
 

NAVAL 
POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 

 
 

THESIS 
 

OPTIMIZING CONTAINER MOVEMENTS USING ONE 
AND TWO AUTOMATED STACKING CRANES 

 
by 
 

Ioannis Zyngiridis 
 

December 2005 
 
 

 Thesis Advisor:   Robert Dell 
 Second Reader: Johannes O. Royset 

Approved for public release; distribution is unlimited 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time 
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing 
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington headquarters Services, 
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
December 2005 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE:  Optimizing container movements using one 
and two Automated Stacking Cranes 
6. AUTHOR(S) Ioannis Zyngiridis 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND 
ADDRESS(ES) 

N/A 

10. SPONSORING/MONITORING 
     AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  
The number of containers shipped through ports has increased substantially in recent years and has stimulated 

research and development of ways to improve storage yard operations.  The productivity of a port’s storage yard 
depends, in part, on the cranes that are working in storage blocks.  Each crane follows a route described primarily by 
the order to move each container that enters or leaves a block and the position to stack each container in the block.  
Each container that leaves (enters) the block must be unloaded (loaded) in a limited capacity transfer point before (after) 
a given time.  This thesis is the first to develop Integer Linear Programs (ILPs) to prescribe routes for one and two equal 
sized Automated Stacking Cranes (ASCs) in a single block working with straddle carriers to load and unload containers 
from the transfer points.  Using real world data, we construct test problems varying both the number of container bays 
(length) and excess capacity of each block.  We find one ASC working alone over four hours requires up to 70% more 
time than two ASCs working together to accomplish the same required container movements.  ILP solution time is 
typically only a few seconds. 
 

15. NUMBER OF 
PAGES  

71 

14. SUBJECT TERMS  Optimization, Integer Linear Program, Container Storage, Port 
Logistics, Port Operations, Crane Scheduler, Automated Stacking Crane 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 

 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

OPTIMIZING CONTAINER MOVEMENTS USING ONE AND TWO 
AUTOMATED STACKING CRANES 

 
Ioannis Zyngiridis 

Captain, Hellenic Army 
B.S., Hellenic Military Academy, 1993 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN OPERATIONS RESEARCH 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
December 2005 

 
 
 

Author:  Ioannis Zyngiridis 
 
 
Approved by:  Robert Dell 

Thesis Advisor 
 
 

Johannes O. Royset 
Second Reader 
 
 
James N. Eagle 
Chairman, Department of Operations Research 



 iv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 
 
 
 

The number of containers shipped through ports has increased 

substantially in recent years and has stimulated research and development of 

ways to improve storage yard operations.  The productivity of a port’s storage 

yard depends, in part, on the cranes that are working in storage blocks.  Each 

crane follows a route described primarily by the order to move each container 

that enters or leaves a block and the position to stack each container in the 

block.  Each container that leaves (enters) the block must be unloaded (loaded) 

in a limited capacity transfer point before (after) a given time.  This thesis is the 

first to develop Integer Linear Programs (ILPs) to prescribe routes for one and 

two equal sized Automated Stacking Cranes (ASCs) in a single block working 

with straddle carriers to load and unload containers from the transfer points.  

Using real world data, we construct test problems varying both the number of 

container bays (length) and excess capacity of each block.  We find one ASC 

working alone over four hours requires up to 70% more time than two ASCs 

working together to accomplish the same required container movements.  ILP 

solution time is typically only a few seconds. 
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EXECUTIVE SUMMARY 
 
 
 
The number of containers shipped through ports has increased 

substantially in recent years and has stimulated research and development of 

ways to improve storage yard operations.  A port’s storage yard productivity 

depends, in part, on the cranes that are working in storage blocks.  Each crane 

follows a route described primarily by the order to move each container that 

enters or leaves a block and the position to stack each container in the block.  

Each container that leaves (enters) the block must be unloaded (loaded) in a 

limited capacity transfer point before (after) a given time.  This thesis is the first to 

develop Integer Linear Programs (ILPs) to schedule routes for one and two equal 

sized Automated Stacking Cranes (ASCs) in a single block working with straddle 

carriers to load and unload containers from the transfer points. 

When there is only one ASC, we schedule it in three connected steps. 

First, containers that are entering (imported) or leaving (exported) the block are 

scheduled.  This is the primary step where a route is found that minimizes the 

total travel distance of the ASC.  The ASC considers moves that coordinate the 

placement of imported and exported containers while giving priority to export 

container requirements.  We assume that the ASC removes containers above an 

exported container for storage elsewhere (reshuffles) immediately before moving 

the exported container.  During the first step, we only reserve time to reshuffle.  

In the second step we schedule the reshuffles.  If there is still available time, we 

schedule (the third step) reshuffles that reduce future reshuffles (house-keeping). 

For two ASCs working in a single block, we divide the block into two sub-

areas: Water Side (WS) working area and Land Side (LS) working area.  One 

ASC is responsible for the demands on the LS working area and the other for the 

demands on the WS working area.  We use the same three steps described  



 xvi

above and initially assume that the ASCs can crossover.  At the beginning of the 

third step, we adjust (if needed) the two ASCs’ moves to ensure no collisions 

occur. 

We investigate how different block characteristics influence the 

performance of one and two ASCs.  Using real world data, we construct test 

problems varying both the number of container bays (length) and excess 

capacity of each block.  We find one ASC working alone over four hours requires 

up to 70% more time than two ASCs working together to accomplish the same 

required container movements.  The length of the block and the area fullness 

significantly affect the performance of one ASC.  For two ASCs, only the length 

of the block influences performance.  We discover in all cases we consider that 

the coordinated use of two ASCs significantly outperforms one ASC working 

alone.  ILP solution time is typically only a few seconds for all cases. 
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I. INTRODUCTION  

The number of containers shipped through ports has increased 

substantially in recent years and has stimulated research and development of 

ways to improve storage yard operations.  The productivity of storage yards 

depends, in part, on the cranes that are working in storage blocks.  Each crane 

follows a route described primarily by the order to move each container that 

enters or leaves the block and the position to stack each container in a block.  

This thesis develops Integer Linear Programs (ILPs) to prescribe routes for one 

and two Automated Stacking Cranes (ASCs) in a single block. 

A. BACKGROUND  
1. Overview of Container Transshipment  
The handling of containers at Container Terminals (CTs) is becoming 

more demanding in ports worldwide.  Foxcroft [2002] reports that an estimated 

15 million containers were handled in 2002 around the world.  Aston et al. [2005] 

report inbound containers into the U.S. will increase by 6.7% in 2005 and grew 

50% over the last five years (2001-2005).  Ioannou et al. [2002] forecasts that the 

U.S. container trade will experience an average annual growth of 7.8% through 

the year 2010. 

The construction vessel industry is building ships with higher container 

capacity (Figure 1) to respond to the increase in container shipments [Henesey 

2004].  This increase also causes an increased demand for port storage that 

influences port stacking policies and creates a demand for improved technical 

equipment for container logistics [Volk 2002 and Stenken, Vob and Stahlbock 

2003]. 



 
Figure 1. Number of Container Ships Built or on Order, 1995-2005. (From: 

Henesey [2004]) 
 
2. Container Description 
For each container already in a block or scheduled to arrive, we know the 

following information: 

a. Size (20 ft., 40 ft., and 45 ft.). 
b. Identification number. 
c. Content. 
d. The name of the vessel. 
e. Destination port. 
f. Priority. 
g. Status. 
h. Future transfer point. 
The content of the container is the type of material the container carries.  

Hazardous containers are usually stacked in special blocks or in special areas 

where they can be easily inspected.  The name of the vessel and the destination 

port are given for any container that will be loaded onto a vessel in the future.  

