
Software Architecture in DoD

Acquisition: An Approach and

Language for a Software

Development Plan

John K. Bergey
Paul C. Clements

February 2005

Software Architecture Technology Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2005-TN-019

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2005-TN-019 i

Contents

Acknowledgments...v

About the Technical Note Series on Software Architecture Practices in the
Department of Defense ...vii

Abstract...ix

1 Introduction ..1

2 An Example SDP ..3
2.1 Context of the Example ...3

2.2 Making the Example Work in Other Contexts ..4

2.3 Contents Overview..4

3 Example SDP Approach and Language Pertaining to Software
Architecture..7
3.1 Example Section 4.3: Software Architecture Development7

3.1.1 Example Section 4.3 Introduction ..7
3.1.2 Example Section 4.3.1 Responsibilities Pertaining to Software

Architecture ...8
3.1.3 Example Section 4.3.2 Software Architecture Viewpoints10
3.1.4 Example Section 4.3.3 Software Architecture Document12
3.1.5 Example Section 4.3.4 Software Architecture Products

Review and Approval ...13
3.1.6 Example Section 4.3.5 Software Architecture Evaluation.........14

References...15

ii CMU/SEI-2005-TN-019

CMU/SEI-2005-TN-019 iii

List of Figures

Figure 1: Example System Acquisition Environment ..3

Figure 2: Overview of Actor Responsibilities for Key Architecture Artifacts8

Figure 3: Example Stakeholder/Viewpoint Table..12

iv CMU/SEI-2005-TN-019

CMU/SEI-2005-TN-019 v

Acknowledgments

We thank Sholom Cohen, Lawrence Jones, and Linda Northrop for their careful reviews.

vi CMU/SEI-2005-TN-019

CMU/SEI-2005-TN-019 vii

About the Technical Note Series on Software Architecture

Practices in the Department of Defense

The Product Line Systems Program at the Carnegie Mellon® Software Engineering Institute
(SEI) is publishing a series of technical notes designed to condense knowledge about
software architecture practices into a concise and usable form for the Department of Defense
(DoD) acquisition manager and practitioner. Our objective is to provide practical guidance
and lay a conceptual foundation for DoD architecture practice. This series, called Software
Architecture Practices in the Department of Defense, is a companion to the SEI series on
product line acquisition and business practices [Campbell 02, Bergey 01, Cohen 01, Bergey
00a, Bergey 00b, Jones 99, Bergey 99a].

This technical note is part of a special series of notes titled “Software Architecture in DoD
Acquisition” that is aimed at DoD acquisition specialists who are commissioning large
software-intensive systems for the DoD. The intent of the series is to explain how to bring
the concepts of software architecture effectively into the system acquisition process. Titles
currently in the series include

• A Reference Standard for a Software Architecture Document: This technical note suggests
the layout and contents of each section of a Software Architecture Document
[Bergey 05].

• An Approach and Language for a Software Development Plan: This technical note offers
an example approach and corresponding language that covers software architecture
practices and that could be inserted into a contractor’s software development plan (SDP).
[This note is the one you are now reading.]

Possible future titles include

• Reviewing a Software Architecture Document: This technical note will provide a step-by-
step approach for the peer review of software architecture documentation, including
specific questions and a methodological basis for achieving high-quality reviews.

• An Approach and Language for a Software Architecture Evaluation Plan: This technical
note will offer an example approach and corresponding language for creating a plan to
conduct a series of in situ software architecture evaluations in a system acquisition using
the Architecture Tradeoff Analysis Method® (ATAM®).

® Carnegie Mellon, Architecture Tradeoff Analysis Method, and ATAM are registered in the U.S.

Patent and Trademark Office by Carnegie Mellon University.

viii CMU/SEI-2005-TN-019

• A Reference Standard for a Software Architecture Evaluation Report: This technical note
will suggest the layout and contents of each section of an ATAM evaluation report.

