
SACAM: The Software
Architecture Comparison
Analysis Method

Christoph Stoermer
Felix Bachmann
Chris Verhoef

December 2003

TECHNICAL REPORT
CMU/SEI-2003-TR-006
ESC-TR-2003-006

Pittsburgh, PA 15213-3890

SACAM: The Software
Architecture Comparison
Analysis Method

CMU/SEI-2003-TR-006
ESC-TR-2003-006

Christoph Stoermer
Felix Bachmann
Chris Verhoef

December 2003

Architecture Tradeoff Analysis Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2003 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and "No Warranty" statements are included with all reproduc-
tions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document
for external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do
so, for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web
site (http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2003-TR-006 i

Table of Contents

Executive Summary...vii

Abstract...ix

1 Introduction ...1

2 Related Work..5

3 Method Overview...7

4 Concepts and Terminology...9
4.1 Heterogeneity ..9

4.2 Views...9

4.3 Criteria...10

4.4 Indicators...10

4.5 The Analysis Framework ... 11
4.5.1 Quality Attribute Scenarios...13
4.5.2 Quality Analysis Framework...13

5 The Method ..17
Step 1 – Preparation..18

Step 2 – Criteria Collation ..20

Step 3 – Determination of Extraction Directives ...21

Step 4 – View and Indicator Extraction ..23

Step 5 – Scoring ..25

Step 6 – Summary...27

6 Conclusions and Future Work..29

References ...31

ii CMU/SEI-2003-TR-006

CMU/SEI-2003-TR-006 iii

List of Figures

Figure 1: Architecture Techniques Used by the SACAM...5

Figure 2: SACAM Overview ...8

Figure 3: Analysis Framework..12

Figure 4: Uses View for the Processor Dependencies of the Sunroof25

iv CMU/SEI-2003-TR-006

CMU/SEI-2003-TR-006 v

List of Tables

Table 1: SACAM Plan ...19

Table 2: List of Extraction Directives for Scenario 2 ..22

Table 3: Example Scores with Weighted Importance ..27

vi CMU/SEI-2003-TR-006

CMU/SEI-2003-TR-006 vii

Executive Summary

The Software Architecture Comparison Analysis Method (SACAM) provides organizations
with a rationale for an architecture selection process by comparing the fitness of software
architecture candidates being used in envisioned systems. The method addresses organiza-
tions that select software architectures to

• explore the support of existing software product architectures for required software
product lines

• decide among competitive software architectures proposed by subcontractors

The SACAM contributes to the selection process by providing results from software architec-
ture analysis. Software architectures are critical for achieving an organization’s business
goals and provide a more manageable level of abstraction for handling information than the
code of the software.

The comparison is performed in a series of steps. After a preparation step, the comparison
criteria that serve as a yardstick in the method are collated and then refined into concrete
quality attribute scenarios. The scenarios and existing architectural documentation of the ar-
chitecture candidates are used to identify the relevant information for the comparison. This
information is extracted from the architectural documentation and analyzed to determine how
well the required scenarios are supported. The stakeholders score each architecture on a sce-
nario basis, which leads to a recommendation for selection. The scores might reflect weights
that are provided by the stakeholders for the criteria. The artifacts generated during the course
of the method can be used for subsequent processes, such as an architectural commonality
and variability analysis for a software product line migration.

Based on the current status of the SACAM, it is our belief that using this method comes with
three major benefits. First, it offers acquiring organizations a qualitative approach for making
selections among alternative architectures beyond quantitative approaches, such as cost. In-
tuition is replaced by an analysis framework. Second, the criteria approach is goal-oriented.
For example, architectural commonalities and differences are condensed and interpreted with
regard to the criteria qualities. Third, comparison on a manageable architectural level offers
the ability to evaluate changing business goals in the requirements space with solutions in the
design space.

viii CMU/SEI-2003-TR-006

CMU/SEI-2003-TR-006 ix

Abstract

Comparing software architectures for any nontrivial system is a difficult task. Software archi-
tectures are designed with particular requirements and constraints, and are often poorly
documented. However, organizations often need to select a software architecture for future
development from several candidate architectures. The Software Architecture Comparison
Analysis Method (SACAM) was created to provide the rationale for an architecture selection
process by comparing the fitness of architecture candidates for required systems. The SA-
CAM compares architectures based on a set of criteria derived from the business goals of an
organization. The SACAM was developed in a technical reuse context where an organization
investigated architectural commonalities and differences to explore architectural designs for a
software product line architecture. This report outlines a first version of the method and its
underlying concepts.

x CMU/SEI-2003-TR-006

CMU/SEI-2003-TR-006 1

1 Introduction

This report describes the Software Architecture Comparison Method (SACAM). A software
architecture comparison is necessary when organizations have to select software architectures
from a set of candidate architectures. The SACAM was developed in a technical reuse con-
text to help organizations explore architectural designs for use in new software product line
architectures. However, the SACAM may well be suitable in other application areas, such as
selecting among software architectures proposed by several contractors.

The goal of SACAM is to provide a rationale for an architecture selection process by
comparing the fitness of architecture candidates for envisioned systems.

This goal is achieved by providing solutions for two major objectives:

1. the extraction of comparable architectural views of each candidate at similar levels of
abstraction

2. criteria collation and analysis of the candidate architectures

The SACAM uses several architecture techniques developed by the Software Engineering
Institute (SEISM) to compare the architecture candidates. These techniques are outlined in
Section 2.

The SACAM compares the architectures of software systems and not the implementation
code. The major reasons are

1. business goals. Software architectures determine how well an organization can
achieve its business goals. An architecture may have been built to enable or limit the
addition of features demanded by customers, to allow or hinder modifications, or to
promote or restrict component reuse. Consequently, information about a software ar-
chitecture provides an important basis for deciding which software is better suited for
products supporting the organization’s future.

2. the level of abstraction. Software can be compared on several different levels. It is
possible to compare the requirements, but that does not address how well the soft-
ware actually realizes the requirements. On the other hand, at the implementation

SM SEI is a service mark of Carnegie Mellon University.

2 CMU/SEI-2003-TR-006

level, it is clear how well requirements are fulfilled, but comparing different software
is almost impossible because of the huge amount of information. Comparing soft-
ware architectures provides a manageable level of information. Architecture recon-
struction techniques can be used to ensure that the implemented software conforms to
the documented architecture and may be used to improve existing documentation.

