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1. Introduction 

The time is now.  The place is a U.S. Army command center in a faraway land, which is 
conducting combat operations.  To the uninitiated observer, this would seem like a place of 
uncontrolled chaos.  Computers, computer-generated tactical projection displays, and 
communications devices fill every available space.  People are running back and forth yelling at 
each other with each one having a seemingly singular role to do whatever s/he is focused upon 
with no regard to other activities around him or her.  Multiple radios are blaring from all sides of 
the work space.  Individual groups of two or three people are engrossed in huddles in various 
corners of the area and are oblivious of everything else going on around them.  The commander 
is yelling at a computer operator to get a computer-generated tactical map projection display 
revised and current with the admonition at a high fever pitch “you are killing me!!!”.  The 
computer operator is feverishly and frantically calling for help from adjacent operators and 
noncommissioned officers.  Although it is not obvious to the casual observer, there is structure to 
this chaos and there is order to the disorder, resulting in a carefully balanced mix of people, 
machines, and weapons conducting an orchestrated performance on the battlefield.   

Into the midst of all this apparent pandemonium, a new communications device is brought on 
line that has been developed by the best and brightest minds that the Army acquisition 
community can bring to bear on the problem.  Its design promises to increase the rate of 
communications flow into the tactical operations center by 150% with an improvement in data 
quality by 90% (sample numbers for an imaginary system).  However, there has been no chance 
to validate its design promises because of a rapid fielding initiative that put it into the field in an 
accelerated timeline.  Even if an opportunity had been afforded to field test the system, the 
results of the test would typically have validated that the system is or is not working as designed 
and whether it provides greater communications flow at a higher fidelity.  Even if these field 
tests had been conducted, there would still be the unanswered question of the overall effect on 
the battlefield that the introduction of this new system would have.  This effect would be the 
result of the introduction of a new system component into the command and control (C2) system 
with the potential to change the overall performance of the total system.  Furthermore, although 
the physical parameters of the new system can be measured and quantified, the effect of these 
changes on the cognitive performance of the work group and their ability to adapt to changes in 
operational paradigms is much more difficult to estimate.  In fact, even in optimal laboratory 
conditions, it is a complex undertaking to assess cognitive performance factors such as 
situational awareness, individual and team performance, and the effects that these factors have 
on decision-making performance.  Furthermore, many laboratory-based evaluations are 
conducted as a part of a basic research effort and are left to future research to apply to specific 
application areas. 
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Thus, the development of predictive computer-based models of optimal performance has a 
significant potential to aid in the evaluation of overall work systems in which the human is an 
integral component.  This project has an objective to develop computer models of optimal 
performance in the area of decision making during conditions of uncertainty, which is the result 
of a coordinated effort that allows basic research using empirical investigations to be directly 
applied into the structure of a predictive computer simulation of decision making. 

1.1 Modeling the Human Ability to Make Efficient Decisions During Conditions of 
Uncertainty 

One of the most fundamental aspects of human cognition is the ability to make decisions.  
Humans can make decisions in a broad range of domains.  For example, everyday decisions are 
made as to what time an individual will depart for work, where to eat or what will be eaten for 
lunch, what will be worn to work, and thousands of other decisions.  These decisions often seem 
mundane because the ramifications of a “poor” decision are not significant.  However, other 
decisions appear to be more critical and the ramifications of a “poor” decision can appear (and 
often are) more detrimental.  For example, military decisions, medical decisions, and fault 
detection can all have significant ramifications. 

It is important to recognize that most decisions that are made are not “one off” decisions in 
which the decision is made and then the rewards reaped or the punishment endured.  Instead, 
most decisions that are made have future ramifications and affect the options and decisions that 
are available later.  One challenge faced by any decision maker is the uncertainty that the 
decision maker has about the true state of the system.  In most circumstances, the true state of 
the system is unknown or hidden.  That is, it cannot be directly observed.  For example, in 
military decisions, often there is uncertainty about an enemy’s position, strength, and morale.  
Given that the true state is hidden, there are things that can be done to reduce the decision 
maker’s uncertainty about these states.  For example, the decision maker may attempt to 
determine the enemy’s position by sending reconnaissance to a location where the enemy is 
believed to be located.  When the reconnaissance returns with either an “enemy sighted” or 
“enemy not sighted” report, the decision maker must revise his or her belief about the location of 
the enemy. 

If the observations and actions were all deterministic, revising a belief would be relatively 
simple.  However, in almost all conditions, the observations and actions are probabilistic.  That 
is, the probability of getting an observation, given the true state of the environment, is not 
necessarily 0.0 or 1.0.  In the example, there is a certain non-zero probability that the 
reconnaissance mission was sent to the right location and will miss the enemy and send a report 
of “enemy not sighted”.  Furthermore, there may be a non-zero probability that the 
reconnaissance mission falsely sent a report of “enemy sighted” (or false alarmed) when the 
enemy was not actually at the location. 



3 

Given that the observation and actions are probabilistic, revising a belief, given an observation 
and an action, can become cognitively difficult.  Furthermore, evaluating the added benefit of a 
specific piece of equipment that changes these probabilities can also become difficult.  The 
current research focuses on a task that is commonly faced by decision makers in the military, 
namely, a seek-and-destroy task.  In this task, the decision maker is trying to localize and destroy 
an enemy within a specific region.  At the decision maker’s disposal are actions that allow him or 
her to gain information about the true state of the system (i.e., the location of the enemy) in 
addition to changing the state of the system (e.g., moving the enemy from being at a specific 
location to the state of destroyed).  The former actions are reconnaissance actions and the latter 
are artillery actions.  The outcomes of these actions are probabilistic.  That is, reconnaissance 
actions will not always detect the enemy when a sensor is sent to the enemy’s location. 
Furthermore, the reconnaissance may also falsely report that the enemy is seen at a location 
where he is not.  Furthermore, the artillery will not always move the enemy to the “destroyed” 
state, even when it is sent to the right location. 

1.1.1 The Optimal Observer 

To best evaluate performance in a task that leads to uncertainty and probabilistic actions, it is 
useful to define the optimal performance within the task. The optimal performance can be 
calculated with Bayesian statistics.  However, because of the nature of the current type of task, 
simple Bayesian statistics are insufficient.  That is, with simple Bayesian statistics, the likelihood 
of the true state of the system can be optimally estimated, but this likelihood does not indicate 
what action should be selected.  In order to do action selection, not only must the current state be 
calculated, given the previous actions and observations, but the optimal action to be performed in 
a given belief state must also be calculated wherein a belief state is a particular probability 
distribution across all the possible states in the environment. 