CMU/SEI-2005-TN-019 ix

Abstract

The right software architecture is essential for a software-intensive system. Meeting
behavioral requirements and providing quality attributes such as real-time performance,
reliability, and maintainability are essential architectural drivers. Because an architecture
comprises the earliest, most important, and most far-reaching design decisions, making sure
that the architecture will be fit for purpose is one of the most powerful, technical risk
mitigation strategies available to a program office. This technical note covers one avenue of
exercising architectural control—the Software Development Plan (SDP). The report provides
an example approach and corresponding SDP language that enable software architecture to
play a central role in the technical and organizational management of a software development
effort. The example is drawn from an actual SDP written by a major U.S. Department of
Defense contractor in a weapon-system procurement. The intent is to provide an example for
other acquisition organizations to use (and adapt as appropriate) in their own procurements.
While the example is based on a contracting approach with a lead system integrator, it can
serve as a model for using an architecture-centric approach effectively to unify and manage
software development across multiple suppliers, as found in the conventional prime-with-
subcontractors acquisition context.

x CMU/SEI-2005-TN-019

CMU/SEI-2005-TN-019 1

1 Introduction

The right software architecture is essential for a software-intensive system to meet its
behavioral requirements as well as its obligations to provide quality attributes such as real-
time performance, reliability, and maintainability. Software architecture is especially critical
in large, complex systems. Assuring that the right architecture is being developed is difficult
enough in the context of in-house development, but an acquisition organization has an even
harder task because its contact and leverage points with the contractor(s) are limited, occur at
discrete points in the life cycle, and are exercised from a distance.

Consequently, it is important for an acquisition organization that commissions the
development of large software systems to exercise its oversight prerogatives with respect to
software architecture. Such an organization is the U. S. Department of Defense (DoD).
Because an architecture comprises the earliest, most important, and most far-reaching design
decisions, making sure that the architecture will be fit for purpose is one of the most powerful
technical risk mitigation strategies available to a DoD program office.

Bergey covers the contracting mechanisms that can be brought to bear by DoD procurement
agencies to help assure the development and delivery of a sound architecture that will serve
the program throughout its entire life cycle [Bergey 99b].

This technical note covers another avenue of exercising architectural control—the Software
Development Plan (SDP). The SDP lays out the guiding principles, practices, and guidelines
that members of the software development team must follow in order to produce software
that meets its requirements in a cost-effective way.

Many team structures are possible, but the same principles and needs apply in every case
where a team cooperates to produce a product whose technical foundation is its architecture.
The context for the approach being described involves having a system prime contractor
(under the auspices of a DoD program office) serve as a lead system integrator (LSI). The
LSI, in turn, is responsible for contracting with multiple suppliers to develop (or otherwise
acquire) the software that will be part of a new “system of systems (SoS)” being developed to
satisfy the DoD’s mission needs. Creating an overarching, architecture-centric SDP provides
the LSI with an effective means for unifying, guiding, and managing the entire software
development effort across multiple suppliers. Moreover, such unification, guidance, and
management are also needed in the more conventional acquisition context in which a prime
contractor brings a number of subcontractors aboard. Even in the case where groups of
people within a single contractor organization perform the work, these same principles apply.

2 CMU/SEI-2005-TN-019

This SDP typically establishes the program-level framework and requirements for processes
used in the acquisition, development, integration, test, and support of the system software
that is being acquired ultimately from multiple suppliers. It also establishes the top-level
software development and integration plan for the software. In an acquisition featuring a
multilevel work structure (such as a prime contractor and subcontractors, or an LSI and
suppliers), the SDP imposes binding process requirements at all levels. It may call for
subcontractors or suppliers to produce their own SDPs that must comply with the SDP of the
prime contractor or the LSI.

The purpose of this technical note is to provide an example of an effective approach and
corresponding language for an SDP that will enable software architecture to play a central
role in the technical and organizational management of a software development effort. In this
way, a program office can have something to compare to an SDP provided by its contractor or
contractors. Alternatively, the program office can adapt this approach and corresponding
language to reflect the kind of issues it wants its contractor’s SDP to address. Of course,
neither the comparison or the adaptation will be effective unless the acquisition agency
contractually requires the creation and delivery of, and adherence to, an SDP.

A companion to this technical note offers an example of a reference standard that prescribes
the contents and organization of a software architecture documentation package [Bergey 05].
This type of documentation is a prerequisite for conducting a software architecture
evaluation.

CMU/SEI-2005-TN-019 3

2 An Example SDP

This technical note provides an example approach and corresponding language to enable
software architecture to play a central role in an SDP. The approach and language were
drawn from (but are not identical to) that used by a major contractor in a DoD weapon-
system acquisition. The intent is to provide an example for other acquisition organizations to
use (and adapt as appropriate) in their own procurements.