Our experience is currently limited to the comparison of two architecture candidates. How-
ever, more candidates are possible from the perspective of the method. The organization’s
business goals describe global requirements of an envisioned system and therefore build the
basis for the comparison criteria. The criteria provide the yardstick for the comparison. The
better an architecture fulfills the criteria, the more promising it is for the envisioned system.

The SACAM consists of the following steps:

1. Preparation
Identifies the relevant business goals needed in the comparison and examines available
documentation for each architecture candidate.

2. Criteria Collation
Derives comparison criteria from the business goals and refines them to quality attribute
scenarios.

3. Determination of Extraction Directives
Determines the architectural views, tactics, styles, and patterns that are looked for during
the following extractions to find supporting evidence for the scenarios of Step 2.

4. View and Indicator Extraction
Extracts the architectural views for each candidate according to the extraction directives
from step 3. Detects indicators that support the quality attribute scenarios from Step 2.
Architecture recovery techniques may be needed to generate relevant views.

5. Scoring
Scores the fitness of a candidate architecture to support the criteria.

6. Summary
Summarizes the analysis results and provides a recommendation for the decision-making
process.

The outputs of the method include the scores and related reasoning for each candidate, along
with the generated artifacts, such as architectural documentation.

The examples in this report are extracted from a context where an organization wants to
streamline the software for two existing, somewhat similar, products into a new software
product line. The organization wants to determine which of the existing software architec-
tures is best suited to form the basis for the new product line. The first comparison candidate
is a garage door opener. The second candidate is a sunroof system in an automobile. Both
products have similar features, such as opening and closing a door or sunroof. However, the

CMU/SEI-2003-TR-006 3

systems are from different domains. The software of the garage door opener is part of a home
integration system, whereas the sunroof is part of an automotive body electronics system.

Section 2 of this report relates the SACAM to other similar and foundational techniques de-
veloped by the SEI. An overview of the essential steps of the method is given in Section 3.
Section 4 explains the method’s concepts, terminology, and analysis framework to map the
criteria scenarios onto the candidate architectures. Section 5 describes the SACAM steps us-
ing examples from the sunroof/garage door system. Finally, conclusions and directions for
future work are presented in Section 6.

4 CMU/SEI-2003-TR-006

CMU/SEI-2003-TR-006 5

2 Related Work

The SEI has developed proven methods and introduced techniques that form the basis for the
SACAM. We will explain these techniques and their relation to the SACAM in this chapter.

To extract comparable information from software architectures and perform the collation and
analysis of the comparison criteria, the SACAM uses SEI techniques as illustrated in Figure
1. In the center, Figure 1 shows the SACAM method with its objectives: View Extraction,
Criteria Collation, and Analysis. View Extraction is achieved by using documentation stan-
dards and reconstruction techniques. In Figure 1, almost no architectural documentation is
available for Software B. Criteria Collation is achieved with scenario generation techniques,
and Analysis is done through architectural tactics and metrics techniques.

Code

Arch.

Req.

Software
B

Code

Arch.

Req.

Software
A

View
Extraction

Analysis Score

Score

Criteria
Collation

Documen-
tation

View
Extraction

Analysis

SACAM

Scenario Generation
Tactics
Metrics

Architecture Documen-
tation Standards

Architecture
Reconstruction

Techniques Used

Scenario Generation
Tactics
Metrics

Architecture Documen-
tation Standards

Architecture
Reconstruction

Techniques Used

Code

Arch.

Req.

Software of
envisioned system

Available artifacts

Key:
Techniques used

Flow of artifacts

SACAM objective

Figure 1: Architecture Techniques Used by the SACAM

6 CMU/SEI-2003-TR-006

Each technique contributes to the comparison of software architectures. These techniques are
used to generate the necessary artifacts that are then analyzed to provide the final scores for
each architecture.

• Scenario Generation
The SACAM requires criteria that are derived from the business goals of an organization
for an envisioned software system. The criteria are articulated in quality attributes that
are further refined into quality attribute scenarios. Scenario generation is a technique for
capturing quality attributes and refining them into quality attribute scenarios. SEI meth-
ods that incorporate scenario generations are the Architecture Tradeoff Analysis Meth-
odSM (ATAMSM) [Clements 02b] and the Quality Attribute Workshop (QAW) [Barbacci
03].

• Tactics
To achieve particular qualities that are addressed with scenarios, developers structure the
software in particular ways. Bachmann and associates, introduce the notion of tactics
strategies to achieve quality attribute goals [Bachmann 03]. The SACAM uses tactics in
the analysis as indicators to evaluate if the extracted views support a criterion articulated
as a quality attribute scenario. Collections of tactics are available for a variety of quality
attributes [Bass 03].

• Metrics
Metrics support quantitative analysis that provides useful indicators of overall complexity
and locations where change might be difficult or most likely. Metrics are used in the
SACAM on the code level, if available, or on a detailed design level. For example, metric
sets refer to Arora and associates [Arora 95] and Faust and Verhoef [Faust 03].

• Architectural Documentation Standards
The SACAM requires the availability of architectural documentation to perform the
comparison criteria analysis. Experience shows that architectural documentation across
systems is heterogeneous. For example, there are differences in notations, stakeholders,
level of documentation detail, and scope. One of the SACAM’s challenges is to obtain
comparable architectural documentation to prevent the comparison of apples and or-
anges. The SACAM uses the “views and beyond” architectural documentation approach
as provided by Clements and associates [Clements 02a].

• Architecture Reconstruction
The architectural documentation used to perform the comparison might be unavailable,
insufficient, or out of date. In these cases, the architecture has to be reconstructed. How-
ever, not all architectural views have to be reconstructed, only the relevant views. For ex-
ample, if the intention is to find the architecture that is best suited to support modifiabil-
ity, views showing module dependencies are more important than process views. This
goal-oriented approach is used in the Quality-Attribute-Driven Software Architecture Re-
construction (QADSAR) method [Stoermer 03].

SM Architecture Tradeoff Analysis Method and ATAM are service marks of Carnegie Mellon

 University.