A variation on classical Bayesian statistics that may well add some additional predictive power 
for sequential decision making during uncertainty is the Partially Observable Markov Decision 
Processes (POMDP) (Cassandra, 1998; Cassandra, Kaelbling, & Kurien, 1996; Cassandra, 
Kaelbling, & Littman, 1994; Kaelbling, Littman, & Cassandra, 1998; Sondik, 1971).  By 
defining the State Space, Observation Vector, Transition Matrix, and the Reward Structure, we 
can compute the expected reward for a particular action.  In the following sections, a description 
of these actions is provided.  In addition, a description of how to optimally revise an individual’s 
belief, given these definitions, is provided. 

An Ideal Observer Model provides optimal performance, given the information, available in the 
task.  Typically, ideal observers are not proposed as models of human cognition.  Instead, the 
ideal observer provides a benchmark by which to compare human performance.  More 
specifically, these models illustrate what optimal performance should look like.  When human 
performance matches that of the ideal observer model, one can conclude that the human is 
employing all the information in the task.  When the human under-performs the ideal observer, 
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specific discrepancies between the human data and the ideal data may illuminate the constraints 
imposed by the human information processing system. 

Ideal observer analysis has been used to understand perceptual functions from the quantum limits 
of light detection (Hecht & Shlaer, 1942) to many forms of visual pattern detection and 
discrimination (Geisler, 1989), to reading (Legge & Hooven, 2002; Legge & Klitz, 1997) object 
recognition (Liu & Knill, 1995; Tjan & Braje, 1995; Tjan & Legge, 1998) eye movements 
(Najemnik & Geisler, 2005) and in reaching tasks (Trommershäuser & Gepshtein, 2004). 

1.1.2 Defining the State Space 

In all problems that are solved with a POMDP architecture, there is a set of states that the 
problem can be in.  In a POMDP problem, the true state (StateTrue) is not directly observable (i.e., 
it is hidden).  For the problems used in this project, the hidden state was defined as the enemy’s 
current position within the 5x5 state space area plus an additional “destroyed” state that the 
enemy could move into after an artillery strike at its current position for a total state space matrix 
of 26 states. 

1.1.3 Defining the Observation Vector 

Although the true state is hidden, the observer typically has actions and observations that provide 
information about the true state of the problem.  In the current problem, the observer can fire 
artillery at a specific position or reconnaissance can be sent to a particular location within the 
environment (i.e., one of the 25 locations).  The current problem has three possible observations:  
Enemy Sighted, No Enemy Sighted, or No Information.  When the observer decides to send 
reconnaissance to a particular location, one of two observations will be received:  “enemy 
sighted” or “enemy not sighted”.  In the current problem, the artillery returns only one possible 
observation:  “no information”.  This replicates the fact that the artillery firing unit does not see 
the effects of its fires because it is an indirect firing unit and is not able to see where the artillery 
rounds fall.  It must rely on forward observer assets to report what is termed “battle damage 
assessment” (BDA) in military jargon.  In these models, it is the unmanned aerial vehicle (UAV) 
that provides the BDA. 

1.1.4 Defining the Transition Matrix 

Thus, in this “seek and destroy” problem, the commander has 51 possible different actions.  
There are 25 reconnaissance actions (one to each of the 25 locations in the environment), 25 
artillery actions (again, one to each of the 25 locations within the environment) and the “declare 
destroyed” option.  The transition matrix defines the probability of the resulting state if the 
observer generates a particular action in a specified state (i.e., p(s'|s,a)).  In the static form of the 
seek and destroy problem, there is only one state transition that could occur.  When the 
commander fires artillery to where the enemy is located, the enemy will transition into the 
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“destroyed” state with a probability of 0.75.  Probabilities that are assumed for the purpose of 
this analysis, which are merely estimations for the purposes of this discussion, are shown in 
tables 1 through 3.  These values are estimates only and are not to be construed as factual.  The 
determination of valid probabilities is left for future field and empirical work. 

Table 1.  The set of actions and their observations for the current seek and destroy task. 

Action Observation State Probability 
Recon Enemy Sighted Enemy Present 0.75 
Recon Enemy Not Sighted Enemy Present 0.25 
Recon Enemy Sighted Enemy Not Present 0.2 
Recon Enemy Not Sighted Enemy Not Present 0.8 

(The observations for the reconnaissance action depend on whether the enemy is actually within the viewing region of the 
reconnaissance. Thus, the two possible states are “enemy present” and “enemy not present”.) 

 

Table 2.  Probabilities for observation from artillery strike. 

Action Observation State Probability 
Strike NoInfo Enemy Present 1.0 
Strike NoInfo Enemy Not Present 1.0 

 

Table 3.  Probabilities for killing enemy from artillery strike. 

Action Result State Probability of Dead 
Strike Probability of Enemy being killed. Enemy Present 0.75 
Strike Probability of Enemy not being killed. Enemy Present 0.25 
Strike Probability of Enemy being killed. Enemy Not Present 0.0 

1.1.5 Belief Revision 

Given an initial probability distribution over the state space, the Observation Matrix, and the 
Transition Matrix, hypotheses can be generated about the current state of the problem following 
an action and the returned observation.  Equation 1 provides the Bayesian revision rule. 

 ( | , , ) ( | , ))( | , , )
( | , )

p o s b a p s b ap s b o a
p o b a
′ ′

′ =  (1) 

in which 

s’ ≡ true state (of the condition being present within the total of all states, S), 
represented as:  s’ ∈ S 

b ≡ prior belief 
o ≡ observation 
a ≡  action that was generated 

Equation 1 specifies how the ideal observer would revise his or her belief that s' is the true state, 
given the prior belief (b), the observation (o), and the action that was generated (a). 

To illuminate the process of belief revision, a simple example of a smaller seek and destroy 
problem is provided.  The Transition and Observation Matrices used in the empirical studies will 
be used here.  To simplify the process, however, a three-state problem will be used instead of a 
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26-state problem.  More specifically, the enemy will be in one of three states:  State1, State2, or 
StateDestroyed.  The initial (prior) probability of the state will be State1=0.5, State2=0.5, and 
StateDestroyed =0.0 (to simplify, this is represented as [0.5, 0.5, 0.0]) meaning that there is a 50% 
probability of the enemy of being in State1, a 50% probability of the enemy being in State2, and a 
0% probability of the enemy being in State Dead, i.e., the enemy is alive. 

