another situation when ray interpolation is required is computation of
currents induced on the scatterer surface. In this case we create new rays
intersecting the surface of the scatterer at prescribed points.

As we describe below, we have been able to implement these interpo-
lation algorithms in such a way that, although they require information
associated with one RT only, they respect the consistency of evolution relat-
ing adjacent RTs. We discuss the features of this implementation in the
following Sections.

n4
ri

r/

Figure 5: A part of a wavefront divided into two ray tubes.
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6.3 Ray tube partition and interpolation procedures

Our algorithm implementation handles GO scattering on smooth objects.
In practice, the restriction on the geometry and the RT features is that
the transverse RT size (denote h) must be sufficiently small compared to
the curvature radii Ps of the scatterer surface. We find on the basis of
numerical experiments that a good accuracy can be achieved for h < psi 5 .

The implemented elements of the algorithm are as follows:

(i) Partitioning of an expanding RT, in order to maintain its bounded
transverse size.

(ii) Computation of RT intersection with the scattering object. We dis-
tinguish here three cases, in which one, two, or three rays intersect the
scatterer surface. In the latter case the entire RT undergoes reflection
(although, as we describe later, it may be subdivided). In the first
two cases, the RT is partitioned into a reflected part and a "forward
propagating" part.

(iii) The above-mentioned partitioning of the RT partly intersecting the
object.

(iv) Partitioning of RTs prior to reflection on a curved surface, in order to
limit the angular divergence of the reflected RT.

(v) Computation of surface currents using fields associated with rays in-
tersecting the surface.

(vi) "One-dimensional" interpolation of rays within a RT along the RT
edges, required in the partitioning procedures (i), (iii), and (iv).

(vii) "Two-dimensional" interpolation of rays within the transverse section
of a RT, required in computation of currents.

We now briefly describe the first five algorithm elements. We will discuss
interpolation in the next Section.

(i) To handle RT transverse expansion we consider its face (formed by
the points on the three rays), and simply divide into two parts that side of
the face which exceeds the prescribed transverse size h0 (Fig. 6). We then
create (by interpolation) a new ray emerging from the partition point p,
and partition the original face into two. This process is illustrated in Fig. 6
for two adjacent RTs (original faces T1 and T2). As seen in Fig. 6, this al-
gorithm can be applied to each of the RT independently, provided it results
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in the same new interpolated ray starting from the partition point p. Our
presently implemented interpolation algorithm ensures the same positions
and directions of the rays generated within each of the two RTs; the curva-
tures and fields assigned to the two rays-are, however, only approximately
the same. We discuss this problem in more detail when we describe the
interpolation procedure in the next Section.

r3  r4 r3  r4

T2  
T

r2  r2

Figure 6: An example of partition of two adjacent RTs caused by RT ex-
pansion.

(ii) Intersections of the RT with the scattering object are classified on the
basis of the intersections of its constituent rays; whenever an intersections
if found, we store information on the intersection event: the intersection
point, surface normal at this point, and surface curvature.

If all or none of the rays intersect the object, then the RT is reflected as
a whole or is not reflected at all. In the remaining cases it is split into parts
which undergo reflection, and which propagate without interaction. We
describe the partition procedure in the next point. Here we only comment on
the errors associated with the partition: Since the RT is divided by a straight
line, we do not take into account the curvature of the scatterer boundary.
If the transverse size of the RT is of order h0 , and the curvature radius of
the scatterer boundary is R, the relative error in the TR partitioning is of
order ho/R.

We also mention that implementation of the intersection algorithm re-
quires some care in correctly identifying intersections of the RT rays with
various parts of the scatterer. In particular, we have to distinguish situations
when the rays intersect a contiguous segment of the scatterer surface, and
situations where, for instance, all the rays intersect the surface, but their
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footprint is not a connected area. An example of the latter configuration is
shown schematically in Fig. 7. Rays 1 and 2 shown there span a contiguous
footprint on the scatterer S1 surface, while ray 3 intersects a separate scat-
terer part S2. Thus, the RT should be partitioned by interpolating a new
ray between the rays 2 and 3; then, one part of the RT should be reflected
from S, and the other part from S2.

At the moment we have no fully satisfactory algorithm able to distinguish
such and similar cases, and, in fact, construction of such an algorithm is
possible only within the geometry resolution limitations imposed by the
finite transverse size of the RTs.

In the present implementation we partially solved the problem by iden-
tifying both "entering" and "exiting" ray intersections (Fig. 7), and impos-
ing conditions on the overlap of intervals between these pairs of intersec-
tions. We also distinguish various intersection cases by analyzing intersec-
tion points and angles between the incident rays and the surface normals,
in order to determine if the RT could have intersected a contiguous surface
segment.

In general, identification of intersection cases will have to involve a pre-
cise formulation of the conditions the geometry should satisfy in order to
avoid ambiguities, and will require devising methods for automatic verifica-
tion of these conditions.

32

1

entering exiting

Figure 7: A schematic representation of an incident RT which undergoes
partition even though all the rays intersect the scatterer.

(iii) A typical situation occurring for RTs incidentnear the boundary of
the scatterer is as illustrated in Fig. 8. We show there two adjacent RTs
such that for each of them one ray (ray of position r 2) intersects the object,
and the other two do not. Our algorithm, when applied to the RT T1, finds
two interpolating rays passing arbitrarily closely to the object boundary.
These new rays start at the points p, and P2 obtained by one-dimensional
interpolation on the edges (rl, r 2) and (r3, r 2). The original and the new rays
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are then used to create a new triangulation (T1, T2, T3) of the subdivided
RT. The new RTs T1 and T2 pass the scatterer without interaction, while
T3 is reflected.

The same algorithm, applied to the RCT T2, yields two interpolating rays
starting at the points P2 and P3. We obtain a consistent result if the rays
generated within the two RTs, starting from the common point P2, are the
same. Again, as in the point (i) above, our present interpolation ensures
identical positions and directions of the new rays, but their curvatures and
the associated fields are only approximately equal.

r4 F4

r3 r3 outside
T 3 object

T2- I

TT' 5P -inside
1bec 1- 1 P3 objectp1rl • object..-" PiP

F2 boundary T2 r2

Figure 8: An example of partition of two adjacent RTs due to scattering on
the object boundary.

(iv) Even if an incident RT satisfies the angular divergence condition
(condition (A) in Sec. 6.2), its divergence may increase as a result of reflec-
tion on a curved surface (Fig. 9). We have implemented an algorithm which
prevents this situation from occurring. It is illustrated for a simple case in
Fig. 10): We first compute the reflected RT corresponding to the original
incident RT. We then determine the angles between the reflected rays, and
partition the incident RT such as to limit the divergence of the reflected RT
parts.

Typically, the original RT is partitioned into several smaller RTs defined
by the original rays and rays interpolated on the RT edges. As before, the
fact that the interpolated rays are located only on common edges of adjacent
RTs ensures consistency of RT evolution.

We note that the above algorithm effectively adjusts the transverse sizes
of the RTs to the curvature of the scatterer surface at the RT incidence
points. If the surface curvature is strongly varying, we can effectively use
the initial WF discretization corresponding to the smallest curvature (if
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it is sufficient to resolve other geometry details); the considered partition
algorithm will then automatically adapt the WF discretization density to
the actual variable scatterer curvature.

reflected RT ••l•TRincident RT

SRT footprint

Figure 9: Reflection of a RT on a curved surface, increasing the RT diver-
gence.

partitioned
reflected RT partitioned

/ ~incidentRT

scatterer surface .

Figure 10: Partition of an incident RT, reducing divergence of the reflected
RTs.
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(v) Finally, in order to compute the induced currents on the scatterer
surface at some prescribed points, we need to construct rays incident exactly
at the required surface points. The field associated with these rays are then
used to determine the induced currents.

We have implemented an algorithm which, for every RT intersecting the
scatterer surface, finds all the required points within the RT footprint, and
constructs new rays incident at those points (Fig. 11).

The algorithm involves two elements: (i) a test to determine whether
a point is located inside a RT, and (ii) a procedure for constructing a ray
emerging from the wavefront of the incident RT, and passing through the
given point.

The first element may require nontrivial computations in the common
situation when the rays forming the RT tube are not parallel, and the sides
of the RT are not flat planes (i.e., when the rays are not coplanar). Our
implementation is based on constructing a WF passing near the consid-
ered point (using a quadratic interpolation), and then determining positions
of the points relative to the planes defined by the boundaries of the WF
(Fig. 12). We discuss the procedure of constructing the WF face bound-
aries in the next Section. Here we only mention that, say, the plane P12 of
the WF face boundary (curved edge) (rl, r 2) (Fig. 12) is constructed as the
least-squares approximation minimizing the angles between the plane and
the ray directions n1 and n 2. The point r is then considered to be located
inside the ray tube if it is located on the interior sides of the three planes,
P12, P23 , and P31. As follows from this construction, the test is not exact,
but, since the divergences of the RTs are, by construction, limited, we found
its accuracy entirely sufficient.

The second element of the algorithm will be described in the next Section
in the context of ray interpolation methods.
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Figure 11: A RT incident on the scatterer surface, with interpolating rays
incident at current computation points.

n3

nii

plane P12 of the boundary4 curve (r1, r2)

Figure 12: A procedure testing if a point r is contained inside the given RT.

6.4 Ray tube interpolation algorithms

We implemented two ray interpolation algorithms, mentioned in points (vi)
and (vii) in the previous Section. Before we describe these procedures, we
comment on our general approach to ray interpolation.

* Since one of the main goals of our WF/RT evolution algorithm is the
use of "thick" RTs (not limited in transverse size to a fraction of the
wavelength), ray interpolation is en essential element of this approach.
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It is required in most of implemented algorithm elements listed in the
previous Section.

* The accuracy of ray interpolation should at least correspond to the
quadratic representation of the WF inherent in the curvature informa-
tion associated with the rays. In particular, it is essential to achieve
an adequate accuracy of the phases, i.e., the position of the WF.

9 Since our computational strategy is to evolve each RT separately, we
must ensure consistency of evolution of adjacent RTs, in particular
those spanned by interpolated rays.

9 In order to comply with the above consistency requirement, we employ
the following basic steps in the interpolation procedures:

1. For a given collection of rays we construct a skeleton of curved
edges joining ray points, and defining the WF triangulation.

2. We specify normals on the edges by interpolating normals at their
ends.

3. We construct face surfaces spanned by edges (boundary curves),
using the constructed normals.

4. Finally, we construct interpolated rays on edges or faces by using,
respectively, normals and curvatures defined by the edge curves
or the interpolated WF surfaces.

The crucial point of the above algorithm steps is that, since edges
are shared by adjacent RTs, the rays interpolated on these edges are
constructed consistently.

* In all the procedures mentioned above we try to stay as close as possi-
ble to the original local quadratic representation of the WF associated
with the ray curvatures. In particular, we take care to minimize higher
order (cubic, quartic, ...) effects which could lead to undesirable WF
distortions.

We now describe in more detail the interpolation algorithms listed above.

6.4.1 Construction of face boundaries and faces

The first step in our interpolation scheme is the construction of curved edges
joining ray vertices ri. These edges will then form boundary curves of the
faces constituting the WF. The procedure is described in Sec. 5.1.
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We then use the boundary curve and normal definitions (5.4) and (5.14)
to determine the starting points and directions of interpolated rays in one-
dimensional interpolation along edges of RT faces. Curvatures of the in-
terpolated rays are then determined-on the basis of the interpolated face
surfaces, as described in Sec. 5.2.

6.4.2 Interpolation of ray directions

In one-dimensional interpolation of rays on face edges we find new ray direc-
tions from the constructed field of normal vectors on the edge (Eq. (5.14)).
In two-dimensional interpolation on a WF face we compute ray directions
as normals to the surface defined presently by Eq. (5.16).

As we mentioned before, the procedure is not fully consistent, since our
present quadratic surface interpolation is not Gl-continuous. However, dis-
continuities of normal axe numerically small, and will be entirely eliminated
by constructing G1 interpolants as described above.

6.4.3 Interpolation of curvatures

Handling of curvatures in the GO evolution of the WF presents a certain
dilemma:

On one hand, the behavior of the fields (typically, their falloff with the
propagation distance) is controlled by the ray curvatures,

P1P2 E(s0 ) , (6.1)E(so + P1 + )(p 2 + )

where p, and P2 are the ray's principal curvature radii at the evolution
parameter so [5].

On the other hand, the falloff of the fields is controlled, through flux
conservation, by the rate of expansion of the RTs, i.e., by their angular
divergence. This divergence is related, through our WF surface interpolation
procedure described above, to the WFsurface curvature.

Thus, there may be a potential conflict between using ray and surface
curvatures, if, due to possible approximation errors, the two sets of quantities
are not precisely compatible.

In this situation we have decided to adhere to the surface curvatures
(related to the RT divergence) as more fundamental quantities. Our main
argument in favor of this choice is that it ensures consistency of field evolu-
tion with the geometrical expansion of RTs. This feature seems to be partic-
ularly relevant in the case of reflection off a curved scatterer surface. In that
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case reflected ray curvatures are computed on the basis of the scatterer's
surface curvatures [5], and the latter may be, in practice, poorly known
(especially if the surface is specified as an interpolation of a triangulated
surface). Thus, while the ray curvatures may involve a significant error, the
geometrical shape (divergence) of the scattered RT is usually better defined
and less uncertain.

Therefore, we choose to discard the curvature information associated
with the rays themselves, and use the RT divergence to construct the inter-
polated WF, from which eventually the curvatures of rays are determined.
This procedure appears to interpolated rays as well.

A disadvantage of this approach is that it does not guarantee continuity
of the ray curvatures across the boundaries of the curved triangles (which
could have been ensured by interpolating ray curvature data, since rays
axe common to the adjacent triangles). This does, in general, cause some
discontinuities of the surface current; however, the effects are of the second
order in h/p. Thus, while there is a possibility of further developments,
our present judgment is that the advantages of the surface-based approach
outweigh its drawbacks, and it is this approach we implemented in our code.

Having a surface parameterization, we compute curvatures in the cus-
tomary way in terms of the first and second principal forms. For a general
parametric surface r(u1, u2 , 1 - u 1 - u2 ) = r(u 1 , u2 ) they are defined by the

differentials

dr 2 = g'P uu' = E du1 du' + 2 F du du 2 + Gdu2 du2 , (6.2)

and

-dn dr = L duI dul + 2 M du1 du2 + N du2 du 2 , (6.3)

where

n I= arx 2r (6.4)1,91r x o92rl

is the normal to the surface, a, =_ 9r/aua, and g,,, is the metric tensor.
More explicitly,

L=n O2r, M=n.o 1 02 r, N=n.02r. (6.5)

The two principal curvatures are the two solutions n = n, and n = n2

of the characteristic equation

det[ L-nE M-n 0. (6.6)M - rF N - rG =0(6)
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It follows that the Gaussian curvature (the product of the two principal
curvatures) is

LN _ M2K K1 K2 -- 2  (6.7)

EG - F 2

and the mean curvature is

H½ 1  2 EN - 2FM + GL
2 (K1 +K 2 ) =12 EG - F 2  (6.8)

In order to obtain the curvatures of the three rays forming the RT, it is
sufficient to evaluate the principal curvatures and the curvature directions at
one of the vertices, say r 3, at which u1 = u2 = 0. The remaining expressions
can be obtained by permuting the indices.

In our case of the second-order surface given by Eq. (5.16) the first deriva-
tives of r are

air = -R 2 + b, (1- 2ul) + b 3 [(1- 2(ul + u 2 )] , (6.9)

02r= R 1 + b 2 (1 - 2u 2 ) + b 3 [(1 - 2(u1 + u2 )], (6.10)

where

R, =r 2 -r 3 , R 2 =r 3 -r 1 , R 3 =r 1 -r 2 . (6.11)

We can also verify that Eq.(6.4), at u1 = u = 0, yields n = n 3.
The second fundamental form requires the second derivatives,

101r = -2B 2 , 012r= -2b 3 , =2 2r=-2B 1 . (6.12)

The coefficients of the fundamental forms at u1 = u2 = 0 are then

E = (-R 2 + B 2 )2 , F = (-R 2 + B 2 )- (R 1 + B1 ) , G = (R 1 + B1 )2 ,

(6.13)

and

L = -2n 3 • R 2 , M = -2n 3 .b 3 , N =2n3 -R 1 . (6.14)

From these coefficients the principal curvatures and curvature directions can
be determined using the general formulas, such as Eq.(6.6). Formulae for
curvatures of the interpolated rays at arbitrary u1 and u 2 are only slightly
more complicated.
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6.4.4 Interpolation of fields

In our representation of fields the rapidly oscillating phase factors are ex-
cluded; hence fields on a WF are smooth functions of coordinates that can
be reliably interpolated. We currently use a simple linear interpolation of
fields EA associated with the vertices of a WF face,

E(u 1 , u 2, u 3 ) = E 1 U
1 + E 2 U2 + E 3 u 3 . (6.15)

6.4.5 Computation of surface currents and the scattered field

The interpolated fields are used to compute currents J (on the surface of
a perfect electric conductor), according to the relation J = 2n x H, with
n constructed as the normal to the surface, and with the magnetic field
expressed in terms of the electric field, in our normalization, as H = k x E,
where k is the wave vector associated with the ray incident on the surface.

In our present implementation we evaluate currents on a finely dis-
cretized scatterer surface (with a discretization "-, 10 points per wavelength).
More specifically, using a fine scatterer surface triangulation, we interpolate,
within a given RT, a ray incident on a center of each surface face, and eval-
uate the current at this point. In order to compute the scattered field, we
simply sum contributions of all surface faces.

Clearly, this approach can be considered only as an interim solution.
It is not acceptable for growing frequencies, since its cost increases (for
a single scattering direction) as the frequency squared, incompatibly with
the frequency-independent cost of constructing the RTs themselves. In the
fully scalable method surface currents should be parameterized as sums of
products of smooth and rapidly oscillating functions, and fast methods of
integration of these currents, and evaluation of the scattered field should be
applied.

6.4.6 Difficulties in ray tube interpolation procedures

We summarize here briefly the difficulties we encountered in constructing
WF and RT interpolations. The problems stem from the fact that, in a
certain sense, too much information is contained in the WF description in
terms of rays:

(i) there is curvature information associated with the rays themselves;
and
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(ii) there is information on the ray directions (i.e., on the RT divergence),
from which an interpolating WF surface can be determined, and used
in turn to evaluate the curvatures.

Ideally, the information in (i) and (ii) should be consistent, and we should
be able to utilize either (i) or (ii) (or both) as input in WF interpolation.
In practices, however, there is no guarantee of their compatibility, especially
in the in the presence of various approximations made in the description of
RTs and the scatterer.

In our present implementation we opted to discard the information in (i)
and use exclusively the information in (ii). Our motivation was that this ap-
proach (a) ensures consistency between the rate of decrease in propagating
fields and the spreading of the RT, and (b) is less susceptible to uncertain-
ties in determining curvatures of the scatterer surface. A drawback of the
selected approach is that it leads, in general, to some discontinuities of the
curvatures across boundaries of the adjacent triangles (RTs).

6.5 Numerical examples of ray tube evolution

We present below some numerical results obtained by means of the present
version of the WF/RT evolution code.

6.5.1 Ray tube expansion and splitting in free-space evolution

We first consider an example of an expanding RT undergoing partitions
which maintain a bounded transverse size of the child RTs. In Fig. 13 we
show an initial RT (at evolution parameter s = 0) defined as a part of an
approximately cylindrical WF with the curvature radii P, = 1 and P2 = 0.
The Figure shows the intermediate evolution steps leading to the final WF at
s = 5. The maximum transverse RT size was set here to twice the initial RT
size. It is seen that the final WF has a somewhat more complex shape than
the initial one, but that the child RTs are adjacent and form a continuous
WF surface.
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initial WF
intermediate WF segments
at partition stages

,•!• " '• final WF

Figure 13: Partitions of an expanding RT evolving in free space.

6.5.2 Ray tube splitting in incidence on object boundary

As an example, we show in Fig. 14 an ellipsoid illuminated by a sample of
four adjacent RTs representing a part of a plane-wave WF. The individual
RTs are split into reflected and forward-propagating parts in a way illus-
trated in Fig. 8. Since we did not use here the algorithm for RT partition
related to reflection (Figs. 9 and 10), the reflected RTs are highly divergent
and span large angles (up to about 600).
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,••//,.reflected WF

S.•f initial WF

forward-propagating
:WF

q ~~identical WFI

boundaries
(a) (b)

Figure 14: Partitions of RTs reflecting near the object boundary. The initial
RTs are split into reflecting parts (a), and forward-propagating parts (b).
The black curves mark the common boundary of the reflected and forward-
propagating WF segments.

6.5.3 Ray tube splitting in reflections

As a further development of the previous example, we demonstrate now
the effect of the algorithm used to partition RT before their reflection on
a curved surface, in order to limit the divergence of the reflected RTs (the
principle of this algorithm is illustrated in Figs. 9 and 10). The result of
the algorithm in the considered example is visualized in Fig. 15, obtained
by restricting the divergence angles of the reflected RT to 100. Fig. 15(a)
shows the reflected RTs, and Fig. 15(b) the partition of the initial incident
RTs (seen in the direction of the RT propagation). It can be seen that the
partition of the incident RT tends to refine it close to the projection of the
scatterer boundary, i.e., close to near-grazing incidence.
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reflected WF

initial WF partitioned initial WF

(a) (b)

Figure 15: Partitions of RTs related to reflection from a curved surface, for
the same configuration as in Fig. 14. The reflected RTs (a) result from the
partition (b) of the incident RTs.

6.5.4 Scattering on a system of two smooth convex objects

We give below two examples of computation of scattering cross-section on
systems of two smooth convex objects.

The first case, of a system of two ellipsoids, tests the algorithms for ray
tube reflection, partition in free-space propagation, partition on the shadow
boundary, and adaptive partition prior to reflection (reducing angular diver-
gence of the reflected sub-tubes). In this problem, however, the spreading
of the reflected ray tubes is large, and thus the effect of double scattering is
small.

In the second case we enhance the double scattering by analyzing a
system of two rounded plate-like objects with large flat surface parts, forming
a dihedral-type structure. In this case we also compare computations for
two frequencies, using the same wavefront (ray-tube) discretization.

In both cases we find that, with refining the wavefront discretization, the
results practically converge to the limiting cross-section as soon as the ray-
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tube width h falls below the value about one-fifth of the minimum curvature
radius.

1. A system of two ellipsoids

As the first example of an application of our full WF/RT evolution
algorithm we present results of a calculation of scattering cross-section
on a system of two ellipsoids, as shown in Fig. 16. The ellipsoids
have sizes 2.4 x 2.0 x 1.6 length units, or 8A x 6.7 A x 3.3 A for the
considered frequency, and are separated by a gap of about 2 A width.
The minimum curvature radius is about Pmin !- 0.533.

In order to enhance the effect of double reflection, we constructed an
incident WF (propagating along the negative z-axis) illuminating only
the first ellipsoid, as indicated in Fig. 16. This figure visualizes also a
sample ray tube illuminating the first ellipsoid (S1), reflecting off its
surface, and illuminating the second ellipsoid (S2). The incident and
reflected RTs induce surface currents whose y components are shown
in the Figure.

