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ABSTRACT 

 

 For precision spacecraft structures used for antennas 

and reflectors of telescopes, determination of in-orbit 

structural displacement and its control is very important.  

While this kind of measurement is relatively easy to carry 

out in a laboratory setting, it can be problematic in a real 

world environment. A procedure for the real-time 

determination of displacements at any point of a vibrating 

body can be utilized by measuring strain that is present. 

The procedure could employ measurement devices like Fiber 

Bragg Gratings, which are capable of very fine strain 

measurements. This thesis presents the finite element 

analysis of a truss similar to the NPS Space truss to 

observe the behavior of the strain relative to the 

displacement. A relationship between strain and displacement 

for the truss is derived. From this relationship and the 

strain measurements, deflection at successive nodes was 

computed and compared to a Nastran simulation of the truss 

displacements. 
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I. INTRODUCTION 

There has been and continues to be extensive work done 

in determining a relationship to estimate structural 

displacement based on measuring its strain. Gaukroger and 

Hassal [Ref. 1] selected a suitable group of strain gage 

patterns and corresponding displacements for a non-rotating 

cantilever beam that could be used to approximate the 

displacements for a helicopter blade. The objective was to 

obtain good agreement between the measured and fitted strain 

gage patterns for the stationary blade by omitting or adding 

modes as necessary. Displacements for the rotating case were 

then obtained from the modal coordinates obtained from the 

strain modes and the measured displacement mode shapes of 

the stationary condition. Foss and Haugse [Ref. 2] developed 

a transformation from strain to displacement for a 

cantilever plate using displacement modal testing in 

conjunction with strain modal testing. The modal coordinates 

again were approximated using the measured strains, strain 

modes and least squares. Optimal number and placement of the 

sensors were obtained using generic algorithms. Davis et al. 

[Ref. 3] assumed that the strain measured at any point could 

be written as a linear combination of a set of polynomials. 

These polynomials formed the strain basis functions, which 

upon successive integrations and application of the boundary 

conditions yielded the displacements at any point. In a 

subsequent study, Kirby et al. [Ref. 4] approximated the 

strain distribution as a linear combination of sines and 

polynomials. The polynomial guarantees a nonzero strain at 

the root. Again, the coefficients on the basis functions 

were determined using least squares and the displacements 
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were determined from these coefficients, successive 

integrations of the basis functions and imposition of the 

boundary conditions. It was demonstrated that the optimal 

sensor placement depends largely on the basis functions 

selected. 

An alternative to global basis functions is the use of 

local basis functions. For this technique, the beam is 

discretized into a number of elements. Baz et al. [Ref. 5] 

assumed the curvature varied linearly over the length of 

each element. The strain sensors were located on the 

interior of each element. This assumption was used by 

Gopinathan et al. [Ref. 6]. but with the strain sensors 

located at the boundaries of each element. A major 

deficiency of the assumption of linear curvature over each 

element is loss of accuracy of the estimation as the 

curvature over each segment departs from linearity. 

Therefore, it should not be expected to obtain good results 

for higher modes or more complex deformations with a limited 

number of sensors. Accordingly, Vurpillot et al. [Ref. 7] 

examined the use quadratic curvatures over the length of the 

element. Andersson and Crawley [Ref.8] examined integration 

of the curvature using both the trapezoidal and Simpson 

rules. They also considered modeshape fitting as outlined in 

the previous paragraph, as well as the use of shaped strain 

sensors to obtain global shape estimates. 

In this thesis I have examined the utility of measuring 

strain to determine modeshapes, in order to control 

vibration in large, flexible, space structures. I simulated 

the strain and displacement on a Precision Space Truss as 

the model for the structures of interest. 



II. PRECISION SPACE TRUSS 

A. DETAILED TRUSS DESCRIPTION 
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Figure 1. Precision Space Truss (with numbered nodes) 

 

These eight cubic bays are a combination of 

battens/longerons and diagonals (see Figure 1).  Longerons 

run down the length of the structure, battens compose the 

vertical elements, and diagonals run diagonally from one 

line of longerons to an adjacent line.  Collectively, all of 

the aforementioned elements will be referred to as struts.  

Each strut is made of a composite material, and is composed 

of several parts:  the tube, outer sleeve, bolt, standoff, 

and nut (see Figure 2).  Additionally, the tube is fastened 

to the outer sleeve with epoxy and then a pin is driven 

through the sleeve and tube. Each strut begins and 

terminates in an Aluminum node ball. 
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Figure 2. Strut Terminating End and Node Ball 

 

 The struts can be modeled as rod elements.  Rods can be 

defined as elements whose geometry is such that the longest 

dimension of the bar is straight and the greatest dimension 

of the cross section is small compared to the length.  A 

rod is an axial member with an internal axial force only, 

known as a two-force member. Figure 3 is a basic schematic 

for a rod element. 
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Figure 3. Rod Element 

 

 The elemental stiffness and mass matrices for the rod 

model, respectively, are shown in eqns 2.1 and 2.2. 
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In equation 2.1 and 2.2: 

   

A = cross-sectional area 

  E = elastic modulus 

  L = length of element 

  ρ  = density  
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2. Truss Construction 

 Table 1 shows the mass breakdown of the individual 

parts of the truss. 