CMU/SEI-2003-TR-006 7

3 Method Overview

An overview of the SACAM is shown in Figure 2. The inputs to the method include:

• architecture candidates – the architectures that should be compared. An important con-
sideration is the quality of the architectural documentation along with the availability of
architecture expertise. Note that the architectures don’t have to be implemented.

• business goals – the source of the comparison criteria. These criteria provide the yard-
stick for the comparison and are derived mainly from the business goals.

The inputs are important factors for a successful application of SACAM. Therefore, step 1 of
SACAM (Preparation) examines the available inputs to prepare a successful application of
the method.

In the course of step 2 (Criteria Collation), a set of criteria for the architecture comparison is
identified. A criterion formulates a requirement for the architecture to support the organiza-
tion’s business goals. For example, having a highly modifiable architecture (criterion) may
help to achieve fast time-to-market requirements (business goal). Criteria are refined into
quality attribute scenarios.

Step 3 (Determination of Extraction Directives) determines directives for the architectural
information that needs to be taken into account during the extraction process. The directives
assist the extraction by providing a list of common viewtypes, suggested tactics, styles, pat-
terns, and metrics that provide information on what to look for in the architectural documen-
tation of each candidate.

Step 4 (View and Indicator Extraction) extracts the required views from the available archi-
tectural documentation for each candidate architecture according to the extraction directives
of Step 3. The views comprise architectural elements and their relations. In addition, the ex-
traction elicits indicators that provide evidence for the support or hindrance of particular
quality attributes. Indicators are either architectural information (such as tactics or patterns)
or low-level metric information. Metric information is extracted from implementations (if
available) or detailed design artifacts. The indicators provide evidence for the scoring in Step
5. For example, if the indicator extraction determined the tactic “intermediary” in a modifi-
ability scenario for a protocol layer, and a complexity metric shows low values for the af-
fected modules, then it is very likely that the architecture supports modifiability for the pro-
tocol layer.

8 CMU/SEI-2003-TR-006

In Step 5 (Scoring), each criterion is scored for an architecture candidate. The scoring is
based on the evidence provided by Step 4, and the quality attribute scenarios determined dur-
ing step 2. The scoring might consider weights that are provided by stakeholders for the crite-
ria. The scoring provides the reasoning and the resulting score for how well the criteria sce-
narios are supported by a candidate.

Step 6 (Summary) summarizes the results of the analysis.

Figure 2: SACAM Overview

The outputs of the method include a recommendation for the decision-making process, the
scores and the related reasoning for each candidate, and the generated artifacts, such as archi-
tectural views, tactics, and scenarios. The artifacts generated during the course of the SA-
CAM are useful for subsequent processes, such as commonality and variability analysis in
product line architecture designs, or the exploration of cross-functionality in multiple archi-
tectures.

1) Preparation

3) Determination
of Extraction
Directives

4) View and
Indicator
Extraction

5) Scoring

6) Summary

2) Criteria
Collation

[further
candidates]

Key:

Method step

Repeat

Method start

Method end

Method flow

CMU/SEI-2003-TR-006 9

4 Concepts and Terminology

In this section we describe the underlying concepts and terms used by the SACAM. We will
address the two major objectives:

1. extraction of comparable architectural views of each candidate at similar levels of ab-
straction

2. collation and analysis of criteria that provide a comparison yardstick

Finally, we will explain the artifacts that are created during the application of the SACAM.

4.1 Heterogeneity

Comparing software architectures is typically done in heterogeneous contexts. For example,
consider the architectures of the garage door opener and the sunroof. Both systems are devel-
oped in different departments within an organization. The documentation for the sunroof con-
sists of a functional requirements specification and a detailed design description. The docu-
mentation for the garage door opener comprises a 20-page architecture document. The
SACAM has to meet the challenge of differences in level of abstraction and form. A closer
look at the documents reveals differences with respect to terminology, concepts, notations,
levels of detail, and views. A successful comparison requires comparable architectural docu-
mentation.

4.2 Views

Confronted with heterogeneous architectural documentation, the SACAM has to identify and
extract architecture representations that allow comparisons. The first part in this task is an
evaluation of the architectural documentation to determine its usefulness for the criteria
analysis. Some architectural information may not be relevant. For example, if the goal is to
find architecture that supports several user interfaces for the garage door and the sunroof,
then views showing module dependencies are more important than process views. Conse-
quently, the evaluation and identification of relevant architectural information is driven by the
comparison criteria.

Depending on the evaluation results, it might be necessary to use architecture reconstruction
techniques [Krikhaar 99, Kazman 97] to derive more suitable views from implementation

10 CMU/SEI-2003-TR-006

artifacts, such as code or build files. A view is a representation of a set of system elements
and relationships among them [Clements 02a].

After the evaluation and identification of relevant architectural documentation, heterogeneous
documentation has to be normalized, that is, converted to views with defined notations and
comparable levels of abstractions. We provide an example in Section 4.5.2.

4.3 Criteria

Comparing software architectures implies a set of criteria. A comparison without any criteria
produces no sound reasoning about a selection. For example, if the business goal is to in-
crease reusability among different product architectures, a specification of future commonly
used artifacts is required. The criteria that can be used to measure the candidate architectures
by how well they support the business goals include

• distribution of functionalities included in future commonly used artifacts throughout the
architecture

• degree of dependency of those functionalities on other, product-specific functionalities

Criteria provide the yardstick in the comparison, so criteria must be analyzed for each candi-
date.

Comparison criteria are foremost quality driven, for example

• Acquirers need not only quantitative aspects but also qualitative aspects for a down select
after a competitive solicitation.

• Marketing departments ask for interoperability with third-party software.

• Technical management demands the localization of market-specific adaptations in the
software.

• Technical support asks for improvements to maintenance capabilities in the software.

Criteria represent requirements that are important for some stakeholders to achieve their
business goals. The collation of criteria is achieved in the SACAM by using scenario genera-
tion techniques as proposed by the ATAM [Clements 02b] or the QAW [Barbacci 03].

4.4 Indicators

Indicators are information extracted from the architecture that assist in determining how well
an architecture fulfills one or more comparison criteria. For example, if one criterion is to
prevent unauthorized users from using a system, the architecture that already implements se-
curity concepts is better suited for future use than one without security concepts. The infor-

CMU/SEI-2003-TR-006 11

mation “implements security concepts” is then used as an indicator for the comparison. On
the other hand, if security is not a criterion, this information would be irrelevant.