0. 067

incidnt VV0.035

0.018
incident RT 0.0095

reflected RTs •!"Z 0.005

reflected WF 0 . 0024

7.4e-05

S~-0. 0023

I reflected -0.0048

RT footprint

-0.018

XY 1 -0.034x

Figure 16: A sample RT (originating from the shown plane-wave WF) illumi-
nating the ellipsoid S1, reflecting, and illuminating the ellipsoid S2 . Shown
on the ellipsoids' surfaces is the real part of the current component JY.
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In Figs. 17, 18, and 19 we plot bistatic cross-sections for scattering on
the considered system, with the incident plane wave direction along
the longest axis of the ellipsoids (as shown in Fig. 16).

Fig. 17 shows the single reflection contribution computed for two reso-
lutions h of the WF discretization (average ray-ray distance): h = 0.2
and h = 0.1. Similarly, Fig. 18 shows the single and double reflec-
tion contributions computed for WF resolutions h = 0.2, h = 0.1, and
h = 0.05 (corresponding to 0 .3 7 5 Pmin, 0 "1 8 7 Pmin, and 0.094 Pmin)"

In Fig. 19 we indicate the effects of double reflection by comparing the
cross sections for single and single+double reflection, both computed
for h = 0.1. For the considered geometry and the incident wave there
are, actually, no contributions of triple and higher order reflections.

Fig. 19 shows a definite, although not large, influence of double re-
flection. It appears that it effect is mainly to reduce the scattering
cross section in the angular range in which the rays reflected fromn the
ellipsoid S1 are shadowed by the ellipsoid S2.

r i

3- h=0.230 -- -- - -- --- ---- . =0.1 " -

* It

10 L -

" 0 -- - _ 1 -I - - I - - - - - -I"

t: -10 !- - ,', ,, ,

0 15 30 45 60 75 90 105 120 135 150 165 180
0.

Figure 17: Single reflection contribution to the bistatic scattering cross-
section on the system of two ellipsoids, for two different WF discretizations.
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Figure 18: Single+double reflection contribution to the bistatic scattering
cross-section on the system of two ellipsoids, for three different WF dis-
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We note that, although the convergence of the cross-section results
with the WF resolution is not fully satisfactory, the discrepancies oc-
cur mainly for near-back-scattering directions (0, • 0), where single
scattering dominates. In the region of angles 1100 < ý 0<160° where
double reflections are important (Fig. 19) the results appear to weakly
dependent on the WF discretization resolution h (Fig. 18), as soon as
h < Pmin/5.

We also note that the double reflection contribution is being tested
in a rather difficult case, when the primary incident RTs reflect from'
the first ellipsoid at almost grazing direction (Fig. 16), and are often
incident on the second one also at near-grazing angles. One of the
consequences of this geometrical configuration are strongly elongated
shapes of the RT footprints of the RTs, as also shown in Fig. 16.
Such footprint shapes constitute a rather stringent test of our field
interpolation procedure.

2. A system of two rounded plates

In the previously considered example of scattering on a system of two
ellipsoids the effects of double reflection, although visible, were not
strong. The reason was that both single and double reflection were
generating divergent ray tubes, in which the scattered field was rather
rapidly decaying with the propagation distance.

Therefore, in order to enhance the double reflection effect, we consid-
ered another case of scattering on a system of two flat thick "plates"
with rounded edges and corners (which makes our present smooth-
surface algorithm applicable), forming a dihedral-type structure. The
scatterer, together with a sample ray tube, is shown in Fig. 20. The
two plates are located in the (x, z) and (y, z) planes, and are illumi-
nated with a plane wave incident symmetrically at the angles Oi = 9g0

and Oi = 450, with the electric field along the z axis (i.e., the verti-
cal polarization). The sizes of the plates are, in some length units,
7 x 7 x 1, and the minimum curvature radius is Pmin = 0.5.
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e RT -0.86
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Figure 20: A sample RT illuminating the plate S1, reflecting, and illumi-
nating the plate S2 , for the incident WF resolution h = 0.5. Shown on the
surfaces is the imaginary part of the current component J,.

We carried out the first computation at the wavelength A = 1.5.
Fig. 21 shows the bistatic cross-section, as a function of 0. and at

0, = 90'. The contributions of single and single+double reflections
are shown in for three WF resolutions (ray-ray distances): h = 1.0,
h = 0.5, and h = 0.25 (i.e., 2 .0 Pmin, 1 0 Pmin, and 0. 5 Pmin). While the
coarsest resolution (h = 2/3 A) does not provide an adequate accu-
racy of the double reflection contribution, the difference between the

remaining finer discretizations is quite small (less than 1 dB).
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, h=1.0 single
4 ' ---- h = 0.5 single

I h = 0.25 single
I__ -h = 1.0 single+double
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h = 0.25 single+double
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Figure 21: Comparison of single and single+double reflection contributions
to the bistatic scattering cross-section on the system of two flat plates, com-
puted for three WF discretizations.

h = 0.5 single
40 -h = 0.5 single+double

10 - -- MoM

30

0 II I

0 15 30 45 60 75 90

Figure 22: Single and single+double reflection contributions, computed for
the intermediate resolution (h = 0.5), compared with the rigorous MoM
result.
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Fig. 21 clearly indicates a strong effect of double reflection which,
as expected, causes a significant enhancement of the cross-section in
the back-scattering direction. In Fig. 22 we compare the single and
single+double reflection results with the rigorous MoM computation
(obtained with about 43,000 unknowns). The comparison shows that
the contributions other than reflections (i.e., several diffraction mech-
anism) are relatively less important.

We verify now, for the considered example, that the WF discretization,
once adjusted to the given scatterer geometry, can be used indepen-
dently of the frequency. To this end, we used the same WF discretiza-
tion as that used to obtain the results of Figs. 21 and 22, and increased
the frequency by the factor of two (corresponding to the wavelength
A = 0.75).

In Fig. 23 we show the resulting single and single+double reflection
contributions to the bistatic cross-section, compared with the rigorous
MoM result (obtained with about 170,000 unknowns). The accuracy
of the RT computation appears to be about the same as at the lower
frequency; the differences in the results for the WF resolutions h = 0.5
and h = 0.25 are, again, less than 1 dB.

I I I I I
5 0 _ _- -_ _-. . . . . . ..- -. .

' • - h h=0.5 single

40 - --- h = 0.5 single + double
I = 0.25 single+double

04 30

S20

10 -

0 15 30 45 60 75 90

Figure 23: Single and single+double reflection contributions (the latter com-
puted for two resolutions, h = 0.5 and h = 0.25), compared with the rigorous
MoM result, computed at twice the frequency of Figs. 21 and 22.
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7 Technical details: C. Evolution of creeping ray
tubes (ray-strips)

We have developed and implemented a set of algorithms which allow us to
accurately trace creeping rays and ray strips on smooth convex surfaces, and
to evaluate surface currents associated with these rays.

7.1 Curved surface parameterization

In our algorithms ray-tube evolution, we consistently utilize second-order
parameterization and interpolation of the wavefront segments. In this con-
text it was natural to select a compatible representation of the scatterer
surface, which would lead to manageable analytic representation of rays
and ray tubes. We use thus the second-order parameterization described in
Sec. 5.

7.2 Construction of creeping rays (geodesics)

Our algorithm for generating creeping rays has been devised for closed con-
vex surfaces parameterized by means of second-order curved triangles.

In principle, the creeping rays (geodesics of the surface) can be generated
by solving the geodesic equation. If a geodesic, as a curve in the parameter
space u = (u 1, u 2), is denoted by

u(0) (U1 (a),U2(0)) (7.1)

it can be obtained as a solution of the second-order vector nonlinear differ-

ential equation

d2 ua du• du~'
da 2 +F + r da d -0' (7.2)

where the summation over repeated indices is understood, and the Christof-
fel symbols (symmetric in the two lower indices) are given, in terms of the
metric tensor g, by

g'c - 6 P6fl' = e6 + 0,7, gi + 096 gf6iy) , (7.3)
o t e,6-y in tr of te 6

or, in two dimensions, in terms of the coefficients of the fundamental forms
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(Eqs. 6.13 and 6.14),

rill = G 1 E- 2FO1F + F82E

2 (EG - F 2 ) ' (7.4)

F 1 EE-2E01 F+E E (7.5)F211 2 (EG - F2) (75

1-l12 =G2E-F(7 1 G
2 (EG - F 2) (7.6)

r212 E a 1G - F,92 E

2 (EG - F 2 ) ' (7.7)
2 F,2 G - 2G o92 F + GaG (7.8)
F122 -- 2 (EG - F 2 ) (

E o2 G - 2F a2 F + F O 1 G (7.9)
2 (EG - F 2 )

Equations (7.2) determine a unique geodesic passing through any specified

point in any given direction.
With the second-order surface parameterization the elements of the

Christoffel symbol are rational functions of the parameters u. One possible
approach to solving the geodesic equations (7.2) is to expand the coefficients
and the solution as polynomials in the evolution parameter 0' and the co-

ordinates u. In the implementation of this approach, however, we found
that, even for moderately curved triangles, the coefficients in the geodesic

equation, although smooth and regular, exhibit a rather strong variation

within the individual curved triangles. This circumstance requires high ex-

pansion orders (and complicated expressions for the expansion coefficients),
and renders the analytical solution impractical. In this situation we have
to resort to a numerical solution. However, instead of solving the geodesic

equations numerically in the parameter space, we have chosen an equivalent
(and in practice simpler) procedure of performing the ray tracing directly

on the finely discretized curved triangle surface, and mapping the obtained

spatial geodesic back to the parameter space. The procedure amounts to

the following steps:

1. We construct on the unit triangle 7T in the parameter space a regular
K x K structured grid of smaller sub-triangles.

2. We map vertices of the sub-triangles in the u-space onto the curved

triangle, and construct in this way an approximation of the curved

triangle surface T as a set of small triangular facets.
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3. Considering the facets of the triangle T as flat, we perform the con-
ventional ray tracing, in which rays consist of straight-line segments
on the individual facets. Upon crossing the facet boundaries, the rays
satisfy the condition (following from the Fermat principle) of equal an-
gles between the edge and the rays. The same conditions are applied
to rays crossing boundaries between the individual curved triangles.

4. Finally, we find a representation of the obtained ray (geodesic) trajec-
tory in the parameter space u by using the mapping r ---+ u inverse to
that of Eq. (5.16). For efficiency of further manipulations, we approx-
imate the numerically determined trajectory as a quadratic function
of the evolution parameter a.

We found that the geodesic construction described above incurs low compu-
tational costs and provides high accuracy already for K between 10 and 20,
for curved triangles of sizes comparable to their curvature radii.

An an illustration of the accuracy of the implemented method we show
in Fig. 24 a sample set of creeping rays (geodesics) arriving at one tip of the
ogive (Fig. 3), after being launched from the opposite tip (physically, due
to tip diffraction). As in Figs. 3 and 4, the ogive surface was interpolated
with 800 curved triangles of edge lengths equal to about 1/25-th of the ogive
length.
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Figure 24: Behavior (in the vicinity of an ogive's tip) of a sample of creeping

rays (geodesics) emerging from the other tip.
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Figure 25: An enlargement (by approximately a factor 10) of the vicinity of
the ogive tip, with the set of geodesics shown in Fig. 25.

At the resolution of Fig. 24 the errors in the geodesic construction are
visually undetectable. An approximately ten-fold enlargement shown in
Fig. 25 reveals that some of the geodesics miss the tip and form loops around
it. However, the radii of these loops do not exceed about 5 mm (compared
to the 10 m ogive length).

7.3 Evolution of ray strips

An important element of the creeping ray (geodesics) construction is to de-
termine the rate at which the nearby rays diverge or converge when traveling
on the surface; this rate controls the changes of magnitude of the surface-
diffracted fields associated with the rays.

The behavior of the nearby creeping rays corresponds to the behavior
of ray tubes, which, on the surface, degenerate to "ray strips". It can be
conveniently described for an infinitesimally narrow ray strip, i.e., a pair of
infinitesimally displaced geodesics. Such a pair is characterized by the well-
known geodesic-deviation equation - a second-order linear equation for the
separation between the geodesics, involving the Riemann-Christoffel curva-
ture tensor. In the considered case the equation for the ray strip (infinites-
imal) width w(s) involves the Gaussian curvature K of the surface. For
K > 0 the width of the ray strip, as a function of the evolution parameter
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s, has an oscillatory behavior, while for K < 0 is exponentially growing or
decreasing (clearly, K > 0 for a convex surface).

More specifically, if the geodesic curve u(s) is parameterized by its length
s, the width of the strip satisfies the equation

ib(s) + K(u(s)) w(s) = 0 for a = s . (7.10)

If we interpret s as time, this equation is (for a non-negative Gaussian cur-
vature, which is the for a convex surface) the harmonic oscillator equation
with a time-dependent "spring constant" K. In this case the solutions have
an oscillatory character and describe neighboring geodesics periodically con-
verging at focal points (for a negative Gaussian curvature the solutions would
have an exponentially growing or decreasing character).

In our case of a quadratically parameterized surface we expand the solu-
tion to Eq. (7.10) to the fourth powers in the evolution parameter a and use
the corresponding expansion for the curvature, which can be obtained from
the quadratic expansion of the geodesic. We similarly expand the geodesic
speed squared (ds/da) = vo + v1 a +..., where a is defined relative to ref-
erence point within the considered triangle. To this order, the solution for
the geodesic deviation is

w(a) =w(O)(1 -½ Kovoa 2)+tb(O)a +-- , (7.11)

where K0 is the Gaussian curvature at the reference point a = 0.
In addition to solving the geodesic deviation equation on individual trian-

gles, we also impose exact continuity conditions at junctions of the triangles.
This procedure requires some care, since, at edges at which the surface is
not Gl-continuous, the Gaussian curvature has a delta-function singularity
resulting in a discontinuity of dw(s)/ds.

7.4 Implementation of the creeping-ray construction algo-
rithms

As we mentioned, the algorithms for creeping-ray construction result in local
analytic (second-order) parameterizations of the rays and ray strips on the
individual curved triangles. A ray is specified in the surface parameter
space as u(s), and the ray-strip width as w(s). The parameters defining
these functions are stored for all the curved triangles, to be used in further
computations - such as surface current evaluation. The implemented ray
construction procedure is, briefly, as follows:
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1. Determine the shadow boundary as a sequence of edges separating
illuminated and shadowed faces (for this purpose the triangles are
assumed flat).

2. Locate "sharp", i.e., "diffraction" edges of the surface.

3. Locate corners and tips of the surface.

4. From the center of each edge on the shadow boundary launch a single
surface ray (if the edge is not a diffraction edge), or two rays (if the
edge is a diffraction edge).

5. Evolve each ray, keeping track of its approximate Fock parameter and
the number of "forward" diffraction and "backward" diffraction events.
These diffraction events occur when the ray intersects a diffraction
edge: then the original ray continues traveling in the "forward" direc-
tion, and a new ray is created, traveling in the "backward" direction.
The new ray inherits the history of the parent ray (the Fock parameter
and the numbers of edge diffractions).

6. Each ray is evolved until it reaches the prescribed bound on the Fock
parameter or on the number the edge-diffraction events. In the evolu-
tion process the differential equation for the corresponding strip width
is solved.

7. Each triangle keeps a register of properties (directions, polarizations,
curvatures) of rays that have traversed that triangle. Width parame-
ters of the corresponding ray strips are also stored.

8. After building the first generation of rays, the second generation is
constructed by doubling the number of launched rays. This proce-
dure is being repeated until the numbers of "different" rays on faces
stabilize.

As an illustration of the ray-strip construction procedure described above
we present some ray (geodesic) tracing results for an ellipsoid similar to that
considered previously (Fig. 2). The sizes of the ellipsoid are 9 : 6 : 4, and it is
illuminated by a plane wave incident along its longest axis. Fig. 26 shows two
ray strips (visualized as a finite width set of three rays), emerging from two
nearby points on the shadow boundary. Another view of the set of ray strips
is shown in Fig. 27. The evolution of the ray strips was computed using the
algorithm described above, and the ellipsoid surface was interpolated using
456 curved triangles.
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Figure 26: Visualization of two nearby ray strips propagating on the surface
of an ellipsoid. The heavy arrows indicate the direction of the incident plane
wave.

first intersection
of ray strips

nd intersection
trips

Figure 27: Another view of the set of ray strips of Fig. 26, with indicated
intersections of rays.

The Figures show that the analytically evaluated widths of the ray strips
(obtained by solving the geodesic deviation equation) are in close correspon-
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dence with the numerically determined evolution of neighboring rays. In
particular, the first intersection of rays practically coincides with the points
at which the widths of the ray strips vanish. At the second intersection there
is a somewhat larger discrepancy between the ray intersection points and
the point where the ray strips shrink to zero width. The points where the
ray strips shrink to zero for the third time are quite widely spaced. How-
ever, that happens only after the ray strips had traveled about 1! times2
around the object; and, in any case, we cannot expect an exact agreement
between the behavior of an infinitesimally narrow ray strip, and a set of rays
separated by a finite distance.

7.5 Algorithms for current parameterization and computa-
tion

The algorithms described in Secs. 7.1 to 7.4 result in a set of creeping rays
and the associated ray strips for the dominant diffraction processes that may
occur on a convex perfectly conducting object: smooth-surface, edge, corner,
and tip diffraction mechanisms (less important mechanisms, such as diffrac-
tion on a surface curvature discontinuity, are not included). In the current
implementation we included only smooth surface and edge diffraction, and
in the following description we concentrate on computation of surface fields
induced by creeping rays due to smooth surface diffraction only.

7.6 Asymptotic expressions for the fields and currents due
to creeping rays

We consider fields and currents at the point r = r(s) on the geodesic, corre-
sponding to the geodesic evolution parameter s. It is convenient to utilize the
local coordinate system associated with the geodesic, defined by the triplet
of unit vectors (t, n, b), where n is normal to the surface, the t tangential
to the ray, and the binormal vector b is defined as b = t x n.

We denote by r 0 the point on the ray located at the shadow boundary,
corresponding to the evolution (ray length) parameter so.

It is customary to express the fields associated with the creeping ray in
terms of their "soft" (s) and "hard" (h) components, corresponding to the
transverse-magnetic (TM), or E-polarization, and transverse-electric (TE),
or E-polarization, problems in the canonical problem of the perfectly con-
ducting cylinder. Alternatively, the soft component is the field component
along the binormal vector b and the hard component is the component along
the normal vector n (the ray-optical field is, by definition, normal to the ray
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propagation direction t).
The well known asymptotic expressions for induced currents associated

with creeping waves in the shadow region of perfectly conducting current
have been originally derived by Fock in two- and three-dimensional problems
[7] (see also Ref. [8] for a higher order expansion). We follow here conven-
tions of Ref. [9], in which the expressions for the creeping-wave currents are
derived based on the analysis of the two-dimensional cylinder problem.

The result can be summarized as follows:
The surface electric current J is related to the magnetic field by J =

-2 n x H, where n is the outer normal to the surface. Equivalently, the
transverse current component is expressible in terms of the normal derivative
of the soft (tangential) electric field component, and the longitudinal current
component in terms of the hard (normal) electric field component. The total
current is then

J(r) = T(r, r0 )" E'(r 0 ) , (7.12)

where E'(r 0 ) is the incident electric field at the shadow boundary point r0

and T(r, r0 ) is dyadic "field-to-current" transfer function of the form

T(rr°) = [bbo°T(rro) +t noTh(rro)] pg(1) ] eik(s-s°)

[bb 0 Ts(r, r0 ) + tno Th(r, ro)] Q(s, so) , (7.13)

where w(so) and w(s) are the ray strip widths at the shadow boundary point
ro and at the field observation point r, and where pg is the radius of the
surface curvature measured in the direction of the geodesic, i.e., in the plane
(n, t). In terms of the principal curvatures radii P, and P2 of the surface at
that point, we have

1 = cos2 a + sin 2 a (7.14)
Pg Pi P2

where a is the angle between the geodesic and the first main curvature
direction of the surface. Further, the functions T, and Th specify the field
evolution for the soft and hard components,

T 8 (r, r0 ) = f( (s - So)) [½ kpg(s)]-1/3  (7.15)

and

Th(r, ro) = -ig(6(s - so)) , (7.16)



54

where the dimensionless shadow Fock parameter ý is

- ( k)1 /3  ds' (7.17)
2 - ( [pg(s,)]2/3

so

and the functions f and g, referred to as the soft and hard Fock functions
[10], are defined as

f(0) f= fdu- -, (7.18)

and
1 du ei Cu ( .9g(•) =---- = f]du wi(u) (7.19)

in terms of the Fock-type Airy function
1 / et-t3/3

w 7(u) ; f dt eu . (7.20)

F

In the equations above the contour F consists of two segments: from
exp(i 27r/3) 00 to 0, and from 0 to co. The asymptotic behavior of the
functions f and g for ý -4 o0 is given by

f c() oc e-i7T/ 3  1 eal C exp(5i7r/6) (7.21)

Ai'(-al)

and

g0 1 -efl, C exp(5ir/6) (7.22)

g 1 Ai(-, l)

where a,1 - 2.338 is the negative of the first zero of the Airy function Ai,
and fj -- 1.019 is the negative of the first zero of the derivative Ai' of that
function. The relevant values of the Airy function and its derivative are
Ai(-Ol) = 0.536 and Ai'(-al) - 0.701.

The values of the Fock functions at zero argument are

f(0) 2- 0.776 e-&•, , g(O) = 1.399. (7.23)

Physically, the current (7.12) is interpreted as the "radiating current",
i.e., the current responsible for radiation of the rays "shed" by the ray strip
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propagating on a curved surface. Therefore, the current vanishes when the
surface curvature 1/pg(s) at the radiation point vanishes. That behavior is
different for the soft and hard components: according to Eqs. (7.13), (7.15),
and (7.16),

b. J , pgl/ 2  (soft) (7.24)

and

t" J ,' pg/6 (hard), (7.25)

i.e., the radiation strength for the hard component is much less sensitive to
the curvature than for the soft component.

It follows from Eqs. (7.21) and (7.22) that the soft component of the
current decays in the shadow region more rapidly than the hard component
(a1 >2/31). We note that, since Imexp(5iir/6) > 0, the functions f(ý) and
g(ý) represent not only a damping of the creeping wave, but also provide
an additional phase variation: effectively, the propagating wave oscillates
faster than it would follow from the phase factor exp(i ks) associated with
the optical path. Again, that effect is stronger for the hard component.

We also note that Eq. (7.12) predicts an infinite induced current at the
ray-strip caustics (or focal points), where w(s) -4 0. Strictly speaking, if
we compute the radiated field by integrating the current, this singularity
will be integrable, since, near a caustic singularity w(sc) = 0, the surface
integral of the current is proportional to

w(sr+t)

at f db w(s+ 0 - dt Vw(s + t) , (7.26)

0 0 0

where t = s - sc and b denotes the local coordinate perpendicular to the ray
direction.

7.7 Parameterization of the current

In the context of our algorithm implementation it is convenient to param-
eterize the currents in terms of functions defined on the individual curved
triangles T (labeled in the following by indices r). As the simplest parame-
terization, we assume that the current on the triangle T, is given by

M M

J,(r) = X,(r) E p,.eiqm'(r-rO) - X,(r) x PmJ(m)(r), (7.27)
m=1 m=1
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where ro, is a reference point on the triangle T§, X, is the triangle's char-
acteristic function, m labels contributions of various ray strips traversing
the triangle, and corresponding to various physical high-frequency mecha-
nisms. Each contribution is characterized by the "polarization vector" p,
approximately tangential to the surface, and by the wave vector q (which
includes an imaginary part, associated with the extinction rate of the ray
on the given triangle).