Assume that the enemy is in State1 and that the observer decides to do reconnaissance to State1 
and receives a “enemy sighted” observation.  What is the likelihood of the belief that the enemy 
is in State1, State2 or StateDead? 

With equation 1, the likelihood that the enemy is in State1 can be revised.  That is, the desire is to 
compute p(State1| [0.5, 0.5, 0.0], “EnemySighted”,Recon1). 

First, compute p(o|s',b,a) or p(“EnemySighted”|State1, [0.5, 0.5, 0.0],Recon1).  To do this, the 
likelihood of obtaining an observation of “enemy sighted” if State1 were the true state is needed.  
In the Observation Matrix section, the likelihood of correctly identifying the enemy as 0.75 is 
defined. The likelihood of the true state being State1, given the previous belief and the action of 
Recon1 is needed.  Because no transition is possible, these remain at the prior probabilities of 0.5.  
Finally, the likelihood of receiving the observation “enemy sighted” when reconnaissance is 
made at State1 or p(‘EnemySighted’|[0.5,0.5, 0],Recon1) needs to be computed. 

 ( | , ) ((0.5 0.75) (0.5 0.2) (0.0 0.2))p o b a = × + × + ×  (2) 

 0.475=  (3) 

 1 1
0.75 0.5( | [0.5,0.5,0.0], " ",

0.475
p State Enemy Sighted Recon ×

=  (4) 

 0.7895=  (5) 
Furthermore, 

 2 1
0.20 0.5( | [0.5,0.5,0.0], " ",

0.475
p State Enemy Sighted Recon ×

=  (6) 

 0.2105=  (7) 
and finally, 

 1
0.2 0.0( | [0.5,0.5,0.0], " ",

0.475
p Destroyed Enemy Sighted Recon ×

=  (8) 

 0.0=  (9) 

Thus, if the first action is to observe at State1, the new belief vector would be 
[0.7895,0.2105,0.0]. 
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Now, imagine that the observer selected the action Strike1 following the action Recon1.  To 
revise the belief that the enemy is in State1, the conditional probability p(State1|[0.7985, 0.2105, 
0.0], “NoInfo,” Strike1) is computed. 

First, compute p(o|s',b,a), which is the probability of receiving the “NoInfo” observation, given 
that the true state is State1, the current belief ([0.7895,0.2105,0.0]), and the action Strike1.  The 
probability of receiving this observation is 1.0.  Regardless of the state of the problem, a strike 
always returns the observation “NoInfo” (see table 2).  This same probability and logic hold for 
computing p(o|b,a). 

The conditional probability p(s'|b,a) also needs to be computed. That is, what is the probability of 
the true state being State1, given the current belief and the action Strike1?  As described in 
section 1.1.4, the probability of transitioning the problem into the destroyed state is 0.75 if the 
enemy is at the location where the artillery strike occurred.  This means that there is a probability 
of 0.25 that the enemy’s state will not change or that the enemy will remain in State1 if it was 
initially in State1. 

 
1 1

( | , , ) 1.0
( | , ) 0.7895 0.25
( | , ) 1.0

( | [0.7895,0.2105,0.0]," ", ) 1.0 0.7895 0.25
1.0

0.1996

p o s b a
p s b a
p o b a

p State NoInfo Strike

′ =
′ = ×

=
= × ×

=

 (10) 

 

1

2 1

1

2 1

(" " | ,[0.7895,0.2105,0.0], ) 1.0
( | [0.7895,0.2105,0.0], ) 0.2105

(" " | [0.7895,0.2105,0.0], ) 1.0
( | [0.7895,0.2105,0.0]," ", ) 1.0 0.2105

1.0

p NoInfo Destroyed Strike
p State Strike

p NoInfo Strike
p State NoInfo Strike

=
=
=
= ×

0.2105=

 (11) 

 1(" " | ,[0.7895,0.2105,0.0], ) 1.0p NoInfo Destroyed Strike =  (12) 

 1( | [0.7895,0.2105,0.0], ) 0.7895 0.75p Destroyed Strike = ×  (13) 

 1(" " | [0.7895,0.2105,0.0], ) 1.0p NoInfo Strike =  (14) 

 1
1.0 0.7895 0.75( | [0.7895,0.2105,0.0]," ", )

1.0
p Destroyed NoInfo Strike × ×

=  (15) 

 0.5989=   

Thus, the belief vector, following Recon1 with the observation of “enemy sighted” followed by 
Strike1 with an observation of “No Information,” is [0.1996,0.2105,0.5989], or 
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p(State1)  =  0.1996 

p(State2)  =  0.2105 

p(Dead)  =  0.5989 

1.2 Applying the Decision Making During Uncertainty Model 

Using cognitive models such as those described now allows computer simulations of C2 systems 
configured around task performance analysis based on previous work (Middlebrooks, 2001, 
2003, 2004; Middlebrooks et al., 1999a, 1999b; Middlebrooks & Williges, 2002; 
Wojciechowski, Plott, & Kilduff, 2005) to now be structured to incorporate cognitive decision 
making as a performance metric with this belief revision model.  The steps in this process 
resemble the well-known observe-orient-decide-act (OODA) model (Belknap, 1996; Salas, 
Morgan, Glickman, Woodard, & Blaiwes, 1986).  The decision actions here described consist of 
gathering information, revising the belief about the environment or state space, taking an action 
to accomplish an objective in the state space, and then making a decision of whether to continue 
the mission or terminate it with an assessment of mission success or failure.  The example in this 
military C2 scenario employs a UAV to gather the intelligence, artillery to take an action to 
destroy an enemy somewhere within the state space, and belief revision to evaluate the situation 
after each action and then continue or declare “mission complete”.   

To structure this scenario in a computer simulation, the programming environment of Kilduff, 
Swoboda, and Barnette (2005); Plott (2002); Plott, Quesada, Kilduff, Swoboda, and Allender 
(2004) is employed.  Command, Control, and Communications: Techniques for the Reliable 
Assessment of Concept Execution (C3TRACE) , developed through funding by the Human 
Research and Engineering Directorate of the U.S. Army Research Laboratory, is an adaptation of 
the commercial discrete event programming language MicroSaint1 (Schunk & Plott, 2004).  
Although the basic MicroSaint programming language allows for the development of task-based 
computer simulations of real-world systems and processes to be represented, C3TRACE has 
embedded data structures that augment MicroSaint to allow for representation of Army C2 
systems. 

