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Abstract 

The Software Engineering Institute (SEI) has been investigating disciplined software 
architecture design for several years. The SEI approach includes a collection of “quality 
attribute reasoning frameworks” that understand both quality attribute reasoning and how 
architects design for the quality attribute under particular situations. The approach was first 
applied to the quality attributes of modifiability and performance. This report is an initial 
attempt to use the same method for the related quality attributes of security and survivability. 
The report includes an initial organization of security within the framework, a partial 
explication of elements of that framework, and three representative examples of existing 
security reasoning frameworks. 
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1 Introduction 

The Software Engineering Institute (SEI) has been investigating disciplined software 
architecture design for several years. We have reported this investigation as snapshots of our 
current thinking in a series of reports [Bachmann 02, Bachmann 03a, Bachmann 03b]. These 
reports have dealt with the quality attributes of modifiability and performance. This report is 
an initial attempt to use the same approach for the related quality attributes of security 
survivability. We provide an initial organization of security within our framework and a 
partial explication of elements of that framework. 

Our approach includes a collection of “quality attribute reasoning frameworks” that 
understand both quality attribute reasoning and how architects design for the quality attribute 
under particular situations. Another element of our framework is the concept of general 
scenario [Bass 01]. General scenarios provide a structured means of stating quality attribute 
requirements. System-specific quality attribute requirements—called concrete scenarios—are 
instances of general scenarios. In designing an architecture we start with a concrete quality 
attribute scenario and then determine the general scenario of which it is an instance. Concrete 
scenarios are requirements that must be satisfied and the corresponding general scenarios act 
as triggers to determine which quality attribute reasoning framework(s) will react in response 
to this requirement.  

We begin by discussing the characteristics of a reasoning framework, the concepts they 
embody, and how they drive the design framework we are developing. 

Our goal is to be able to predictably determine how an architecture responds to security 
threats and be able to improve that response. Achieving this goal requires 

• determining what is meant by a security threat 

• determining what is meant by a response to a security threat 

• determining how to improve an architecture so that it has a better response to a security 
threat 

• determining how to predict the response of an architecture to a security threat 

 

1.1 Characterizing Threats and Responses 
We characterize threats and responses in terms of general and concrete scenarios. Every 
threat is an occurrence of some sort. That occurrence can be premeditated, such as a 
distributed denial-of-service (DDoS) attack, or it can be accidental, such as an employee 
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inadvertently attempting to gain access to sensitive information. Furthermore, there is some 
response desired from the system when this occurrence happens. The response may be to 
continue service (in the event of a DDoS attack) or it may be to prevent or record access to 
the sensitive information. 

In previous work we have characterized descriptions of quality attributes through general 
scenarios [Bass 03]. A general scenario is a system-independent description of a quality 
attribute requirement. It has six parts: 

• a stimulus: a condition that needs to be considered when it arrives at a system 

• a source of the stimulus: the entity (e.g., a human or computer system) that generated the 
stimulus 

• an environment: the conditions under which the stimulus occurs; for example, when the 
system is in an overload condition 

• the artifact affected by the stimulus 

• a response: the activity undertaken after the arrival of the stimulus 

• a response measure: the attribute-specific constraint that must be satisfied by the response 

In the DDoS example, the stimulus is the attack itself. The source of the stimulus is from 
multiple distributed computer systems external to the system being attacked. The 
environment is, presumably, under normal operations. The artifact is the system being 
attacked, the response is that the system will continue normal operations, and the response 
measure is that normal response times are maintained. 

A concrete scenario is a system-dependent instantiation of a general scenario. In the DDoS 
example, the instance would describe how many messages were expected in the attack and 
would make specific the response time requirement. 

1.2 Improving an Architecture with Respect to a Security Threat 
Architects have techniques that they apply to an architecture in order to improve the behavior 
of the architecture with respect to classes of security threats. Adding a firewall, for example, 
improves the architecture of the system with respect to accessing sensitive information. A 
firewall improves the architecture with respect to other conditions as well, but for the 
purposes of example we are only concerned with accessing sensitive information. A software 
architectural tactic is a transformation of a software or system architecture that improves its 
response with respect to a particular measure. A key element of this definition is that a tactic 
is a transformation of a software or system architecture. Using a physical key to restrict 
access to the room where the sensitive information is stored is a tactic for preventing 
unauthorized access to sensitive information, but it does not affect the software or system 
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architecture. We will elaborate software architectural tactics relevant to security later in this 
report, but two common examples are inserting a firewall and encrypting data. 

Tactics are responses to classes of scenarios. For example, encrypting data does not help 
respond to a DDoS attack. Adding a redundant component does not help respond to an 
employee accidentally attempting to access sensitive information. Thus, it makes sense to 
couple tactics with the classes of threats to which they respond. Again, we will elaborate this 
idea later in this report. 

1.3 Predicting the Response of an Architecture to a Threat 
An ideal situation is to be able to predict the response of an architecture to a particular threat. 
Comparing the response of an architecture to a threat with the response of that architecture 
transformed by the addition of a tactic will enable a comparison of the benefits of using that 
tactic against the cost of implementing it. 

The goal is to define a function that will predict the response measure for a particular 
architecture, given the stimulus from a concrete scenario. This requires that the architecture 
and the stimulus can be interpreted in terms that provide parameters for the function. We call 
such a function a quality attribute model. Furthermore, there must be a method for evaluating 
the function. We call such a method an evaluation. 

Security has a shortage of such prediction functions, so we use performance as our example. 
Rate Monotonic Analysis (RMA) is a theory of performance that can be used to predict 
latency for periodic functions under certain scheduling disciplines. The response measure 
predicted from an RMA quality attribute model is latency. The parameters for this model are 
the period at which events arrive, the computation time for the tasks in the architecture, the 
scheduling discipline and priorities of the tasks, the number of processors involved, and some 
structural information about the relationship among the tasks.  

Observe that not all of performance is covered by RMA theory. It does not cover cases where 
arrivals are stochastic rather than periodic, and there are other restrictions that determine 
whether it is relevant to a particular problem. 

Our goal with respect to security is to have a collection of theories that can be used to predict 
the response of an architecture to a collection of stimuli of different types. The architecture 
can then use the predictions of these theories to assist in the process of architecture design. 

1.4 Quality Attribute Reasoning Frameworks 
Quality attribute reasoning frameworks are at the heart of the software architecture design 
framework that we are developing. They are also at the heart of the Predictability by 
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Construction theory that the SEI’s Predictable Assembly from Certifiable Components 
(PACC) initiative is developing [Wallnau 03]. What we present here is a software architecture 
design perspective on reasoning frameworks that is consistent with but complementary to the 
PACC use of the term. In our context, reasoning frameworks provide the connection between 
architectural design decisions and quality attribute measures. A reasoning framework consists 
of the following portions: 

1. Scenario triggers. A characterization of the set of general scenarios for which this 
reasoning framework is relevant. As we just said, we must be precise about the situations 
for which a particular theory applies. We use a set of general scenarios to characterize 
these situations. 

