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ABSTRACT 
 
 
 

In support of future NASA asteroid sample return missions, this thesis examines 

strategies to reduce the number of feasible asteroid targets.  Reachable sets are defined 

in a reduced classical orbital element space.  The boundary of this reduced space is 

obtained by extremizing a family of convex combinations of orbital elements.  The 

resulting group of optimization problems is solved using a direct collocation 

pseudospectral technique by a MATLAB application package called DIDO.  The 

reachable sets are examined to narrow the possible valid asteroid choices in order to aid 

in mission design and analysis of alternative targets.  A solar electric propulsion system is 

modeled with optimal stay times at each asteroid, Earth departure, and Earth 

arrival hyperbolic excess velocities implemented as constrained optimization parameters.  

For choosing rendezvous and return mission candidate asteroids, the use of the outer 

approximation limits the feasible target quickly by an order of magnitude in a given 

mission. 
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I. INTRODUCTION  

A. MULTIPLE ASTEROID SAMPLE RETURN MISSIONS 
Since the last Apollo mission in the 1970’s, only NASA’s Genesis mission has 

returned extraterrestrial samples to Earth for analysis.  Recently, several missions have 

been planned or launched that intend to return material from planets, asteroids, and comet 

tails with the availability of more efficient propulsion systems.  Largely due to the 

success of Deep Space 1, low thrust ion and Hall engines are now feasible technologies 

for interplanetary missions.  However, with the increase efficiency and performance of 

these thrusters comes increasingly difficult mission planning objectives.  Unlike ballistic 

trajectories, continuous thrust capable missions are much more complex to plan and 

generally do not have closed form solutions.  However, even though these missions have 

been studied for well over 40 years [Ref. 1], the additional complexities of mission 

planning for multiple rendezvous targets with a return to Earth provides ample subject for 

research.   

Finding an optimal low thrust trajectory between Earth and an asteroid can be 

formulated as a two-point boundary value problem (TPBVP) [Ref. 2].  Finding an 

optimal trajectory to return a sample to Earth is also a TPBVP, however to solve both 

trajectories simultaneously is more difficult, but can be done with application of indirect 

or direct optimization methods.  Indeed, if one can simultaneously solve for larger series 

of optimal trajectories, then some basic mission planning for a multiple asteroid sample 

returns can be completed.  However, in the real world, the problem is rarely given as just 

finding an optimal trajectory to reach several pre-selected asteroid targets and return the 

samples to Earth.  Since there are over 3000 asteroids with a perihelion distance less than 

1.5 AU from which to choose, the problem is to find which asteroids can be reached with 

a given fuel loading.  The number of feasible asteroids is maximized if fuel optimal 

trajectories can be found to reach them and return.  Anything is possible given enough 

money, but real world spacecraft missions have a budget limit and thus a fuel limit. 

Identifying all reachable targets for a given mission is important to conduct 

analysis of alternative missions and contingency planning in case a launch window is 
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missed the original targets are no longer desirable.  This also reduces the number of 

feasible targets to select for possible missions based on size, type, or other scientific 

value.  Finding the “reachable set” of possible asteroid targets for a two sample return 

mission is the focus of this thesis.   

B.   FUEL LIMITED OPTIMAL TRAJECTORIES 
The primary goal in nearly every aspect of interplanetary spacecraft mission 

design is to minimize the fuel required to achieve the mission objectives.  This, in turn 

provides for the lowest mission cost and highest scientific payload capacity.  Although, 

minimizing the overall mission time can be a significant manpower cost savings, this is 

usually a secondary concern.  Since many endeavors are limited by budgets, unlike the 

Apollo program, this monetary limit can be directly linked to available launch vehicles, 

spacecraft mass and thus available fuel.  Usually through an iterative concept or mission 

design process general spacecraft parameters can be determined before any optimization 

is completed in the actual mission planning.  Thus, for this thesis NASA’s Jet Propulsion 

Laboratory (JPL) has provided a given set of mission parameters.   

The trajectories displayed or discussed herein will be trajectories to extremize 

(maximize and minimize) the domain of possible rendezvous orbits.  These rendezvous 

orbits will be characterized by the semi-major axis (a), eccentricity (e), and inclination (i) 

in heliocentric inertial coordinates.  This reduced set of classical orbital elements 

describes a manifold in space that represents the basis of initially calculating the amount 

of fuel required to transfer from one manifold to another.  This disregard for the actual 

position of a target asteroid at a given time, or phasing, ensures the mission can be 

formulated as a continuous optimization problem and to not introduce discrete integers 

that would require hybrid optimization methods.  Thus, any asteroid located inside a 

reachable set will be a feasible target at some time in the orbit, but not for all time.  Any 

phasing problems and specific optimal trajectories must be computed after selecting 

available targets inside of the reachable sets. 

C. OTHER SOLUTION METHODOLOGIES 
Of course there are other ways to reduce the domain of possible target sets in 

order to conduct mission planning.  The first way is by brute force of computational 

power.  For example, a search of JPL’s Database of Asteroids and Comets (DASCOM) in 
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October of 2003 found 3072 asteroids with a perihelion distance less than 1.5 AU.  Given 

a two asteroid sample return mission, each of the almost 9.5 million combinations of 

optimal trajectories must be calculated to find the best one.  This number of missions 

doubles to almost 19 million if there is no decision to return the samples together after 

collecting them or to drop each off at Earth after collection to mitigate risk.  If a good 

educated guess can be made to limit the inclination and minimum size of the asteroid, this 

number of possible targets can be reduced to about 4001.  This still leaves 160,000 

missions to compare.  Lastly, this methodology becomes unusable when the number of 

asteroids to be visited to increased from two.  Just adding one more asteroid in the above 

scenarios increases the number of missions to 58 billion and 127 million respectively. 

Another method is to treat this problem similar to a traveling salesman problem.  

This is a classical optimization problem to find the sequence of “cities” for a salesman to 

visit to minimize a cost variable, typically time.  However, in this instance the fuel cost to 

travel between cities is unknown, so would need to be initially estimated.  This method 

introduces discrete variables, i.e. the “cities” or asteroid orbits, and changes the nature of 

the problem to a mixed-integer nonlinear programming problem or MINLP.  This method 

would depend on the accuracy of the V∆ approximation for the fuel cost for the transfer 

between each asteroid. 

The final method would be to develop a method to solve a hybrid optimal control 

problem with integer decision variables, nonlinear dynamics, and discrete targets to find 

the optimal sequence, corresponding trajectories and maximum number of dynamic 

targets that could be visited for a given amount of fuel.  This problem has not yet been 

solved and constitutes one of the grand challenges in mathematics. 

 

 

 

 

 
                                                 

1 Based on assumptions given by JPL and then used to filter DASCOM asteroid database listed at 
http://ssd.jpl.nasa.gov/dastcom.html in March 2003. 
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II. PROBLEM FORMULATION AND OPTIMAL SOLUTIONS  

A. POLAR COORDINATE FRAME 
A two-dimensional heliocentric polar coordinates frame, represented in Figure 1, 

will be used throughout this thesis and in all optimizations problems.  This is convenient 

for low thrust trajectories since the transfer angle, or angular displacement state 

represented by the Greek symbol for nu, ν , is continually and steadily increasing from 

the starting value.  Interplanetary low thrust missions typically consist of multiple 

revolutions and a quick look at the polar states can indicate which revolution and at what 

radius an event occurs.  More importantly, the position states will vary slowly over the 

entire mission.  In a Cartesian coordinate frame, the position states would be much more 

sinusoidal in nature and typically more difficult for discrete optimization methods to 

model without a higher corresponding number of discretization points and the associated 

computing time to prevent aliasing problems.  Other coordinate elements, such as 

equinoctial elements, can provide a set of singularity-free slowly changing variables, but 

were not used largely due to the difficulty in finding errors in each problem mathematical 

definition and results since they have little direct physical interpretation. 

 
Figure 1 Polar Coordinate Frame 
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B. EQUATIONS OF MOTION 

Using the above polar coordinates, the state vector [ , , , , ]T
r tr v v mυ=x  describes 

the spacecraft position, velocity, and mass states.  The spacecraft control vector 

is [ ], TT θ=u , which describes the engine thrust magnitude and the angle from the local 

horizontal in which it is applied.  The equations of motion are expressed as the 

function ( , )=x f x u�  as follows: 
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⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −
⎢ ⎥⎢ ⎥ ∗⎣ ⎦ ⎣ ⎦

�

�

� �

�

�

x  (1-5) 

where 
r ≡ radial distance from sun 
υ ≡ transfer angle or angular displacement 
vr ≡ radial velocity component 
vt ≡ transverse velocity component 
m ≡ vehicle mass 
µ ≡ gravitational parameter of sun 
T ≡ thrust magnitude 
θ ≡ thrust direction angle from local horizontal 
Isp ≡ specific impulse of engine 
go ≡ gravity constant at Earth surface 

This dynamics model is a two-dimensional, two-body (sun and spacecraft) system 

with a 1/r2 gravity assumption.  Third body gravity interactions or Earth atmospheric drag 

is not included in Equations 1 through 5.  However, specific events such as propellant 

used at the asteroid, stay times at the asteroid, drop mass of sample at Earth flyby and 

Earth gravity assists are handled by the optimization routine as discrete events and it is 

not necessary to include them in the continuous equations of motion.  The gravitational 

Sphere of Influence (SOI) for planets in the inner solar system and the moon are 



7 

relatively small compared to the scale of the system [Ref. 3].  For a reference, the SOI for 

Earth extends to just 6 thousandths of the average distance from the Earth to the Sun, or 1 

AU.  Thus, Earth and asteroids are just represented as point masses. 

Even though three-dimensional trajectories are not optimized in this thesis, the 

utility of the developed methodology apply to higher fidelity dynamical models.  Robert 

Stevens [Ref. 4] previously showed that the specific optimization code used, called 

DIDO, can simultaneously optimize the interplanetary extremely low-thrust rendezvous 

trajectory and return trajectories in all three dimensions, even with varying stay times at 

the target.  Purposefully, the real effort was to develop methodologies in accurately 

determining reachable sets and not in finding the highest fidelity model possible to plan a 

specific low thrust trajectory. 

C. MISSION MODEL 
A baseline of mission parameters where established by JPL.  These parameters 

where:     

• Spacecraft dry mass 

• Power available at spacecraft end of life  

• Engine selection 

• Launch vehicle 

• Earth departure hyperbolic excess velocity (C3) 

• Stay time at each asteroid 

• Maximum Earth flyby velocity (V ∞  at arrival) 

• Minimum and Maximum Earth flyby altitude 

• Propellant used for sample collection activities at each asteroid 

• Sample drop mass at Earth returns  

• Engine duty cycle to facilitate communications 

• Maximum total mission time 
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As previously stated, the purpose is not to figure out how much fuel is needed to return 

two samples to Earth from given targets, but to find which asteroids are feasible options, 

given a set of mission parameters.  The fuel budget is driven by the spacecraft design and 

launch vehicle selection that is primarily determined by the available budget.  

Additionally, some of the above baseline parameters were chosen given acceptable 

ranges and the final values were determined by the optimization code.  These 

opportunities to have a higher fidelity model will be explained in later chapters.   

D. LAUNCH VEHICLE MODEL 
For a given launch vehicle a tradeoff can be made between propellant mass and 

the characteristic energy, most commonly know as C3.  The C3 defines the energy with 

which a spacecraft leaves a planet’s SOI and is equal to the square of the velocity at 

“infinity”, or V∞, which is the velocity of the spacecraft in excess of the planet’s 

heliocentric velocity.  This tradeoff can be easily optimized in this formulation since the 

initial mass and velocities are states and can be adjusted.  The initial radial and transverse 

velocities of the spacecraft can be computed using Equation (7). 

 s
e

e

V
R
µ

=  (6) 

where 
Ve ≡ Velocity of Earth (approximated to be only in tangential direction) 
Re ≡ Earth radius to sun 

 ( )0 0

2
2 2 2

3 r t eC V v v V∞= = + −  (7) 

This tradeoff can be done is in two ways.  The DIDO optimization code can 

interpolate between neighboring values in the table or a continuous polynomial function 

can be created to represent the table.  The spacecraft has a dry mass where there is no 

more fuel to trade off and thus the minimum C3, 0 km2/s2, and maximum C3, 

approximately 10 km2/s2 [Ref 5].   In practice, since the C3 is related to spacecraft mass 

and this can change in each iteration until an optimal result is found, it saves 

computational time and stability to fit the launch vehicle data into a 5th order polynomial 

using the MATLAB “polyfit” function and then using the simple corresponding  
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“polyval” function in each iteration than doing a table interpolation with “interp1”.  Thus 

the relationship between the initial spacecraft mass and velocity states can be written as 

[Ref. 6]: 

 
0 0 0 0 0 0 0

5 4 3 2 2
5 4 3 2 1 0 30.18

2

+ t r
kmp m p m p m p m p m p v
s

ν⎛ ⎞+ + + + + = −⎜ ⎟
⎝ ⎠

 (8) 

where 
pi ≡ ith polynomial coefficient of launch vehicle performance 
m0 ≡ initial propellant mass of spacecraft determined during optimization 

For the work shown in this thesis, the launch vehicle model was not truly accurate 

but approximates within +/- 15% of a Delta II’s estimated performance.   

E. SPACECRAFT PROPULSION MODEL  
All the low thrust trajectories presented in this thesis use a Solar Electric 

Propulsion (SEP) propulsion engine model, specifically the NASA Solar electric 

propulsion Technology Applications Readiness (NSTAR) system.  The electric power 

available to the engine from the power processing unit is a function of the solar array 

design, range to the sun, and solar array degradation model with time.  This range of 

available electric power corresponds to a range of thruster performance characterized by 

efficiency, mass flow rate, specific impulse, and thrust.  Also, due to the component 

designs in the SEP engine there is a hard minimum and maximum possible thrust of 19 

and 92 mN’s respectively.  Parametric models, similar to those used in the Solar-Electric 

Propulsion Trajectory Optimization Program (SEPTOP) [Ref.s 5,6] were implemented to 

model the NSTAR performance (model Q).  In order to compute the maximum power 

available to the thrusters, first the power available from the solar panel is computed in 

Equation (9) by multiplying the polynomial models for time (radiation) degradation and 

range to sun by the reference power for the Gallium Arsenide solar array panel.  The 

distance to sun is not simply an inverse square law partly because solar panel output 

decreases as the temperature of the solar panel increases [Ref.s 5,6]. 

 ( )3

32
1 3

0 1 2 42 2
4 5

1
1

tcons t

gagaga
r rP P tcons tcons e tcons t

ga r ga r r

⎡ ⎤+ +⎢ ⎥
= + +⎢ ⎥+ +⎢ ⎥

⎣ ⎦

ii i i i
i i

 (9) 
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where 

P ≡ power available from the solar array 
P0 ≡ reference power at 1 AU and at beginning of life 
gax ≡ solar array distance model coefficients  

≡ {1.320770, -0.108480; -0.116650, 0.108430, -0.012790} 
tconsx ≡ solar array time degradation model coefficients 
r ≡ distance to sun 
t ≡ time 

Once power available from the solar array is calculated, the spacecraft’s 

housekeeping power is subtracted to leave the power available to the propulsion unit, as 

in Equation (10).  

 e hP P P= −  (10) 

where 
Pe ≡ power of spacecraft available to propulsion units 
Ph ≡ housekeeping power requirements 

This power available to the engines can be higher than the maximum power it was 

designed handle since most solar arrays are designed to provide the minimum acceptable 

power at end of life.  Also, there is a minimum power required to run the power 

processing functions and set up the required electric field to acceleration the Xe ions.  