 

Quantity:  Part name:     Individ. Mass: (kg) 
40   node balls     0.06625 
100   longerons (unassembled)   0.01385 
100   longerons (assembled)    0.04475 
61   diagonals (unassembled)   0.02125 
61   diagonals (assembled)    0.05215 
322   bar end assemblies (each)   0.01545 
322  0.60697 screws (minus heat shrink & vibe tight)  (total weight) 
Assembled Truss  (bare, sum of above, assembled parts)  11.7081 
Assembled Truss  (bare, actual measured mass)   11.750 
Base plate  (not included in calculated or meas. mass) 7.30 

 
Table 1.  Truss Mass Breakdown 

 

The Precision Space Truss was designed by and built at 

the Naval Research Lab. It was precisely assembled in the 

following manner.  After each part was fabricated, the 

individual struts were assigned identifying serial numbers.  

These serial numbers were printed on tabs and attached to 

their respective members and covered with a transparent 

piece of heat shrink.  In addition, each end assembly had 

the suffix of its strut’s serial number etched on it in 

order that each two end assemblies remain permanently paired 

with their respective strut.  End assemblies, without their 

struts, were first attached to their respective node balls.  

The node balls are aluminum spheres, approximately 38.7 mm 

in diameter (see Figure 2).  Each node ball has eighteen 

connection points for attaching struts with end assemblies 

and for attaching thumb screws.  A torque, socket wrench, 

set to 44 in-lbs., and fitted with a 9/64th inch hex head 

was used to tighten the #8-32 screws which fasten the end 

assembly to the node ball.   Each screw is prepared with 

heat shrink/vibe tight, which restricts a screw’s ability to 



loosen itself during prolonged, high frequency vibrations.  

After attaching the end assemblies to the node balls, the 

end assemblies were paired with their struts.  An 11/16th 

torque wrench, set to 70 in-lbs. was used in conjunction 

with an open, ½ inch crescent wrench to tighten down the end 

assemblies on the struts. 

 

B. DYNAMIC STIFFNESS TESTING 

1. Introduction 

 In the case of the truss struts, I was interested in 

the effective axial stiffness from node-point to node-point 

(the center of a node ball is effectively a node-point).  

In other words, the effective axial stiffness of a strut 

was from the center of one node ball, to the next node 

ball, along the length of a truss element.  The stiffness 

of individual parts was reasonably calculated. However, 

their combined, effective stiffness was not as easily 

obtained. A dynamic measurement procedure was devised by 

Robert Craig Waner at the Naval Research Lab for just such 

a measurement. For now, the effective axial stiffness of a 

rod element may be defined as follows: 

eff
eff L

AEk ⎟
⎠
⎞

⎜
⎝
⎛=      (2.3) 

 

where:   A = cross-sectional area 

  E = Young’s modulus 

  L = length 
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2. Analytical Development 

Struts can effectively be modeled as a springs with 

specific stiffness values (keff).  The dynamic test for 

effective axial stiffness incorporated a system of two point 

masses (m1 and m2) connected by a linear spring (keff) as 

illustrated in Figure 4 (x1 and x2 are a global coordinate 

system). 

 

keffm1 m2

x2x1

 
 

Figure 4. Schematic of Free-Free System 

 

When we apply Newton’s second law to the system we arrive 

at the following equations of motion: 

 

02111 =−+ xkxkxm effeff&&    (2.4a) 

01222 =−+ xkxkxm effeff&&    (2.4b) 

 

Which results in the following matrix: 
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Assume a harmonic solution of the form in the following 

equation: 

{x} = {x0} cos ((ωt + φ)   (2.6) 

where:  {x0} = 2 by 1 vector of time-independent amplitudes 

ω = undamped natural frequency of system 

φ = phase angle 

If we now substitute equation (2.6) and its derivatives 

into Equation (2.5), we will arrive at the new matrix 

below: 
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 In this new matrix, equation (2.7), the vector {x0} is 

the nullspace of the left-hand matrix.  Since every matrix 

has a null space, ω must be chosen such that the left-hand 

matrix has a nullspace.  This dictates that the left-hand 

matrix must be singular, and therefore, its determinant 

must be equal to zero. 