2. A set of quality attribute models. Each quality attribute reasoning framework has a 
collection of quality attribute models characterized by an appropriate set of elements, 
relations, and properties.  

3. An evaluation. A method for evaluating a quality attribute model. 

4. An interpretation. The interpretation converts an architectural description into a set of 
parameters for a quality attribute model. 

5. A set of architectural tactics. The architectural tactics that are used to improve the 
response of the architecture to the stimuli included in the scenario triggers. 

With these elements, the outlines of a design process that satisfies a single quality attribute 
requirement can be seen. Begin with an architecture and the requirement expressed as a 
concrete scenario. Map the concrete scenario into the corresponding general scenario. Now 
choose a reasoning framework that has that general scenario as one of its triggers. A set of 
architectural tactics comes along with that reasoning framework. Determine the quality 
attribute model for the architecture. Transform the architecture using architectural tactics 
until the quality attribute model for the resulting architecture satisfies the concrete scenario. 
Of course, the design process is not as mechanical as this might sound. However, this 
general approach provides a conceptual basis for a methodical design process. 

Extension of this process to multiple quality attribute reasoning frameworks and elaboration 
of the process is outside of the scope of this report. We are concerned here with identifying 
and discussing security reasoning frameworks.  
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2 Elements of Security and Survivability Reasoning 

Frameworks  

This section discusses the primary characteristics of security and survivability reasoning 
frameworks in terms of the structure for quality attribute reasoning frameworks introduced 
above. We first describe the characteristics of security and survivability general scenarios that 
imply a range of triggers for security and survivability reasoning frameworks. We next 
describe security and survivability evaluators, from general evaluators in the area of security 
risk analysis to scenario-specific evaluators that address particular attack patterns. Finally, we 
start characterizing the set of architectural tactics used to achieve security and survivability. 
By collecting these tactics into groups based on the general scenarios to which they respond, 
we identify an initial collection of reasoning frameworks. At this point, we do not have the 
other portions of these reasoning frameworks (the evaluator, the set of quality attribute 
models, and the interpreter) but we have identified the scope that such reasoning frameworks 
would cover. Section 4 describes examples of these frameworks in more detail. 

2.1 Security and Survivability General Scenarios 
At a high level, a security or survivability general scenario is typically spurred by attacks 
perpetrated or vulnerabilities exploited and results in resistance of the attack with no 
disruption of essential services or recognition and recovery of the attack so as to continue 
essential services despite the attack. More specifically, the parts of a security and 
survivability general scenario are as follows: 

A stimulus (a condition that needs to be considered when it arrives at a system): The 
stimulus is generally going to be a class of attack that leads to vulnerability exploitation. 
The triggering scenarios of a particular security and survivability reasoning framework 
are likely to share common properties of the attacker (e.g., the level of access) or 
common properties of the stimulated artifact (e.g., a specific architectural vulnerability). 

A source of stimulus (the entity that generated the stimulus): The source of the stimulus 
is generally going to be the attacker. Characterizing specific types of attackers is beyond 
the scope of this report. There is a plethora of books that describe the attributes and 
techniques of fairly unsophisticated but malicious individuals often called hackers or 
crackers. The characterization of more sophisticated attackers, such as industrial spies 
and international cyber-terrorists, is usually sensitive and sometimes classified. 
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An environment (the conditions under which the stimulus occurs): The environment is 
typically going to dictate the types of attackers that may be interested or able to cause 
damage. Attackers can broadly be characterized according to a number of attributes: 

- resources: Resources include funds, personnel, and the skill levels of those personnel. 

- time: An attacker may have very-near-term objectives or may be very patient and wait 
for an opportunity. 

- tools: The sophisticated attacker can tailor attack tools to change his or her signature 
to avoid detection, or can develop tools or an email virus to target a specific system. 

- risk: An attacker may seek publicity. An attacker operating outside of the United 
States may not be threatened by legal actions. 

- access: Intruder access can be described in terms of the access mechanisms used in 
the attack, such as a dialup modem, a digital subscriber line (DSL), or the Internet; the 
origination of the attack, such as outside of a firewall, on a LAN, or connected from a 
trusted site; or the organizational position of the attacker, if any, such as employee, 
system administrator, or contractor. 

- objectives: An attacker’s objectives may include political, financial, criminal, military, 
and personal motivations. 
 

The attributes of the attacker will affect the type of reasoning framework and the tactics 
used. For example, the preventative tactics appropriate for an unskilled user of a popular 
attacker toolkit may not be adequate for an expert-designed scenario. In addition, a 
system may have different modes of operation (e.g., peak vs. low demand, normal 
operation vs. maintenance mode). These different modes of operation may indicate the 
types of attacks likely. 

A stimulated artifact: The target of the attack is of particular interest. For example, 
stronger encryption is required to protect a document than to protect the network traffic 
for a short-lived communication session, as an attacker has significantly more time to 
decrypt the file. 

Response (the activity undertaken after the arrival of the stimulus): A security or 
survivability response will be to either prevent the attack from happening (passive) or to 
detect the attack and try to recover from its negative consequences (active). The choice 
of a response must be consistent with the risk mitigation strategies and constraints 
derived from the organizational risk and security analysis. The response objective could 
be prevention or, where prevention is not assured, containment of the impact and a rapid 
recovery to normal operations. 

Response measure (the attribute-specific constraint that must be satisfied by the 
response): Security or survivability response measures will typically measure the 
reduced probability of attack or the reduced impact due to detection and recovery from 
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the attack. Usability or system administrative metrics might apply for user authentication 
preventative measures such as smart cards. 

A set of architectural tactics: There are many sources in published literature of security 
techniques. While these works are too numerous to list in full, a few efforts are 
particularly noteworthy. For example, there is a community of software developers that 
is assembling an increasingly comprehensive collection of design patterns for 
information security [SecPat 04, Schumacher 03]. Others are collecting expert 
knowledge regarding general principles for information security [ISSA 04]. In addition, 
the RAND Corporation has published a method for improving the survivability of 
systems based on categories of predefined survivability vulnerabilities and techniques 
[Anderson 99]. Although RAND’s method has not been applied extensively, the study 
surveyed a wide range of existing systems and research efforts on security and 
survivability to derive vulnerability and technique categories. Other work on 
survivability architectures also serves as a useful source of potential security and 
survivability strategies [Knight 00, Neumann 00].  

The published techniques include  

• redundancy – Anderson defines redundancy as “maintaining a depth of spare components 
or duplicated information to replace damaged or compromised assets” [Anderson 99]. 
Replicating components, connections, and/or data, often not co-located with the original 
copy, combined with good replication management can allow continued service when the 
original copy fails or is compromised. 

• diversity – Diversity involves the use of different methods, components, and/or platforms 
to prevent attackers from exploiting the same vulnerabilities repeatedly. Examples 
include the use of different hardware, different operating systems, or even different 
programming techniques such as n-version programming. When such diversity is used at 
different system entry points it can increase the attacker work factor. 