The SACAM uses indicators to provide evidence for the architecture scoring with re-
spect to the criteria.

Indicators can be extracted from many available software artifacts. The artifacts and tech-
niques that can be used to extract indicators include

• architecture – the use of architectural styles [Klein 99] or more detailed architecture tac-
tics [Bachmann 03]

• detailed design – the use of design patterns [Gamma 95]

• code – metrics, such as complexity, function points, fan in/fan out, and so forth

Metrics support quantitative analysis that provides useful indicators of overall complexity
and locations where change might be difficult. For metric set examples, see the work of Arora
and associates [Arora 95] and Faust and Verhoef [Faust 03]. Some metrics that can be used in
the comparison include

• number of function points for architecture design elements

• number of events (synchronous/asynchronous) to which an architecture design element
has to react

• complexity values for architecture design elements [McCabe 70]

• average execution time for architecture design elements

• volatility, utility, and specificity of a code unit [Faust 03]

However, it is important to collect the right data not just any data. A goal-oriented approach
is presented in the Goal/Question/Metric (GQM) paradigm. A rich source for GQM is pro-
vided by Basili [Basili 92].

No matter which artifact is used, extracted indicators provide evidence about quality attrib-
utes.

4.5 The Analysis Framework

At the heart of the SACAM is the analysis framework. It offers a reasoning framework for
why an architecture does or does not comply with the comparison criteria.

The analysis framework distinguishes between the analysis of functional-driven and quality-
driven criteria (see Figure 3). Both are formulated in the quality attribute scenarios that are

12 CMU/SEI-2003-TR-006

generated from the criteria. The scenarios have to be mapped onto the extracted architectural
views of the candidate architectures. This requires clear identification of the design elements
that exist to satisfy a scenario. The term “design element” is used as a placeholder for various
architecture artifacts, such as process, subsystem, module, or component. The particular
meaning is defined by the context of the corresponding architectural view [Clements 02a].

Design Elements

Architectural Views

Criteria

Quality Attribute
Scenarios

Patterns

Quality Analysis
Framework

quality
part

functional
part

Key:

Artifacts

consist of

uses

Comment

connected to

Figure 3: Analysis Framework

The functional part of a quality attribute scenario usually maps to the behavior and responsi-
bilities of design elements, while the quality part usually maps onto the structure expressed in
the form of patterns. The term pattern is used here in a generic way. Examples are design pat-
terns [Gamma 95], architecture patterns [Buschmann 96], architectural styles [Klein 99], or
just conventions, such as naming conventions. The common characteristic is a recurring,
identifiable element in the architecture. Patterns influence the achievement of quality goals.
They contribute, for example, to the achievement of performance or modifiability goals.
More and more publications address with this topic [Noble 01, Chung 00]. We revisit the im-
portant relation of quality attribute goals and patterns in subsequent sections.

CMU/SEI-2003-TR-006 13

4.5.1 Quality Attribute Scenarios

Quality attribute scenarios capture criteria that are driven by the achievement of quality at-
tributes. We use “quality attribute scenarios” according to the following definition: “A quality
attribute scenario is a quality attribute requirement of a system. It consists primarily of a
stimulus and a response. The stimulus is a condition that needs to be considered when it ar-
rives at a system and the response is the (measurable) activity undertaken after the arrival of
the stimulus. In addition to the stimulus and response, a quality attribute scenario includes the
source of the stimulus, the environment under which the stimulus occurs, the artifact that is
stimulated, and how the response is to be measured” [Bass 03]. For example, in the scenario:
“The sunroof must be able to accept and execute user commands 250 ms after power-on” the
stimulus is power-on, the response is accept and execute user commands, and the response
measure is 250 ms. The scenario does not deal explicitly with the source of the stimulus, en-
vironment, and artifact. The scenario description might be extended if more detailed informa-
tion is required.

We also use the concept of general scenarios as described by Bachmann and associates
[Bachmann 03]. General scenarios describe quality attribute requirements in a system-
independent manner. System-specific quality attribute scenarios are called concrete quality
attribute scenarios. The combination of concrete and general scenarios suggests quality at-
tribute models to use for analysis, and provides input for those models.

4.5.2 Quality Analysis Framework

In this section, we show how the different artifacts, produced during an application of the
SACAM, are related. The quality analysis framework provides

• assistance in searching for particular indicators in the architectural documentation

• reasoning as to whether quality attribute scenarios are satisfied by an architecture candi-
date

To achieve particular qualities described by scenarios, developers decide to structure the
software in a particular way. For example, the sunroof start-up scenario from the previous
section is a time performance scenario that can be achieved with a set of particular tactics,
such as “reduce computational overhead” or “manage event rate” [Bass 03]. A quality attrib-
ute framework provides a set of potential tactics that helps achieve a particular quality attrib-
ute. A collection of tactics for a variety of quality attributes, such as modifiability, perform-
ance, usability, testability, and availability, are presented in the book Software Architecture in
Practice [Bass 03]. The set of tactics for a particular quality attribute is used in the SACAM
to assist the extraction of views from the architectural documentation by providing informa-
tion on what to look for in the documentation.

14 CMU/SEI-2003-TR-006

On a more detailed design level, patterns also support particular quality attributes. For exam-
ple, “fixed allocation,” “pooled allocation,” or “sharing,” are more time performance oriented
than “reference counting” or “paging.” Noble and Weir provide a collection of patterns for
achieving particular quality attribute goals [Noble 01]. On the even more detailed code level,
metrics can be used to extract complementary indications about quality attribute support.

In summary, the SACAM uses a quality analysis framework in a goal-oriented way. There-
fore, criteria collation using the method must occur before the extraction of views.

The quality analysis framework assists the extraction of indicators by providing extraction
directives. These directives provide a list of common viewtypes and suggested tactics, styles,
patterns, and metrics that indicate what to look for in the architectural documentation of each
candidate.