This information helps to identify the best stacking location for a container.  For 

example, consider two containers (A and B) that will be loaded on the same 

vessel.  The container that has the most distant port destination (in this example, 

assume A) should be placed above container B to allow A to be easily stacked in 

a lower position when loaded on its future vessel.  The priority of a container is 
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an estimate on roughly when this container will leave the block.  The status 

indicator declares if the container is empty, dry or fridge. 

3. Container Handling in a Port 
When a vessel arrives in a port, a berth location is assigned to the ship 

and the procedure of unloading and loading containers into the vessel starts 

almost immediately.  Henesey [2004] describes four main ordered steps that 

each container has to follow from the moment it arrives on a vessel until it exits a 

port either on a truck, train, or in another vessel.  A typical overview of a CT is 

shown in Figure 2. 

Water side buffer zone

Land side buffer zone

Train terminal
Main gate

Storage 
yard

Ship 1 Ship 2

Water side buffer zone

Land side buffer zone

Train terminal
Main gate

Storage 
yard

Ship 1 Ship 2

 
Figure 2. Operation Areas in a Sea Port Terminal.  

Quay cranes unload and load containers from vessels.  The blocks in the storage 
yard are perpendicular to the shoreline, and the loading and unloading areas in 
the storage yard can be described as Water Side (WS) and Land Side (LS). 

 
The first step is the ship-to-shore movement where a Quay crane lifts a 

container from a vessel and moves it to shore, where carriers are waiting to 

transport it to a stacking area.  Figure 3a shows Quay cranes unloading a vessel 

and Automated Ground Vehicles (AGVs) transporting the containers to the 

storage yard. 
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The second step is the transportation of the container to a storage yard.  

In addition to AGVs, there are other transportation vehicles such as straddle 

carriers (Figure 3b).  AGVs do not need a driver but they require the assistance 

of a crane to load or unload a container.  A straddle carrier, unlike AGVs, can 

pick a container from the ground or unload it without the presence of a crane.  

The storage yard includes several blocks (Figure 2), where an AGV or straddle 

carrier unload each container to its assigned block. 

  
a.       b. 

Figure 3. Quay cranes, AGVs and Straddle Carrier.  
a. Quay crane with AGVs transporting the containers (Gottwald Port Technology 
[2005]).  b. Straddle Carrier (Kalmar Industries [2005]) 

 
The third step, the focus of this thesis, is the storage of containers in a 

block.  Each block has a specified number of bays, rows, and tiers where 

containers are stored in stacks (Figure 4).  Cranes in each block are responsible 

for the storage and transport of the container into and out of the block. 

4 



Water Side

Land Side

Row=6

Bay=20

Tier=4Height=5

 
Figure 4. Graphical Representation of an ASC Working in a Block. 

The bay refers to the number of containers along the block, the row refers to the 
width of the block, and tier refers to the maximum number of containers in each. 
 

To improve block operations, there are many ports that are using two 

cranes in each block.  In most of these cases, the two cranes are of the same 

size and type and they cannot crossover.  There are also cases where two 

cranes of different heights are working in the same block, giving more flexibility in 

the movements they can make. 

There are three main types of cranes and each one has the ability to 

transport at most one container.  The Rubber-Tired Gantry Crane (RTG) moves 

on rubber tires and has the flexibility to move between blocks (Figure 5). 

 
Figure 5. Rubber-Tired Gantry Crane (RTG). (From: Kalmar Industries 

[2005]) 
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The Rail-Mounted Gantry Crane (RMG) moves over railways only in a 

specific block and does not have the ability to move between different blocks 

(Figure 6). 

 
Figure 6. Rail-Mounted Gantry Crane (RMG). (From: Kalmar Industries 

[2005]) 
 
An Automated Stacking Crane (ASC) also moves over rails in a specific 

block.  It does not have the ability to move between blocks but is fully automated 

in all of its operations and works without the assistance of a driver (Figure 7). 

 
Figure 7. Automated Stacking Crane (ASC). (From: Kalmar Industries [2005]) 
ASC operating at ECT Delta terminal in Rotterdam  

 
The blocks in the storage yard are either parallel or perpendicular to the 

shoreline.  Blocks parallel to the shoreline are most common at ports that are 

using RTGs. Blocks perpendicular to the shoreline as in Figure 2 are common 

when a RMG or ASC stacks the containers.  In the latter case, due to the relative 

position between the blocks and the shoreline, the containers arrive to the block 

either from the Water Side (WS) or from the Land Side (LS). 
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Typically, an arriving container that will be loaded on a vessel is called an 

inbound container and a container that will be loaded on a truck is called an 

outbound container.  A container that arrives in a block from the LS usually 

comes on a truck, either from the gate of the port or from a train terminal.  The 

LS and WS buffer zones are the locations where the ASC loads and unloads 

containers.  In this study, a container that the ASC stacks in the block is 

classified as an imported container and a container that is already stacked in the 

block that the ASC transports to a transfer point is referred to as an exported 

container. 

The best position to stack a container depends on the container’s 

characteristics and what containers are already in each of the stacks.  It is found 

that ports do not adopt the same stacking policy, mostly because of the 

differences in the available area of the storage yards and the types of the cranes 

and other equipment that they use. 

The fourth step is a delivery-receipt movement where an ASC picks a 

container from the stack and unloads it to the LS or WS buffer zone for a waiting 

truck or vessel.  Straddle trucks work on the LS of the block loading containers 

on a truck (Figure 8).  A straddle carrier transports a container from WS to the 

berth area of a vessel. 

 
Figure 8. Straddle Trucks are Loading Containers on Trucks. (From: Ceres 

Paragon [2005]) 
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B. OBJECTIVES 
This thesis formulates and solves ILPs for scheduling one and two ASCs 

in a block.  An optimal schedule for an ASC has to satisfy all the demand that 

appears on LS and WS without delays, while finding an optimal place to stack 

each imported container.  The optimal placement must consider containers that 

are already in the stack as well as time limits.  The primary objective is to satisfy 

all the exported container time commitments.  There are LS and WS buffer zones 

where a carrier leaves a container to be stacked, so an ASC can more easily 

delay the transport of an imported container for a short time without hampering 

overall port operations.  Finding efficient ASC schedules helps to increase the 

productivity of the ASC, increase the number of containers that can be imported 

and exported from the block, reduce the cost that a vessel or truck has to pay in 

a port, and finally, improve the flow of the containers in the port. 
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II. OTHER CRANE SCHEDULING PROBLEMS 

Port operations have been an area of increased study over the last few 

years.  Steenken et al. [2004] and Henesey [2004] present an integrated view of 

current research.  They categorize each study according to its focus (ship to 

shore, transportation, stacking, delivery) and the type of analysis (operational, 

tactical, or strategic).  Lin [2000] shows that a general crane scheduling problem 

is NP hard.  Hence, crane scheduling optimization is expected to be 

computational expensive. 

We have not found any published reports on scheduling container 

stacking with one or two ASCs and straddle carriers.  Most related studies focus 

on scheduling RMGs or RTGs and AGVs.  They approach the problem in ways 

that give useful background and insight. 

An ASC schedule is a sequence of container moves, where each move 

specifies the exact position to stack each container.  Lin [2000] proposes 

heuristic approaches for large-scale versions using RTGs.  He deploys RTGs 

among different storage blocks, depending on the workload in each block, and 

suggests a network flow formulation with a piecewise-linear objective function 

that minimizes the unfinished workload that is transferred each time to the next 

time period.  Similarly, Linn et al. [2003] explore the deployment of RTGs 

between blocks and constructs an ILP to determine the optimal crane allocation 

by minimizing the crane workload overflow.  Zhang et al. [2002] formulate the 

same problem as an ILP where they minimize the workload at the end of each 

period, and apply Lagrangian relaxation to solve it. 