Thus, real constraints on the Pe minimum and maximum must be applied. 

  
min maxe e eP P P≤ ≤  (11) 

Due to the pointing angles required for communications, many spacecraft with ion 

engines do not thrust and communicate at the same time.  Thus, a duty cycle assumption 

of the engines was determined to be 95% to allow and average of 5% of the time to be 

used for communications.  Since the thrust arcs are measured in months and years, this 

can be just thought of as efficiency factor and exactly when the communications occur is 

not a large source of overall error.  Now thrust (T) and mass flow rate ( m� ) can be 

calculated by the following fifth order polynomial models and the specific impulse (Isp) 

can be found by [Ref. 6]: 

 ( )2 3 4
1 2 3 4 5 _e e e eT ct ct P ct P ct P ct P duty cycle= + + + +i i i i i  (12) 

 ( )2 3 4
1 2 3 4 5 _e e e em cm cm P cm P cm P cm P duty cycle= + + + +� i i i i i  (13) 
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0

sp
TI

g m
=

�i
 (14) 

where 
m�  ≡ mass flow rate 
ctx ≡ thrust coefficients for engine model (mN) 
 ≡  {0.26673e2; -.52301e2; .91639e2; -.3719e2; .52301e1} 
cmx ≡ mass flow rate coefficients for engine model (g/s) 
 ≡ {0.25057e-5; -0.53539e-5; 0.62509e-5; -0.25364e-5; 0.36983e-6} 

However, in reality the first simulations of spacecraft missions tend to precede 

detailed design of the spacecraft and crucial components, such as solar arrays.  Since 

solar cell performance is constantly improving, the latest generation of cells is not wholly 

characterized for degradation over time in radiation environments and this means a 

simpler form of Equation (9) is required.  Since the tcons could not be provided by JPL, 

the known end of life power for solar array can be substituted for multiplying the 

reference solar array power by a degradation model.  Also, one difficulty with using 

polynomial-parametric models is that they can have more error at the maximum and 

minimum points.  For instance, in Equations (12) and (13), it can be easily seen that for a 

zero Pe value, the result is a non-zero value for T, m� , and Isp.  This requires some 

additional steps to ensure if Pe = 0, then T, m� , and Isp = 0.  Also, as can be seen in Figure 

2 on the lower left mass flow rate graph, the slight dip around 1.9 AU is not a real engine 

artifact, but a polynomial modeling error. 
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Figure 2 NSTAR Performance Model Using End-of-Life Power Vice Radiation 

Degradation  
 

Obviously, distance to the sun is the driving factor in the Ion Engine performance.  

However, since the a vs. e domain, or a 2-dimensional orbital element domain, will be 

extensively used throughout this thesis, the thrust performance is plotted in that domain 

in Figure 3.  Since in an elliptical orbit ( 0e ≠ ), the distance to the sun will vary from the 

perihelion range to the aphelion range of that orbit, the minimum and maximum available 

thrust varies and is referenced to as “best case” and “worst case”.  For example this graph 

clearly shows for this engine and solar array in an orbit with a = 1.5 and e = 0.3, the 

available thrust can be the engine’s maximum at periapsis, but is zero at apoapsis.  Thus, 

one could expect a coast phase in this orbit until the required engine performance is 

available to optimally maneuver the spacecraft.  An artifact of the 5th order polynomial 

model mentioned previously near the minimum power points results in the artificial stair-

step curves plotted in Figure 3. 

Although not a subject for this thesis, this kind of plot can be used to balance the 

size of the solar array with the maximum range, fuel, or mission length of a vehicle.  If Pe 
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is larger, then for the orbit in the previous example, the coast phase could be smaller and 

thus the total mission time would likely be reduced.  An iterative systems engineering 

process can be done if a reachable target is near the lower thrust contours and thus any 

rendezvous could not be achieved near aphelion of the target.  
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Figure 3 NSTAR Thrust Contours for Apoapsis and Periapsis Conditions (in mN) 

 

F. OPTIMAL CONTROL PROBLEM FORMULATION 
The reachable sets will be constructed by solving multiple dynamic optimization 

problems where the objective function (J), also called the cost function or performance 

index, is extremized.  A trajectory, or state-control function pair, results from solving for 

the maximum or minimum of an objective function is subject to a set of constraints to 

include the system’s dynamical equations of motion.  A generalized representation of this 

performance index, or cost function, is given by [Ref. 7]:  
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 ( ) ( )
0

0 0 0, , , ( ), ( ), , ( ), ( ),f

f f fJ E F d
τ

τ
τ τ τ τ τ τ τ τ τ τ⎡ ⎤ = +⎣ ⎦ ∫x u x u x u  (15) 

where 

0

 state variables (vector)
 control variables (vector)
 initial time
 final time

 Event cost called Mayer Cost
 Running cost or integral cost called Lagrange Cost

f

E
F

τ
τ

≡
≡
≡
≡

≡
≡

x
u

 

An “event” is the general term for any constraint, condition, or time that is at a 

boundary point or interior knots.  In DIDO a knot is any point in a trajectory, or node, 

where constraints or conditions on the problem are imposed.  Thus, the event times, eτ , 

can be at any interior point, 0 e fτ τ τ≤ ≤ .  The even cost term, E, is commonly referred to 

as Φ  in many papers and texts in optimal control theory [Ref. 2].  If used alone in the 

cost function, J, then the cost function can be termed as a Mayer Cost.  This is the form 

that will be typically be used in throughout this thesis.  The integral cost term, F, is 

commonly referred to as, L, in most papers and texts in optimal control theory and if used 

alone to define the performance index, then J can be called simply a Lagrange Cost.  

When both terms are used together, then the performance index is considered a Bolza 

Cost function. 

The constraints for which the optimal solution of state-control function pairs must 

satisfy, includes the dynamic constraints such as Equations (1-5), 

 ( ) ( ( ), ( ), )τ τ τ τ=x f x u�  (16) 

the event constraints at end points and interior points, 

 0 0( ( ), ( ), ( ), , , )l e f e f ue e x x x eτ τ τ τ τ τ≤ ≤  (17) 

and the path constraints over the entire trajectories. 

 ( ( ), ( ), )l uh h x u hτ τ τ≤ ≤  (18) 

Path constraints are imposed across every node, such as thrust limits, vice event 

constraints that occur at specific points.  Both LCDR Scott Josselyn and LCDR Robert 
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Stevens [Ref. 4,8] give clear explanations and examples of using these concepts in their 

theses.   

If the path constraints only limit the value of a state or control between the two 

endpoints of a solution, then those path constraints can be more simply written as: 

 ( )l ux x xτ≤ ≤  (19) 

 ( )l uu u uτ≤ ≤  (20) 

This type of path constraint is call a box constraint since it simple bounds the valid values 

for each state or control that is constrained in this manner.  For example the a thrust 

direction can be constrained by 0 ( ) 2θ τ π≤ ≤ , however, using a SEP engine required a 

more complicated function where the thrust can not be as simply stated in one inequality 

constraint.  Thus the path constraint for a high fidelity engine model must be a function, 

( ( ), )ih x τ τ . 

 Using Equations (16), (17), and (18) nearly all smooth dynamic optimization 

problems can be formulated in mathematical terms to be solve analytically or 

numerically. 

G. OPTIMAL CONTROLS SOLUTION METHODS 
Numerical optimal control solvers can be generally classified into two categories, 

indirect and direct methods.  Indirect methods use Euler-Lagrange differential equations 

and Pontryagin’s Minimum Principle2 (PMP) to formulate a complete set of state and 

costate dynamics and then discretize the system to solve for an optimal control history 

based on satisfying the first and second order optimality conditions.  Direct methods 

transcribe an optimal control problem into a nonlinear programming problem (NLP) 

without using PMP or adjoint equations.  NPLs are simply static optimization problems 

where the performance index or constraints are nonlinear functions [Ref. 9]. 

The problems presented here will be solved with a MATLAB application package 

created at the Naval Postgraduate School called DIDO that uses a pseudospectral method 
                                                 

2 This theory was actually derived with the value of the Hamiltonian (H) to be of the opposite sign, 
which is common in classical literature.  Thus the theorem is also called Pontryagin’s Maximum Principle, 
which is the same as a minimum principle when H is defined with a positives sign as in modern western 
literature. 
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to solve smooth and non-smooth hybrid dynamic optimization problems.  The state and 

control functions are discretized and collocated using Legrendre-Gauss-Labatto (LGL) 

points creating a carefully selected non-uniform grid between boundary points and/or any 

interior points.  The solution method used by DIDO is based on pseudospectral 

approximation and “is significantly different from prior methods used to solve such 

problems and hence the code is a realization of a fundamentally new way of rapidly 

solving dynamic optimization problems.”  [Ref. 7]  The resulting NLPs are large-scale 

and sparse so that only a small percent of the elements are nonzero.  Thus SQP solvers 

such as SNOPT, which can be used by DIDO, can solve sparse problems over one 

hundred times faster than standard “dense” SQP methods [Ref. 10].  Thus, DIDO has 

proven to be a very robust and efficient optimization program that generally only requires 

crude guesses.  Also, for problems without interior points, the costate dynamics can be 

approximated to demonstrate the optimality of the solution through DIDO’s 

implementation of the Covector Mapping Theorem [Ref.s 5,11].  

H. OPTIMALITY 
The optimization process defines what is know as the “Hamiltonian” of the 

problem by combining, or “adjoining”, the integral cost function in Equation (15) with 

the state dynamics in Equation (16) by use of Lagrange multipliers, λ .  [Ref. 2] 

 ( ) ( ) ( )( ) ( ) ( )( ), , , ; , , ; , , ;H Fτ τ τ τ τ τ τ≡ + Tx u λ p x u p λ f x u p  (21) 

where 
 parameters (non-state, non-controls variables or constants)≡p  

These Lagrange multipliers are known as costates, or adjoints, and have and their 

own dynamics of, 

 H F∂ ∂ ∂⎛ ⎞− = ≡ + ⎜ ⎟∂ ∂ ∂⎝ ⎠

Tfλ λ
x x x

�  (22) 

and from Equation (22) it can be easily seen that the number of costates is equal to the 

number of states.  The transversality condition for the costate dynamics provides 

boundary conditions on the costate dynamics, given by; 

 ( )  and  ( )o f
o f

E Eτ τ∂ ∂
= − = −

∂ ∂
λ λ

x x
 (23) 
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where 
 = Augmented Events Funtion

 Lagrange multipliers for event contraints
E E σ
σ
≡ +
≡

e
 

or if the problem leaves time as a free variable then, 

 
( ) ( )

( ) 0f f
f

f f

E e
H

τ τ
τ

∂ ∂
+ + =

∂ ∂
Tσ

x x
 (24) 

This new point cost uses another set of Lagrange multipliers,υ , to adjoin event 

constraints to the Event Cost, E.  Now applying PMP to find necessary conditions for 

optimality, we also need, 

 00,     f
H t t t∂

= ≤ ≤
∂u

 (25) 

and, 

 
2

2 0H∂
≥

∂u
 (26) 

Equations (22), (23), and (25) are also known as the Euler-Lagrange equations in the 

calculus of variations [Ref.s 2,11].  Equation (26) is the second order condition for 

optimality and requires that the Hessian of the Hamiltonian is positive semi-definite. 

However, if path constraints exist then an Augmented Hamiltonian must be 

formed, which adds the path constraints, h, to the Hamiltonian by another set of Lagrange 

multipliers, µ , such as: 

 ( ) ( ) ( ), , , , ; , , , ; , , , ;H H Fτ τ τ≡ + = + +T T Tx u µ λ p x u λ p µ h x u µ p λ f µ h  (27) 

Now, the optimal control vector values, *u  is found by minimizing H with respect 

to the control argument, u , such that U⊂u , where U is the domain of the control vector 

with respect to all the path constraints, or 

   min  wrt , such that ( , , )lower upperH τ≤ ≤ u h h x u h  (28) 
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This is the full, generalized form required with inequality constraints on the path. 
1. Local and Global Optimality 
The Hamiltonian may be a very complex function with local minimums and 

maximums.  For each local minimum that satisfies all constraints, it will have a scalar 

cost function, J, value associated with that minimum.  Of course, even in a limited 

domain of U, where control values satisfy the path constraints, there can be a huge 

number of local minimums.  This leads into several problems for NLP optimization using 

numerical techniques.  First, during search strategies for these local minimums, the global 

minimum may not be found due to approximation errors in discretizing the problem or 

many other errors in optimization methods. Second, when comparing local minimums, 

the difference in cost between nearby solutions may be below the level of error in 

determining the cost.  Since, each local minimum solution, with its corresponding 

trajectory and control history, can satisfy the Euler-Lagrange equations and be locally 

optimum over a range of solutions, only can the simplest problem be solved for a globally 

optimal solution.  Thus, all trajectories herein will be considered locally optimal and not 

discount the existence of a better solution.  This is one reason why improving numerical 

techniques that provide the best approximation of the continuous system dynamics and 

other constraints with the least sensitivity to the initial guess of a solution is important. 

2. Checking Optimality of Solutions 

There are several properties of an optimal solution, i.e. *u  which minimizes H , 

that can be verified to check whether the DIDO output is indeed optimal.  H , known as 

the augmented Hamiltonian, or sometimes as the Lagrangian, must satisfy the Karush-

Kuhn-Tucker (KKT) theorem conditions below. 

 00,     f
H t t t∂

= ≤ ≤
∂u

 (29) 

 ( ) ( ( ), ( ), ) 0τ τ τ τ =Tµ h x u  (30) 

 

( )0
( )0

( )       ,where
( )0

i l

i u
i

l i u

l u

h h
h h

if
h h h

h hany

τ
τ

µ τ
τ

=≤⎧
⎪ =≥⎪= ⎨ < <=⎪
⎪ =⎩

 (31) 
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where 
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 i  Lagrange multiplier for i  path constraint

 i  path constraint

 lower constraint for i  path constraint
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u
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h

h

µ =

=

=

=

 

These KKT conditions are shown to be satisfied by constructing a switching 

function for each path constraint to demonstrate that Equation (31) is satisfied.  In the 

third case of Equation (31), where the constraint can be throttled between the extreme 

limits then at these times the augmented Hamiltonian is the same as Hamiltonian and thus 

Equations (29) and (25) are identical and Equation (26) can be verified to be true. 

Another verifiable condition of optimality is the check that the Hamiltonian is a 

constant for all time since [Ref. 11]:   

 given ( );H H≡ x,u,λ,τ p  

   now differentiating H with respect to time provides:  

 dH H H H H
dτ τ

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

T T T

λ x u
λ x u

� � �  (32) 

 and for *,  0 by PMP,H∂
=

∂
u

u
 

 Hand     H F ∂
= + ⇒ = =

∂
Tλ f f x

λ
�  

 Hand costate dynamics are  - ,  then by substitution∂
=
∂

λ
x

�  

 ( ) ( )0dH H H H
dτ τ

∂ ∂ ∂⎛ ⎞= + − + +⎜ ⎟∂ ∂ ∂⎝ ⎠

T
T Tλ λ u

λ λ
� � �  (33) 

 thus, dH H
dτ τ

∂
=
∂

 (34) 

Thus, if the Hamiltonian is not an explicit function of time, i.e. time is not a 

performance index or part of the dynamic constraints, then the Hamiltonian should be 
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equal to zero for all time.  If the problem is a minimum time problem, the Hamiltonian 

would be equal to –1 or some other constant if the problem is time constrained.   