We can now express the parameters P, m and q, m in terms of the quan-
tities associated with the m-th ray strip traversing the triangle T,. In the
following we discuss a contribution of one representative ray; the total cur-
rent on the triangle is the sum of such contributions.

The relevant parameters of each ray strip are:

1. The value s. of the evolution parameter s (optical path length of the
ray), relative to some reference wavefront. For a plane incident wave
we set s = 0 on the wavefront passing through the coordinate system
origin. The parameter s associated with a creeping ray refers to the
starting point, say rT, of the ray on the triangle (the point at which
the ray enters the triangle surface). The evolution parameter s is
being computed numerically in the ray tracing procedure by summing
increments of the geodesic length (using the refined discretization of
the curved triangles).

2. The value ý, (at the point r,) of the Fock parameter accumulated by
the ray. This parameter is also being computed in the ray tracing by
accumulating contributions of triangles traversed by the ray, according
to Eq.7.17, using average triangle curvatures. The result is well de-
fined, even though in our surface parameterization the normal to the
surface may be discontinuous across the edges separating triangles: al-
though at such points the curvature becomes, formally, infinite, their
contribution to the integral vanishes. Specifically, if the normals to
boundary points on two adjacent triangles form a nonzero angle a,
and we model the sharp edge as a rounded edge of curvature radius
p -+ 0, the resulting path length is As = a p, and the contribution to
the integral behaves as As/p 2/ 3 = app/ 3 __ 0.

3. The direction (tangent vector) t7 of the ray (geodesic) on the face,
again defined at the entry point r,. In addition, we define coefficients
of the approximate quadratic parameterization u(s) of the the geodesic
trajectory in the parameter space u. These coefficients are used in
interpolating the quantities associated with the ray within the triangle.
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4. The incident field projections

Es = b0• E'(r 0 ) and Eh' - no E'(r 0 ) (7.28)

on the bi-normal and normal vectors at the shadow boundary point r0 .
These parameters are kept constant during the creeping ray evolution.

5. The width w. of the ray strip, which is also being updated during the
ray evolution procedure by solving the geodesic-deviation equation, as
mentioned in Sec. 7.3. In the scheme in which Since we are considering
an infinitesimally narrow ray strip, the scale of w(s) is arbitrary and
immaterial, since only ratios of widths are relevant; we set W(So) = 1.
In addition to the width value wr = W(sr) we store coefficients of the
approximate quadratic parameterization of the widths w, as a function
of the geodesic length s on the considered triangle.

The parameters listed above are sufficient to determine the quantities P,,m
and qr,, in the parameterization (7.27) (in the following we drop the index
m). The simplest approximation is to identify the reference point r0 r with
the ray entry point r,. In this approximation we take

q, = ktr (7.29)

and

Pr= [b(r,) E. Ts(r, ro) + t(r,) Eh Th(rrro)] Q(sr,so), (7.30)

where the values of the functions Ts, Th, and Q are expressible in terms of
Sr, r,, and wi.

A better approximation would involve locating r0 r at the triangle cen-
troid, and interpolating the computed quantities to that point; our param-
eterization of the surface and the geodesics allows in this case the second-
order interpolation. This interpolation can be then also used in conjunction
with the second-order expansion of the phase factor in the representation
(7.27). In this case it is more convenient to express the phase directly in the
parameter space of the surface, i.e., in terms of the variables (ul, u 2) = u.
For this purpose we have constructed a quadratic expansion of the phase
factor and a similar (but linear) expansion of the vector P, (these elements
of the algorithm were developed, in a different context, under a separate
SBIR contract).
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The contribution of the given ray strip to the current on the triangle T,
can be then parameterized as

Jr(r(u)) = [a, + bri (ui - uO)]
ex fi [A, + Bri (u' - u') + Crij (u' - u') (ui - uj)}(.1

where we assume the convention of summing over repeated indices i, j = 1, 2,

and where u0 = (1/3, 1/3) is the center of the unit triangle in the parameter
space. The coefficients a, b, A, B, and C in the expansion are expressible
in terms of the quadratic parameterization of the triangle geometry, and

the ray parameters listed in the points 1-5 above (including, in this case,
the quadratic parameterizations of the ray trajectory and of the geodesic
deviation).

The main purpose of the current parameterizations (7.27) or (7.31) is to
allow a fast computation of the scattered field, as a sum of Fourier trans-
forms of these expressions. For instance, in the practical implementation of
the Fourier transform algorithm for the representation (7.31) for a curved
triangle, we subdivide the the unit triangle in the u space into triangles
sufficiently small to be able to retain only the linear term in the exponent,
and expand the remainder of the phase function to quadratic terms (higher
order expansion is, of course, possible, but becomes rather complex). An
additional element of the computation is an expansion of the Jacobian of
the transformation u -* r(u) (i.g., the determinant of the metric tensor),
required in integrating in the parameter space u.
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Figure 28: A creeping ray strip configuration used in surface current evalu-
ation.

7.8 Implementation of algorithms for current computation

We now briefly discuss our implementation of the computational procedure
described above. Although we have not parallelized the code, we mention
in the following some parallelization aspects of the algorithm elements.

7.8.1 Computation of ray parameters

The parameters of the rays (points 1-5 in Sec. 7.7) are computed while
performing ray tracing for rays emitted from the shadow boundary (that
procedure is described in Sec. 7.4). For each triangle we store parameters
of rays traversing that triangle. This algorithm is parallelizable in the sense
that evolution of each ray strip (in a given "generation") is independent. On
the other hand, with the present algorithm for selecting distinct representa-
tive rays for each triangle requires either a shared or replicated storage for
ray data or communication (if triangles are distributed across processors).
An alternative procedure (mentioned in point 7 of Sec. 7.4) would be to col-
lect data for all rays traversing all triangles, and select the optimal subset
at the end of the computation.
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7.8.2 Parameterization of the current

Parameterizations of the currents (such as (7.27) or (7.31)) axe computed in a
loop through triangles, after the reduced set of ray data becomes available.
This procedure can be easily parallelized by distributing triangles across
threads or processors.

7.8.3 Computation of the scattered field

The contribution to the scattered field is also computed for each triangle
independently, and can be carried out in parallel in a trivial way.

7.8.4 Computation for multiple frequencies

The ray tracing procedure as described above is essentially independent of
the frequency - the only dependence is through a ray termination criterion
based on the Fock parameter value. Therefore, if the rays are traced suf-
ficiently far to cover the lowest considered frequency, the constructed rays
and current parameterization can be reused for multiple frequencies, pro-
vided the wave number and the Fock parameter are properly rescaled. This
procedure can also be effectively applied to obtain scattered fields in time
domain.

7.9 Applications of creeping-ray algorithms

As a means of validation of our approach to the creeping-wave formula-
tion and its numerical implementation, we analyze the problem of a high-
frequency wave scattering on three body-of-revolution (BOR) geometries:

1. a sphere,

2. a spheroid, and

3. a "cone-double-sphere" (a cone-sphere with a rounded cone tip).

In Fig. 29 we show the second and the third object, with the current
distribution computed using the rigorous (MoM) solution.
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Figure 29: Currents on the spheroid (a) and cone-double-sphere (b) objects,
computed with the MoM solver for the plane wave of vertical polarization
incident along the negative z-axis (i= = qi= 00). The radii of the objects
are approximately R _ 4.54 A.

The reason for this particular choice of geometries is that the first and
the third object, when illuminated along the axial direction, are charac-
terized by the same PO return, but by significantly different behavior of
creeping waves in the shadow region, especially on the conical segment of
the third object, with the vanishing surface curvature along the creeping
waves propagation direction. The spheroid geometry (although its PO re-
turn is different), provides an intermediate case with a gradually varying
longitudinal curvature.

Another motivation was related to the recently developed Shadow
Boundary Incremental Length Diffraction Coefficients (SBILDCs) technique
[11]. That approach, while efficient and accurate in many three-dimensional
problems, is sensitive only to the geometry properties at the shadow bound-
ary (SB): the shape of the SB curve, the surface normal at the SB, and
the curvature along the geodesics at the SB. Therefore, in our examples, the
SBILDC approach would predict the same bistatic cross-section in the sphere
and cone-double-sphere cases, while the rigorously computed cross-sections
are quite different. We show in Fig. 30 the comparison of the vertical- (E-
plane) bistatic cross-sections; generally, the horizontal-polarization cross-
sections are less structured, and the differences are smaller. It is seen, in
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particular, that the frequency of oscillations in the cross-section appears
to depend on the longitudinal size of the object, and hence on the current
distribution in the shadow region.
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Figure 30: The vertical- (E-plane-) polarization bistatie cross-section for the

axially incident plane wave on the perfectly conducting sphere, the spheroid,
and the cone-double-sphere, computed with the rigorous (MoM) solution.
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Figure 31: The cross-section of Fig. 30 shown in a limited angular range,
exhibiting different oscillatory patterns.

In what follows we present results obtained with:

1. Rigorous (MoM) computations.

2. Semi-analytic computations of currents due to creeping rays and mod-
ified PO currents (as described in Sec. 7.6). In the case of BOR type
geometries, it is possible to reduce the computation of the scattered
field to a single numerical integral along the generating curve of the
BOR; the remaining calculations can be carried out analytically. We
parameterize the surface of the BOR, with the axis along the z-axis,
as (r, z) =.(r(s), z(s)), where r is the distance from the z-axis, and s
is the distance measured along the surface, starting with s = 0 on the
symmetry axis in the illuminated area.

3. Our numerical approach of constructing creeping waves and parame-
terizing surface current described in Secs. 27.5 and 7.8.
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7.9.1 Semi-analytic construction of creeping rays for a body of
revolution

1. Scattering on a sphere

As the first example we consider bistatic scattering on a perfectly
conducting sphere of radius R = 2.974 in, at frequency f = 18 GHz,
corresponding to A - 0.655 in and R -_ 4.54 A. The size of the object is
chosen to match a similar problem in the published set of benchmarks
[12].

In Fig. 32 we compare results of the rigorous (Mie solution) com-
putation, the Physical Optics (PO), and the PO supplemented with
the creeping wave (Fock) currents, according to the procedure de-
scribed above, for the vertical polarization. Again, in the horizontal-
polarization case the differences are smaller. We took the incidence
angles Oi = 0i = 00, and computed the bistatic scattering cross-section
as the function of 0 in the qi = 00 plane, for the horizontal (H-plane)
polarization (the incident electric field along the y-axis), and the verti-
cal (E-plane) polarization (the incident electric field along the x-axis).
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Figure 32: The vertical-polarization bistatic cross-section on the perfectly
conducting sphere of R -' 4.54 A, at the incidence angles i= = 0i= 00: the
rigorous result (Mie solution), Physical Optics (PO), and PO with creeping
waves (PO+CW).

A known characteristic feature of the horizontal- and vertical-

polarization problems for a sphere and similar bodies of revolution is

a relatively smooth cross-section in the former and a more structured

cross-section in the latter case. In both instances, the PO approxi-
mation yields cross-sections more oscillatory than for the rigorous re-

sult. However, after including the creeping-wave (CW) contributions,
we find a good agreement with the MoM (or Mie) solution, except
for some discrepancies (of about 1 dB) in near-forward scattering for

horizontal polarization, and in near-backward scattering for vertical

polarization.

These characteristics of the exact and approximate solutions can be

interpreted in terms of the behavior of the radiating currents on the

object surface, shown in Fig. 33. We plot there the "soft" and "hard"
current components Ab and Jt, i.e., the components in the directions
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of the binormal vector b and the tangential vector t of the geodesic
(Eq.(7.13)).

The scattering amplitude is, essentially, related to the Hankel trans-
forms of the currents Jb(s) and Jt(s). More specifically, it is expressible
in terms of the integrals

mxds r(s) ") J,(k r(s) sin0) ei k z(s) cos0 Jb (s), (7.32)

0

where 0 is the scattering angle, the coordinates r = V+x 2 y2 and z
parameterize the surface of the scatterer, the ellipses denote smoothly
varying factors, and the Bessel functions J•, appear with orders v =

1, 2. The geometry of the scattering process dictates that the soft cur-
rents dominate in the horizontal-polarization cross-section, and hard
currents in the vertical-polarization cross-section.

The spike in the current amplitude at the south pole is due to the ray
convergence factor [w(s 0 ) /w(s)] 1/2 _ 1/r(s ) 1/2, and the current to the
right of that point represents contributions of rays which have crossed
the focal point. (We note, however, that the spike is suppressed in the
integral of Eq.(7.32) by the Jacobian factor r(s).)

In fact, the current distribution of Fig. 33 is in close agreement with
the distributions computed from the Mie solution for the sphere; the
deviations are practically limited only to the vicinity of the south pole,
where the Mie solution currents are smaller and more smooth than
predicted by the Fock formula.
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Figure 33: The hard current component Jt on the sphere, plotted as the
function of s/A. The absolute value of the PO current is also shown.

A comparison of the PO approximation currents and those including
creeping-wave contributions indicates that the stronger oscillations in
the PO cross-section is due to the less smooth termination of the PO
currents at the shadow boundary (especially for the hard current Jt).
The total currents (including the CW contributions) are, however,
smooth across the shadow boundary, and the wider distribution of the
hard current Jt (its deeper penetration into the shadow region) results
in the more apparent oscillatory structure of the vertical-polarization
cross-section in the medium angular range (75' < 0 < 1500).

This and similar examples show that the hard creeping wave contribu-
tions in the shadow region dominate the soft terms; on the other hand,
modifications of the PO contributions are relatively more important
in the soft currents.

2. Scattering on a spheroid

As the second example, we consider bistatic scattering on a perfectly
conducting prolate spheroid, with the symmetry axis along the z-axes.
The semi-minor axis of the spheroid is the same as that of the pre-
viously considered sphere (R = 2.974 in), and the semi-major axis is
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twice as long (R' 5.948 in). We assume axial plane wave incidence
at the frequency f = 18 GHz, corresponding to the object length of
about 10.5 A.

Fig. 34 compares bistatic cross-sections for the rigorous MoM com-
putation, the PO, and the PO with the creeping wave currents.
(The MoM computation, carried out with a code for arbitrary three-
dimensional geometries, required about 100,000 unknowns.) The gen-
eral features of the cross-sections are similar to those for the sphere,
but the oscillations (better visible in the vertical-polarization case) are
more rapid, due to the larger longitudinal size of the object.
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Figure 34: The vertical-polarization bistatic cross-section on the perfectly
conducting prolate spheroid at 18 GHz, at the incidence angles Oi O = 00:
the rigorous result (MoM), P0, and PO with creeping waves (PO+CW).

The corresponding current distributions, shown in Fig. 35 for the hard
component, indicate that, due to the smaller surface curvature along
the geodesics, the creeping waves penetrate into the shadow region
deeper than in the case of the sphere, especially in the hard current
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contribution. It is these currents that enable us to correctly reproduce
oscillations in the cross-section such as shown in Fig. 34.
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Figure 35: The hard current component Jt on the spheroid, plotted as the
function of s/A, shown together with the absolute value of the PO current.

3. Scattering on a cone-double-sphere

As the third example, we analyze bistatic scattering on a perfectly
conducting "cone-double-sphere" object shown in Fig. 29 - a modifi-
cation of the cone-sphere target of Ref. [12], in which the larger sphere
has the radius R = 2.974 in, and the conical tip has been rounded with
another sphere bf radius R' = 1.974 in, such that both sphere surfaces
are tangent to the cone surface. As in the original object, the cone
opening half-angle is 70, and, as before, the incident wave frequency
is f = 18 GHz. The length of the object is then L -_ 20 A.

The main difference between the previous examples and the present
object is that now the curvatures vary strongly along the object length.
In particular, for axial incidence, the creeping rays propagate in planes
passing through the object axis of symmetry; and in this case the cur-
vature of the rays along the geodesic, 1/pg, vanishes on the conical
surface. Therefore, according to the original Fock theory, the radiat-



70

ing currents are (practically) zero on the conical part of the object,
and the radiation comes only from a rather narrow strip around the
shadow boundary, and from the rounded back end of the object. The
expected effect of this current distribution is an oscillatory behavior of
the bistatic cross-section, with the oscillation frequency characteristic
of the object length (L - 20 A); these oscillations should be about twice
as rapid as those for the illuminated sphere (diameter 2R - 9.1 A).
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In Fig. 36 we compare results for the rigorous MoM computations, the
P0, and the P0 with the creeping wave currents.

In this problem the agreement between the MoM solution and the P0
with creeping waves is much worse than for the previous cases:

(a) In the horizontal-polarization case (not shown here), although the
PO+CW cross-section reproduces on the average the level of the
rigorous solution, it exhibits large-amplitude oscillations for an-



71

gles near the forward scattering direction, and smaller amplitude
oscillations for smaller angles. Both of these types of oscillations
are absent in the rigorously computed cross-section.

(b) In the vertical-polarization case, the PO+CW cross-section for
near forward-scattering angles follows rather closely the PO ap-
proximation. For smaller angles, although the rapid oscillations
of the PO+CW result approximately match the oscillatory pat-
tern of the exact cross-section, the PO+CW cross-section appears
to also include a less rapidly oscillating component, similar in fre-
quency and amplitude the PO contribution.

The features of the POCW cross-section can be interpreted in terms of
the currents distributions, plotted in Fig. 33 for the hard currents. The
creeping rays contributions in the shadow region extend from s - 7.12 A to
s = 7.67 A (from the shadow boundary to the sphere-cone transition point),
and from s 2- 20.09 A to s -- 24.44 A (the beginning of the smaller sphere
surface to the south pole). There is no radiating current on the conical
surface, since in this area the curvature in the geodesic direction is zero (the
factor [pg(So)/Pg(S)] 1/6 in Eq.(7.13)).

The rapid oscillations in the POCW cross-sections of Fig. 36 are due
the interference of fields radiated by the currents on the two spherical sur-
faces. This feature appears to be correct, since the MoM cross-section also
exhibits such oscillations (more visible in the vertical polarization). On the
other hand, the Fock current distribution of Fig. 37 is unable to compensate
for the incorrect oscillations of the cross-section present in the PO approx-
imation. The reason may be that, unlike in the case of a sphere (Fig. 33),
the contribution of the shadow region creeping waves on the larger sphere is
small (it comes only from a thin ring between the shadow boundary and the
boundary between the sphere and the cone). At the same time, the contri-
bution of the creeping waves on the smaller sphere is not able to compensate
the smooth oscillations in the PO approximation without introducing at the
same time large-amplitude rapid oscillations due to the interference.

We find thus that the original Fock formulation does not provide suf-
ficient accuracy in situations where the surface curvature is discontinuous,
and, in particular, when the curvature along the geodesic is much smaller
(as in our case, where it vanishes) than the curvature in the transverse di-
rection. There are indications that the transverse curvature does play a role
in such situations [13].
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Figure 37: The hard current component Jt on the cone-double-sphere, plot-
ted as the function of s/A.

7.9.2 Numerical ray tracing and current computation

1. Scattering on a sphere

As before, we consider bistatic scattering on a perfectly conducting
sphere of radius R = 2.974 in, at frequency f = 18 GHz, corresponding
to A ý- 0.655 in and R -_ 4.54 A.

We consider, as previously, the axial incidence, and assume a vertically
polarized incident plane wave. For the horizontal polarization the
results are similar, although the creeping-wave effects are smaller.

In a typical computation of this type, according to the algorithms of
Sec. 7.5, we generate about 300 geodesics, and the entire computation,
including evaluation of the cross-section, takes less than 2 minutes.

In Fig. 38 we compare results of the rigorous MoM computation, the
Physical Optics (P0), and the PO supplemented with the creeping
wave (Fock) currents, according to the numerical procedure described
in Secs. 7.5 and 7.8.

The agreement is comparable to that o 'btained with the semi-analytic
formulation, and the oscillatory structure of the cross-section (largely
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due to the behavior of currents in the shadow region) correctly in most
of the angular range (for 9 > 600). We find that the oscillations in the
cross-section are highly sensitive to the phase of the creeping wave, in
particular to the phase variation of the Fock function g(ý) (Eqs. 7.19
and 7.22). In this and similar problem we also find that the hard
creeping wave contributions dominate the soft terms.
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Figure 38: The'vertical-polarization bistatic cross-section on the perfectly
conducting sphere at 18 GHz, at the incidence angles Oi = 0i = 00: the rig-
orous result (MoM), (PO), and numerically evaluated asymptotic solution
with creeping waves (PO+CW).

2. Scattering on a spheroid

The results of the numerical computation of the creeping waves' con-
tributions to the bistatic cross-section in this case are shown in Fig. 39
for the (more difficult) case of the vertical polarization. Again, in most
of the angular range, the agreement between the MoM and the numer-
ical creeping waves' result is nearly as good as for the semi-analytic
formulation; the important feature of the numerical computation is
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that it correctly reproduces the oscillations in the cross-section, due
mostly to the behavior of the solution in the deep-shadow regions.
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Figure 39: The vertical-polarization bistatic cross-section on the perfectly
conducting spheroid at 18 GHz, at the axial incidence: the rigorous result
(MoM), P0, and numerically evaluated asymptotic solution with creeping.
waves (PO+CW).

3. Scattering on a cone-double-sphere In the case of the cone-
double-sphere, the numerical results are in good agreement with the
semi-analytic calculation (Fig. 36), although neither of them agrees
with the rigorous MoM result, due to the deficiencies of the asymptotic
theory in the case of a discontinuous surface curvature. (as discussed
in Sec. 7.9.1).
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Figure 40: The vertical-polarization bistatic cross-section on the perfectly
conducting cone-double-sphere at 18 GHz, at the axial incidence: the rigor-
ous result (MoM), P0, and the numerical computation of the asymptotic
solution with creeping waves (PO+CW).
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8 Yale University Subcontract to Monopole Re-
search, Topic # AFO1-009

Our research under this contract addressed five issues, as follows.

1. Construct a two-dimensional version of the algorithm, and use it to
conduct preliminary numerical experiments

2. Conduct detailed asymptotic analysis in two dimensions, with the goal
of obtaining tight estimates on the error of the method at (reasonably) high
frequencies

3. Depending on the outcome of two-dimensional experiments, start imple-
mentation in three dimensions.

4. Extend the existing rudimentary "fast" solvers to Lippman-Schwinger
equations in two dimensions.

While the work on the fast solvers continued more or less according to
plan, our investigation into asymptotics produced a number of unexpected
observations. Connections have been discovered to algorithms for the ap-
plication to arbitrary vectors of certain matrices related to classical Sturm-
Liouville operators and (not unexpectedly) to several types of classical spe-
cial functions. Some of these appear to have independent technical value,
and to deserve publication on their own merits; in addition, junior members
of the group have participated significantly in this work, and should not be
denied rapid conclusion and publication of these investigations. Thus, it
seemed appropriate to tolerate a delay in some of the activities stipulated
above, in order to bring these results to prompt publication. Specifically,
the work on p. 2 above has been sidetracked, and the work on point 3. has
been retarded. Below, some of our results are summarized in two reports;
the first of these has been submitted for publication, and the second has
been accepted at the Journal of Computational physics.
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9 Approximate Formulae For Certain Prolate
Spheroidal Wave Functions Valid for Large Val-
ues of Both Order and Band-Limit

9.1 Introduction

Originally, Prolate Spheroidal Wave Functions were discovered as the eigen-
vectors of the differential operator D, defined by the formula

S()- (1 xx 2 ) 0" (x) - 2 x 0'(x) - c2x24,(x) (9.1)

subject to the condition that ?P is continuous on the interval [-1, 1]. For each
positive real c, there exists a countable set of real numbers X0 < X, < X3 < ...
for which the equation

(1 - x 2) V"(x) - 2 x V'(x) + (X_ -C2 X2) V(X) = 0 (9.2)

has a continuous solution on [-1, 11. Such coefficients are known as pro-
late eigenvalues, and the corresponding solutions of (9.2) are referred to as
Prolate Spheroidal wave Functions (PSWFs). About 45 years ago, it was
observed (see [12, 7, 10]) that PSWFs are also eigenvectors of the integral
operator

fL(7)(x)= ecxt V) (t) dt; (9.3)

it is in this latter capacity that the PSWFs are of interest to the authors of
the present paper, due to the obvious connections between (9.3) and Fourier
Transforms, Toeplitz matrices, antennas, Heisenberg principle, etc.