Kozan and Preston [1999], without referencing to a specific crane, 

minimize the traveling time of containers from a stack to a vessel.  They 

proposed an ILP for small-scale instances and a Genetic Algorithm solution for 

large-scale instances.  They show that a fixed storage policy significantly reduces 

vessel load time compared with a random policy for various storage-area 

fullness.  In the same study, they conclude that the transfer time of a fixed 
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number of containers increases exponentially when the number of yard cranes 

decreases.  This result suggests the use of cranes that move among blocks such 

as RTGs. 

Kim and Kim [1997] propose a routing algorithm for a single crane working 

in a block loading only exported containers out of the block.  Kim and Kim [1999] 

propose a heuristic algorithm to solve the same problem.  In both cases, the 

algorithm does not dynamically schedule imported and exported containers from 

the block, and a specific sequence for each of the exported containers is not 

determined. 

The problem of scheduling two cranes that are working in the same block 

has not been widely studied.  Stenken et al. [2004] provide a reference for an 

unpublished study (Eisenberg et al. [2003]) that examines the case of two RMGs 

that can crossover. 

Navis, a company that develops software for scheduling port operations, 

offers SPARCS [2004] for heuristically scheduling one ASC.  SPARCS is used in 

many ports around the world.  Navis reports that it finds efficient stacking 

positions even for large-scale problems. SPARCS selects the stacking positions 

according to a penalty system that evaluates the characteristics of each stack, 

giving the flexibility to adopt different stacking policies according to a port’s 

requirements. [Ayik 2005] 
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III. SCHEDULING ONE ASC 

A. INTRODUCTION 
We first consider only one ASC working in a single block.  Given a 

predefined time window (typically 15 minutes) the ASC must transport all 

containers that are entering or leaving the block within the time window.  An 

entering container is either in a transfer point at the beginning of the time window 

or arrives at a specific buffer zone during the time window.  A container that the 

ASC must export is currently in the block and must be transported to a transfer 

point before a known time when a carrier will arrive.  Any ACS delay in delivering 

exported containers causes delays to the straddle carriers and ultimately to the 

loading time of a vessel, truck or train. 

Even with only a small number of containers there is a large number of 

possible sequences.  The value of stacking a container at the top of a stack 

changes dynamically each time an ASC stacks, exports, or reshuffles a container 

from a stack. 

A heuristic solution to ASC scheduling is to order the containers according 

to when they arrive or must be placed at a transfer point and then schedule the 

jobs in that order.  The ASC selects the first job in the schedule and finds the 

shortest route to accomplish it.  If the first job is to transport a container from the 

block to a transfer point, then it calculates the travel time and any time for 

reshuffling or rehandling (restacking containers that are over the exported 

container).  If the first job is to transport an imported container, then it finds a 

position that it can stack the container, while satisfying time limits.  If there are no 

imported or exported containers, the ASC performs what is known as house-

keeping jobs where it restacks some of the containers in the block in order to 

save future reshuffling time. 

This heuristic approach can produce results that are far from optimal.  

Figure 9 provides an example where the ASC starts in the WS and has two 

containers to export (A and B identified by grey color in the block).  For simplicity, 



we assume that containers A and B are on the top of their stacks.  In the first 

case, the ASC first transports container A to the WS and then transports 

container B to the LS.  Figure 9a shows the step-by-step ASC route.  By 

transporting container B first (Figure 9b), the ASC accomplishes both jobs in a 

significantly shorter distance and time.  The example in Figures 9c and 9d 

switches the destination for container A to the LS and again shows the 

importance of selecting the best order to transport the containers. 
 

LS 

WS 

A-WS 

B-LS 

Start 

Finish 

LS 

WS 

A-WS 

B-LS 

Start 
Finish 

WS 

A-LS 

B-LS 

LS 

Start 

Finish 

WS 

A-LS 

B-LS 

LS 

Star

Finish 

STEP BY STEP STEP BY STEP OPTIMAL OPTIMAL 

 
a      b    c      d 

Figure 9. The Importance of Selecting the Best Sequence. 
The arrows indicate the route and the travel distance of the ASC.  a. First case, 
container A before container B.  b. B before A.  c. Second case, A before B.  d. B 
before A. 

 
B. PROCEDURAL OVERVIEW 

We schedule the ASC in three connected steps.  First, containers that are 

entering or leaving the block are scheduled.  This is the primary step where a 

route is found that minimizes the total travel distance and satisfies all the 

requirements to export containers.  We assume that the ASC moves containers 

above an exported container (reshuffles) immediately before moving an exported 

container.  During the first step, we only reserve time to reshuffle.  In the second 

step, we schedule the reshuffles.  The third step is the scheduling of house-

keeping jobs. 

To formulate the first step, we divide the total path of the ASC during the 

time window into m different moves.  A move starts from one side of the block 
12 



and finishes on either side.  Thus, there are four different routes that the ASC 

can travel during a specific move.  It can start from the WS and finish on the LS, 

or from LS to WS, or from WS to WS, or from LS to WS. 

We assume that exported containers have priority, so every ASC move 

includes an exported container as long as one is available.  The ASC may 

combine the move (if there is available time) with importing a container and 

stacking it in the block.  Giving the exported containers priority should help 

minimize the overall consequences of unexpected delays. 

After finishing with all exported containers, we schedule the ASC to move 

any remaining imported containers until the end of the time window.  Figure 10 

explains the movement of the ASC in these three different cases.  For simplicity 

of the example, a container that is already in the stack does not have other 

containers above it. 

LS 

WS 

LOAD A 

Start 

LOAD A

WS 

UNLOAD B

LS 

Start

Finish 

UNLOAD A UNLOAD A 

Finish 

LS 

WS 

UNLOAD B

Start Finish 

LOAD B 

Finish 

LOAD B 

RETURN 
 WS or LS 

 
a   b   c 

Figure 10. Three Different Types of Moves. 
The arrows indicate the route and the travel distance of the ASC.  a. The ASC 
picks only one exported container (A) during this move.  b. The ASC transports 
an imported and an exported container during the same move.  c. The ASC 
transports only an imported container during the move from the transfer point to 
the stack. 
 

In the first step, an ILP finds the moves that the ASC makes and routes 

that it follows in order to transport the exported and imported containers.  We 
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assume the ASC is able to transport all the exported containers within an 

allowable delay of being on time.  To reduce ILP solve time, we do not schedule 

the reshuffle of any container above an exported container.  We only reserve 

time to reshuffle.  A high reserved time helps ensure sufficient time to stack them 

in the best position, but reduces the time for importing and exporting containers.  

A reserve time must be at least the sum of loading, unloading, and minimal ASC 

travel time. 

In order to evaluate the relative merit of different positions and find the 

position for an ASC to place a specific container, we use a penalty system.  We 

evaluate each stacking position in the block considering the specific container 

and each available stack of the block, using the following factors: 

1. Height of stack - the number of containers in a stack can not 
exceed a height limit. 

2. Size of containers - containers in each stack should be of equal 
size or stacked in a descending order. 

3. Content – nonhazardous containers can not be mixed in the same 
stack with hazardous containers. 

4. Status - containers with different status should be stacked in 
different stacks. 

5. Priority - stacking a container over containers with higher priority 
should be avoided. 

6. Buffer zone capacity - avoid leaving an imported container in the 
buffer zone for a long time. 

7. Future saving time – we add bonus to a stack position that is close 
to a container’s future transfer point. 

In step 2, we find the best positions to stack containers above exported 

containers using the reserved time and the same penalty system from step 1. 

In step 3, if there is time available, house-keeping jobs are assigned to the 

ASC.  The jobs with the highest position value that satisfy time limitations are 

selected in order to decrease future reshuffling. 