 When we take the determinant of the left-hand matrix in 

equation (2.7), and set it equal to zero, we are left with 

the following expression: 

 

02
2

2
1

4
21 =−− ωωω mkmkmm effeff    (2.8) 
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Solving equation (2.8) for ω2: 



ω2 = 0 (rigid body mode)   (2.9a) 

 

21

212 )(
mm

mmkeff +
=ω      (2.9b) 

 

Extracting keff from equation (2.9b) gives us the following 

expression for the effective stiffness: 

 

)( 21

2
21

mm
mmkeff +

=
ω

     (2.10) 

 

 3. Stiffness Experimental Implementation 

To determine the effective axial stiffness of 

individual struts, an experiment was set up (see Figure 5), 

which included a strut (with terminating assemblies) and a 

single node ball bolted between two weights suspended by 

turnbuckles and two wires anchored at points ten feet above 

the floor. The outputs from both the accelerometer and the 

impulse hammer were fed into a Hewlett Packard, HP35670A, 

Dynamic Signal Analyzer (S/N 3431A01574).   Finally, output 

from the HP Dynamic Signal Analyzer was saved to diskette 

and analyzed on a PC using MATLAB. 

  10



 

HEWLETT PACKARD 
DYNAMIC SIGNAL ANALYZER 

IMPULSE
HAMMER

ACCELEROMETER 
METAL WEIGHTS 

STRUT 

NODE BALL 

WIRE 
CABLES 

TURNBUCKLE 

ANCHOR 
POINTS 

1 2

 
 

Figure 5. Effective Axial Stiffness Test Setup 
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 The procedure consisted of tapping the metal block 

(weight) on the side opposite the accelerometer with the 

impulse hammer.  The velocity vector of this tap should be 

parallel to the longitudinal axis of the strut.  This 

impulse will excite the strut to its natural frequency.  

The accelerometer that was attached to the opposite metal 

block sensed the vibration.  Using the Hewlett Packard 

Dynamic Signal Analyzer, a frequency response function 

(FRF) was generated.  Referencing the largest peak in this 

FRF, a corresponding natural frequency can be determined.  

Recall that in our analytical development, equation (2.9a) 

predicted a rigid body mode (ω2 = 0).  In the experimental 

model, we only approximated a free-free system (we had the 

wire cables to contend with, however negligible they were) 

whereas the analytical model is a true, free-free system.  

Once we know ω, the natural frequency, we need only know 

the total mass of the metal end blocks, m1 and m2, to 



  12

determine the effective stiffness, keff.  m1 consists of one 

metal block, the accelerometer, the node ball, one half of 

the tube mass, and an end assembly (outer sleeve, bolt, 

standoff, and nut; see Figure 2). m2 consists of one metal 

block, one half of the tube mass, and an end assembly.  We 

now have the values necessary to calculate the effective 

stiffness (see equation (2.10)). 

4. Stiffness Experimental Results 

Using the dynamic stiffness test, five different 

battens/longerons and five different diagonals were tested.  

Each element was tested five times to develop an average 

for that specific element.  Then the five longeron averages 

and the five diagonal element averages were averaged to 

develop an effective axial stiffness for that type of 

element. In the following tables (Tables 2 and 3), 

effective stiffness determined by the dynamic test is keff.   

 

 
Battens/Longerons:         
Number   f (Hz) (rad/sec) keff (N/m) keff (lb/in)  
1  474.6 2982.000 7.44E+06 42499.79 
2  470.9 2958.752 7.33E+06 41839.71 
3  467.3 2936.132 7.22E+06 41202.43 
4  473.9 2977.602 7.42E+06 42374.51 
5   472.55 2969.119 7.38E+06 42133.43 
   average = 7.36E+06 42009.98 

   
Table 2. Batten/Longeron Effective Stiffness 
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Diagonal Elements:         
Number   f (Hz) (rad/sec) keff (N/m) keff (lb/in)  
1  391.5 2459.867 5.06E+06 28919.77 
2  392 2463.009 5.08E+06 28993.69 
3  374 2349.911 4.62E+06 26392.13 
4  386.5 2428.451 4.94E+06 28185.80 
5   388.5 2441.017 4.99E+06 28478.25 
   average = 4.94E+06 28193.93 

 
Table 3. Diagonal Effective Stiffness 

 
C. BUILDING THE ANALYTICAL MODEL 

We had already collected the truss properties required 

to build an accurate model of the structure.  Specifically, 

we knew the masses of different elements, we knew the 

effective axial stiffness values for the longerons and 

diagonal elements, and we knew how the truss was 

constructed.  Although these frequencies provided a good 

estimate to compare actual frequencies with, there were 

several limitations to the model. 