To check these necessary conditions of optimality, the time history of the costates 

must be known.  Since direct optimization methods do not explicitly program the costates 

to be solved simultaneously with the state dynamics, the CMT can be used to derive these 

approximate values at the collocation points for analysis.  Currently, DIDO will provide 

the costates, ( )τλ , for problems without interior event constraints [Ref. 7].  Therefore, 

only the solutions from Part A of the methodology here will demonstrate the optimality 

of trajectories computed.  Future version of DIDO will provide the costates for problems 

with interior point constraints [Ref. 12]. 

3. Comparing Results with Known Optimal Solutions 
The first trajectory examined in this thesis will be a low thrust transfer from a 

circular Earth orbit (radius = 1 AU) out to the maximum circular orbit distance from the 

sun for a given amount of fuel.  This is a simple coplanar, circular-to-circular orbit 

transfer and optimal trajectories can be readily calculated.  A first order analysis can be 

done using Edelbaum’s [Ref. 13] analytical V∆ equation for constant acceleration circle-

to-circle transfers.  The algorithm assumes that thrust magnitude and spacecraft mass are 

both constant during the transfer and that the orbit remains or is forced to be circular after 

each revolution.  Given the initial and final circular orbit velocities and 0 114.59i< ∆ < ° , 

the initial thrust vector yaw angle is computed as: 

 0
0

sin
2tan

cos
2f

i

 
V i
V

π

β
π

∆⎛ ⎞
⎜ ⎟
⎝ ⎠=

∆⎛ ⎞− ⎜ ⎟
⎝ ⎠

 (35) 

This 0β  term is the angle between the thrust vector and the local horizontal direction.  

Then the total velocity change for the low-thrust orbit transfer is: 

 0 0
0 0

0

sincos
tan

2

VV V
i

ββ
π β

∆ = −
⎛ ⎞∆ +⎜ ⎟
⎝ ⎠

 (36) 
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For the coplanar transfer case, this simplifies to: 

 0 fV V V∆ = −  (37) 

Another simple verification is to compare the solution with the optimal Hohmann 

Transfer for impulse coplanar, circle-to-circle orbit transfers.  If time is not a constraint in 

the low-thrust optimal control problem, then one possible answer is a near infinite 

amount of very short pulses at perigee and in half a revolution another short pulse to re-

circularize the orbit in each revolution.  This would be a Hohmann approximation for a 

low thrust transfer.  The Hohmann Transfer can be computed as follows [Ref. 14]: 
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 (38) 

The first scenario later examined will be a simple coplanar orbit transfer 

trajectories to rendezvous with an asteroid and thus the previous two known optimal 

solutions can be reasonably compared with the result to again check the optimality of the 

DIDO computations. 

I. FEASIBILITY 
Another check of a solution of an optimal control problem is that the trajectories 

and control histories are feasible.  This means that the control histories can be applied to 

the starting point (states at initial boundary) and reach the end point (final boundary) 

using the system dynamics and meeting every constraint and event specified to a high 

degree of accuracy.  In other words, is the solution real and did it meet all the criteria 

specified. 

1. Propagating the Optimal Control History, u* 
Given an optimal control vector, u(t)*, these controls can be applied to the system 

dynamical constraints given in Equation (16), or the equations of motion and for the 

initial state vector, 0x , the trajectory should follow the state history predicted in the 

solution, ( )τx , and end up at the final state vector, fx .  If this is not true, then the 

solution is infeasible and not valid for the given control history.  Additionally, if any 
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constraints, such as upper or lower limits on states or controls or events, are not 

maintained then the solution is also not valid.  This is relatively straightforward since the 

solution and the dynamics all known and one must just check that the optimal controls 

can propagate to the desired, or given, final state.  The difficulty is to figure out how to 

propagate the Ordinary Differential Equations (ODEs) represented by Equation (16) and 

how to judge if the result is close enough to the state history predicted by the 

optimization code.  

The propagation methods used herein are described in more detail in Appendix A 

[Ref. 15].  They represent a broad spectrum of numerical theory to solve ODEs and are 

implemented in MATLAB.  However, any mathematical program should be able to 

implement and duplicate the results from any type of ODE solver chosen.  Since 

MATLAB has seven ODE solvers from which to choose, all are used to propagate the 

control histories and a total error is computed for each ODE solver.  Then the solver with 

the least error is selected to plot and analyze with the output of DIDO.  So far no single 

solver seems to be the best candidate to choose to propagate for all solutions.   

2. Error in a Propagated Solution 
Since any numerical solution is given in discrete values at discrete time intervals 

and only approximate a continuous solution, errors will be present.  Since exact analytical 

solutions are not existent for these problems, defining from what standard the error will 

be measured and how can be subject to some debate [Ref. 12].  Recall the purpose is to 

evaluate if the control history that the DIDO code determines to be optimal is in fact 

feasible and to also be determine which of the seven available ODE solvers is the best 

performing for a particular optimal control and state response.  Thus, we will consider the 

exact solution to be the DIDO result and evaluate each of the ODE propagated results to 

be approximates.  Thus, the Euclidean L2 integral root mean square (RMS) error norm is 

computed by: 

 ˆ
i i i= −e Ψ Ψ  (39) 
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where 
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Since the state and control history is evaluated at the LGL points the difference 

between the DIDO result and a propagated result RMS error is compared at these points.  

Figure 4 is a sample MATLAB script output generated from the error computation code: 

 

============================================== 
Propagator Performance in order best to worst 
============================================== 
State   Prop’r   Prop'r End   DIDO End   Total Error Norm 
------------------------------------------------------------------------------ 
  r       ode23tb  1.65  1.651  0.0207 
  r       ode23s  1.653  1.651  0.023 
  r       ode113  1.650  1.651  0.033 
  r       ode23  1.653  1.651  0.0491 
  r       ode23t  1.642  1.651  0.0816 
  r       ode45  1.643  1.651  0.142 
  r       ode15s  1.653  1.651  0.145 
ode23tb selected 

Figure 4 Error Comparisons 
 

The radial distance state is shown for example and from this comparison, the ODE solver 

23tb, a Runge-Kutta method where the first stage uses a trapezoidal rule step and the 

second stage is a backward differentiation, has the least accumulated error [Ref. 15].  

This ODE propagated result is then used for all other plots and analysis.  A different 

comparison between the available ODE solvers to examine the deviation between all 7 

ODE solutions to see which states vary the most between the different solvers.  This 

result is plotting in Figure 5 and the results are nearly identical for every simulation; the 

transfer angle, or true anomaly (in radians), has the most error than any other state.  Of 

course, the deviations are normalized by the maximum value in each of the state histories 

so that units are not a factor in this comparison. 
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Figure 5 State deviations between ODE solvers over time 

 

Finally, a typical trajectory that had a good feasibility check between the DIDO 

optimal solution and the best propagated solution can be seen in Figure 6.  In this figure, 

the circles represent 200 nodes where the DIDO optimization code computed for the 

optimal state history and the line is drawn from the propagated solution using the control 

history from DIDO.  When the line passes through the middle of the circle, this is the best 

result possible.  Small arrows are also plotted to represent the thrusting and direction.  

The total error is from the previous example and equal to 0.0207.   
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Figure 6 Good Feasibility Check between DIDO and Propagated solution 

 

A poor correlation between the DIDO result and propagated solution ensures that 

an error in the optimization code does not result in an optimal control history that is 

unexecutable.  Figure 7 shows an example where DIDO may return an answer, but it does 

not match the propagated solution and would typically violate boundary conditions or 

constraints.  Again, the circles are the DIDO solution and the line is the propagated 

solution.  In this case the total error is on the order of 10 or more and can easily be 

identified as not feasible and thus not optimal. 
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Figure 7 Not Feasible Solution 

 

The most difficult results to interpret were the solutions where the error turned out 

to be on the > 0.2 and < 1.5.  An example of this possibly feasible result is shown in 

Figure 8.  In cases such as these, there is typically better ways to formulate the problem.  

In this particular case, a “no guess” startup was used with 80 nodes.  This means that only 

the state start and endpoint guesses were made without even the benefit of reasonable 

assumptions (entered only since required by DIDO software).  For example the ending 

radius was guessed to be 5, when it turned out to be about 1.65, or over 200% off the 

mark.   
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Figure 8 Possibly Feasible Result 

 

Now, when the same problem is rerun with the this poor result starting and ending 

states “bootstrapped” into the guess of the next run, the result is much more favorable to 

determining feasibility.  Figure 9 shows the benefits of at least making a fair guess at the 

endpoints, even it there is no guess for the 78 nodes in the middle.  The runtime was 

reduced by over 28% by this simple act of having a good guess at the endpoint. 

Now if the entire state history of the “no guess” solution from Figure 8 is 

bootstrapped to an 80 point guess for rerunning the same problem, the result is shown in 

Figure 10.  Not only is the solution again easily recognizable as feasible, but the runtime 

is reduced by over 50% (from 4.2 minutes to 2.0 minutes).  This type of benefit to 

bootstrapping has led DIDO users, notably CAPT Jon Strizzi, to reduce the overall run 

time by first running a low node (about 20) “no guess” problem and then without any 

analyzing immediately bootstrapping the state and control history to the guess of an 80 

node trajectory optimization run.  Thus, DIDO can easily and automatically reduce the 

run time and still literally use a random number guess to initialize. 
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Figure 9 Feasible Result by Bootstrapping 

 
Figure 10 Feasible Result by using full Bootstrapping 
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Note that this is a case where there are many locally optimal solutions for this 

maximum radius optimal trajectory run.  Figure 6, Figure 8, Figure 9, and Figure 10 are 

the same problem with different trajectories that are optimal and reach the same final 

radius (1.65 AU); however the control histories are not the same. 

3. Check Results with Ideal Rocket Equation 
In order for the resulting trajectory to be feasible and optimal, then the fuel must 

be completely used and the total V∆  imparted on spacecraft can not exceed the 

theoretical maximum.  The Ideal Rocket Equation [Ref. 16] computes the maximum 

vehicle velocity change. 
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 (41) 

This can be compared to the total velocity change in a given trajectory by integrating the 

acceleration over the entire trajectory to ensure the two previously mentioned 

requirements are met.   
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Thus it is necessary, but not sufficient, that for a feasible and optimal solution the 

computed result of Equation (42) should be no more than and very close to the result of 

Equation (41).    

J. NON-DIMENSIONAL SCALING 
In general, solving optimal control problems becomes faster and more stable 

when setting up the problem with well-ordered numerics.  This statement is more or less 

true depending on the nature of the problem and solution methodology.  Additionally, the 

use of non-dimensional units many times helps with quickly understanding a problem.  

For instance, when compute a radial distance from the sun of 156,333,934 km it takes 

some effort to compare it to the Earth’s average distance from the sun of 149,597,870 

km.  However, if a distance unit is set where the radius of the Earth to the sun (Re) is 1 

distance unit, then our computational result would be an easily recognizable 1.045 

distance units.  In this simple example the distance unit coincides with the definition of 

Astronomical Units (AU).  With computers, simple conversions can be done and displays 
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can be manipulated to show results in any format desire, thus the really need of non-

dimensionalization is due to the numerical stability in the result.   

For any set of new basic units, only three primary units must be defined: a 

distance unit, a time unit, and a mass unit.  For this thesis, a form of heliocentric 

canonical units will be used.  Fist the distance unit, distU , defined as one Earth radius.  

Then the time unit, timeU , is defined as the value that will set the sun’s gravitational 

parameter, µsun, to be unity (equal to about 58.1 days): 

 
3
dist

time
sun

UU
µ

=  (43) 

The mass unit, massU , fairly arbitrary for heliocentric canonical units, so it will be set so 

that the spacecrafts maximum wet mass will be unity.  This will then be used to derive 

the velocity units, acceleration units, force units, energy units, and power units that have 

mass terms in their computations as follows [Ref.s 8,11]: 
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 (44-48) 

The scaling can be done in any order as long as a mass unit, time unit, and distance unit is 

uniquely defined, in effect creating new unit system.  For instance, if a particular force 

and velocity term needed to be scaled to closer to unity value, then those units can be set.  

Then after a mass unit is determined, all the others can be solved.  The following table 

lists the non-dimensional heliocentric canonical scaling used in this thesis and some of 

the normalized constants. 
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 Unscaled Units Conversion Factor Value 

Time s timeU  5.0226 x 106 

Distance km distU  149.597870 x 106 

Mass kg massU  1273 

Velocity km/s velU  29.7847 

Acceleration km2/s accelU  5.9301 x 10-6 

Force kg-km2/s forceU  0.0075 

Table 1. Non-dimensionalization Values 
 

Now these new unit definitions can be used to transform and constants or 

variables in the problem to a non-dimensional and better-behaved set of dynamical 

numbers.  For instance, in Equation (5) the exhaust velocity, or 0e spv I g= × , would 

normally be computed by multiplying the specific impulse by the gravitation constant and 

has units of meters per second ( s / s / s2  m m× = ).  For example, to make this constant 

non-dimensional it can be converted term by term or in whole: 
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The bar over any symbol will be used to denote that the appropriate non-dimensional 

units scaled the original symbol’s units.  Looking back at Equation (5), in order to make 

it non-dimensional then Equation (30) could be done by substitution: 

 ;   ,  thus
mass time

m tm t
U U

= =  
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time time

mass mass
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 (50)  



32 

 In a real example problem using typical values in this thesis, the maximum mass 

flow rate is -3.0126e-006 kg/s (approximately a loss of 3 milligrams a second).  Now, 

after the non-dimentionalization in Equation (31), the maximum mass flow rate would be 

-0.0151.  This new number is approximately four orders of magnitude closer to unity than 

the SI units result and thus more balanced.  One could also observe that to solve the 

balancing problem in Equation (5), we can redefine the problem using milligrams vice 

kilograms and SI units.  However, this would just cause stability problems elsewhere, 

such as making the starting mass state become 1,000,000 vice 1.   

 The other dynamics in Equations (1-4) can be similarly converted for non-

dimensional computations using the similar form of:  

 ( , , )x f x u t=�  (51) 

 ( , , )time

x units

Ux f x u t
U −

=�  (52) 

Since the state dynamics are computed within the optimization code using non-

dimensional units, all the states and control guesses, boundaries, constraints, and costs 

must be similarly non-dimensionalized.  This method is using unscaled dynamics, since 

when computing the state derivatives, the states, controls, time or any constants must be 

unscaled into their original units, then Equation (51) computed, and finally Equation (52) 

used to convert back to the scaled units.  Thus, this is considered using Unscaled 

Dynamics. 

Another method is to scale all the states, controls, and constants before doing any 

optimization and only unscale after all the optimization calculations are performed.  

Thus, the method used in Equation (53) is called, Scaled Dynamics.  In this method,  the 

entire setup is using numbers already scaled and demonstrated in the example problem of 

the DIDO User’s Manual [Ref. 7]. 