C. STEP 1 FORMULATION. 
The step 1 formulation is an ILP.  The objective function seeks to 

maximize the position values of imported containers.  This objective function 



encourages the ASC not to select short and fast moves that would result in a 

stacking with increased future travel time.  A solution to this problem provides the 

moves that the ASC should make in order to transport all the exported containers 

before the time limits, and as many imported containers as possible in the best 

selected positions. 

1. Indices 

c, c´ container position in the block. { }∈ 1,2,...,c C  

i, i´ container from WS or LS.  { }∈ 1,2,...,i I  

m, m´ ASC move.    { }∈ 1,2,...,m M  

r ASC route in one move (1 if it starts from WS and 
finishes on the LS , 2 from LS to WS, 3 from WS to 
WS , 4 from LS to LS). 

x, x´ bay.     { }∈ 1,2,...,x X  

(0 refers to WS and X refers to LS position). 

y, y´ row.     { }∈ 1,2,...,y Y  

a area of a block.   { }∈ 1,2,...,a A  

2. Sets 
E   positions of exported containers. 

RF available container c and route r combinations. 

3. Scalars 
height maximum number of containers that can be stacked 

on top of one another  (usually 4 or less). 

idleTimeB bonus for every minute that the ASC remains idle. 

inCrPos position of the ASC at the beginning (0 LS, 1 WS). 

noImpPen penalty for an imported container that is not stacked. 

timeWindow time period for the ASC’s schedule  [min]. 

15 
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timePerCont time available to reshuffle and find a good location to 
stack a container that is above an exported container  
[min]. 

4. Parameters 
destc  destination of container in position c (0 LS, 1 WS). 

expTc,r travel time (reshuffling times are not included) to move 
a container in position c to its transfer point following 
route r  [min]. 

impTi,a,r travel time to move an imported container i to a 
selected position in area a using route r  [min]. 

impExpTc,i,a,r travel time (reshuffling times are not included) to move 
an imported container i to a selected position in area a 
and then move an exported container in position c to 
its transfer point using route r  [min]. 

inStackNumi,a height (number of containers) in area a where 
imported container i could be stacked. 

limitTc time the container in position c must be available at 
the LS or the WS [min]. 

limMoveAbTc time to remove and stack all the containers that are 
above an exported container in position c  [min]. 

maxValAri,a the value of stacking container i in area a. 

schedTi the earliest imported container i is available [min]. 

xInc initial x-position (number of bay) of container in 
position c at the beginning of the period. 

xStacki,a x-position in area a that container i could be stacked. 

yInc initial y-position (row number) of container in position 
c. 

yStacki,a y-position in area a where container i could be 
stacked. 

zInc the z-axis position for a container in position c (1 = 
bottom, 2 = second place from bottom, and so on). 

 



5. Binary Variables 
CRm 1 if the ASC ends move m at the WS and 0 if it ends at 

the LS.  ∀ m  

Gi,a,m,r 1 if the ASC transports imported container i to area a 
during move m following route r. ∀ i,a,m,r  

Qc,m,r 1 if the ASC transports exported container from 
position c during move m following route r (maybe 
another imported container i is transferred in the same 
move m). ( , ) , | |c r RF m E∀ ∈ ≤  

QGc,i,a,m,r 1 if the ASC transports exported container from 
position c and imports container i to area a.  Both 
containers are going to be transported during move m 
by following route r; 0 otherwise. 

 ( , ) , , | |c r RF i m E∀ ∈ ≤

QQc,m,r  1 if the ASC is going to transport only one exported 
container from position c during move m following 
route r (when the value is 1, it also means that no 
imported container i is moved). ( , ) , | |c r RF m E∀ ∈ ≤  

6. Continuous Variables 
DELm idle time at the beginning of move m.  When idle, the 

ASC remains either at the WS or the LS where it is at 
the end of move m-1  [min].  ∀ m   

SNi,a,m height (number of containers) in the area a stack at 
the end of move m where container i could be 
stacked. ∀ , ,i a m  

TOTALTm time at the end of move m [min]. ∀ m  

TRAVELTm travel time during move m.  It does not include the 
time that the ASC might remain idle in the beginning of 
move m [min]. ∀ m  

7. Objective Function 

(1)  
⎛ ⎞

⋅ − ⋅ − + ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑, , , , , , ,,
, , , , , ,

max i a i amr i amr mQG
i amr i amr m

maxValAr G noImpPen I G idleTimeB DEL∑
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8. Constraints 

(2)       ∀ ≤  1
( , )

c,m,r
c r RF

Q
∈

=∑ | |m E

(3)        ∀ ∈  1=∑ , ,
,

c m r
m r

Q c E

(4)        ∀  
1≤∑ , , ,

, ,
i a m r

i a r

G
m

(5)        ∀  1≤∑ , , ,
, ,

i a m r
m a r

G i

18 

,r

c,m,r

1 r

(6)      ∀ ≤  
( , )

m c c,m
c r RF

CR dest Q
∈

= ⋅∑ | |m E

(7) 

 

( , )
m m 1 m m c

c r RF

TOTALT TOTALT DEL TRAVELT limMovAbT Q−

∈

= + + + ⋅∑
1∀ >m

(8)  1 1 1 , ,
( , )

c c
c r RF

TOTALT DEL TRAVELT limMovAbT Q
∈

= + + ⋅∑

(9)   − + ≥ ⋅∑ , , ,
, ,

m 1 m i i a m r
i a r

TOTALT DEL schedT G 1∀ >m  

(10)  1 1≥ ⋅∑ , , ,
, ,

i i a r
i a r

DEL schedT G

(11)  

(a)   
1 3 2 4

2 1
( , ) , ( , ) ,

m-1 c,m,r c,m,r
c r RF c r RF

r or r r or r

CR Q Q
∈ ∈

= = = =

⋅ − = −∑ ∑ 1 | |m and m E∀ > ≤  

(b) ( )
1 4 2 3

1
( , ) , ( , ) ,

c,m,r c c,m,r c
c r RF c r RF

r or r r or r

Q dest Q dest
∈ ∈

= = = =

⋅ = ⋅ −∑ ∑   | |m E∀ ≤  

(c) ( )1 1

2 4 1 3

1
( , ) , ( , ) ,

c, ,r c, ,r
c r RF c r RF

r or r r or r

Q inCrPos Q inCrPos
∈ ∈

= = = =

⋅ = ⋅ −∑ ∑  

 



(12)  

(a)      1

1 3

, , ,
, ,

i a m r m
i a r
r or r

G CR −

= =

≤∑ 1| |m E and m∀ > >  

(b)      

1 4

1, , ,
, ,

i a m r m
i a r
r or r

G

= =

≤ −∑ CR | |m E∀ >  

(c)      

2 3

, , ,
, ,

i a m r m
i a r
r or r

G C

= =

≤∑ R | |m E∀ > | 

(d) 1

2 4

1, , ,
, ,

i a m r m
i a r
r or r

G CR −

= =

≤ −∑     

  1∀ > >| |m E and m

(e)   ( )1 1

2 4 1 3

1, , , , , ,
, , , ,

i a r i a r
i a r i a r
r or r r or r

G inCrPos G inCrPos

= = = =

⋅ = ⋅ −∑ ∑ 0| |if E =

(13)      
∈

≤∑ ∑, , , , ,
,

i a m r c m r
i a c E

G Q | |,m E r∀ ≤  

(14)  

(a)     ≥ −∑, , , , , , ,
,

c m r c m r i a m r
i a

QQ Q G ∀ ∈( , ) ,c r RF m  

(b)     2≤ − −∑, , , , , , ,
,

c m r i a m r c m r
i a

QQ G Q ∀ ∈( , ) ,c r RF m  

(c)      1≤ −∑, , , , ,
,

c m r i a m r
i a

QQ G ∀ ∈( , ) ,c r RF m  

(d)     ≤ +∑, , , , , , ,
,

c m r i a m r c m r
i a

QQ G Q ∀ ∈( , ) ,c r RF m  

(15) 1, , , , , , , , , , ,
( , )

c i a m r c m r i a m r cc m rr
cc rr RF

QG Q G QQ
∈

≥ + − − ∑  ( , ) , , ,c r RF i a m∀ ∈  
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(16)  
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⋅

i,a,m,r

(a) 