Despite their remarkable role as eigenvectors of (9.3), PSWFs have not
been investigated in as much detail as several other classes of special func-
tions; the reasons seem to be related to the fact that the classical scheme
for their numerical evaluation (the so-called Bouwkamp method) tends to
fail for large values of c. In [15], we observe that a simple modification of
the Bouwkamp scheme converts it into a reliable numerical tool for virtually
all values of c that are likely to be encountered in practice; we also sum-
marize a number of analytical properties of PSWFs, vaguely reminiscent of
the properties of Bessel Functions. In [16], we investigate the asymptotic
behavior of ?cm, for large c and fixed m.

For any given c, PSWFs constitute an orthonormal basis on the interval
[-1, 1]; numerical evidence is accumulating that in certain situations, they
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are preferable as a numerical tool to classical polynomial bases (such as Leg-
endre and Chebychev polynomials). On the other hand, it has been observed
that when PSWFs have to be dealt with analytically (i.e. when the time
comes to put proofs behind facts observed numerically), the analysis tends
to be much harder than that encountered while dealing with most classical
special functions (orthogonal polynomials, Bessel functions, spherical har-
monics, etc.). In the experience of the authors of the present paper, this
relative difficulty has more to do with the paucity of published results about
the PSWFs, rather than with the inherent difficulty of the subject. In this
paper, we investigate PSWFs and the corresponding eigenvalues X Ac in
the regime when m > c; while most of the properties we derive are more
or less obvious for m >> c, the behavior of PSWFs is considerably more
subtle when m > c, but m/c is not very large. The paper is meant to be a
compendium of properties of PSWFs and the corresponding eigenvalues XC.
A' that the authors found to be useful in their attempts to utilize PSWFs
as a numerical tool. While most of the material presented here appears to
be new, no serious effort has been made to separate original results from
those published previously.

This paper contains two types of results. The first kind are expansions
of various quantities (PSWFs, corresponding eigenvalues, etc.) into pow-
ers of c/m, valid when the ratio c/m is small (or, in some cases, not very
large). Most of these expansions are of fairly high order (from 8 to 12), and
have been obtained by the analysis of the three-term recursion connecting
the coefficients of the Prolate expansion of a function with the coefficients
of the Legendre expansion of the same function (see Theorem 3 and Ob-
servation 4 below). Once the formulae in Section 9.10 are obtained, each
of them is easily verified by substituting it into (9.2), and using the iden-
tities (9.7), (9.4), (9.13). This approach is very similar to that used in [161
to obtain high-frequency asymptotics for PSWFs and their corresponding
eigenvalues.

The second type of results presented below are asymptotic expansions
of PSWFs and corresponding eigenvalues for large m and c, presented in
Section 9.13. These expansions are of low order (from 1/i/(Mr c) to 1/M 2 ),

and obtained via straightforward WKB analysis of equation (9.2). While
the derivation of the formulae in Section 9.13 is straightforward and uses
classical techniques (see, for example, [2]), it is quite detailed, and will be
published at a later date; the results are included here for completeness.

The paper is organized as follows. In Section 9.2, we summarize a num-
ber of well-known mathematical facts to be used in this paper. In Section 9.6
we introduce the analytical apparatus used to derive the asymptotics pre-
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sented in the paper. Section 9.11 is devoted to asymptotic formulae for
eigenvalues and eigenvectors of (9.1), and in Section 9.12, we construct such
formulae for eigenvalues of (9.3). Section 9.13 contains a different type of
asymptotic formulae (see the preceding paragraph), and the numerical be-
havior of some of the presented approximations is illustrated in Section 9.14.
Finally, Section 9.15 contains generalizations and conclusions.

9.2 Mathematical Preliminaries

In this section, we introduce notation and summarize several well-known
facts to be used in the rest of the paper.

9.3 Legendre Polynomials

In agreement with standard practice, we will be denoting by PR the classical
Legendre polynomials, defined by the three-term recursion

2.n+1. n
-P.+ W) = - * .x.PRW- n+------lPn-l(x)' (9.4)

n +1 n+ 1
with the initial conditions

Po(x) = 1 (9.5)

Pl(x) X;

as is well-known,

Pk(l) 1 (9.6)

for all k = 0, 1, 2,..., and each of the polynomials Pk satisfies the differential
equation

(1-x 2). dx 2  + 2. x. dPk(x) + k. (k + 1). Pk(x) = 0. (9.7)

The following two lemmas summarize several well-known facts about Leg-
endre polynomials. All of these facts can be found, for example, in [5].

Lemma 1. For any positive integer m,

] x m Pm(x) dx = 2 r(m (9.8)

and for any for any complex z,

P(m)(z)- (2m)! (9.9)
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Lemma 2. Suppose that k, n are non-negative integers, n k, and k - n
is even. Then

f xk Pn(x)a X 2k (k--)!r(k + 3)- (9.10)
2 2

If n> k or k-n is odd,

kpnX X=0 (9.11)

The polynomials defined by the formulae (9.4),(9.6) are orthogonal on
the interval [-1, 1]; however, they axe not orthonormal, since for each n > 0,

(p. (X))2 dx (9.12)
Sin + 1/2'

the normalized version of the Legendre polynomials will be denoted by Pn,
so that

- Pn(x) (9.13)

F/(n + 1/2)(

Thus, Fn constitute an orthonormal basis in L 2[-1, 11.

9.4 Elliptic Integrals

Incomplete elliptic integrals F(x, a), E(x, a) are defined by the formulae

F(xa) = x dt (9.14)
JV = (1 -a 2 .sin2(t))'

E(x, a) = v/(l - a2 . sin2 (t)) dt, (9.15)

respectively. Complete elliptic integrals F(a), E(a) are defined by the for-
mulae

F(a) = F(ir/2, a) = 7r/ dt (9.16)
E Va(1 - a2 • sin 2 (t))'

E(a) =E(7r/2, a) f 7r/2 (1 - a 2. sin 2(t)) dt. (9.17)
0O
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We will denote by E the function inverse to E, so that

E(E(a)) = a, (9.18)

and by G the function defined by the formula

G(E(x, a), a) = x; (9.19)

in other words, for a fixed a, the function d is the inverse of E(x, a) with
respect to the argument x.

Finally, we will denote by

f = E(x) (9.20)

the solution of the equation

7/2 - sin 2 (t)) dt = x (9.21)

(viewed as an equation with respect to f), and observe the obvious connec-
tion between E and E.

9.5 Prolate Spheroidal Wave Functions

In this section, we summarize a number of analytical properties of the Pro-
late Spheroidal Wave Functions. Unless stated otherwise, all facts collected
below can be found in [12, 7].

For any c > 0, we denote by Fc the operator L2[-1, 1] -4 L 2[-1, 1]
defined by the formula

Fc(W L(x) etct W(t) dt. (9.22)

In other words, F, is a finite Fourier integral operator depending on c, a
parameter we frequently refer to as the band-limit of F,.

Clearly, F, is compact; we denote by A0, Aj,... ,A•n,... the eigenvalues
of F, in decreasing order such that I A-11 > IA I for all natural n, and denote
by On the corresponding eigenfunctions. In other words, for all non-negative
integer n, An and n satisfy the integral equation

An'4n(x) = L eicxt pn(t) dt (9.23)

for all x E [-1, 1]. In this paper, we adopt the convention that the functions
are normalized such that IIn[[-,1] = 1 for all n. The following theorem is
a combination of several lemmas from [12, 4, 6, 3].
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Theorem 1. For any positive real c, the eigenfunctions ¢0, 4i,... , of the

operator F, are purely real, are orthonormal, and are complete in L 2 [- 1, 1].
The even-numbered eigenfunctions are even, and the odd-numbered ones
are odd. All eigenvalues of F, are non-zero and simple; the even-numbered
eigenvalues are purely real, and the odd-numbered ones are purely imagi-
nary; in particular, A\ = in/AnI. For each i = 0, 1,2,..., the function 'i is
an entire function of the two complex variables c, x.

We define the self-adjoint operator Q, : L 2[-1, 1] - L 2[-1, 1] by the
formula

Q() M sin(c. t)) (9.24)7 = _ X - t •-)d ,(.4

which relates to F, in the form

CQC= -• Fc .Fc. (9.25)

Consequently, Qc has the same eigenfunctions as F-, and the n-th (in de-
scending order) eigenvalue /Zn of Q, is given by the formula

An = c-•. IAn12 . (9.26)
27r

The eigenvalues A are analytic functions of c, and satisfy the differential
equations

aAm _2 (c(1))2 - 19.2

Oc 2c (

or, equivalently,

a log(Am) _ 1 (2('¢p%(1)) 2  1) (9.28)
O9c 2 c

(see [3, 13]).
Obviously, the operator Qc is closely related to the operator Pc

L 2 [-_o, oo] -+ L2 [-_o, oo] defined by the formula

Pc(W) =1 .F sin(c t)) .(t)dt, (9.29)

which, as is well known, is the orthogonal projection operator onto the space
of functions of band limit c on (-co, co).
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For large c, the spectrum of Q, consists of three parts: about 2c/ir
eigenvalues that are very close to 1, followed by order log(c) eigenvalues
which decay exponentially from 1 to nearly 0; the remaining eigenvalues
are all very close to zero. More detailed discussions of the structure of the
spectrum of Qc can be found in [8], [15], and a number of other places.

By a remarkable coincidence, the eigenfunctions Oo, ¢1,"" ,0, of the
operator Q, turn out to be the Prolate Spheroidal Wave Functions, well
known from classical Mathematical Physics (see, for example, [91). The
following theorem formalizes this statement. It is proved in a considerably
more general form in [10, 3].

Theorem 2. For any c > 0, there exists a strictly increasing sequence of
positive real numbers Xo, Xi,... such that for each integer n > 0, the differ-
ential equation

(1 - x2 ) V)"'(x) - 2xo'(x) + (Xn - C2 x 2 ) V)(x) = 0 (9.30)

has a solution that is continuous and bounded on the interval [-1, 1]. More-
over, for each integer n > 0, the function On (defined in Theorem 1) is the
solution of (9.30).

9.6 Analytical Apparatus

In this section, we build a number of analytical tools for the construction of
the formulae in this paper.

9.7 Legendre Coefficients and Three-Term Recursions

Prolate Spheroidal Wave Functions and Legendre polynomials are closely
related, as can be observed from the similarities between their corresponding
differential equations(9.30) and(9.7).

Since the scaled Legendre polynomials Pn constitute an orthonormal
basis in L 2[-1, 1], 0, can be expanded in the Legendre series

Co

c (x)W = -k -(X), (9.31)
k=O

with the coefficients 83k given by the formula

/k= O1 W F)(W dx (9.32)
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since 4'is analytic on the interval [-1, 11, the coefficients fO decay expo-
nentially once k is sufficiently large (a more detailed discussion of the rate
of decay of {f3k} can be found in [15]).

For small c, the connection between the functions Vic and Legendre
polynomials Pm is well-known. Inter alia,

OC (x) = P(x) + O(c2) (9.33)

for all non-negative integer m and x E [-1, 1] (see, for example, [13]).
Substituting (9.31) into (9.30) and using (9.7), (9.4), (9.13), we obtain

the well-known three-term recursion
(k+2)(k+ 1) 2. o2

(2k + 3) •/(2k + 5)(2k + 1)
( ~2k(k+ 1)-1 .C2

k(k + 1) + (2 )2 ) - Xn •fl + (9.34)

k(k - 1) 2 n

(2k- 1) /(2k- 3)(2k + 1)

Introducing the notation

S1 ( , 82,....) E 12 (9.35)

for all n = 0, 1, 2,..., we restate (9.34) in a slightly different form in the
following theorem.

Theorem 3. Suppose that Xn's are eigenvalues of the differential opera-
tor(9.30), and that pn's are vectors defined in(9.35). Suppose further that

a matrix A is given by the formulae
2k(k +1)-1 2

Ak,k = k(k + 1) + (2k3)(2k - 1) C2, (9.36)
(k+2)k + 3(k-1)

Ak,k+2 = (k+2)(k+1) c2, (9.37)
(2k + 3) (2k + 1)(2k + 5)

Ak+2,k = (k+2)(k+1) c2 , (9.38)
(2k + 3) X/(2k + 1)(2k + 5)

for all k = 0, 1, 2,. .. ,the remainder of the entries being zero. Then, Xn are
the eigenvalues of A, with n'• corresponding eigenvectors.

In other words, in the basis consisting of the functions ,... ,

the differential equation (9.30) has the form

(A - Xn". I).-on = O. (9.39)
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Observation 4. The matrix A separates into two symmetric, tridiagonal
matrices Aeven, Aodd, with the former consisting of elements of A on the even-
numbered rows and even-numbered columns, and the latter elements on odd-
numbered rows and odd-numbered columns. While these two matrices are
of infinite dimensions, and their entries do not decay much with increasing
row or column numbers, the coordinates f of the eigenvectors 0'n decay
rapidly once m is sufficiently large.

9.8 Inverse Power Method as an Analytical Tool

In this section, we outline a scheme for the construction of asymptotic ex-
pansions in powers of c and 1/m for functions ¢% and for certain quantities
associated with them; the expansions constructed in this fashion are valid
for large m (see Section 9.11 below). It must be pointed out that once ex-
pansions (9.64), (9.65), (9.67), (9.68) have been constructed, substituting
them into (9.2) and using the identities (9.7), (9.4), (9.13). readily (though
somewhat messily) proves their validity. Thus, this section should be viewed
as a somewhat heuristic description of the procedure via which the expan-
sions (9.64), (9.65), (9.67), (9.68) have been obtained; while the contents of
this section can be made rigorous, the resulting proofs are long, elementary,
and add little to the subject of this paper.

We start with introducing the notation

2k(k + 1) - 1
ak = (2k + 3)(2k - 1) (9.40)

(k+2)(k+1)

(2k + 3) /(2k + 1)(2k + 5) , (9.41)

so that the symmetric tridiagonal matrices AM'v assume the form

AA:, = k(k + 1) + ak, (9.42)

A"'v = bk, (9.43)

A ' = bk (9.44)

(in Figure 1, A(n-2),(n+2) is depicted). Denoting by AL,v = {(A,"v)jj} the
square submatrix of either Aeven or Aodd (see Observation 5 above) con-
sisting of elements Aij such that I • i, j • v, we start with the following
observation.
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Observation 5. For a fixed c and any 0 < p < v, the matrix A,',' is.
diagonally dominant. Moreover, for sufficiently large it

Ak'lk+l #' A > JA I + IA"'+ 1  (9.45)k~i~k~l -- "k k IA'l,k] I "k,k+i

for all p < k < v - 1. Thus, for any sufficiently large M,

Ak(A"') - 2k. (2k + 1), (9.46)

with Ak(APL) denoting the eigenvalue number k of the matrix AA,v.

Consider now the submatrix A(n-k),(n+k) of the matrix Aeven (see Figure
1), where the case of k = 2 is depicted). Obviously, for large n, it has an
eigenvalue close to X0 = n(n + 1), with the corresponding eigenvector close
to

k k

° 0); (9.47)

we would like to find an improved approximation to the eigenvalue of
A(n-k),(n+k) closest to n(n + 1), and to the corresponding eigenvector. Em-
ploying the standard inverse power method with a shift, we form the matrix

B(n-k),(n+k) = A(n-k),(n+k) - X°.I, (9.48)

shown in Figure 2 (with I denoting the identity), and evaluate the sequence
of vectors

(B (n-k),(n~k)) -I (x,,), (B(n-k),(n+k))- ( Bo) (Bn-k),n+k) Y, (X0), - -

(9.49)

On inspection of the formulae (9.40)-(9.42), it is obvious that every coordi-
nate of every element in the sequence (9.49) is a rational function of c, n.
Now, constructing the sequence in the symbolic form (we used Mathemat-
ica), one can decompose it into a power series with respect to c, n; the results
of such expansion are presented in (9.64), (9.65), (9.67), (9.68) below.

9.9 Connections-Between lm(1) and Am for Large m

The principal purpose of this section is Theorem 6 below, providing an
exact expression for the eigenvalues A' as functions of c, m, and V% (1).
Subsequently, asymptotic expansions for Vc (1) are substituted into (9.58)
provided by Theorem 6 to obtain asymptotic expansions for Acr.

We start with a simple lemma describing the behavior of Ac for small c.



89

Lemma 3. For any m = 0,1,2,...,
lmAr•(m!) 2 r(m + 3)

lim?-->o A m)C m +• (2m 1. (9.50)

Proof. Differentiating (9.23) m times with respect to x and evaluating the
result at x = 0, we obtain

)AMC 4)()(0) = (ic)m  tm r)ma(t) dt, (9.51)

or

M -- )tm 0 .(t) dt; (9.52)

therefore,

lim M -- Jlim t m 'O(t) dt. (9.53)c--O im cm c--0O 1

Now, using the combination of (9.33), (9.8), (9.9), (9.10), and (9.13), we
rewrite (9.53) as

li m m vm + 1/2) tm Pn (t) dt, (9.54)

c-4O im cm 2mm! c-4o 1

or

Jim Ac (2m)! _ V(7r) m!

c-4o ijn ctm 2m m! 2m r(m + 3)(

or, finally,

imC (2m)!imlim , (9.56)
c-4O ctm  2m~ r(m + A) (rn!)2  (.6S2m +

The following theorem is one of principal results of this paper. It provides
an explicit expression for A' in'terms of Or (1).

Theorem 6. For any positive real c and integer m > 0,
im M FirCm (M!) 2 • F(c),9.7

(2m)! r(m + 3/2)

where F(c) is given by the formula

F(c)= f (2 (V,.rn(1))2 - _ M)dT. (9.58)
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Proof. Suppose that co, c are two positive real numbers such that 0 <
co < c. Integrating (9.28) from co to c, we obtain

log(ACn log()•O) + 1- (2(t(1))2 -1) dt. (.9

Due to (9.33),

(2 (- t (1))2 _ = M + p(t,m), (9.60)

with p a smooth function of t (see (9.67) below for a more detailed analysis
of p); substituting (9.60) into (9.59), we have

log(A') - log(A•) + m. (log(c) - log(co)) + p(t,m) dt (9.61)

exponentiating (9.61) and using (9.50), we obtain

A'= *c . c-m c-rn . efýo p(tm)dt (9.62)

Remembering that p is a smooth function of t and using (9.50), we
rewrite (9.62) as

m(_L- O m ! .m e.f p(t,m) dt -im r/ (M!)2 C m p(t,m) dt

M co-I0 Cm (2m)! F(m + 3/2)
(9.63)

which we combine with (9.60) to obtain (9.57), (9.58).

9.10 Formulae for PSWFs and Eigenvalues Xm, Am

The procedure described in Section 9.8 has been implemented in Mathemat-
ica, and used to obtain asymptotic expansions for the eigenvalues Xc and
eigenfunctions 0'¢ of the differential operator (9.1); the obtained asymp-
totic expansions were verified by substitution into (9.2), with the help
of (9.7), (9.4), (9.13). The resulting expansions are listed in this section;
several numerical examples illustrating their effectiveness can be found in
Section 9.14 below.
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9.11 Formulae for 1, 'V', '•n(1), V)(,)

Theorem 7. For all real c > 0 and integer m > 0,

c c 2  (4+c 2) c2 (4+c 2 ) +C 2 (28+13 C2 )
2 32m 2  32 m 3  128 M 4

c2 (20+11C2 ) c2 (3904+3936c 2 +160 c 4 + 5 c _)

64 m 5  8192 m 6

c 2 (5824+8416 c2 +480 c4 +15c6) c2 (9648192m 7 + . (9.64)
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Theorem 8. For all real c > 0, integer m > 0, and x E [-1, 1],
" c 1 4  ( c

1 2  c_12
VIr(X) = (1352914698240 7) 1Pm-4 (X) + \(671088640 m7 + 12079595520 mW Pm-•2 (X)

( oo/ (153600-c 4) 5co cO )O
193273528320 m 7  50331648 M6  125829120 m 5

(c 8 (262400- llc 4 ) c8 (55680- c4 ) c + C8  \+ • •0--+ + + I Pm,-s(x)
2013265920 M 7  2013265920 m6  196608 m 5  1572864 m 4

(c6 (417955840 + 983040 c 2 - 46080 c4 + c8 ) c6 (99072 - 13 c4 )
+ 64424509440 m 7  50331648 m6

c6 (15616 - c 4) 3c 6  c6
* 25165824 m5  16384m 4 + 24576 i 3 m1  (X) +

C4 (19169280 + 589824 C2 + 8064 c4 + c 8 ) c4 (27721728 + 393216 c2 
- 10240 c4 + c8 )

201326592 M 7  + 805306368 m 6

c4 (1920- c 4) C4 (2880- C4 ) C4  • 4 P- 4 (x)

131072m 5  393216m 4  256m 3  512iM2  _

+ (c2 (3397386240 + 2415919104 c
2 + 21528576 c

4 - 1769472 c6 - 43008 c
8 

- c 12 )

k 38654705664 m 7

c2 (1523712 + 491520 c 2 + 29568 C4 + c8 ) c2 (540672 + 98304 c2 - 4992 c4 + c8 )
25165824M 6  +12582912 m 5

cc2 (512C 4 ) C2 (256 - c 4 ) c2  c 2+• (52- ±4 + . Pm• (x)
+ 16384 m 4  8192M 3  32M 2 + 6m/

+ (1 + 31948800 c 4 + 589824 c6 + 2688 c8 + c1 2 _ 46301184 c 4 + 589824 c6 - 1152 c8 + c12

201326592 M7  603979776 m 6

3840 c4 
- c8  4352 c 4 -c 8  c4  c4

131072 m 5  262144 M 4  256 M3  256 M 2 /

(c2 (-94296342528 - 11475615744 c2 + 53968896 c4 + 1769472 c6 - 12288 c8 + c 12 )+ k38654705664 in7  (9.65)

c2 (28164096 + 1474560 c2 - 66432 c 4 + 11 c8 ) c 2 (6832128 + 98304 c 2 - 17280 c 4 + c8 )25165824 M6  12582912 m 5

c2 (-4608+7c 4) c2 (-1280+c 4) 3c 2  
- c2'

-- 16384 M4 + 8192 m 3  32 m 2  16m ) (X)

+ (c4 (297271296 + 2359296 c2 - 81152 C4 + 5 c8)) +

c4 (185008128 + 393216 c 2 - 61440 c4 + c8 ) 7 C4 (4224 -c 4 ) + c4 (9792 - c4 )

805306368 M6  393216 m5  393216 M4

C 4 C 4 ) F

- 128•M3 + 512 M2 m+4 (X) +

-c6 (2053734400 + 983040 c2 
- 184320 c

4 
+ c

8 ) c6 (367872 - 23 c
4

)

64424509440 m 7  + 50331648 m 6

c6 (40192-c 4) 5 c6  
- c6 *

-25165R24 -m5 16384m 4  24576 M3 P.+6(X)

(c8 (-775680+17c 4) c8 (119680-c 4) _ c8  c 8  '

2 2013265920 m6  131072 min 1572864 M 4

" (c 1 ° (-291840 + C4 ) 7 C1 ° C1 °
+ 193273528320 m 7 50331648m 6 125829120m 5

) +10 (x)
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The following two theorems provide asymptotic expansions for c(1),
0'%(0). It should be observed that the expansions below differ from expan-c2sion (9.65), in that (9.65) is an expansion in powers of L, while the expan-
sions (9.67), (9.68) below (as well as the expansion (9.64) above) are in pow-

ers of -. In numerical terms, it means that expansions (9.67), (9.68), (9.64)
produce reasonable accuracy whenever m > c, while (9.65) is useless unless
c < m2 , which tends to be a rather restrictive condition.