Further, the quality analysis framework provides the reasoning for the criteria scoring. For
example, an organization knows that the exchange of the communication protocol is impor-
tant for the success of the envisioned system. To understand how well the existing systems
support that exchange, the following criterion is defined:

Criterion Exchange of communication protocol
The organization wants to exchange an externally provided communi-
cation protocol for an envisioned sunroof/garage door software prod-
uct line.

To be more precise, the criterion is refined into a concrete scenario using the general scenario
generation table for modifiability [Bass 03, p. 83]. The table provides information that should
be part of the scenario.

Concrete Scenario

The application developer exchanges the Controller Area Network
(CAN) communication protocol of the sunroof/garage door software
with a FlexRay or similar protocol within one person-day during de-
velopment time.

The concrete scenario provides values for the quality attribute reasoning and the expected
response for an architecture candidate (one person-day of effort). For example, the scenario
states that a part of the system has to be replaced. Therefore, we would look for the use of the
“localization” tactic. We also know from the scenario that the change must be made during
development time, not runtime. Therefore, we would expect the module viewtypes to be used
during development of the software and not runtime views. We now examine the architectural
documentation of the sunroof system.

CMU/SEI-2003-TR-006 15

Architecture Candi-
date

Sunroof System

The quality attribute framework for modifiability is concerned with the allocation of respon-
sibilities to modules and their dependencies. The required view should show modules, allo-
cated responsibilities, and dependencies. Consequently, we should examine the “uses view”
of the sunroof system.

Views Uses View

A uses view was not available for the system. The software was reconstructed using the Qual-
ity-Attribute-Driven Software Architecture Reconstruction (QADSAR) method [Stoermer
03]. The major source was therefore

Source The source code
The reconstructed uses view

The source and the quality attribute model provide the basis for the indicator extraction. The
set of suggested tactics is taken from the modifiability model.

Indicators Metric indicator

• number of modules containing communication protocol depend-
encies

• number and strength of the dependencies of these modules on oth-
ers. The dependencies should comprise functional and data access
dependencies.

Patterns: No patterns detectable
Tactics: Semantic coherence of the protocol software

The sunroof system does not provide tactics such as “abstract common services” or “general-
ize module.” The tactic “semantic coherence” is suggested because the protocol software is
packaged as a single software piece. There are no tactics for preventing ripple effects. The
number of dependencies provided by the metrics indicates significantly more time to ex-
change the communication protocol than the required one-day effort.

Score 2

16 CMU/SEI-2003-TR-006

The scoring is done between 0 – 10, where 0 means that no support is provided, and 10 com-
pletely satisfies the criterion. The resulting response (significantly more than one person-day
of effort) with the low score of “2” provides the feedback for the criterion.

CMU/SEI-2003-TR-006 17

5 The Method

In this section, we present the comparison method based on the concepts in Section 4 and use
the sunroof/garage door example to illustrate the application of the method.

The SACAM consists of the following steps:

1. Preparation

2. Criteria Collation

3. Determination of Extraction Directives

4. View and Indicator Extraction

5. Scoring

6. Summary

We describe the method steps by using a template that contains the following parts:

Brief Description – a short description of the step’s purpose

Input – the expected inputs for the step

Activities – a description of the activities that have to be performed during the step

Output – the outputs of the step

Dynamics – the participants involved and the execution form of the step

Example – extracted from the sunroof/garage door application

18 CMU/SEI-2003-TR-006

Step 1 – Preparation

Brief Description: Lays the foundation for the application of the method. The application
context, business goals for the envisioned system, comparison candidates, scope, and stake-
holders are identified. The available architectural documentation is examined and a plan for
the SACAM steps is developed.

Input:

• business goals of the envisioned system

• set of comparison candidates

Activities:

• Identify the application context. The SACAM can be performed in a variety of applica-
tion contexts. For example, in a product line migration context, the architectures of can-
didate systems are explored to gain qualitative information as to how well the different
architectures would support the envisioned software product line. Further application
contexts are possible, such as the selection among competitive architectures proposed by
several contractors for an envisioned software system.

• Identify the comparison stakeholders. The comparison stakeholders promote the com-
parison criteria, perform the scoring and verify the method results.

• Select the comparison candidates. The number of comparison candidates should be
limited to control the total amount of effort required.

• Identify the candidate stakeholders. The candidate stakeholders represent the candi-
dates, provide the necessary source information for each candidate, and are available for
interviews. Comparison stakeholders and candidate stakeholders might be the same per-
son or group of people.

• Present the SACAM. At the beginning, the method is presented to the organization by
the SACAM team. The goal of the presentation is to develop common expectations about
the results of the method and the activities necessary to achieve these results.

• Identify the business goals for the envisioned system. The business goals that should
be supported by the envisioned system, or systems, are elicited from the stakeholders.

• Present the candidates. The selected candidates should be presented by the software
architects (if they are still available). This includes goals for the architecture, important
design decisions, and major components of the architecture.

• Examine the available architectural documentation. This activity determines how de-
tailed and current the available documentation is.

• Outline the SACAM plan. The plan contains the SACAM steps with the activities (as
outlined in this chapter), the participants, and the schedule. The plan might be reviewed
during the course of the method, for example if architecture reconstructions are neces-
sary.

CMU/SEI-2003-TR-006 19

Outputs:

• selected comparison candidates for SACAM

• SACAM plan

Dynamics:
The preparation step should provide buy-in for the stakeholders. This can be done in a prepa-
ration meeting and a half-day workshop. The meeting includes the first four activities. The
workshop starts with the presentation of the SACAM and ends with the outline of the
SACAM plan.

Example:
The application context of the example is an organization that is a market leader for garage
door openers, sunroofs, and other electronic products. The organization investigates various
cost consolidation approaches. One approach is to streamline the software for sunroofs and
garage door openers in a software product line.

The company is well known for high quality and incorporating the latest technologies. Its
primary business goal is to sell about 100,000 garage door openers and sunroofs a year, in-
cluding variants for low-end, mid-range, and high-end markets.

Table 1 illustrates a generalized version of the SACAM plan for the sunroof/garage door
opener example.