 

, , , , , , , , ,
( , ) , , ( , )

m c i a r c i a m r c,r c m r
c r RF i a c r RF

TRAVELT impExpT QG expT QQ
∈ ∈

= ⋅ +∑ ∑
∀ ≤| |m E

(b)    = ⋅∑
, ,

m i,a,r
i a r

TRAVELT impT G ∀ >| |m E  

(17)  
( , )

m c
c r RF

TOTALT limitT Q
∈

≤ ⋅∑ c,m,r ∀ ≤| |m E  

(18)      ≤mTOTALT timeWindow ∀ m  

(19)   
≤ ≤

≥∑ ∑, ', ', ',
'| ' , '| ' ,

c m r c m r
m m m r m m m r

Q Q ∀ ∈ ∀, ' ,c c E m  

   = =' 'c c cif xIn xIn and yIn yInc  

  > ≠' 'c cand zIn zIn and c c

(20)   
1≤ ≤ +

≥∑ ∑, ', , , ',
'| ' , '| ' ,

c m r i a m r
m m m r m m m r

Q G , , ,c E i a m∀ ∈  

 =,i a cif xStack xIn and  

       =,i a cyStack yIn  

(21)  

(a)   1−= +∑, , , , ', , ,i a m i a m i a m r
r

SN SN G 1, ', ,i i a m if m and∀ >  

=, 'i a i a,xStack xStack  

       =, 'i a i aand yStack yStack ,  

(b) 1 1= +∑, , , ', , ,i a i a i a r
r

SN inStackNum G  ∀ , ',i i a  

       =, 'i a i aif xStack xStack ,  



= ≠, ', 'i a i aand yStack yStack and i i
 

(22)        ∀  ≤, ,i a mSN height , ,i a m

(23)  

(a)   0≥, ,, , ,m m m i a m mTOTALT TRAVELT DEL SN S URS ∀ , ,i a m

(b)   , , , , , , , , , , , ,, , , , binary variablesc m r i a m r c m r c i a m r mQ G QQ QG CR ∀c,i,a,m,r

9. Objective Function and Constraint Description 
The objective function expresses the total value for stacking imported 

containers as well as penalties for not placing imported containers.  Constraint 

sets (2) and (3) require the ASC to transfer every exported container.  Constraint 

sets (4) and (5) require the ASC to transfer at most one imported container per 

move.  Constraint set (6) specifies the position of the ASC at the end of each 

move.  Constraint sets (7) and (8) calculate the time at the end of move m.  

Constraint sets (9) and (10) ensure an imported container i is not moved before it 

arrives.  Constraint sets (11) and (12) link binary variables Qc,m,r , Gi,a,m,r  with 

CRm and destc .  Constraint set (13) links constraints between binary variables 

Qc,m,r and Gi,a,m,r  .  If a container in position c and container i are going to be 

moved in the same move m, then the ASC follows one route r during move m.  

The constraint refers to the initial moves where there are still exported containers 

to transport.  Constraint sets (14) and (15) link constraints between binary 

variables QQc,m,r , QGc,i,a,m,r , Gi,a,m,r , and Qc,m,r,.  Constraint set (16) calculates the 

travel time that the ASC needs to finish move m.  Constraint set (17) balances 

time at the end of each move m.  Constraint set (18) assigns time limits for each 

move m.  Constraint set (19) assigns priority between two exported containers c 

and c´ of the same stack.  Constraint sets (20) to (22) specify limitations where 

an imported i container can be stacked.  Constraint set (23) defines variable type. 

10. Additional Data 
There are substantial additional data needed to calculate some of the 

parameters for the previous formulation.  We provide a description of these 

additional parameters as follows. 
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row number of rows. 
bay  number of bays. 
conflictc parameter with value 1 if a container in position c is an 

exported container or a container over an exported 
container. 

contAbc number of containers that are above a container in 
position c at the beginning of the current time period. 

contentc  content of container in position c (0 empty, 1 dry, 2 
fridge). 

content_Ii content of imported container i (0 empty, 1 dry, 2 
fridge). 

contentPen penalty for stacking a container over a container that 
has different content. 

contIDc the ID of the container in position c. 
contID_Ii the ID of imported container i. 
crAcc acceleration of the ASC in the x-axis [meters/min2]. 
dest_Ii future transfer point for imported container i (0 LS, 1 

WS). 
impPosValuei,x,y the value of stacking imported container i at the top of 

stack with coordinates x and y. 
maxSpeed maximum speed of the ASC in the x-axis [meters/min]. 

moveTx,x´ time that the ASC needs to move from position x to 
position x´ (along bay axis) [min]. 

overstackPen penalty for stacking a container on a stack that 
already has the maximum height capacity. 

portDestc the port destination for the container in position c 
(blank if it will not be loaded on a vessel). 

portDest_Ii  the port destination for imported container i (blank if it 
will not be loaded on a vessel). 

portDestPen penalty for stacking a container that has the same 
destination ship, but its destination port is later. 

priorityc priority of the container stacked in position c; the 
smaller the number, the higher the priority. 

priorityPen penalty for stacking a container over one with higher 
priority. 

sameShipBonus bonus for stacking a container on a stack where there 
is already a container that is going to be loaded on the 
same vessel. 
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savingTimeBonus bonus for each minute saved from future 
transportation when an imported container is stacked 
close to the transfer point where it is going to be 
loaded. 

shipNamec the vessel for loading container in position c (blank if it 
will not be loaded on a vessel). 

shipName_Ii the vessel for loading imported container i (blank if it 
will not be loaded on a vessel). 

sidei transfer point for imported container i (0 LS, 1 WS). 
sizec size of container in position c (20 - 40 - 45) [ft]. 
size_Ii  size of the imported container i  [ft]. 
sizePen penalty for stacking a container over a container of 

larger size. 
transferPen penalty for stacking a container over a container that 

has a different future transfer point (WS or LS). 
unwrapT time the ASC needs to unwrap (unlock) a container 

[min]. 
wrapT time the ASC needs to wrap (lock) a container [min]. 
xStacki,a x-position (number of bay) in area a where imported 

container i could be stacked. 
yStacki,a y-position (number of row) in area a where imported 

container i could be stacked. 
 
11. Data Preprocess 
To improve solution time, we calculate the values of some data for step 1 

before using it in the ILP (i.e, the travel time for each move m). 

We divide the block into different zones to avoid some of the complexity 

caused by the large number of possible stacking positions, and because the 

value of each position dynamically changes after each move m.  We select the 

best stacking position in each zone a, according to its stacking value, for each 

imported container i (Figure 11). 
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Figure 11. An Example of a Block with Four Different Areas 

For each container that is going to be placed in the block during the time window, 
we use the best position from each area as a candidate for stacking. 

 
The main parameters that determine the best position value for an 

imported container are the available time and the value of the stack.  The larger 

the available time, the more time the ASC has to stack an imported container 

close to its future transfer point.  Different stacking policies imply different penalty 

values. 

The positions values for imported containers that the ASC transports 

during the time window are calculated without considering the exported 

containers.  Constraints in the ILP restrict an imported container from moving to a 

position where an exported container is stacked before the exported container is 

transferred.  Penalties also help avoid stacking a large container over a smaller 

container. 