1.2.1 Simulation Design 

C3TRACE programs are implemented with the use of discrete event language constructs 
common to any MicroSaint simulation program.  The top level of a C2 sub-workgroup within a 
sample organization is shown in the example depicted in figure 1.  Here, messages received by 
the radio operator are distributed according to their subject content.  Situation reports (SITREPs) 
are passed to the S3 operations officer, logistics reports are passed to the S4 logistics officer for 
action, and so on.  If, for example, a mission directive such as seek and destroy an enemy is 

                                                 
1MicroSaint is a trademark of MicroAnalysis and Design, Inc. 
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received, it is passed to the commander for action.  There are different reactions that might be 
experienced to such a directive.  The commander might communicate with the originating 
authority to clarify information:  an initial estimate of the situation before taking action might be 
performed; a revision of the situational awareness before taking action might be performed; or 
the mission might be undertaken as directed.  In this case, as depicted in the green box in 
figure 1, what is referred to as the decision making during uncertainty process would be initiated 
to execute the mission. 

 
Figure 1.  C3TRACE C2 simulation vignette. 

Figure 2 illustrates a modeled decision process that is very similar to the OODA model.  This 
diagram represents an iterative process where the decision maker makes an initial estimate of the 
situation and then begins an iterative process of gathering additional information (flying a UAV 
mission) or taking an action to destroy the enemy (firing artillery).  When the commander 
believes that the enemy has been destroyed, a mission complete decision is made and the results 
of the decision are realized.  If the enemy was destroyed and the decision maker made that 
correct assessment, then a positive reward resulting from a good decision is applied to the 
performance of the overall system.  If the enemy was not destroyed and the decision maker 
believed that he was destroyed, then a negative battlefield outcome is applied to the simulation.  
Likewise, if the enemy was destroyed but the decision maker believed he was not, then the 
results of poor decision making are applied.  This process of iterative action can be generalized 
to similar scenarios where information is gathered (Observe), belief revision occurs (Orient), 
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decisions are made for mission success (Decide), and actions are taken to accomplish the mission 
(Act).  The examples of employing a UAV and firing artillery are used here to simply provide a 
tangible example of how this type of activity might occur.   

 
Figure 2.  Decision making during uncertainty model. 

1.2.2 The Decision Making During Uncertainty Decision Loop 

Referring to figure 2, the top-level logic for this model can be examined.  After initiating the 
decision sequence and performing an initial estimate of the situation, the commander revises his 
belief vector, defined as the belief about the current situation regarding the enemy, and then 
begins an iterative process of looking for information or taking an action to accomplish the 
mission.  When this process has reached some level of belief that the mission is accomplished, 
the commander terminates the action and completes the decision process by declaring a mission 
“success” or “failure”. 

If the initial desire is to obtain additional information, a UAV is sent to a specified location to 
attempt to locate the enemy.  The UAV is the information gathering or BDA tool available to the 
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commander to revise his belief vector about the enemy.  If the target is already dead from 
previous artillery action, then there is no correct location for the enemy because he does not exist 
or is dead.  If the enemy is alive and the UAV is sent to the correct location, then it has a 
probability, according to table 1, of detecting or not detecting the enemy representing the 
accuracy of the UAV.  From this, it will correctly or incorrectly report that the enemy was found.  
Likewise, if it is sent to a location where the enemy is not located or if the enemy is already 
dead, the UAV may correctly or incorrectly report the enemy sighted again, according to table 1.  
The values in table 1 are only sample estimates for use in the development of this model and do 
not represent any actual system currently in existence.  After the UAV mission is flown, the 
commander evaluates the report from the UAV through the process of revising his belief vector 
(described next) and using this new information, decides what process to invoke next. 

If the commander decides to fire artillery (which is representative of taking a positive action to 
do something to accomplish the mission), then the probability exists that the right or wrong 
location will be fired upon.  If the artillery fires on the wrong location, then the only outcome 
will be to miss the target.  If the correct location is fired upon, then the artillery will kill or not 
kill the enemy according to the circular area of probability for the type of artillery fired.  
Independent of where the artillery is fired, the only report that is sent to the commander is that 
the artillery fired upon the location directed.  This represents the fact that artillery is an indirect 
fire weapon and the firing unit never actually sees the target.  The forward observer (in this case 
the UAV) must report the actual target situation, i.e., to provide the BDA.  The commander must 
then evaluate the firing data and information from previous UAV reconnaissance missions to 
decide if to continue the mission or declare the enemy is dead and end the mission.   

When the commander believes that the enemy has been destroyed, then mission complete is 
declared and the commander is faced with the rewards of a successful or good decision sequence 
where the enemy was killed, meaning that the mission was accomplished, or the effects of a bad 
decision where the mission was not accomplished. 

1.2.3 Evaluating the Current Information 

Figure 3 illustrates the input feeding the sequence of evaluating the current situation and revising 
the belief vector and the resulting choice for the next action.   

The actual logic for each of these activities occurs within the C3TRACE program with C sharp 
(C#) code statements embedded within the beginning and ending effects sections of each of the 
task blocks in the diagram.   
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Figure 3.  Belief vector revision. 

A verbal description of the computer logic for the “evaluate report” task takes the form 
For UAV Mission Cases: 

If (UAV mission ordered) & (Enemy Located at specified location) 
 Then, There is a positive probability that the enemy will be reported sighted. 
If (UAV mission ordered) & (Enemy Not Located at specified location, or is dead) 
 Then, There is a small probability that the enemy will still be reported sighted. 

For Arty Mission Cases: 
If (Arty mission ordered) & (Enemy Located at specified location) 
 Then, There is a positive probability that the enemy will be destroyed. 
If (Arty mission ordered) & (Enemy Not Located at specified location) 
 Then, There is a zero probability that the enemy will be destroyed. 
For all Arty mission cases, 
 Report = “No Info”. 

1.2.4 Revising the Belief Vector 

Figure 3 illustrates the revise belief vector task that follows the evaluate report task.  The pseudo 
logic that is implemented in C# for this task is 
For UAV Mission Cases: 

If (UAV mission ordered) & (Enemy Located at specified location) 
 Then, Revise Belief Vector with positive information for State Where Reconnaissance was 
Performed. 
 Then, Revise Belief Vector with negative information for State Where Reconnaissance was Not 
Performed. 
 Then, Revise Belief Vector with negative information for State Dead. 
If (UAV mission ordered) & (Enemy Not Located at specified location, or is dead) 



13 

 Then, Revise Belief Vector with positive information for State Where Reconnaissance was Not 
Performed. 
 Then, Revise Belief Vector with negative information for State Where Reconnaissance was 
Performed. 
 Then, Revise Belief Vector with negative information for State Dead. 