2.1 Context of the Example
In the particular example we’ve chosen to illustrate (Figure 1), the prime contractor is known
as the LSI whose primary job is to manage and oversee the integration of large segments of
software provided (produced, procured) by segment teams. Segment teams in turn contract
with suppliers to provide particular units of software. The result of the LSI’s integration
efforts is an SoS, in which software plays a critical role.

Figure 1: Example System Acquisition Environment

4 CMU/SEI-2005-TN-019

The LSI is responsible for the SoS software architecture, which assures that the segments will
integrate smoothly and that the final product will meet its behavioral and quality goals.
Segment teams are responsible for architecting and developing the segments in accordance
with the SoS software architecture.

The LSI, each segment team, and each supplier providing a subsystem with its own software
architecture all are obligated to appoint a chief software architect whose duties are spelled out
in the SDP. They also are required to appoint a software architecture team as needed to
support the software architect in his or her duties.

2.2 Making the Example Work in Other Contexts
The LSI context involves the creation of a collection of software architecture documents and
related artifacts, and the SDP includes language to assure the consistency of those artifacts
with each other. In acquisition contexts in which only one software architecture is produced,
this language can, of course, be omitted.

For acquisitions involving a simple prime contactor and subcontractors, the material relating
to segment teams and suppliers in this example can be replaced by corresponding material
relating to subcontractors.

An SDP, like most project documents, should evolve over the life of the project as processes
are improved, added, or discarded through experience. The approach and corresponding
language presented in this technical note are not intended to be canonical or even generic.
They are intended to serve as examples that can inspire alternative approaches and language
specific to other acquisition-based software development projects.

2.3 Contents Overview
We present the contents and organization of our example SDP below by summarizing its
table of contents. Other SDPs may have different contents and organizations; this one is only
an example, but it typifies the information content of SDPs for large software-intensive
systems acquired by the DoD. Our example SDP does not mandate a particular notation
(such as UML) for capturing architectural information. Choice of notation should be covered
in an SDP—by either mandating a choice or levying notation-selection criteria—but we have
omitted this issue for the purposes of this technical note, so as not to appear to endorse one
notation over another.

CMU/SEI-2005-TN-019 5

The example SDP comprises the following chapters:

• Chapter 1 – Scope: program overview, an overview of the application, an overview of the
SDP, its relationship to other program plans, and its relationship and authority over lower
level supplier SDPs

• Chapter 2 – Applicable Documents: other documents that are referenced in the SDP and
whether they are informational or compliance documents

• Chapter 3 – Overview of Required Work: overview of the application from an operational
point of view and an overview of the computing platform configuration envisioned to
support the application; support software; and project constraints and overarching
requirements, including cost and schedule requirements

• Chapter 4 – Software Engineering: the heart of the SDP; description of the software life-
cycle model (in the case of our example, Boehm’s Spiral Win-Win Model [USC 05]);
description of build strategies and identification of a build plan; description of strategies
for preplanned software reuse and a product line approach to software development;
description of the software architecture’s role in the project; and how the architecture will
be captured, documented, modeled, and evaluated

- 4.1 – Software Development: life-cycle model, build strategy, build plans and
schedules, documentation requirements and constraints

- 4.2 – Software Reuse: product line strategy, strategies for qualification, rehabilitation
and reuse, and integration of existing software

- 4.3 – Software Architecture Development: modeling, review, evaluation,
documentation, and notation for software architecture

- 4.4 – Software Development Methods

- 4.5 – Standards for Software Products

- 4.6 – Handling of Critical Requirements: safety-critical requirements, mission-critical
requirements, information assurance requirements

- 4.7 – Computer Hardware Resource Allocation

- 4.8 – System Requirements Analysis: specifications, requirements decomposition and
traceability, flow-down

- 4.10 – System Design

- 4.11 – Software Requirements Analysis

- 4.12 – Software Design: object-oriented development, use of a notation (e.g., UML),
design exit criteria

- 4.13 – Software Implementation and Unit Testing

- 4.14 – Software Verification: unit integration and testing, qualification testing

- 4.15 – Preparing for Software Use: inspections and preparation of the executable
software, version descriptions, user manuals, and software transition