Theorem 9. For any c > 0 and integer m > 0,

I4'M(l) < rm + 1, (9.66)

and

1 M 1 4c 2
+C

4  8 8C2 +5cC4 3072c 2 +6800c 4 +496c 6 ±17c8

2)(1) +=m 4(12 2M) 4  (1 +2m) 6  64(1 + 2m)8

512c 2 + 4512 c4 + 1078 c6 ± 55 c8

2 (1 + 2 m)'°

327680 c2 + 11668480 c4 + 6912192 c6 + 615944 c8 + 8844 cl° + 107 c12

256(1+2 m)12

-393216 c2 - 56369152 c 4 - 77568128 C6 - 12546920 c8 - 453880 c1 ° - 7125 c12

64(1 +2 M)14

-469762048 c2 - 270135197696 c4 - 847030386688 c6 - 247641926912 cd
+ 16384 (1 + 2rm)16

--16252261888 cl° - 380878144 c 12 - 2115648 c 14 
- 12573 c1

6

- 16384 (1 + 2 M)16  (9.67)

-33554432 c 2 - 77265371136 c4 - 548143177728 c 6 - 287562215936 c8

256(1 + 2m)'8

-31109328352 c1° - 1111543216 c12 - 14134828 c14 - 101755 c 16

256 (1 + 2 m)"8

-38654705664 c 2 - 356175128297472 c4 - 5699666788220928 c
6

65536 (1 + 2 M)
20

--5342103064903680 c8 - 921930796096512 c1° - 49298957839616 c 12

65536 (1 + 2 M)
20

--1022214431488 c14 - 10219338512 c16 - 28971260 c18 - 100327 c20

65536 (1 + 2 rn) 20
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Theorem 10. For any c > 0 and integer m > 1,
Vf2 (1 2C2 + 1 2C2 + 1 8C4 -140C2 -3

¢7(0 16 Ma2 +16 M3 512 m 4

103680 c 4 - 1399680 c2 + 4601
3317760 m 5

83980800 c6 - 976276800 c 4 + 7865326800 c2 - 17805089
10749542400 m6

67184640 c6 - 557072640 c4 + 3430412748 c2 + 86309
+ 2866544640 m7

+1 8

12383472844800 m8 (20785248000 c - 1986313881600 c6

+4275336556800 c4 - 24430778197776 c2 - 1978643839)

18
24766945689600 m 9 (166281984000 c8 - 13181626368000 c6

+13528331886240 c4 - 79476319733832 c2 - 996600013)

1 (82763078400 c10 - 4876030224000 c8  (9.68)99067782758400 m1°

+244104975820800 c6 - 21627672187536 c4 - 1276961293959615 c2

+1381481054) + 1

792542262067200 min

(3310523136000 cl° - 155133532800000 c8 + 6730329331837440 c6

+149489524096664544 c 4 - 25501720589940204 c2 + 4407192151))

+0 \m12]

9.12 Formulae for Ac

Theorem 6 expresses Ac via c, m, and 0' (1), and Theorem 9 provides

an expansion of Vc(1) into powers of 1/rn. Combining these two observa-
tions (and carrying out the elementary but voluminous manipulations), we

readily obtain expressions for Ac , given in Theorem 11, proved by substi-

tuting (9.67) into (9.58) and carrying out the integration.

Theorem 11. Suppose that c > 0 is a real number, and m is a sufficiently

large integer. Then

adc (M!) (9.69)MAn (2 m)!r(3 +m)'

and

IM = cm Vf7r(M!)2 • q (9.70)
IAI=(2m)1r(! +m)
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with

8C2 +C
4  16c2 +5c 4

q = 16(1+2r) 3 4(1+2m)s

12288 c2 + 53952 c4 + 8512 c6 + 315 C8 +12288 C2 + 13536 c4 + 640 c 6 + 15 c8

96 (1 + 2 m) 9  512(1+2 m) 7

327680 c2 + 5824000 c4 + 2290560 c6 + 150990 c8 + 1656 cdO + 15 C12

512 (1 + 2m)"

196608 c 2 + 14082048 c4 + 12891648 c6 + 1554795 c8 + 44088 clo + 550 c12

64(1+2rn)" (9.71)

384978886656 clo + 7344995840 c12 + 33146880 C14 + 154245 c16

3932160 (1 + 2 M)'
5

56371445760 c2 + 16203707842560 C4 + 33835125309440 c6 + 7399764503040 C8

3932160 (1 + 2 rn)"5

+0 C 0

Remark 1. It should be observed that the the expansion (9.71) has a draw-
back as a tool for approximating A' for large values of c. Indeed, some of
the terms in (9.71) are of the form ck+l/mk with k = 3,7,11,15. In other
words, in order to obtain a prescribed accuracy for large c, the values of m
have to grow faster than the values of c. For example, in the case of (9.71),
m must grow as c2°/ 19 . While numerical examples in Section 9.14 show that
the resulting approximations are acceptable for fairly large ratios of c/m
and fairly large c, in certain situations such estimates are not sufficient. To
some extent, we attempt to remedy this problem in the following section.

Remark 2. Looking at the the expansions (9.64), (9.67), (9.68) (but not

the expansions (9.65), (9.71)), one is tempted to think that each of them
represents the first few terms of a convergent series. We conjecture that
indeed, there exist expansions approximating Xm, ?/ru(1), V'b (0) that are

convergent for c < m, and for which (9.64), (9.67), (9.68) are the first
7, 20, and 11 terms, respectively. Such convergent expansions are being

investigated.

9.13 Results Following From the WKB Analysis of the Equa-

tion (9.2)

While all expansions in Section 9.10 are in terms of powers of c/m, it is often
desirable to have approximate formulae for various quantities associated
with the PSWFs that are valid when (for example) m increases, but c stays

proportional to m. In this section, we list several such estimates. Since the
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results presented here are not the principal purpose of this paper, they are
listed without proofs. The proofs will be published at a later date.

Theorem 12. Suppose that c > 1, and that m > c is an integer. Then

,P m () -1=0 .(9.72)

V'Tr/2) (C))

Theorem 13. Suppose that c > 1, and that m > c is an integer. Then

C2. - (k -7/ (2. c)) v-(M. c)'

with E defined in (9.20), (9.21).

Theorem 14. Suppose that c > 1, and that m > c is an integer. Then

IAI- 1 (.4

Ppo(c,m ) - . - (9.74)

where P0 (c, m) is defined by the formula

e-Vx--( F(,"/-(jC2/Xc))-E.(,,r1-C2/X.)
--- (C,) (9.75)

and E, F are the elliptic integral defined in (9.16), (9.17).

The above theorem provides an estimate that is effective for arbitrarily
small c/m, and gets tighter as c increases. When c/m is reasonably close to
1, a tighter estimate is provided by Theorem 15 below; however, the estimate
provided by Theorem 15 deteriorates as c/m decreases.

Theorem 15. Suppose that b < 1, and that c = m. b. Then

Ac =po(c,m) .pi(c,m). (1 +0 (1)), (9.76)

where Po is defined in (9.75), p, (c, m) is defined by the formula
(c2 F(,V-lo2l/•))-xc.•(Vz•-o-.2 ))

pl(c,m) = e 2"(Xcc 2 )"V(-X%) (9.77)

and E, F are the elliptic integrals defined in (9.16), (9.17).
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Theorem 16. Suppose that b < 1, and that c = m - b. Then for each
k = 1,2,.. ,m,

k - 0r , (9.78)
Xk - sin I(\G( \/Xn (ý))= 2(s ,(.8

where Xk denotes the k-th root of 0%, and G is defined in (9.19).

9.14 Numerical Results

The approximate formulae of Sections 9.10, 9.13 were tested numerically.
The calculations were performed in FORTRAN (the LINUX version from
Lahey), in either double or extended precision, as needed. Tables 1 - 8 be-
low illustrate the numerical behavior of some of the approximations listed in
Sections 9.10, 9.13 above. The first two columns in each of the tables contain
the bandlimit c and the degree m of the functions for which the calculation
was performed. The third column contains the value of the parameter being
approximated (calculated numerically with sufficient accuracy via the algo-
rithm described in [15]), and the fourth column contains the approximation
being tested. Finally, the fifth column contains the relative error of the
approximation. More specifically,

the parameter xZ in Table 1 is defined in (9.64) in Theorem 7;

the parameter ecru(1) in Table 2 is defined in (9.66) in Theorem 9;

the parameter i•n(0) in Table 3 is defined in (9.68) in Theorem 10;

the parameter ATn in Table 4 is defined in (9.70) in Theorem 11;

the function P0 in Table 7 is defined in (9.75) in Theorem 14;

the function P0 in Table 8 is defined in (9.75), and the function P, in Table 8
is defined in (9.77).

The final table (Table 9) illustrates the performance of the approxima-
tion (9.76) in the regime where the authors have encountered the need for
such an approximation most frequently - when when attempting to deter-
mine the smallest order m such that

IArmJ _ 6, (9.79)

with c a prescribed band-limit, and - a reasonably small real number
(see [15]). Here, An is defined by (9.76).
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The following observations can be made from the tables below, and from
the more extensive numerical experiments performed by us.

1. Approximations obtained via the inverse power method of Section 9.8
tend to be surprisingly accurate; all of them display rapid convergence as
c/m -+ 0. With the exception of (9.70) in Theorem 11, they produce at
least three digits at m - c, and better than two digits at m '-, 0.7c. The
estimate (9.70) produces almost 4 digits at m - c, but breaks down quickly
once m < c; generally, this estimate should be used with care (see Remark 1).

2. Approximations obtained via the WKB analysis of the equation (9.2)
are slowly convergent (which is to
be expected from (9.72), (9.73), (9.74), (9.76)), but quite robust. All of
them are accurate to a few percent at m ,-' c - 10, and produce better than
two-digit accuracy at m - c - 100. The estimate (9.76) is an exception,
in that it produces almost 4-digit accuracy at m - c -, 10 (even though its
convergence is only first order).

3. The obtained expansions tend to be highly satisfactory as "ballpark"
estimates, or when initial approximations are needed for some iterative pro-
cesees (Newton, inverse power with shifts, etc.). The authors have already
used some of them for this purpose.

4. In all cases, convergence rates predicted by the estimates (9.64), (9.67),
(9.68), (9.70), (9.72), (9.73), (9.74), (9.76)) are confirmed numerically.

5. The expansions (9.64), (9.67), (9.68), (9.70) of Section 9.8 have been
obtained via the inverse power method followed by the expansion of the
result into a power series in c/m (with some additional analysis in the case
of (9.70)). Thus, convergence rates of expansions in Section 9.8 are fairly
high, and can be easily improved (in fact, some of them were obtained with
higher orders, and truncated in order to save space and improve readability).

6. In contrast, the expansions (9.72), (9.73), (9.74), (9.76) of Section 9.13
have been obtained via a WKB analysis of equation (9.2), and converge
slowly; as often happens in the WKB environment, higher order terms can
be obtained, but tend to require fairly involved algebraic manipulation.

7. Table (9) indicates that whenever I A l JE [10-3, 10-34], the approxima-
tion (9.73) to Ac is quite accurate, even for c = 1. Because of this relative
universality, we found the approximation (9.76) to be convenient in many
practical situations.
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9.15 Conclusions

In this paper, we continue to develop asymptotic formulae for the approx-
imation of certain Prolate Spheroidal Wave functions; in this sense, this
paper can be viewed as a sequel to [15]), [16]). We investigate the behavior
of PSWFs in two regimes: when the ratio c/m decays, and when both c and
m grow, but the ratio c/m stays bounded. Both the regions of validity and
the accuracies of the presented expansions are illustrated with numerical
examples.

While our results are restricted to PSWFs representing band-limited
functions in one dimension, they are easily extended to PSWFs in two
and three dimensions (see [101), and to the the discrete version of PSWFs
(see [14]))
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Table 1: Illustration to Theorem 7

c m __________

10 10 0.1630966527E+03 0.1630714644E+03 0.15444E-03
10 20 0.4707790239E+03 0.4707789503E+03 0.15648E-06

100 200 0.4527786640E+05 0.4527786600E+05 0.86985E-08
200 200 0.6146952030E±05 0.6146804219E+05 0.24046E-04
1000 1000 0.1532864705E+07 0.1532827516E+07 0.24261E-04
1000 700 0.1061453125E+07 0.1059550913E+07 0.17921E-02
2000 2000 0.6129524565E+07 0.6129375490E+07 0.24321E-04
2000 1400 0.4244667882E+07 0.4237027811E+07 0. 17999E-02
2000 2800 0.9906881564E+07 0.9906876723E+07 0.48867E-06
2000 4000 0.1803528048E+08 0.1803528034E+08 0.74676E-08
3000 3000 0. 1378997985E+08 0.1378964417E+08 0.24342E-04

Table 2: Illustration to Theorem 9

Oc (1)c m V)MC(1) V%() I ioChi,
10 10 0.31902788747723779E+01 0.31905422086869083E+01 0.82543E-04
10 20 0.45234567755878853E+01 0.45234567756167842E+01 0.63887E-11
100 200 0.14146047761502584E+02 0.14146047761502849E+02 0.18696E-13
200 200 0.13924692587818798E+02 0.13924695713143016E+02 0.22444E-06
1000 1000 0.31101114869861699E+02 0.31101121823492145E+02 0.22358E-06
1000 700 0.23879885740948034E+02 0.23942265326233700E+02 0.26122E-02
2000 2000 0.43977324022989220E+02 0.43977333899706241E+02 0.22459E-06
2000 1400 0.33756823931676613E+02 0.33845812629714789E+02 0.26362E-02
2000 2800 0.52700849165636936E+02 0.52700849168898644E+02 0.61891E-10
2000 4000 0.63187511935751733E+02 0.63187511935752509E+02 0.12285E-13
3000 3000 0.5385843060766621 1E+02 0.53858442724682153E+02 0.22498E-06
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Table 3: Illustration to Theorem 10

c m VCr(0) ec(-1I

10 10 0.71144703287367743E±00 0.71171898554143206E+00 0.38225E-03
10 20 0.77458052422641627E+00 0.77458058647749832E+00 0.80367E-07

100 200 0.77375279244056135E+00 0.77375275802711210E+00 0.44476E-07
200 200 0.70560112377749721E+00 0.70550546307480897E+00 0.13557E-03
1000 1000 0.70524498101496006E+00 0.70514631315036206E+00 0.13991E-03
1000 700 0.59360424996183111E+00 0.59332063131563892E+00 0.47779E-03
2000 2000 0.70519974860604934E+00 0.70510078690664959E+00 0.14033E-03
2000 1400 0.59311889866962533E+00 0.59311889866962533E+00 0.45793E-03
2000 2800 0.74950308377257293E+00 0.74950078056463195E+00 0.30730E-05
2000 4000 0.77364297728974388E+00 0.77364294095129980E+00 0.46971E-07
3000 3000 0.70518463549707760E+00 0.70508558000608774E+00 0. 14047E-03

Table 4: Illustration to Theorem 11

c m_

10 10 0.74448729094687059E-02 0.74460264240524210E-02 0.15492E-03
10 20 0.11487284026412298E-09 0.11487284032200906E-09 0.50391E-09

100 200 0.13980106499480028E-94 0.13980106499962346E-94 0.34500E-10
200 200 0.50013133845361460E-35 0.50014447244613024E-35 0.26260E-04
1000 1000 0.21812532717459833-172 0.21815376765049754-172 0.13037E-03
1000 700 0.12446479810779478E-21 0.15087142653799010E-21 .17503E+00
2000 2000 0.83881420007423372-344 0.83903370115080797-344 0.26161E-03
2000 1400 0.21530614133976734E-42 0.31719477252513466E-42 .32122E+00
2000 2800 0.95872406658488436-883 0.95872445211599086-883 0.40213E-06
2000 4000 0.27032262499046933-939 0.27032262504623675-939 0.20630E-09
3000 3000 0.37241503575221057-515 0.37256142385539540-515 0.39292E-03
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Table 5: Illustration to Theorem 12

V-lJ mo/ • 1 I 2).(Xc.) 1/

10 10 0.4484211371E+01 0.4478898292E+01 0.11848E-02
10 20 0.5839879308E+01 0.5838001665E-01 0.32152E-03
100 200 0.1828238670E+02 0.1828232508E±02 0.33704E-05
200 200 0.1973451022E+02 0. 1973444398E+02 0.33567E-05
1000 1000 0.4409973230E+02 0.4409972636E+02 0.13475 E-6
1000 700 0.4022863000E+02 0.4022862080E+02 0.22871 E-6
2000 2000 0.6236151404E+02 0.6236151194E+02 0.33701E-07
2000 1400 0.5688802967E+02 0.5688802642E+02 0.57200E-07
2000 2800 0.7031438603E+02 0.7031438479E+02 0.17711E-07
2000 4000 0.8167528665E+02 0.8167528596E-02 0.84680E-08
3000 3000 0.7637493487E±02 0.7637493373E+02 0.14981E-07

Table 6: Illustration to Theorem 13

c m xc c2.(. /2 )I -1Ic In M c P~k- 7r(2 -c)) 2.E(k.7r/(2.c))
10 10 0.16310E+03 0.15319E+03 -0.60742E-01
10 20 0.47078E+03 0.45078E+03 -0.42476E-01
10 40 0.16902E+04 0.16502E+04 -0.23668E-01

.100 200 0.45278E+05 0.45078E+05 -0.44093E-02
200 200 0.61470E+05 0.61276E+05 -0.31497E-02
1000 1000 0.15329E+07 0.15319E-07 -0.63084E-03
1000 700 0.10615E+07 0.10609E+07 -0.53822E-03
2000 2000 0.61295E+07 0.61276E+07 -0.31548E-03
2000 1400 0.42447E±07 0.42435E+07 -0.26871E-03
2000 2800 0.99069E+07 0.99041E±07 -0.28031E-03
2000 4000 0.18035E±08 0.18031E+08 -0.22135E-03
3000 3000 0.13790E+08 0.13787E+08 -0.21033E-03
4000 4000 0.24514E+08 0.24510E+08 -0.15775E-03
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Table 7: Illustration to Theorem 14

c AMn1 po (c, M) i -oI-A 11

10 10 0.74449E-02 076927E-02 0.33293E-01
10 20 0.11487E-09 0.11744E-09 0.22321E-01
10 40 0.31613E-31 0.32045E-31 0.13658E-01
100 200 0.13980E-94 0.14011E-94 0.22430E-02
200 200 0.50013E-35 0.50097E-35 0.16745E-02
1000 1000 0.21813E-172 0.21820E-172 0.33499E-03
1000 700 0.12446E-21 0.12451E-21 0.38410E-03
2000 2000 0.83881E-344 0.83895E-344 0.16750E-03
2000 1400 0.21531E-42 0.21535E-42 0.19205E-03
2000 2800 0.95872E-883 0.95886E-883 0.14022E-03
2000 4000 0.18428E-1877 0.18430E-1877 0.11221E-03
3000 3000 0.37242E-515 0.37246E-515 0.11167E-03
4000 4000 0.17536E-686 0.17538E-686 0.83752E-04
5000 5000 0.852857-858 0.852914E-858 0.67002E-04
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Table 8: Illustration to Theorem 15

c M Arcn O (c, M)).pi (c, M

10 10 0.7444872909E-02 0.7446665216E-02 0.24074E-03
10 20 0.1148728403E-09 0.1150119590E-09 0.12111E-02
10 40 0.3161339122E-31 0.3167374120E-31 0.19090E-02

100 200 0.1398010650E-94 0.1398175798E-94 0.11813E-03
200 200 0.5001313385E-35 0.5001357815E-35 0.88837E-05

1000 1000 0.2181253272E-172 0.2181257109E-172 0.17591E-05
1000 700 0.1244647981E-21 0.1244648034E-21 0.42152E-07
2000 2000 0.8388142000E-344 0.8388149368E-344 0.87843E-06
2000 1400 0.2153061413E-42 0.2153061458E-42 0.20906E-07
2000 2800 0.9587240665E-883 0.9587269587E-883 0.30167E-05
2000 4000 0.1842893028E-1877 0.1842903879E-1877 0.58880E-05
3000 3000 0.3724150357E-515 0.3724152537E-515 0.58536E-06
4000 4000 0.1753670459E-686 0.1753671228E-686 0.43892E-06
5000 5000 0.8528572778E-858 0.8528575773E-858 0.35108E-06
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Table 9: Detailed test of approximation (9.76)

c E m CM______M_

1 10-3 4 0.48332632960755855E-03 0.49253048415110964E-03 0.19043E-01
10 10-3 12 0.36617050651533914E-03 0.36632358110157685E-03 0.41804E-03
100 10-3 71 0.55575710332503292E-03 0.55575881296253393E-03 0.30762E-05

1000 10-3 645 0.55106315217648969E-03 0.55107646952172820E-03 0.24167E-04
4000 10-3 2554 0.90212772934407403E-03 0.90236151778056827E-03 0.25915E-03

1 10-7 7 0.36792394641891258E-07 0.37488869176272692E-07 0.18930E-01
10 10-7 17 0.49874818613646773E-07 0.49922485044638009E-07 0.95572E-03

100 10-7 80 0.58925058618798641E-07 0.58925270851642587E-07 0.36017E-05
1000 10-7 658 0.79048001359994678E-07 0.79048001648746860E-07 0.36529E-08
4000 10-7 2571 0.61423452268446200E-07 0.61423452271823360E-07 0.54982E-10

1 10-16 13 0.74952326257500369E-17 0.73796615083410797E-17 0.15661E-01
10 10-16 27 0.15806109360487387E-16 0.15831555036994785E-16 0.16099E-02
100 10-16 97 0.54155657267971079E-16 0.54156484982260280E-16 0.15284E-04

1000 10-16 685 0.49840375608637398E-16 0.49840376752547266E-16 0.22951E-07
4000 10-16 2603 0.76060266618255159E-16 0.76060266644868355E-16 0.34990E-09

1 10-34 23 0.17086514327818415E-35 0.17289382300788054E-35 011873E-01
10 10-34 43 0.66754620912146111E-35 0.66883769710725253E-35 0.19347E-02
100 10-34 125 0.61670180107155583E-34 0.61672901821270542E-34 0.44133E-04

1000 10-34 731 0.46579482948604880E-34 0.46579487739909906E-34 0.10286E-06
4000 10-34 2661 0.55635248845674676E-34 0.55635248941472294E-34 0.17219E-08
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10 A Wideband Fast Multipole Method for the
Helmholtz Equation in Three Dimensions

10.1 Introduction

One of the standard approaches to the solution of scattering problems is
to convert them into integral equations, which are then discretized using
appropriate quadrature formulae. This usually leads to large-scale systems
of linear algebraic equations, which are in turn solved via appropriately
chosen iterative schemes (such as GMRES). Most iterative schemes for the
solution of linear systems of this type require the application of the matrix of
the system to a sequence of recursively generated vectors. Applying a dense
matrix to a vector is an order N2 procedure, where N is the dimensionality
of the matrix, which in this case is equal to the number of nodes in the
discretization of the domain of the integral equation (or to a small multiple
of that number of nodes). As a result, the whole process is at least of order
N 2, which is prohibitive for many large-scale problems.