 ( , , ; )x f x u t p=�  (53) 

In this way, everything from start to end is done in the non-dimensional space in 

units that are predefined and arbitrary as long as they result in stable solutions.  A 

comparison is shown in the Figure 11 and Figure 12.   
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Figure 11 Results with Unscaled Dynamics from Equation (52) 

 

Both methods produce feasible and optimal results that are very similar.  Using 

the Scaled Dynamics method took almost 20% longer to run, even with fewer 

computations in the dynamics file (unscaling and rescaling).  However, the final DIDO 

computed radial distance was within 0.06% of the propagated result, whereas the 

Unscaled Dynamics result was within 0.55% of the propagated radius state.  This may 

have resulted from the n-state unscaling and rescaling operations add some computational 

machine error at each node for each iteration of the optimization routine.  Therefore, even 

though this comparison was not very robust, the Scaled Dynamics of Equation (53) will 

be used throughout the rest of this thesis. 
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Figure 12 Results with Scaled Dynamics from Equation (53) 

 
K. BALANCING 

Exceptionally large or small numbers can result in instability for the methods used 

by DIDO.  Thus, once the problem is favorably non-dimensionalized, each state, 

boundary condition, dynamical equation results (state dots), and starting and endpoint 

conditions should be checked to ensure that the range is closest possible to unity values.  

This process is called “balancing” and was tried in thesis for the Thrust state with no 

impact and so not utilized. 

After the scaling in the previous section, the results will be evaluated to look for 

terms that may need some balancing.  For better graphical representation, the most 

significant parts of the script output of Appendix B is graphed in Figure 13, Figure 14, 

and Figure 15.  These figures show the bounds (limits) imposed on the states and controls 

and the actual minimum and maximums for the states, controls, and derivatives of the 

states.  A well formulated problem (for DIDO software) will give the program some 

latitude in the possible values of the states and controls, even if these values are beyond a 
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reasonable value.  However, well balanced problems have all the variables to a small, but 

discernable, order of magnitude and are values near each other.  For instance, in Figure 

13, the transfer angle varies from 0 to almost 14 units compared to the radial distance, 

which varies from 1 to 1.6.  This one order of magnitude difference is the states are 

relatively small compared to the unscaled km units which would be nine orders of 

magnitude larger than the scaled distance units. 
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Figure 13 State Limits and Actual Ranges 
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Figure 14 Control Limits and Actual Ranges 
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Figure 15 Actual Range of State Derivates 

 

When these plots are examined the variable that needs the most attention is the 

range of minimum and maximum thrust for the first control variable.  Here, the range is 

from 0.00 to a maximum scaled value of 0.0151.  Even though this may seem like a small 

range in which to operate, it actually is a large improvement over the non-scaled that only 

varied from 0.00 to 0.000092 km-kg/s2.3 

To affect a better balance in the thrust force there are two methods.  The easiest 

and least effective method is to recompute the scaling factors and redefined the non-

dimensionalized units starting with dictating force units to be more advantageous, say 

0.000075 vice 0.0075 as above.  Then using this as one of the three fundamental units, 

define 2 more and let the other units be derived from solving equations much like 

Equations (44-48).  Similarly, since the mass units was rather arbitrary and only affected 

the mass and force units, one could balance the well behaved mass state with the less well 

behaved thrust force, i.e. multiply the mass unit by an order of magnitude will increase 

the thrust force by an order of magnitude. 

The much preferred and more thoughtful method is to insert an additional 

balancing factor in the dynamics, cost, path, and events where any force term is present.  
                                                 

3 92mN is the maximum thrust.  However, since the distance units normally used for astrodynamics is 
kilometer vice meters, then using km as the distance unit to set up the problem, the thrust becomes 92x10-6 
kg-km/s2. 
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For example, such as in the previous scaling example using Equation (50), the Unscaled 

Dynamics method could be modified with: 

 max
0

time

mass

Udm T T
dt U Isp g

⎛ ⎞
⎜ ⎟= −
⎜ ⎟∗⎝ ⎠

 (54) 

where 

 
max

TT
T

�  (55) 

Now, the normalized scaled thrust control,T , varies from 0 to 1 and the extra factor must 

be built into the equations to satisfy all the conversions.  This same factor must be carried 

throughout all calculations.  For example, if the performance function’s purpose was to 

minimize V∆ , then one could use following cost function: 

 TJ dt
m

= ∫  (56) 

If the balancing in Equation (55) is used, this must change to: 

 max
TJ T dt
m

= ∫  (57) 
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III. REACHABLE SETS 

For the purpose of this thesis, a “reachable asteroid” shall be defined as one that 

can be visited by a spacecraft such that the spacecraft has enough fuel to return to Earth.  

Since this thesis concerns sample return missions, the visit is considered to be a 

rendezvous with a 90 to 120 day stay time to collect a sample.  A “reachable set” (A) will 

be defined as the set of known asteroids that can be rendezvoused by a given spacecraft 

model and optimal use of the available fuel with the mission parameters.  By this 

definition it should be obvious that this set is dynamic given different spacecraft (fuel, 

mass, propulsion performance, etc.), mission requirements (return sample, number of 

asteroid visits, maximum flight time, etc.), and time.  This definition of reachable is 

generalized to not assume a specific launch window, which can change the available 

asteroids for a rendezvous and sample return mission.  For instance, when the European 

Space Agency (ESA) Rosetta comet mission was postponed due the delay in the launch 

vehicle availability, the mission targets were changed since the launch window could no 

longer support the required trajectory.  Basically, all asteroid targets take less or more 

fuel or time depending on the Earth’s location relative to the target.  Thus, the time of 

launch, relative to the synodic period between Earth and the target, changes which targets 

are within the reachable set for a given spacecraft and mission.  When multiple asteroids 

are considered for rendezvous missions, a more simple analysis of synodic periods 

between two bodies is no longer period.  This is why launch date is not specifically 

addressed in this topic.  The reachable set would be a starting point to reduce the 

searchable targets for applicability if a specific launch window is required or desired.  In 

other words, for this thesis a reachable set is only reachable in space and the smaller set 

of reachable targets in time and space is not considered. 

On a two-dimensional representation, reachable sets will be plotted as in Figure 

16 below.  The horizontal axis represents the semi-major axis of the asteroid orbit about 

the sun and the vertical axis is the eccentricity.  On a three-dimensional graph, inclination 

would be used to represent the orbit geometry in space.  The other classical orbital 

elements, such as true anomaly, right ascension of ascending node, and the argument of 

perigee, are not included for simplicity. 
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Figure 16 Reachable Asteroids 

 
A. ASTEROID TARGETS 

As of July 2004, there are over 2800 Near Earth Asteroids (NEA), which are 

asteroids with perihelion distances less than 1.3 AU, out of a total database of over 

250,000 asteroids in our solar system.  For planning sample return missions, the NEA 

definition is arbitrary since it has no relation to a given spacecraft fuel, mass, and 

performance.  However, physical properties are vitally important of the asteroid.  For a 

spacecraft to successfully orbit and touch down on an asteroid, the asteroid must be of a 

sufficient size, density, and shape to have an acceptable gravity such that the spacecraft 

can enter a stable orbit around the asteroid.  A good assumption on the necessary size is 

approximately 150 meters in diameter.  Since asteroid size is estimated from the amount 

of light reflected from the surface and referred to as the Absolute Magnitude (H), there is 

a large variation in the possible size of the target depending on the assumed albedo.  For 

instance, assuming an albedo range of 0.05 to 0.25, the asteroid size may range from 170 

to 380 meters in diameter for an H of 21.  Then using this absolute magnitude, the list of 

possible targets within our solar system large enough to consider a rendezvous mission 

reduces only by about 900.  However, a vast majority of all these are in the either not 

within the inner solar system or far enough out that the spacecraft modeled has no chance 

to conduct a single sample return mission, much less have fuel for more than one asteroid 

visit.   

Thus, to limit computational time a limit on semi-major axis, a, of the asteroid 

orbits will be placed at 2.1 AU.  Based on Equations (20) and (22) we can compute a total 
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available V∆ from the nominal mission parameters and find that the maximum coplanar, 

circular rendezvous that can be achieved is just over 1.65 AU.  Since this does not 

account for any fuel to return to Earth, the limit of only searching asteroids with a < 2.1 

AU leave sufficient margin for any assumptions made.  This limit, along with the 

absolute magnitude limit, reduces the possible targets that can be included in the 

reachable set to a maximum of 6157 targets, plotted in Figure 17.  This thesis will try to 

deliver a method to further reduce this target set by another two orders of magnitude.   
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Figure 17 Inner Solar System Asteroid Orbits4 

 
B. CONTINUOUS BOUNDARY ISSUES 

The two degree of freedom (DOF) reachable set projection on the a vs. e plot, 

such as in Figure 16 is a continuous region that surrounds a group of orbits generally 

characterized by their size and eccentricity.  The boundary of this region is the limiting 

orbit that the given spacecraft can achieve.  The discrete points on the plot where asteroid 

                                                 
4 Note the dense cluster between 1.8 and 2.0 AU range.  These asteroids are in the dense main belt of 

the Hungaria group and 90% have a high inclination between 16 and 35 degrees.  



42 

orbits are located will be in or out of this region.  This region is found by computing 

families of optimal trajectories and weighting the importance in the semi-major axis and 

eccentricity in a cost function.  By setting F = 0 in Equation , we have Mayer cost 

functions of:  

 1 1 1 1 1 1minimize J a e          where: α β α β= + + =  (58) 

 2 2 2 2 2 1minimize J a e          where: α β α β= + + =  (59) 

As the two weights, and α β , are varied for each cost function, the boundary points on 

the reachable set found.  Just as it takes an infinite number of points to fill in a continuous 

boundary, it would take an infinite number of optimal solutions, such as those when 

and α β  weights are varied from 0 to 1, to exactly define the reachable set.  Also, it 

would be contradictory to have a non-zero or α β  term in each of the two performance 

index, since it makes no sense to try to maximize a or e at the same time as trying to 

minimize it.  Thus, if you have a five increment linear sweep of and α β  from 0 to 1 

where { }1,2 1,2 and  0.0, 0.25, 0.5, 0.75, 1α β ∈  such that if 1 20 0α α> → = , 

2 10 0α α> → = , and likewise forβ , then it would take 20 optimal trajectories for every 

option to be computed.  This situation was completed for the two DOF asteroid 

rendezvous without a sample return, and shown in Figure 18.  Even though there is one 

non-validated point plotted here (max a where blue and red lines join), this is just used 

for illustrative purposes of real trajectories creating a reachable set with real asteroids. 

 This situation presented clearly demonstrates several problems with the 

generalized reachable set definition.  First, even with 20 possible points (some lie on top 

of one another) there are large regions where the reachable set is ill defined due to the 

linear interpolation between the sparse data points.  Also, notice the non-linear mapping 

between the trajectory solution points and the linear weights.  Secondly, many possible 

target asteroids lie very near the reachable set boundary separating asteroids that have 

feasible trajectories to rendezvous and those that do not.  There are several methods to 

approach these problems.  
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Figure 18 Reachable Set with 20 Trajectories and Many Ambiguities 

 

After forming an initial reachable set, if there is an area of interest due to the 

desirability of a specific asteroid or just clarification on feasibility is required, the most 

simplistic way to achieve this is to add an additional data point where needed.  Since a 

new weight on the performance index can not guarantee where the data point will show 

up due to the highly non-linear mapping, a new performance index could be created.  In 

Figure 19 the data point required is identified and the semi-major axis where this would 

be beneficial is determined, for example the a2 point.  Now, the required semi-major axis 

is defined in the optimal control problem as an event (final a = a2) and then the remaining 

parameter is maximized or minimized, 1J e=  in this case.  Additionally, another method 

would to be to check the feasibility of reaching an individual asteroid by change the cost 

function to minimize fuel and set asteroids a and e as events. 

Data Point 
Asteroid 
Interpolated Domain Boundary 

Inside Target Domain 
Outside Target Domain 
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Figure 19 Adding Definition to Reachable Set Boundary 

 

Recall that brute force methodologies were previously rejected when discussing 

multiple asteroid rendezvous and return missions since target sets in the thousands 

quickly turn into millions of possible combinations to consider.  This is the very reason 

why limiting the target sets with a reachable set is necessary.  Thus by proposing running 

optimal control problems on the order of 20 or more times, only to do more in-depth 

solutions to clarify those results is not very enlightening to a general methodology to 

achieve easier mission planning. 

C. INNER AND OUTER APPROXIMATIONS 
Since brute force methods are not feasible or practical, the reachable set can better 

start to be definitized by first examining the four solutions when semi-major axis and 

eccentricity is fully maximized and minimized, or in other words, when 

1 or 0 and 1 or 0     α β= = .  These four optimal control problem solutions can be 

visualized in Figure 20 

Inside Target Domain

add

a1  a2  a3
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Figure 20 Four Extremal Points on Reachable Set 

 

There will be two permutations within the reachable set definition that will be of 

benefit that will use the extremal points to further divide the reachable set.  An “inner 

approximation” shall be defined as the reachable set by forming the convex polytope of 

the 4 extremal solutions of the performance index.   

 
Figure 21 Inner Approximation 

 

An example of an inner approximation is shown in Figure 21.  This is useful since 

with only four optimal control problem solutions, a large part of the mission achievable 

asteroid targets can be defined.  These inner approximation targets have the highest 

confidence of not laying so close to a boundary that there is little margin left in the fuel 

budget to make them risk acceptable targets.  However, even more useful is the concept 

of the outer approximation.  The outer approximation is defined as of the reachable set 
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Reachable 
Asteroids 

Not 
Reachable 
Asteroids 

a

e Inner 
Approximation

Not 
Reachable 
Asteroids 



46 

created by excluding any asteroid with   a < amin, a > amax, and likewise for e.  This outer 

approximation mathematically excludes the asteroids that can absolutely not be reached, 

since they lay outside the extremal points on any reachable set.  The asteroids left inside 

the outer approximation reduces the possible targets so that detailed planning, such as 

examining the ignored orbital elements of the asteroids, can be done with as much 

efficiency as possible. 

 
Figure 22 Outer Approximation 

 

A more real example is shown how this would affect the previous non-return 

mission discussed.  Figure 23 demonstrates with just four optimal control problem 

solutions, a majority of the possible asteroids targets that our outside the outer 

approximation can be simply excluded from further study with higher fidelity models.  

Also, the previous examples of how to better delineate between specific boundary 

locations can still be conducted if required. 
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Figure 23 Inner and Outer Approximation Example 

 

So far, the relative importance of an inner and outer approximation has yet to be 

fully described.  It may seem that the reachable set definition in Figure 18 is far superior 

that that in Figure 23, especially since the 20-point reachable set boundary is more 

distinct than the four-point boundary that defines the inner and outer approximations.  