• deception – Deception can be used by the defender as well as a survivability threat that 
can be used by an adversary. Anderson defines deception, as it pertains to ensuring 
survivability, as an “artifice aimed at inducing enemy behaviors that may be exploited” 
[Anderson 99]. The most common example is the use of a collection of misinformation to 
waste an attacker’s time as other mechanisms mount an appropriate response to the 
attack. This misinformation is often euphemistically referred to as a honeypot. 

• identification/authentication – The NSA defines authentication as the verification of a 
claimed identity as legitimate and belonging to the claimant [NCSC 91]. Most types of 
access control require accurate identification and authentication of users. The most 
common technique used by far is a username and password. Stronger techniques using 
biometrics, tokens, and cryptographic signatures are also possible. 

• intrusion detection – Intrusions require “both an overt act by an attacker and a 
manifestation, observable by the intended victim, that results from that act” [McHugh 
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00]. The goal of intrusion detection is to observe and report on the manifestation of an 
attacker’s intrusion. Reporting can occur manually, through human analysis, or 
automatically using intrusion detection systems. Intrusion detection can take place in real 
time or through the offline analysis of system activity audit data recorded separately. 
Intrusions may be detected by looking for signatures of known attacks (virus checking is 
a common example) or by looking for anomalies—system activity that does not fit 
“normal” usage patterns. Available intrusion detection systems target either low-level 
network traffic or higher level application usage [McHugh 00]. Integrity-checking system 
executables based on expected parameters are also a form of intrusion detection. 

• recovery/adaptation – Recovery and adaptation are the system responses to intrusion 
detection. Recovery is typically the near-term repair or replacement of data, components, 
or communications damaged due to intrusion. Adaptation typically involves longer-term 
planning and reconfiguration to prevent similar intrusions in the future. Examples range 
from complex techniques such as dynamic resource allocation to high-priority assets and 
activities and self-organization of distributed autonomous agents [Anderson 99] to simple 
techniques such as restoration from stored backups and error correction. 

• physical, logical, cryptographic, and temporal separation – The security community has 
long regarded separation as fundamental to providing information security. Rushby and 
Randell first introduced these four primary types of security-related separation [Rushby 
83], primarily as a means to separate entities of different classification levels. These 
strategies have also proven useful for information integrity and availability. The oldest 
strategy, physical separation, promotes security using spatial distribution and physical 
security mechanisms [NCSC 88], such as reinforced buildings, locks, and various types 
of shielding. Logical separation uses software-based mechanisms, such as message 
filters, functional wrappers, and security kernels, to control access. Cryptographic 
separation uses encryption and key management to protect data confidentiality and to 
detect data corruption to a degree proportional to the strength of the cryptographic 
algorithm and of the protection of private keys. Finally, temporal separation separates 
critical functions’ execution in time. It is most closely associated with periods processing, 
“the processing of various levels of sensitive information at distinctly different times” 
[NCSC 88]. 

• personnel management – The security and survivability of any mission depends greatly 
on the trustworthiness, knowledge, and capability of the people in charge of mission 
support or execution. Trustworthiness is typically assessed through personnel security 
procedures [NCSC 88], such as periodic investigation of the backgrounds of people who 
have mission responsibilities. Ongoing performance appraisals are often a necessary 
complement to such investigations and provide additional information in terms of an 
individual’s understanding and ability to perform the job adequately. Periodic training is 
also important to educate people on the role their jobs play in successfully achieving 
mission goals, the importance of security policy and procedures, and the possible impacts 
of inadequate performance.  
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2.2 Types of Security and Survivability Evaluators 
Just as there are general and concrete security and survivability scenarios, there are general 
and specific security and survivability evaluators. The general evaluators help develop an 
integrated security and survivability strategy for a system that is consistent with its operating 
environment. The specific evaluators support reasoning about specific attack patterns and 
their mitigating security and survivability tactics. As one might expect, the research on 
general evaluators for security and survivability is much less mature than that for specific 
evaluators. This section discusses both, but the reasoning frameworks examples described in 
Section 4 only deal with specific evaluators. 

2.2.1 General Security and Survivability Evaluators 

Most of the work in the area of general security and survivability evaluators is in the area of 
security risk analysis, including the areas of adversary modeling, attack specification, 
vulnerability/threat analysis, security-related taxonomies and databases, impact analysis, and 
red teaming. Security risk analysis involves the analysis of system threats and vulnerabilities 
and their potential impact on the system’s mission. The three primary elements of risk can be 
defined as follows [DoD 99b, DoD 00]: 

• threat: any circumstance or event with the potential to cause harm to a system 

• vulnerability: a system characteristic that could be exploited by a threat to harm a system 

• impact: the extent of harm to a system that results from a threat’s exploitation of a system 
vulnerability 

Risk is formally defined as “a combination of the likelihood that a threat will occur, the 
likelihood that a threat occurrence will result in an adverse impact, and the severity of the 
resulting impact” [DoD 99a]. A malicious (intentional) threat can be viewed as any activity 
that purposely exploits a vulnerability in a system and results in a negative impact on mission 
success.  

General evaluators, through such security risk analysis, identify the operational risks 
associated with the business, likely attacker motivations, and the impacts of general types of 
attacks on the business mission. The desired responses to those threats might reflect business 
metrics such as revenues, administrative costs, or the liability associated with contractual or 
regulatory requirements. The tradeoff between lower costs and more effective responses 
should be captured as the residual risk that the business stakeholders are willing to accept. In 
terms of quality-attribute-based architectural design, general evaluators would lead to a 
security and survivability strategy identifying a collection of concrete scenarios as 
requirements for the system to be built.  

Experience with security risk analysis suggests a number of pitfalls to avoid in defining 
general evaluators for security and survivability [Soo Hoo 00]:  
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• complexity – Techniques often require explicitly considering all threats and 
vulnerabilities, from the most common to the most obscure, without some screening with 
regard to likelihood or impact. The resulting complexity tends to overwhelm the analysis.  

• incompleteness – Techniques often ignore key aspects of the risk management problem or 
make incorrect assumptions about the problem domain. This may, for example, result in 
technological threats or solutions being emphasized over procedural ones. 

• data unavailability – Techniques often require obtaining precise, quantitative data on the 
likelihood of threats and the severity of impact. In the real world, such data continues to 
be inconsistently collected and reported, and highly uncertain even when it is. Using 
highly uncertain “estimates” in places where precise data is required often leads to 
obviously faulty results or, even worse, to very misleading, but plausible, nonsense. 

• threat/countermeasure decoupling – Techniques of managing security risk solely through 
the use of popular security technology and practices without a link to the mission 
objectives or threats tend to decouple the countermeasures from the risk they are 
supposed to reduce. This lack of traceability makes it difficult to accurately assess the 
actual residual risk resulting from the use of technology and practices. 

• static analysis – Techniques generally deal only with the current threat environment, with 
little regard to managing the system under changing threats. Increasingly rapid changes 
in the threat environment, which are characteristic of modern Internet-based systems, 
demand techniques that can be applied as part of an evolutionary design and maintenance 
life cycle. 