Table 1: SACAM Plan

Step Participants Time/Format

2 Criteria Collation Comparison stakeholders, can-
didate stakeholders

1-day workshop

3 Determination of Extrac-
tion Directives

SACAM team 1 week, offline

View and Indicator Ex-
traction for sunroof soft-
ware

SACAM team, candidate stake-
holders

½-day workshop with sunroof architects 4

View and Indicator Ex-
traction for garage door
software

SACAM team, candidate stake-
holders

½-day workshop with garage door archi-
tects

5 Scoring of both candidate
architectures

SACAM team, comparison and
candidate stakeholders

Full-day workshop

Presentation of results
(end of Scoring Work-
shop)

SACAM team, comparison and
candidate stakeholders

45 min. at end of full-day workshop of
Step 5, including discussions

6

Report SACAM team 3 days, offline

20 CMU/SEI-2003-TR-006

Step 2 – Criteria Collation

Brief Description: The business goals are used to create a set of comparison criteria that
serve as the yardstick for the comparison. The criteria are refined into quality attribute sce-
narios. Criteria might be prioritized by the comparison stakeholders.

Input:

• the business goals for the envisioned system

Activities:

• Identify criteria. Criteria describe desired properties of the envisioned system. They can
be collected in a brainstorming session with a consolidation that follows.

• Prioritize criteria. The stakeholders should prioritize the criteria. Prioritization can be
done by voting or by finding a consensus by discussing each criterion and determining its
weight.

• Refine criteria. Criteria are refined into concrete quality attribute scenarios according to
the description in Section 4.5.1. Note that a criterion can comprise several scenarios.

The result of the activities is a collection of prioritized criteria described as quality attribute
scenarios.

The ATAM [Clements 02b] and the QAW [Barbacci 03] offer a rich source of examples and
experiences with scenario elicitation.

Output:

• a list of prioritized criteria refined as quality attribute scenarios

Dynamics:

Identifying, refining, and prioritizing the criteria is typically done during a one-half- to one-
day criteria collation workshop. This workshop requires the participation of the comparison
stakeholders and can be performed immediately after the workshop of Step 1.

CMU/SEI-2003-TR-006 21

Example:

The elicited quality attribute scenarios for the envisioned software product line include

Scenario Quality Attributes Criteria
Priority

1 If an obstacle (person or object) is detected by the
system during descent (garage door) or closing (sun-
roof), it must halt (alternatively reopen) within the
legal ranges given by standards of the particular mar-
ket (currently <= 0.02 sec.).

Safety, Performance High

2 The processor used in different products will differ.
The product-specific architecture for each product
should be derivable from the product line architecture
with minimum effort.

Variability High

3 The envisioned system should be accessible for diag-
nosis and administration from a network using a
product-specific diagnosis protocol.

Modifiability Medium

Step 3 – Determination of Extraction Directives

Brief Description: Determines the type of views that should be extracted from each candi-
date. Generates a list of architectural tactics that would, if identified in the extracted views,
provide evidence for or against the quality attribute scenarios from Step 2.

Input:

• quality attribute scenarios from Step 2

• architectural documentation for each candidate

Activities:

• Determine a set of viewtypes that is common across all candidates. The architectural
documentation must include the necessary information. For sample viewtypes, see the
work of Clements and associates [Clements 02a]. Viewtypes include

− Module Viewtype – documents the units of implementation, especially if modifiabil-
ity is important

− Component and Connector Viewtype – documents runtime units with their concur-
rency behavior, especially if qualities like performance, availability, or security are
important

− Allocation Viewtype – documents the relationship between the software and the de-
velopment and execution environments

22 CMU/SEI-2003-TR-006

• Gather suggested architectural tactics, styles, patterns, and metrics. There are collec-
tions of architectural tactics available to support the achievement of particular quality at-
tributes [Bass 03]. Architectural styles and patterns also support or hinder particular qual-
ity attributes. These suggested tactics, styles, and patterns assist the following extractions
by providing information about what to look for in the architectural documentation.

Output:

• a list of required viewtypes and what type of information they should contain; the list
also contains references to the quality attribute scenarios addressed by the viewtypes

• a list of suggested tactics, styles, patterns, and metrics that should be searched for during
the view and indicator extraction step

Dynamics:

Step 3 typically requires time for the analysis and does not follow immediately after the
workshops of steps 1 and 2. Step 3 is performed by the comparison team.

Example:

Table 2 shows the extraction directives for scenario 2. In addition, the following metrics
should be extracted:

• number of modules containing processor dependencies

• number of dependencies of these modules on others

Table 2: List of Extraction Directives for Scenario 2
View Tactics Patterns

Uses View, show-
ing modules with
processor depend-
encies

Anticipated Variants ����������	�
��������l-
ity that is dependent on the variants (different
processors)

Generalized Variation Points � defined way
to access any possible variant without adapta-
tion

Limited Possible Variants ��	 the defini-
tion of a generalized variation point easier
(e.g., only processors from manufacturer X
with support of standard C language)

Intermediary Used break undesirable de-
pendencies to the variants (e.g., hide access to
processor hardware such as I/O)

Layered pattern for:

Generalize Variation Points ���	��������
layer only via an interface

Intermediary Used �����	����������������
intermediary between two adjacent layers

The Anticipate Variants tactic has no
pattern because it is a task of the designer

The Limit Possible Variants tactic also
has no pattern because it involves a busi-
ness decision of the organization

CMU/SEI-2003-TR-006 23

Step 4 – View and Indicator Extraction

Brief Description: Extracts the required architectural documentation, which is then exam-
ined for used tactics, styles, and patterns as described in Step 3

Input:

• extraction directives from Step 3

• architectural documentation for each candidate

• implementation code, if necessary

Activities:
• Extract views from the architectural documentation. The selected viewtypes from

Step 3 have to be extracted and refined until they offer an appropriate level of detail for
an architecture comparison. For example, if one scenario asks for error management, the
appropriate view has to be refined until all components involved with error management
become visible.

• Detect used tactics, styles, and patterns. The views are analyzed for evidence that sup-
ports quality attribute scenarios. The starting point is the suggested list of tactics, styles,
and patterns from Step 3.

• Gather metrics data from available implementations. Metrics data is gathered from
available implementations, if selected in step 3.

• Verify views with the candidate stakeholders. The extracted information must be veri-
fied and confirmed by the candidate stakeholders.