However, when a three-dimensional reachable set is required, the dynamics and 

performance index must be modified to take inclination into account.  A new 

performance index would be:  

 1 1 1 1 1 1 1 1minimize J a e i         α β γ α β γ= + + ∀ + + =   (60) 

   2 2 2 2 2 2 2 1minimize J a e i         α β γ α β γ= + + ∀ + + =  (61) 

Now, to get the same relative number of boundary points (five increments of the new 

weight, γ, and include inclination of targets it would take 100 simulations that would 

need to be run and validated.  So for a number of incremental values in the weights, 

referred to as NI, then the number of required non-linear optimization problem (NLP) 

solutions required for a single sample return mission is [Ref. 11]: 

Inner 
Approximation 

Outer 
Approximation 
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 3 2
single I I
sample

NLP N N= −  (62) 

However, to solve for the inner and outer approximations, only 2 more NLPs 

must be solved, to find the extremal cases maximum and minimum inclination5.  Adding 

more dimensions (DOF), such as any of the other classical orbital elements, will 

compound the required effort of brute force methodologies when creating reachable sets 

and a generalized equation would be: 

   ( 1)DOF DOF
single I I
sample

NLP N N −= −  (63) 

In contrast, creating inner and outer approximations only requires two times the degrees 

of freedom (2 x DOF) number of solutions.  Since defining a reachable set is a 

mathematically valid method to decrease the number of possible target opportunities by 

at least an order of magnitude to aid in further detailed mission planning, this resource 

saving process becomes much more important when three or more degrees of freedom 

(performance index items) are required. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
5 In single sample return mission if it can be assumed that the spacecraft originates from Earth (i=0), 

then the cases to minimize inclination are not necessary.  This assumption will not be valid for any multiple 
sample return, since the return flyby will rarely have a zero inclination. 
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IV. ASTEROID RENDEZVOUS 

This thesis will explore a methodology to determine the set of reachable targets 

for a multiple asteroid rendezvous and sample return mission.  To reduce the overall risk 

in the mission, JPL has decided that each sample should be returned to Earth prior to 

rendezvousing with the next target.  The next several chapters will build up to the overall 

problem with initially more emphasis on the optimization and then in later cases more 

emphasis on interpreting the results.  Figure 24 shows a general representation of a low 

thrust, multiple-revolution Earth to asteroid rendezvous geometry.  The spacecraft, 

launched out of Earth’s sphere of influence (SOI) by a launch vehicle, departs Earth and 

will rendezvous with an asteroid.  This case is formulated in only two dimensions to 

simplify the solution and analysis.  Because “hard” knots [Ref. 7] are not needed, this 

case has the most tools available to prove that the necessary conditions for optimality are 

met.  As mentioned previously, in this and all cases the objective function is to maximize 

or minimize a convex combination of semi-major axis and eccentricity.  This mission 

with just one “leg” or point-to-point trajectory is very simplistic, but very illustrative to 

how the problems are set up, solved, and validated. 

 
Figure 24 Earth to Asteroid Low Thrust Trajectory Representation 
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The simplest test case to start would be to first constrain the rendezvous to a 

circular orbit.  Thus, the transfer is just an optimal circular to circular low thrust 

trajectory and maximizes the final orbit radius (same as maximizing semi-major axis with 

zero eccentricity).  Additionally, not taking into account the thrusting constraints of a 

SEP motor nor with an initial earth escape velocity boost (C3 = 0) will allow the results to 

be compared to known analytical approximations of optimal trajectories and remove the 

LaGrange multipliers associated with those path constraints. 

A. DYNAMICS, COST, EVENTS, AND PATH FORMULATION 
The dynamics for a circular or elliptical formulation is exactly the same as 

Equations (1-5). The general case for the cost function, which is convex combination of 

the semi-major axis and the eccentricity of, 

          where: 1f fJ a eα β α β= + + =  (64)  

for the circular case becomes: 

  fJ r=  (65) 

The event constraints, which will ensure the problem start and end points for a state or 

time are either met or optimized was in a general form in Equation (17) and is now 

specifically set to (normalized values): 
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 (66) 

These equality constraints have the same upper and lower constraint.  The “free” states 

are those that have no constraints and thus the optimization routine is free to let those 

start and end on any convenient value.  Since the initial and final orbit is circular, there is 
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no radial component of velocity, rv , to start or end.  The transverse velocity 

magnitude, tv , is initialized on the same value as Earth and dependant on the final radius, 

which is a dependant variable in the cost function.  The mass state is set to the wet mass 

of the S/C and all the fuel will be used when the final mass state is equal to the dry mass 

of the S/C.  The only path constraint is on the thrust magnitude, as previously stated.  

This ensures that no time during the trajectory the maximum thrust exceeds the engine’s 

limits, or 92magT mN< . 

B. BOUNDS, GUESS, AND NODES FOR PROBLEM FORMULATION 
All states, controls, and time bounds are specified in the problem initial setup; 

however these can differ from the constraints mentioned in the previous paragraph.  If a 

constraint is placed at a specific point (start, end, or interior) then it would be considered 

an event constraint and if the constraint is during the entire time span of the problem, 

then it is considered a path constraint.  The event, path, and dynamical constraints can be 

complex and non-linear functions where the actual constraint is not specifically known at 

the problem start.  For instance, since in SEP trajectories the final maximum thrust 

magnitude is not known until the final maximum radial distance from the sun is 

computed, this constraint must be computed within the optimization.  In DIDO [Ref. 7], 

“bounds” are specified at the start and used to either simply constrain a state, control, or 

time at an a priori value or more commonly to avoid values that would lead to 

singularities in the NLP.  For definition purposes, a state, control, or time bound used to 

constrain a solution is called a “box constraint” and a bound used in limit the NLP 

solution algorithms will just be called a bound and will be assumed to not be any 

determination to the final solution.  For the simple circular, low thrust, max radius 

problem the following bounds were used: 
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Bounded Variable Lower Bound Upper Bound Note 

Radius, r 0.5 AU 10 AU Avoids singularity at 0 AU 

Transfer Angle, θ  -10π 10π 5 revolutions 

Radial Velocity, rv  -10* |Vearth| 10* |Vearth|  

Transverse Velocity, tv  -10*|Vearth| 10* |Vearth|  

Mass, m 0.1*Mwet 10*Mwet In reality Mdry ≅ 0.8*Mwet 

Thrust Magnitude, T -1000*Tmax 1000*Tmax  

Thrust Direction, θ  -π π Covers 360° of Thrust 

Time, t 0 years 10 years  

Table 2. State, Control, and time Bounds 
 

The bounds in Table 2 are actually used in every optimal control problem solution 

presented in this thesis.  Since there is no constraining element in using these bounds, 

they seem to provide adequate limits on values to speed computation without limiting the 

search space for real state, control, or time values.  The thrust direction may seem like the 

most restrictive bound and it does control the resulting thrust direction output of the 

optimization routines, but only so that it does not need to be post-processed to display the 

thrust direction in a similar range (i.e. converting 4π thrust direction into 0).   

The nodes in the NLP are discrete Legendre-Gauss-Lobatto (LGL) points where 

the solution to the problem is calculated.  Since this problem already has five states and 

two controls defined, the number of parameters to solve are these 7 variables times the 

number of nodes plus the initial and final time.  Thus, a 20 node solution might not have 

much fidelity but only needs to solve 142 parameters simultaneously.  However, an 80 

node solution has 562 parameters to solve.  Most solutions will have at least 60 and up to 

200 nodes in the final solution so the circular orbits look smooth and to ensure there is 

enough information to make assessments. 

Guesses must be provided for every at every interior, start, or end point that can 

be used to define an event.  As previous mentioned, the “no guess” type of initialization 
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for a 20 node solution was performed and automatically those results (optimal or not) 

were directly used as the guesses for a higher node solution (typically 80).  This method 

increased the computational speed of just performing an 80 node optimization with a low 

fidelity guess and the initial guess never had to be re-evaluated.  Thus, using 16 guesses, 

the 142 parameters are solved for the 20 node solution, all of which are used as the 

guesses to generate the 562 parameters in the 80 node solution.  The next table presents 

the guess used for all optimization problems with no return to Earth, and thus no interior 

point or knot to consider.  The actual start and end is just one typical example and since 

most of the guesses match the event constraints, the start and end points are very simple. 

Variable Start Guess End Guess Actual Start Actual End 

Radius, r 1 AU 2 AU 1 AU 1.65 AU 

Transfer Angle, θ  0 3π 0 2.71π 

Radial Velocity, rv  0 0 0 0 

Transverse Velocity, tv  |Vearth| 0.707* |Vearth| |Vearth| 0.779* |Vearth| 

Mass, m Mwet Mdry Mwet Mdry 

Thrust Magnitude, T 0 Tmax Tmax 0 

Thrust Direction, θ  0 2π -0.23π -0.06π 

Time, t 0 years 2.5 years 0 years 4.04 years 

Table 3. Guess for Problems without Interior Knots 

 

C. CIRCULAR, LOW-THRUST EARTH TO ASTEROID RENDEZVOUS 
SOLUTION 
An illustrative solution for the simplest case follows and is described in Figure 25 

- Figure 27.  Since the circles (DIDO solution) are very close to the independently 

propagated states using the optimal control history, u(t)*, this shows a dynamically 

feasible result.  Additionally, by integrating the acceleration during the trajectory, as in 

Equation (42), the total V∆ used was 6.58 km/s.  This favorably compares to the ideal 

rocket Equation estimation of 6.59 km/s.  Lastly, no boundary constraints, event 
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constraints, or bounds where broken for the DIDO solution or propagated trajectory of 

the optimal controls.  Since the total error norm is low and the good agreement between 

the DIDO solution and control history propagation, this represents a feasible result. 
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Figure 25 Circular Orbit Rendezvous (Result 1)6 

 

Figure 25 shows the location of the spacecraft and the direction of the thrusting (if 

it is thrusting.  Figure 26 shows the same information to include mass and velocity states 

to show a good correlation between the DIDO states (open geometric shapes) and the 

lines (propagated solution that has many more times the number of points). 

                                                 
6 On a Windows XP based Pentium 4 CPU running at 1.3MHz and with 512MB of RAM, this problem 

took 117.7 seconds.  On a Windows 2000 based Pentium M CPU running at 1.5MHz and 256MB of RAM 
the exact same problem took only 44.0 seconds. 
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Figure 26 State History for Circular Rendezvous (Result 1) 

 

The final orbit achieved by using all the fuel available is a circular rendezvous 

orbit at 1.65 AU.  To check for optimality, first this result will be compared with known 

solutions.  If this was an ideal impulse mission, the optimal coplanar, circle-to-circle orbit 

transfer would use a Hohmann Transfer.  Using the Equation (38), to get to a 1.65 AU 

orbit from 1 AU would require an V∆ of 6.50 km/s.  This is only 1.6% less than the total 

V∆ used by the low thrust engine which is less efficient due to off-axial thrusting and 

thrusting an non apoapsis locations.  Secondly, this can be more accurately compared to 

an ideal circle-to-circle continuous low-thrust transfer using Edelbaum’s solution, shown 

in Equations (35-37).  The Edelbaum equations requires an V∆ of 6.59 km/s, or 0.2% 

more than DIDO’s optimal result.   
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Figure 27 Circular Rendezvous Control History (Result 1) 

 

The top portion of Figure 27 shows the DIDO thrust compared with the Covector 

Mapping Theorem controls.  The bottom portion shows the thrust angle however the raw 

results are “corrected” to make plots easier to read in case the result was 360 degrees, 

vice zero, or the thurst angle is zeroed out if no thrusting occurs.  When no thrusting 

occurs the angle can be random since it has no effect on the dynamics, cost, or other 

states.  Overall, this is a good correlation between the theory and the result.  Also as 

previously noted, the results must satisfy the Karush-Kuhn-Tucker (KKT) theorem 

conditions.  From these conditions, a Switching function (ST) on the control variables can 

be created and as such Equation (31) is restated below with specific controls substituted 

in: 
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 (67) 



57 

 
0

sin cos( )
r t

m
v vS t

m m Isp g
λθ θλ λ= + −
∗

 (68) 

A plot of the switching function computed from DIDOs results of the costate 

dynamics is in Figure 28.  This shows agreement between KKT conditions and the 

thrusting and coasting phases.  Additionally, the points where the switching function is 

near zero is where the thrust is throttled and neither full thrusting or off is the optimal 

condition.  
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Figure 28 Switching Function 

 

Equation (34) shows that the Hamiltonian should equal zero for all time when 

time is not explicit in the path constraint or the dynamics.  This Hamiltonian is shown in 

Figure 29 with a mean value of -0.00072294.  This is a good result and indicates that the 

solution is optimal.  Also, as previously stated, Equation (26) is the second order 

condition for optimality and requires that the Hessian of the Hamiltonian is positive semi-

definite.  This also holds true for an augmented Hamiltonian. 
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 ( , , , ) T TH x u t Fλ = + +λ f µ h  (69) 
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Figure 29 Hamiltonian for Circular Rendezvous (Result 1) 
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Figure 29 demonstrates near zero conditions and Figure 30 demonstrates that the 

second partial derivate of the Hamiltonian with respect to the controls are positive semi-

definite.  Both are required conditions by Pontryagin’s Minimum Principle are indeed 

satisfied.   

Thus, this solution (Result 1) for the circular, 2-D, low thrust transfer without SEP 

constraints has been shown to be feasible, satisfying the necessary conditions for local 

optimality, and also compare very favorably with known theoretical solutions.  For future 

results, not all of these comparisons can be made or will be explicitly shown.  For 

elliptical orbits there are no low-thrust analytical solutions to compare results with.  For 

trajectories that must rendezvous for a period of time with an asteroid, the solution 

requires the use of a soft or hard knot in the solution [Ref. 7] and will not have dual 

variables to construct Hamiltonians, CMT controls, or switching functions.  However, 

DIDO does state at the end of an optimization routine if it believes the solution is locally 

optimal.   
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Figure 30 Hessian of Hamiltonian (positive semi-definite) 
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D. ELLIPTICAL, LOW-THRUST EARTH TO ASTEROID RENDEZVOUS 
SOLUTIONS 
This optimization run compute trajectories for Earth to asteroid rendezvous’ that 

can now be elliptical, add a C3 boost optimization routine, and add a limited SEP 

propulsion model of the NSTAR engine.  This is limited in that the Isp is not adjusted 

down from the maximum as in a real model and it is possible to have thrusts below 19 

mN (though unlikely).  The dynamics remains the same as Equations (1-5).  The cost 

function, which is convex combination of the semi-major axis and the eccentricity written 

as, 

          where: 1f fJ a eα β α β= + + =  (75) 

and can be weighted to maximize or minimize either a, e, or a combination.  The event 

constraints, which will ensure the problem start and end points for a state or time are 

either met or optimized was in a general form in Equation (17) and is now specifically set 

to a range of inequalities (normalized values in the with the lower bound to the left and 

upper bound to the right in the set).  Any non-constrained boundary events are considered 

free and the initial mass state is set dependant on a function of the C3 boost optimized for 

launch. 
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 (76) 

There are now two path constraints on the thrust magnitude.  The first is to limit thrust to 

only positive values or zero and the second is to limit the thrust dependant on the NSTAR 

engine model maximum thrust available and is a function of range to the sun and time.  

Thus, two path constraint LaGrange multipliers are required to construct the Hamiltonian 

and for the Thrust switching function, which now becomes: 

 
max min
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The thrust (T) is computed in Equation (12) for a given range, time, and electric power 

available.  Lastly, all the same bounds, guesses, and number of nodes were left 

unchanged from the previous problem formulation. 