For Arty Mission Cases: 
If (Arty mission ordered) & (Enemy Located at specified location) 
 Then, Revise Belief Vector with positive information for State Fired Upon. 
 Then, Revise Belief Vector with negative information for State Not Fired Upon. 
 Then, Revise Belief Vector with positive information for State Dead. 
If (Arty mission ordered) & (Enemy Not Located at specified location) 
 Then, Revise Belief Vector with negative information for State Fired Upon. 
 Then, Revise Belief Vector with negative information for State Not Fired Upon. 
 Then, Revise Belief Vector with negative information for State Dead. 

 

2. Decision and Results 

Current work has focused on the simplest possible state space which consists of two location 
states and a state representing the status of the target enemy, dead or alive.  While a location state 
of only two conditions appears to be trivial and unrelated to any actual human performance 
condition, even this simple arrangement can relate to actual performance.  Although this simple 
three-state model is not sufficient for actual analysis, it forms the basis for future, more complex 
models to become predictive of selected decision processes.  When faced with a decision choice, 
a human decision maker many times has one of two selections to make.  Referring to figure 4, 
whether it is right versus left, good versus bad, right versus wrong, high payoff versus low 
payoff, cheap versus expensive, or whatever the criterion, a two-state response choice augmented 
by one result state (in this case dead), can be descriptive of actual conditions.  Also, even in this 
most simple of state environments, the conditional probability logic can become exhaustive.  
Computer runs with these conditions illustrate the conditional probabilities resulting from 
relatively simple actions in this state space. 

 
Figure 4.  State space. 
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As shown in figure 4 in this simple state space case, the enemy is located in State1 or State2 for a 
binary location condition, with a condition of dead or alive, as indicated by State3. 

2.1 Action Sequence Assessment:  Recon1, Strike1, Recon2-N 

In order to examine the conditional probability logic associated with actions in this state space, 
some examples of actions and resulting belief vectors will be examined.  The assumptions are 
that the enemy is located in State1 and that he is static, i.e., not moving.  Also, there is an equal 
probability in the belief of the commander that the enemy could be in either of the location states 
and that the enemy is alive.  The initial belief vector is thus [0.5, 0.5, 0.0], meaning a 50% 
chance of being in location State1, a 50% chance of being in location State2, and a 0.0% chance 
of being in State Dead, i.e., the enemy is alive.  Assume the following sequence of actions: 

Conduct a UAV mission into State1, called Recon1 

Fire artillery strike into State1, called Strike1 

Conduct continuous UAV missions into State1, called Recon2 to ReconN. 

Using the POMDP methodology in the C3TRACE DMDC model, examine the resulting beliefs 
that the decision maker has following the decision to perform this series of actions.  The output 
from this simulation run is illustrated in table 4 and figure 5. 

Table 4.  Probabilities for sequence recon1, strike1, recon2-N. 

 
 

NumDMDC_ 
Iterations Action State_Space[1,1] -

Cell1
State_Space[1,2]-

Cell2
State_Space_ 

Dead

1 Recon1 0.5000 0.5000 0.0000 
2 Strike1 0.7895 0.2105 0.0000 
3 Recon2 0.1974 0.2105 0.5921 
4 Recon3 0.4797 0.1365 0.3838 
5 Recon4 0.7757 0.0588 0.1655 
6 Recon5 0.9284 0.0188 0.0528 
7 Recon6 0.9799 0.0053 0.0149 
8 Recon7 0.9945 0.0014 0.0040 
9 Recon8 0.9985 0.0004 0.0011 
10 Recon9 0.9996 0.0001 0.0003 
11 Recon10 0.9999 0.0000 0.0001 
12 Recon11 1.0000 0.0000 0.0000 
13 Recon12 1.0000 0.0000 0.0000 
14 Recon13 1.0000 0.0000 0.0000 
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Figure 5.  Belief graph for action sequence recon1, strike1, recon2-N. 

These actions (first a reconnaissance, then a strike, and then only reconnaissance) produce a 
predicted belief pattern of almost 80% after the first reconnaissance that the enemy is in fact at 
State1.  After the strike, the belief of being in State1 drops to 21% while the belief that the enemy 
is dead goes from 0% to almost 60%.  However, if the only succeeding actions at this point are to 
perform reconnaissance to State1 (which have no ability to harm the enemy because only an 
artillery strike can cause damage), then, because of successive incremental probabilities that the 
enemy might still be at State1, and therefore not dead, the belief value for State1 asymptotes at 
100% while the values for State2 and State3 Dead go to 0%. 

2.2 Action Sequence Assessment:  Recon1, Strike1-N 

Now consider the action sequence of an initial reconnaissance, Recon1, followed by multiple 
artillery strikes, Strike1-N.  The previous assumptions for enemy location and initial belief 
vector are the same. 

Sequence (All to State1 w/Enemy @ State1):  Initial, Recon1, Strike1, Recon2- 
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Table 5.  Probabilities for sequence recon1, strike1-N. 

 
 

 

Figure 6.  Belief graph for action sequence recon1, strike1, strike2-N. 

After the first two belief revisions, which are the same as in the previous runs, the belief values 
for the enemy being dead continue to rise with successive artillery strikes but asymptote at 78% 

NumDMDC_ 
Iterations Action State_Space[1,1] -

Cell1
State_Space[1,2]-

Cell2
State_Space_ 

Dead 

1 Recon1 0.5000 0.5000 0.0000 
2 Strike1 0.7895 0.2105 0.0000 
3 Strike2 0.1974 0.2105 0.5921 
4 Strike3 0.0493 0.2105 0.7401 
5 Strike4 0.0123 0.2105 0.7771 
6 Strike5 0.0031 0.2105 0.7864 
7 Strike6 0.0008 0.2105 0.7887 
8 Strike7 0.0002 0.2105 0.7893 
9 Strike8 0.0000 0.2105 0.7894 
10 Strike9 0.0000 0.2105 0.7895 
11 Strike10 0.0000 0.2105 0.7895 
12 Strike11 0.0000 0.2105 0.7895 
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while the belief value for the enemy still being in State1 goes to zero.  This is offset by a 
suspected belief condition for the enemy being at State2 which is 21%.  Since the belief 
probabilities for all three states must sum to 100%, representing the complete belief condition, 
this causes the predicted belief for the enemy actually being dead to only achieve maximum at 
78% even with successive artillery strikes each of which has the ability to completely kill the 
enemy.  Actually, the C3TRACE model had the enemy killed after the first artillery strike, but 
the predicted belief by the commander has the values shown. 