During the last 30 years or so, a number of algorithms have been con-
structed for the rapid application to arbitrary vectors of the matrices result-
ing from the discretization of integral equations of scattering theory. Histori-
cally, the first group of algorithms for this purpose were the so-called k-space
methods, which take advantage of the fact that the free-space Green's func-
tion for the Helmholtz equation is translation invariant, and use Fast Fourier
Transforms (see, for example, [6]). This approach can be quite efficient when
applied to volume integrals, but usually requires order N 31 2 .log N operations
when used for the solution of boundary integral equations in three dimen-
sions. Its performance deteriorates in environments where some parts of the
domain of the integral equation must be discretized at a higher resolution
than other parts.

Another class of techniques is known as Fast Multipole Methods
(FMMs). Algorithms in this class construct a hierarchical subdivision of
the domain of the integral equation, in which it is recursively divided into
smaller and smaller regions; for each region in the hierarchy, they use a "far
field expansion" (in the original FMM for the Laplace equation, a multipole
expansion; for low-frequency scattering problems, a partial-wave expansion)
to represent the potential of that region, on regions distant from it. Since
these expansions are used only on distant regions, arbitrary specified pre-
cision can be achieved (though the cost of the calculation grows somewhat
when the required accuracy is increased). The CPU time requirements of the
FMMs are proportional to N in the low-frequency regime, and to N - log N
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for high-frequency problems involving boundary integrals; the latter esti-
mate becomes O(N) for volume integral equations. Fast Multipole Methods
can easily be designed to be "adaptive", that is, to subdivide the domain of
the integral equation more finely in regions where the discretization contains
more nodes; the performance of the FMM is only weakly affected (and often
improved) in such environments.

While the algorithms known by the term "FMM" share the same basic
computational structure, the expansions they use are based on either of two
very different principles. For the Laplace equation, or for the Helmholtz
equation in the low frequency regime, the principle used is that large sub-
matrices of the matrix to be applied are of low rank (to high but finite
precision); this permits a wide variety of expansions to be used successfully
in these environments, as in, for instance, "fast" methods based on wavelets
and similar structures (see, for example, [3], [2], [8]).

In the high frequency regime, the ranks of submatrices tend to be pro-
portional to their sizes, and rank considerations can not be used to construct
asymptotically fast algorithms. In this environment, existing fast schemes
are based on a somewhat more subtle mathematical apparatus. Specifically,
it turns out that the diagonal forms for the translation operators for the
Helmholtz equation (see Section 10.12 below) are available analytically, and
that on every level of subdivision all translation operators are diagonalized
by the same unitary operator (see [27]). This observation leads to algorithms
of order N • log N for the application of discretized operators of scattering
theory to arbitrary vectors, but not to algorithms of order N.

Each of these two types of expansions fails in some way outside its pre-
ferred regime: attempts to use rank-based approaches in the high-frequency
regime result in algorithms whose CPU time requirements are proportional
to N 2; attempts to use diagonal forms of translation operators at low fre-
quencies result in numerically unstable schemes. In each case, the difficulty
is fundamental, and can not be removed by simple expedients such as scal-
ing, etc. Thus, there exist problems (e.g. scattering from an object many
wavelengths in size which has significant subwavelength structure) for which
neither of the two approaches performs well.

Fortunately, it is possible to construct "hybrid" schemes, conducting
all calculations via partial-wave expansions on the subwavelength levels of
subdivision, and transitioning to the diagonal form once the groups are of
such size that the diagonal forms are stable. In this paper, we present
such a procedure. More specifically, we describe an algorithm for the rapid
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evaluation of expressions of the form

N

(Dk Z sj . ho(w .axk - xjII), (10.1)
j=1, j~k

or minor variants thereof, in which qbN , E C are to be calculated,
given xj,... , Xg E R 3 , s1,... , SN E C, and w E C, and where h0 denotes the
spherical Hankel function of order zero (ho(z) = y1,). In our description, we
use the customary terminology of electromagnetics, referring to the formula

4)(x) = ho(w. -Ux - xOi1) (10.2)

as the potential at the point x of a unit source of wavenumber w located at
the point xO. The potentials satisfy the law of superposition, so that, for
instance, we refer to (10.1) as the potential at the points xl,... , XN which
is generated by sources s1,... , SN located at those same respective points,
all the sources being of the same wavenumber w.

The algorithm presented here is a variant of the Fast Multipole Method
(FMM); it is accurate and efficient for any value of w whose real and imag-
inary parts are greater than zero, and we thus term it "wideband". The
basic computational structure of the wideband FMM is the same as that
of previous variants of the FMM in three dimensions, and can be summa-
rized as follows (for more detail, see Section 10.18). The algorithm finds the
smallest cubical box which encloses all the points {xj}, and then constructs
a hierarchical subdivision of that box, in which it is divided into eight boxes
of equal size (also cubes), each of which is likewise subdivided, the subdi-
vision process continuing recursively until the lowest-level boxes have 0(1)
points in them. The eight boxes into which a box is divided are termed
its "children", and it their "parent". For each box, a far field expansion is
produced, which represents the potential due to the sources on that box, at
distances more than its own length away from it. The far field expansion for
each childless (i.e. lowest-level) box is calculated from the sources on that
box; the far field expansion for each parent box is calculated from the far
field expansions of its children. These far field expansions are not evaluated
directly (except in rare instances, having to do with the adaptive aspect of
the algorithm), but rather translated into "local expansions", which repre-
sent the potential inside a box due to sources distant from that box. Local
expansions on parent boxes are evaluated by translating them into local ex-
pansions on their children; then the local expansion on each childless box is
evaluated on the points {xj} in that box.
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diagonal translation

"far field signature far field signature

l diagonal translation,

far field signature High Frequency Regime for field signata re

hn-expansion spherical Low Frequency Regime ospeincal j-expansion

lea t squares diagonal translation least squares point-and-shoo

lo-alex nio exponntial expr lie tial i-expansion j-expansion

point-and-shoi poindit-aned-shoot

h-expansioo r h-expansioAn i-expanso j-expaomion

A small but representative fraction of the boxes used in a typical computation of the wide-
band FMM. Boxes are placed in the figure according to their positions in the hierarchy, with
parents on top of children. Inside each box is the type of expansiod used for that box; on
the left half of the figure, only far field expansions are listed, while on the right half, only
local expansions are listed (although in the full computation, all boxes have both types of
expansions). Where a box is divided into two, that indicates that two different types of
expansions axe used for that box. An arrow indicates a transformation performed between
two expansions, and the text alongside it indicates the method used for that transformation.
Exponential expansions are not fully represented in this figure: in the full computation, each

box in the low-frequency regime has them; and not just one but six exponential expansions
are used for each box.
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Figure 10.1 illustrates the various expansions and methods for the trans-
lation and conversion of expansions used by the algorithm of this paper. At
low frequencies, the principal expansions used are partial-wave expansions
(Section 10.8), far field expansions of this type being referred to as "h-
expansions" and local expansions as "j-expansions". Translations of these
expansions up and down in the hierarchy (for h-expansions, from child to
parent; for j-expansions, from parent to child) are done using the "point-
and-shoot" method (Section 10.11), in which the expansion is first rotated
so that its z axis points in the direction in which it is to be translated, then
translated, then rotated back. If the order of the expansion is denoted by
p (the number of terms being p2 ), then point-and-shoot is an O(p 3) opera-
tion, whereas performing the translation via a single matrix multiplication
would be O(p 4). Translations from h-expansions to j-expansions are per-
formed using exponential expansions (Section 10.16). This does not affect
the asymptotic CPU time of the algorithm, but improves the constant sub-
stantially: conversion of far-field expansions into local expansions consumes
most of the CPU time of the low-frequency portion of the algorithm (since
each far field expansion might be translated to as many as 63 - 33 = 189
local expansions, that being the maximum possible number of boxes on that
level which are not adjacent to the source box, but whose parents are adja-
cent to its parents); since translation operators for exponential expansions
are diagonal each of them can be applied in O(p 2) time.

It has been empirically determined that the CPU time requirements of
the scheme are minimized when high-frequency techniques are used wherever
possible, which is whenever the box size exceeds a certain threshold (which
depends on the desired accuracy of the computation, but is on the order of a
wavelength). The high-frequency techniques are reviewed ih Section 10.12;
there, the far field expansion for a box (its "far field signature") consists of
the potential due to sources on that box, sampled on the surface of a sphere
centered on the box, appropriately scaled, and taken in the limit as the ra-
dius of the sphere approaches infinity. The analytical machinery treats far
field signatures as functions on the sphere; translation is performed by mul-
tiplying far-field signatures by other functions on the sphere. Numerically,
far field signatures must also be resampled when they are translated; for
downward translation, this amounts to filtering, and for upward translation,
interpolation. Both interpolation and filtering are performed via a version
of the algorithm introduced in [22] and summarized in Section 10.6 below.

The history of "fast" techniques of the type used in this paper goes back
about 20 years; an excellent review can be found in [251. An FMM for
the Laplace equation in two dimensions was published in [18]. It has been
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understood for a long time that trivial modifications convert the scheme
of [18] into a viable FMM for the low-frequency Helmholtz equation; for
algorithms of this type see [25] and references therein. In [21], the use of
"intermediate" exponential expansions to accelerate the 2D Laplace FMM
was proposed, and in [19], a three-dimensional version of that accelerated
FMM was introduced. In [20], exponential expansions were worked out for
the Helmholtz equation in three dimensions.

A high-frequency FMM for the Helmholtz equation in two dimensions
was published in [26]; diagonal forms for translation operators in three di-
mensions are described in [271, and a single-level FMM in three dimensions
is described in [9]. In [16], the complete theory of such diagonal forms is
developed, and full-scale FMMs for the Helmholtz and Maxwell's equations
are constructed in [28], [33], [12], [13], [15].

In [5], an algorithm of a somewhat different type for the compression of
matrices resulting from the discretization of integral equations of scattering
theory is presented, both in the Helmholtz and Maxwell environments; the
scheme is based on the observation that the free space Green's functions
for these equations are convolutions, and uses FFTs. An interesting devel-
opment of this approach (under certain conditions, leading to remarkably
efficient schemes) can be found in [32].

A detailed exposition of both (low-frequency and high-frequency) FMMs
can be found in [7]. An outline of the wide-band FMM can also be found
in [7]; a version of it based entirely on exponential expansions of the type
described in Section 10.16 below was published in [14]. A scheme somewhat
related to the one described here can be found in [23].

The structure of this paper is as follows. Section 10.2 contains the math-
ematical facts to be used in the paper that are either well-known or trivially
follow from well-known facts. In Section 10.8, we discuss various properties
of partial wave expansions that are relevant to the algorithm to be con-
structed, and introduce the concept of translation operators for partial wave
expansions. Diagonal forms of translation operators in the high-frequency
regime are studied in Section 10.12, and Section 10.16 is devoted to the di-
agonal forms of translation operators in the low-frequency regime (obtained
via the so-called exponential expansions). The wideband FMM is described
in Section 10.18, and the performance of the FMM is illustrated in Sec-
tion 10.19 with a number of numerical examples. Finally, Section 10.20
contains very brief conclusions.
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10.2 Mathematical Preliminaries

10.3 Symmetry

In describing various expansions and conversions between them, this paper
makes use of a symmetry between far-field and local expansions, as follows.
If we view (10.1) as a matrix-vector multiplication, and denote by A the
matrix involved, then clearly A is symmetric; that is to say, the potential at
any point xi due to a unit source at another point x2 is equal to the potential
at X2 due to a unit source at Xi. Suppose X1 and X2 are two subsets of the
points {Xk}; denote-by A12 the submatrix of A mapping sources at points
in X2 to potentials at points in X1, and by A21 the submatrix of A mapping
sources at points in X1 to potentials at points in X2. Since A is symmetric,
A12 = A2. If X1 consists of the points on a box, and X2 consists of the
points for which that box's far field expansion is valid, then for any type of
far field expansion for that box, there is a method of creating two matrices:
a matrix C which creates the coefficients of the expansion, and a matrix
E which evaluates the expansion, such that IIA21 - ECu < -, where E is
the accuracy of the expansion. Since A is symmetric, this also means that
IIA1 2 - CTETII < E; that is to say, for any type of far field expansion, there
is a corresponding type of local expansion, such that the creation matrix for
the far field expansion on any given box is the transpose of the evaluation
matrix for the local expansion on that box, and the evaluation matrix for
the far field expansion is the transpose of the creation matrix for the local
expansion. It does not necessarily follow that the types of far field and local
expansion used in any particular version of the FMM have this symmetry;
but in almost all of the versions we are aware of, and in all the expansions
used in this paper, this is in fact the case, if minor changes such as rescalings
and sign changes of the coefficients of the expansions are neglected.

This symmetry also extends to conversions between two far field ex-
pansions, as compared to conversions between the two corresponding local
expansions: in that case we have a far field creation matrix C, a far field
evaluation matrix E for a different expansion (perhaps of a different type,
or perhaps of the same type but for the parent box), and a conversion ma-
trix B, such that IA21 - EBCII < -. Then IIA12 - CTBTET1I < e; that
is to say, if we have a conversion matrix between two far field expansions,
then the conversion matrix between the corresponding local expansions is
its transpose.

Issues of numerical stability are likewise common to both types of ex-
pansion: if applying a sequence of matrices to a vector, one after another,
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is a numerically stable process, then so is applying, in the reverse order, the
sequence of transposes of those matrices.

The situation is slightly complicated by the presence of dipoles or of other

more complicated sources: if those are used, the resulting analog of (10.1)

is no longer symmetric. However, the algorithm still uses the same types of

expansions in that situation - that is, although the creation matrices for
far field expansions change, the evaluation matrices do not, nor do creation

and evaluation matrices for local expansions. Thus translation matrices and

conversion matrices between different types of expansions remain the same

(and thus retain the above-described symmetry). Furthermore, if the desired
result at each point were not the potential but an appropriate directional

derivative of the potential, then the symmetry would be fully restored. Thus,

even with this complication, the symmetry of far field and local expansions

permits us, in many places in this paper, after treating far field expansions
in full, to merely state that the local expansions are the corresponding ones,

rather than repeating from a slightly different perspective their identical
mathematics.

10.4 Spherical Harmonics

We use the usual spherical coordinates, in which the mapping from spher-
ical coordinates (r, 0, 0) to Cartesian coordinates (x, y, z) is given by the

formulae

x = rsin0cosq, (10.3)

y = rsin0sin¢, (10.4)

z = rcos0. (10.5)

We denote by S2 the two-dimensional sphere, each point s E S2 having

coordinates (O(s), O(s)); for brevity, a point in spherical coordinates may be
written (r, s), meaning (r, O(s), O(s)).

A function f : S2 -+ C is referred to as a spherical harmonic of degree n

if the function

rn. f (O, 0) (10.6)

satisfies the Laplace equation in R3 . As is well known (see, for example,
[11]), for any integer n > 0, there exist exactly 2n + 1 linearly independent

spherical harmonics of degree n, an orthonormal basis for which consists of
the functions

Ym'(Oq4) =i -plm(cosO)etm7, (10.7)



117

for integer m E [-n, n], where P-hn denotes the normalized associated Leg-
endre function of degree n and order m, defined by the formula

2n + 1 /(n -II)!. p m (z), (10.8)

4i (n + mI)!

where Pnm denotes the associated Legendre function of degree n and order
m, which is given by Rodrigues' formula

Pnm(x) = (-1)m(1 - x2 )(m/ 2) d-Pn (x), (10.9)
dxm

and where Pn denotes the Legendre polynomial of degree n. Any two spher-
ical harmonics of different degrees are orthogonal, so the functions Ynm axe

all orthogonal to each other.

10.5 Integration of Spherical Harmonics

The grid of points used in the wideband FMM for sampling of functions on
the sphere is the one introduced in [27]. It consists of the points (Ok, Oj),

for k = 1,... ,n and j = 1,... ,2n, where the points IMj} are equispaced
nodes on the circle (that is, on [0, 27r]), and the points {Ok} are given by the
formula

Ok = arccostk, (10.10)

where tl,... , tn E [-1, 1] are the nodes of the n-point Gaussian quadra-
ture on [-1, 1]. As is well known (see; for instance, [29]), the quadrature
consisting of n equispaced nodes on the circle, with all quadrature weights
equal to 27r/n (the trapezoidal rule) integrates exactly all functions of the
form eimO with integer m such that -n < m < n, and the n-point Gaussian
quadrature integrates polynomials of degree 2n - 1 exactly: denoting the
weights of that quadrature by w 1,... , wn, we have

Zwjtj =Itmdt, (10.11)
j~l J- 1

j=1

for any integer m E [0, 2n - 1].
For integration on the sphere, the weight at each grid point (Ok, Oj)

is taken to be w; - ~2. This quadrature integrates exactly any spherical
harmonic of degree less than 2n: when applied to a function Ynm, if m 0 0,
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the integral on the sphere is zero, as is the result of applying the quadrature,

while if m = 0, the integral of Yn' on the sphere is equal to

27r fPlml(cos 0) sin0 dO. (10.12)

The substitution t = cos 0 converts (10.12) into the integral of a polynomial"

(due to (10.9), from which can be seen that the product of any two Legendre

functions of the same order is a polynomial); it is thus integrated exactly by
the Gaussian quadrature in t.

Since the product of a spherical harmonic of degree n, and a spherical
harmonic of degree n2 is a sum of spherical harmonics of degree ni + n 2 or
less, the above quadrature integrates exactly products of spherical harmon-

ics, provided the sum of their degrees is less than 2n.

10.6 Filtering and Interpolation of Spherical Harmonics

Translations using the high-frequency diagonal form (Section 10.12) involve
filtering and interpolation of functions on the sphere of the form

p n
f (0, 0)= E E am~nym(0, ). (10.13)

n=O m=-n

In that context, the ideal filtering scheme is one in which the filtered function

values, sampled on a coarser grid, are given by the same formula (10.13),

with the same coefficients {am}, except that coefficients with n > p' are
set to zero, for some p' < p. Likewise, the ideal interpolation scheme is

one in which the interpolated function values are given by the same formula
(10.13), with the same coefficients {la'}, only sampled on a finer grid. Either

of these schemes can be accomplished by computing the coefficients {In},
then using them to evaluate (10.13) on the desired grid of points.

The computation of the coefficients {am} from the values of f on S 2 is

referred to as a spherical harmonic transform. Since the functions {ynm} are

orthonormal on S2, with the complex conjugate of Ynn(s) being Yn m (s), it
can be performed via the formula

am f f(s)Y.-m(s) ds. (10.14)

As shown in Section 10.5, the quadrature defined in that section is exact for

such integrals, provided that the number of nodes in the grid is sufficient.

Using that quadrature with sufficiently many nodes, the number of nodes
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in the 0 direction being denoted by q, and the number of nodes in the ¢
direction being 2q, (10.14) becomes

am =27r q 2q

Z = -Wk E-f j)Y -k(Ok'j)'y (10.15)
qk-1 j=i

This computation can be split into in two steps: first the calculation of the
sums

= f(Ok, 0j)e-im¢ (10.16)

qj=1

for all k = 1,... , q and m = -p,... ,p, where p denotes the maximum order
n for which the coefficients {am} are to be computed, then the calculation
of the sums

p

an= E WkI Prl (COS0k), (10.17)
k=1

for all n = 0,... ,p and m = -n,... ,rn. Since the nodes {0j} are equispaced
on the circle, the first of these steps can be performed by q invocations of
the Fast Fourier Transform (FFT), each taking O(q log q) CPU time.

If filtering or interpolation of the above-described type is desired, the
reverse of the above process must then be performed - that is, the evalua-
tion of (10.13) on a (possibly different) grid of points (Ok, qj), of size 4 x 24.
This process can likewise be accelerated by splitting it into two steps: first

the calculation of the sums

p

n' =n (cos 0k), (10.18)
n=ImI

for all k = 1,... , 4 and m = -k,... , k, then the calculation of the sums

n

m= Z f3eimoj, (10.19)
m=-n

for all k = 1,... ,q and j = 1,... ,24. The second of these steps can be
performed by 4 invocations of the FFT, provided that the nodes {1j} are
equispaced on the circle.

In [221, it was observed that the second and third stages of this inter-
polation or filtering process (that is, the computations (10.17) and (10.18)),
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combined, can be evaluated efficiently using the one-dimensional FMM, and
that this, together with the use of the FFT for the other two stages, con-
stitutes an efficient algorithm for filtering or interpolation on the sphere.
In outline, that observation is as follows: the combination of (10.17) and
(10.18), consists, for each m = -p,... ,p, of multiplication by a matrix
whose (i•j)'th entry is given by the formula

p

wi P-L n(Cos i)P- (Cos6j); (10.20)
n=Imi

substituting into that formula the Christoffel-Darboux formula for the asso-
ciated Legendre functions, which is

p
P)E PT (P)Pnm (A) =SPm+l ('PP+l (A)'PP GL) --m _P (---m04

n=lml
(10.21)

where
S= (n2 - m2)/(4n2 - 1), (10.22)

shows that the matrix (10.20) can be applied to a vector using two invo-
cations of the one-dimensional FMM, each of which computes sums of the
form

N

fi =E qj .(10.23)
j=l xi -- yj

The wideband FMM uses this algorithm both for filtering and interpola-
tion on the sphere; the one-dimensional FMM used in it is a version of the
algorithm described in [31].

10.7 Spherical Bessel and Hankel functions

In accordance with standard practice [1], we denote by Jn the spherical

Bessel function of the first kind of order n, and by hn the spherical Hankel
function of order n. Functions of both types are 'elementary' functions; in

particular,

jo(z) sinz (10.24)

z

eizho (z) = i.--z (10.25)
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For large n, the asymptotic behavior of jn(Z) and hn(z) is given by the
formulae (see [1], 9.3.1, 9.3.2, 9.1.3)

zn n+(
jn(Z) "• 2. (2n + 1)n+l' (10.26)

Vf2. (2n + 1)nhn (Z) - _ (10.27)
zn+l . en+½

For large z with Im(z) > 0, the asymptotic behavior of jn(z) and hn(z) is
given by the formulae (see [1], 9.2.5, 9.2.7, 10.1.1)

(elm(z)lim z jm(Z) = cos(z - (m + 1)7r/2) + 0 11 , (10.28)

lir z hm(z) = ei(z-(M+1)-/2) + 0 (% ) (10.29)

10.8 Partial-Wave Expansions

Classical partial-wave expansions are the primary type of expansion used by
the low-frequency Helmholtz FMM. They are given by the following theorem
(which can be found, for instance, in [24]), which expresses as a series the
potential from sources inside a disk in R3 on points outside the disk:

Theorem 17. Suppose that the function 4 : R3 -+ C is given by the for-
mula

N

4P(x) = qkho(llx - XkI11), (10.30)
k=1

and that IIxkII < a for each k = 1,... ,N. Then, denoting the spherical
coordinates of the point x by (r, 0, q), and the spherical coordinates of each
point Xk by (rk, Ok, qk),

00 fl
• ()=E amYn(')hwr (10.31)

nzO m=-n

for any point x such that r > a, where

N
= qky m(Ok, ¢njf(Wrk). (10.32)

k=1
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Expansions of the form (10.31) will be referred to as h-expansions. Since
the potential at any point x due to a unit source at another point y is the
same as the potential at y due to a unit source at x, the above expansion can
also be used with the positions of sources and measurement points reversed:

Corollary 4. Suppose the conditions of Theorem 17 hold, except that xk >
a fork= 1,... ,N. Then

00 n

i(x) = E S f3n-Yn7(O, ¢)j.(wr) (10.33)
n=O m=-n

for any point x such that r < a, where

N

fm= E qkYn (Ok, Ok)hn (Wrk). (10.34)
k=1

Expansions of the form (10.33) will be referred to as j-expansions. In the

FMM, whenever an h- or a j-expansion is used for some box in the hierarchy

of boxes, the center of that box is taken to be the origin of the system of

spherical coordinates used in (10.31) - (10.32) or (10.33) - (10.34).
Since j-expansions are related to h-expansions in the manner described in

Section 10.3 - that is, the creation and evaluation operators for each type

of expansion axe the transposes of the evaluation and creation operators,
respectively, for the other type of expansion - the following error analysis
for h-expansions applies equally well to j-expansions.