6 CMU/SEI-2005-TN-019

• Chapter 5 – Software Project Management: activities required to support cost and
schedule estimation for software, measurement, communication, and coordination among
groups (including project repositories and software development folders), software
training, software risk management, subcontract management, software configuration
management, software product evaluation, software quality assurance, and defect
management

• Chapter 6 – Project Organization and Resources: role and structure of software
management on the project, the software development environment, and its deployment
plan, security considerations, and so forth

• Chapter 7 – Project Software Process Management: process management for the project,
including how such processes (including those defined in this SDP) are evaluated and
changed

CMU/SEI-2005-TN-019 7

3 Example SDP Approach and Language Pertaining to

Software Architecture

This section of the technical note lays out the role of software architecture in the acquisition
project (the approach) and presents example language that populates Section 4.3 of the
example SDP.

3.1 Example Section 4.3: Software Architecture Development

3.1.1 Example Section 4.3 Introduction

Software architecture plays a central role in the technical and organizational management of
the software development effort. A suitable architecture is a prerequisite for satisfying
requirements, both in terms of accommodating the needed functionality and in providing the
necessary quality attributes such as real-time performance, reliability, and security. Elements
developed separately will work together only if they conform to the architecture, which
includes precise statements of the elements’ interfaces. In addition, a properly defined and
maintained architecture increases the amount of strategic reuse achievable in the product line,
reducing the cost and schedule of future upgrades to the system.

The software architecture defines the software elements that must be acquired through the
development, open-market purchase, or reuse of existing assets. It also determines how
effectively the software requirements are met and, to some extent, the ease with which
products developed separately can be integrated together. Further, architecture provides the
means to develop the software system as a series of incremental builds. By carefully
engineering the “uses” relations among elements, the architect can assure that incrementally
more useful subsets of the entire software system can be developed, tested, and deployed
separately.

The actors who participate in the architecture aspects of the SDP and the key architecture
artifacts involved are summarized in Figure 2.

8 CMU/SEI-2005-TN-019

Architecture Artifacts
Documents Plans

Actors
Software

Architecture
for …

Software
Architecture
Document

Architecture
Evaluation

Report

Architecture
Evolution

Plan

Architecture
Evaluation

Plan
System of
Systems Produce Produce Produce Produce

Segment Review and
approve

Review and
approve

Review and
approve

Review and
approve

LEAD SYSTEM
INTEGRATOR
Chief Software

Architect
and

Software Architecture
Team

Key
Subsystems

Review and
approve

Review and
approve

Review and
approve

Review and
approve

System of
Systems

Help LSI
produce;

review and
conform

Help LSI
produce;

review and
conform

Help LSI
produce;

review and
conform

Help LSI
produce;

review and
conform

Segment Produce Produce Produce Produce

SEGMENT TEAM
Chief Software

Architect
and

Software Architecture
Team Key

Subsystems
Review and

approve
Review and

approve
Review and

approve
Review and

approve

System of
Systems

Review and
conform

Review and
conform

Review and
conform

Review and
conform

Segment Review and
conform

Review and
conform

Review and
conform

Review and
conform

SUPPLIER

Chief Software
Architect

and
Software Architecture

Team Key
Subsystems Produce Produce Produce Produce

Figure 2: Overview of Actor Responsibilities for Key Architecture Artifacts

The responsibilities of these actors for the various architecture artifacts that fall under the
scope of the SDP are elaborated in the sections that follow.

3.1.2 Example Section 4.3.1 Responsibilities Pertaining to Software

Architecture

The LSI (who develops the overall SoS software architecture), segment teams (who develop
software architectures for project segments) and suppliers (who develop software for
segments that must be in accordance with the segment and SoS software architectures, and
which may be complex enough to warrant its own software architecture) shall perform the
following actions:

• Appoint a chief software architect and software architecture team for the software
architectures they are responsible for delivering.

• Define the software architecture to satisfy the project’s functional and quality attribute
requirements, as well as its incremental build requirements.

CMU/SEI-2005-TN-019 9

• Define the incremental builds that the architecture needs to support.

