
Security Quality
Requirements
Engineering
(SQUARE)
Methodology

Nancy R. Mead
Eric D. Hough
Theodore R. Stehney II

November 2005

TECHNICAL REPORT
CMU/SEI-2005-TR-009
ESC-TR-2005-009

Pittsburgh, PA 15213-3890

Security Quality
Requirements
Engineering
(SQUARE)
Methodology

CMU/SEI-2005-TR-009
ESC-TR-2005-009

Nancy R. Mead
Eric D. Hough
Theodore R. Stehney II

November 2005

Networked Systems Survivability Program

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2005-TR-009 i

Table of Contents

Acknowledgments ...vii

Executive Summary..ix

Abstract...xi

1 Introduction ...1
1.1 Industry Problem ...1

1.2 Practice Description...2

2 Security Quality Requirements Engineering Process...................................3

3 Security Quality Requirements Engineering Steps7
3.1 Step 1: Agree on Definitions ..8

3.2 Step 2: Identify Security Goals...10

3.3 Step 3: Develop Artifacts..12

3.4 Step 4: Perform Risk Assessment..13

3.5 Step 5: Select Elicitation Technique ...14

3.6 Step 6: Elicit Security Requirements..15

3.7 Step 7: Categorize Requirements ..17

3.8 Step 8: Prioritize Requirements ...18

3.9 Step 9: Requirements Inspection ...19

4 Recent Results...21
4.1 Step 1: Agree on Definitions ..21

4.2 Step 2: Identify Security Goals...23

4.3 Step 3: Develop Artifacts..24
4.3.1 System Architecture...24
4.3.2 Attack Trees...26
4.3.3 Use Cases ...27
4.3.4 Misuse Cases ..28
4.3.5 Reconciliation of Attack Trees and Misuse Cases........................30

4.4 Essential Assets and Services ...32
4.4.1 Essential Services..32
4.4.2 Essential Assets ..33

4.5 Step 4: Perform Risk Assessment..34
4.5.1 Risk Assessment Techniques ..34
4.5.2 Risk Assessment Field Tests ...35

ii CMU/SEI-2005-TR-009

4.6 Step 5: Select Elicitation Techniques..37
4.6.1 Literature Review ...37

4.7 Step 6: Elicit Security Requirements ..39
4.7.1 IBIS..39
4.7.2 ARM...41
4.7.3 JAD..43

4.8 Step 7: Categorize Requirements ..45
4.9 Step 8: Prioritize Requirements..46
4.10 Step 9: Inspect Requirements..49

5 Future Research Plans..51

Appendix ...53

References ...59

CMU/SEI-2005-TR-009 iii

List of Figures

Figure 1: Sample of Terms and Definitions Provided to Stakeholders for Review. 22

Figure 2: Simple Hierarchy of Goals and Recommendations 23

Figure 3: Example System Architecture Diagram... 25

Figure 4: Example Attack Tree... 26

Figure 5: Sample Use Case Diagram... 28

Figure 6: Example Misuse Diagram Trace ... 30

Figure 7: Example IBIS Map Generated with Compendium 40

Figure 8: Cost/Value Diagram of Requirements ... 47

iv CMU/SEI-2005-TR-009

CMU/SEI-2005-TR-009 v

List of Tables

Table 1: Steps in the SQUARE Process ... 4

Table 2: Example Set of Initial Terms.. 8

Table 3: Example Term with Suggested Definitions .. 9

Table 4: Minimal Set of Categories for Requirements Categorization 17

Table 5: Acme Corporation’s Business and Security Goals 23

Table 6: Sample Use Case... 27

Table 7: Example Misuse Case .. 28

Table 8: Mapping Between Misuse Cases and Attack Trees............................... 31

Table 9: Use Cases and Initial Rankings of Essentiality...................................... 32

Table 10: Results of Risk Assessment Literature Review 35

Table 11: Risk Assessment Results.. 36

Table 12: Comparison of Elicitation Techniques.. 38

Table 13: Requirements Generated for Acme Using the “Unstructured Interview”
Elicitation Technique ... 39

Table 14: Security Requirements Generated with IBIS ... 41

Table 15: Initial Set of Security Requirements Produced with ARM 42

Table 16: Refined Set of Security Requirements Produced with ARM 43

Table 17: Security Requirements Generated with JAD ... 44

Table 18: Grouped Security Requirements in ARM.. 45

Table 19: Pairwise Comparison Matrix in AHP.. 46

vi CMU/SEI-2005-TR-009

Table 20: Interpretation of Values in Matrix ...46

Table 21: Interpretation of Costs in Matrix...47

Table 22: Peer Review Log Format...49

Table 23: Inspection Checklist ..50

Table 24: Terms and Definitions from Initial Case Study..53

Table 25: Goal Hierarchy for Acme Corporation ..58

CMU/SEI-2005-TR-009 vii

Acknowledgments

The authors would like to acknowledge the work of the student teams at Carnegie Mellon
University that have contributed to the SQUARE methodology. They are Peter Chen, Lydia
Chung, Marjon Dean, Dan Gordon, Frank Hung, Lilian Lopez, Don Ojoko-Adams, Hassan
Osman, Will Salamon, Ted Stehney, Neha Wattas, Nick (Ning) Xie, and Eugene Yu.

viii CMU/SEI-2005-TR-009

CMU/SEI-2005-TR-009 ix

Executive Summary

The Software Engineering Institute’s Networked Systems Survivability (NSS) Program at
Carnegie Mellon University has developed a methodology to help organizations build secu-
rity into the early stages of the production life cycle. The Security Quality Requirements En-
gineering (SQUARE) Methodology consists of nine steps that generate a final deliverable of
categorized and prioritized security requirements. Although the SQUARE Methodology
could likely be generalized to any large-scale design project, it was designed for use with in-
formation technology systems.

The SQUARE process involves the interaction of a team of requirements engineers and the
stakeholders of an IT project. It begins with the requirements engineering team and project
stakeholders agreeing on technical definitions that serve as a baseline for all future communi-
cation. Next, business and security goals are outlined. Third, artifacts and documentation are
created, which are necessary for a full understanding of the relevant system. A structured risk
assessment determines the likelihood and impact of possible threats to the system. Following
this work, the requirements engineering team determines the best method for eliciting initial
security requirements from stakeholders, which is dependent on several factors, including the
stakeholders involved, the expertise of the requirements engineering team, and the size and
complexity of the project. Once a method has been established, the participants rely on arti-
facts and risk assessment results to elicit an initial set of security requirements. Two subse-
quent stages are spent categorizing and prioritizing these requirements for management’s use
in making tradeoff decisions. Finally, an inspection stage is included to ensure the consis-
tency and accuracy of the security requirements that have been generated.

SQUARE is a work in progress. Several case studies with real-world clients have shown that
the methodology holds good promise for incorporation into industry practice. The SQUARE
process has been enhanced and refined throughout the case studies. The current working
model is presented in this paper. NSS is currently continuing research on the process and is
working in parallel to create a CASE tool to support each stage of the methodology.

x CMU/SEI-2005-TR-009

CMU/SEI-2005-TR-009 xi

Abstract

Requirements engineering, a vital component in successful project development, often does
not include sufficient attention to security concerns. Studies show that up-front attention to
security can save the economy billions of dollars, yet security concerns are often treated as an
afterthought to functional requirements. Industry can thus benefit from a model to examine
security requirements in the development stages of the production life cycle.

This report presents the Security Quality Requirements Engineering (SQUARE) Methodol-
ogy for eliciting and prioritizing security requirements in software development projects,
which was developed by the Software Engineering Institute’s Networked Systems Survivabil-
ity (NSS) Program. The methodology’s steps are explained, and results from its application in
recent case studies are examined. The NSS Program continues to develop SQUARE, which
has proven effective in helping organizations understand their security posture and produce
products with verifiable security requirements.

xii CMU/SEI-2005-TR-009

CMU/SEI-2005-TR-009 1

1 Introduction

1.1 Industry Problem
Requirements engineering is well recognized in industry to be critical to the success of any
major development project. Several authoritative studies have shown that requirements engi-
neering defects cost 10 to 200 times more to correct once fielded than they would if they
were detected during requirements development [Boehm 88, McConnell 01]. Other studies
have shown that reworking requirements defects on most software development projects
costs 40 to 50 percent of total project effort [Jones 86], and the percentage of defects originat-
ing during requirements engineering is estimated at more than 50 percent [Wiegers 01].

A recent study found that the return on investment when security analysis and secure engi-
neering practices are introduced early in the development cycle ranges from 12 to 21 percent,
with the highest rate of return occurring when the analysis is performed during application
design [Soo Hoo 01]. NIST reports that software that is faulty in security and reliability costs
the economy $59.5 billion annually in breakdowns and repairs [NIST 02]. The costs of poor
security requirements show that there would be a high value to even a small improvement in
this area. By the time that an application is fielded and in its operational environment, it is
very difficult and expensive to significantly improve its security.

Requirements problems are the single number one reason projects

• exceed budget

• exceed schedule

• have significantly reduced scope

• deliver poor-quality applications

• are not significantly used once delivered

• are cancelled

Requirements engineering typically suffers from the following major problems:

• Requirements identification typically does not include all relevant stakeholders and does
not use the most modern or efficient techniques.

• Requirements analysis typically is either not performed at all (identified requirements are
directly specified without any analysis or modeling) or is restricted to functional re-

2 CMU/SEI-2005-TR-009

quirements, ignoring quality requirements and other constraints such as architecture, de-
sign, implementation, and testing.

• Requirements specification is typically haphazard, with specified requirements that are
ambiguous, incomplete (e.g., non-functional requirements are often missing), inconsis-
tent, not cohesive, infeasible, obsolete, unable to be tested or validated, and not usable by
all of their intended audiences.

• Requirements management is typically limited to tracing, scheduling, and prioritization,
with poor storage (e.g., in one or more documents rather than in a database or tool) and
missing attributes.

1.2 Practice Description
While much has been written about security requirements in the abstract, the mechanisms to
translate the theory into practice have been unclear. If security requirements are not effec-
tively defined, the resulting system cannot be effectively evaluated for success or failure prior
to implementation. Security requirements are often missing in the requirements elicitation
process. The lack of validated methods is considered one of the factors.

In addition to employing applicable software engineering techniques, the organization must
understand how to incorporate the techniques into its existing software development proc-
esses. The identification of organizational mechanisms that promote or inhibit the adoption of
security requirements elicitation can be an indicator of the security level of the resulting
product.

An earlier report, focusing on survivable requirements engineering, provided an interesting
range of material in this respect [Mead 03]. Security requirements engineering has only been
recently researched, with much of the material assembled within the past year or two. The
security area did not have techniques or templates for requirements elicitation. By assembling
an elicitation framework based on our initial research and applying it to active software de-
velopment efforts, we were able to identify additional research areas and refine the frame-
work through further research.

If usable approaches to security are developed and mechanisms to promote organizational use
are identified, then the organization can ensure that the resulting product effectively meets
security requirements.

CMU/SEI-2005-TR-009 3

2 Security Quality Requirements
Engineering Process

Security Quality Requirements Engineering (SQUARE) has been developed at Carnegie Mel-
lon University by Nancy Mead with Donald Firesmith and Carol Woody of the Software En-
gineering Institute (SEI). The process provides a means for eliciting, categorizing, and priori-
tizing security requirements for information technology systems and applications. The long-
term goal of SQUARE is to integrate security considerations into the early stages of the de-
velopment life cycle. SQUARE has also proven to be useful for documenting and analyzing
the security aspects of fielded systems and has potential for steering future improvements and
modifications to these systems.

As is common with many quality requirements, the distinction between functional and non-
functional security requirements of a system is subtle. For instance, a developer may argue
that a system must protect against denial-of-service attacks in order to fulfill its mission. Such
a requirement may be considered by other stakeholders to be an availability or reliability is-
sue that is not central to the mission of the system. In the SQUARE methodology, security
requirements are often discussed in the context of quality, non-functional requirements. How-
ever, as opposed to artificially categorizing all security requirements as nonfunctional, the
methodology approaches security requirements as they are often handled in requirements en-
gineering: as an afterthought and add-on to the system’s functional requirements. By address-
ing security requirements in this respect, the SQUARE Methodology is able to accurately
adapt to the current state of the practice of software and requirements engineering.

The methodology is most effective and accurate when conducted with a team of requirements
engineers with security expertise and the stakeholders of the project. The requirements engi-
neering team can be thought of as external consultants, though often the team is composed of
one or more internal developers of the project. Throughout this report, the terms “require-
ments engineer” and “requirements engineering team” are synonymous. Likewise, this report
will refer to “stakeholders” also as “clients” or “the client organization.” The effectiveness of
SQUARE in eliciting requirements is dependent on representation from the project’s stake-
holders. Thus, the requirements engineering team must emphasize the importance of estab-
lishing a representative set of stakeholders to participate in the methodology.

SQUARE can be decomposed into nine discrete steps, which are outlined in Table 1. Each
step identifies the necessary inputs, major participants, suggested techniques, and final out-
put. In Section 3 of this report, the steps are explained in detail. Generally, the output of each
step serves as the sequential input to the following steps, though some steps may be per-

4 CMU/SEI-2005-TR-009

formed in parallel. For instance, it might be more efficient for the requirements engineering
team to perform Step 2 (Identify Security Goals) and Step 3 (Develop Artifacts) simultane-
ously, since to some extent they are independent activities. The output of both steps, however,
is required for Step 4 (Identify Security Goals).