 The following table, Table 4, NPS Space Truss Natural 

Frequencies, corresponds to the first 20 natural 

frequencies, as computed by NRLFEMI.  Table 5, NRL Truss 

Natural Frequencies, is also displayed for comparison.  The 

original NRL truss had steel node balls in place of the 

Aluminum node balls present on the NPS Space Truss.  The 

extra mass at the nodes forced the natural frequencies of 

the NRL truss lower then those of its NPS counterpart.  
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Number   ωn(rad/s)   frequency(Hz) 
 1.00         92.01         14.64 
 2.00        102.14         16.26 
 3.00        191.06         30.41 
 4.00        213.44         33.97 
 5.00        395.40         62.93 
 6.00        468.36         74.54 
 7.00        506.79         80.66 
 8.00        634.66        101.01 
 9.00        793.12        126.23 
 10.00       854.35        135.97 
 11.00       885.68        140.96 
 12.00      1246.87        198.44 
 13.00      1305.21        207.73 
 14.00      1442.56        229.59 
 15.00      1461.82        232.66 
 16.00      1616.49        257.27 
 17.00      1762.29        280.48 
 18.00      1788.50        284.65 
 19.00      1970.66        313.64 
 20.00      2206.76        351.22 

 
Table 4. NPS Precision Space Truss Natural Frequencies 

Using Aluminum Nodes (calculated) 
 

Number ωn (rad/s)   frequency(Hz) 
1.00       79.24         12.61 
2.00         88.65         14.11 
3.00        166.23         26.46 
4.00        185.71         29.56 
5.00        343.14         54.61 
6.00        404.34         64.35 
7.00        435.82         69.36 
8.00        549.16         87.40 
9.00        689.26        109.70 
10.00       742.51        118.17 
11.00       769.08        122.40 
12.00      1079.98        171.88 
13.00      1139.06        181.29 
14.00      1246.46        198.38 
15.00      1255.79        199.87 
16.00      1404.31        223.50 
17.00      1527.16        243.06 
18.00      1548.73        246.49 
19.00      1704.14        271.22 
20.00      1902.63        302.81 

 
Table 5. NRL Precision Space Truss Natural Frequencies 

Using Steel Nodes (calculated) 



III.  STRAIN-DISPLACEMENT MAPPING 

 This work assumes that only axial strain exists. The 

strain in an individual member can be calculated using  

 

( )f i

i

L L
L

ε −
=    (3.1) 

 

 Where ε  is the member strain and  and  are the 

original and final length of the member respectively. We 

assume the strain is due entirely to axial forces and 

bending does not occur in any elements of the structure. 

Figure 6 illustrates the displacement of a member under an 

arbitrary set of loads. 
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jiL 2 = ( ix x− )2 + ( i jy y− )2 + ( )iz z− j
2   (3.2) 

 

Consider the truss structure shown in Figure 7. If the 

coordinates of the nodes at n1, n2, n3, and n4 are given, the 

coordinates of the nodes at n5, n6, n7, and n8 can be 

computed from the strain measurements of the beam element. 
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Figure 7. Local and Global Coordinates 
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First, local and global coordinates for the beam deformation  

are defined as shown in Figure 7. Local z-direction unit 

vector is identified as a direction perpendicular to the 

plane formed by n2-n1 and n4-n1 vectors such that 

)()(
)()(

1412

1412

nnnn
nnnnz

−×−
−×−

=          (3.3) 

Local x-direction is defined as 

12

12

nn
nnx

−
−

=            (3.4) 

Then the local y-direction is defined as 

xzy ×=               (3.5) 



The definition of the local axis uses small angle 

approximations cause by the deformation of the beam. 

However, this definition of the local coordinates will 

simplify the computation of displacement of the whole 

structure. The coordinates of the nodes n5, n6, n7, and n8 

can be easily computed from the strain measurements of the 

beam elements in local coordinates, accounting only the 

axial deformation of each beam element. A transformation 

matrix transforms the coordinates of the computed nodes in 

local coordinates to the global coordinates. Since the local 

frame unit vectors are written as global coordinates in 

equations (3.3) through (3.5), the coordinate transformation 

matrix is simply written as 

][ zyxT =             (3.6) 

 To determine the deformation of the whole structure 

requires sequential computation of the succeeding nodes. 

Starting from the base of the structure with fixed 

coordinates (nodes 37, 38, 39, and 40), the coordinates of 

the next 4 nodes (nodes 3, 4, 12, and 13) are identified. 