• Conduct one or more evaluations of the architecture (or, if appropriate, of the architecture
of key subsystems), using a method such as the SEI Architecture Tradeoff Analysis
Method® (ATAM®) [Clements 01]. An evaluation requires suppliers to produce and
deliver an architecture evaluation plan1 and evaluation report. The plan addresses such
items as the scheduling and phasing of evaluations; the method being used; evaluation
team training; the tailoring of the method; the artifacts involved; the roles and
responsibilities of DoD, LSI, and supplier participants; the deliverables; and the use of
evaluation results.

• Produce a software architecture document, in the format promulgated by the LSI’s chief
software architect (unless a waiver has been granted by the chief software architect).

• Produce an architecture evolution plan. The architecture evolution plan specifies who is
in charge of the architecture over its lifetime and how changes to the architecture are
proposed and handled. If an increment is downsized to fit into the schedule, the
architecture evolution plan is updated to communicate the deferred requirements to
suppliers as evolution requirements that their architecture needs to support.

The LSI’s chief software architect has project responsibility and authority for the following:

• leading the LSI’s software architecture team

• defining the software architecture document format2

• producing a baseline set of architecture viewpoints, as defined by the American National
Standards Institute/Institute of Electrical and Electronics Engineers (ANSI/IEEE) that
shall be considered when producing a software architecture document [IEEE 00]

• defining and maintaining appropriate processes for all life-cycle aspects of the software
architecture consistent with the requirements of this SDP, over the lifetime of the
program

• producing an SoS software architecture document, in accordance with the requirements
of this SDP. The review team for the software architecture document shall include
segment teams and supplier software architects. This document shall be maintained by
the LSI’s chief software architect over the life of the program.

• approving waiver requests for segment teams and suppliers involving changes to the
contents of, or the process for, the software architecture document, as required by this
SDP and published software architecture process guidance

• reviewing software architecture documents created by segment teams and suppliers (as
required by this SDP and published software architecture process guidance) with

® Architecture Tradeoff Analysis Method and ATAM are registered in the U.S. Patent and Trademark

Office by Carnegie Mellon University.
1 An example software architecture evaluation plan will be described in a future technical note.
2 Bergey and Clements provide guidance for a software architecture document [Bergey 05].

10 CMU/SEI-2005-TN-019

particular focus on how the software architecture being described fits into the overall
system

• approving software architecture documents for segment teams and suppliers, as required
by this SDP

Each segment team and supplier shall be responsible for the following:

• appointing a chief software architect, who shall lead the production of the software
architecture artifacts for the segment teams and suppliers. Chief software architects of the
segment teams are members of the LSI’s software architecture team. Software architects
for major suppliers (as designated by the segment team or LSI chief software architect)
also are members of the LSI software architecture team and perform reviews of the SoS
software architecture document.

• producing the architecture evolution plan and software architecture document, as
provided by this SDP and published software architecture process guidance

• ensuring that the software produced by the segment teams and suppliers conforms to the
published software architecture document for these groups

• ensuring that the software architecture document and related software architecture
artifacts (e.g., architecture evolution plan and software architecture process guidance) are
maintained over the lifetime of the program or the supplier’s contract

3.1.3 Example Section 4.3.2 Software Architecture Viewpoints

The program employs a stakeholder-focused, multiple-view approach to architecture
documentation. A viewpoint (following the terminology of ANSI/IEEE) is “a specification of
the conventions for constructing and using a view; a pattern or template from which to
develop individual views by establishing the purposes and audience for a view, and the
techniques for its creation and analysis [IEEE 00].” A view, which conforms to a viewpoint,
is the description of a specific architecture, defined to meet the requirements of its associated
viewpoint. The viewpoint identifies the set of concerns to be addressed and the modeling
techniques, evaluation techniques, consistency-checking techniques, and so forth used by any
conforming view. A view is a representation of a set of system elements and the relationships
among them, as specified by the view’s associated viewpoint. Together, the chosen set of
views shows the entire architecture and all of its relevant properties. Software architecture
documents contain the viewpoints, relevant views, and information that apply to more than
one view to give a holistic view of the system. Software architecture documentation involves
the following steps:

1. The LSI chief software architect, in conjunction with stakeholder participants, produces
an initial set of viewpoints (hereafter referred to as predefined viewpoints). From this
set, the LSI chief software architect chooses the viewpoints to be used in the SoS
software architecture document. The LSI chief software architect denotes some of these
predefined viewpoints as mandatory, meaning that every software architecture document
shall include these viewpoints. The other viewpoints are marked as suggested.