View and indicator extraction depends on the quality of the architectural documentation with
respect to the quality attribute scenarios of step 2. An architectural reconstruction has to be
applied if insufficient information is elicited from the documentation or the architects. Archi-
tectural reconstruction requires a revisit of the SACAM plan because of the additional activi-
ties.

Output:

• verified extracted information

• list of identified indicators, such as tactics, styles, patterns, and metrics data

Dynamics:

View extraction is certainly the most challenging task because of the expected heterogeneity
in terminologies, concepts, notations, levels of detail, views, and candidate stakeholders.
Note that view extraction and indicator detection are not done sequentially but rather occur at

24 CMU/SEI-2003-TR-006

the same time. Both activities depend on each other: architectural views are of limited value
in the SACAM if they do not provide evidence for the support or hindrance of quality attrib-
utes.

Example:

We applied an architecture reconstruction of the sunroof. Figure 4 shows the generated Uses
View and illustrates the syntax dependencies between processor modules (names that start
with “hc11”) and other modules that use the processor modules. The extracted tactic is “se-
mantic coherence” of the processor dependencies. In addition, the organization uses the “lim-
ited possible variants” tactic by supporting processors of the MC68HC11 family, which is not
feasible for a combined sunroof/garage door software product line.

Architecture reconstruction of the sunroof had the following advantages besides the genera-
tion of the Uses View:

• The dependencies (relations between the modules in Figure 4) are traceable until source
code level.

• Source-fact-extraction tools offer dependency and complexity metrics features.

• The Uses View reflects the as-implemented architecture as opposed to the as-documented
architecture.

CMU/SEI-2003-TR-006 25

Figure 4: Uses View for the Processor Dependencies of the Sunroof

Step 5 – Scoring

Brief Description: Provides for each architecture candidate a score that indicates how well it
supports the quality attribute scenarios generated in the criteria collation workshop of Step 2.
Quality analysis models can be used to provide a more formal reasoning about the conse-
quences of the tactics, styles, patterns, and metrics used in the candidate architectures.

Input:

• quality attribute scenarios from Step 2

• verified and extracted architectural views from Step 4

26 CMU/SEI-2003-TR-006

• list of indicators from Step 4

• list of quality attribute models

Activities:

The scoring of the candidates is done for each criterion elicited in the criteria collation work-
shop of Step 2. Prior to the scoring, each scenario is applied for the candidates.

• Select the quality attribute models for each quality attribute scenario and calculate
the response. The quality attribute model is fed by the architectural views and the quality
attribute scenario. Calculate the response. The quality models for many quality attribute
scenarios can be obtained, for example, from the work of Bass and associates [Bass 03].

• Provide a scoring and reasoning about whether the response of a candidate satisfies
the expected response of the quality attribute scenario. The scores consist of three
value ranges: not satisfied, fully satisfied, or satisfied under certain conditions. The con-
ditions provide more feedback to the comparison stakeholders in case particular criteria
do not provide enough information or are ambiguous.

• Collect the quality attribute scenario scores. This activity collects the individual scores
and weights the numbers depending on the scenario’s importance.

• Analyze the scores. With this activity, the strengths and weaknesses of each candidate in
relation to the quality attribute scenarios are identified.

Output:

• scores and reasoning for each candidate

Dynamics:

The scoring is usually done with the comparison and candidate stakeholders. If possible, the
architects of each candidate should attend.

Example:

Table 3 illustrates the scores in this step for the sunroof and garage door systems. Each sce-
nario was scored in Step 5 with a number between 0 (architecture does not fit) and 10 (archi-
tecture fits perfectly). Each scenario has a weight that is applied to the score. The total scores
for scenarios are low because the candidates have different strengths and weaknesses. For
example, standards for obstacle detection in the automotive industry are established, whereas
comparable laws for garage door openers do not exist in most countries. The bottom row
provides the weighted total score for a candidate. Table 3 suggests favoring none of the can-
didate architectures.

CMU/SEI-2003-TR-006 27

Table 3: Example Scores with Weighted Importance
Quality Attribute
Scenario

Weight Garage Door Sunroof

Scenario 1
(Obstacle)

1 4/4 9/9

Scenario 2
(Variability)

1 7/7 3/3

Scenario 3
(Diagnosis)

0.8 5/4 5/4

Total --- 15 16

Step 6 – Summary

Brief Description: Provides a summary of the results, along with specific recommendations

Input:

• quality attribute scenarios from Step 2

• extracted architectural views from Step 4

• scoring and reasoning from Step 5

Activities:

• Present results. The results are outlined in a presentation. Final remarks can be consid-
ered.

• Write a summary report. The results of the SACAM are summarized in a report that pro-
vides feedback and recommendations to the organization.

Output:

• presentation

• summary report with recommendations

Dynamics:

The presentation can be done, after a short preparation, at the end of the scoring workshop.

Example:

The scores from Table 3 favor none of the candidates, so no particular architecture is recom-
mended as the base for the envisioned system. There are three options at this point:

28 CMU/SEI-2003-TR-006

1. Ignore the SACAM results, select a system that implements a particular strategy (for
example, the probable disaster strategy “most features”), and extend it.

2. Design the new sunroof/garage door system by performing an architecture design for
product lines. To lower the product line adoption barrier, preserve algorithmic parts,
such as the obstacle detection in the sunroof.

3. Decide not to proceed with a common product line for sunroofs and garage doors.

Regardless of the final decision, the artifacts generated with the SACAM (views, scenarios,
tactics, and patterns) will provide valuable information for subsequent developments with the
systems.

CMU/SEI-2003-TR-006 29

6 Conclusions and Future Work

The SACAM provides a rationale for an architecture selection process by comparing the fit-
ness of architecture candidates for an envisioned system based on selected criteria. The
method combines an architecture artifact elicitation process with an analysis framework for
the selected criteria derived from business goals. The criteria incorporate quality attributes
that are refined into scenarios. The SACAM team and stakeholders explore the scenarios for
the candidate architectures and try to understand and score the responses given by quality
attribute models. The summary report provides architecture recommendations.

It is our belief that using the SACAM yields three major benefits. First, it offers organizations
a qualitative approach—beyond quantitative approaches, such as cost—for making selections
among alternative architectures. Intuition is replaced by an analysis framework that offers,
for example, qualitative reasoning to acquiring organizations. Second, the criteria approach is
goal oriented. For example, architectural commonalities and differences are condensed and
interpreted with regard to the criteria qualities. Third, comparison on a manageable architec-
tural level offers the ability to evaluate changing business goals in the requirements space
with solutions in the design space.