There are, of course, no easy solutions to these problems. Early research in security risk 
analysis generally promoted comprehensive solutions that became overly complex. More 
recent approaches simplified the methods at the expense of completeness [Soo Hoo 00].  

2.2.2 Specific Security and Survivability Evaluators 

As described above, the specific evaluators support reasoning about specific attack patterns 
and their mitigating security and survivability tactics, which results in scenario-specific 
reasoning frameworks. A scenario-specific reasoning framework supports the identification 
of security and survivability tactics for specific attack patterns. For example, a scenario that 
involves inappropriate access to information would lead to the analysis of the applicable 
access control tactics. The operational environment for a large geographically distributed 
organization might lead to an architecture that uses directory services to maintain the 
consistency and integrity of the authentication and access control data across multiple 
platforms and locations. 
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3 Types of Security and Survivability Reasoning 

Frameworks  

A reasoning framework supports a design process that satisfies a single quality attribute. A 
reasoning framework is associated with a set of general scenarios, which are a precise 
system-independent specification of a collection of quality attribute requirements. Our 
discussion of security and survivability reasoning frameworks keys on the stimulus and 
response components of a general scenario. The stimulus or trigger is a condition that has to 
be considered when it occurs. A security stimulus can be a run-time event such as an attacker 
action, an operational event such as a change in a user’s password, or a development event 
such as a change in a commercial component that impacts its integration into the system. The 
response component of a scenario describes the desired system behavior in response to the 
event. A general scenario also includes response measures. 

Privacy or confidentiality requirements could be described by a scenario where the event is 
an attempt to access or change information, and the response describes the rules that govern 
access and any other actions associated with permitting or denying the access such as 
logging the event and the system’s response. The response measures for an access or user 
authentication scenario include the confidence associated with correctly identifying the user, 
the time required to update user permissions on one or more systems, and usability metrics 
for both end users and system administrators. A reasoning framework also incorporates one 
or more quality attribute models. The model associated with privacy requirements might 
include the factors that impact system administration, such as the number of users, whether 
the information is accessed through multiple applications, and multiple storage locations for 
such information. The tactics associated with the reasoning framework provide the means to 
affect key parameters. For example, role-based access control is a tactic that can reduce the 
costs and complexity of managing access for a large and likely distributed user community. 
System management could be simplified and confidence in the enforcement increased by 
incorporating the privacy rules into a data service that is then used by the applications. 

We begin our categorization by differentiating between passive and active responses. The 
objective for a passive response is prevention, containment, or protection. A passive response 
has the same behavior for all operating conditions. The use of operating system passwords 
and access control lists to meet confidentiality requirements is an example of a passive 
response. The validation of the input stream to an application is a passive response to a 
significant number of attacks. A firewall can provide a passive response to the probing of the 
network or applications to gather information to plan an attack. A passive response does not 
imply passive system administration. Effective user authentication may require rapid 
synchronization of user capabilities across all platforms, and some email virus protection 
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products require the capability to quickly update the necessary virus-signature descriptions 
on all clients. 

An active response starts with the detection of attack and then describes an operationally-
sensitive response to the trigger, as well as the eventual recovery of full services. A response 
could include changes to network or system configurations to manage a denial-of-service 
attack. Unusual activity observed for a specific peer in a distributed system might temporarily 
limit participation by that node until its status is clarified. Credit card fraud management is an 
example of an active response where unusual charges might require verification of those 
actions with the card owner before additional charges are permitted. 

We begin by discussing passive frameworks. 

3.1 Frameworks Based on a Passive Response 
Security scenarios can also represent classes of attacks. The triggers may be steps in an attack 
or the consequences of an attack. The objective of a tactic might be to prevent known attack 
techniques, restore data integrity following a successful exploit, or to contain the impact of an 
active attack. While there is significant variation in the details of specific attacks, it is the 
common aspects of attacks that provide the most insight in directing survivable system 
development.  

For example, many attacks share requirements to identify user accounts or to sketch the 
topology of the network that supports the workflow. Attacks can be categorized in terms of 
the kind of access and privileges required to execute the attack: user privileges are typically 
required for access to protected applications or data; system privileges are usually required to 
compromise logs to disrupt forensics; and network access is required to probe the network to 
identify available and vulnerable services. In addition, while vulnerabilities are often thought 
of in terms of the flaws of low-level components, vulnerabilities at an architectural level may 
be a much higher threat to an organization’s mission. In general, vulnerabilities may be 
apparent in human operations, the architecture of the technology, or individual technical 
components.  

Consider a general scenario for a denial-of-service attack (DoS). Such an attack exhausts a 
system resource, but the tactic and the attribute model are influenced by the targeted 
resource. A network-based DoS could attempt to overload the network transport, exploit a 
network-protocol vulnerability, or target an essential component such as router or firewall. 
The reasoning framework should focus on the network architecture and tactics such as a 
firewall and network intrusion detection. An application-based DoS might use a vulnerability 
on a server to repeatedly crash the application or a required service. The tactics associated 
with the reasoning framework might include hardening the host or incorporating redundancy 
for essential services. Finally, a data-driven DoS could exceed the processing capacity of the 
data server or purposely insert sufficient data errors to exceed either the storage or processing 



CMU/SEI-2004-TN-022 13 

capacity of the logging component. Tactics for these triggers could increase capacity or use a 
run-time filter to quarantine the offending transactions. 

The DoS examples also demonstrate that the tactics associated with a security reasoning 
framework are not just the classic security controls such as routers, firewalls, password 
authentication, and encryption, but also tactics associated with other quality attributes. 
Availability can require improved performance, while integrity is closely coupled with 
reliability. A critical observation is that the tactics selected to meet other requirements may 
also increase the opportunity for an attack. An architecture that uses a central data store might 
be a target for a host-based DoS attack, while an architecture that uses distributed and 
synchronized data stores might be impacted by a network-based DoS attack. An attack that 
targets a multi-organization business process could first compromise the system for one 
participant and then exploit any assumed trust among the cooperating systems to attack the 
other members.  

Our preliminary categorization of reasoning frameworks has two axes. We will use the 
artifact targeted by the trigger and the characteristics of the response as the two axes. With 
respect to the artifact, we have  

• network-based attacks: attacks on communication infrastructure and supporting services. 
Examples include network-based DoS attacks, including DDoS. 

• application-based attacks: attacks on the architecture component applications, such as a 
Web server, email services, or supporting application infrastructure. Examples include 
exploits that target vulnerabilities of a Web server, such as a buffer overflow 
vulnerability, to gain increased access. 

• data-centered attacks: attacks on the data stream or content presented by transactions. 
Such attack patterns can exploit or corrupt data and services or disrupt or deny essential 
services. Examples include attacks that target trust relationships between different 
machines or that target the gullibility of users (such as email attachments that contain 
malicious code). 

The underlying models associated with a reasoning framework are also very dependent on the 
desired response. With respect to the response we have 

• prevention. How are attacks prevented from gaining access to the artifact? 

• containment. Assume an attack has not been prevented. How do we limit its scope? 

• protection. What special facilities are used to protect especially vulnerable components? 