 A DIDO result using equal weights (of -0.5) to maximize both a and e is shown in 

Figure 31, Figure 32, Figure 33, Figure 34, and Figure 35.  This shows a trajectory that 

uses a large boost (C3 equal to 7.75 km2/s2) to start the journey and uses the remaining 73 

kg of fuel to complete the orbit transfer.  The final result was a = 1.49 AU, e = 0.271, and 

a maximum orbit radius of 1.90 AU.  A summary is shown in Figure 31 with and well 

correlated states are shown in Figure 32 and Figure 33.  The color code in Figure 31 has 

green stars when the S/C is on the apoapsis side of its instantaneous orbit and blue on the 

periapsis side.  Since it is more beneficial to thrust on the green side, one would expect to 

see more thrust vectors there.  This result was deemed “locally optimal” by DIDO and the 

solution propagates well (using ODE113). 
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Figure 31 Elliptical Rendezvous Orbit (Result 2) 
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Figure 32 Elliptical Rendezvous States (Result 2) 
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Figure 33 Elliptical Rendezvous States (cont) (Result 2) 
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The controls shown in Figure 34 closely follows the theoretically optimal CMT 

thrusting shown and the Hamiltonian in Figure 35 is fairly flat with a mean value of -

0.0973.  These are good indications of optimality. 
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Figure 34 Elliptical Rendezvous Control History (Result 2) 
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Figure 35 Elliptical Rendezvous Hamiltonian (Result 2) 
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There are four extremal cases of this Earth to Asteroid trajectories:  max a, min a, 

max e, and min e.  Since the min e case (e=0) is simply the circular orbit, none of which 

are occupied by asteroids this will not be examined here.  The remaining cases, max a, 

min a, and max e, will be shown here for examples of differing trajectories.  The only 

difference in the code between all these elliptical cases is the cost function.  For the orbit 

and optimal control history shown in Figure 36 and Figure 37, the following cost function 

was used: 

     where: 1,  0.0001f fJ a eα β α β= + = − = −  (78) 

This will maximize the final semi-major axis.  The weight β  could be set to zero, 

however for an unexplained reason, DIDO runs faster with it none zero. 
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Figure 36 Maximum a Elliptical Rendezvous (Result 3) 

 

This result appears to be both feasible and optimal.  It has a flat Hamiltonian, 

shown in Figure 38, with a mean value of 0.055 and controls that satisfies the KKT 

requirements.  It propagates best with ODE23t with a final a = 1.82, e = 0.253, and 

maximum radius from the sun of 2.27 AU. 
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Figure 37 Maximum a Elliptical Rendezvous Controls (Result 3) 

 
Figure 38 Maximum a Elliptical Rendezvous Hamiltonian (Result 3) 
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In the maximum eccentricity case, the orbit and optimal control history are shown 

in Figure 39 and Figure 40, and the following cost function was used: 

     where: 0.0001,  1.0f fJ a eα β α β= + = − = −  (79) 

Again, the unneeded weight could be set to zero.  Similarly, this result appears to 

be both feasible and optimal.  It has a flat Hamiltonian, as shown in Figure 41 with a 

mean value of -0.0222 and controls that satisfies the KKT requirements.  It propagates 

best with ODE113 with a final a = 1.5, e = 0.384, and maximum radius from the sun of 

2.07 AU.  One interesting difference between the two cases is that to maximize 

eccentricity, a lot of off-axial thrusting is done. 
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Figure 39 Maximum e Elliptical Rendezvous Orbit (Result 4) 
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Figure 40 Maximum e Elliptical Rendezvous Controls (Result 4) 

 

 
Figure 41 Maximum e Elliptical Rendezvous Hamiltonian (Result 4) 
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The final case is the minimum semi-major axis (a) case, the orbit and optimal 

control history are shown in Figure 42 and Figure 43 and the following cost function was 

used: 

     where: 1,  0.00001f fJ a eα β α β= + = − = −  (80) 

Similarly, this result appears to be both feasible and optimal.  It had a flat Hamiltonian, 

Figure 44, with a mean value of -0.0079 and controls that satisfies the KKT requirements.  

It propagates best with ODE15s with a final a = 0.673, e = 0.0677, and minimum radius 

from the sun of 0.599 AU.  As expected, most of the thrusting is in the opposite direction 

of motion to slow the spacecraft.  This trajectory has slightly higher error between the 

DIDO solution and propagated trajectory, but it is still reasonable.  Also, this DIDO sun 

took over 44 minutes longer than all the previous. 
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Figure 42 Minimum a Elliptical Rendezvous Orbit (Result 5) 
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Figure 43 Minimum a Elliptical Rendezvous Controls (Result 5) 

 
Figure 44 Minimum a Elliptical Rendezvous Hamiltonian (Result 5) 
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Objective Semi-major Axis, a (AU) Eccentricity, e 

Maximize a (Result 3) 1.82 0.253 

Minimize a (Result 5) 0.673 0.0677 

Maximize e (Result 4) 1.5 0.384 

Minimize e (circular case) 1.65 – 0.884 7 0 

Mix of weights (not shown) 0.8161 0.272 

Table 4. Summary of Results for Asteroid Rendezvous 
 
 
E. EARTH TO ASTEROID REACHABLE SET 

Using the data from the optimization routines just presented several permutations 

of the reachable set will be developed.  First, an “inner approximation” will be easily 

constructed using the four extremal objectives.  Since, the trajectory starts at a minimum 

eccentricity (Earth circular orbit) only three DIDO runs where needed to construct Figure 

45.  This two-dimensional projection of asteroid orbit energies into the a-e plane 

combined with the convex polytope of the extremal solutions represents the reachable set 

that has been mathematically proven to be reachable (for a given level of fidelity).  The 

inner approximation can be automatically constructed for any optimization routine since 

the weights on the cost function are predetermined to be the set 

of ( ) ( ) ( ) ( ) ( ){ }, 1,0 , 1,0 , 0,1 , 0, 1α β ∈ − − . 

                                                 
7 This result is not shown but included in table for completeness.  Only requires changing sign of 

circular case cost function. 
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Figure 45 Inner Approximation of Elliptical Rendezvous 

 

The more complete outline of the reachable set can be constructed using all the 

points listed in Table 4.  This 6-point representation of Figure 46 on the a-e domain 

encompasses much more area.  The three new points on this figure are all optimal 

solutions for a combination of maximizing, or minimizing, the final elliptical orbit of the 

spacecraft.  Since the minimizing e case was trivial, i.e. started at Earth with a minimum 

e, one could wonder how a would vary for the minimum e case (what the bottom of an 

inner approximation looks like).  This was done holding e constant at zero and rerunning 

the min and max a optimization routines ( [ ]1,1  fand eα = − constrained to zero or 

circular case).  Similarly, the “Mix a/e” case was just an educated guess at the weights 

which would provide a boundary point of the reachable set in that region 

( .5, 1 α β= = − ).  While seemingly providing more detail in the solution, this process can 

not as easily be automated since it required at least one judgment on the weight.   



72 

 
Figure 46 Multi-point Reachable Set 

 

Adding boundary points by varying the weights between -1 and 1 can be done ad 

infinitum.  In theory, this would provide a continuous boundary for the actual reachable 

set, however would also take an infinite amount of time.  When adding a third dimension, 

such as for inclination, the process to determine an inner approximation would only take 

one more optimization run (max i), since the Earth is at the minimum inclination case.  

To construct more detailed boundaries, such as in Figure 46, a third dimension would 

need to include many more optimization runs, depending on the fidelity of the boundary 

required.   

To include more of the possible targets in the reachable set than the inner 

approximation, using only the extremal cases, an “outer approximation” can be 

constructed, as in Figure 47.  An outer approximation is the boundary where asteroids are 

within the set { max min max mintarget target target targeta a a a e e e e≤ ∩ ≥ ∩ ≤ ∩ ≥ }.  The targets 
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outside this boundary are mathematically required to be unreachable.  Thus, with only the 

extremal solutions to trajectory requirements, the target set is greatly reduced.   
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Figure 47 Outer Approximation of Elliptical Rendezvous 

 

Figure 48 shows all the previous representations on one plot.  This includes a 

region of known reachablity, known unreachability, and the possible benefits of 

providing more detail to give a better idea of the shape of the actual reachable set.  Using 

the concept of inner and outer approximations, the effort to screen targets as possibilities 

becomes much easier and then the remaining candidates can be specifically targeted to 

examine mission feasibility.  The inner and outer approximations can be extended to 

beyond two dimensions without adding many additional optimizations runs, just problem 

fidelity, to further reduce the possible candidates.  This methodology can be useful to 

provide mission planners a reduced set of possible targets to be screened for reasons other 

than trajectory feasibility, such as risk reduction or scientific suitability.  For the 6157 

targets plotted in Figure 17, these results for an asteroid rendezvous mission would limit 
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the possible target set down to 720, or almost an order of magnitude.  If inclination is 

limited to < 10°, the number of possible targets is further reduced to 132. 
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Figure 48 Inner and Outer approximations 

 

The circular and elliptical rendezvous case were simple examples of how to 

formulate a NLP for optimization, show feasibility, show local optimality, and how to use 

reachable sets to limit the number of possible targets for further analysis.  The following 

chapters will add detail to more interesting cases for sample return missions. 
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V. RENDEZVOUS AND RETURN 

A. DEPART ASTEROID, INTERCEPT EARTH 
This problem could logically be next step to examine a combined problem of 

optimizing both the trips to and from the asteroid independently and then joining the 

result together afterward.  However, since the fuel needs to be shared between the two 

trajectories and the stay time should be optimized, this chapter will perform one 

optimization routine for the trip from Earth to the asteroid and then return.   

B. DEPART EARTH, RENDEZVOUS WITH ASTEROID, RETURN TO 
EARTH 
Figure 49 shows a basic representation of this problem.  The spacecraft will 

depart Earth at time t0, make the necessary orbit maneuvers to rendezvous at time ti, stay 

for a period not less than 90 days, depart the asteroid at time ti+1, and then return for and 

Earth flyby to drop off the sample at time tf.  As before, the C3 departure energy from 

Earth will be optimized and the spacecraft will expend all the fuel to maximize the 

asteroid orbit parameters, a and e.  During the stay time at the asteroid, where the 

spacecraft will map out the surface and gravitational field in preparation for the actual 

sample collection process, it is assumed the spacecraft will expend 20 kg of fuel.  The 

return will be an Earth flyby with the V∞ of arrival constrained to less than 5 km/s to 

minimize impact of the sample drop-off.  Again, this case will be studied in two 

dimensions with the same propulsion model and limitations used in the Elliptical 

Rendezvous.  Neither atmospheric effects, nor return declination requirements to hit the 

Utah Test and Training Range were studied in the Earth return profiles. 

For every solution, the entire scenario is optimized together, however the first and 

second legs of the trajectories are shown separately for readability.  As before, the 

extremal cases of the cost function will be explored to develop inner and outer 

approximations. 
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Figure 49 Asteroid Rendezvous and Return Low Thrust Trajectory Representation 

 

1. Rendezvous and Return Problem Formulation 
This optimization run computes trajectories for Earth to asteroid rendezvous’ and 

return missions.  The dynamics remains the same as use previously however the since the 

objective to examine the asteroid orbit extremal cases, the cost function is slightly 

modified to account for the orbit at the time of rendezvous, or: 

          where:  are weightsi iJ a eα β α β= + +  (81) 

The time ti, is the time at node i, or the number of the node (out of 80 used) that the 

rendezvous first occurs.  The next node, at time ti+1, is the point of departure from the 

rendezvous after the optimized stay time.  Thus, the cost function could also be described 

as follows since the spacecraft is in the same orbit during the rendezvous period. 

  1 1i iJ a eα β+ += +  (82) 

In order to accomplish this optimization within DIDO, a “knot” [Ref. 7] must be used at 

the node i.  This allows the program to designate conditions that must be met at that 

point, whether it is the 2nd or the 79th node of the solution.  Thus, these constraints are 
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events since they happen at a specific point, vice path constraints that are met throughout 

the trajectory.  In the previous problems, events only occurred at boundary points, i.e. 

start or end points. 

The event constraints are set to a range of inequalities (with the lower bound to 

the left and upper bound to the right in the set).  There is more than twice the number of 

event constraints; many of the new events are to ensure that state continuity on either side 

of the knot.  As before, any non-constrained states or conditions are considered free and 

the initial mass state is set dependant on a function of the C3 boost optimized for launch.  

Don’t confuse the angular transfer state, nu or ν , in the 8th constraint with the radial and 

transverse states of   r tv and v .  The 8th constraint ensures that rendezvous arrival and 

departure angular transfer state changes by the same number of radians as the mean 

motion of the asteroid.  The 9th constraint ensures a mass loss for the near asteroid 

maneuvers.  The 12th constraint ensures the flyby occurs at Earth and accounts for the 

mean motion of Earth.  The 13th constraint is the limit to ensure the flyby is less than 5 

km/s.  
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The path constraint and engine model are the same, thus the Hamiltonian and for 

the Thrust switching function, remains unchanged.  Unfortunately, the DIDO version 

2003b1c used in this thesis does not return dual variables in problems containing knots.  

Thus the costates, Hamiltonian, and all LaGrange multipliers are unavailable to check the 

CMT and KKT conditions to confirm optimality as before. 

a. Maximize Semi-majorAxis ( 1, 0 α β= − = ) 

Figure 50 through Figure 54 shows the state, control and orbit history of a 

optimal trajectory for the extremal case of maximizing a.  The control history was 

propagated with ODE45 and shows very small deviations from DIDO states and thus 

proves feasible since no constraints were broken.  The final result was the asteroid orbit it 

rendezvoused with for a period of 103 days had an a of 1.2887 and e of 0.1150.  This 

solution was deemed “probably optimal” by DIDO and only took 5.2 minutes to solve. 
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Figure 50 Rendezvous and Return Maximize a States (Result 6) 
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Figure 51 Rendezvous and Return Maximize a States continued (Result 6) 
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Figure 52 Rendezvous and Return Maximize a Control History (Result 6) 
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Figure 53 Rendezvous and Return Maximize a, Earth to Asteroid Plot (Result 6) 
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Figure 54 Rendezvous and Return Maximize a, Asteroid to Earht Plot (Result 6) 
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The start and end points shown in the previous orbit depictions are easier 

to read if one remembers that the motion is always in a prograde direction (counter-

clockwise).  Also, as previous mentioned, the LGL points used in DIDO bunches near the 

beginning, end, and near knots, such as the asteroid rendezvous point to increase 

accuracy of the solution.  Since the degree of correlation between the DIDO solution and 

the propagated control history to verify feasibility can almost as easily be seen on the 

orbit plots as well as the state history plots, the state history plots will not be shown for 

simplification purposes. 

b. Minimize Semi-major Axis ( 1, 0 α β= = ) 

Figure 55, Figure 56, and Figure 57 shows the control and orbit history of 

an optimal trajectory for the extremal case of minimizing a.  The control history was 

propagated with ODE23s and also has a very small error from the DIDO solution and 

thus proves feasible since no constraints were broken.  The final result was the asteroid 

orbit it rendezvoused with for a period of 98.7 days had an a of 0.8607 and e of 0.1686.  

This solution was deemed “probably optimal” by DIDO and only took 6.8 minutes to 

solve. 

5 10 15 20 25 30
0

20

40

60

80

T
h

ru
st

 (
m

N
)

Rendezvous and Return Min a in Given Fuel

DIDO thrust

5 10 15 20 25 30
-50

0

50

100

150

normalized time units

d
e

g
re

e
s

corrected θ

 
Figure 55 Rendezvous and Return Minimize a, Control History (Result 7) 
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Figure 56 Rendezvous and Return Minimize a, Earth to Asteroid Plot (Result 7) 
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Figure 57 Rendezvous and Return Minimize a, Asteroid to Earth Plot (Result 7) 
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c. Maximize Eccentricity ( 0.00001, 1 α β= = − ) 

Figure 58, Figure 59, and Figure 60 shows the control and orbit history of 

an optimal trajectory for the extremal case of maximizing e.  The control history was 

propagated with ODE15s and also has a very small error from the DIDO solution and 

thus proves feasible since no constraints were broken.  The final result was the asteroid 

orbit it rendezvoused with for a period of 185 days had an a of 1.099 and e of 0.267.  