D. STEP 2 FORMULATION 
In step 2, we find the optimal positions for the containers that are above 

exported containers.  If the ILP in the first step provides an optimal (feasible) 
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solution, then the time to reshuffle these containers is known.  These containers 

(in step 2) are reshuffled to new positions that have the highest value within the 

allowable time. 

We solve a separate ILP, one for each move m, where an exported 

container has other containers above it.  Preprocessing the data is necessary to 

reduce the solution time of the ILP.  Reshuffling these containers in the same 

stack requires more time than removing these containers to other stacks, so it is 

not considered. 

1. Sets 
Em positions of exported containers during move m. 
MCm containers in the same stack above an exported 

container that the ASC transports in move m. 
2. Parameters 
conStackNumx,y,m the number of containers that are in the x and y 

position stack at the beginning of move m. 
limMoveAbTc time to remove and stack all the containers that 

are above an exported container in position c  
[min]. 

moveAbTc,x,y time that the ASC needs to move container in 
position c to a new x and y position. 

moveAbPosVc,x,y the value of moving container in position c to a 
new x and y position. 

3. Decision Variables 
QABc,x,y,m binary variable with value 1 if the ASC transports 

the container in position c, to the x and y position 
during move m. 

4. Objective 

(1)     ∀  , , , , ,
, ,

max
m

c x y c x y mQAB
c MC x y

moveAbPosV QAB
∈

⋅∑ m

5. Constraints 

(2)     =∑ ∑, , , ', ,
,

c x y m c m r
x y r

QAB Q , , 'm mm c MC c E∀ ∈ ∈  
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(3)   , , , , , ', ,
, ,m

c x y c x y m c' c m r
c MC x y r

moveAbT QAB limMoveAbT Q
∈

⋅ ≤ ⋅∑ ∑ , ' mm c E∀ ∈

(4)   , , , , ,

m

c x y m x y m
c MC

QAB conStackNum height
∈

+ ≤∑ , ,m x y∀  

(5)  binary variable     , , ,c x y mQAB ∀ , , ,c x y m  

6. Objective Function and Constraint Description 
The objective function expresses the total value of the positions where the 

ASC stacks the containers.  Constraint set (2) ensures that the containers above 

an exported container in position c are moved in same move m.  Constraint set 

(3) assigns the time limits.  Constraint set (4) assigns the height limits in each 

stack, while constraint set (5) defines variable type. 

7. Data Preprocess 
In the data preprocess phase of step 2, we calculate the values of the 

parameters moveConc , inConStackNumx,y, moveAbTc,x,y   and  moveAbPosVc,x,y.  

This identifies the positions that must be moved.  The calculation is dynamic, 

considers the containers that have been placed in the stack in the previous 

moves, and is made for each move m.  If in the beginning of the next move m+1 

the ASC remains idle for some time, then we add this amount of time to the 

available time that the ASC has in move m to transport these containers. 

E. STEP 3 
If after steps 1 and 2 there is time available, we schedule house-keeping 

jobs.  Because the purpose of the house-keeping jobs is to improve the block 

stacking, we use a penalty system to evaluate the best house-keeping jobs that 

can be done in each move m within the available time.  After adjusting the time 

from steps 1 and 2, the ASC may be idle at the WS or LS at the beginning of 

some of the moves.  If this idle time is higher than the time that the ASC needs to 

load and unload a container, then we evaluate all containers on the top of their 

stacks and each possible location that the ASC can place them.  We select and  
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assign the best house-keeping job that has a position value over a specified 

threshold.  This repeats until there is no available time to accomplish an 

improving house-keeping job. 
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IV. SCHEDULING TWO ASCS 

A. INTRODUCTION 
For two ASCs working in a single block, we divide the block into two 

areas: WS working area and LS working area.  One ASC is responsible for the 

demands on the LS working area and the other for the demands on the WS 

working area.  The primary contrasts with scheduling one ASC are: 

1. The ASCs cannot crossover. 
2. The moves of the ASCs do not have the same duration. 
3. There is a single route that each ASC can follow in each move.  

The WS (LS) ASC starts and ends each move at WS (LS). 
4. The ASCs must maintain a security distance between them. 
5. The value of placing a container in a stack changes dynamically at 

the end of each move of each ASC. 
We use an example with three containers (A, B, and C) to help highlight 

some of the issues of using two ASCs (Figure 12).  The destination of container 

C is LS so the LS ASC must be used.  Containers A and B (above container C) 

can be reshuffled either by the WS ASC, the LS ASC, or both.  If the LS ASC 

reshuffles containers A and B then the WS ASC must wait until the LS ASC 

leaves.  A better approach would be to assign the reshuffling of containers A and 

B to the WS ASC.  The LS ASC can use this time for other jobs.  After the WS 

ASC finishes reshuffling, the LS ASC picks container C and transports it to LS 

transfer point. 
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Figure 12. Two ASCs that Cannot Crossover Are Working in the Same Block 

Container C has to be transported to LS and containers A and B have to be 
reshuffled. 

 
A reported approach for two ASCs is to use a buffer zone in the middle of 

the block (Figure 13).  The ASC on the WS (LS) working area transports all 

containers stacked in the WS (LS) working area to the buffer zone that have to 

be moved to the LS (WS) transfer point (for example container B in Figure 13).  

This requires every such container to be loaded and unloaded twice. 
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Figure 13. Two ASCs Working in a Block with Buffer Zone 
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We require a container that is to be delivered to the LS (WS) to be 

transported only by the LS (WS) ASC.  This eliminates the use of a middle buffer 

zone. 

We make the following assumptions: 

1. Each imported container can be stacked only in the working area of 
the ASC that is responsible to pick it from the transfer point. 

2. Each container above an exported container can be reshuffled in a 
position in the same working area. 

3. The house-keeping jobs for each ASC are inside the limits of the 
working area of the ASC. 

4. An ASC enters to the opposite working area only when it has to 
pick an exported container. 

Under these assumptions, we may not always provide an optimal solution 

but the solution provided has (without considering reshuffles) the minimum 

number of handlings of a container from the time that it enters into the block until 

the time that it leaves. 

B. PROCEDURAL OVERVIEW 
Like the one ASC scheduling problem, we schedule the two ASCs in three 

steps: (1) we schedule containers that are entering or leaving the block, (2) we 

schedule containers that are above containers that are leaving the block and (3) 

we schedule house-keeping jobs. 

To formulate and solve the first step problem, we divide the total path of 

each ASC during the time window into m different moves.  For the ASC in the 

WS (LS) working area each move starts from the WS (LS) and finishes in the WS 

(LS). 

In step 2, we find the best positions to stack containers above exported 

containers using the reserved time and evaluating the same penalty system of 

step 1. 

In step 3, we identify conflicts that may occur from the solution of the 

previous steps and we add appropriate delays to each ASC that enters the 

opposite working area.  If there is time where ASC remains idle on WS or LS, 

house-keeping jobs are assigned. 



C. STEP 1 FORMULATION. 
We formulate the first step as an ILP where we assume that the ASCs can 

crossover.  This provides the order of moves that each ASC has to follow to 

satisfy all the demands of the imported and exported containers.  The ASC in the 

WS (LS) working area is responsible for imported containers in the WS (LS) 

transfer point and for exported containers that have WS (LS) as a destination.  

An amount of time (not necessarily equal) is reserved for an ASC in each move 

in the following cases: 

1. An ASC that is about to enter into the opposite working area is 
delayed until the other ASC finishes the current move. 

2. When there are containers above an exported container that the 
ASC is responsible to reshuffle. 

3. An ASC with its working area occupied by the opposite ASC  is 
delayed until that ASC returns to its working area. 

An ASC can enter into the opposite working area to pick an exported 

container only if the containers above it are already reshuffled by the other ASC.  