2.3 Action Sequence Assessment:  Recon1-N 

To check the response of the model, additional runs were made of only reconnaissance missions 
and only artillery missions.  Table 6 and figure 7 show the results for the case of only flying the 
UAV for multiple reconnaissance into State1.  Initial conditions remain the same as before. 

Table 6.  Probabilities for sequence recon1-N. 

Action State_Space[1,1] - 
Cell1

State_Space[1,2]- 
Cell2

State_Space_
Dead

Recon1 0.5000 0.5000 0.0000
Recon2 0.7895 0.2105 0.0000
Recon3 0.9336 0.0664 0.0000
Recon4 0.9814 0.0186 0.0000
Recon5 0.9950 0.0050 0.0000
Recon6 0.9987 0.0013 0.0000
Recon7 0.9996 0.0004 0.0000
Recon8 0.9999 0.0001 0.0000
Recon9 1.0000 0.0000 0.0000
Recon10 1.0000 0.0000 0.0000
Recon11 1.0000 0.0000 0.0000
Recon12 1.0000 0.0000 0.0000  
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Figure 7.  Belief graph for action sequence recon1-N. 

Here, as would be predicted by common sense logic, the dead state remains at zero as 
reconnaissance missions have no ability to damage the enemy.  The belief probabilities for the 
enemy at State1 and State2 complement each other with the State1 belief that asymptotes at 100% 
while the State2 belief asymptotes at 0%. 

2.4 Action Sequence Assessment:  Strike1-N 

Finally, table 7 and figure 8 show the results for the case of only firing artillery for multiple 
strikes at State1.  Initial conditions remain the same as before.  In this case, while the artillery has 
the ability to kill the enemy, it does not have the ability to report its effects.  Thus, the belief 
probability of the commander for where the enemy is located and what his dead state is, is 
nonexistent as artillery strikes only report that the mission was fired.  As a result, only firing 
artillery will provide no information to the commander about the status of the enemy even 
though the artillery might have actually destroyed the enemy.  Thus, successive artillery strikes 
to State1 result in no change in the belief that the enemy is at State1 and cause only a maximum 
belief of 50% that the enemy might have been destroyed by the artillery missions.  These models 
represent the total belief possible in the commander with an indication of 100% summed from all 
the individual beliefs.  As a result of this 100% possible belief, this causes the belief that the 
enemy is at State2 to asymptote at 0%. 
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Table 7.  Probabilities for sequence strike1-N. 

 
 

 

Figure 8.  Belief graph for action sequence strike1-N. 

 

NumDMDC_ 
Iterations Action State_Space[1,1] -

Cell1
State_Space[1,2]-

Cell2
State_Space_ 

Dead

1 Strike1 0.5000 0.5000 0.0000 
2 Strike2 0.1250 0.5000 0.3750 
3 Strike3 0.0313 0.5000 0.4688 
4 Strike4 0.0078 0.5000 0.4922 
5 Strike5 0.0020 0.5000 0.4980 
6 Strike6 0.0005 0.5000 0.4995 
7 Strike7 0.0001 0.5000 0.4999 
8 Strike8 0.0000 0.5000 0.5000 
9 Strike9 0.0000 0.5000 0.5000 
10 Strike10 0.0000 0.5000 0.5000 
11 Strike11 0.0000 0.5000 0.5000 
12 Strike12 0.0000 0.5000 0.5000 
13 Strike13 1.0000 0.0000 0.0000 

Sequence (All to State1 w/Enemy @ State1):  Initial, Strike1, Strike2-StrikeN 
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3. Conclusions and Continuing Work 

This project is at the initial stage of developing a quantitative predictive model of optimal 
decision making performance in a form usable in simulations of C2 activities.  The Bayesian 
statistical approach to the modeling is not intended to be construed as an attempt to present a 
human cognitive model of decision making but is an attempt to understand what optimal 
performance could be in a given set of circumstances.  Once this optimal performance is 
understood, then the Bayesian models can be used to compare predicted optimal performance 
against actual observed human performance data to gain an understanding of how human 
cognitive limitations can be affected by changes in different components of the human-computer 
interfaces in the work system.  Some of the human performance areas where this technique might 
be applied include memory, decision strategy, and perception, to name a few.  This technique has 
the promise to allow investigations of how modifying technology can affect decision strategies 
as they are represented by battlefield success and the cost of achieving that success. 

The work to date has been and continues to be a partnership between (a) basic empirical research 
that is investigating optimal performance through the modification of belief presentations and the 
accuracy of belief vectors and (b) applied research working to develop simulations of highly 
dynamic battlefield performance, which are moderated by predicted optimal performance 
conditions within the work group by employing the C3TRACE modeling environment.   

These initial efforts have developed the framework for a more complex series of models by 
developing performance algorithms based on a simple three-element state space of two location 
states and one status state (dead).  The results presented here are not intended to provide a basis 
for actual investigative work.  These data are included only for the purpose of illustrating the 
potential for this research.  Future work will expand the effort to a five-state space environment 
of a 2 x 2 location grid + Dead and to a 26-state space environment of a 5 x 5 location grid + 
Dead.  The current empirical work is based upon the 5 x 5 location grid + Dead, or 26-state space 
environment condition.  Also, the current work is based upon an enemy statically located in the 
grid.  Future work will incorporate a dynamic enemy moving within the location grid according 
to some predetermined algorithm. 



21 

4. References 

Belknap, M.  Military Decision Making in the Information Age.  Unpublished Monograph, Naval 
War College, Newport, RI.  Joint Military Operations Department.  Ad-a307-648-6-xab, 
1996. 

Cassandra, A. R.  Exact and Approximate Algorithms for Partially Observable Markov Decision 
Processes.  Unpublished Dissertation, Brown University, 1998. 

Cassandra, A. R.; Kaelbling, L. P.; Kurien, J. A.  Acting under Uncertainty:  Discrete Bayesian 
Models for Mobile-Robot Navigation.  In Proceedings of IEEE/RSJ International 
Conference on Intelligent Robots and Systems, 1996. 