Table 1 categorizes the reasoning frameworks based on these three criteria. The cells 
enumerate the tactics included in the reasoning frameworks. The selection of the tactics 
associated with a preventative response may need to model attacker behavior. A preventative 



14  CMU/SEI-2004-TN-022 

tactic may only need to increase the risk of detection or increase the demands on the attacker 
in terms of the skills or computing resources required. 

The security tactics used in software developed by a third party may not reflect the actual 
threats associated with the intended operating environment. The security requirements for 
commercial software typically reflect general usage. Furthermore, externally-developed 
applications may have unknown vulnerabilities that cannot be eliminated. The requirements 
for legacy applications may not have considered Internet access. The prevention-based tactics 
represent the shared security assumptions among components. The protection-based tactics 
manage the exceptions when the security assumptions for a component are unknown or 
where the known behavior for a component may be an exploitable vulnerability.  
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 Network Attacks Data-Centered 
Attacks 

Application-
Specific 
Attacks 

User Input 
Attacks 

Prevention Insert a firewall that 
monitors traffic for 
network protocol 
vulnerabilities 

Insert a firewall that 
restricts access to 
vulnerable 
components such as a 
commercial off-the-
shelf (COTS) 
application 

Insert a firewall that 
inhibits port scans and 
other attacker 
reengineering 
activities 

Encrypt 
communication 

Insert an application 
proxy that filters input 
and output data streams 

Perform email virus 
scans 

Add hash functions 
(redundancy) to ensure 
integrity of data 
exchange between 
components 

Encrypt access control 
and authentication 
information to prevent 
user impersonation 

Use a specialized 
operating system 
or required 
service to harden 
the server 

Limit available 
services to reduce 
exposure to 
attack 

Implement signing, 
authentication, and 
access control to 
prevent 
impersonation of the 
user or providing a 
false source of 
information 

Containment Utilize a virtual local 
area network: This 
tactic partitions a large 
LAN into managed 
subnets. This limits the 
impact of an attack on 
a subnet or 
components of a 
subnet 

Reduce privileges so 
that the system operates 
with the least privileges 
necessary. An 
intermediate attack 
objective is often to 
spawn a command shell 
that has the same access 
rights as the 
compromised 
component. 

Encrypt stored data 

Limit trust assumed 
when data exchanged 
among components 

Utilize a 
demilitarized 
zone (DMZ) to 
isolate the 
exposed server 

Reduce the 
privileges 
necessary to 
operate the OS 
and infrastructure 
services to the 
least privileges 
necessary 

Maintain 
essential services 
on different hosts 

 

Protection  Add an application 
proxy that filters input 
and output data streams 

Insert a firewall that 
filters protocol and 
ports 

Insert a portal for 
authentication and 
access control 

  

Table 1: Categorization of Responses Based on Response Class and Artifact 
Under Attack 
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3.2 Frameworks Based on an Active Response 
The use of an active response assumes that prevention, containment, and protection have 
failed. The objective of an active response is to tolerate or survive an attack by continuing 
operations. The trigger for the use of an active response is that an attack is recognized as 
being in process.  

Active responses often consider an attack as a fault and think about failure recovery [Knight 
04]. That is, what are the parallels between security and fault tolerance? The analysis required 
for an active security response and that for fault tolerance share some common objectives, 
including 

• the need to analyze consequences of component failures, including failures from 
unknown causes. However, an attack can purposely inject multiple faults, such as 
disabling both an essential service and the recovery mechanisms. Reliability analysis 
often assumes independent faults. 

• the focus on potential failures whose effects are likely severe or catastrophic. However, it 
is difficult to quantify the probability of a failure when those failures are caused by an 
intentional act. There is no metric equivalent to a mean-time-to-failure measure for 
hardware failures. While severe or catastrophic attacks can be speculated, the 
probabilities of such events may be insignificant. The probabilities may not depend on 
system attributes but rather on the likelihood of personnel, political, or financial 
circumstances that might motivate a skilled attacker to act. 

• the common need to identify tactics that support the detection, containment, and recovery 
from such faults 

However there are also some critical differences in detailed analysis.  

• While detecting a security fault corresponds to sensing a software fault for reliability, a 
skilled attacker may be able to identify the security detection mechanisms employed and 
tailor the attack appropriately to avoid detection. This punch and counter-punch response 
pattern exists now between those who write email viruses and those who design the 
detection algorithms for email scanners. Detection may attempt to identify abnormal 
behavior, but normal system usage may evolve over time and require continual changes 
to the criteria. Unusual activity is often generated by faults not associated with an attack. 

• The recovery services could be a target of an attack. Hence the recovery procedures must 
also be survivable. Security may be able to take advantage of redundancy introduced for 
reliability or for managing significant variations in normal system loading. An active 
response to a DoS attack could redeploy any reserve capacity to maintain the required 
level of service. 

• Security and reliability reasoning frameworks for the control structures address similar 
design issues. The control decisions may involve balancing autonomy for applications or 
hosts versus system-wide coordination of the response or determining the visibility of the 
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class of faults. The control architecture may be driven by or drive the overall control 
model: peer-to-peer versus hierarchical. 

The model associated with an active response could be thought of as a control system 
[Sullivan 99], and a reasoning framework could be structured to support the design of such a 
control system. The sensors in such a control system could include an intrusion detection 
system, as well as system monitors to identify abnormal activity.  

The characteristics of the response are significant design drivers. The parameters that 
influence the choice of tactics depend on the impact and target of the attack—the network 
bandwidth, data storage, or the processing capacity. Can the impact of an attack be contained 
by limiting the scope of an attack? Is the impact associated with a specific workflow, with a 
class of users, with a physical location, or with a specific platform? Workflow controls might 
require the capability to dynamically reconfigure applications, and the containment would be 
complex if there are dependencies among workflows. An active response might be to reduce 
functionality by providing only the essential services. The operational security policy, with 
respect to the access allowed or the authentication required, could be dynamically changed. 
While the capability to contain an attack may permit continuing operations for those activities 
that are not at risk, the diversity of controls increases system complexity.  

The limited experience with and complexities associated with an active response suggest that 
it should be approached with caution and the scope of its application controlled. An active 
response suggests the need for an adaptive architecture, but the design of such architecture is 
still a research topic. An active response requires an effective intrusion detection component, 
as activity improperly identified as an attack might force an unnecessary system 
reconfiguration. The worm propagation example in Section 4 uses an active response for the 
containment of an attack. The containment tactic is to slow rather than stop selected 
communications, which reduces the effects of a false positive by the attack sensors. 

The analysis for an active response should draw on the reliability analysis. Single points of 
failure must be both reliable and secure. Extensive shared state among components 
complicates recovery from a hardware or software fault and limits the ability to contain an 
attack. The shared security and reliability analysis might lead to design guidance to limit the 
state that is maintained by a component or the state shared among components in order to 
limit the impact of an attack and reduce the scope of the required recovery. 
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4 Examples 

The three examples in this section are representative of existing security reasoning 
frameworks.  