CMU/SEI-2005-TN-019 11

2. Each segment team or supplier chief software architect identifies the set of relevant
viewpoints for the specific software system or subsystem based on specific project needs
as articulated by the stakeholders of the architecture. To define the viewpoints, the
software architect

• produces a stakeholder/viewpoint table, an example of which is shown in Figure 3.
The rows indicate stakeholders of the architecture documentation, and the columns
represent viewpoints that apply to the subject of the architecture (the entire set of
software or some portion thereof).

• examines the set of predefined viewpoints. The software architect may combine
viewpoints to reduce documentation overhead while still meeting stakeholder
needs. The software architect may also add viewpoints, as necessary, to meet
specific stakeholder concerns not satisfied by the predefined viewpoint set.

• prioritizes and makes the final selection from the viewpoints emerging from the
examination of the candidate views. The software architect shall document the
final viewpoint selection, including rationale for any predefined viewpoints not
used in this software architecture document. The software architect also shall
update the stakeholder/viewpoint table, to show how the final set of viewpoints
meets all the stakeholders’ concerns.

The software architect documents the selected views, as defined by the viewpoints and the
guidance in the next section. Processes, techniques, and templates for selecting and
documenting software architectural views are provided by IEEE [IEEE 00] and Clements and
colleagues [Clements 02].

12 CMU/SEI-2005-TN-019

Figure 3: Example Stakeholder/Viewpoint Table

3.1.4 Example Section 4.3.3 Software Architecture Document

For segment teams and suppliers that generate software architecture, all software
architectures shall be documented in a software architecture document. The SoS software
architecture document shall be the governing software architecture document, with all other
software architecture documents conforming to its requirements and precepts.

The target audience of the software architecture document includes system architects and
engineers as well as software architects and engineers. The software architecture document
should be concise and accessible to the newcomer and serve as a reference for everyone
involved.

Each software architecture document serves as the authoritative source of architectural
information for its architectural scope. Software architecture documents are further intended
to be the starting point for locating all software architecture information on the program.
Software architecture documents are both descriptive (what the system or software
component should look like) and prescriptive (how the software component should be
designed or how it behaves).

Contents shall conform to the requirements for documentation defined by the LSI chief
software architect. Documentation of a view includes a primary presentation (often
graphical), an element catalog that describes the elements shown in the primary presentation

Stakeholder Logical Process
Deploy-

ment
Implemen-

tation Use Case Security Data
Systems

Mgmt
Application SW Developer P P S P P S P S
Infrastructure SW Developers P P P P S P P P
Application System Engineers P S P P P S S
Application/Platform Hardware Engineers S P S S S
Security Engineers/Certifiers S P P S S P S P
Safety Engineers/Certifiers S S S P P S S
Reliability Engineers/Certifiers S P P S P
Quality Assurance Engineers P S P S S S
Communications Engineers S P P S S S
System of Systems Engineers S S P P P S S
LSI Program Management S P S
Business Management S P S
System Integration and Test Engineers P S P S P S S P
External Test Agencies S S P S P S S P
Govt. Program Management S S S P S S S S

 End Users (commanders, soldiers, etc) S P P S S
Operational Systems Managers S S S P P
Trainers S S P S S
Maintainers P P S P S S P S
Other Services S S S P S
Auditors P
Chief Engineer/Chief Scientist P S S S S S P S
Other Service Commands P P P P P S
Service Acquisition/Policy
Representatives of standardization activities

S S P S P P

Viewpoints

P P S S P

 (P = primary concern, S = secondary concern)

CMU/SEI-2005-TN-019 13

(including their interface specifications), and other supporting information. In general, views
that correspond to the predefined viewpoints will conform to the full requirements of that
viewpoint. If a software architect desires to use an alternate viewpoint or other aspect in a
view, the software architect shall obtain prior approval from the LSI chief software architect.
The software architect shall, in addition to views, provide information that applies to more
than one view, including a mapping between views to show the relationships among elements
in different views, a documentation roadmap to help a stakeholder find information in the
package relevant to his or her interests, and other supporting information.

The software architect shall conduct reviews on the resulting software architecture document.
The software architect shall obtain approval for the software architecture document, as
described in the next section.