Table 1: Steps in the SQUARE Process

Step
Number Step Input Techniques Participants Output

1 Agree on
definitions

Candidate
definitions from
IEEE and other
standards

Structured interviews,
focus group

Stakeholders,
requirements
team

Agreed-to
definitions

2 Identify security
goals

Definitions,
candidate goals,
business drivers,
policies and
procedures,
examples

Facilitated work
session, surveys,
interviews

Stakeholders,
requirements
engineer

Goals

3 Develop artifacts
to support
security
requirements
definition

Potential artifacts
(e.g., scenarios,
misuse cases,
templates, forms)

Work session Requirements
engineer

Needed artifacts:
scenarios, misuse
cases, models,
templates, forms

4 Perform risk
assessment

Misuse cases,
scenarios, security
goals

Risk assessment
method, analysis of
anticipated risk
against organizational
risk tolerance,
including threat
analysis

Requirements
engineer, risk
expert,
stakeholders

Risk assessment
results

5 Select elicitation
techniques

Goals, definitions,
candidate
techniques, expertise
of stakeholders,
organizational style,
culture, level of
security needed, cost
benefit analysis, etc.

Work session Requirements
engineer

Selected elicitation
techniques

6 Elicit security
requirements

Artifacts, risk
assessment results,
selected techniques

Joint Application
Development (JAD),
interviews, surveys,
model-based analysis,
checklists, lists of
reusable requirements
types, document
reviews

Stakeholders
facilitated by
requirements
engineer

Initial cut at
security
requirements

CMU/SEI-2005-TR-009 5

Step
Number Step Input Techniques Participants Output

7 Categorize
requirements as
to level (system,
software, etc.)
and whether they
are requirements
or other kinds of
constraints

Initial requirements,
architecture

Work session using a
standard set of
categories

Requirements
engineer, other
specialists as
needed

Categorized
requirements

8 Prioritize
requirements

Categorized
requirements and
risk assessment
results

Prioritization
methods such as
Triage, Win-Win

Stakeholders
facilitated by
requirements
engineer

Prioritized
requirements

9 Requirements
inspection

Prioritized
requirements,
candidate formal
inspection technique

Inspection method
such as Fagan, peer
reviews

Inspection
team

Initial selected
requirements,
documentation of
decision making
process and
rationale

As Table 1 illustrates, the first task for the organization is to agree on a common set of secu-
rity definitions, followed by the definition of organizational security goals. These security
goals may be derived from business application goals, potential threats to project assets, and
management controls and policy. The requirements engineer can then develop artifacts (net-
work maps and diagrams, attack trees, and use/misuse cases) that will aid in the elicitation of
security requirements. Next, a formal risk assessment allows the organization to understand
how the likelihood and impact of various threats can affect the project’s security goals and
assets.

At this point in the SQUARE process, the requirements engineer must select one or more
requirements-elicitation techniques appropriate for the organization’s culture, expertise, level
of security required, and nature of the system being developed. The selected techniques are
subsequently used to elicit an initial set of security requirements in the form of operational
constraints on the system. An example of such a requirement is “The system shall only reveal
employee salary information to members of the Human Resources Department.” These re-
quirements are then categorized, prioritized, and formally inspected for correctness in the
remaining steps of SQUARE. The final output of the process is a security requirements
document that satisfies the security goals of the project, contains clear and verifiable re-
quirements, and is agreed on by all relevant stakeholders.

6 CMU/SEI-2005-TR-009

CMU/SEI-2005-TR-009 7

3 Security Quality Requirements
Engineering Steps

In this section, the steps in the SQUARE Methodology are enumerated in greater detail. The
purpose of this section is to clarify the purpose of each step, the expectations of the partici-
pants, and the exit criteria of each step. Recommendations to the process are also stated
where appropriate.

8 CMU/SEI-2005-TR-009

3.1 Step 1: Agree on Definitions
In order to guarantee effective and clear communication throughout the requirements engi-
neering process, the requirements engineering team and stakeholders must first agree on a
common set of terminology and definitions. Given the differences in expertise, knowledge,
and experience, an arbitrary term may have multiple meanings between the participants of
SQUARE. In addition, there may be ambiguity in the level of detail that is assumed for a
given term. For instance, one stakeholder may view “access controls” as a set of policies that
governs which users may be granted access to which resources. Another stakeholder may
view access controls as the software elements in the system that actually implement this func-
tionality. These differences in perspective must be resolved before the process can continue.

Fortunately, it is not necessary to reproduce a comprehensive set of definitions for each itera-
tion of SQUARE. Using public resources, such as the Software Engineering Body of Knowl-
edge (SWEBOK) [IEEE 05], IEEE 610.12 Standard Glossary of Software Engineering Ter-
minology [IEEE 90], and Wikipedia [Wiki 05], the requirements engineering team can
produce and reuse a comprehensive set of security terms with which to work. See Table 2 for
an example set of initial terms upon which the requirements engineering team can build.

Table 2: Example Set of Initial Terms
access control corruption honey pot non-repudiation spoof
access control list
(ACL)

cracker impact patch SQL injection

antivirus software denial-of-service
(DoS) attack

incident penetration stakeholder

artifact disaster recovery
plan

incident handling penetration testing stealthing

asset disclosure insider threat physical security survivability

attack disgruntled em-
ployee

integrity port scanning target

audit downtime interception privacy threat

authentication disruption interruption procedure threat assessment

availability encryption intrusion recognition threat model

back door espionage intrusion detection
system (IDS)

recovery toolkits

breach essential services liability replay attack Trojan

brute force exposure luring attack resilience trust

buffer overflow fabrication malware resistance uptime
cache cramming fault line attacks man-in-the-middle

attack
risk victim

cache poisoning fault tolerance masquerade risk assessment virus

confidentiality firewall modification security policy vulnerability

control hacker non-essential ser-
vices

script kiddies worm

CMU/SEI-2005-TR-009 9

The initial list of terms should also include suggested definitions for each term and their cor-
responding sources. This allows the stakeholders to get a general understanding and scope of
each term, and in the common case, select one of the suggested definitions as final. See Table
3 for an example of the information that should be provided with each term. In this example,
the stakeholders could place a checkmark next to the definition that suits them best.

Table 3: Example Term with Suggested Definitions

confidentiality ⁯ The property that information is not made available or disclosed to unauthor-

ized individuals, entities, or processes. (i.e., to any unauthorized system entity)

[SANS 03a]

 ⁯ Ensuring that information is available to only those with authorized access. [ISO 04]

 ⁯ Restricting access to information via a hierarchy of classes of access. [JONES 02]

 ⁯ Other: ___

Requirements Engineering Team Responsibilities:

1. Provide an initial set of terms with corresponding suggested definitions. All external
sources should be cited. The set of terms should be as comprehensive as possible, even
if some terms appear to be irrelevant to the project.

2. Provide a means for stakeholders to review and select a desired definition for each term.
This process could take place by way of a Web-based tool, email exchanges, or paper
surveys. The chosen means must allow the stakeholders to freely add new terms and
definitions to the set.

3. Document and share the finalized set of terms and definitions.

Stakeholder Responsibilities:

Select an existing or create a custom definition for each term provided by the requirements
engineering team. All stakeholders must come to a consensus on each term’s definition in a
timely manner and present their results to the requirements engineering team.

Joint Responsibilities:

Establish a single point of contact (POC) for interaction between the requirements engineer-
ing team and the stakeholders.

Exit Criteria:

A well-documented, agreed-on set of definitions has been established and is available to all
stakeholders and the requirements engineering team. The definitions document will be used
as a reference throughout the rest of the SQUARE process.

10 CMU/SEI-2005-TR-009

3.2 Step 2: Identify Security Goals
The purpose of Step 2 in SQUARE is for the stakeholders to formally agree on a set of priori-
tized security goals for the project. Without overall security goals for the project, it is impos-
sible to identify the priority and relevance of any security requirements that are generated. In
addition, the establishment of security goals scopes the rest of the SQUARE process.

Initially, different stakeholders will likely have different security goals. For example, a mem-
ber of human resources may be concerned about maintaining the confidentiality of personnel
records, whereas a stakeholder in finance may be concerned with ensuring that financial data
is not modified without authorization. The security goals of the stakeholders may also con-
flict with one another. A security-conscious stakeholder may place high importance on strong
security controls for the system, which in turn may hamper overall system performance. De-
creased performance might likely be at odds with the goals of the marketing department. Step
2 in the SQUARE process serves to eliminate such conflicts and align all of the stakeholders’
interests.

The security goals of the project must be in clear support of the project’s overall business
goal, which also must be identified and enumerated in this step. On average, stakeholders
should attempt to brainstorm to come up with approximately half a dozen security goals for
the project, with more or less depending on the scale of the project. More sophisticated tech-
niques for mapping high-level business requirements to low-level requirements can be found
in Core Security Requirements Artefacts [Moffett 04] and “Mapping Mission-Level Availabil-
ity Requirements to System Architectures and Policy Abstractions” [Watro 01].

Once the goals of the various stakeholders have been identified, they must be prioritized. In
the absence of consensus, an executive decision may be needed to prioritize the goals.

Finally, the requirements engineering team must encourage the stakeholders to generate secu-
rity goals as opposed to requirements or recommendations. There is a fine line between a se-
curity goal such as “The system shall be available for use when needed,” a requirement such
as “The system must have a continuity of operations plan in place to ensure appropriate sys-
tem availability,” and a recommendation such as “Invest in backup information technology
hardware to ensure business continuity.” The requirements engineering team must act as the
experts in this situation, providing assistance to the stakeholders so that they may generate an
appropriately scoped set of security requirements.

Requirements Engineering Team Responsibilities:

1. Facilitate the brainstorm session by the stakeholders, emphasizing the importance of
creating a single business goal, followed by several security goals that support it.

2. Review the stakeholders’ business and security goals, providing any feedback on scope,
level of detail, and relevance to the business goal of the project.

3. Document and share the finalized business goal and corresponding security goals.

CMU/SEI-2005-TR-009 11

Stakeholder Responsibilities:

1. Identify a single business goal for the project. This goal should be stated in one sen-
tence, such as “The system shall provide the means to effectively manage company re-
sources in a disaster situation.”

2. Brainstorm and create approximately half a dozen security goals that are in clear support
of the business goal. For example, “The system shall maintain high availability, even in
the face of public utility failures.”

3. Prioritize the security goals.

4. Provide the business goal and security goals to the requirements engineering team for
review, and edit the goals as deemed necessary by the team.

Exit Criteria:

A single business goal for the project and several prioritized security goals that support it
have been established.

12 CMU/SEI-2005-TR-009

3.3 Step 3: Develop Artifacts
Before the requirements engineering team and stakeholders can generate a comprehensive set
of security requirements, the team must collect a complete set of artifacts of the system. The
following are the types of artifacts that should be collected:

• system architecture diagrams

• use case scenarios/diagrams

• misuse case scenarios/diagrams

• attack trees

• standardized templates and forms

In developing such artifacts, it is important to enlist the assistance of knowledgeable engi-
neers from the organization. In some cases, it is possible that the client organization will not
have any of the artifacts in place, including such basic items as system architecture diagrams.
In such situations, the requirements engineering team should reiterate to the stakeholders that
by creating and documenting artifacts of the system, they are investing in the success of the
project.

Requirements Engineering Team Responsibilities:

Work with the stakeholders and client organization to identify and collect as many artifacts as
possible.

Stakeholder Responsibilities:

Generate or collect any system artifacts and present them to the requirements engineering
team. This information includes system architectures, actors, use/misuse cases, and suspected
attacks. It is possible that other experts from within the organization may be called upon to
provide information as well.

Joint Responsibilities:

Verify the accuracy and completeness of all artifacts.

Exit Criteria:

A set of artifacts for the system, as complete as possible, has been generated by the require-
ments engineering team and shared with the stakeholders.

CMU/SEI-2005-TR-009 13

3.4 Step 4: Perform Risk Assessment
The purpose of this step in the SQUARE process is to identify the vulnerabilities and threats
that face the system, the likelihood that the threats will materialize as real attacks, and any
potential consequences of an attack. Without a risk assessment, organizations can be tempted
to implement security requirements or countermeasures without a logical rationale. For in-
stance, the stakeholders may decide that encryption is a necessary component of their system
without fully understanding the nature of the problem that encryption can solve. The risk as-
sessment also serves to prioritize the security requirements at a later stage in the process.

There are a growing number of risk assessment methods from which to choose (see the list of
examples in Section 4.5.1). Some of the methods are very structured and may require the as-
sistance of an external risk expert. Ideally, this expert would already be a part of the require-
ments engineering team.

After the threats have been identified by the risk assessment method, they must be classified
according to likelihoods. Again, this will aid in prioritizing the security requirements that are
generated at a later stage. For each threat identified, a corresponding security requirement can
identify a quantifiable, verifiable response. For instance, a requirement may describe speed of
containment, cost of recovery, or limit to the damage that can be done to the system’s func-
tionality.

Requirements Engineering Team Responsibilities:

1. Facilitate the completion of a structured risk assessment, likely performed by an external
risk expert.

2. Review the results of the risk assessment and share them with stakeholders.

Exit Criteria:

All vulnerabilities and threats have been identified and classified according to their likeli-
hoods. Potential consequences of attacks are identified. The results are well documented and
shared with the stakeholders.

14 CMU/SEI-2005-TR-009

3.5 Step 5: Select Elicitation Technique
The requirements engineering team must select an elicitation technique that is suitable for the
client organization and project. Although this task may appear to be straightforward, it is of-
ten the case that multiple techniques will likely work for the same project. The difficulty is in
choosing a technique that can adapt to the number and expertise of stakeholders, size and
scope of the client project, and expertise of the requirements engineering team. It is ex-
tremely unlikely that any single technique will work for all projects under all circumstances,
though previous experience has shown that the Accelerated Requirements Method (ARM)
has been successful in eliciting security requirements. This particular technique is discussed
further in Section 4.7.2.