The first example considers active responses to a DDoS attack. While the analysis for an 
active response is usually more complex than that for a passive response, the controlled scope 
of the response enables well-defined reasoning frameworks. The examples illustrate 
countermeasures for both the ultimate traffic flooding of the victim and the limitation of any 
self-propagating worms that might lay the DDoS agent infrastructure. 

The second example analyzes a design for a specific type of vulnerability called a covert 
channel. The primary objective of the analysis is to demonstrate that it would be difficult to 
exploit a design to obtain undesired access to sensitive information and not to identify 
preventative tactics; hence, it is not a complete reasoning framework. It may be possible to 
refine the vulnerability analysis to provide better design guidance.  

The access management tactics are passive and hence should be representative of a mature 
reasoning framework. But access management, the last example, may be the least satisfactory 
of the three examples. Many of the key parameters for the attribute model are organizational 
rather than technical. The scope is the design of an integrated access control management 
system that supports multiple applications, locations, work processes, and possibly 
organizations. Those requirements and the emerging technologies designed to support them 
stretch if not break the reasoning frameworks that are applicable for a single application or 
platform. 

4.1 Reasoning Frameworks for Inhibiting DDoS Attacks 
We are concerned in this section with the following trigger conditions: 

• stimulus and source of stimulus: An attacker attempts to disable a victim computer 
through flooding the victim with Internet messages. 

• response and response measure: The traffic through computers attached to the Internet is 
restricted so that abnormal traffic is metered but normal traffic is unaffected. 

DDoS attacks depend on the attacker’s control of many computers spread around the Internet 
IP address space. The attacker recruits these controlled computers, which we call DDoS 
agents, through automatic scanning of remote machines looking for vulnerabilities that 
enable subversion. In addition, DDoS agents are themselves used to recruit other DDoS 
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agents, often using self-replicating computer worms to create the DDoS agent network. The 
attacker coordinates the agents to individually but simultaneously perform DoS attacks on 
some organization’s Web server after assembling a sufficient arsenal. As depicted in Figure 1, 
attack coordination is performed using control traffic via a set of compromised hosts called 
handlers. The flood traffic targeting the victim organization’s Web server prevents the 
delivery of service if the number of agents and the size of the DoS attack delivered by each 
agent are sufficiently large. 
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Agent
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. . .

Agent Agent... Agent Agent Agent... Agent Agent Agent...

Control

Traffic

Flood
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... ... ...
...

Attacker

Handler Handler Handler
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Figure 1: DDoS Attack Infrastructure 

Preventing or inhibiting DDoS attacks requires a multidimensional approach. Since DDoS 
attacks require a very large number of DDoS agents to be effective, DDoS agent 
infrastructures are typically set up using self-replicating computer worms. Thus, tactics for 
inhibiting worm propagation can in effect inhibit DDoS attacks by inhibiting the growth of 
the DDoS agent infrastructure. This requires the active participation by parties that are not 
directly or not significantly affected by the DDoS attack, i.e., organizations that have 
vulnerable or compromised computers that may serve as a DDoS agent. This is clearly not a 
complete defense. Tactics are also needed that assume that the DDoS agent infrastructure is 
already in place but that inhibit the flooding of the victim organization’s server by the DDoS 
agents. The rest of this section provides examples of these two types of tactics. 

Both examples pertain to any Internet service provider that provides service to organizations 
that are high profile (e.g., the U.S. government), susceptible to embarrassment from computer 
attacks (e.g., Microsoft), or whose mission depends heavily on the availability of their Web 
services to external customers (e.g., Amazon or eBay). Organizations that support high-
volume Web traffic need a powerful Web service capability. Such organizations are attractive 
targets for worm propagation and to be used as a DDoS agent that targets other organizations. 
Being used in this way, an organization could suffer embarrassment, loss of customer 
confidence, and legal liability. 
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4.1.1 A Reasoning Framework for Inhibiting Worm Propagation 

Worm propagation can be inhibited by constraining the IP traffic exiting the organization’s 
local operating domain to limit gross violations of locality [McHugh 03, Williamson 02]. The 
assumption is that legitimate outgoing IP traffic for the organization is going to be confined 
to a limited range of IP address destinations—the program’s working set—considered to be 
local for that organization. The primary tactic then is to use a soft limit to react to locality 
violations:   

When a program requests an IP address that is not in that program’s working 
set, “the access request is placed in a paced delay queue which limits the 
rate at which such requests can be dispatched to one request per unit delay. 
When a delayed access is dispatched, all queued pending requests destined 
for the same address are sent immediately in the order in which they were 
enqueued and the destination is inserted in the working set, replacing its 
least recently accessed address. In this way small locality violations are 
tolerated with minimal delay, but gross violations encounter ever increasing 
delays.” [McHugh 03, Williamson 02] 

There are two possible options for the measuring locality. In the first option, each program 
generating outgoing IP traffic has a fixed size working set, so that when a new address is 
seen, the least recently used address is replaced with the newly referenced one. In this case, 
locality is measured as the frequency with which the working set changes. In the second 
option, each program generating outgoing IP traffic has a variable-size working set with 
constant removal, so that new addresses are added and least recently used entries are removed 
at fixed intervals. In this case, locality is measured as the current size of the working set. 

The evaluator for the implicit reasoning framework within which this tactic resides requires 
that the developer identify 

• IP address profiles for each Web browsing program within the local operating domain 

• the best representation of the working set (i.e., option 1 or option 2 above) and decide 
how the working set is allowed to change over time 

Through experimentation, the developer must decide on the frequency with which nonlocal 
addresses may be accessed that slows the propagation of worms sufficiently and leads to an 
acceptable false positive rate. Independent parameters for the quality attribute model include 

• each Web browsing program’s working set 

• the representation of the working set 

• how the working set is allowed to change over time 
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Dependent parameters include 

• the frequency of nonlocal IP address accesses permitted 

• the false positive rate (i.e., limiting the unnecessary slow-down of legitimate Web traffic) 

• the slow-down of malicious traffic required 

4.1.2 A Reasoning Framework for inhibiting DDoS Flood Traffic 

DDoS flood traffic can be inhibited by filtering or rate limiting the IP traffic that deviates 
from the expected entropy of normal IP traffic [Feinstein 03]. Entropy is computed as a 
measure of the randomness across some sample of packet header fields. Comparing the 
entropy of one sample of packet headers with another sample enables the detection of 
changes in the randomness of IP traffic. Experimentation has shown that the entropy of 
normal traffic falls within a narrow range of values, whereas the entropy of DDoS attack 
traffic exceeds these ranges in a detectable manner. The primary tactic then is to filter or rate 
limit traffic that exceeds the normal traffic entropy range. 

The evaluator for the implicit reasoning framework within which this tactic resides requires 
that the developer identify 

• the set of symbols in each packet to be used to compute entropy 

• the number of sequential packets to be used in the computation, i.e., the window size 

Through experimentation, the developer must decide on the window size that sufficiently 
slows the DDoS attack traffic and leads to an acceptable false positive rate. Feinstein et al. 
describe the window size as a “tunable parameter that controls how much smoothing of short-
term fluctuations the detector will do” [Feinstein 03]. Large window sizes keep the expected 
variation in entropy small and lead to low false positive rates due to brief and, presumably, 
insignificant anomalies. However, there is a tradeoff, since the larger the window size, the 
slower the detection of real attacks. Feinstein et al. have found through experimentation that a 
window size of 10,000 packets is a reasonable compromise. 