10.9 Truncation Error

Each h-expansion used in the 3D FMM represents the potential from sources
inside a cubical box, at locations outside that box and its immediate neigh-

bors. Denoting the length of the box by 2R, and taking the center of the box

as the origin of the system of spherical coordinates, any point (rk, Ok, Ok)
inside the box satisfies the inequality

rk •/ R, (10.35)

and any point (r, 0, ¢) at which the h-expansion for that box must be accu-
rate satisfies the inequality

r > 3R. (10.36)
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These constraints permit the h-expansion to be truncated to a manageable
number of terms. Examination of (10.31,10.32) shows that the appropriate
truncation point depends on the possible magnitudes of the products

Y.m(0, q)- h.(wr) - Y. m (ok, Ok) " jn(wrk): (10.37)

if, for some n and m, the magnitude of (10.37) is bounded by some number e,
and the accuracy budget can handle an error of size E, then the term ca' can
be omitted from the calculation. Since the functions {Ynm} are orthonormal
and smooth, and thus have maximum values roughly equal to one, they may
be dropped from (10.37) with only a modest loss of accuracy, leaving it as:

hn (wr) . jn (wrk). (10.38)

Since this is not a function of m (and for reasons of general convenience),

the truncation used in the FMM is purely in n - that is to say, the terms

retained in the series (10.31) are those for which n = 0,... ,p, and m =
-n,..., n, where p depends on the desired accuracy and on the size R of

the box. That dependence is a matter of the numerical behavior of the

spherical Bessel functions hn and in.
For real arguments, that behavior can be summarized as follows. For

x > n, both hn(x) and in(x) are oscillatory; as x -- oo, the period of their

oscillation tends toward a constant, and the magnitude of their oscillation
decays as 1/x. For x < n, hn(x) is monotonically increasing, starting from
large negative values; in the limit as x -+ 0, it is proportional to x-n-1.

For x < n, jn (x) is also monotonically increasing, but starting from small

positive values; in the limit as x -+ 0, it is proportional to x'. Thus the non-

negative values of n can be partitioned into three regions, in each of which

the behavior of the product (10.38), under the constraints (10.35,10.36), is

of a different character:

o Region I: 0 < n < x/vwR; here, in (10.38), Jn might be evaluated in its

oscillatory regime, and hn always is; since both factors of the product
can be on the order of one, coefficients an' for all these values of n

must generally be included in the computation to achieve even minimal

accuracy. For a box W wavelengths on each side (the wavelength being
equal to -), there are approximately 5W integer values of n in this

region.

0 Region II: O/-wR < n < 3wR; here, in (10.38), Jn is evaluated on an

argument which is less than n, and hn is evaluated in its oscillatory

regime. Thus the value of (10.38) is bounded by jn(VfiwR), which
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decreases with increasing n. If the box is sufficiently large and/or the
desired precision sufficiently small, this decrease permits the trunca-
tion point p to be placed in this region. For a box W wavelengths in
size, there are approximately 4W integer values of n in this region.

Region III: 3wR < n; here, in (10.38), both jn and hn are evaluated on
arguments which are less than n; thus jn continues its decrease, and hn
starts to increase in magnitude. If 3wR < n, then the approximations
(10.26), (10.27) apply, and thus the maximum possible value of (10.38)
under the constraints (10.36), (10.35) can be approximated by

3R(2±1 (10.39)3 3R.- (2n + 1)'

The accuracy of this asymptotic bound is not satisfactory for numer-
ical use outside the asymptotic regime; accordingly, in the wideband
FMM, we bound the significance of the coefficients a'4 by evaluating
the product hn (3wR) , in(v(-wR) numerically. Experimentally, this
product decreases with increasing n throughout this region, not just
in the asymptotic regime.

The calculation and use of coefficients a'g, for n in Region III, clearly is more
delicate than in Regions I or II, since in Region III the coefficients a' can
have small values yet large significance, being multiplied by a large number
(h,(x), for x < n) when used in the series (10.31). The most delicate case is
that of the coefficients at the truncation point (those for which n = p), which
at worst may be multiplied by hp(3wR) when the expansion is evaluated.

This difference in the scaling of coefficients renders the high-frequency
diagonal form (described below in Section 10.12) unusable for boxes below
a certain size (which depends on the desired accuracy, but is on the or-
der of a wavelength); the details of the problem are described further in
that section. However, the difference in scaling does not cause problems if
the formulae (10.31), (10.32) are used directly, except that if the boxes are
very small, it introduces a different type of numerical problem, namely over-
flow or underflow of the exponents of floating-point numbers. This can be
avoided by rescaling expansions: replacing h.(x) with xnhn(x), and jn(x)
with jn(x)/xn. This rescaling must be carried through the entire analysis;
but as that is both straightforward and tedious, we omit it in our descrip-
tions in this paper.

The above count of terms in Regions I and II, combined with (10.39),
yields the result that the order p of partial-wave expansion needed to achieve
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a given accuracy e is O(W + logE), where W is the size of the box in
wavelengths. (The number of terms in a partial-wave expansion of order p
is (p + 1)2).

In the above, only the case of real wavenumber w has been considered. In
the case of a complex wavenumber whose imaginary part is positive (yielding
waves that decrease exponentially away from sources), it suffices to apply
the above truncation criterion to the real part of the wavenumber. For
wavenumbers with large imaginary parts, this is, however, not an optimal
truncation; further savings are possible. If the wavenumber is purely imag-
inary, the method of [17] should be used, as it is optimized for that case.

10.10 Rotation

By "rotating" an h-expansion, we refer to the following task: given an ex-
pansion of the form (10.31) relative to one system of spherical coordinates,
convert it into an equivalent expansion of the same form relative to another
system of spherical coordinates which shares the same origin. Denoting the
coordinates in the first system by (r, 01, 01) and in the second by (r, 02, P2)

(since they share the same origin, the radius is the same in both systems),
denoting the coefficients of the expansion in the first system by {an}, and
denoting the order of that expansion by p, the task is to find coefficients
{nTm} such that

p n p n

S �o�mYnn(0l,'Pl)hn(wr)-= E•5 5 mynm (0 2 ,0 2 )hn(wr). (10.40)
n=0 m--n n=O m=-n

Since this is to be true for any r, it must be the case that

n n

S_ an4Y:(0,0l) = E Pnm y m o (2, '2) (10.41)
m=-n m=-n

for each n = 0,... , p. Each of these p + 1 subproblems amounts to convert-
ing a spherical harmonic of degree n from one orthonormal basis to another,
which is an exact operation (thus justifying our above demand for equality

between the the two expansions). The wideband FMM uses only a small
number of angles of rotation, and uses partial-wave expansions only in the

low-frequency regime, where they have limited numbers of terms; thus rota-

tion matrices to accomplish this task can easily be precomputed and stored.

Various methods of computing rotation matrices are given in [4]; methods
sufficient for an FMM are summarized in [17]. However, here, we need only
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use the brute-force numerical procedure of evaluating each function Ym, ro-
tated as desired, at suitable grid points (such as those defined in Section
10.5), then performing a spherical harmonic transform (see Section 10.6)
to convert those values at grid points to spherical harmonic expansion co-
efficients: this yields the m'th column of the n'th rotation matrix. Using
precomputed rotation matrices, a rotation takes 0(p 3 ) CPU time.

Rotation matrices for j-expansions are identical to those for h-
expansions, as is evident either from symmetry considerations (as per Sec-
tion 10.3) or by noting that the function Jn may be substituted for hn in
the above derivation without changing its result.

10.11 Translation

One of the basic building blocks of the FMM is a procedure for the trans-
lation of a far field expansion for a child box into a far field expansion for
its parent. For partial-wave expansions, due to the ease of rotations (see
the preceding section), we need only examine translations along the z axis:
any other translation can be performed by rotating the expansion so that
its z axis points along the direction of the desired translation (that is, from
the center of the child box to the center of the parent box), translating it
along the z axis, then rotating it back - a procedure referred to as "point-
and-shoot". Since each of these three steps can be performed in O(P3) time
(as shown above for rotations, and below for translation in z), this is more
economical than performing the whole translation via the application of a
single dense matrix, which would take 0(p 4 ) time.

Formulae for the translation of h-expansions along the z axis can be
found in Chapter 5 of [7], and in [17] (which gives formulae for the case
of a purely imaginary wavenumber; to use them in the present context, the
wavenumber must be divided by i). They are given in the following theorem:

Theorem 18. Suppose a point cl lies on the positive z axis at a distance
p from the origin, and suppose that the potential 4, at all points whose
distance from cl is greater than rl, is given by an expansion of the form
(10.31) centered at cl, whose coefficients are {a'}. Then at all points whose
distance from the origin is greater than ri + p, 4 is given by an expansion
of the same form centered at the origin, whose coefficients {/3m} are given
by the formula

n ,n,S an/ (10.42)
nl=m
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where

min(n,n')

= Z (q (-l)fl'+k (2n' + 1).
k=mn

(n' - m)!(n + m)!(2k)!i-(n'+n) (_,p)-kjn p)ý10.43

(k + m)!(k - m)!(n' - k)!(n - k)!k!

In the wideband FMM, matrices containing the coefficients {Cn, ,} are
precomputed; since only one such set of coefficients is needed at each level
of the hierarchy, and since they are only computed in the low-frequency
regime, the time for this precomputation is negligible. Working with these
precomputed matrices, the CPU time taken to perform a translation via
(10.42) is O(p 3).

Due to the symmetry discussed in Section 10.3, translation of a j-
expansion from parent to child along the z axis is the transpose of the above
translation operation; thus a similar point-and-shoot procedure is used for
it, using the transpose of each of the precomputed matrices used in the above
procedure, and applying them in reverse order.

As a remark, the fact that translations along the z axis do not mix to-
gether coefficients with different values of m (and thus that they are O(p 3 ))
can be seen without delving into the full proof of Theorem 18. Such transla-
tions involve two h-expansions, each relative to a different system of spherical
coordinates, but with the coordinate ¢ of any given point being the same in
both systems. In each expansion, the coefficients whose superscript is m are
multiplied by etm¢, forming the m'th Fourier component in 0 of the poten-
tial. For the two expansions to yield the same potential, it is necessary and
sufficient that their respective Fourier components be equal, which implies'
that the coefficients of each expansion with any given m must depend only
on the coefficients of the other expansion for that m.

10.12 High-Frequency Diagonal Form

In [27], forms of far field and local expansion for the Helmholtz equation were

introduced which have the property that translation operators (far field to
far field, far field to local, and local to local) are diagonal. They are defined
in terms of partial-wave expansions, as follows. The far field expansion for
a given box, which is referred to as its "far field signature", consists of the
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function f S2 -+ C given by the formula
(30 n

f(s) n (s (10.44)
n=O m•-n

where {cJa} are the coefficients of the h-expansion for that box. The local
expansion for a given box (also referred to as a far field signature) consists
of the function g :2 S-- C such that

0o n
g(s) = E y (-i)n+lp/3Ym(s)' (10.45)

n=O m=-n

where {J•3} are the coefficients of the j-expansion for that box.

Since h-expansions and j-expansions are related to each other in the
manner described in Section 10.3 (that is, the creation operator for the

former is the transpose of the evaluation operator for the latter), far field
signatures inherit, through (10.44) and (10.45), that same relationship.

From (10.44), the definition (10.31) of h-expansions, and the asymptotic
behavior of the function hn for large arguments (10.29), it follows that the
far field signature f of any given box has the property that

f(s) = lim 4(r, s) - r. e-iwr, (10.46)
r-*oo

where 4D --3 C is the potential due to the h-expansion on that box (and
thus, in the FMM, due to sources on that box), and where the system of
spherical coordinates (r, s) has as its origin the center of that box.

Likewise, one may regard the function g for a given box, as given by

(10.45), as a source distribution on a sphere centered on that box, which
possesses the property that as the radius of that sphere is taken to infinity,
the source distribution being appropriately scaled and adjusted in phase,
the potential generated by it approaches the potential on the box.

10.13 Discretization

It is evident from (10.44), (10.45) that conversion of a partial-wave expan-
sion to a far field signature, or vice versa, amounts to a spherical harmonic
transform, forward or inverse (plus appropriate scaling by powers of i). Thus
the grid points defined in Section 10.5 are suitable for sampling far field sig-
natures; as shown in Section 10.6, if a p x 2p grid of that type is used, it
allows for exact transformations from functions sampled on the grid to co-
efficients {t'} of a partial-wave expansion of degree p - 1, and vice versa.
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Numerically, since the basis functions {Yn} are orthonormal, these conver-
sions are very well conditioned. However, in the case that the coefficients of
the partial-wave expansion are scaled differently from each other, as they are
for boxes less than roughly a wavelength in size, these conversions degrade or
destroy the accuracy of the expansion, depending on how severe the differ-
ence in scaling is. As shown in Section 10.9, the worst case ill-conditioning
is hp (3wR), where p is the number of terms in the h-expansion, and R is half
the length of the box. Accordingly, the wideband FMM proceeds by calcu-
lating this value for each box size, and not using the high-frequency diagonal
form for any boxes for which it exceeds the allowable loss of precision (as
given by the ratio between the accuracy desired and the accuracy provided
by the form of floating-point arithmetic in use). Since boxes at a given level
in the hierarchy are all of the same size, this means that a cutoff line is
drawn, above which the high-frequency form is used, and below which low-
frequency techniques are used; the more precision is required, the higher in
the hierarchy the line is. (See Table 10 for experimentally determined cutoff
lines for the accuracies 10-3, 10-6, and 10-9).

10.14 Far Field to Far Field and Local to Local Translations

The following theorem is proven in [271:

Theorem 19. Suppose f, : S 2 -+ C and f2 : S2 -4 C are two far field
signatures for the same potential, centered at points cl and c 2 , respectively.
Then

f2(s) = fi(s) . eiw'(c2-c1,E(s)), (10.47)

for all s E S2, where E(s) denotes the unit vector in the direction s.

Theorem 19 provides a way to translate far field signatures upwards
in the hierarchy of boxes. Numerically, both the function fi (the child's
expansion) and the function f2 (the child's expansion recentered on the
parent box) are discretized on grids of the type defined in Section 10.5, with
the grid used for f2 having roughly twice as many points in each direction.
Upwards translation thus consists of interpolating fi to the finer grid, then
performing the operation (10.47) at each grid point. Due to the relation
(10.44), the type of interpolation defined in Section 10.6 is ideal for this
purpose.

Theorem 19 also provides a way to generate far field signatures for the
potential generated by a set of point sources, without going through partial-
wave expansions: each point source has a far field signature, centered on
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itself, which for simple sources (of the type (10.2)) is a constant; such far
field signatures, one for each point in the box, can each be translated to the
center of the box via (10.47), then added together. (Formulae for this, for
both simple sources and dipoles, can be found in [27]). This can be used to
generate far field signatures for boxes whose size is above the high-frequency
cutoff but which contain too few source points to be worth subdividing (al-
though as implemented, the wideband FMM simply subdivides those boxes
anyway).

For the reasons described in Section 10.3, each local-to-local translation
operator is the transpose of the far-field-to-far-field translation operator for
the same geometry. Considered as operators on functions on the sphere,
both are diagonal, and thus are identical to each other. Numerically, for
translation from parent to child, the translated expansion is then filtered via
the procedure described in Section 10.6, so as to reduce the number of grid
points at which it is discretized to that used at the child's level, discarding
those parts of the far field signature which have insignificant effects on the
child box.

10.15 Far Field to Local Translation

The following theorem provides a means for translating a far field expansion
of the high-frequency diagonal form to a local expansion in the same form.

Theorem 20. Suppose f, : S 2 -+ C is a far field signature centered at a
point cl and valid outside a ball D1 of center cl and radius Rj; denote the
potential it yields by ýI : R3\D 1 -4 C. Suppose D3 is another ball, which
has center c3 and radius R 3 , such that D 3 fl D1 = 0. Let the functions

1
1 k : S2 -+ C, for positive integer k, be defined by the formula

k

Ik(s) = irn. (2m + 1) . Pm(cos(8(c 3 - C, s))) - hm (W C3 - C111),
m=0

(10.48)

where 0(c3 - cl, s) denotes the angle between the vector c3 - cl and the
direction s. Let g : S2 -4 C be given by the formula

gk(s) h l(S) -lk(S), (10.49)

and let the functions gk,n : S2 C be defined by the formula

gk(S) = (10.50)
n=O
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together with the restriction that gk,n(s) must be a spherical harmonic of
degree n. Let 4k : D 3 -4 C be given by the formula

00

'Dk(r,s) = _gk,n(S)jn(wr), (10.51)
n-=O

where r and s are coordinates in the system of spherical coordinates whose
origin is c3. Then, for any x E D3,

lim Ik(x) = 4(x). (10.52)
k--oo

Furthermore,

D3 IiC3 W-- ") WIlk • (10.53)

mDx l(~x - I(~ I C1 3  ).1I
The above theorem is proven in [27]. The proof is based on the same

formula (the addition theorem for spherical Bessel functions) on which The-
orem 17 is based; accordingly, the truncation error, as given by (10.53),
behaves similarly to the truncation error of partial-wave expansions (de-
scribed above in Section 10.9): the significance of the k'th term in the series
is indicated by the magnitude of the product

hk (wr) k(AP), (10.54)

with

"r = 11c3 - Cli, (10.55)

p < RI+R 3 , (10.56)

In the context of the FMM, far-field-to-local translation is done between
boxes on the same level of the hierarchy which are separated by at least one
box of the same size; thus the bounds (10.55), (10.56) become

r > 4R, (10.57)

p < 2vf3R, (10.58)

where R is half the length of each of the boxes. Comparison of (10.58) to
the corresponding bound (10.35) for partial-wave expansions shows that for
sufficiently high frequencies, the appropriate truncation points to achieve a
given accuracy, in the context of the FMM, are related as follows: when
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translating a far field signature of degree p between boxes on the same level,
the appropriate truncation point in (10.48) is 2p. At lower frequencies, it is
somewhat less than that; in the wideband FMM, it is determined numeri-
cally by evaluation of the worst-case value of (10.54), which is obviously

hk(4wR) jk(2V3wR). (10.59)

With the above truncation point, (10.49) is a product of two sums of
spherical harmonics, one of maximum degree p, the other of maximum de-
gree 2p. The resulting product is thus a sum of spherical harmonics of
maximum degree 3p. That product is then to be filtered, eliminating all but
components of degree p or less; this can be done if the grid on which the
product is sampled is of the type defined in Section 10.5, with at least 2p
points in 0 and 4p points in q. Thus, numerically, the process of translating
a far field expansion to a local expansion consists of resampling the far field
expansion on a twice-finer grid, multiplying by the function 1 2p at each grid

point, then filtering the result back onto the original grid, which yields the
local expansion.

Three remarks on the numerical implementation of diagonal forms of
translation operators seem in order.

Remark 3. The evaluation of the Far-Field-to-Local translation operators
is where numerical instability manifests itself if an attempt is made to use
high-frequency expansions for boxes that are too small. Indeed, the series
(10.48) obviously does not converge as k -+ oo; in fact, hm(w 11c3 - cli1)

starts growing in magnitude, once m exceeds w Ic3 - Cl 11. For sufficiently
large w IJc3 - C1 11 (or, equivalently, for sufficiently large R), this problem

does not occur, since the series is truncated before hm(w 1ic3 - cii1) becomes
too large. As a practical matter, given a certain precision of calculations-
and a certain desired accuracy, one can determine the minimum size of the
box for which the diagonal form of the translation operator provided by
Theorem 20. When the calculations are performed in 64-bit floating-point
arithmetic, Table 10 lists some of the cut-off points. We refer the reader
to [251 for an excellent discussion of this class of issues.

Remark 4. The filtering and interpolation operations on the sphere are
quite expensive compared to multiplication by a diagonal translation matrix,
and at first glance appear to be the dominant element of the algorithm (so
far as the CPU time requirements are concerned). Fortunately, each of
them only needs to be performed once for each box: in the entire wideband
FMM,, there is only one function being interpolated for each box (the far



133

Table 10: Transition points to diagonal forms for translation operators

Requested Accuracy Box Size (wavelengths)
10-3 0.25
10-6 3.50
10-9 12.0

field expansion), and it is interpolated to the same grid each time. Likewise,
as regards filtering, a number of functions, in the above descriptions, get
filtered then added together to produce the local expansion for each box;
but, since filtering is a linear operation, they can be added together before
filtering, and the filter applied once.

Remark 5. The final remark concerns the calculation of the function v2p on
grid points on the sphere. This calculation would be overly expensive if done
naively: direct evaluation of (10.48) at each of 0(p 2) points would require
O(p3 ) time. At the highest levels in the hierarchy, p is, in many important
cases, on the order of VN (where N is the total number of input points,
as in (10.1)); thus a single O(p3 ) operation would result in an O(N 3/ 2 )
algorithm. But the only place that s enters into the calculation of p2p(s) is
in the taking of the angle between s and the vector c3 - cl; thus L2p can
be tabulated as a function of that angle, then interpolated as necessary for
points on the sphere; if a local interpolation method is used for this, the
tabulation takes O(p 2) time (O(p) points, with O(p) time per point), as
does the interpolation (to O(p2) points, with 0(1) time per point).

10.16 Exponential Expansions

For translation from far field expansions to local expansions in the low-
frequency regime (that is, from h-expansions to j-expansions), the wideband
FMM uses the scheme introduced in [20]. In that scheme, the translation
is performed by means of "exponential expansions" (also known as "plane
wave expansions"), which are based on the following formula for the Green's
function of the Helmholtz equation, which is valid for z > 0:

eiwr 1 0 e-/2Z f 2 eiiA(xcos a+ysinA)da --- dA.
r 1i Jf Jovr -u7' e Qda (10.60)

In [20], the outer integral in (10.60) was divided into two parts, a "propagat-
ing" part and an "evanescent" part, on each of which a different quadrature



134

was used. In the wideband FMM, we instead use a single quadrature for
the whole of the outer integral. To determine the appropriate quadrature,
we first evaluate the inner integral analytically, which transforms the right
hand side of (10.60) into

2-f eo VAe-w'zJ°(A x- + y2) eA dA; (10.61)
27r JoA -W

an appropriate quadrature is thus one which integrates (10.61) accurately
for any x, y, and z within the ranges used by the algorithm. Those ranges
are as follows:

L < z < 4L, (10.62)

-4L < x,y _ 4L, (10.63)

where L is the length (on each side) of the box to which the exponential
expansion belongs.