Cassandra, A. R.; Kaelbling, L. P.; Littman, M. L.  Acting Optimally in Partially Observable 
Stochastic Domains.  In Proceedings of the Twelfth National Conference on Artificial 
Intelligence.  (AAAI), 1023--1028.  http://citeseer.ist.psu.edu/cassandra94acting.html  
Seattle, Washington. MIT Press, 1994. 

Geisler, W. S.  Ideal-Observer Theory in Psychophysics and Physiology.  Physica Scripta 1989, 
39, 153-160. 

Hecht, S.; Shlaer, S.  Energy, Quanta, and Vision.  Journal of General Physiology 1942, 25, 819-
840. 

Kaelbling, L. P.; Littman, M. L.; Cassandra, A. R.  Planning and Acting in Partially Observable 
Stochastic Domains.  Artificial Intelligence 1998, 101, 99-134. 

Kilduff, P. W.; Swoboda, J. C.; Barnette, B. D.  Command, Control, and Communications: 
Techniques for the Reliable Assessment of Concept Execution (C3TRACE) Modeling 
Environment: The Tool; ARL-MR-0617; U.S. Army Research Laboratory, Human Research 
and Engineering Directorate:  Aberdeen Proving Ground, MD, 2005. 

Legge, G. E.; Hooven, T. A.  Mr. Chips 2002:  New Insights from an Ideal-Observer Model of 
Reading.  Vision Research 2002, 42, 2219-2234. 

Legge, G. E.; Klitz, T. S.  Mr. Chips: An Ideal-Observer Model of Reading.  Psychological 
Review 1997, 104, 524-553. 

Liu, Z.; Knill, D. C.  Object Classification for Human and Ideal Observers.  Vision Research 
1995, 35 (4), 549-568. 

Middlebrooks, S. E.  Experimental Interrogation of Network Simulation Models of Human Task 
and Workload Performance in a U.S. Army Tactical Operations Center.  Unpublished 
Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2001. 



22 

Middlebrooks, S. E.  The Compass Paradigm for the Systematic Evaluation of U.S. Army 
Command and Control Systems Using Neural Network and Discrete Event Computer 
Simulation.  Unpublished Dissertation, Department of Industrial and Systems Engineering.  
Virginia Polytechnic Institute and State University, Blacksburg, VA, 2003. 

Middlebrooks, S. E.  Neural Net and Discrete Event Simulations of C2 Performance in Army 
Tocs.  In Proceedings of the Human Factors and Ergonomics Society's 48th Annual Meeting, 
September 20-24, 2004 (pp. 513-517). New Orleans, LA: HFES, 2004. 

Middlebrooks, S. E.; Knapp, B. G.; Barnette, B. D.; Bird, C. A.; Johnson, J. M.; Kilduff, P. W.; 
Schipani, S. P.; Swoboda, J. C.; Wojciechowski, J. Q.; Tillman, B. W.; Ensing, A. R.; 
Archer, S. G.; Archer, R. D.; Plott, B. M.  Cohost - Computer Simulation Models to 
Investigate Human Performance Task and Workload Conditions in a U.S. Army Heavy 
Maneuver Battalion Tactical Operations Center.  In Proceedings of the HFES 43rd Annual 
Meeting (pp. 242-246). Houston, TX: Human Factors and Ergonomics Society, 1999a. 

Middlebrooks, S. E.; Knapp, B. G.; Barnette, B. D.; Bird, C. A.; Johnson, J. M.; Kilduff, P. W.; 
Schipani, S. P.; Swoboda, J. C.; Wojciechowski, J. Q.; Tillman, B. W.; Ensing, A. R.; 
Archer, S. G.; Archer, R. D.; Plott, B. M.  Cohost (Computer Modeling of Human Operator 
System Tasks) Computer Simulation Models to Investigate Human Performance Task and 
Workload Conditions in a U.S. Army Heavy Maneuver Battalion Tactical Operations Center; 
ARL-TR-1994; U.S. Army Research Laboratory Human Research and Engineering 
Directorate:  Aberdeen Proving Ground, MD 21005.  DTIC ADA368587, 1999b. 

Middlebrooks, S. E.; Williges, R. C.  Experimental Design Interrogation of Network Simulation 
Models of U.S. Army Command and Control Centers.  In Proceedings of the 46th Annual 
Meeting of the Human Factors and Ergonomics Society (pp. 458-462). Baltimore, MD:  
HFES, 2002. 

Najemnik, J.; Geisler, W. S.  Optimal Eye Movement Strategies in Visual Search.  Nature 2005, 
434, 387-391. 

Plott, B.  Software User's Manual For:  C3TRACE (Command, Control and Communication - 
Techniques for Reliable Assessment of Concept Execution); U.S. Army Research Laboratory, 
Human Research and Engineering Directorate: Aberdeen Proving Ground, MD, 2002. 

Plott, B.; Quesada, S.; Kilduff, P.; Swoboda, J.; Allender, L.  Using an Information-Driven 
Decision Making Human Performance Tool to Assess U.S. Army Command, Control, and 
Communication Issues.  In Proceedings of the Human Factors and Ergonomics Society's 
48th Annual Meeting, September 20-24, 2004 (pp. 2396-2400). New Orleans, LA: HFES, 
2004. 



23 

Salas, E.; Morgan, B. B., Jr.; Glickman, A. S.; Woodard, E. A.; Blaiwes, A. S.  Measurement of 
Team Behaviors in a Navy Training Environment; NTSC TR-86-014; Human Factors 
Division, Department of the Navy.  DTIC ADA185237, 1986. 

Schunk, D.; Plott, B.  Use of Discrete Event Simulation to Model Human Performance.  In 
Proceedings of the Human Factors and Ergonomics Society's 48th Annual Meeting, 
September 20-24, 2004 (pp. 2126-2130). New Orleans, LA:  HFES, 2004. 

Sondik, E. J.  The Optimal Control of Partially Observable Markov Processes.  Unpublished 
Dissertation, Stanford University, Stanford, California, 1971. 

Tjan, B. S.; Braje, W. L.  Human Efficiency for Recognizing 3-D Objects in Luminance Noise.  
Vision Research 1995, 35 (21), 3053-3069. 

Tjan, B. S.; Legge, G. E.  The Viewpoint Complexity of an Object Recognition Task.  Vision 
Research 1998, 15 (16), 2335-2350. 

Trommershäuser, J.; Gepshtein, S.  Optimal Compensation for Changes in Effective Movement 
Variability.  Nature Neuroscience Under Review, 2004. 