Using the identified nodes as base nodes, the coordinates of 

the next 4 nodes can be computed. This procedure is repeated 

until the node coordinates for the whole structure are 

determined. 
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IV. SIMULATION 

 The characteristics of the space truss were placed into 

the FEM program NASTRAN. This data was uploaded into PATRAN 

where a finite element analysis was performed on the 

structure.  A static load was applied in the axial 

direction at Node 5 of the structure. The finite element 

analysis yielded the displacements at each node as well as 

the axial forces for each element.  
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Figure 8. Truss Strain Analysis 
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 In Figure 8, Truss 1 is the non-deformed truss before 

the force is introduced. Truss 2 is the result of the 

displacements calculated by NASTRAN. Truss 3 is the result 

of the strain calculated from the displacements but with 

none of the diagonals included. Truss 4 is the same as 

Truss 3 but with the diagonals of the two base bays, where 

most of the error originates, included. Truss 5 actually 

removes the strain values from two of the bays. The strains 

in these areas are interpolated, since the strain is 

assumed to be linear from the base to the end. 

 The objective of this thesis was to see if the strain 

measurements alone could approximate the end point 

deflection observed using the displacement values from 

NASTRAN. Table 6 shows a quantitative assessment of the 

strain based measurements and the NASTRAN results.  

 
NASTRAN Truss 3 Truss 4 Truss 5 

# of strain 
measurements 

56 64 48 

Deformation(mm) at 36 
x = 0.0234E-4 
y = -0.1086E-4 
z = 0.0685E-4 

 
x = 0.0866E-5 
y = -0.5942E-5
z = 0.2647E-5 

 
x = 0.0259E-4 
y = -0.1177E-4
z = 0.0839E-4 

 
x = 0.0255E-4 
y = -0.1176E-4
z = 0.0839E-4 

Deformation(mm) at 19 
x = 0.0439E-4 
y = -0.1089E-4 
z = 0.0685E-4 

 
x = 0.2182E-5 
y = -0.5918E-5
z = 0.2647E-5 

 
x = 0.0502E-4 
y = -0.1174E-4
z = 0.0839E-4 

 
x = 0.0499E-4 
y = -0.1174E-4
z = 0.0839E-4 

Deformation(mm) at 9 
x = -0.0005E-4 
y = -0.1086E-4 
z = 0.0676E-4 

 
x = -0.0619E-5
y = -0.5726E-5
z = 0.2854E-5 

 
x = 0.0005E-4 
y = -0.1155E-4
z = 0.0837E-4 

 
x = 0.0002E-4 
y = -0.1154E-4
z = 0.0837E-4 

Deformation(mm) at 18 
x = 0.0164E-4 
y = -0.1089E-4 
z = 0.0676E-4 

 
x = 0.0335E-5 
y = -0.5918E-5
z = 0.2854E-5 

 
x = 0.0201E-4 
y = -0.1174E-4
z = 0.0837E-4 

 
x = 0.0196E-4 
y = -0.1174E-4
z = 0.0837E-4 

% error at node 36 49.7% 12.5% 12.4% 
% error at node 19 49.7% 12.4% 12.3% 
% error at node 9 49.8% 11.5% 11.5% 
% error at node 18 49.1% 12.6% 12.5% 
Table 6. Deformation of the truss at the end nodes 
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 The x, y and z displacements at the end of the 

structure computed from a Nastran simulation are shown in 

the first column. The displacements computed from the 

strain measurements appear in columns 2, 3 and 4.  As 

mentioned above, Truss 3 does not include the strains in 

the diagonals.  Truss 4 includes the diagonals for the two 

base bays, and Truss 5 interpolates the strains for the bay 

to right of the Nodes 5 and 7. The error was computed from 

the total RMS deviation of the x, y and z components of the 

Nastran and strain calculations.  Although none of the 

strain based displacements were very accurate, there were 

some observations that were expected. It is clear that the 

more strain measurements available the more accurate the 

mapping. Something that was not expected was the similarity 

between trusses 4 and 5. This result shows that, at some 

point, there is not much difference between having the 

strain measurements and using interpolated values. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

 This work has shown that strain can be used to measure 

displacement of a space truss to an accuracy of 12%. From 

these measurements, bending modes can be predicted, although 

not very accurately unless many strain gauges are used. 

Additionally, this work has shown that on this type of a 

truss, the base bays should have a greater density of strain 

gauges than other locations. Future work should include the 

employment of many more strain gauges to see if a modeshape 

can in fact be predicted. In addition, the assumption that 

only axial strain exists with no bending should be 

abandoned, even though this makes the problem much more 

difficult. Another assumption that I made was that the 

displacement was distributed equally on either side of each 

element. I know now that this was probably a large source of 

error since the diagonal element would tend to bend one side 

more than the other. 

 Future work without the aforementioned assumptions 

could result in a procedure for the real-time determination 

of displacements at any point of a vibrating body using 

strain gauges. The procedure could employ measurement 

devices like Fiber Bragg Gratings, which are capable of very 

fine strain measurements. This thesis presents the finite 

element analysis of a truss similar to the NPS Space truss 

to observe the behavior of the strain relative to the 

displacement.  
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APPENDIX 

 The following MATLAB functions use the strain values 

from NASTRAN to compute displacements in local coordinates 

of the deformed truss. Another function builds a 

transformation matrix needed to convert the local 

coordinates to global coordinates. Next the coordinates are 

used to draw the deformed truss. 