The appropriate quadrature obviously depends on two variables: the
wavenumber w and the size L of the box. However, it depends chiefly on
the product wL (the real part of which is proportional to the size of the box
in wavelengths); it is easy to show that if this is held constant while w and
L are varied, then the number of quadrature nodes required to achieve the
same relative accuracy remains the same, while the weights and nodes are
rescaled by a common factor.

The wideband FMM uses quadratures custom-tailored to this exact prob-
lem using a variant of the algorithm presented in [101. These quadratures
have a constant term; that is, (10.60) is approximated via the formula

eiwr 1 s f27r Ak
a+-• Ewk efA: W2"z ei;k(XcOSa+ysina)da27 = /;- 2

k=1 Ak
(10.64)

in which the accuracy of approximation is selected to be on the same order
as the accuracy desired of the wideband FMM as a whole. The quadrature-
generation algorithm takes as input that desired accuracy, and yields the
number s of weights wk and nodes Ak, as well as the weights and nodes
themselves and the constant a, to satisfy (10.64) to that accuracy. These
quadratures are not computed at runtime, but are precomputed for each of
several distinct ranges of the product wL, which together encompass all the
values of that product which are possible in the low-frequency regime.
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The inner integral of (10.60) is obviously an integral of a smooth, periodic
function; thus the trapezoidal rule is appropriate for it. The amount of
oscillation of the function to be integrated obviously depends on the value
of the coefficient Ak, as does thus the number of nodes required for the
trapezoidal rule to achieve the desired accuracy; we denote that number
by Mk, and denote the total number of quadrature nodes needed by Sexp;
clearly, Sexp = 1 + E-=, Mk. A somewhat involved analysis, which we omit,
shows that s ; p, where p is the order of multipole expansion required to
achieve the same accuracy, and also that S,,p ; p2 .

The ranges (10.62) - (10.63) arise from the way exponential expansions
are used, which is as follows. In the FMM, the "interaction list" of a box is
defined to be the list of boxes on the same level of the hierarchy which are
not adjacent to it (adjacency being defined as having any common boundary
point, even just a corner), but whose parents are adjacent to its parent. The
number of such boxes is clearly at most 63 33 = 189 - fewer for boxes
near the edge of the problem domain, or near larger boxes which were not
subdivided to their level. For each box F in the interaction list of a box B,
the FMM applies a far-field-to-local translation operator to convert the far
field expansion on B into a local expansion on F.

To use exponential expansions for those translations, the interaction list
of a box is partitioned into six lists, one for each face of the box:

* the +z-list: boxes separated by at least one box in the +z direction,

* the -z-list: boxes separated by at least one box in the -z direction,

* the +y-list: boxes separated by at least one box in the +y direction,
and not contained in the +z or -z lists,

* the -y-list: boxes separated by at least one box in the -y direction,
and not contained in the +z or -z lists,

e the +x-list: boxes separated by at least one box in the +x direction,
and not contained in the +z, -z, +y, or -y lists,

* the -x-list: boxes separated by at least one box in the -x direction,
and not contained in the +z, -z, +y, or -y lists.

A +z-list is depicted in Figure 41. An exponential expansion as described
above is referred to as facing in the +z direction (that being the direction
in which the exponentials in it decay). Exponential expansions facing in
the other five directions are defined similarly, the only difference being in
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Figure 41: The +z-list of the box b

the names of the coordinate axes. For each of the six lists, an exponential
expansion facing in that direction is used for translations to boxes in that
list. It is evident that if a point (xo, yo, zo) E W3 is in a box B of length L,
and a point (x, y, z) E R3 is in a box of B's +z-list, then L <_ z - z0 :<_ 4L,
-4L _< x - x0 _<ý 4L, and -4L < y - yo <5 4L; thus those are the ranges for
which quadratures are constructed, as described above.

Substituting those quadratures into (10.60), the potential at a point
(x7 Y1 z) due to a source at a point (x0, yo, z0) can be approximated via the
formula

eiW1ll(X'y'z )-( :o'yo'zo ) l

I(X) y) Z) - (XO, YO, ZO)l
""a + E wke- •/•-(-° ,

k=1 X~k-: W2

Mk

1:ei~k ((X-XO) COSaki +(Y-YO)sin aAkj)' (10.65)

provided that L <_ z -zo <4L, -4L < x - xo < 4L, and -4L < y -yo <5 4L.
Each of the terms summed up on the right hand side of (10.65) is evidently
a plane wave; that is to say, it is of the form

wje(cj,u•-uo), (10.66)

where u = (x, y, z) and u0 = (xo, yo, Zo), with Wj E R and Cj E C3. Using
this notation, if sources at points ul, •1•, un, with respective source strengths
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ss... , S,, are located in a box B, then the resulting potential at any point
u located in any of the boxes of B's +z-list can be written as

n n J

'(U) = 3ke1 1-U-kl : 
5 k Ej Wje(ciUUk). (10.67)

k=1 k=1 j=1

This, in turn, can be broken up into three parts: first, the creation of of an
exponential expansion located at a point vl, via the formula

n

a3 = w ej • s(C3,l-), (10.68)
k=1

for each j = 1,... , J, then (optionally) its translation to another point v2,

via the formula

Oj = cje(Cj'v2-vI), (10.69)

for each j = 1,... , J, then its evaluation at the point u:

J

41(u) ; j/3je(Ci•-V2). (10.70)
j=1

The translation (10.69) can obviously be performed any number of times,
with no loss of accuracy; the accuracy depends only on the relative loca-
tions of each pair of source and measurement points, which must satisfy the
conditions (10.62), (10.63). In the wideband FMM, the location v, of the
exponential expansion for a box B is chosen to be the center of the box, and
the location v2 from which the exponential expansion is evaluated is chosen
to be the center of the box of B's +z-list that u resides in. With these
choices, the creation operator (10.68) and the evaluation operator (10.70)
are transposes of each other (thus possessing symmetry of the type described
in Section 10.3), except that the former operator contains the weights {Wj};
having each operator contain the square roots of those weights would render
the symmetry complete.

The advantage of using exponential expansions is, as previously men-
tioned, that their translation operator (10.69) is diagonal, and thus can be
applied in 0(p 2 ) time. Since translation is the most frequently applied oper-
ation, being applied up to 189 times per box, this yields significant savings.
The ability of exponential expansions to be translated more than once, with
no loss of accuracy nor change of region of validity, allows for further savings:
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examining the +z-lists of the eight children of a parent box, and referring
to the +z direction as being "upwards", it is evident that the +z-lists of
the top four children are the same, as are the +z-lists of the bottom four
children; and the former is a subset of the latter. Thus the +z translations
of those eight children can be accomplished by translating the exponential
expansions of the bottom four children to a common point, adding them
together, evaluating the resulting expansion on the boxes which are only in
the bottom four children's +z-list, then translating the exponential expan-
sions of the top four children to the same common point and adding them
in, then evaluating the resulting expansion on the boxes which are in all
eight children's +z-lists. This optimization reduces the maximum number
of translations per box from 189 to roughly 40.

10.17 Conversion Between Exponential and Partial-Wave
Expansions

In the wideband FMM, exponential expansions for each box are created
not via (10.68) but rather from the h-expansion for that box; likewise, ex-
ponential expansions are not evaluated on a box via (10.70), but rather
are converted into a j-expansion on that box. Since exponential expansions
and partial-wave expansions each possess the symmetry described in Section
10.3, these two types of conversions (h-expansion to exponential expansion
and exponential expansion to j-expansion) are transposes of each other; thus
we describe only the latter type of conversion.

The representation of a plane wave as a partial-wave expansion belongs
to a well-studied part of classical mathematical physics; the formula used in
the wideband FMM for the conversion is easily derived from the following
formula from [24] (vol. 2, 11.3.46):

ik- (n - n!
e 1: (2n+ 1)in E mna + m)!'

n=O m=0
- pm`(cosu)Pnm(cosO)jn(kr), (10.71)

where the vector r is of length r and has the spherical angles 0, q, where
the vector k is of length k and has the spherical angles u, v, and where Em
is the Neumann factor (Em = 1 when m = 0, fm = 2 when m > 0). Using
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the formula cos z = (eiz + e-iz)/2, (10.71) becomes

eik-r = '-(2n + 1)iE (n - I)!
n= + m)--- (n + Im)!

P• I P (cosu)P~ m(cosO)jn(kr). (10.72)

To convert (10.72) to the form used in this paper, we make the substitutions

S= w, u/ = Otkj, and cos u = (i �2- w 2 )/w, the last of which yields the

formula sinu = Ak/w. The Cartesian components of the vector k which
result from these substitutions are:

k, = k sin u cos v = Ak cos aki, (10.73)

kv = ksinusinv = Aksinoakj, (10.74)

= kcosu= iA-kw 2 . (10.75)

Making the above substitutions into (10.76) yields the formula

00 nl

e /•--2.eiAk(xcosaIc+ysinakj) = E On 'n Ynm(O,O)jn(wr), (10.76)
n-O m--n

in which (x, y, z) are the Cartesian equivalents of the spherical coordinates
(r, 0, q), and where

m= in ( Im2 eimakj. (10.77)

The left hand side of (10.76) is a single term of an exponential expansion
(facing in the +z direction), corresponding to the quadrature nodes Ak and
akj; the right hand side is the equivalent j-expansion, with (10.77) being the
formula for the coefficients of that expansion.

Denoting the coefficients of the exponential expansion by {Ekj}, the

formula for converting the entire exponential expansion into a j-expansion
is thus

S4jf 47rinm-Ii _w2) (

Pn = -Ekjeimaki. (10.78)
k=1 j=l

Since the nodes akI,... , akMk are equispaced, the inner sums of (10.78) can
be performed using the FFT; doing so reduces the CPU time required for
the whole conversion to 0(p 3 ).
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The exponential expansion to which the above conversion formula applies
faces in the +z direction; thus, using the formula (10.78) on an exponential
expansion facing in another direction results in a j-expansion relative to a
system of coordinates whose z axis points in that direction; the latter must
then be rotated (as described in Section 10.10) to the standard orientation.

10.18 Algorithm

The wideband FMM, as implemented, is adaptive; that is, the hierarchical
subdivision of the problem domain is deeper in places where there are more
source points: the rule used is that a box is subdivided if it encloses more
than a certain number d of source points. (The number d is chosen so as to
roughly minimize the CPU time.) However, in the high-frequency regime,
no adaptivity is used: any box above the high-frequency cutoff line which
contains any points whatsoever is subdivided. This removes the necessity
to consider the cases of nearby boxes of different size which interact, one
or more of those boxes being above the high-frequency cutoff line; instead,
all such cases are entirely in the low-frequency regime. (Since the normal
practice is to discretize objects using more than two points per wavelength,
this is not a major limitation of the code.) After the problem domain is
subdivided, the main computation is performed. It consists of three stages:
first, creation of far field expansions for each box; second, translation of far
field expansions to local expansions; third, evaluation of the local expansions.

The first stage is a bottom-up pass through the hierarchy of boxes. For
each childless box, an h-expansion is created via (10.32). Then, for each par-
ent box below the high-frequency cutoff line, an h-expansion is created from
the h-expansions of its children, using the "point-and-shoot" method de-
scribed in Section 10.11. At the high-frequency cutoff line, each h-expansion
is converted into a far field signature via a spherical harmonic transform
(Section 10.6). Above the cutoff line, far field signatures for parents are
created from the far field signatures of their children as described in Section
10.14. At the end of this stage, a far field expansion (either an h-expansion
or a far field signature) has been computed for all the boxes in the hierarchy.

In the second stage, for each box below the high-frequency cutoff line,
six exponential expansions are created from the h-expansion for that box,
as described in Section 10.17. These are then translated to each box in its
interaction list, as described in Section 10.16. The resulting six exponential
expansions (of the local-expansion variety) on each box are converted into
j-expansions on that box, as described in Section 10.17. This accounts for
all interactions between boxes of the same size in the low-frequency regime.
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Interactions between boxes of different sizes only occur when the larger of
those two boxes has not been subdivided, and thus has 0(1) points on it;
accordingly, such interactions are handled by evaluating the smaller box's
h-expansion directly on the larger box, or (for interactions going the other
direction) by creating a j-expansion on the smaller box directly from the
source points on the larger box. (In all cases, interactions are handled at
as high a level as possible; thus interactions between boxes of different size
only occur when the parent of the smaller box is closer than its own length
to the larger box, and thus its expansions are invalid on the larger box.) For
boxes above the high-frequency cutoff line, the far field signature for each
box is translated to each of the boxes in its interaction list via the procedure
described in Section 10.15.

The third stage is a top-down pass through the hierarchy of boxes. Start-
ing from the top level, the local expansion on each parent box is translated
into a local expansion on each of its children, and added to the existing local
expansion (from the second stage) on that child. Above the high-frequency
cutoff line, the translation process is performed as described in Section 10.14;
to cross the line, a spherical harmonic transform is used; below the line, the
translation process is performed as described in Section 10.11. After this,
the j-expansion on each childless box is evaluated to yield the potential at
the points in that box.

The above three stages handle all parts of (10.1) except for the interac-
tions between points {xj} which are in childless boxes which are adjacent
to each other, and between points {xj} which are in the same childless box;
those interactions are evaluated directly.

10.19 Numerical Results

The wideband FMM has been applied to several test cases. The first of
these is an aircraft-shaped object (Figure 42), 50 wavelengths in size. The
surface of the aircraft was divided into 706,300 triangles, on each of which
a single node was placed; the size of the smallest triangle was 1.06 X 10-6

wavelengths, and the size of the largest was 2.86 x 10-1 wavelengths. The
wideband FMM was run at each of three different levels of accuracy, and
the error calculated by comparing the results to those produced by direct
application of (10.1). Table 11 shows the results, as well as the time (in
seconds) taken by the direct method; the "error" columns contain the rel-
ative error in the L 2 sense (the L 2 norm of the error, divided by the L 2

norm of the correct result), and the first column contains the time taken
by the direct evaluation of (10.1). For comparison, the results of applying
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the FMM for the Laplace potential to the same geometry are shown in Ta-
ble 12; the Laplace FMM used was the one described in [8], which is at a
level of technology similar to that of the wideband FMM of this paper: it is
adaptive, and it uses exponential expansions for diagonal translations.

Table 11: Example 1: Aircraft-shaped object

Time Requested Error in Error in Time Memory
(direct) Accuracy potential gradient (seconds) (MB)
337329 10-3 0.43E-3 0.56E-3 485 300
337329 10-6 0.48E-6 0.50E-6 1291 790
337329 10-9 0.11E-9 0.95E-10 2947 1143

Table 12: Aircraft-shaped object - Laplace potential

Time Requested Error in Error in Time Memory
(direct) Accuracy potential gradient (seconds) (MB)
60590 1 0.27E-3 0.37E-4 48.3 211
60590 10-6 0.19E-6 0.43E-7 119 292
60590 10- 9  0.85E-10 0.61E-11 2437 376

Another example to which the wideband FMM was applied is a horse
(Figure 43), also 50 wavelengths in size. The surface of the horse was divided
into 872,694 triangles, on each of which a single node was placed; the size of
the smallest triangle was 9.34 x 10-3 wavelengths, and the size of the largest
one was 3.27 x 10-1 wavelengths. The results are depicted in Table 13,
whose columns have the same meanings as the corresponding columns in
Table 11. Again, the FMM for the Laplace potential was applied to the
same geometry; the results are shown in Table 14.

The FMM of this paper was also applied to points on the surface of a
sphere 50 wavelengths in size. The surface of the sphere was divided into
619, 520 triangles (the smallest being 4.91 x 10-2 wavelengths in size, and
the largest 6.27 x 10-2 wavelengths), on each of which a single node was
placed. The results are tabulated in Table 15; the results for the Laplace
potential in the same geometry are shown in Table 16.
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Table 13: Example 2: Horse

Time Requested Error Error Time Memory
(direct) Accuracy (potential) (gradient) (seconds) (MB)
646143 10-3 0.65E-3 0.31E-3 672 549
646143 10-6 0.66E-6 0.92E-7 1832 1111
646143 10- 9  0.33E-9 0.33E-11 3515 2027

Table 14: Horse - Laplace potential

Time Requested Error Error Time Memory
(direct) Accuracy (potential) (gradient) (seconds) (MB)
107833 10- 0.91E-3 0.57E-3 63.7 328
107833 10-6 0.46E-6 0.31E-6 139.7 322
107833 10-9 0.25E-9 0.1OE-9 298 584

Finally, we applied the FMM to points on the surface of a cube 50 wave-
lengths in size. The surface of the cube was divided into 619,520 triangles
(each being 9.12 x 10-2 wavelengths in size), on each of which a single node
was placed. The results can be found in Table 17; the results for the Laplace
potential in the same geometry are shown in Table 18.

The orders of the various expansions used for boxes of various sizes,
and for three different levels of requested accuracy -, are listed in the Ta-
bles 19, 20. Table 19 lists the orders of partial-wave expansion used, in the
columns labeled "LF", and the orders of truncation of far-field-to-local trans-
lation operators (the number k in (10.48)), in the columns labeled "HF".
In each case the number of terms in the expansion is on the order of the
square of the order: a partial-wave expansion of order p has (p + 1)2 terms;
and, for translation, a far field signature is sampled on a grid of size roughly
2p x 4p (the latter number being generally increased slightly so as to enable
FFTs of that size to be performed efficiently), while the tabulated orders of
truncation are, at high frequencies, roughly equal to 2p. When a number
is in parentheses (which only occurs in the "LF" column), it indicates that
partial-wave expansions of that order are not used in the wideband FMM;
instead, the high-frequency version is used.

The numbers of terms used in exponential expansions, for boxes of vari-
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Table 15: Sphere

Time Requested Error Error Time Memory
(direct) Accuracy (potential) (gradient) (seconds) (MB)
324381 1 0.27E-3 0.19E-3 521 416
324381 10-6 0.15E-6 0.42E-7 1358 914
324381 10-9 0.91E-10 0.24E-10 2873 1474

Table 16: Sphere-Laplace potential

Time Requested Error Error Time Memory
(direct) Accuracy (potential) (gradient) (seconds) (MB)
52936 10-3 0.79E-3 0.90E-3 45 245
52936 10-6 0.33E-6 0.45E-6 97.7 244
52936 10-9 0.19E-9 0.12E-9 223 402

ous sizes, are listed in Table 20. (Each number is slightly larger than strictly
necessary, since each of the numbers Mk which are summed to yield each en-
try in the table is adjusted upwards slightly to be a product of small primes,
so that the FFT can be performed efficiently.)

The following observations can be made from the results of the numerical
experiments described above, and from the more extensive experimentation
we have performed.

1. The observed CPU times are compatible with the n. log(n) estimate.
One apparent exception is the CPU time for the 9-digit calculation for the
aircraft-shaped object in Table 12. In fact, the FMM algorithm for the
Laplace equation (we used the version from [8]) ran out of physical memory,
and we see the CPU time penalty associated with the use of the virtual
memory (the so-called paging). Using a computer with more memory or
a more carefully written memory allocation for the Laplace FMM would
eliminate the anomaly.

2. For larger boxes, the number of terms in the partial wave expansions (and,
consequently, the cost of applying the translation operators) is almost inde-
pendent of the requested precision (see Table 19); this is a well-known aspect
of the behavior of such expansions. The number of terms in the exponential
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Table 17: Cube

Time Requested Error Error Time Memory

(direct) Accuracy (potential) (gradient) (seconds) (MB)
376950 0:- - 0.97E-3 0.74E-3 393 364
376950 10-6 0.73E-6 0.26E-7 1022 1295

376950 10-9 0.23E-9 0.17E-10 2077 1001

Table 18: Cube - Laplace potential

Time Requested Error Error Time Memory
(direct) Accuracy (potential) (gradient) (seconds) (MB)

56433 10-3 0.94-3 0.60E-3 52 201
56433 10-6 0.41E-6 0.34E-6 132 272
56433 10-9 0.28E-9 0.17E-9 231 362

expansions is also remarkably insensitive to the accuracy requirements (see
Table 20).

3. In terms of CPU time requirements of the algorithm, it is advantageous
to switch to the high-frequency (diagonal) form as soon (for cubes as small)
as the accuracy considerations permit. When calculations are conducted in
double precision (64 bit) arithmetic, and the answer is desired with three
digits, the transition can be made very early (for boxes only 1/4 of a wave-
length in size. When 9-digit accuracy is required, the transition is pushed
to boxes that are as large as 12 wavelengths. This aspect of the algorithm is
the principal reason for the relatively high cost of the scheme when higher
accuracy is required.

4. The scheme tends to be about 10 times slower than the scheme for
the Laplace equation in the same geometry. A factor of about 3 can be
accounted for by the fact that the Laplace code uses predominantly real
arithmetic, while the Helmholtz code is mostly complex. The remaining
difference is related to the structure of the Helmholtz algorithm, principally
at the boundary between the low and the high-frequency regimes.

5. As expected, both the time requirements and the accuracy of the algo-
rithm are fairly insensitive to the nature of the charge distribution. Virtually
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Table 19: Orders of partial-wave expansions

box size Expansion Order
(wavelengths) 1 = =0- e - 10-6 6 = 10-9

LF HF LF HF LF HF
< 0.1 10 22 28

0.25 11 7 23 38
1 (15) 17 26 41
2 (22) 32 31 46

3.5 (31) 50 39 56 52
5 (40) 68 (48) 77 59
10 (70) 126 (80) 137 91

12.5 (85) 155 (95) 166 107 176
15 183 195 206
20 240 253 265
30 352 367 380
40 463 480 494
50 575 593 608

arbitrary accuracies can be obtained (within the limitations of one's com-
putational environment).

6. The scheme of this paper permits scattering problems involving hundreds
of thousands of unknowns on the boundaries of the scatterers to be handled
on modern desk-top computers, though the resulting CPU (and more impor-
tantly, wall-clock) times can be inconveniently long. Using more powerful
(but still very accessible) systems, one can easily solve problems involving
many millions of unknowns.

The reader might have observed that in the numerical examples in this
paper, the size of scattering objects is limited by about fifty wavelengths.
The reason for this limitation is that at about this point, the desktop com-
puter used by the authors (Pentium 4 with 1.5 gigabytes of memory, us-
ing double precision arithmetic) tends to run out of memory. With other
computer systems, considerably larger-scale scattering problems have been
solved (see, for example, [30]).
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Table 20: Numbers of terms in exponential expansions

box size Number of Exponential Terms
(wavelengths) e = 10- 3  e - 10-6 e 10-9

< 10-4 415 1251 2576
10-4 415 1251 2576

10-3 415 1251 2575
10-2 427 1271 2570
10-1 426 1337 2561
0.5 722 1742 3149
1 898 2134 3646
2 1991 3407 5261
3 3540 5261 7156

4 5487 7720 9767
5 7619 10522 12662
6 10665 12785 16191
7 13860 16363 19499
8 18511 20399 24433
9 23445 24963 28774
10 28032 30071 33815

10.20 Conclusions

We have presented a wideband version of the Fast Multipole Method for the
Helmholtz equation in three dimensions. Although the method has consid-
erable internal complexity, it does not expose that complexity to the user
by breaking down in any regime. It has asymptotic CPU time O(N log N),
and, as demonstrated by numerical examples, even at high accuracies deliv-
ers very substantial speed increases over the direct method - more than two
orders of magnitude - at problem sizes which fit on an ordinary personal
computer at the time of this writing.
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