The following is a sample of elicitation techniques that may be appropriate:

• Structured/unstructured interviews

• Use/misuse cases [Jacobson 92]

• Facilitated meeting sessions, such as Joint Application Development and the Accelerated
Requirements Method [Wood 89, Hubbard 99]

• Soft Systems Methodology [Checkland 89]

• Issue-Based Information Systems [Kunz 70]

• Quality Function Deployment [QFD 05]

• Feature-Oriented Domain Analysis [Kang 90]

• Controlled Requirements Expression [Mullery 79]

• Critical Discourse Analysis [Schiffrin 94]

Requirements Engineering Team Responsibilities:

1. Select an elicitation technique that is appropriate for the number and expertise of stake-
holders, size and scope of the project, and expertise of the requirements engineering
team.

2. Document the rationale for the choice and make necessary preparations to execute the
technique.

Exit Criteria:

The requirements engineering team has selected an appropriate elicitation technique and
documented the rationale for their choice.

CMU/SEI-2005-TR-009 15

3.6 Step 6: Elicit Security Requirements
This step is the heart of the SQUARE process: the elicitation of security requirements. To the
benefit of the requirements engineering team, most elicitation techniques provide detailed
guidance on how to perform the elicitation, so this step is simply a matter of executing the
technique. However, even if the stakeholders are very knowledgeable about the project and
communicate effectively, it can be challenging for the requirements engineering team to elicit
correct requirements.

Perhaps the largest mistake that the requirements engineering team can make in this step is to
elicit non-verifiable or vague, ambiguous requirements. Each requirement must be stated in a
manner that will allow relatively easy verification once the project has been implemented.
For instance, the requirement “The system shall improve the availability of the existing cus-
tomer service center” is impossible to measure objectively. Instead, the requirements engi-
neering team should encourage the production of requirements that are clearly verifiable and,
where appropriate, quantifiable. A better version of the previously stated requirement would
thus be “The system shall handle at least 300 simultaneous connections to the customer ser-
vice center.”

A second mistake that the requirements engineering team can make in this step is to elicit
implementations or architectural constraints instead of requirements. Requirements are con-
cerned with what the system should do, not how it should be done.

All elicitation techniques will involve face-to-face interaction with the stakeholders, so it is
also the responsibility of the requirements engineering team to make logistical arrangements
with the stakeholders and inform them of the time they can expect to spend in this part of the
SQUARE process.

Requirements Engineering Team Responsibilities:

1. Execute the elicitation technique chosen in Step 5. This may entail a large amount of
logistical preparation and orientation for the stakeholders. Stakeholders should be in-
formed of the amount of time they can be expected to spend during this step of the proc-
ess.

2. Document the requirements as they are collected.

Stakeholder Responsibilities:

Follow the instructions given by the requirements engineering team during the elicitation
process.

Joint Responsibilities:

Encourage the generation of verifiable, preferably quantifiable security requirements.

16 CMU/SEI-2005-TR-009

Exit Criteria:

An initial set of security requirements for the system has been elicited and documented. It is
not necessary that the set be considered final or completely correct.

CMU/SEI-2005-TR-009 17

3.7 Step 7: Categorize Requirements
The purpose of this step is to allow the requirements engineer and stakeholders to classify the
requirements as essential, non-essential, system level, software level, or as architectural con-
straints. The requirements engineering team can provide to the stakeholders a matrix such as
the one in Table 4 to assist in this process.

Table 4: Minimal Set of Categories for Requirements Categorization

 System level Software level Architectural constraint

Essential

Non-essential

The categories in Table 4 are not fixed; each iteration of SQUARE will likely produce a
much larger set of categories that are customized to the project at hand. These categories are
instead suggested as a minimal set.

Since the goal of SQUARE is to produce security requirements, the requirements engineering
team and stakeholders should avoid producing architectural constraints. Architectural con-
straints are provided as a category here to serve as an outlet for “requirements” that, upon
categorization, are considered to be constraints. Ideally, such anomalies would be identified
and corrected in the previous steps of the process.

Once the requirements are categorized, the requirements engineering team and stakeholders
will be able to prioritize them more efficiently.

Requirements Engineering Team Responsibilities:

1. Provide a baseline set of categories such as those in Table 4. The team may have to sug-
gest alternative categories, depending on the client project.

2. Facilitate the stakeholders’ categorization process.

Stakeholder Responsibilities:

Come to a consensus on the categorization for each requirement.

Exit Criteria:

The initial set of requirements has been organized into stakeholder-defined categories, and
any remaining architectural constraints are identified as such.

18 CMU/SEI-2005-TR-009

3.8 Step 8: Prioritize Requirements
In most cases, the client organization will be unable to implement all of the security require-
ments due to lack of time, resources, or developing changes in the goals of the project. Thus,
the purpose of this step in the SQUARE process is to prioritize the security requirements so
that the stakeholders can choose which requirements to implement and in what order. The
results of Step 4, the risk assessment, and Step 7, categorization, are crucial inputs to this
step.

The available prioritization methods are flexible and can be as simple as unstructured delib-
eration between the stakeholders. There are several structured prioritization techniques that
exist, such as Triage [Davis 03], Win-Win [Boehm 01], and the Analytical Hierarchy Process
(AHP); the latter has been reported to be quite effective [Karlsson 97, Saaty 80]. AHP is dis-
cussed in detail in Section 4.9 of this report. Ideally, the requirements engineering team
should also produce a cost-benefit analysis to aid the stakeholders’ decisions.

During prioritization, some of the requirements may be deemed to be entirely unfeasible to
implement. In such cases, the requirements engineering team has a choice: completely dis-
miss the requirement from further consideration, or document the requirement as “future
work” and remove it from the working set of project requirements. This decision should be
made after consulting with the stakeholders.

Requirements Engineering Team Responsibilities:

Facilitate the prioritization process with the stakeholders. If a structured prioritization process
is selected, teach the stakeholders how to perform the process.

Stakeholder Responsibilities:

Prioritize the security requirements using the risk assessment and categorization results as a
basis for decision making.

Exit Criteria:

All security requirements have been prioritized.

CMU/SEI-2005-TR-009 19

3.9 Step 9: Requirements Inspection
The last step of the SQUARE process, requirements inspection, is one of the most important
elements in creating a set of accurate and verifiable security requirements. Inspection can be
done at varying levels of formality, from Fagan Inspections to peer reviews [Fagan 86,
Wiegers 02]. The goal of any inspection method, however, is to find any defects in the re-
quirements such as ambiguities, inconsistencies, or mistaken assumptions.

Requirements Engineering Team Responsibilities:

Facilitate the inspection process by providing any orientation to the structured inspection
technique or informal inspection guides such as checklists.

Stakeholder Responsibilities:

Come to a consensus on the validity of each security requirement. Verify that each require-
ment is verifiable, in scope, within financial means, and feasible to implement. Requirements
that do not fit these criteria should have been identified in earlier stages of SQUARE, but the
stakeholders should use this opportunity as a last chance to remove any requirements from
the working set.

Joint Responsibilities:

Verify that each requirement is directly applicable to one or more of the security goals of the
project or in support of a higher level requirement.

Exit Criteria:

All security requirements have been verified both by the requirements engineering team and
the stakeholders. At this point the SQUARE process is complete, and the requirements engi-
neering team can produce the final security requirements document for the stakeholders.

20 CMU/SEI-2005-TR-009

CMU/SEI-2005-TR-009 21

4 Recent Results

The SQUARE Methodology has undergone several case studies conducted by graduate stu-
dents at Carnegie Mellon University [Chen 04, Gordon 05]. The goals of the case studies
were to experiment with each step of the SQUARE process, make recommendations, and
determine the feasibility of integrating SQUARE into standardized software development
practices. The case studies involved real-world clients that were developing large-scale IT
projects. The clients included an IT firm in Pittsburgh, Pennsylvania, a federal government
research institute, and a department of the federal government. In this section, the results
from the case studies are presented at each step of the process.

4.1 Step 1: Agree on Definitions
The process of establishing and agreeing on definitions was conducted rather straightfor-
wardly with the stakeholders in the case studies. The requirements engineering team initially
held a brainstorming session to create the preliminary list of terms involved with the security
industry. This list was primarily based on the team’s academic courses and prior work experi-
ence. Table 2 outlines some of these terms, and Section 0 lists the final set of terms along
with their agreed-on definitions.

After narrowing the potential definitions for each term down to two or three, along with a
“suggested” definition, the team sought input from the stakeholders by emailing a set of com-
piled definitions with appropriate referencing. The team asked the client to indicate which
definitions best fit their understanding, to modify or create new definitions, and to add any
terms that may have been omitted. The following figure shows a snapshot of part of the docu-
ment that was submitted:

22 CMU/SEI-2005-TR-009

Figure 1: Sample of Terms and Definitions Provided to Stakeholders for Review

The clients relied on the requirements engineering team’s expertise and knowledge for guid-
ance through the first step; stakeholders considered some terms to overlap and have ambigu-
ous or double meanings. For a large portion of the terms, the suggested definition was se-
lected by the stakeholders. After each term had a finalized definition, the requirements
engineering team finalized the dictionary of terms and shared it with the stakeholders.

CMU/SEI-2005-TR-009 23

4.2 Step 2: Identify Security Goals
The identification of security goals for each of the case studies was performed with varied
difficulty. Some of the case studies had identified business and security goals before the
SQUARE process even began. Others did not even have an explicit business goal for their
system. In this section of the report, the development of Acme Corporation’s security goals is
presented as an example.

To begin with, the student team asked the stakeholders of Acme to develop a business goal
that could be expressed in a single sentence. In this case, the stakeholders came up with “The
system allows the client to make informed decisions based on which assets are available.”
The team then asked the stakeholders to generate a few security goals for the product that
were in more or less clear support of this business goal. They created a simple hierarchy,
shown in Figure 2, that illustrated how the system’s business goal, security goals, security
requirements, and recommendations connected together. In this case, Acme developed one
business goal and three security goals, which are shown in Table 5. The corresponding secu-
rity requirements, which were generated in a later stage of the process, are presented in Sec-
tion 4.7.

Business

Goal

3 Safety and Security Goals

9 Security Requirements

Various Architectural and Policy Recommendations

Figure 2: Simple Hierarchy of Goals and Recommendations

Table 5: Acme Corporation’s Business and Security Goals
 Business Goal
 The system allows the client to make informed decisions based on which assets are available.

 Security Goals
G-01 Management shall exercise effective control over the system’s configuration and usage.
G-02 The confidentiality, accuracy, and integrity of the system’s data shall be maintained.
G-03 The system shall be available for use when needed.

24 CMU/SEI-2005-TR-009

4.3 Step 3: Develop Artifacts
Throughout the case studies, a series of artifacts were developed that served as important in-
puts to subsequent steps. The artifacts included system architecture diagrams, use/misuse
cases, attack trees, and assessment of essential assets and services.

4.3.1 System Architecture
The case studies revealed that some organizations, surprisingly, had no documentation of the
system architecture for their projects. In some cases, this was due to the dynamic nature of
the project: there was no “typical” setup of the system due to the fact that the end user more
or less defines that. Regardless, the establishment of system architecture diagrams proved
very useful throughout the later stages of SQUARE. It is possible that the requirements engi-
neering team will need to handle very detailed system architecture diagrams. The following
figure is an example of a simple system architecture diagram that was produced by one of the
case studies.

CMU/SEI-2005-TR-009 25

f

Figure 3: Example System Architecture Diagram

26 CMU/SEI-2005-TR-009

4.3.2 Attack Trees
Attack trees provide a formal, hierarchical way of describing the security threats to a system
based on the types of attacks that could happen and how they could be realized. Attack tree
diagrams represent attacks in a tree structure, where an attacker’s goal is listed as the root
node and tree leaves represent different ways to achieve that goal. In the following example,
a higher level attack tree is depicted, followed by a drill down of a more specific sub tree:

Attack Tree 01 – Higher Level View
Gain Access (View/Modify/Delete) to confidential company information

Unauthorized
Access

Exploit OS/Application
Vulnerability (AT-01-5)

Exploit Poor Account
Management (AT-01-4)

Authorized Access

System Admin Accesses
the System (AT-01-2)

High Level User Accesses
the System (AT-01-1)

Exploit Poor Password
Management (AT-01-3)

Figure 4: Example Attack Tree

CMU/SEI-2005-TR-009 27

In general, attack trees proved very useful to both the stakeholders and the requirements en-
gineering team in getting a better sense of the scope of threats that the system faces. Many
attack trees can be reused between iterations of SQUARE, thus saving the requirements engi-
neering team from developing entirely new attack trees for the same attacks.

4.3.3 Use Cases
Use cases are scenario-based artifacts that force stakeholders to answer “how is this done”
questions from a user’s perspective. By providing a context for operation, stakeholders and
the requirements engineering team can gain a deep understanding of the interactions of the
system components. Use case scenarios can be supplemented with use case diagrams, which
graphically display the component interactions of the system.

A detailed set of use cases were completed during the SQUARE case studies, which both the
requirements engineering team and stakeholders found to be very useful. A sample use case
and diagram are shown in Table 6 and Figure 5:

Table 6: Sample Use Case

Number UC-01

Use Case View Floor Plans

Description All level of users able to access the system will have the ability to view authorized sys-

tem information per the Access Control List such as floor plans, damaged areas, em-

ployee locator, etc.