This report provides the first version of the SACAM. The method has potential for other
situations that are not investigated here. As development of the method continues, it will be
applied to other architecture selection processes.

30 CMU/SEI-2003-TR-006

CMU/SEI-2003-TR-006 31

References

All URLs are valid as of the publication date of this report.

[Arora 95] Arora, V.; Kalaichelvan, K.; Goel, N.; & Munikoti, R. “Measuring
High-Level Design Complexity of Real-Time Object-Oriented Sys-
tems.” Proceedings of the Annual Oregon Workshop on Software
Metrics. Silver Falls, OR, June 5-7, 1995. Beaverton, Oregon: Ore-
gon Center for Advanced Technology Education, 1995.

[Bachmann 03] Bachmann, F.; Bass, L.; & Klein, M. Deriving Architectural Tac-
tics: A Step Toward Methodical Architectural Design (CMU/SEI-
2003-TR-004, ADA413644). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2003.
<http://www.sei.cmu.edu/publications/documents/03.reports
/03tr004.html>.

[Barbacci 03] Barbacci, M.; Ellison, R.; Lattanze, A.; Stafford, J.; Weinstock, C.;
& Wood, W. Quality Attribute Workshops (QAWs), Third Edition
(CMU/SEI-2003-TR-016). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2003.
<http://www.sei.cmu.edu/publications/documents/03.reports
/03tr016.html>.

[Basili 92] Basili, V. R. Software Modeling and Measurement: The
Goal/Question/Metric Paradigm (CS-TR-2956). College Park, MD:
Department of Computer Science, University of Maryland, Sep-
tember, 1992.

[Bass 03] Bass, L.; Clements, P.; & Kazman, R. Software Architecture in
Practice, Second Edition. Reading MA: Addison Wesley, 2003.

[Buschmann 96] Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; & Stal,
M. Pattern-Oriented Software Architecture: A System of Patterns.
New York, NY: John Wiley & Sons, 1996.

32 CMU/SEI-2003-TR-006

[CAN 03] CAN in Automation (CiA). Controller Area Network (CAN), An
Overview. <http://www.can-cia.org/can> (2003).

[Chung 00] Chung, L.; Nixon, B. A.; Yu, E.; & Mylopoulos J. Non-Functional
Requirements in Software Engineering. Boston, MA: Kluwer Aca-
demic Publishers, 2000.

[Clements 02a] Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little,
R.; Nord, R.; & Stafford, J. Documenting Software Architectures:
Views and Beyond. Reading, MA: Addison Wesley, 2002.

[Clements 02b] Clements, P.; Kazman, R.; & Klein, M. Evaluating Software Archi-
tectures. Reading, MA: Addison Wesley, 2002.

[Faust 03]

Faust, D. & Verhoef, C. Software Product Line Migration and De-
ployment. <http://www.cs.vu.nl/~x/pl/pl.html> (2003).

[FlexRay 03] FlexRay Consortium. <http://www.flexray-group.com> (2003).

[Gamma 95] Gamma, E.; Helms, R.; Johnson, R.; & Vlissides, J. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Reading,
MA: Addison-Wesley, 1995.

[Imagix 03] Imagix Corporation. <http://www.imagix.com> (2003).

[Kazman 97] Kazman, R. & Carrière S. Playing Detective: Reconstructing Soft-
ware Architecture from Available Evidence (CMU/SEI-97-TR-010,
ADA330928). Pittsburgh, PA: Software Engineering Institute, Car-
negie Mellon University, 1997.
<http://www.sei.cmu.edu/publications/documents/97.reports
/97tr010/97tr010abstract.html>.

[Klein 99] Klein, M. & Kazman, R. Attribute-Based Architectural Styles
(CMU-SEI-99-TR-022, ADA371802). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1999.
<http://www.sei.cmu.edu/publications/documents/99.reports
/99tr022/99tr022abstract.html>.

CMU/SEI-2003-TR-006 33

[Krikhaar 99] Krikhaar, R. L. “Software Architecture Reconstruction” PhD diss.,
University of Amsterdam, 1999.

[McCabe 70] McCabe, T. J. “A Complexity Measure” IEEE Transactions on
Software Engineering SE-12, 3 (March 1970):308-320.

[Noble 01] Noble, J. & Weir, C. Small Memory Software: Patterns for Systems
with Limited Memory. Reading, MA: Addison-Wesley, 2001.

[Stoermer 03] Stoermer, C.; O’Brien, L.; & Verhoef, C. “Moving Towards Qual-
ity-Attribute-Driven Software Architecture Reconstruction.” Pro-
ceedings of the 10th Working Conference on Reverse Engineering
(WCRE) Victoria, Canada, November 13-16, 2003. Los Alamitos,
CA: IEEE Computer Society Press, 2003.

34 CMU/SEI-2003-TR-006

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

December 2003

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

SACAM: The Software Architecture Comparison Analysis Method

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Christoph Stoermer, Felix Bachmann, Chris Verhoef
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2003-TR-006

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2003-006

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Comparing software architectures for any nontrivial system is a difficult task. Software architectures are de-
signed with particular requirements and constraints, and are often poorly documented. However, organiza-
tions often need to select a software architecture for future development from several candidate architectures.
The Software Architecture Comparison Analysis Method (SACAM) was created to provide the rationale for an
architecture selection process by comparing the fitness of architecture candidates for required systems. The
SACAM compares architectures based on a set of criteria derived from the business goals of an organization.
SACAM was developed in a technical reuse context where an organization investigated architectural com-
monalities and differences to explore architectural designs for a software product line architecture. This report
outlines a first version of the method and its underlying concepts.

14. SUBJECT TERMS

software architecture, software architecture selection, software archi-
tecture comparison, product line architecture

15. NUMBER OF PAGES

48

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	SACAM: The Software Architecture Comparison Analysis Method
	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	Abstract
	1 Introduction
	2 Related Work
	3 Method Overview
	4 Concepts and Terminology
	5 The Method
	6 Conclusions and Future Work
	References