This solution was deemed “probably optimal” by DIDO and only took 24.6 minutes to 

solve.  This was most difficult to solve and was sensitive to small changes in guesses, 

stay time ranges, and cost function weights.  Consequently, to obtain a feasible and 

optimal solution for this case, a small non-zero value for the weight on a was required. 
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Figure 58 Rendezvous and Return Maximize e, Control History (Result 8) 
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Figure 59 Rendezvous and Return Maximize e, Earth to Asteroid Plot (Result 8) 
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Figure 60 Rendezvous and Return Maximize e, Asteroid to Earth Plot (Result 8) 
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Objective Semi-major Axis, a (AU) Eccentricity, e 

Maximize a (Result 6) 1.29 0.115 

Minimize a (Result 7) 0.86 0.169 

Maximize e (Result 8) 1.10 0.267 

Minimize e (trivial case) 1 0 

Min e & Max a to Min a8 1.24 to 0.88 0 

Mix a/e ( 0.5, 0.5 α β= = − )8 1.02 0.233 

Table 5. Rendezvous and Return Results Summary 
 
 

2. Rendezvous and Return Reachable Set 
All the results from Table 5 are plotted on an a-e two-dimensional projection in 

Figure 61.  However, even though straight lines are drawn between points of this ill-

defined boundary, no definitive conclusions can be drawn from targets that lie between 

points.  As demonstrated in the previous chapter, the inner approximation can be 

constructed using the four extremal cases to show a set of target asteroids that are proven 

to be within the reachable set (for this level of fidelity).  Additionally, using the same 

four data points, the outer approximation can be constructed to eliminate those target 

asteroids that are not reachable and proven to be outside the reachable set.   

The outer approximation in Figure 63 is much small than that in the asteroid 

rendezvous scenarios with no return requirement.  If every asteroid that is estimated to be 

large enough to rendezvous (absolute magnitude < 21) were plotted vice only a sample 

population, there would be 97 asteroids within the outer approximation.  This is a drastic 

reduction from the previously mentioned 6157 target set without using outer 

approximations.  If a guess that a 10° inclination is too large to be achievable, then that 

6157 target set is reduced to just 637.  Of those, the outer approximation limits the 

feasible target set to just 23.    

 

                                                 
8 Results not shown here 
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Figure 61 Expanded Detail on Rendezvous and Return Reachable Set Boundary 
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Figure 62 Rendezvous and Return Inner Approximation 
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Figure 63 Rendezvous and Return Outer Approximation 

 

Using the extremal solutions that constructed Figure 63, the list of all numbered 

and unnumbered asteroids (as of August 2004) was screened.  Also included was a limit 

on inclination to be under 10 degrees and the absolute magnitude (H) had to be less than 

21, which ensures a size of at least 170 meters in diameter for the worst case albedo 

assumption of 0.25.  Table 6 lists the 23 remaining candidates for targets.   
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Name a e i ω Node MeanAnom H 
1989 ML 1.272 0.137 4.378 183.299 104.416 27.921 19.500 
1989 UQ 0.915 0.265 1.291 14.920 178.369 277.578 19.280 
1993 HA 1.278 0.144 7.725 263.632 183.388 256.222 19.960 
1991 JW 1.038 0.118 8.721 301.858 54.043 217.506 19.280 
1997 XR2 1.077 0.201 7.171 84.628 250.888 226.105 20.810 
1999 AQ10 0.937 0.234 6.561 299.485 327.414 27.093 20.280 
1999 JU3 1.189 0.190 5.884 211.293 251.712 315.076 19.230 
1999 RQ36 1.129 0.205 6.024 65.730 2.147 151.450 20.850 
2000 EA14 1.117 0.203 3.554 206.019 204.005 173.612 20.900 
2000 OK8 0.985 0.221 9.985 166.101 304.653 23.461 19.850 
2000 QK130 1.181 0.262 4.720 66.252 174.036 278.922 20.570 
2001 CC21 1.032 0.219 4.808 179.077 75.783 184.246 18.390 
2001 QC34 1.127 0.187 6.235 215.012 271.935 200.040 19.720 
2001 SW169 1.249 0.052 3.555 284.792 8.511 56.585 18.730 
2001 TE2 1.084 0.197 7.610 35.683 171.315 333.692 19.870 
2002 AW 1.070 0.256 0.567 118.021 162.980 296.191 20.520 
2002 CD 0.980 0.177 6.887 331.595 8.877 115.237 20.220 
2002 DU3 1.145 0.238 8.703 245.456 0.778 272.307 20.640 
2002 OA22 0.936 0.243 6.906 318.276 174.419 197.070 19.300 
2002 TD60 1.202 0.083 7.412 343.735 62.719 310.740 19.240 
2003 WR21 1.119 0.262 9.276 107.871 85.946 79.601 19.530 
2003 YX1 0.879 0.267 5.756 222.828 90.013 115.861 20.830 
2004 FM17 0.886 0.249 6.763 196.117 170.140 94.555 19.200 

Table 6. Target Asteroids within the Outer Approximation 

 



89 

VI. MULTIPLE SAMPLE RETURN 

A. RENDEZVOUS, RETURN TO EARTH, AND REPEAT 
The logical extension of the previous problem is to add another rendezvous and 

return flight following the first sample drop off.  The Earth flyby would also be used as a 

gravity assist opportunity to rendezvous with a completely different target asteroid.  

Figure 64 and Figure 65 shows the two asteroid rendezvous with all spacecraft 

trajectories represented by the solid blue lines.  Solid black lines show where the 

spacecraft is rendezvoused with the target and collecting the sample.  The dotted lines 

represent the orbits of the Earth and target asteroids.  The difficulty in plotting many 

revolution orbits is evident, so in this thesis chapter the trajectories are broken up into 

legs to and from asteroids.  However, it will always be true that all legs were 

simultaneously optimized to extremize the respective objective function. 

 

 
Figure 64 First Asteroid Rendezvous and Return Representation 
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Figure 65 Second Asteroid Rendezvous and Return Representation 

 
1. Problem Formulation 
This problem is very difficult to produce usable results for several reasons 

involving the complexity, formulation, and cost function.  To define constraints at the 

beginning, first asteroid, Earth return, second asteroid, and final Earth return, a total of 5 

knots must be used.  The nodes (time) at which these knots occur is defined as follows: 
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Event Description Knot Number Time Notation 

Depart Earth 1 t 0 

Rendezvous with First Asteroid 2 t i 

Depart First Asteroid 2 t i+1 

Flyby/Gravity Assist Earth (first) 3 t i+n 

Rendezvous with First Asteroid 4 t j 

Depart Second Asteroid 4 t j+1 

Flyby Earth (second) 5 t f 
Table 7. Time Notation for Multiple Sample Return Missions 

 

Accordingly the event constraints grow to over 28 conditions, up from 14 in the 

previous chapter.  Equation 84 lists these, however there are no new types or formulation 

of constraints are used, only multiple copies to ensure all rendezvous and flyby’s are 

achieved and that states are continuous across the knots.  Three important missing 

features in these event constraints should be noted.  First, the stay time at each asteroid is 

no longer optimized over a range of days.  Second, a gravity assist maneuver at the first 

Earth flyby (t i+n) is not included.  This can be constructed in four additional events; 

much like Rob Stevens did in his thesis [Ref. 4].  Third, the drop mass for the sample 

recovery vehicle to be returned at first Earth flyby is not included.   

 Using an inequality constraint for the stay time at each asteroid would never 

produce feasible results, thus only an equality constraint of 120 days was used.  Manually 

changing what this stay time is set to and rerunning the code could overcome this 

difficulty. 

 Similarly, this optimization routine in DIDO never provided feasible results when 

the four additional constraints to add Earth gravity assist maneuvers to this problem were 

implemented.  Using the same code that Rob Stevens developed and verified [Ref. 4], the 

current formulation became unstable.  Thus, results in this section will not benefit from 
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the gravity assist maneuver and consequently the second rendezvous points in any results 

will be less than truly optimal.  However, since inclination changes are also not included 

in this code, the two effects offset each other to some immeasurable degree.  

 Simulating the drop mass for the part of the spacecraft assigned to reenter Earth’s 

atmosphere and land with the first sample was not implemented.  This additional 

constraint precluded getting feasible results.  Including the Earth drop mass would more 

accurately model the increased force the engine would impart on a lighter vehicle during 

the second rendezvous and return legs.  However, this is also offset due to the lack of 

modeling real Isp effects when the efficiency of the engine becomes less when the 

spacecraft is greater than 1.2 AU.  Since this usually occurs later in the trajectories or 

after the actual drop of the sample return vehicle takes place the two inaccuracies would 

offset each other.   
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This rendezvous, return and repeat scenario optimization is also complicated due 

to the cost function, which is more onerous than previous ones.  The two weights used to 

provide four extremal solutions in single asteroid missions must now be increased to four 

(six for a three-dimensional case) and those can not as easily be manipulated. 

 1 1 2 2( ) ( ) ( ) ( )i i j jJ a t e t a t e tα β α β= + + +  (85)  

The subscript on the weights denotes the first or second rendezvous.  Eight solutions can 

provide extremal cases of each term in that equation; however this may have less 

meaning than in previous chapters.  For instance, if the maximum a for the second 

rendezvous is desired and the weights used should be 1 10, 0, α β= =  

2 21, 0  andα β= − = , but then the optimal result may end up where there are no asteroids 

in the first reachable set in which to rendezvous (a ≈ 1, e ≈ 0).  Similarly, if the maximum 

a for the first rendezvous is desired and the alpha weights are reversed, then commonly 

seen in this DIDO implementation is that it will find a solution where an Earth flyby 

event occurs almost exactly at the same point as a Rendezvous.  Thus, the last leg of the 

journey requires little to no fuel.  The chances of that geometry occurring in reality are 

very low.   

 As seen in the “Maximize Eccentricity” case for the single asteroid sample return 

missions, the weights normally set to zero to achieve extremal cases must have a slight 

non-zero value in order to produce feasible and optimal results.  The most consistent and 

repeatable runs with feasible and optimal results generally occur when four non-zero 

weights are used for this formulation.  Unfortunately, using non-zero values precludes 

using the concepts of inner and outer approximations to explore the reachable set of 

asteroids since it is predicated on extremal solutions of the problem.  Whenever possible, 

very low values of weights on the order of 1x10-5 are used to minimize the effect on the 

optimal solution. 

 A cost function results in a simple scalar number to judge the performance of one 

solution against another.  The sensitivity to its formulation may be partly due to the fact 

that Equation (85) involves non-linear and complex transformations from the state 

information.  Indeed, when this cost function was simplified to be a linear function of the 
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radial state such as in Equation (86), feasible and optimal results were much easier 

obtained and in also allowed more detail to be added to the optimization, such as 

optimizing a range of stay times. 

  ( )iJ r t= ±  or ( )jJ r t= ±  (86) 

Lastly, difficulty with achieving feasible or optimal solutions where the dynamics, 

constraints, and bounds have show satisfactory performance in simpler formulations may 

be due to a poor quality of initial guesses.  In this scenario, a simple 5 point guess of 

states, controls, and times based off no previous results was used.  This guess is used to 

start this 5 knot optimization using 12 nodes between each knot (total of 48).  This lower 

order discretization is then bootstrapped into a better state-control-time guess structure to 

start a high order discretization of 120 nodes, or 30 nodes between each knot.  The simple 

and easy “no guess” bootstrapping method described previously for all trajectory 

optimizations may not be the best way to formulate this problem.   

2. Solutions 
Without a basic gravity assist maneuver modeled, any results can not be 

rigorously taken as limiting the number of feasible targets for a multiple asteroid mission.  

Even though some of the gravity assist ∆V would be used to change inclination, a portion 

might be used to enhance the planar performance of the spacecraft.  Thus, unlike the 2 

DOF Rendezvous and Return solutions in the previous chapter, some margin would 

likely be needed to the any of the “optimal” results present hereafter.  Additionally, the 

largest challenge to obtain feasible and optimal results with this problem formulation is 

choosing the weights used on the cost function.  As seen with the maximize eccentricity 

case of the previous chapter, non-zero weights are sometimes required to achieve usable 

results, so any usable results using the cost function in Equation (85) are only “nearly 

extremal”.   

Figure 66 shows the result of one problematic optimization result where both 

( ) ( )  j ja t and e t are maximized (equal negative weights on each and near zero weights 

on ( ) ( )  i ia t and e t ).  This plot depicts the S/C originating at Earth (a = 1, e = 0), making 

its first rendezvous at the point (a = 1.2, e = 0.04), intercepting Earth to drop off the 

sample at the point (a = 1.18, e = 0.15), then rendezvousing with another asteroid at (a = 
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1.15, e = 0.12), and just moments later and expended almost no fuel to get back to Earth 

for the final flyby.  You cannot see the second rendezvous in Figure 66 since it is at the 

same point as the second Earth flyby.  It is unlikely that such a fortuitous astrodynamical 

event will occur where a reachable asteroid is nearly crossing Earth’s orbit just following 

the second sample collection.  Thus, these types’ of results may not be very realistic and 

have been excluded from the rest of the results shown. 

 
Figure 66 Multiple Asteroid Rendezvous and Sample Return a-e Domain Result9 

 

a. Maximize Second Rendezvous Semi-major Axis 
Figure 67, Figure 68 and Figure 69 shows the state and control history for 

a locally optimal solution when maximizing the semi-major axis, a, of the second 

asteroid rendezvous orbit.  The control history was propagated with ODE23tb and has a 

reasonably small error from the DIDO solution as illustrated by the how near the discrete 

DIDO points (circles) match the continuous (line) representing propagated result of the 

optimal control history.  Also since no constraints were broken in this solution, it proves 
                                                 

9 As mentioned previously the S/C Intercept Earth 1 point is plotted over the Rdz 2 point. 
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feasible.  Since the original solution from the formulation previously described had 

enough error to put feasibility in doubt, the original solution was “bootstrapped” into a 

guess of a new DIDO run with twice the number of nodes to converge the two state plots 

and eliminate most of the error.  Thus, the number of node points solved for and 

illustrated in this solution is 240, vice the 120 mentioned in formulating the problem.  It 

took an additionally 13 runtime minutes on the computer, from the initial 6.5, to perform 

this additional step. 

5 10 15 20 25 30
0

10

20

30

Comparison Btwn DIDO and Propagated States

normalized time units

no
rm

al
iz

e
d 

un
its

 nu 

5 10 15 20 25 30
0.9

1

1.1

1.2

normalized time units

n
o

rm
a

liz
e

d
 u

n
its

 Vt 
 r  
Mass

 
Figure 67 Rendezvous, Return & Repeat Maximize a, State History 
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Figure 68 Rendezvous, Return & Repeat Maximize a, State History (cont) 
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Figure 69 Rendezvous, Return & Repeat Maximize a, Control History 
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For this result the weights used were: 1 10.001, 0.001,  α β= − = −  

2 21, 0.01 α β= − = − .  This would highly emphasize maximizing the second rendezvous 

a.  Figure 70, Figure 71, Figure 72, and Figure 73 plots each leg of the final trajectory 

separately, even thought the entire flight was optimized simultaneously.  The stay times 

at the asteroid was fixed at 120 days.  The final result is summarized in Figure 74.  It 

shows the first asteroid rendezvous orbit at a = 1.0887 and e = 0.0462 and the second 

asteroid rendezvous orbit at a = 1.1817 and e = 0.0628, along with the orbit the spacecraft 

was in at each Earth flyby.  This solution was deemed “probably optimal” by DIDO. 
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Figure 70 Rendezvous, Return & Repeat Maximize a, Earth to First Asteroid Plot 
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Figure 71 Rendezvous, Return & Repeat Maximize a, First Asteroid to Earth Plot 
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Figure 72 Rendezvous, Return & Repeat Maximize a, Earth to Second Asteroid Plot 



101 

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Mars Orbit

Fourth Leg of trip

x (AU)

y 
(A

U
)

Trip Time(Yrs): 5.13, Leg Time: 1.27

Days at NEA: 120

Vinf at arrival: 3.19 km/s

 
Figure 73 Rendezvous, Return & Repeat Maximize a, Second Asteroid to Earth Plot 

 
Figure 74 Rendezvous, Return & Repeat Maximize a, a-e Domain Plot 



102 

b. Maximize Second Rendezvous Semi-major Axis (refined weights) 
In order to attempt to make the weights used in the previous result more 

extremal, the entire previous 240 node solution was used as the starting guess for a new 

optimization run.  Non-zero weights were still able to be used, however the following 

weights did obtain equally feasible and locally optimal results:  

1 10.00001, 0.00001,  α β= − = − 2 21, 0.00001 α β= − = − .  The plots showing the states, 

controls, and orbits are not shown since they did not discernibly change from the 

previous solution.  The second asteroid rendezvous maximum a did improve marginally 

from 1.1817 to 1.1836, however, this 0.16% change is arguably within the accuracy of 

DIDO’s solution and the problem formulation fidelity.  It is unproven here, but most 

likely true that the ability to choose an optimal stay time would have more effect on the 

a-e domain plot than the ability to have absolute zero valued weights. 

c. Maximize Second Rendezvous Eccentricity 
For brevity, the state and control history for a locally optimal solution 

when maximizing e of the second asteroid rendezvous orbit is not explicitly shown here.  