Actors Low-Level User, Medium-Level User, High-Level User, or System Administrator

Assumptions System Admin has added viewing privileges to the Access Control List

System is available

Data entered is correct

Steps User will enter the URL associated with the system

User will receive a prompt to log in their user name and password.

The system authorizes and authenticates the user, then allowed into the system.

The system will allow them to access privileges as specified by the Access Control

List.

From here, the user will navigate to Operations/ Maintenance. The user can choose

appropriate property and then floor plans.

Variations Once logged in, the user can also click on the floor plans tab on the right hand side of

the system’s main page.

Non-Functional They will not have edit privileges; view-only privileges will be assigned. If the user

attempts to access unauthorized information, the system will display a pop-up window

stating that the user is not authorized to access this information.

28 CMU/SEI-2005-TR-009

Related Misuse Cases MC-01, MC-08, MC-11, MC-12, MC-13, MC-14, MC-15, MC-16, MC-17, MC-18,

MC-19, MC-20, MC-21,MC-22

Figure 5: Sample Use Case Diagram

4.3.4 Misuse Cases
For the initial case study, a detailed set of misuse cases were completed that encompassed the
most significant threats to the system. Sample misuse case and diagram traces are shown in
Table 7 and Figure 6.

Table 7: Example Misuse Case
Number: MC-01

Name: Unauthorized logon to server.

Scope: User Authorization Concerns

Priority: Low Medium x High

Deployment
Environment:

 x Intranet
 Extranet/Internet

CMU/SEI-2005-TR-009 29

Mis-actors: Unauthorized users

Access Right
Levels:

 x Low-Level System Users

 x Medium-Level System Users

 x High-Level System Users

 x Sys Admin

 x Other Network User

Point of Entry: Network x Host Application

Security Attributes
Affected:

 x Confidentiality

 x Integrity

 Availability

Description: An unauthorized user attempts to log on to the server and succeeds.

Sophistication: x Low

 Medium

 High

Pre-conditions: Access control lists are configured properly in a domain based network.

The unauthorized user has unintended logon rights to the Server.

The Server resides on an intranet network

Assumptions: The user does not have expressed permission to log on to the server.

Worst Case Threat: The unauthorized user logs onto the server machine. Her actions
are never caught.

Wanted Prevention
Guarantee:

Enforce machine access control list (ACL) security policy. (role-
based user authentication)

Wanted Detection Guar-
antee:

Logon attempts are logged and viewed by system administrators.

Post-conditions:

Wanted Recovery Guar-
antee:

Remove users’ unauthorized logon rights on the server.

Potential Mis-actor
Profiles:

Medium to highly skilled, potentially host administrators with medium criminal intent.

Stakeholders and
Threats:

Stakeholders’ clients: loss of data integrity and/or confidentiality.

Stakeholders: loss of reputation, loss of current and potential clients.

Related Use Cases: UC-01, UC-02, UC-03, UC-04, UC-05, UC-06, UC-07, UC-08

Related Threats: Elevation of privilege, disclosure of confidential data, unauthorized access to administration
interface, unauthorized access to configuration stores, retrieval of print text configuration
secrets

Architectural
Recommendation:

(AR-01) All shared drives on the network should enforce authentication policies.

(AR-03) Audit information is stored in a separate location from the servers and the worksta-
tions.

(AR-19) Implement role-based authentication control.

30 CMU/SEI-2005-TR-009

Policy
Recommendation:

(PR-03) Audit information must be reviewed routinely. (monthly)
(PR-04) Applications and operating systems must be patched routinely. (bi-monthly)
(PR-07) Enforce strong password policies.
(PR-13) Password protects any necessary shared documents.
(PR-16) Require users to change their passwords periodically. (monthly)
(PR-19) Set clear and defined user access controls for all users. (Low, Medium, High, System
Admins).
(PR-20) Perform routine system and data back-up. (weekly)
(PR-21) User activities must be periodically reviewed. (bimonthly)
(PR-23) Users should not have rights or access levels beyond those of which prescribed by his
or her job responsibilities.
(PR-24) Users should not reveal their account names and passwords in any given situations.

Microsoft IIS

*.asp, *.css, *.js, *.gif,
*.jpg files for website

EPP Documents *.dwg files for
AutoCAD

*.sdf files for
MapGuide

MapGuide

Windows Server

Sybase Central Microsoft Office

Microsoft Internet
Explorer

AMS User Workstation

AMS Developmental Workstation

MS Word MenuMaker
MS MapPoint

SDF Loader Program

Edit Plus

AutoCad w/
Archibus Overlay

Archibus-FM

MapGuide
Author

Development Tools

Logon Using Spoofed Identity

MC-01: Unauthorized Logon to Server

Figure 6: Example Misuse Diagram Trace

4.3.5 Reconciliation of Attack Trees and Misuse Cases
One of the goals of completing the attack trees was to ensure that the team had a complete set
of misuse cases. Table 8 shows a mapping between the attack trees and the misuse cases.
While the attack trees provide a general picture of potential attacks on the system, the misuse

CMU/SEI-2005-TR-009 31

cases drill down to the details of the interactions between system components in the event of
an attack.

Table 8: Mapping Between Misuse Cases and Attack Trees
Misuse Case Name Attack Tree

Unauthorized logon on the Windows 2003 server AT-01-04

Sys Admin gain access to system data AT-01-02

Users gain Sys Admin rights on the Windows 2003 server (Elevation of Privilege) AT-01-04

Sys Admin deletes critical system configurations on the Windows 2003 server AT-01-02

Sys Admin creates holes in the system configurations on the Windows 2003 server AT-01-02

User deletes critical data from the AMS system AT-01-03

Users falsify system data AT-01-03

Access system data through developmental machines AT-01-01,02

Access system data directly to/from database AT-01-01,02

Steal user credential information through developmental machines AT-01-01,02

Users see data that they should not see from their workstations AT-01-01,02,03

Malicious user uses replay attack in the same browser to assume the identity of an-
other user AT-01-05

Malicious users tap communications channel between workstations and servers AT-01-05

Malicious users gain access to sensitive data via saved Excel export files on victim’s
machine AT-01-05

Malicious users install malicious programs that can tap into Excel’s memory to steal
exported data AT-01-05

Input validation attack AT-01-05

Infect Windows 2003 server with virus/worms AT-01-05

User gains access to the system using spoofed identities AT-01-04

Information gathering/network eavesdropping AT-01-05

Brute force attacks: password cracking/credential theft AT-01-03

Denial of service AT-02-01

Execute malicious code AT-01-05

Mapping the attack trees to the misuse cases provided a useful sanity check for the work. Ad-
ditionally, the team found that it might have been useful to have two independent teams
working in parallel: one team working on attack trees and one team working on misuse cases.

32 CMU/SEI-2005-TR-009

4.4 Essential Assets and Services
In one of the case studies, the team noticed that another class of artifacts could be derived by
utilizing the Survivable Systems Analysis (SSA) method developed by the CERT® Coordina-
tion Center (CERT/CC) [CERT/CC 02]. SSA is a white-team exercise aimed at providing
survivable recommendations for a system. Some of the preliminary work for SSA is already
covered in the earlier stages of SQUARE. The team noticed that Step 2 of SSA, defining es-
sential service scenarios and components, would yield useful artifacts for inclusion in the
case study.

To begin identifying the essential elements of the system, the team first looked back to the
business goal of the client’s project. In this case, the goal was to “provide the ability to make
important decisions in emergency situations based upon current and available information.”
The students analyzed the use cases of the system and made a determination as to which ser-
vices, assets, and components were essential to fulfilling the business goal of Acme’s product.

4.4.1 Essential Services
The team analyzed the importance of each of the major system services, outlined in Table 9
by way of use cases, and made a determination as to each service’s essentiality.

Table 9: Use Cases and Initial Rankings of Essentiality
Use Case Service Status

UC-1 View floor plans Essential

UC-2 Enter damage assessment Essential

UC-3 Add/delete/edit Post-It notes Non-Essential

UC-4 Find specialized employees Important

UC-5 Create journal entry Non-Essential

UC-6 Install the base system software Non-Essential

UC-7 Create links to documents Non-Essential

UC-8 Archibus admin: add user and assign privileges Non-Essential

UC-9 View contact information for maintenance tasks Important

UC-10 Create open space report Essential

UC-11 View incident command Essential

The major business goal of this particular system was to allow decisions to be made both be-
fore an emergency takes place (i.e., in the planning phase), as well as during and after an
event. The most critical services needed to assist decision making are those that directly af-
fect viewing and altering event-specific information. Thus, viewing floor plans, entering
damage assessments, creating open space reports, and viewing incident commands would be
of highest priority. If an emergency or an attack were to occur, it would be crucial to preserve

® CERT and CERT Coordination Center are registered in the U.S. Patent and Trademark Office by

Carnegie Mellon University.

CMU/SEI-2005-TR-009 33

these system functions. Though not quite critical, the case study team flagged two services as
important: viewing contact information for maintenance tasks, and finding specialized em-
ployees.

The other major functions were all deemed to be non-essential. Though important to the func-
tioning and upkeep of the system, the ability to add this information can be recovered after an
attack. Many of the other functions deal with configuring the actual system or its user pro-
files, which can also be performed after an attack with little loss. Other functions involve
making useful but non-critical posts in the form of journal entries or Post-It notes. Still other
services support the viewing of non-critical data such as overseas contact information. While
all of this functionality is important to the long-term usability of the system, an attack on
these services does not threaten the ability of the system to aid decision making during an
emergency. If compromised, the information and services would need to be repaired before
the system could become fully usable and functional again. However, if the information in
the system configuration is kept current, the ability to add new assets and documents during
an emergency is secondary to viewing the current state of assets.

4.4.2 Essential Assets
There were two major assets in the system under study: (1) a server that housed the majority
of the system’s intellectual assets (i.e., the code that ran the system) and provided remote ac-
cess and (2) the information inside the central server, including Microsoft IIS configurations,
the Sybase database, and the MapGuide Database. These assets were found to be critical in
order to make informed decisions.

The user and developer workstations in the system were not considered. No important files or
intellectual assets critical to system’s mission are housed on these machines. Should they fail,
a spare machine could easily act as a replacement, provided the proper software is available.
This is not the case with the central server or the information that it contains. An attack on its
ability to function, or on its ability to deliver accurate information, will critically impact sur-
vivability.

34 CMU/SEI-2005-TR-009

4.5 Step 4: Perform Risk Assessment
In the case study analyses, some risk assessment methodologies were analyzed to determine
which were suitable for the elicitation of security requirements. The result of this analysis is
presented in this section as an example of techniques that are available, as well as their
strengths and weaknesses. These techniques are provided only as examples of previous work,
not as recommendations for inclusion in the SQUARE process.

4.5.1 Risk Assessment Techniques
Before the first SQUARE case study, the student team performed a literature review of the
available risk assessment techniques. Ideas came from faculty, course work completed by
team members at Carnegie Mellon, and Internet and library searches. The search was nar-
rowed down to a list of eight techniques:

• The Government Accountability Office’s (GAO) model [GAO 99]

• National Institute of Standards and Technology (NIST) model [Stoneburner 02]

• NSA’s INFOSEC Assessment Methodology [NSA 05]

• Butler’s Security Attribute Evaluation Method (SAEM) [Butler 02]

• CMU’s “V-RATE” method [Lipson 01]

• Yacov Haimes’s RFRM model [Haimes 04]

• CMU’s Survivable Systems Analysis method [CERT/CC 02]

• Martin Feather’s DDP model [Cornford 04]

After the initial research, the team completed a brief analysis to determine which models
would be likely candidates for further consideration. They found that attempts to quantify
risks on the basis of dollar value per attack were either too complicated or too involved for
the limited time given to the project, and were therefore rejected. The team concluded that
qualitative methods would add more value to the short case studies.

The following chart shows which criteria were used to evaluate the different methodologies
and how each was scored (using a scale of 1 - 4, with “1” being the highest mark, and “4”
being the lowest). Here is a brief explanation of each rating:

1. Very suitable for the requirement

2. Well suited for the requirement

3. Somewhat unsuitable for the requirement

4. Very unsuitable for the requirement

CMU/SEI-2005-TR-009 35

Table 10: Results of Risk Assessment Literature Review

 Suitable for

small

organizations

Suitable for

short time

frame

Additional data

collection

required

Suitable for

requirements Average

GAO 2 4 2 2 2.50

NIST 2 2 1 1 1.5
NSA/IAM 3 3 2 2 2.50

SAEM 4 4 4 4 4.00

V-RATE 3 4 4 4 3.75

Haimes 2 2 2 2 2.00
SSA 2 2 2 4 2.50

DDP/Feather 3 4 2 4 3.25

As Table 10 illustrates, the student team found that NIST’s SP 800-30, also called the “Risk
Management Guide for Information Technology Systems,” and Yacov Haimes’s “Risk Filter-
ing, Ranking, and Management Framework” (RFRM) held the most promise for inclusion in
the SQUARE process.

4.5.2 Risk Assessment Field Tests
The student teams proceeded to conduct an independent field test for each of the two selected
methodologies. This section outlines the results of their work.

The RFRM framework contains eight phases, some of which the team found to be out of
scope for a basic risk assessment. The team identified and tested two phases of RFRM that it
felt were strong candidates for inclusion in SQUARE: Phase III, Bicriteria Filtering and
Ranking, and Phase IV, Multicriteria Filtering and Ranking.