In case all exported containers for one ASC are in the opposite working area and 

they all have containers above them, the first move of this ASC should not 

include the transport of an exported container but the transport of an imported 

container or a reshuffling job.  The description that follows includes only the 

elements that change from the one ASC formulation. 

1. Indices 
w working area  (0 LS, 1 WS). 
2. Sets 
Ew positions of exported containers for the ASC in working area 

w (e.g., c ∈ E0 in Figure 12) 
Iw containers for the ASC in working area w. 
Vw positions of exported containers with containers above them 

that must be reshuffled by an ASC in working area w before 
the ASC in the other area can transport the exported 
container (e.g., c ∈ V1 in Figure 12). 
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3. Scalars 
delayType1 time reserved for an ASC each time it enters into the 

opposite working area  [min]. 
delayType2 time reserved for an ASC each time the other ASC enters 

into its working area  [min]. 
noImpPenw penalty for an imported container in working area w that is 

not stacked. 
4. Binary Variables 
Gw,i,a,m 1 if the ASC in working area w transports imported container 

i to area a during move m.  , Ww i I ,a,m∀ ∈  

Qw,c,m 1 if the ASC in working area w transports exported container 
from position c during move m (maybe another imported 
container i is transferred in the same move).   , ,Ww c E m∀ ∈

QGw,c,i,a,m 1 if  the ASC in working area w transports an exported 
container from position c and imports container i to area a.  
Both containers are going to be transported during move m.  

 , , , ,W Ww c E i I a m∀ ∈ ∈

QQw,c,m  1 if the ASC in working area w transports only one exported 
container from position c during move m (when the value is 1 
it also means that no imported container i is moved).  

 , ,Ww c E m∀ ∈

Jw,c,m  1 if the ASC in working area w transports the containers 
above a container in position c during move m (where the 
ASC in the opposite working area is going to transport the 
container in position c).  , ,Ww c V m∀ ∈  

5. Continuous Variables 
DELw,m idle time at the beginning of move m for the ASC in working 

area w  [min].  m∀   

SNw,i,a,m height (number of containers) in the area a stack in working 
area w at the end of move m where container i could be 
placed.   , , ,Ww i I a m∀ ∈

TOTALTw,m time for the ASC in working area w at the end of move m  
[min].   m∀

TRAVELTw,m travel time for the ASC in working area w during move m.  It 
does not include the time that the ASC might remain idle in 
the beginning of move m  [min].  m∀  
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6. Objective Function 
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8. Objective Function and Constraint Description 
The objective function expresses the total value for stacking imported 

containers and penalties for not placing imported containers.  Constraint sets (2) 

to (5) define the moves where the ASC transfers all exported containers.  

Constraint set (6) requires the ASC not to transfer exported container in the first 

move if all of the exported containers are on the opposite working area and have 

containers above them.  Constraint sets (7) and (8) require the ASC to transfer at 

most one imported container per move.  Constraint set (9) ensures that the ASC 

reshuffles all containers that are above exported containers in its working area.  
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Constraint set (10) calculates the time at the end of move m.  Constraint set (11) 

ensures an imported container i is not moved before it arrives.  Constraint set 

(12) requires that each move includes at least one job.  Constraint set (13) 

determines the possible combinations between jobs in each.  Constraint sets (14) 

and (15) link constraints between binary variables QQw,c,m , QGw,c,i,a,m , Gw,i,a,m  

and Qw,c,m,.  Constraint set (16) calculates the travel time that the ASC needs to 

finish move m.  Constraint set (17) ensures that the ASC will not enter to the 

opposite working area to pick an exported container before the opposite ASC 

reshuffles all the containers above it.  Constraint set (18) balances time at the 

end of each move m.  Constraint set (19)  assign time limit constraints for each 

move m.  Constraint set (20) assigns priority between two exported containers c 

and c´ of the same stack.  Constraint sets (21) to (23) specify limitations where 

an imported i container can be stacked.  Constraint set (24) defines variable type. 

B. STEP 2 FORMULATION 
In the second step, we find the optimal positions for the containers that are 

above exported containers.  An ASC reshuffles a container to a new position 

inside the limits of its working area.  The description that follows includes only the 

elements that change from the one ASC formulation. 

1. Sets 
Ew,m positions of exported containers in working area w 

during move m. 
MCw,m positions of containers in the same stack and above 

an exported container that the ASC in working area w 
transports in move m. 

2. Decision Variables 
QABw,c,,x,y,m binary variable with value 1 if  the ASC in working 

area w transports the container in position c which is 
above an exported container, to a new x and y 
position during move m. 

QOPw,c,,x,y,m binary variable with value 1 if  the ASC in working 
area w transports the container in position c which is 
above an exported container that is going to be 
picked from the opposite ASC, to a new x and y 
position during move m. 
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5. Objective Function and Constraint Description 
The objective function expresses the total value of the positions where the 

two ASCs stack containers.  Constraint set (2) ensures that the containers above 

an exported container in position c will be moved in same move m.  Constraint 

set (3) assigns the time limits.  Constraint set (4) assigns the height limits in each 

stack.  Constraint set (5) defines the variables. 

C. STEP 3 
In step 3, the exact position for each ASC for every small time step is 

calculated in order to identify points of crossover.  When a crossover occurs then 

the appropriate delay time (delayType1 or delayType2) is added to create a 

feasible schedule.  The amount of the delay that we add also must include a 
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security distance that we want the two ASCs to have between them at all times.  

After we achieve the elimination of the crossovers between the two ASCs, we 

assign house-keeping jobs during the idle times of each move for each ASC. 
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V. COMPUTATIONAL STUDY 

A. OBJECTIVE 
We test the performance of one ASC, measure it under different types of 

blocks, and compare it with the performance of two ASCs.  We implement the 

ILPs and the preprocessing algorithms in GAMS [GAMS 2005] and solve the 

ILPs using CPLEX [ILOG 2003]. The step 1 ILP consists about 2,600 continuous 

variables, 2,400 binary variables and 5,500 constraints.  The step 2 ILP consists 

about 6,000 continuous variables, 6,000 binary variables and 170 constraints. 

We address the following questions: 

1. How does the length of the block affect the performance of one and 
two ASCs? 

2. How does the fullness of the block affect the performance of one 
and two ASCs? 

3. When do two ASCs perform better than one ASC? 
4. How fast are the two algorithms and how sensitive are they in 

scheduling different types of blocks? 
B. DESCRIPTION 

The test data for the study are from the port of Rotterdam and refer to a 

block with 60 bays.  Each bay has six rows and a maximum height of four 

containers, a total of 1,440 available positions for container stacking.  The 

number of containers that are initially stacked in the block is 318 (22.08% block 

area fullness).  Based on the original block of 60 bays, we create two blocks for 

testing, one with length of 20 bays and 22.08% fullness (106 containers), and 

one with length of 20 bays and 66.24% fullness (318 containers). 

In this study, we measure the performance of one or two ASCs during a 

time period of four hours.  We assume we only know the containers in the current 

status of the block and the containers that are entering or leaving the block in the 

next fifteen minutes.  For each imported container, we know when it arrives, and 

for every exported container, we know the latest it must be available at its 

transfer point.  After the ASC finishes with all required containers or reaches 

fifteen minutes, we consider the next time window of fifteen minutes.  Although 
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the containers that need to be exported or imported to the WS (vessels) are often 

known for more than fifteen minutes, truck arrivals at the gate for the LS of a 

block are more unpredictable, so fifteen minutes seems like a reasonable time 

limit. 

At the end of the four-hour time period, imported containers might still be 

stacked in the transfer points, implying that the ASC could not transport all 

imported containers on time. 

C. ASSUMPTIONS 
We make some basic assumptions to have comparable results: 

1. The ASCs have the same characteristics and capabilities. 
2. The penalty values (stacking policy) are the same for both 

algorithms and remain constant during the four hours.  In general, 
because there was no information about the future container 
schedule, we prefer a low stack policy where empty stacks are 
preferred locations for imported containers. 