The control history was propagated with ODE23t and has a very small error from the 

DIDO solution as illustrated by the how near the discrete DIDO points (circles) match the 

continuous (line) representing propagated result of the optimal control history.  Also 

since no constraints were broken in this solution, it proves feasible.  Since the original 

solution from the formulation previously described had enough error to put feasibility in 

doubt, the original solution was “bootstrapped” into a guess of a new DIDO run with 

twice the number of nodes to converge the two state plots and eliminate most of the error.  

Thus, the number of node points solved for and illustrated in this solution is 160, vice the 

120 mentioned in formulating the problem.  

For this result the weights used were: 1 10.001, 0.01,  α β= − = −  

2 20.01, 10 α β= − = − .  This would highly emphasize maximizing the second rendezvous 

e.  Figure 75, Figure 76, Figure 77, and Figure 78 plots each leg of the final trajectory 

separately, even thought the entire flight was optimized simultaneously.  The stay times 

at the asteroid was fixed at 120 days.  The final result is summarized in Figure 79.  It 

shows the first asteroid rendezvous orbit at a = 1.1174 and e = 0.1154 and the second 
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asteroid rendezvous orbit at a = 1.1410 and e = 0.1315, along with the orbit the spacecraft 

was in at each Earth flyby.  DIDO deemed this solution “probably optimal”. 

 
Figure 75 Rendezvous, Return & Repeat Maximize e, Earth to First Asteroid Plot 
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Figure 76 Rendezvous, Return & Repeat Maximize e, First Asteroid to Earth Plot 

 
Figure 77 Rendezvous, Return & Repeat Maximize e, Earth to Second Asteroid Plot 
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Figure 78 Rendezvous, Return & Repeat Maximize e, Second Asteroid to Earth Plot 

 
Figure 79 Rendezvous, Return & Repeat Maximize e, a-e Domain Plot 
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d. Minimize First Rendezvous Radius 
As previously mentioned, the ability to formulate a linear and simplistic 

cost function greatly improves the ability to consistently achieve feasibly and optimal 

results and have less sensitivity to initial guesses and weights.  If a cost function is used 

that is solely dependant on the radius of the spacecraft trajectory, some usefulness may be 

extracted with much less effort.  Since radius from the sun is the first state in this 

dynamical system, its computation at any rendezvous point is trivial.  

The 120 node state and control histories are plotted in Figure 80, Figure 

81, and Figure 82.  The optimal controls determined by DIDO were propagated with 

ODE45 with acceptable error.  The minimum radius of the first rendezvous orbit was 

determined to be 0.8895 AU for a 120 day stay time and leaving enough fuel to complete 

another rendezvous and return mission that had an 120 day stay time.  Figure 83, Figure 

84, Figure 85, and Figure 86 plots the trajectory of the spacecraft.  The a-e domain plot in 

Figure 87 is included for completeness, even though it has little meaning in the 

minimizing radius case.  
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Figure 80 Rendezvous, Return & Repeat Minimize Radius, State History 
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Figure 81 Rendezvous, Return & Repeat Minimize Radius, State History (cont) 
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Figure 82 Rendezvous, Return & Repeat Minimize Radius, Control History 
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Figure 83 Rendezvous, Return & Repeat Minimize Radius, Earth to First Asteroid Plot 
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Figure 84 Rendezvous, Return & Repeat Minimize Radius, First Asteroid to Earth Plot 
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Figure 85 Rendezvous, Return & Repeat Minimize Radius, Earth to Second Asteroid Plot 
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Figure 86 Rendezvous, Return & Repeat Minimize Radius, Second Asteroid to Earth Plot 
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Figure 87 Rendezvous, Return & Repeat Minimize Radius, a-e Domain Plot 

 

The improvement in NLP solution performance was significant enough to 

rerun all possible min/max radius cases with a stay time range between 90-120 days be an 

optimization parameter.  The final results are not shown in this thesis, but captured in 

Table 8 below. 

 Radius (in AU) Notes: 

Minimize First Asteroid Radius 0.8756  

Minimize Second Asteroid Radius 0.9129  

Maximize First Asteroid Radius 1.1568 Result was only “nearly optimal” by DIDO 

Maximize Second Asteroid Radius 1.2669  

Table 8. Rendezvous, Return & Repeat Min/Max Radius Results 
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3. Rendezvous, Return, and Repeat Reachable Sets 
There are some computational difficulties with formulating reachable sets, or their 

mathematically valid subsets of the inner and outer approximations presented in previous 

chapters.  For the asteroid rendezvous, sample return and repeat trajectories, computing 

all the optimal-extremal solutions by DIDO with the current formulation has not been 

demonstrated.  Finding four “near extremal” sets of weights that produces feasible and 

optimal results by refining the weights used through bootstrapping very good guesses into 

higher order solutions has been shown, but is very time-consuming and not subject to 

consistent methodologies.  However, even spending the effort in tweaking optimization 

code will still leave other difficulties associated the applicability of solutions with the 

fidelity of a 2 DOF model missing stay time optimization, missing a gravity assist 

optimization, and having a low level engine model.  With additional effort applied to 

reformulating the problem, dynamics model, scaling used, and/or coordinate system, 

these computational difficulties can probably be resolved [Ref.s 4,8].  However, the 

conceptual difficulties with defining usable subsets of the reachable set still exist.   

Figure 66, Figure 74, Figure 79, and Figure 87 all show optimal solutions for 

some objective and thus these rendezvous points lie on a boundary of the reachable set.  

A minor conceptual problem is that even if a target lies within the inner approximation 

found for the maximum a for the second rendezvous, this assumes an optimal first 

rendezvous as determined by DIDO.  Choosing a real asteroid orbit other than the 

optimal first rendezvous conditions will reduce the maximum a or e that is achievable for 

the second rendezvous.  Thus, inner approximations that should guarantee achievable 

solutions for specific targets are not valid.  As before, outer approximations may be 

helpful in excluding many of the targets if the computational difficulties are eliminated. 

Since a stay time optimization was included, the results from optimizing the 

minimum and maximum radius will be used to develop reachable sets.  If the gravity 

assist maneuver could be included for the results in Table 8, these can be used to define 

the reachable set boundaries for the first and second asteroid rendezvous.  These 

approximations would be only one-dimensional since there is only one maximum or 

minimum radius.  If an asteroid’s perihelion distance is greater than the maximum radius, 

then it would lie outside the reachable set.  If an asteroid’s aphelion distance is less than 
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the spacecraft trajectory minimums, then they would lie outside the reachable set as well.  

From [Ref. 14], the perihelion and aphelion distance can be calculated by 

 (1 ) (1 )p ar a e r a e= − = +  ,   (87) 

and resulting in the functions to find a reachable set on a-e domain are 

 
1,2 1,2min max(1 ) (1 )r a e a e≥ − ≥ +∩    r  (88) 

which can be plotted to provide continuous boundaries as in Figure 88. 

 
Figure 88 Reachable Boundary Based off Min and Max Radius Results 

 

When the maximum e is plotted, then the reachable set is fairly well defined.  The 

maximum first asteroid e is plotted in Figure 89.  Certainly, the a-e domain might be 

more limiting, however without even the stay time optimization, many of the reachable 

asteroids could be left out.  This process can be refined to ensure that any reachable 

asteroid orbit has at least 90 days within the maximum or minimum radius limits to 

further exclude targets.   
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Figure 89 Reachable Set for Two Asteroid Sample Return Missions 
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VII. CONCLUSIONS AND FUTURE WORK 

Theoretically, targets within a reachable set boundary are feasible targets for a 

sample return mission.  For the single sample return missions, this allowed defining outer 

approximations where the extremal solutions necessarily bounded the number of possible 

targets.  The inner approximation for the single sample mission is less useful since it 

provides few guarantees about reachablity without a very large number of optimal 

trajectories plotted to well define a boundary.  However, when combined with a few non-

extremal points, it can give quickly show a low-order shape that is indicative of the actual 

reachable set.  This conclusion is demonstrated in Table 6 where the feasible targets for a 

asteroid rendezvous and return mission with any gravity assist maneuvers is limited to 

just 23 possible candidates for a given theoretical spacecraft, propulsion system, and 

launch vehicle. 

For the multiple sample return mission, the fidelity was more of an issue and 

precluded getting usable results for current mission planning.  The lack of an ability to 

optimize the asteroid stay times necessitated using a maximize/minimize radius objective 

function to improve the NLP solver performance.  However, the missing gravity assist 

feature prohibited getting conservative estimates of an outer approximation as in the 

single sample return mission.   

This thesis showed how using a powerful direct optimization method could 

quickly reduce the number of targets considered in mission planning for rendezvous type 

missions, without requiring good guesses of an optimal solution a priori.  As shown in 

Table 6, making simple assumptions about inclination and absolute magnitude of possible 

targets will reduce the number of candidates to be evaluated by several orders of 

magnitude.  A similar process was shown for the two asteroid sample return mission, 

albeit without the final bounds on a set of possible targets.  This methodology was 

mapped to a different domain using the extremal radius optimization results and can be 

scalable for higher degrees of fidelity.  Thus, this methodology combined with powerful 

solvers allows anyone with a basic understanding of optimal control theory and 
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astrodynamics to significantly reduce the mission planning effort required for similar 

missions.  Only more flexible and robust problem formulations are required. 

Since this topic was mostly focused on demonstrating methodologies to compute 

reachable sets any future work should naturally try to increase the fidelity to a 3 DOF 

example to explore where increased fidelity produces only marginal benefit.  Analysis 

would be easier if DIDO could return the costates and the Hamiltonian for problems that 

included interior knots. 

To make the results of similar methods useful the fidelity must be increased at a 

minimum to take into account gravity assist effects at Earth and more real NSTAR 

models that handles the Isp scaling with power [Ref. 17].  The NSTAR model would also 

benefit from an actual time degradation model vice assuming end-of-life power is the 

maximum available.  Additionally, using an actual launch vehicle performance for 

trading between C3 and propellant mass is required.  A lesser item that may be useful 

would be to optimize the drop mass at an Earth flyby for the sample return vehicle. Also, 

a return declination constraint would be beneficial to ensure any return trajectory could 

drop off a sample to land at the Utah Test and Training Range.  Lastly, developing a 

method so the optimization scheme could choose to use available gravity assist 

opportunities from the Earth or moon at any phase of flight might provide interesting 

results.   
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APPENDIX A 

A. MATLAB ODE (ORDINARY DIFFERENTIAL EQUATION) SOLVERS 

1. Solvers for Nonstiff Problems from MATLAB Help File [Ref. 15] 
ODE45 is based on an explicit Runge-Kutta (4,5) formula, it is a one-step solver. 

ODE 23 is based on an explicit Runge-Kutta (2,3) pair of Bogacki and Shampine.  

It also is a one-step solver but may be more efficient than ODE45 at crude tolerances and 

in the presence of mild stiffness.   

ODE 113 is a variable order Adams-Bashforth-Moulton solver.  It is a multistep 

solver (needing several preceding time points to computer current solution) and may be 

more efficient than ODE45 at stringent tolerances. 

2. Solvers for Stiff Problems from MATLAB Help File [Ref. 15] 
Not all difficult problems are stiff, but all stiff problems are difficult for solvers 

not specifically designed for them.  

ODE15s is a variable-order solver based on the numerical differentiation 

formulas.  Optionally it uses the backward differentiation formulas, BDFs.  Like 

ODE113, ODE15s is a multistep solver. 

ODE23s is based on a modified Rosenbrock formula of order 2.  Because it is a 

one-step solver, it may be more efficient than ODE15s at crude tolerances.   

ODE23t is an implementation of the trapezoidal rule (TR).  This solver is 

effective if the problem is only moderately stiff and you need a solution without 

numerical damping. 

ODE23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula 

with a first stage that is a trapezoidal rule step and a second stage that is a backward 

differentiation formula of order 2.  Like ODE23s, this solver may be more efficient than 

ODE15s at crude tolerances. 
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APPENDIX B 

Typical values for simple Asteroid Rendezvous trajectory to check scaling and 

balancing to ensure a solution is well conditioned [Ref. 12]. 

State low bound  low guess   upper guess    upper bound 
r    0.1000 1.0000 1.6470 10.0000 
nu    -31.4200 0.0000 14.0100 31.4200 
Vr    -10.0000 0.0154 0.0000 10.0000 
Vt    -10.0000 1.0250 0.7792 10.0000 
Mass    0.1273 1.2730 1.0260 12.7300 
      
State start value  min value   max value  end value 
r    1.0000 1.0000 1.6010 1.6010 
nu    0.0000 0.0000 13.9700 13.9700 
Vr    0.0089 0.0000 0.0654 0.0000 
Vt    1.0280 0.7848 1.0280 0.7903 
Mass    1.2730 1.0260 1.2730 1.0260 
      
StateDots start value min value   max value end value 
rdot 0.0089 0.0000 0.0654 0.0000 
nudot 1.0280 0.4913 1.0280 0.4937 
Vrdot 0.0448 -0.0274 0.0563 -0.0016 
Vtdot -0.0065 -0.0579 0.0119 0.0070 
Massdot -0.0148 -0.0148 -0.0075 -0.0075 
      
Control low bound low guess  upper guess  upper bound 
Thrust -1.5510 0.0151 0.0067 1.5510 
theta 0.0000 4.9300 6.0610 6.2830 
     
Control start value min value max value end value 
Thrust 0.0151 0.0000 0.0151 0.0073 
theta 4.9300 0.0000 6.2830 6.0610 
      
Events & Paths  low bound      upper bound 
r_0    1.0000   1.0000 
nu_0    0.0000   0.0000 
C3    0.0000   0.0000 
m_0    1.2730   1.2730 
Vr_f    0.0000   0.0000 
Vt_f    0.0000   0.0000 
m_f    1.0260   1.0260 
maxThrust    -16860.0000    0.0000 
posThrust    0.0000    16860.0000 
      
knots low bound  low guess upper guess upper bound 
hard 0.0000 0.0000 21.3100 0.0000 
hard 0.0000 0.0000 21.3100 62.8300 
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