NIST’s model for risk assessment is broken into nine steps, each with an output that serves as
the input to the next step. Steps 1, 8, and 9 were omitted from the test; Step 1 was completed
previously in the SQUARE process, Step 8 deals with control recommendations, which are
handled separately in SQUARE, and Step 9, Documentation, was omitted because the team
combined these results with the RFRM results. Thus, the steps that were actually included
were

• Step 2: Threat Identification

• Step 3: Vulnerability Identification

• Step 4: Control Analysis

• Step 5: Likelihood Determination

• Step 6: Impact Analysis

• Step 7: Risk Determination

36 CMU/SEI-2005-TR-009

The results of the different approaches in these two models produced a list of security risks
that are on different levels of abstraction, and thus the two sets of filtered and ranked risk
scenarios cannot always be easily compared. In some cases, the results of the two models
were in conflict. In other cases, the models produced similar evaluations of risk scenarios.
The following chart summarizes a three-tier view of each model’s risk assessment results on
one of the clients’ systems:

Table 11: Risk Assessment Results
 NIST RFRM

Ti
er

 1

● Insider or terrorist alters or disables key archi-
tecture components.

● Insider or terrorist discloses proprietary infor-
mation.

● Terrorist gains unauthorized use of system re-
sources.

● Intruder executes malicious code to gain unau-
thorized access.

● High-level user is recruited for help.
● System administrator is recruited for help.
● High-level user abuses rights.
● System administrator abuses rights.

Ti
er

 2

● Insider installs malicious software (viruses,
Trojans, key loggers, etc.).

● Insider or natural forces physically destroy sys-
tem components.

● Insider steals system components.

● Intruder sniffs password.
● Hardware is damaged by natural disaster or

environment.
● Intruder socially engineers password.

Ti
er

 3

● Terrorist steals system components.
● Terrorist installs malicious software (viruses,

Trojans, key loggers, etc.).
● Terrorist physically destroys system compo-

nents.
● Insider or terrorist alters or corrupts data.

● Intruder uses abandoned, authenticated browser.
● Hardware fails.
● Intruders guesses, cracks password.

The team analyzed the combined results and was able to make the following conclusions:

• Insider threats pose the most important risk to the system.

• Because of weak controls, it is easy for an insider or a passerby to defeat authentication.

Both risk assessment models are concerned with hardware failure or destruction, but they
rank the importance differently. Hardware damage is a “Tier 2” risk for both models, but
NIST’s output considers deliberate destruction by an insider or terrorist a “Tier 1” risk. Some
of the risk scenarios from each model do not map directly to one another. NIST’s output fo-
cuses more on an attacker’s motives once inside the system (destroying and corrupting data,
disclosing proprietary information, etc.) whereas RFRM’s output deals more with the ability
of an attacker to break the frontline defenses of the system.

Every application of the SQUARE Methodology will be unique, and so too will the risk as-
sessment, as it needs to be tailored to meet the context of the system under analysis. What is
important is that the results from the risk assessment provide a meaningful way to categorize
the likelihood and impact of the major threats to the system.

CMU/SEI-2005-TR-009 37

4.6 Step 5: Select Elicitation Techniques
In order to investigate the applicability of existing requirements elicitation techniques to se-
curity requirements, one of the case study teams performed a literature review of the existing
techniques. Their results are presented in this section.

4.6.1 Literature Review
The team researched existing, structured elicitation techniques and evaluated them on the
following criteria:

• adaptability to security requirements
The ability of the technique to produce accurate requirements in diverse environ-
ments. For example, does the technique apply only to functional requirements?

• CASE tool
Does the technique have a software tool to complement the process?

• client acceptance
The likelihood that the client would agree to the elicitation technique in analyzing their
requirements. Is the process too invasive in a business environment?

• complexity
The degree of difficulty in understanding and properly executing the elicitation tech-
nique. Can the requirements engineers and stakeholders easily perform the technique cor-
rectly once they learn the process?

• graphical output
The ability of the elicitation technique to produce readily understandable visual artifacts
that appeal to the stakeholders.

• implementation duration
The length of time the requirements engineers and clients need to fully execute the elici-
tation technique.

• learning curve
The speed with which the requirements engineers and clients can fully comprehend the
elicitation technique.

• maturity
The time, exposure, and analysis the elicitation technique has experienced in its vetting
by the requirements engineering community.

• scalability
The ability of the elicitation technique to address the requirements of enterprise-level sys-
tems, in addition to smaller applications.

38 CMU/SEI-2005-TR-009

Once these criteria were defined, the student team produced the comparison matrix shown in
Table 12. The techniques they investigated were misuse cases [Jacobson 92], Soft Systems
Methodology (SSM) [Checkland 89], Quality Function Deployment (QFD) [QFD 05], Con-
trolled Requirements Expression (CORE) [Mullery 79], Issue Based Information Systems
(IBIS) [Kunz 70], Joint Application Development (JAD) [Wood 89], Feature-Oriented Do-
main Analysis (FODA) [Kang 90], Critical Discourse Analysis (CDA) [Schiffrin 94], and the
Accelerated Requirements Method (ARM) [Hubbard 99].

Table 12: Comparison of Elicitation Techniques
 Misuse

Cases
SSM QFD CORE IBIS JAD FODA CDA ARM

Adaptability 3 1 3 2 2 3 2 1 2
CASE Tool 1 2 1 1 3 2 1 1 1

Client Acceptance 2 2 2 2 3 2 1 3 3
Complexity 2 2 1 2 3 2 1 1 2

Graphical Output 2 2 1 1 2 1 2 2 3
Implementation

Duration
2 2 1 1 2 1 2 2 3

Learning Curve 3 1 2 1 3 2 1 1 1
Maturity 2 3 3 3 2 3 2 2 1

Scalability 1 3 3 3 2 3 2 1 2

Scale: 3 = very good, 2 = fair, 1 = poor.

Based on their comparison, the student team decided to pursue IBIS, JAD, and ARM for fur-
ther consideration. The result of their experience with each technique is presented in the fol-
lowing section.

CMU/SEI-2005-TR-009 39

4.7 Step 6: Elicit Security Requirements
The very first case study team did not use a structured elicitation technique to develop re-
quirements with the stakeholders. In essence, this team utilized the “unstructured interview”
method of requirements elicitation. Working with their client, Acme Corporation, they were
able to generate the set of requirements shown in Table 13.

Table 13: Requirements Generated for Acme Using the “Unstructured Interview”
Elicitation Technique

R-01 The system is required to have authentication measures in place at all gateways / entrance points.

R-02 The system is required to have a role-based access control mechanism that governs which system ele-
ments (data, functionality, etc.) users can view, modify, and/or interact with.

R-03 It is required that a continuity of operations plan (COOP) be in place to ensure system availability.

R-04 It is required that the AMS’s designated security personnel be able to audit the status and usage of sys-
tem resources (including security devices).

R-05 The AMS’s designated personnel are required to audit the status of system resources and their usage on
a regular basis.

R-06 It is required that the system’s network communications be protected from unauthorized information
gathering and/or eavesdropping by encryption and other reasonable techniques.

R-07 It is a requirement that both process-centric and logical means be in place to prevent the installation of
any software or device without prior authorization.

R-08 It is required that the AMS’s physical devices be protected against destruction, damage, theft, tamper-
ing, or surreptitious replacement (including but not limited to damage due to vandalism, sabotage, ter-
rorism, or acts of God/nature).

R-09 It is required that the AMS’s software components be designed utilizing software security best prac-
tices.

While this technique may have been sufficient, the other case study teams were interested in
finding which techniques were more capable of generating more accurate and complete re-
quirements. Another case study team used the results from their elicitation technique litera-
ture review and comparison to experiment with Issue Based Information Systems, Joint Ap-
plication Development, and the Accelerated Requirements Method. The results from their
work are presented in this section.

4.7.1 IBIS
Issue Based Information System (IBIS) is a technique developed in the 1970s whose goal is
to improve the definition, discussion, and resolution of “wicked” problems. That is, the meth-
odology works best with issues that are ill defined or hotly contended among stakeholders.

In IBIS, all problems are decomposed into issues, which are phrased in the form of an open
question to the stakeholders. For instance, “How should the system guard against insider
threats, if at all?” Each issue is then resolved by proposed positions, which are resolutions to
the issue put forth by the stakeholders. Every position has corresponding arguments, which
either support or oppose the position.

40 CMU/SEI-2005-TR-009

The requirements engineer is tasked with recording the articulation of issues, positions, and
arguments. The results are then presented in the form of an IBIS map. Figure 7 is an example
of such a map. The IBIS maps are analyzed by the requirements engineering team and client
to elicit the actual security requirements.

Figure 7: Example IBIS Map Generated with Compendium

To execute the IBIS technique with Acme Corporation, the team first formulated a set of
questions that would likely cover every aspect of security that could affect the system. They
tried to come up with any and all questions that would cover confidentiality, availability, and
integrity aspects of the system. Many of the questions were based on artifacts collected by the
previous SQUARE case study team.

After interviewing the stakeholders with these questions, the team created a set of IBIS maps
using the Compendium CASE tool, which is freely available from the Compendium Insti-
tute’s Web site.1

Using the IBIS maps, along with feedback from the stakeholders, the student team was able
to generate an initial set of security requirements for the system (see Table 14). Unfortu-
nately, IBIS did not provide a mechanism for translating the maps into requirements, so the
requirements were instead based on feedback from the stakeholders during the meetings as
well as the team’s own recommendations. The full hierarchy of goals to security requirements
for Acme can be found in Section 0.

1 http://www.compendiuminstitute.org/

CMU/SEI-2005-TR-009 41

Table 14: Security Requirements Generated with IBIS
R-01 The system shall implement authentication via a secure login screen.

R-02 The system shall identify and authenticate all the users who attempt to access the system.

R-03 The server-side components and files contained therein shall have their access restricted to authorized

personnel.

R-04 Fault tolerance shall be provided for the system’s essential services (IIS server, GIS server, and net-

work lines).

R-05 The system shall maintain data integrity via logged modifications and user access control.

R-06 An access control system shall be configured for information gathering for auditing purposes (access

log and application log).

R-07 The system shall recover from any single attack, failure, or accident in less than one minute.

R-08 A backup shall consist of a complete reproduction of every file on the server.

R-09 The system shall be able to provide full functionality from backup.

Given the team’s experience with IBIS in eliciting security requirements, they recommended
against using it in the future. While IBIS was extremely effective in documenting complex
discussions, it did not provide a structured means to generate security requirements based on
the resulting maps. They found that for many issues, the stakeholders considered only one
position. In turn, they were forced to create an arbitrary number of alternative positions, even
if the stakeholders had never considered them. By creating additional positions, the team’s
work may have benefited the client to some extent by offering new solutions, but they did not
feel that this course of action produces the most accurate and complete set of requirements.

4.7.2 ARM

The Accelerated Requirements Method (ARM) is a technique that has been designed to elicit,
categorize, and prioritize security requirements. Therefore, ARM stretches over Steps 6, 7,
and 8 in the SQUARE process. The case study team spent two weeks completing the ARM
process with a real-world client. Their experiences are presented in this section.

At the heart of ARM is the step known as “Brainstorm, Organize, and Name (BON).” In this
step, the requirements engineering team and stakeholders meet to develop the initial security
requirements. To start the session, the team asked the stakeholders the “focus question,”
which was crafted to tie to the previously established goals, objectives, and scope of the pro-
ject. In this case, they chose the following focus question:

“An important security requirement of the project is ______________”

Based on their professional experience and security knowledge, the participants were asked
to write down seven important security requirements on scratch paper within the time limit of
seven minutes.

42 CMU/SEI-2005-TR-009

Afterwards, the team asked each participant to write down their top three security require-
ments on cards within three minutes. The team then collected the cards and put the candidate
security requirements on the wall. The 24 candidate security requirements produced are listed
in Table 15.

Table 15: Initial Set of Security Requirements Produced with ARM
1 The ability to securely transmit data to re-

mote sources
13 Accountability (who did what, when,

how...)

2 The preservation of data integrity

14 Integrity (assurance in data protection and
validity)

3 The enforcement and usability of an access
control system

15 Indelibility (deletions and retractions are
noted/logged)

4 Security must be manageable and not hinder
business (where possible)

16 Integrity

5 There must be a strong/reliable authentica-
tion process

17 Access control

6 Information must be kept private from the
outside world

18 Confidentiality (encryption etc.)

7 Consistent APIs 19 Partitioned data store (public read only and
private read/write)

8 Data integrity

20 Selectively secure communication with
outside entities)

9 Authentication and access control 21 Represent and support segmented disclo-
sure

10 Strong authentication

22 Role-based restricted views/edit/action
access (e.g., summary report info, DC pub-
lic for particular people)

11 Reduce/eliminate risks of inappropriate use
of the system (as defined by policy)

23 Available 24/7 via remote authenticated
access and secure

12 Granular access to data for users (operators)
and customers

24 Key action audit (e.g., attribution of who
pressed the publish button and from where
and what changes were made)

The stakeholders then looked through the candidate security requirements generated during
the brainstorming session and observed whether any duplicate or inadequate security re-
quirements were produced. They reflected on what they thought were important and defended
their own opinions amongst each other. This step provided an opportunity for the stake-
holders to share their security concerns about the project. After repeated discussion and de-
bate, they deleted six candidate security requirements that they found to be either redundant
or inappropriate. The remaining requirements are listed in Table 16.