Independent parameters for the quality attribute model include 

• the window size of the packet stream used to calculate entropy 

• the entropy value range for normal IP traffic 

• the entropy values of incoming IP traffic 

Dependent parameters include 

• the deviation from normal that justifies action (i.e., to limit attack traffic) 

• the acceptable false positive rate (i.e., limiting the unnecessary slow-down or filtering of 
legitimate Web traffic) 
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• the slow-down of attack traffic required 

Of course there are limitations to this tactic. Feinstein et al. describe an important limitation 
as follows: 

“A sophisticated attacker would likely attempt to defeat the detection 
algorithm by creating stealthy traffic floods that mimic the legitimate traffic 
the detector would expect. An attacker who knew that the entropy of various 
packet attributes was being monitored could build an attack tool that 
generates floods with tunable entropy levels. Through guesswork, 
penetration, or trial and error, the attacker could determine typical entropy 
levels seen at the detector and tune the flood to match” [Feinstein 03]. 

The authors propose that defeating the purpose of this tactic in this way may be prevented by 
introducing multiple detectors between the flood source and target, since expected entropy 
ranges are likely to differ in different network environments. 

4.2 Prevention-Based Tactics for Inhibiting Information Leakage 
We are concerned in this section with the following trigger conditions: 

• an organization has sensitive (possibly classified) information 

• no information (or limited information) should be accessible to unauthorized individuals 
or other systems 

Information leakage is the term used to describe such trigger conditions. The leakage may be 
due to malicious software such as a Trojan horse program. Organizations that own highly 
classified information resident on systems that must connect (even if only indirectly) to other 
untrusted systems or networks, such as the Department of Defense, are often concerned with 
understanding the potential for covert information leakage. This concern is seen in the covert 
channel analysis requirements of security evaluation standards for higher assurance levels, 
such as the Common Criteria. 

Information leakage (or information sharing, in general) between parties is accomplished 
through resources shared by those parties. There must be at least one sending process and at 
least one receiving process. The sender must be the holder of the sensitive information that 
the organization wants to keep confidential, i.e., to prevent the receiver from obtaining.  

A concrete example of a system component for which information leakage might pose a 
serious problem is a database replication component that transfers critical data from an 
inventory database at a logistics coordinator to a database at the commander-in-chief (CINC) 
headquarters for military planning purposes. A common requirement in such a situation might 
be that the maximum capacity of any signaling channel through the data replication 
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component from the CINC headquarters database to the inventory database must be fewer 
than 100 bits per second. In this example, the CINC headquarters database presumably 
contains much more classified information than is permitted on the logistics coordinator’s 
systems. 

Before deciding on which tactics are appropriate to inhibit covert channels, one needs to 
identify what covert channels exist and the information-carrying capacity of those covert 
channels. The Shared Resource Matrix (SRM) method was developed for exactly this 
purpose [Kemmerer 02]. The SRM method assumes a single processor system that is shared 
by multiple processes with the following constraints: 

• Processes have access to a set of operations.  

• Each operation may access a set of resources.  

• Each resource has a set of attributes. 

• A shared resource is any object or collection of objects that may be referenced or 
modified by more than one process.  

• Each process may reference or modify only a subset of the attributes for a given 
resource.  

• Processes may be local or distributed, but only one process may be active at any one 
time.  

• Processes can send or signal information to other processes if permitted by a defined 
security policy. 

In abstract, the SRM method helps to identify attributes of shared resources that a sending 
process can modify and a receiving process can reference (directly or indirectly) so as to 
signal information in violation of a defined security policy. The SRM method also helps to 
quantify the rate of that signaling.  

In a bit more detail, an SRM comprises  

• the set of primitive operations of the system being analyzed listed as the matrix columns 

• the set of attributes of all resources that may be shared by the sender and receiver listed 
as the matrix rows 

• indications as to whether each primitive references or modifies each attribute indicated as 
an “R” or an “M” in each matrix cell 

These elements, plus the security policy defining permitted interprocess communication, are 
the independent parameters of the quality attribute model provided by the SRM method.  

Analysis of the SRM proceeds by constructing the transitive closure of the SRM, since the 
read of an attribute in one operation, when that attribute has been modified in a second 
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operation, is an indirect read of all the attributes that contributed to the modification. The 
analyst must then determine whether 

• the sending and receiving processes can have access to the same attribute 

• and there is some means by which the sending process can force the shared attribute to 
change 

• and there is some means by which the receiving process can detect the attribute change 

If these conditions are satisfied, the analyst needs to find some mechanism for initiating the 
communication between the sending and receiving process and for sequencing the events 
correctly. This mechanism could be another channel with a smaller bandwidth. If the analyst 
can find such a mechanism, he or she must determine which of the four cases apply: 

• Another legal or overt channel operates between the sender and receiver, so the channel 
is of no consequence. 

• No useful information can be gained from the channel. This will be the case if the only 
information that can be signaled over the channel is information that the receiver already 
possesses. 

• The sending and receiving processes are the same. 

• A covert channel exists and should be analyzed further. 

For those information flows in the last case, the analyst must determine the capacity of the 
covert channel by quantifying 

• the quantity of information that can be transmitted per execution of a scenario. Usually 
this is quantified in number of bits as determined by the SRM analysis. 

• the time required to exercise the scenario. This may be determined experimentally, but is 
highly dependent on the speed of the processor. 

• the effect of other system activities on the effectiveness of the transfer. The conservative 
approach is to assume no degradation. 

These elements are the dependent parameters of the quality attribute model defined by the 
SRM method. The method itself is the “evaluator” of the reasoning framework. 

Tactics for inhibiting channels that are in excess of that allowed by the security policy include 

• adding noise to the channel, e.g., by adding artificial activity to the process 

• restricting the amount of information carried per scenario 

• restructuring the system to eliminate or inhibit the covert channel, e.g., by using 
sandboxing or functional wrapping technologies 
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• increasing the time required to execute the scenario. This is particularly useful when the 
scenario is intended for execution by people, in which case execution times can be 
increased to prevent malicious spoofing at electronic speeds. 

Detect and respond approaches may also be useful to audit the use of covert channel leakage 
and respond to them on a case-by-case basis. In extreme or suspicious cases, incident 
handling may involve disconnecting systems until a complete investigation can be conducted. 

4.3 A Reasoning Framework for Access Management 
We are concerned in this section with the following trigger conditions: 

• a user who has no access privileges is to be assigned access privileges 

• a user with existing access privileges is to have these privileges modified 

• a user with existing access privileges is to have these privileges revoked 

Each of these scenarios has a response measure that is in minutes rather than hours or days.  