 

 
function n_prime = ndisp(n,st) 
 
% function ndisp calculates coordinates of deformed nodes due to the  
strain 
% n: coordinate of the starting nodes 
% n = [n1x n1y n1z    
%     n2x n2y n2z 
%     n3x n3y n3z 
%     n4x n4y n4z] 
% st: length and strain of each bar element 
% st = [L1 s1 
%       L2 s2 
%       L3 s3 
%       L4 s4 
%       L5 s5 
%       L6 s6 
%       L7 s7 
%       L8 s8] 
 
% compute displacement change due to the bar length and strain in local  
coordinates 
deltad = [-0.5*st(5,1)*st(5,2) -0.5*st(8,1)*st(8,2)  
st(1,1)+st(1,1)*st(1,2);... 
    0.5*st(5,1)*st(5,2) -0.5*st(6,1)*st(6,2)  
st(2,1)+st(2,1)*st(2,2);... 
    0.5*st(7,1)*st(7,2) 0.5*st(6,1)*st(6,2) st(3,1)+st(3,1)*st(3,2);... 
    -0.5*st(7,1)*st(7,2) 0.5*st(8,1)*st(8,2) st(4,1)+st(4,1)*st(4,2)]; 
 
% compute the transformation matrix from local coordinates to global 
% coordinates 
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e1 = (n(2,:)-n(1,:))'/norm(n(2,:)-n(1,:)); 
e2p = (n(4,:)-n(1,:))'/norm(n(4,:)-n(1,:)); 
e3p = cross(e1,e2p); 
e3 = e3p/norm(e3p); 
e2 = cross(e3,e1); 
T = [e1 e2 e3]; 
 
 
% displacement change in global coordinates 
d1 = T*deltad(1,:)'; 
d2 = T*deltad(2,:)'; 
d3 = T*deltad(3,:)'; 
d4 = T*deltad(4,:)'; 
 
% global coordinates of the deformed end nodes 
n_prime = n+[d1';d2';d3';d4']; 
function n_prime = ndispdiag(n,st) 
 
% function ndisp calculates coordinates of deformed nodes due to the  
strain 
% n: coordinate of the starting nodes 
% n = [n1x n1y n1z    
%     n2x n2y n2z 
%     n3x n3y n3z 
%     n4x n4y n4z] 
% st: length and strain of each bar element 
% st = [L1 s1 
%       L2 s2 
%       L3 s3 
%       L4 s4 
%       L5 s5 
%       L6 s6 
%       L7 s7 
%       L8 s8 
%       L9 s9 
%       L10 s10 
%       L11 s11 
%       L12 s12] 
 
 
% compute displacement change due to the bar length and strain in local  
coordinates 
L1 = st(1,1);L2 = st(2,1);L3 = st(3,1);L4 = st(4,1);L5 = st(5,1);L6 =  
st(6,1); 
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L7 = st(7,1);L8 = st(8,1);L9 = st(9,1);L10 = st(10,1);L11 =  
st(11,1);L12 = st(12,1); 
 
s1 = st(1,2);s2 = st(2,2);s3 = st(3,2);s4 = st(4,2);s5 = st(5,2);s6 =  
st(6,2); 
s7 = st(7,2);s8 = st(8,2);s9 = st(9,2);s10 = st(10,2);s11 =  
st(11,2);s12 = st(12,2); 
 
n1 = n(1,:); 
n2 = n(2,:); 
n3 = n(3,:); 
n4 = n(4,:); 
 
d1 = L1*s1; 
d2 = L2*s2; 
d3 = L3*s3; 
d4 = L4*s4; 
d5 = L5*s5; 
d6 = L6*s6; 
d7 = L7*s7; 
d8 = L8*s8; 
d9 = L9*s9; 
d10 = L10*s10; 
d11 = L11*s11; 
d12 = L12*s12; 
 
a1a = acos(((L1+d1)^2+norm(n2-n1)-(L2+d2)^2)/(2*(L1+d1)*norm(n2-n1))); 
a3a = acos(((L5+d5)^2+norm(n3-n2)-(L4+d4)^2)/(2*(L5+d5)*norm(n3-n2))); 
a1b = acos(((L1+d1)^2+norm(n4-n1)-(L8+d8)^2)/(2*(L1+d1)*norm(n4-n1))); 
a3b = acos(((L5+d5)^2+norm(n4-n3)-(L6+d6)^2)/(2*(L5+d5)*norm(n4-n3))); 
 
deltad = [-(L1+d1)*cos(pi-a1a) -(L1+d1)*cos(pi-a1b)  
(L1+d1)*sin(pi-a1a);... 
    d9-(L1+d1)*cos(pi-a1a) -d10+(L5+d5)*cos(pi-a3a) L3+d3;... 
    (L5+d5)*cos(pi-a3b) (L5+d5)*cos(pi-a3a) (L5+d5)*sin(pi-a3a);... 
    -d11+(L5+d5)*cos(pi-a3b) d12-(L1+d1)*cos(pi-a1b) L7+d7]; 
 