CMU/SEI-2005-TR-009 43

Table 16: Refined Set of Security Requirements Produced with ARM
3 The enforcement and usability of an access con-

trol system

15 Indelibility (deletions and retractions are

noted/logged)

4 Security must be manageable and not hinder

business (where possible)

18 Confidentiality (encryption etc.)

6 Information must be kept private from the out-

side world

19 Partitioned data store (public read only and pri-

vate read/write)

7 Consistent APIs 20 Selectively secure communication with outside

entities)

8 Data integrity 21 Represent and support segmented disclosure

10 Strong authentication 22 Role-based restricted views/edit/action access

(e.g., summary report info, DC public for par-

ticular people)

11 Reduce/eliminate risks of inappropriate behavior 23 Available 24/7 via remote authenticated access

and secure

12 Granular access to data for users (operators) and

customers

24 Key action audit (e.g., attribution of who
pressed the publish button and from where
and what changes were made)

13 Accountability (who did what, when, how...)

As mentioned previously, the remaining steps of ARM cover different steps of the SQUARE
process, and are thus described in later sections of this report.

4.7.3 JAD
Joint Application Development (JAD) is a very mature, structured technique that was de-
signed for the elicitation of functional requirements of a system. The case study team at-
tempted to utilize JAD with another client project. Their experience is presented here.

The centerpiece of JAD is a structured workshop known as the JAD Session. During the JAD
Session, all the stakeholders come together under the facilitation of a requirements engineer-
ing team to design a system or piece of software. The phase includes defining work flow, data
elements, screens, reports, and open issues. Because JAD is designed mainly for functional
requirements, there were some steps that the team found unsuitable for the elicitation of secu-
rity requirements: the work flow, data elements, screens, and reports steps. Therefore, the
team only performed the “open issues” step with the stakeholders.

The stakeholders initially provided sixteen open issues, but only eight of them were security
related. Based on collected artifacts, the student team generated eleven open issues:

1. What is your approach to configuration management?

2. What is your approach to defect and issue management?

3. What is the testing methodology to be used in the proposed project?

44 CMU/SEI-2005-TR-009

4. Do you maintain a separate environment for testing, or is testing performed on develop-
ment servers?

5. How should integrity of the site be protected?

6. How can unauthorized changes to the project affect the mission?

7. What are the best procedures to guarantee these actions are recorded?

8. Does the stipulation that all or most of the code be “open source” present any potential
security issues?

9. What do you perceive as the difference between clustering and active/active failover in
regards to availability?

10. How will you manage users and authorization?

11. Is 100% uptime necessary for the project?

The team conducted the interview and generated the security requirements based on the
stakeholders’ answers. The requirements are listed in Table 17.

Table 17: Security Requirements Generated with JAD
R-01 The system shall provide reliable information to the users who have legitimate access to the website.

R-02 The system shall ensure that only authenticated users can access the protected content of the website.

R-03 The system shall protect the privacy of external communications with users.

R-04 The system shall ensure the integrity of content that is provided to the users by using authentication,
authorization, and access control.

R-05 The system shall enable version control in both the contents of the website and the development soft-
ware.

R-06 The system shall enable auditing features that log all content modifications, workflow state transitions,
access failures, and authentication attempts.

R-07 The system shall set up clustering to make the service sustainable when disaster occurs.

By not defining the work flow, data elements, screens, and reports of the project, the team
found JAD to be very similar to the unstructured interview process. In addition, the JAD ses-
sion was designed for developing functional requirements, so the team had difficulty in find-
ing a way to discuss non-functional requirements such as security and thus did not recom-
mend JAD for future use in SQUARE.

CMU/SEI-2005-TR-009 45

4.8 Step 7: Categorize Requirements
Though none of the student case studies utilized a very structured categorization technique,
the Accelerated Requirements Method (ARM) provided a useful means of categorizing secu-
rity requirements. In this section, the ARM categorization methodology and results are pre-
sented.

After the initial requirements were generated by the stakeholders (see Section 4.7.2), the
stakeholders were instructed to group the selected security requirements and create a unique
name for each group. However, the participants instead engaged in a “spirited” discussion in
which they combined the steps of grouping, naming, and categorizing together. In the end,
the participants categorized security requirements into six groups, each containing one to four
security requirements. Table 18 lists the groups and the requirements contained in each.

Table 18: Grouped Security Requirements in ARM
Group A: Confidentiality

1. Information must be kept private from the

outside world
2. Selectively secure communication with out-

side entities

Group B: Access control

1. Role-based restricted views/edit/action ac-

cess (e.g., summary report info, public for
particular people)

2. The enforcement and usability of an access
control system

3. Granular access to data for users (operators)
and customers

4. Represent and support segmented disclosure

Group C: Data integrity

1. Partitioned data store (public read only and

private read/write)
2. Indelibility

Group D: Manageability

1. Accountability
2. Key action audit (e.g., attribution of who

pressed the publish button and from where
and what changes were made)

3. Auditing capabilities

Group E: Usability

1. Security must be manageable and not hinder
business (where possible)

2. Available 24/7 via remote authenticated ac-
cess

3. Consistent APIs
4. Reduce/eliminate risks of inadvertent be-

havior

Group F: Authentication

1. Strong authentication

Two requirements were deleted in this step, and a fourth requirement was added to Group E.

46 CMU/SEI-2005-TR-009

In the future, the requirements engineering team should enforce stricter time limits and at-
tempt to separate the categorization and prioritization processes during this stage.

4.9 Step 8: Prioritize Requirements
To prioritize security requirements, one of the case study teams utilized the Analytic Hierar-
chy Process (AHP) methodology and found it to be very successful both in client acceptance
and in its ability to handle security requirements. The technique is briefly presented in this
section.

AHP is a technique for decision making in situations where multiple objectives are present.
The method calculates the relative value and cost among security requirements. By using
AHP, the requirements engineer can also confirm the consistency of the stakeholders’ results,
which can prevent subjective judgment errors and increase the likelihood that the results are
more reliable.

AHP uses a pairwise comparison matrix with all requirements on both axes, as shown in
Table 19. Given an arbitrary entry in the matrix, a sub i j, located in the ith row and jth col-
umn, the value of a sub i j indicates how much higher (or lower) the value/cost for require-
ment i is than that for requirement j. In Table 19, the stakeholders only need to fill in the val-
ues in the lower left half of the matrix; the remaining values are the reciprocals. The
value/cost is measured on an integer scale from 1 to 9, with each number having the interpre-
tation shown in Table 20 and Table 21.

Table 19: Pairwise Comparison Matrix in AHP
 A B C D E F G H I J

1 SR-1 SR-2 SR-3 SR-4 SR-5 SR-6 SR-7 SR-8 SR-9

2 SR-1 1 8 1/5 3 1 2 2 3 1

3 SR-2 1/8 1 1/5 1/7 1/7 1/7 1/7 1/9 1/9

4 SR-3 5 5 1 1 2 1 3 1 1

5 SR-4 1/3 7 1 1 1/2 1/2 3 1/2 1

6 SR-5 1 7 1/2 2 1 3 3 1 1/3

7 SR-6 1/2 7 1 2 1/3 1 1/3 1 1

8 SR-7 1/2 7 1/3 1/3 1/3 3 1 3 2

9 SR-8 1/3 9 1 2 1 1 1/3 1 1/6

10 SR-9 1 9 1 1 3 1 1/2 6 1

Table 20: Interpretation of Values in Matrix
Intensity of Value Interpretation of Value

1 Requirements i and j are of equal value.

3 Requirement i has slightly higher value than j.

5 Requirement i has strongly higher value than j.

CMU/SEI-2005-TR-009 47

Intensity of Value Interpretation of Value
7 Requirement i has very strongly higher value than j.

9 Requirement i has absolutely higher value than j.

2, 4, 6, 8 These are intermediate scales between two adjacent judgments.

Reciprocals If requirement i has lower value than j.

Table 21: Interpretation of Costs in Matrix
Intensity of Value Interpretation of Cost

1 Requirements i and j are of equal cost.

3 Requirement i has slightly higher cost than j.

5 Requirement i has strongly higher cost than j.

7 Requirement i has very strongly higher cost than j.

9 Requirement i has absolutely higher cost than j.

2, 4, 6, 8 These are intermediate scales between two adjacent judgments.

Reciprocals If requirement i has lower cost than j.

After completing the consistency check in AHP, which mathematically estimates the usability
of the results, the team was able to produce the cost/value ratio for each requirement. They
then created three categories of requirements: high, medium, and low. The results were plot-
ted on a priority graph, which is presented in Figure 8.

Cost-Value Diagram

SR-1

SR-2 SR-3

SR-4

SR-5

SR-7
SR-8

SR-6

SR-9

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00%

Cost

V
al

ue

SR-1
SR-2
SR-3
SR-4
SR-5
SR-6
SR-7
SR-8
SR-9

Medium
High

Low

Figure 8: Cost/Value Diagram of Requirements

48 CMU/SEI-2005-TR-009

The stakeholders found AHP valuable not only for its ability to quickly prioritize the security
requirements but also because of the internal discussion that is stimulated.

CMU/SEI-2005-TR-009 49

4.10 Step 9: Inspect Requirements
The case study teams experimented with different inspection techniques and had different
levels of success with each. None of the inspection techniques that were used were suffi-
ciently effective in identifying defects in the security requirements, and the teams do not rec-
ommend their use in the future. Instead, the teams recommend that future iterations of
SQUARE experiment with the Fagan inspection technique, which is a highly structured and
proven technique for requirements inspection. For reference purposes, the inspection tech-
niques and their results are presented in this section.

The first case study team utilized a peer review log to find defects in their security require-
ments. The methodology assigns each team member inspection responsibilities and develops
a log that ranks problems according to their severity. The peer review log is a spreadsheet that
provides serial number, date, origin, defect type, defect description, defect severity, owner,
reviewer, and status of inspection. The following is a blank snapshot of the log:

Table 22: Peer Review Log Format
SNO DATE ORIGIN DEFECT TYPE DESCRIPTION SEVERITY OWNER REVIEWER STATUS

The following is a description of the elements that make up the peer review log:

• SNO
The inspection report begins with this serial number of the inspection log. The format
used for serial numbers is SNO-xx.

• Date
The format used for dates is mm/dd/yyyy.

• Origin
The section where the defect occurs. The format used for this field is Doc-xx, Page xx.
For instance, “Doc-02: Security Requirements Document, Page 12.”

• Defect Type
One of the following: missing content, unclear/ambiguous, lack of understanding of re-
quirements, oversight, repeated occurrence of an error, undefined acronyms, or abbrevia-
tions.

• Description
A few sentences illustrating the problem.

• Severity

1. High: Could jeopardize the project success.

50 CMU/SEI-2005-TR-009

2. Moderate: Problem that requires correction before proceeding.

3. Low: Cosmetic or style problem.

• Owner
The person identified as the original author.

• Reviewer
The person identified as the inspector.

• Status
Either: Open (1) or Closed (0).

The following case study teams used a checklist method of requirements inspection. The idea
behind this technique is to provide the stakeholders with a set of questions that encourage
them to review the security requirements and determine the quality of each. Table 23 shows
the checklist that the team provided.

Table 23: Inspection Checklist
Organization:

• Are all requirements written at a consistent and appropriate level of detail?
• Is the implementation priority of each requirement included?
• Do the requirements include all of the known customer and system needs?
• Is any necessary information missing from a requirement?
• Are there areas not addressed in the document that need to be?
• Is the document well organized?
• Are there requirements that contain an unnecessary level of design detail?

Correctness:
• Do any requirements conflict with or duplicate other requirements?
• Is each requirement written in clear, concise, unambiguous language?
• Is each requirement verifiable by testing, demonstration, review, or analysis?
• Is each requirement in scope for the project?
• Is each requirement free from content and grammatical errors?
• Can all of the requirements be implemented within known constraints?

Traceability:
• Is each requirement uniquely and correctly identified?

Special Issues:
• Are all requirements actually requirements, not design or implementation solutions?

Unfortunately, the stakeholders found the checklist to be overwhelming and time consuming.
In addition, there is no guarantee that the questions on the checklist will identify all defects in
the security requirements. Because of these problems with the method, the team does not rec-
ommend that checklists should be used for requirements inspection.

CMU/SEI-2005-TR-009 51

5 Future Research Plans

NSS’s final goal for SQUARE is full industry adoption and integration, but currently it is still
being improved. In addition to performing new case studies with the process, NSS is cur-
rently developing a Web-based CASE tool to support the methodology. The tool will assist
the requirements engineering team in each step of the SQUARE process by automating docu-
mentation and streamlining communication with stakeholders. A prototype of this tool will be
available in the near future.

A recommendation from the latest case study is to combine the elicitation and categorization
strengths of ARM with the prioritization efficiency of AHP. NSS would like to experiment
with the combination of these techniques on a new client organization.

Also, there are two steps of the SQUARE process that NSS has immediate plans to investi-
gate further. The first is the existence and applicability of structured categorization methods
that could work when applied to security requirements. In the previous case studies, categori-
zation was done in an unstructured manner with the stakeholders. Secondly, NSS would like
to utilize the Fagan inspection process in Step 9 of the SQUARE process. Both of these steps
will undergo experimentation during the next SQUARE case study.