3. Imported and exported containers that need to be transported 
during the four hours are separated in 16 different batches.  In the 
case of one ASC, if the ASC finishes all scheduled jobs (imported 
and exported) before the end of the fifteen minutes, then it starts 
working on the next batch of containers.  In the case of two ASCs, 
the next scheduling starts when both of the ASCs finish their jobs. 

4. No unexpected delays or ASCs breakdowns. 
5. The imported containers and their arrival time remain constant in all 

cases. 
6. The exported containers, their export time, and their placement 

remain constant in the blocks of 20 bays with different fullness.  We 
use different exported containers stacked in different positions in 
the comparison between 20 and 60 bays blocks, where the total 
number of them remains constant in both cases. 

7. If an ASC cannot transport an imported container during the time 
window of fifteen minutes, the container remains in the transfer 
point, and it can be imported in the next time window.  There is a 
buffer zone capacity limit of five containers on each side.  For each 
batch, an ASC transports all exported containers before the time 
demand (if possible) and all imported containers that are necessary 
to keep the buffer zone below the capacity limit. 

 
 



8. If an ASC cannot transport an exported container during the time 
window of fifteen minutes, there is a delay in the following schedule 
until the demand for the exported containers is satisfied (possibly 
causing delay to the delivery of the next batch of exported 
containers). 

D. RESULTS 
1. Bay Size Factor 
We measure the performance of one or two ASCs in two different blocks 

with bay size 20 and 60 and present the results in Table 1.  The fullness of the 

blocks in both cases is 22%. 

ASCs Bay Block 
fullness

Number 
imported

Number 
exported

Number 
reshuffles

Enter to 
opposite 
Working 

Area

Travel 
time 
(min)

Total 
time 
(min)

1 20 22% 57 53 38 - 95.3 243.3
1 60 22% 57 53 41 - 243.7 394.7
2 20 22% 57 53 38 11 81.5 154.5
2 60 22% 57 53 41 21 204.7 279.7  

Table 1.   Performance of One and Two ASCs in Blocks with Different Bays. 
 
The results above show that the number of bays significantly affects the 

performance of one and two ASCs.  As the total number of bays is tripled, the 

total time for the one ASC increases by a factor of 1.62, and for the two ASCs a 

factor of 1.81.  The factor for two ASCs is higher because the number of times 

that an ASC enters into the opposite working area is almost double in the 60-

bays block, and this causes additional traveling and idle time. 

In comparing the performance between the one and two ASCs, for a 20-

bay block, the one ASC needs 57.4% more time than the two ASCs to finish all 

the jobs.  In the 60-bays block, the one ASC needs 41.1% additional time. 

2. Number of Containers 
Table 2 shows the performance of one or two ASCs in two different blocks 

with bay size 20 and block fullness 22% and 66%. 
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ASCs Bay Block 
fullness

Number 
imported

Number 
exported

Number 
reshuffles

Enter to 
opposite 
Working 

Area

Travel 
time 
(min)

Total 
time 
(min)

1 20 22% 57 53 38 - 95.3 243.3
1 20 66% 57 53 47 - 111.1 268.1
2 20 22% 57 53 38 11 81.5 154.5
2 20 66% 57 53 45 11 80.6 157.6  

Table 2.   Performance of One and Two ASCs in Blocks with Different 
Fullness. 

 
The results above indicate that when the fullness increases from 22% to 

66%, the total time for only one ASC increases 10.2%.  In the case of two ASCs, 

the total time increases only 2%.  The main reason for this result is the increase 

in the number of reshuffles for one and two ASCs when 66% full.  The increase is 

less in the two ASC case because each ASC, on average, makes 5.5 reshuffles 

instead of 11 reshuffles for one ASC. 

When 22% full, one ASC needs 54.5% more time than two ASCs to finish 

its schedule.  When 66% full, one ASC needs 70.1% more time. 

3. Two ASCs Route Graphs 
The following graphs (Figures 14, 15 and 16) display the bay position of 

each ASC in every time step of 0.125 min (7.5 sec). The bay number 0 refers to 

WS position where the ASC either remains idle or loads or unloads containers at 

the WS transfer point.  The bay number 21 (or 61) refers to LS position where the 

ASC either remains idle or loads or unloads containers at the LS transfer point. 
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Figure 14. Graph of Two ASCs Performing in a Block with 20 Bays and 22% 

Fullness. 
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Figure 15. Graph of Two ASCs Performing in a Block with 20 Bays and 66% 

Fullness. 
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2 ASCs - 60 BAYS - 22% FULLNESS
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Figure 16. Graph of Two ASCs Performing in a Block with 60 Bays and 22% 

Fullness. 
 
Apparently there are some long time periods where one of the two ASCs 

remains idle at its transfer point.  The reasons for this are: 

a) We have no information about the future workload and cannot 
identify house-keeping jobs that reduce future reshufflings. 

b) An ASC finishes its assigned jobs earlier than the other ASC 
because it has less workload to satisfy.  This ASC remains idle 
because we assume that the information of a new batch of 
container that needs scheduling in both sides of the block arrives 
when both ASCs finish their scheduled jobs. 

c) A sufficient security distance is required when an ASC enters to the 
opposite working area. 

d) An ASC is loading or unloading a container the transfer point. 
4. Algorithm Running Time 
We report (Table 3) the run times of the ILPs in different types of blocks. 
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ASCs Bay Block 
fullness

Aver. 
total 
time 
(sec)

Min 
total 
time 
(sec)

Max 
total 
time 
(sec)

Aver. 
time 
per 

batch 

Max 
time 
(sec)

Aver. 
time 
per 

batch 

Max 
time 
(sec)

1 20 22% 10.50 4 20 <1 2 <1 2
1 60 22% 51.50 38 75 <1 2 <2 4
1 20 66% 13.81 4 29 <1 2 <1 2
2 20 22% 28.50 5 57 <1 2 <1 2
2 60 22% 156.31 40 499 <1 2 <2 4
2 20 66% 41.56 7 111 <1 2 <1 2

2nd Step 1st Step

 
Table 3.   Run Time of the Algorithms 

 
The 1st and 2nd step columns describe the time CPLEX uses to solve the 

ILPs and not any preprocessing computation.  The results show that the average 

time to solve the ILP in the first step is always less than one second and in the 

second step is always less than two seconds.  The total time includes the time 

that GAMS needs to generate the ILP, preprocess the data, solve the problem 

and produce the output.  This time increases as the number of bays increases 

mostly because the number of possible stacking positions in step 2 also 

increases and more calculations need to be made.  This generation time could 

be significantly reduced by writing a custom generator that is compiled in place of 

the interpreted GAMS code. 
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VI. CONCLUSIONS 

This thesis is the first to develop Integer Linear Programs (ILPs) to 

prescribe routes for one and two equal sized Automated Stacking Cranes (ASCs) 

in a single block working with straddle carriers to load and unload containers. 

We compare the performance of one and two ASCs working in blocks with 

different characteristics during a four-hour period.  Using real world data, we find 

that the length and the fullness of the block significantly affect the performance of 

one ASC.  For two ASCs, only the length of the block influences performance.  

We also find that the performance of the two ASCs is dependent on the number 

of times that an ASC enters to the opposite working area.  As a general 

conclusion, two ASCs outperform one ASC in all our test cases. 

In addition to ASCs studied in this thesis, there are other carriers and yard 

cranes currently used for transporting and stacking containers.  Future work 

should consider extending results from this thesis to blocks that use other 

equipment.  Additionally, the characteristics of a block in the performance of one 

or two yard cranes could be further investigated to gain insight into various port 

stacking policies. 
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