 
 
% compute the transformation matrix from local coordinates to global 
% coordinates 
e1 = (n(2,:)-n(1,:))'/norm(n(2,:)-n(1,:)); 
e2p = (n(4,:)-n(1,:))'/norm(n(4,:)-n(1,:)); 
e3p = cross(e1,e2p); 
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e3 = e3p/norm(e3p); 
e2 = cross(e3,e1); 
T = [e1 e2 e3]; 
 
% displacement change in global coordinates 
d1 = T*deltad(1,:)'; 
d2 = T*deltad(2,:)'; 
d3 = T*deltad(3,:)'; 
d4 = T*deltad(4,:)'; 
 
% global coordinates of the deformed end nodes 
n_prime = n+[d1';d2';d3';d4']; 

  

% truss coordinates 
n(1,:) = [0 0 0]; 
n(2,:) = [1 0 0]; 
n(3,:) = [2 0 0]; 
n(4,:) = [3 0 0]; 
n(5,:) = [4 0 0]; 
n(6,:) = [5 0 0]; 
n(7,:) = [6 0 0]; 
n(8,:) = [7 0 0]; 
n(9,:) = [8 0 0]; 
 
n(10,:) = [0 0 -1]; 
n(11,:) = [1 0 -1]; 
n(12,:) = [2 0 -1]; 
n(13,:) = [3 0 -1]; 
n(14,:) = [4 0 -1]; 
n(15,:) = [5 0 -1]; 
n(16,:) = [6 0 -1]; 
n(17,:) = [7 0 -1]; 
n(18,:) = [8 0 -1]; 
 
n(19,:) = [8 1 -1]; 
n(20,:) = [7 1 -1]; 
n(21,:) = [6 1 -1]; 
n(22,:) = [5 1 -1]; 
n(23,:) = [4 1 -1]; 
n(24,:) = [3 1 -1]; 
n(25,:) = [2 1 -1]; 
n(26,:) = [1 1 -1]; 
n(27,:) = [0 1 -1]; 
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n(28,:) = [0 1 0]; 
n(29,:) = [1 1 0]; 
n(30,:) = [2 1 0]; 
n(31,:) = [3 1 0]; 
n(32,:) = [4 1 0]; 
n(33,:) = [5 1 0]; 
n(34,:) = [6 1 0]; 
n(35,:) = [7 1 0]; 
n(36,:) = [8 1 0]; 
 
n(37,:) = [2 -1 -1]; 
n(38,:) = [3 -1 -1]; 
n(39,:) = [2 -1 0]; 
n(40,:) = [3 -1 0]; 
 
 
 
 
% displacements 

d(1,:) = [ 0.0000006433343  0.0000031524010  -0.0000020019660 ]; 

d(2,:) = [ 0.0000006432649  0.0000017776800  -0.0000013283960 ]; 

d(3,:) = [ 0.0000006431954  0.0000003913266  -0.0000006431954 ]; 

d(4,:) = [ 0.0000004920491  -0.0000002155565  -0.0000001560156 ]; 

d(5,:) = [ 0.0000003409029  -0.0000021745580  0.0000008862774 ]; 

d(6,:) = [ 0.0000002266914  -0.0000039949240  0.0000020054920 ]; 

d(7,:) = [ 0.0000001124798  -0.0000061284770  0.0000034378920 ]; 

d(8,:) = [ 0.0000000305816  -0.0000083475000  0.0000049557630 ]; 

d(9,:) = [ -0.0000000513165  -0.0000108571000  0.0000067642150 ]; 

d(10,:) = [ 0.0000013170040  0.0000030943180  -0.0000020019660 ]; 

d(11,:) = [ 0.0000013170040  0.0000017253920  -0.0000013283960 ]; 

d(12,:) = [ 0.0000013091220  0.0000001840490  -0.0000006431954 ]; 

d(13,:) = [ 0.0000013012410  -0.0000004078845  -0.0000001560156 ]; 

d(14,:) = [ 0.0000013951940  -0.0000022072980  0.0000008862774 ]; 

d(15,:) = [ 0.0000014891470  -0.0000039297900  0.0000020054920 ]; 

d(16,:) = [ 0.0000015644640  -0.0000061383070  0.0000034378920 ]; 

d(17,:) = [ 0.0000016397810  -0.0000082613540  0.0000049557630 ]; 