52 CMU/SEI-2005-TR-009

CMU/SEI-2005-TR-009 53

Appendix

Definitions from Initial Case Study

Table 24: Terms and Definitions from Initial Case Study

access control Access control ensures that resources are only granted to those users who are entitled
to them.

access control list

A table that tells a computer operating system which access rights or explicit denials
each user has to a particular system object, such as a file directory or individual file
[TechTarget 05].

antivirus software A program that searches hard drives and floppy disks for any known or potential
viruses [TechTarget 05].

artifact The remnants of an intruder attack or incident activity. These could be software used
by intruder(s), a collection of tools, malicious code, logs, files, output from tools, or
the status of a system after an attack or intrusion [West-Brown 03].

asset A critical valuable that a company owns and wants to secure.

attack An action conducted by an adversary, the attacker, on a potential victim. A set of
events that an observer believes to have information assurance consequences on
some entity, the target of the attack [Ellison 03].

auditing The information gathering and analysis of assets to ensure such things as policy com-
pliance and security from vulnerabilities [SANS 05].

authentication The process of determining whether someone or something is, in fact, who or what it
is declared to be [TechTarget 05].

availability The property of a system or a system resource being accessible and usable upon de-
mand by an authorized system entity, according to performance specifications for the
system; i.e., a system is available if it provides services according to the system de-
sign whenever users request them [Allen 99].

back door An element in a system that allows access by bypassing access controls [Howard 97].

breach Any intentional event in which an intruder gains access that compromises the confi-
dentiality, integrity, or availability of computers, networks, or the data residing on
them [CERT/CC 05].

brute force A cryptanalysis technique or other kind of attack method involving an exhaustive
procedure that tries all possibilities, one by one [SANS 05].

buffer overflow A buffer overflow occurs when a program or process tries to store more data in a
buffer (temporary data storage area) than it was intended to hold. Since buffers are
created to contain a finite amount of data, the extra information— which has to go
somewhere—can overflow into adjacent buffers, corrupting or overwriting the valid
data held in them [SANS 05].

cache cramming The technique of tricking a browser to run cached Java code from the local disk in-
stead of the Internet zone, so it runs with less restrictive permissions [SANS 05].

cache poisoning Malicious or misleading data from a remote name server is saved [cached] by another
name server. Typically used with Domain Name System (DNS) cache poisoning
attacks [SANS 05].

54 CMU/SEI-2005-TR-009

confidentiality The property that information is not made available or disclosed to unauthorized
individuals, entities, or processes (i.e., to any unauthorized system entity) [SANS
05].

control An action, device, procedure, or technique that removes or reduces a vulnerability

corruption A threat action that undesirably alters system operation by adversely modifying sys-
tem functions or data [SANS 05].

cracker Someone who breaks into someone else’s computer system, often on a network; by-
passes passwords or licenses in computer programs; or in other ways intentionally
breaches computer security [TechTarget 05].

denial-of-service (DoS)

attack

A form of attacking another computer or company by sending millions of requests
every second, causing the network to slow down, cause errors, or shut down.

disaster recovery plan A disaster recovery plan (DRP)—sometimes referred to as a business continuity plan
(BCP) or business process contingency plan (BPCP)—describes how an organization
is to deal with potential disasters [TechTarget 05].

disclosure The dissemination of information to anyone who is not authorized to access that in-
formation [Alberts 03].

disgruntled employee A person in an organization who deliberately abuses or misuses computer systems
and their information [Alberts 03].

downtime The amount of time a system is down in a given period. This will include crashes and
system problems as well as scheduled maintenance work [RUsecure 05].

disruption A circumstance or event that interrupts or prevents the correct operation of system
services and functions [Alberts 03].

encryption Cryptographic transformation of data (called “plaintext”) into a form (called “cipher
text”) that conceals the data’s original meaning to prevent it from being known or
used [SANS 05].

espionage The act or practice of spying or of using spies to obtain secret information about
another government or a business competitor [Dictionary.com 05].

essential services Services to users of a system that must be provided even in the presence of intrusion,
failure, or accident [Ellison 97].

exposure Same as disclosure.

fabrication Same as masquerade.

fault line attacks Fault line attacks use weaknesses between interfaces of systems to exploit gaps in
coverage [SANS 05].

fault tolerance Describes a computer system or component designed so that, in the event that a com-
ponent fails, a backup component or procedure can immediately take its place with
no loss of service. Fault tolerance can be provided with software, or embedded in
hardware, or provided by some combination [TechTarget 05].

firewall A system designed to prevent unauthorized access to or from a private network. Fire-
walls can be implemented in both hardware and software, or a combination of both
[Webopedia 05].

hacker An individual who breaks into computers primarily for the challenge and status of
obtaining access [Howard 97].

honey pot Programs that simulate one or more network services designated on a computer’s
ports. An attacker assumes that vulnerable services that can be used to break into the
machine are being run. A honey pot can be used to log access attempts to those ports,
including the attacker’s keystrokes. This can provide advanced warning of a more
concerted attack [SANS 05].

HTTP header ma-

nipulation

HTTP requests and responses send information in the HTTP headers. HTTP headers
are a series of lines containing a name/value pair used to pass information such as the
host, referrer, user agent, etc. HTTP headers can be manipulated to cause SQL injec-
tion or cross-site scripting errors.

CMU/SEI-2005-TR-009 55

impact The negative effect of an attack on a victim system by an attacker [Allen 99].

incident An adverse network event in an information system or network or the threat of the
occurrence of such an event [SANS 05].

incident handling An action plan for dealing with intrusions, cyber theft, denial of service, fire, floods,
and other security-related events [SANS 05].

insider threat The threat that authorized personnel of an organization will act counter to the organi-
zation’s security and interest, especially for the purposes of sabotage and espionage
[NIPC 02].

integrity For systems, the quality that a system has when it can perform its intended function
in a unimpaired manner, free from deliberate or inadvertent unauthorized manipula-
tion. For data, the property that data has not been changed, destroyed, or lost in an
unauthorized or accidental manner [Allen 99].

interception Access to an asset gained by an unauthorized party [Pfleeger 03].

interruption An event that causes an asset of a system to be destroyed or become unavailable or
unusable [Howard 97].

intrusion An attack on a network for the purpose of gaining access to or destroying privileged
information or disrupting services to legitimate users [Ellison 03].

intrusion detection

system

A combination of hardware and software that monitors and collects system and net-
work information and analyzes it to determine if an attack or an intrusion has oc-
curred. Some ID systems can automatically respond to an intrusion [Allen
99].

intrusion prevention

system

A system used to actively drop packets of data or disconnect connections that contain
unauthorized data. Intrusion prevention technology is also commonly an extension of
intrusion detection technology [Wiki 05].

liability The responsibility of someone for damage or loss [West-Brown 03].

luring attack A type of elevation of privilege attack where the attacker “lures” a more highly privi-
leged component to do something on his or her behalf. The most straightforward
technique is to convince the target to run the attacker’s code in a more privileged
security context [Brown 05].

malware Programming or files that are developed for the purpose of doing harm. Thus, mal-
ware includes computer viruses, worms, and Trojan horses [Webopedia 05].

man-in-the-middle

attack

An attack in which the attacker is able to read, and possibly modify at will, messages
between two parties without letting either party know that they have been attacked.
The attacker must be able to observe and intercept messages going between the two
victims [Farlex 05].

masquerade Aims to fool other machines on the network into accepting the imposter as an origi-
nal, either to lure the other machines into sending it data or to allow it to alter data
[Howard 98].

modification Situation in which an unauthorized party not only gains access to, but tampers with
an asset [Howard 97].

non-essential services Services to users of a system that can be temporarily suspended to permit delivery of
essential services while the system is dealing with intrusions and compromises [Elli-
son 97].

non-repudiation The goal of non-repudiation is to prove that a message has been sent and received
[SSI 05].

patch A small update released by a software manufacturer to fix bugs in an existing pro-
gram [SANS 05].

patching The process of updating software to a new version that fixes bugs in a previous ver-
sion [SANS 05].

penetration Intrusion, trespassing, or unauthorized entry into a system [RUsecure 05].

56 CMU/SEI-2005-TR-009

penetration testing The execution of a testing plan, the sole purpose of which is to attempt to hack into a
system using known tools and techniques [RUsecure 05].

physical security Security measures taken to protect systems, buildings, and related supporting infra-
structure against threats associated with their physical environment [Guttman 95].

port scanning The act of systematically scanning a computer’s ports [Webopedia 05].

privacy The quality or condition of being secluded from the presence or view of others [Dic-
tionary.com 05].

procedure The implementation of a policy in the forms of workflows, orders, or mechanisms
[West-Brown 03].

recognition The capability of a system to recognize attacks or the probing that precedes attacks
[Ellison 03].

recovery A system’s ability to restore services after an intrusion has occurred. Recovery also
contributes to a system’s ability to maintain essential services during intrusion [Elli-
son 03].

replay attack The interception of communications, such as an authentication communication, and
subsequent impersonation of the sender by retransmitting the intercepted communi-
cation [FFIEC 04].

resilience The ability of a computer or system to both withstand a range of load fluctuations
and also remain stable under continuous and/or adverse conditions [RUsecure 05].

resistance Capability of a system to resist attacks [Ellison 03].

risk The product of the level of threat with the level of vulnerability. It establishes the
likelihood of a successful attack [SANS 05].

risk assessment The process by which risks are identified and the impact of those risks determined
[SANS 05].

security policy A policy that addresses security issues [West-Brown 03].

script kiddies The more immature but unfortunately often just as dangerous exploiter of security
lapses on the Internet. The typical script kiddy uses existing and frequently well
known and easy-to-find techniques and programs or scripts to search for and exploit
weaknesses in other computers on the Internet—often randomly and with little regard
or perhaps even understanding of the potentially harmful consequences [TechTarget
05].

spoof The term is used to describe a variety of ways in which hardware and software can be
fooled. IP spoofing, for example, involves trickery that makes a message appear as if
it came from an authorized IP address [Webopedia 04].

SQL injection A type of input validation attack specific to database-driven applications where SQL
code is inserted into application queries to manipulate the database [SANS 05].

stakeholder Anyone who is a direct user, indirect user, manager of users, senior manager, opera-
tions staff member, support (help desk) staff member, developer working on other
systems that integrate or interact with the one under development, or maintenance
professionals potentially affected by the development and/or deployment of a soft-
ware project [Ambler 04].

stealthing A term that refers to approaches used by malicious code to conceal its presence on an
infected system [SANS 05].

survivability The capability of a system to complete its mission in a timely manner, even if sig-
nificant portions are compromised by attack or accident. The system should provide
essential services in the presence of successful intrusion and recover compromised
services in a timely manner after intrusion occurs [Mead 03].

target The object of an attack, especially host, computer, network, system, site, person,
organization, nation, company, government, or other group [Allen 99].

threat A potential for violation of security, which exists when there is a circumstance, capa-
bility, action, or event that could breach security and cause harm [SANS 05].

CMU/SEI-2005-TR-009 57

threat assessment The identification of the types of threats that an organization might be exposed to
[SANS 05].

threat model Used to describe a given threat and the harm it could to do a system if it has a vulner-
ability [SANS 05].

toolkits A collection of tools with related purposes or functions, e.g., antivirus toolkit, disk
toolkit [RUsecure 05].

Trojan A program in which malicious or harmful code is contained inside apparently harm-
less programming or data in such a way that it can get control and do its chosen form
of damage, such as ruining the file allocation table on a hard disk [TechTarget 05].

trust Determines which permissions other systems or users have and what actions they can
perform on remote machines [SANS 05].

uptime Same as availability.

victim That which is the target of an attack. An entity may be a victim of either a successful
or unsuccessful attack [SANS 05].

virus A hidden, self-replicating section of computer software, usually malicious logic, that
propagates by infecting—i.e., inserting a copy of itself into and becoming part of—
another program. A virus cannot run by itself; it requires that its host program be run
to make it active [SANS 05].

vulnerability A condition or weakness in (or absence of) security procedures, technical controls,
physical controls, or other controls that could be exploited by a threat [Guttman 95].

worm A self-replicating virus that does not alter files but resides in active memory and
duplicates itself. Worms use parts of an operating system that are automatic and usu-
ally invisible to the user. It is common for worms to be noticed only when their un-
controlled replication consumes system resources, slowing or halting other tasks
[TechTarget 05].

58 CMU/SEI-2005-TR-009

Goal Hierarchy for Acme Corporation

Table 25: Goal Hierarchy for Acme Corporation
 Business Goal
 The system allows the client to make informed decisions based on which assets are

available.

 Security Goals
G-01 Management shall exercise effective control over the system’s configuration and

usage.

G-02 The confidentiality, accuracy, and integrity of the system’s data shall be maintained.
G-03 The system shall be available for use when needed.

 Security Requirements Refers to
goal(s):

R-01 The system is required to have strong authentication measures in place at all system
gateways/entrance points.

G-01, 02

R-02 The system is required to have sufficient process-centric and logical means to govern
which system elements (data, functionality, etc.) users can view, modify, and/or in-
teract with.

G-01, 02

R-03 It is required that a continuity of operations plan (COOP) be in place to ensure ap-
propriate system availability.

G-03

R-04 It is required that the system’s designated security personnel be able to audit the
status and usage of system resources (including security devices).

G-01

R-05 The system’s designated personnel are required to audit the status of system re-
sources and their usage on a regular basis.

G-01

R-06 It is required that the system’s network communications be protected from unauthor-
ized information gathering and/or eavesdropping by encryption and other reasonable
techniques.

G-01, 02

R-07 It is a requirement that both process-centric and logical means be in place to prevent
the installation of any software or device without prior authorization.

G-01

R-08 It is required that the system’s physical devices be protected against destruction,
damage, theft, tampering or surreptitious replacement (including but not limited to
damage due to vandalism, sabotage, terrorism, or acts of God/nature).

G-03

R-09 It is required that the system’s software components be designed utilizing software
security best practices.

G-02, 03

CMU/SEI-2005-TR-009 59

References

URLs are valid as of the publication date of this document.

[Alberts 03] Alberts, Christopher & Dorofee, Audrey. OCTAVE Threat Profiles.
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2003.
http://www.cert.org/archive/pdf/OCTAVEthreatProfiles.pdf.