3.1.5 Example Section 4.3.4 Software Architecture Products Review and

Approval

Software architecture artifacts (e.g., software architecture document and architecture
evolution plan) shall be formally reviewed. Some additional requirements apply to reviews of
software architecture documents by the LSI software architecture team:

• Waiver requests (e.g., alternate viewpoints, alternate modeling methods, and evaluation
approaches) shall be submitted and approved by the LSI chief software architect prior to
review by the LSI software architecture team.

• The software architect (segment team or supplier) shall conduct a review of the software
architecture defining material prior to developing the views in the software architecture
document. The defining material covered by the review shall include

- a list of the stakeholders and their concerns

- the selected viewpoints and the rationale for the selection

- a list of the critical reviewers and a mapping back to the architecture stakeholders

- the schedule for developing, reviewing, and evaluating the software architecture
document

• The software architect (segment team or supplier) shall conduct one or more reviews of
the full software architecture document with particular focus on the contents of the actual
architectural views.

• The software architect may conduct formal evaluations of the document, once it has
completed peer reviews, as described in the next section.

• Once all reviews and evaluations are complete, the software architect shall submit the
software architecture document to the chief software architect for approval.

14 CMU/SEI-2005-TN-019

3.1.6 Example Section 4.3.5 Software Architecture Evaluation

The LSI performs architecture evaluations to check the SoS software architecture for fitness
of purpose by using the ATAM [Clements 01]. The ATAM calls for assembling a small group
of system stakeholders and elicits from them a set of scenarios that articulate the system’s
important required behaviors and quality attribute requirements. Then it investigates how the
architecture satisfies each of the most important scenarios.

At a minimum, the LSI evaluates the SoS software architecture for the following criteria:

• allowance for each member of the SoS to meet individual behavioral and quality attribute
requirements, including security, high availability and fault tolerance, real-time
performance, and others

• support for achieving the aggressive cost/schedule constraints imposed by the program.
Architecturally this support means limiting the size of architectural elements, carefully
decomposing responsibility and functionality among the elements, and providing simple
and robust interfaces to maximize the potential for developmental concurrency.

• allowance for incremental development, integration, and testing. Architecturally this
requirement means paying careful attention to the “uses” relation among elements.

• non-susceptibility to unplanned commercial off-the-shelf (COTS) upgrades or COTS
elements becoming unsupported

• support for integration and testing. For example, test-time instrumentation mechanisms
could be mandated for inclusion in each architectural element.

• support for instance variability in the product line, meaning that almost-alike systems
within the project should contain largely the same software, differing only by
configuration parameters or the exercise of other architectural variability mechanisms

• support for commonality, meaning that units of procurement should be defined to
maximize the creation of common elements across the system, perhaps as opposed to
procuring strictly along functional lines

Segment teams and suppliers shall perform their own software architecture evaluations on
major subsystems using a method such as the ATAM. Criteria shall include, but not be
limited to, those listed above. Segment teams and suppliers shall document the results of
software architecture evaluations in a separate software architecture evaluation report3 or as
part of their overall software architecture documentation. The evaluation report shall include
the specific criteria used to evaluate the architecture, the process for gathering the criteria, the
process for conducting the evaluation, and the risks and non-risks uncovered about the
architecture with respect to each criterion. The ATAM is described fully by Clements and
colleagues [Clements 01].

3 A separate evaluation report is considered preferable because the report typically would be a

required deliverable that is produced downstream after the software architecture document has been
developed and delivered, and the architecture has been evaluated.

CMU/SEI-2005-TN-019 15

References

URLs are valid as of the publication date of this document.

[Bergey 99a] Bergey, J.; Fisher, M.; & Jones, L. The DoD Acquisition
Environment and Software Product Lines (CMU/SEI-99-TN-004,
ADA244787). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1999.
http://www.sei.cmu.edu/publications/documents/99.reports
/99tn004/99tn004abstract.html

[Bergey 99b] Bergey, J. & Fisher, M. Software Architecture Evaluation with
ATAM in the DoD System Acquisition Context (CMU/SEI-99-TN-
012, ADA377450). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1999.
http://www.sei.cmu.edu/publications/documents/99.reports
/99tn012/99tn012abstract.html