Wojciechowski, J. Q.; Plott, B.; Kilduff, P.  Human Performance Model Development of a 
Battalion Tactical Operations Center; ARL-TR-2635; U.S. Army Research Laboratory, 
Human Research and Engineering Directorate:  Aberdeen Proving Ground, MD, 2005. 

 

 

 
 



24 

NO.  OF 
COPIES ORGANIZATION 
 
 1 DEFENSE TECHNICAL 
 (PDF INFORMATION CTR 
 ONLY) DTIC OCA 
  8725 JOHN J KINGMAN RD 
  STE 0944 
  FORT BELVOIR VA 22060-6218 
 
 1 US ARMY RSRCH DEV & ENGRG CMD 
  SYSTEMS OF SYSTEMS 
  INTEGRATION 
  AMSRD SS T 
  6000 6TH ST STE 100 
  FORT BELVOIR VA  22060-5608 
 
 1 INST FOR ADVNCD TCHNLGY 
  THE UNIV OF TEXAS AT AUSTIN 
  3925 W BRAKER LN STE 400 
  AUSTIN TX 78759-5316 
 
 1 THE UNIV OF TEXAS AT AUSTIN 
  DEPT OF PSYCHOLOGY 
  ATTN  B STANKIEWICZ 
  1 UNIVERSITY STN A8000 
  AUSTIN TX  78712-0187 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  IMNE ALC IMS 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL CI OK TL 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 2 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL CS OK T 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 3 US ARMY NATICK SOLDIER CTR 
  ERGONOMICS TEAM/SSTD 
  ATTN  J B SAMPSON 
  100 KANSAS ST 
  NATICK MA  01760-5020 
 
 1 RDECOM-NATICK SOLDIER CTR 
  MANAGEMENT TEAM/PEO SOLDIER/PM 
  FUTURE FORCE WARRIOR TECH PRO OFC 
  ATTN  C FITZGERALD 
  100 KANSAS ST 
  NATICK MA  01760-5020 

NO.  OF 
COPIES ORGANIZATION 
 
 1 RDECOM-NATICK SOLDIER CTR 
  HUMAN PERF/MANPRINT/SSI LEAD 
  FUTURE FORCE WARRIOR TECH PRO OFC 
  ATTN  C L BLACKWELL 
  100 KANSAS ST 
  NATICK MA  01760-5020 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR M  DR M STRUB 
  6359 WALKER LANE SUITE 100 
  ALEXANDRIA VA 22310 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MA  J MARTIN 
  MYER CENTER  RM 2D311 
  FT MONMOUTH  NJ  07703-5630 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MC  A DAVISON 
  320 MANSCEN LOOP STE 166 
  FT LEONARD WOOD  MO  65473-8929 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MD  T COOK 
  BLDG 5400 RM C242 
  REDSTONE ARSENAL AL  35898-7290 
 
 1 COMMANDANT USAADASCH 
  ATTN ATSA CD 
  ATTN AMSRD ARL HR ME MS A MARES 
  5800 CARTER RD 
  FT BLISS TX 79916-3802 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MI  J MINNINGER 
  BLDG 5400 RM C242 
  REDSTONE ARSENAL AL  35898-7290 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MM DR V RICE 
  BLDG 4011 RM 217 
  1750 GREELEY RD 
  FT SAM HOUSTON TX 78234-5094 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN  AMSRD ARL HR MG  R SPINE 
  BUILDING 333 
  PICATINNY ARSENAL  NJ  07806-5000 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MH  C BURNS 
  BLDG 1002  ROOM 117 
  1ST CAVALRY REGIMENT RD 
  FT KNOX  KY  40121 
 



25 

NO.  OF 
COPIES ORGANIZATION 
 
 1 ARMY RSCH LABORATORY - HRED 
  AVNC FIELD ELEMENT 
  ATTN AMSRD ARL HR MJ D DURBIN 
  BLDG 4506 (DCD) RM 107 
  FT RUCKER  AL  36362-5000  
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MK MR J REINHART 
  10125 KINGMAN RD 
  FT BELVOIR VA 22060-5828 
 
 20 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MV HQ USAOTC 
   S MIDDLEBROOKS 
  91012 STATION AVE  ROOM 111 
  FT HOOD TX  76544-5073 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MY  M BARNES 
  2520 HEALY AVE STE 1172 BLDG 51005 
  FT HUACHUCA AZ  85613-7069 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MP  D UNGVARSKY 
  BATTLE CMD BATTLE LAB 
  415 SHERMAN AVE UNIT 3 
  FT LEAVENWORTH KS  66027-2326 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR M DR B KNAPP 
  ARMY G1 MANPRINT DAPE MR 
  300 ARMY PENTAGON ROOM 2C489 
  WASHINGTON DC 20310-0300 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MJK MS D BARNETTE 
  JFCOM JOINT EXPERIMENTATION  J9 
  JOINT FUTURES LAB 
  115 LAKEVIEW PARKWAY SUITE B 
  SUFFOLK VA  23435 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MQ M R FLETCHER 
  US ARMY SBCCOM  NATICK SOLDIER CTR  
  AMSRD NSC SS E   BLDG 3 RM 341 
  NATICK  MA  01760-5020 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MT DR J CHEN 
  12350 RESEARCH PARKWAY 
  ORLANDO FL 32826-3276 
 
 
 
 

NO.  OF 
COPIES ORGANIZATION 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MS MR C MANASCO 
  SIGNAL TOWERS  RM 303A 
  FORT GORDON  GA  30905-5233 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MU  M SINGAPORE 
  6501 E 11 MILE RD MAIL STOP 284 
  BLDG 200A 2ND FL RM 2104 
  WARREN  MI  48397-5000 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MF MR C HERNANDEZ 
  BLDG 3040  RM 220 
  FORT SILL  OK  73503-5600 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MW  E REDDEN 
  BLDG 4  ROOM 332 
  FT BENNING  GA  31905-5400 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN  AMSRD ARL HR MN  R SPENCER 
  DCSFDI HF 
  HQ USASOC BLDG E2929 
  FORT BRAGG  NC  28310-5000 
 
 1 US ARMY CECOM-NVESD 
  ATTN  AMSEL RD NV LWD  D MOODY 
  10221 BURBECK RD 
  FORT BELVOIR  VA  22060-5806 
 
  ABERDEEN PROVING GROUND 
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL CI OK  TECH LIB 
  BLDG 4600 
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL CI OK  S FOPPIANO 
  BLDG 459  
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN AMSRD ARL HR MR  F PARAGALLO 
  BLDG 459 
 
 
 