d(18,:) = [ 0.0000016397810  -0.0000108930300  0.0000067642150 ]; 

d(19,:) = [ 0.0000043888120  -0.0000108930300  0.0000068456460 ]; 

d(20,:) = [ 0.0000040711050  -0.0000082613540  0.0000049151220 ]; 

d(21,:) = [ 0.0000037533970  -0.0000061383070  0.0000034932270 ]; 

d(22,:) = [ 0.0000034680030  -0.0000039297900  0.0000019858620 ]; 

d(23,:) = [ 0.0000031826090  -0.0000022072980  0.0000009645222 ]; 

d(24,:) = [ 0.0000029341500  -0.0000004078845  -0.0000001337391 ]; 



  30

d(25,:) = [ 0.0000026856910  0.0000003680981  -0.0000007360339 ]; 

d(26,:) = [ 0.0000026857600  0.0000017253920  -0.0000013921760 ]; 

d(27,:) = [ 0.0000026858300  0.0000030943180  -0.0000020599500 ]; 

d(28,:) = [ 0.0000020181560  0.0000031524010  -0.0000020599500 ]; 

d(29,:) = [ 0.0000020181560  0.0000017776800  -0.0000013921760 ]; 

d(30,:) = [ 0.0000020102740  0.0000003913266  -0.0000007360339 ]; 

d(31,:) = [ 0.0000020023930  -0.0000004311130  -0.0000001337391 ]; 

d(32,:) = [ 0.0000020963460  -0.0000021745580  0.0000009645222 ]; 

d(33,:) = [ 0.0000021902990  -0.0000039949240  0.0000019858620 ]; 

d(34,:) = [ 0.0000022656160  -0.0000061284770  0.0000034932270 ]; 

d(35,:) = [ 0.0000023409330  -0.0000083475000  0.0000049151220 ]; 

d(36,:) = [ 0.0000023409330  -0.0000108571000  0.0000068456460 ]; 

d(37,:) = [ 0.0000000000000  0.0000000000000  0.0000000000000 ]; 

d(38,:) = [ 0.0000000000000  0.0000000000000  0.0000000000000 ]; 

d(39,:) = [ 0.0000000000000  0.0000000000000  0.0000000000000 ]; 

d(40,:) = [ 0.0000000000000  0.0000000000000  0.0000000000000 ]; 

 

nd = n+30000*d; 
drawtruss(n,'b') 
drawtruss(nd,'r') 
 
function drawtruss(n,clr) 
 
%n: 40x3 node coordinates data set 
 
%connectivity 
 
c{1} = [2 10 11 27 28 29]; 
c{2} = [1 3 11 29]; 
c{3} = [2 4 11 12 13 29 30 31]; 
c{4} = [3 5 13 31]; 
c{5} = [4 6 13 14 15 31 32 33]; 
c{6} = [5 7 15 33]; 
c{7} = [6 8 15 16 17 33 34 35]; 
c{8} = [7 9 17 35]; 
c{9} = [8 17 18 19 35 36]; 
c{10} = [1 11 27]; 
c{11} = [1 2 3 10 12 25 26 27 29]; 
c{12} = [3 11 13 25]; 
c{13} = [3 4 5 12 14 23 24 25 31]; 
c{14} = [5 13 15 23]; 
c{15} = [5 6 7 14 16 21 22 23 33]; 
c{16} = [7 15 17 21]; 
c{17} = [7 8 9 16 18 19 20 21 35]; 
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c{18} = [9 17 19]; 
c{19} = [9 18 20 35 36]; 
c{20} = [17 19 21 35]; 
c{21} = [7 15 16 17 20 22 33 34 35]; 
c{22} = [15 21 23 33]; 
c{23} = [5 13 14 15 22 24 31 32 33]; 
c{24} = [13 23 25 31]; 
c{25} = [3 11 12 13 24 26 29 30 31]; 
c{26} = [11 25 27 29]; 
c{27} = [1 10 11 26 28 29]; 
c{28} = [1 27 29]; 
c{29} = [1 2 3 11 25 26 27 28 30]; 
c{30} = [3 25 29 31]; 
c{31} = [3 4 5 13 23 24 25 30 32]; 
c{32} = [5 23 31 33]; 
c{33} = [5 6 7 15 21 22 23 32 34]; 
c{34} = [7 21 33 35]; 
c{35} = [7 8 9 17 19 20 21 34 36]; 
c{36} = [9 19 35]; 
c{37} = [3 12 13 38]; 
c{38} = [13 37 40]; 
c{39} = [3 37 40]; 
c{40} = [3 4 13 38 39]; 
 
for i = 1:40, 
    for j = 1:length(c{i}) 
        drawline(n(i,:),n(c{i}(j),:),clr) 
    end 
end 
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