[Allen 99] Allen, J.; Christie, A.; Fithen, W.; McHugh, J.; Pickel, J.; & Stoner,
E. State of the Practice of Intrusion Detection Technologies
(CMU/SEI-99-TR-028, ADA375846). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1999.
http://www.sei.cmu.edu/publications/documents/99.reports/99tr028/
99tr028abstract.html.

[Ambler 04] Ambler, Scott W. Active Stakeholder Participation. Evergreen,
Colorado, Ronin International, Inc., 2004.
http://www.agilemodeling.com/essays/activeStakeholderParticipatio
n.htm.

[Boehm 88] Boehm, B. W. & Papaccio, P. N. “Understanding and Controlling
Software Costs.” IEEE Transactions on Software Engineering SE-4,
10 (October 1988): 1462-77.

[Boehm 01] Boehm, Barry; Grünbacher, Paul; & Briggs, Robert O. “Developing
Groupware for Requirements Negotiation: Lessons Learned.” IEEE
Software 18, 2 (May/June 2001).

[Brown 05] Brown, Keith. “Item 7: What is a Luring Attack?” The .NET Devel-
oper’s Guide to Windows Security. Boston, MA: Addison-Wesley,
2005.

[Butler 02] Butler, Shawn. “Security Attribute Evaluation Method: A Cost-
Benefit Approach,” 232-240. Proceedings of the 24th International
Conference on Software Engineering. Orlando, FL, May 19-25,
2002. New York NY: ACM Press, 2002.

[CERT/CC 02] CERT Coordination Center. Survivable Systems Analysis Method.
CERT Coordination Center, Software Engineering Institute, Carne-
gie Mellon University, 2002.
http://www.cert.org/archive/html/analysis-method.html.

60 CMU/SEI-2005-TR-009

[CERT/CC 05] CERT Coordination Center. Responding to Intrusions.
http://www.cert.org/security-improvement/modules/m06.html
(2005).

[Checkland 89] Checkland, Peter. Soft Systems Methodology. Rational Analysis for
a Problematic World. New York, NY: John Wiley & Sons, 1989.

[Chen 04] Chen, P.; Dean, M.; Ojoko-Adams, D.; Osman, H.; Lopez, L.; &
Xie, N. Systems Quality Requirements Engineering (SQUARE)
Methodology: Case Study on Asset Management System
(CMU/SEI-2004-SR-015). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports/04sr015
.html.

[Cornford 04] Cornford, Steven L.; Feather, Martin S.; & Hicks, Kenneth A. DDP
– A Tool for Life-Cycle Risk Management.
http://ddptool.jpl.nasa.gov/docs/f344d-slc.pdf (2004).

[Davis 03] Davis, Alan M. “The Art of Requirements Triage.” Computer 36, 3
(March 2003): 42-49.

[Dictionary.com 05] Dictionary.com. http://dictionary.reference.com/ (2005).

[Ellison 97] Ellison, B.; Fisher, D. A.; Linger, R. C.; Lipson, H. F.; Longstaff, T.;
& Mead, N. R. Survivable Network Systems: An Emerging Disci-
pline (CMU/SEI-97-TR-013, ADA341963). Pittsburgh, PA: Soft-
ware Engineering Institute, Carnegie Mellon University, 1997.
http://www.sei.cmu.edu/publications/documents/97.reports/97tr013
/97tr013abstract.html.

[Ellison 03] Ellison, R. & Moore, A. Trustworthy Refinement Through Intru-
sion-Aware Design (CMU/SEI-2003-TR-002, ADA414865). Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon Uni-
versity, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports
/03tr002.html.

[Fagan 86] Fagan, Michael E. “Advances in Software Inspections.” IEEE
Transactions on Software Engineering SE-12, 7 (July 1986).

[Farlex 05] Farlex, Inc. “Man in the middle attack.” TheFreeDictionary.com.
http://encyclopedia.thefreedictionary.com/man%20in%20the%20mi
ddle%20attack (2005).

CMU/SEI-2005-TR-009 61

[FFIEC 04] FFIEC. “Booklet: Information Security Section: Appendix B: Glos-
sary.” Washington, D.C., Federal Financial Institutions Examination
Council, 2004.
http://www.ffiec.gov/ffiecinfobase/booklets/information_security/0
8_glossary.html.

[GAO 99] General Accounting Office. “Information Security Risk Assess-
ment: Practices of Leading Organizations, A Supplement to GAO’s
May 1998 Executive Guide on Information Security Management.”
Washington, DC: U.S. General Accounting Office, 1999.

[Gordon 05] Gordon, D.; Stehney, T.; Wattas, N.; & Yu, E. Quality Requirements
Engineering (SQUARE): Case Study on Asset Management System,
Phase II (CMU/SEI-2005-SR-005). Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports/05sr005
.html.

[Guttman 95] Guttman, Barbara; Roback, Edward. An Introduction to Computer
Security. Gaithersburg, MD: U.S. Department of Commerce, Tech-
nology Administration, National Institute of Standards and Tech-
nology, 1995. http://csrc.nist.gov/publications/nistpubs/800-
12/handbook.pdf.

[Haimes 04] Haimes, Yacov Y. Risk Modeling, Assessment, and Management,
2nd ed. Hoboken, NJ: John Wiley and Sons, Inc., 2004.

[Howard 97] Howard, John D. An Analysis of Security Incidents on the Internet
1989-1995. Pittsburgh, Pa., Carnegie Mellon University, Software
Engineering Institute, 1997.
http://www.cert.org/research/JHThesis/Start.html.

[Howard 98] Howard, John; Longstaff, Thomas. A Common Language for Com-
puter Security Incidents. Albuquerque, N.M., Sandia National La-
boratories, 1998.
http://www.cert.org/research/taxonomy_988667.pdf.

[Hubbard 99] Hubbard, R. “Design, Implementation, and Evaluation of a Process
to Structure the Collection of Software Project Requirements.” PhD
diss., Colorado Technical University, 1999.

[IEEE 90] IEEE. IEEE Standard Glossary of Software Engineering Terminol-
ogy (IEEE Std 610.12-1990). Los Alamitos, CA: IEEE Computer
Society Press, 1990.

[IEEE 05] IEEE. Guide to the Software Engineering Body of Knowledge.
http://www.swebok.org/ (2005).

62 CMU/SEI-2005-TR-009

[Jacobson 92] Jacobson, Ivar. Object-Oriented Software Engineering: A Use Case
Driven Approach. Boston, MA: Addison-Wesley, 1992.

[Jones 86] Jones, Capers, ed. Tutorial: Programming Productivity: Issues for
the Eighties, 2nd Ed. Los Angeles, CA: IEEE Computer Society
Press, 1986.

[Kang 90] Kang, K.; Cohen, S.; Hess, J.; Novak, W.; & Peterson, A. Feature-
Oriented Domain Analysis (FODA) Feasibility Study (CMU/SEI-
90-TR-021, ADA235785). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1990.
http://www.sei.cmu.edu/publications/documents/90.reports/90.tr.02
1.html.

[Karlsson 97] Karlsson, J. & Ryan K. “A Cost-Value Approach for Prioritizing
Requirements.” IEEE Software 14, 5 (Sept./Oct. 1997): 67-74.

[Kunz 70] Kunz, Werner & Rittel, Horst. “Issues as Elements of Information
Systems.” http://www-iurd.ced.berkeley.edu/pub/WP-131.pdf
(1970).

[Lipson 01] Lipson, Howard F.; Mead, Nancy R.; & Moore, Andrew P. A Risk-
Management Approach to the Design of Survivable COTS-Based
Systems. http://www.cert.org/research/isw/isw2001/papers/Lipson-
29-08-a.pdf (2001).

[McConnell 01] McConnell, Steve. “From the Editor - An Ounce of Prevention.”
IEEE Software 18, 3 (May 2001): 5-7.

[Mead 03] Mead, Nancy. Requirements Engineering for Survivable Systems
(CMU/SEI-2003-TN-013, ADA418410). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports
/03tn013.html.

[Moffett 04] Moffett, Jonathan D.; Haley, Charles B.; & Nuseibeh, Bashar. Core
Security Requirements Artefacts (Technical Report 2004/23). Mil-
ton Keynes, UK: Department of Computing, The Open University,
June 2004.

[Mullery 79] Mullery, G. P. “CORE: A Method for Controlled Requirements
Specification.” Proceedings of the 4th International Conference on
Software Engineering. Los Alamitos, CA: IEEE Computer Society
Press, 1979.

CMU/SEI-2005-TR-009 63

[NIPC 02] NIPC Special Technologies and Applications Unit (STAU). “Insid-
ers and Information Technology.” Washington, D.C.: Department of
Homeland Security, Information Analysis Infrastructure Protection,
2002. http://www.hpcc-usa.org/pics/02-pres/wright.ppt.

[NIST 02] National Institute of Standards and Technology. “Software Errors
Cost U.S. Economy $59.5 Billion Annually” (NIST 2002-10).
http://www.nist.gov/public_affairs/releases/n02-10.htm (2002).

[NSA 05] National Security Agency. INFOSEC Assessment Methodology.
http://www.iatrp.com/iam.cfm (2005).

[Pfleeger 03] Pfleeger, Charles P. & Pfleeger, Shari Lawrence. Security in Com-
puting, 3rd ed. Upper Saddle River, NJ: Prentice Hall PTR, 2003.

[QFD 05] QFD Institute. Frequently Asked Questions About QFD.
http://www.qfdi.org/what_is_qfd/faqs_about_qfd.htm (2005).

[RUsecure 05] RUsecure. The Information Security Glossary.
http://www.yourwindow.to/information-security (2005).

[Saaty 80] Saaty, T. L. The Analytic Hierarchy Process. New York, NY:
McGraw-Hill, 1980.

[Sans 05] The SANS Institute. SANS Glossary of Terms Used in Security and
Intrusion Detection. http://www.sans.org/resources/glossary.php
(2005).

[Schiffrin 94] Schiffrin, D. Approaches to Discourse. Oxford, England: Black-
well, 1994.

[Soo Hoo 01] Soo Hoo, Kevin; Sudbury, Andrew W.; & Jaquith, Andrew R. “Tan-
gible ROI through Secure Software Engineering.” Secure Business
Quarterly 1, 2 (2001).

[SSI 05] Service Strategies Inc. “Nonrepudiation.” Glossary of Messaging &
Security Terms. http://www.ssimail.com/Glossary.htm#N (2005).

[Stoneburner 02] Stoneburner, Gary; Goguen, Alice; & Feringa, Alexis. Risk Man-
agement Guide for Information Technology Systems (Special Publi-
cation 800-30). Gaithersburg, MD: National Institute of Standards
and Technology, 2002.
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf.

[TechTarget 05] TechTarget. Whatis?com: The Leading IT Encyclopedia and Learn-
ing Center. http://whatis.techtarget.com (2005).

64 CMU/SEI-2005-TR-009

[Watro 01] Watro, R. J. & Shirley, R. W. “Mapping Mission-Level Availability
Requirements to System Architectures and Policy Abstractions,”
189-199. Proceedings of DARPA Information Survivability Confer-
ence & Exposition II, 2001 (Vol. 1). June 12-14, 2001. Los Alami-
tos, CA: IEEE Computer Society Press, 2001.

[Webopedia 05] Webopedia. http://www.webopedia.com/ (2005).

[West-Brown 03] West-Brown, M.; Stikvoort, D.; Kossakowski, K.; Killcrece, G.;
Ruefle, R.; & Zajicek, M. Handbook for Computer Security Inci-
dent Response Teams (CSIRTs) (CMU/SEI-2003-HB-002). Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon Uni-
versity, 2003. http://www.sei.cmu.edu/publications/documents
/03.reports/03hb002.html.

[Wiegers 01] Wiegers, Karl E. Inspecting Requirements (column). StickyMinds,
July 30, 2001. http://www.stickyminds.com.

[Wiegers 02] Wiegers, Karl E. Peer Reviews in Software: A Practical Guide.
Boston, MA: Addison-Wesley, 2002.

[Wiki 05] Wikipedia: The Free Encyclopedia. http://www.wikipedia.org/
(2005).

[Wood 89] Wood, Jane & Silver, Denise. Joint Application Design: How to
Design Quality Systems in 40% Less Time. New York, NY: John
Wiley & Sons, 1989.

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

November 2005

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Security Quality Requirements Engineering (SQUARE) Methodology

5. FUNDING NUMBERS

FA8721-05-C-0003
6. AUTHOR(S)

Nancy R. Mead, Eric D. Hough, Theodore R. Stehney II
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-TR-009

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2005-009

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

81
13. ABSTRACT (MAXIMUM 200 WORDS)

Requirements engineering, a vital component in successful project development, often does not include suffi-
cient attention to security concerns. Studies show that up-front attention to security can save the economy bil-
lions of dollars, yet security concerns are often treated as an afterthought to functional requirements. Industry
can thus benefit from a model to examine security requirements in the development stages of the production
life cycle.

This report presents the Security Quality Requirements Engineering (SQUARE) Methodology for eliciting and
prioritizing security requirements in software development projects, which was developed by the Software
Engineering Institute’s Networked Systems Survivability (NSS) Program. The methodology’s steps are ex-
plained and results from its application in recent case studies are examined. The NSS Program continues to
develop SQUARE, which has proven effective in helping organizations understand their security posture and
produce products with verifiable security requirements.

14. SUBJECT TERMS

information security improvement, misuse cases, requirements engi-
neering, system survivability

15. NUMBER OF PAGES

80

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