Managing access control permissions is a major problem for large, distributed computing 
environments. The examples in this section demonstrate some of the parameters that a 
reasoning framework for access management must include. Such a complete reasoning 
framework does not yet exist. We will briefly describe why access management is difficult, 
one of the tactics used for access management, why that tactic is not successful, and an 
alternative tactic that is being proposed.  

The increasing number and complexity of identify and access scenarios are a consequence of 
multiple trends: 

• increased integration of systems within organizations 

• adoption of business practices that require customers, partners, suppliers, and employees 
to have access to information assets. The requirements may be derived from contractual 
agreements among the participants.  

• enactment of privacy regulations for controlling access to medical, personal, or financial 
information: Health Information Portability and Accountability Act (HIPAA), Gramm-
Leach-Bliley Act (GLB), and European Union Privacy 

The changes in requirements are characterized by a growing number and type of users, 
applications, and access methods. The computing environments for the classic access control 
and authentication model were timeshares. While that model has evolved, the design assumed 
local autonomy for policy and administration, and each application, system, or platform 
developed its own proprietary mechanisms.  
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The most significant changes arise from the emerging requirements for maintaining the 
semantics associated with a security policy for a distributed system. The choice of the proper 
access control tactic depends on knowing the semantics associated with the data. A transfer of 
a portion of a patient’s medical record also requires designating the access policy associated 
with such information and the enforcement of that policy by the receptor.  

Many of the dependent parameters for access control will be drawn from business 
requirements. The scope and scale of the domain are critical parameters to a quality attribute 
model. The system administration procedures for tactics that assign permissions individually 
don’t scale to organizations with users numbered in the ten thousands with an equally large 
number of assets distributed across hundreds of applications. The user community for a Web-
based application might be in the millions.   

Data management of the security metadata is another key parameter. Changes in permissions 
may require synchronization of user security information across multiple systems, while 
personnel actions such as terminations may require the capability to immediately disable 
access. There are commercial products that support what has been called provisioning, i.e., 
the distribution of the required security data to multiple hosts and applications.  

The interoperability and data management requirements may be the most difficult to satisfy. 
Security policies are designed around the business work flows, and the security architecture 
may have to support an ever-changing set of work processes. The desired response time for 
implementing a new work process might be weeks or months. Work flows or security policies 
could be specified in a manner to enable a work flow or security policy to be defined at start-
up or to enable a dynamic binding of a security policy for a specific data exchange. 

The concept of roles and role-based access control (RBAC) is a well-known technique that is 
often used to reduce the system administrative load. With RBAC, a combination of 
organizational and system analysis identifies the operations that must be executed by persons 
in particular jobs and the computing privileges required for those activities. Security 
administration for RBAC consists of assigning employees to the proper roles. Specific 
applications or platforms may still require individual access control data, but provisioning 
software could map the privileges required by a role to application-specific access controls 
and manage the changes in roles or role assignments across multiple platforms and 
applications. 

A successful application of RBAC often depends on managing the scope of the effort. There 
are usually conflicts among the organizational-defined roles, application constraints 
(mapping roles to application-specific access control lists), and operational constraints in how 
the work is really done. The actions authorized for a role may vary across the organizational 
units, be tailored for a specific work flow, or depend on the physical location of the 
individual. That diversity can lead to administrative difficulties equivalent to those in a 
design that manages access control individually. From one perspective, one RBAC objective 
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is to normalize roles, but such an objective may not be achievable for a large organization 
with frequently changing business practices. This is why scope must be a parameter for any 
quality attribute model that is a portion of an access management reasoning framework. 

Another parameter should be the binding time for roles. For a diverse work environment, the 
dynamic binding of roles may reduce the need to define a significant number of static roles. 
Rather, a design could define a small number of generic roles that are statically assigned and 
then complete the binding at run time by incorporating operational information such as the 
location or the execution of a specific work activity. Some roles may not be static. Consider 
the application of RBAC to hospital operations. An individual may be statically assigned the 
role of a nurse, but the enforcement of privacy regulations for access to medical records may 
require that the individual has access only if they have responsibility for some aspect of the 
patient’s treatment. Access might require that the individual be currently on duty in a specific 
hospital unit. 

Dynamic binding of roles requires secure and reliable management of the attributes that are 
used in the assignment. The dynamics of the access decision could become a vulnerability if 
those attributes could be compromised. The dynamic binding for roles may also generate 
auditing requirements. Static binding of roles might require auditing only for tools that 
administer those attributes. Dynamic binding of roles may require logging every assignment 
in order to monitor for unusual activity or to satisfy regulatory or contractual requirements.  

A side effect of access management tactics may impact the required computing infrastructure 
and the operational implications. Design options, such as using directory services or 
provisioning software to maintain security metadata, may be costly and also may introduce 
additional vulnerabilities. A complex infrastructure may be an impediment to future system 
changes or be a continuing financial overhead because of the maintenance costs. 
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5 Conclusion 

In this note, we have provided an introduction to a way of thinking about security. Our 
ultimate goal for the overall effort is that an analyst has a complete set of reasoning 
frameworks for what is commonly called security, and each of the reasoning frameworks has 
all of the portions we have identified. If this goal is achieved, then the software architect or 
security analyst has the material to ensure that the system being designed achieves specified 
goals with respect to security. 

Many open issues remain between what we have provided here and our goal. These include 
the following: 

• What is the complete set of reasoning frameworks relevant to security and how are they 
related? The significant variation in the details of specific attacks encourages a 
multiplicity of frameworks, but a specific attack technique often has a very short 
effective life as systems are patched to prevent the exploit. Reasoning frameworks should 
be based on the common objectives for a class of attacks. We provided an initial guess at 
a taxonomy for security reasoning frameworks, but how close our guess is to our goal is 
an open issue.  

• The reasoning frameworks that are identified in this note are only partially complete. 
Each one of them must be made complete. The greatest difficulty in completing a 
reasoning framework lies in the definition of the evaluator. The evaluator defines the 
independent and dependent parameters that are crucial to disciplined thinking about 
security.  

• A reasoning framework has to model both the quality attribute and the attacker. The list 
of security scenarios is not static. Security design is more like a game in which the 
defender and the attacker continually adjust to each other’s tactics. Unfortunately, the 
defender has to plug all the holes, while the attacker has to only find one. A defense does 
not necessarily have to be perfect. It may be sufficient to just increase the cost to the 
attacker in terms of the skills, resources, or time required for an attack. But attack 
patterns and attacker characteristics are ever changing, and a design based on current 
attacker profiles may not be effective for the next generation of attack. How to manage 
the ever-changing attack patterns and attacker profiles is an open question. At a 
minimum, it may be wise to apply a classic modifiability tactic and isolate knowledge of 
attacker behavior to only a few components. 

• The tactics must be described in more detail. In this note, we describe a tactic with a 
word or phrase. The meaning of this word or phrase is subject to interpretation. 
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• Regardless of these shortcomings, this note provides the beginnings of an approach to 
designing for security. Furthermore, this approach is being used for other quality 
attributes, such as performance and modifiability, that should enable consideration of 
tradeoffs in a systematic fashion as well.  
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