[Bergey 00a] Bergey, J. & Smith, D. Guidelines for Using OAR Concepts in a
DoD Product Line Acquisition Environment (CMU/SEI-2000-TN-
004, ADA377385). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2000.
http://www.sei.cmu.edu/publications/documents/00.reports
/00tn004.html

[Bergey 00b] Bergey, J.; Fisher, M.; Gallagher, B.; Jones, L.; & Northrop, L.
Basic Concepts of Product Line Practice for the DoD (CMU/SEI-
2000-TN-001, ADA375859). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2000.
http://www.sei.cmu.edu/publications/documents/00.reports
/00tn001.html

[Bergey 01] Bergey, J. & Goethert, W. Developing a Product Line Acquisition
Strategy for a DoD Organization: A Case Study (CMU/SEI-2001-
TN-021, ADA395202). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2001.
http://www.sei.cmu.edu/publications/documents/01.reports
/01tn021.html

16 CMU/SEI-2005-TN-019

[Bergey 05] Bergey, John & Clements, P. Software Architecture in DoD
Acquisition: A Reference Standard for a Software Architecture
Document (CMU/SEI-2005-TN-020). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports
/05tn020.html

[Campbell 02] Campbell, G. A Software Product Line Vision for Defense
Acquisition (CMU/SEI-2002-TN-002, ADA403810). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University,
2002. http://www.sei.cmu.edu/publications/documents/02.reports
/02tn002.html

[Clements 01] Clements, P.; Kaman, R.; & Klein, M. Evaluating Software
Architectures: Methods and Case Studies. Boston, MA: Addison-
Wesley, 2001.

[Clements 02] Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little,
R.; Nord, R.; & Stafford, J. Documenting Software Architectures:
Views and Beyond. Boston, MA: Addison-Wesley, 2002.

[Cohen 01] Cohen, S. Case Study: Building and Communicating a Business
Case for a DoD Product Line (CMU/SEI-2001-TN-020,
ADA395155). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2001.
http://www.sei.cmu.edu/publications/documents/01.reports
/01tn020.html

[IEEE 00] Institute of Electrical and Electronics Engineers. Recommended
Practice for Architectural Description of Software-Intensive
Systems (IEEE Std 1471-2000). New York, NY: Institute of
Electrical and Electronics Engineers, 2000.

[Jones 99] Jones, L. Product Line Acquisition in the DoD: The Promise, The
Challenges (CMU/SEI-99-TN-011, ADA373184). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1999.
http://www.sei.cmu.edu/publications/documents/99.reports
/99tn011/99tn011abstract.html

[USC 05] University of Southern California. WinWin Spiral Model.
http://sunset.usc.edu/research/WINWIN/winwinspiral.html
(February 2005)

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

February 2005

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Software Architecture in DoD Acquisition: An Approach and Language
for a Software Development Plan

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

John K. Bergey, Paul C. Clements
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-TN-019

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The right software architecture is essential for a software-intensive system. Meeting behavioral requirements
and providing quality attributes such as real-time performance, reliability, and maintainability are essential
architectural drivers. Because an architecture comprises the earliest, most important, and most far-reaching
design decisions, making sure that the architecture will be fit for purpose is one of the most powerful,
technical risk mitigation strategies available to a program office. This technical note covers one avenue of
exercising architectural control—the Software Development Plan (SDP). The report provides an example
approach and corresponding SDP language that enable software architecture to play a central role in the
technical and organizational management of a software development effort. The example is drawn from an
actual SDP written by a major U.S. Department of Defense contractor in a weapon-system procurement. The
intent is to provide an example for other acquisition organizations to use (and adapt as appropriate) in their
own procurements. While the example is based on a contracting approach with a lead system integrator, it
can serve as a model for using an architecture-centric approach effectively to unify and manage software
development across multiple suppliers, as found in the conventional prime-with-subcontractors acquisition
context.

14. SUBJECT TERMS

software architecture, architecture documentation, architecture
evaluation, architecture in acquisition, software development plan

15. NUMBER OF PAGES

28

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Software Architecture in DoD Acquisition: An Approach and Language for a Software Development Plan
	Contents
	List of Figures
	Acknowledgments
	About the Technical Note Series on Software Architecture Practices in the Department of Defense
	Abstract
	1 Introduction
	2 An Example SDP
	3 Example SDP Approach and Language Pertaining to Software Architecture
	References

