

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

OPTIMIZING CONTAINER MOVEMENTS USING ONE
AND TWO AUTOMATED STACKING CRANES

by

Ioannis Zyngiridis

December 2005

 Thesis Advisor: Robert Dell
 Second Reader: Johannes O. Royset

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2005

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Optimizing container movements using one
and two Automated Stacking Cranes
6. AUTHOR(S) Ioannis Zyngiridis

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The number of containers shipped through ports has increased substantially in recent years and has stimulated

research and development of ways to improve storage yard operations. The productivity of a port’s storage yard
depends, in part, on the cranes that are working in storage blocks. Each crane follows a route described primarily by
the order to move each container that enters or leaves a block and the position to stack each container in the block.
Each container that leaves (enters) the block must be unloaded (loaded) in a limited capacity transfer point before (after)
a given time. This thesis is the first to develop Integer Linear Programs (ILPs) to prescribe routes for one and two equal
sized Automated Stacking Cranes (ASCs) in a single block working with straddle carriers to load and unload containers
from the transfer points. Using real world data, we construct test problems varying both the number of container bays
(length) and excess capacity of each block. We find one ASC working alone over four hours requires up to 70% more
time than two ASCs working together to accomplish the same required container movements. ILP solution time is
typically only a few seconds.

15. NUMBER OF
PAGES

71

14. SUBJECT TERMS Optimization, Integer Linear Program, Container Storage, Port
Logistics, Port Operations, Crane Scheduler, Automated Stacking Crane

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

OPTIMIZING CONTAINER MOVEMENTS USING ONE AND TWO
AUTOMATED STACKING CRANES

Ioannis Zyngiridis

Captain, Hellenic Army
B.S., Hellenic Military Academy, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
December 2005

Author: Ioannis Zyngiridis

Approved by: Robert Dell

Thesis Advisor

Johannes O. Royset
Second Reader

James N. Eagle
Chairman, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The number of containers shipped through ports has increased

substantially in recent years and has stimulated research and development of

ways to improve storage yard operations. The productivity of a port’s storage

yard depends, in part, on the cranes that are working in storage blocks. Each

crane follows a route described primarily by the order to move each container

that enters or leaves a block and the position to stack each container in the

block. Each container that leaves (enters) the block must be unloaded (loaded)

in a limited capacity transfer point before (after) a given time. This thesis is the

first to develop Integer Linear Programs (ILPs) to prescribe routes for one and

two equal sized Automated Stacking Cranes (ASCs) in a single block working

with straddle carriers to load and unload containers from the transfer points.

Using real world data, we construct test problems varying both the number of

container bays (length) and excess capacity of each block. We find one ASC

working alone over four hours requires up to 70% more time than two ASCs

working together to accomplish the same required container movements. ILP

solution time is typically only a few seconds.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1

A. BACKGROUND ... 1
1. Overview of Container Transshipment 1
2. Container Description ... 2
3. Container Handling in a Port .. 3

B. OBJECTIVES... 8

II. OTHER CRANE SCHEDULING PROBLEMS.. 9

III. SCHEDULING ONE ASC ... 11
A. INTRODUCTION.. 11
B. PROCEDURAL OVERVIEW.. 12
C. STEP 1 FORMULATION.. 14

1. Indices .. 15
2. Sets ... 15
3. Scalars.. 15
4. Parameters ... 16
5. Binary Variables... 17
6. Continuous Variables.. 17
7. Objective Function .. 17
8. Constraints... 18
9. Objective Function and Constraint Description.................. 21
10. Additional Data .. 21
11. Data Preprocess .. 23

D. STEP 2 FORMULATION.. 24
1. Sets ... 25
2. Parameters ... 25
3. Decision Variables... 25
4. Objective... 25
5. Constraints... 25
6. Objective Function and Constraint Description.................. 26
7. Data Preprocess .. 26

E. STEP 3 ... 26

IV. SCHEDULING TWO ASCS .. 29
A. INTRODUCTION.. 29
B. PROCEDURAL OVERVIEW.. 31
C. STEP 1 FORMULATION.. 32

1. Indices .. 32
2. Sets ... 32
3. Scalars.. 33
4. Binary Variables... 33
5. Continuous Variables.. 33

 viii

6. Objective Function .. 34
7. Constraints... 34
8. Objective Function and Constraint Description.................. 37

B. STEP 2 FORMULATION.. 38
1. Sets ... 38
2. Decision Variables... 38
3. Objective... 39
4. Constraints... 39
5. Objective Function and Constraint Description.................. 39

C. STEP 3 ... 39

V. COMPUTATIONAL STUDY.. 41
A. OBJECTIVE ... 41
B. DESCRIPTION... 41
C. ASSUMPTIONS ... 42
D. RESULTS... 43

1. Bay Size Factor .. 43
2. Number of Containers ... 43
3. Two ASCs Route Graphs .. 44
4. Algorithm Running Time... 46

VI. CONCLUSIONS.. 49

LIST OF REFERENCES.. 51

INITIAL DISTRIBUTION LIST ... 53

 ix

LIST OF FIGURES

Figure 1. Number of Container Ships Built or on Order, 1995-2005. (From:
Henesey [2004]) ... 2

Figure 2. Operation Areas in a Sea Port Terminal... 3
Figure 3. Quay cranes, AGVs and Straddle Carrier... 4
Figure 4. Graphical Representation of an ASC Working in a Block. 5
Figure 5. Rubber-Tired Gantry Crane (RTG). (From: Kalmar Industries

[2005]) .. 5
Figure 6. Rail-Mounted Gantry Crane (RMG). (From: Kalmar Industries

[2005]) .. 6
Figure 7. Automated Stacking Crane (ASC). (From: Kalmar Industries [2005])... 6
Figure 8. Straddle Trucks are Loading Containers on Trucks. (From: Ceres

Paragon [2005]).. 7
Figure 9. The Importance of Selecting the Best Sequence. 12
Figure 10. Three Different Types of Moves. .. 13
Figure 11. An Example of a Block with Four Different Areas............................... 24
Figure 12. Two ASCs that Cannot Crossover Are Working in the Same Block ... 30
Figure 13. Two ASCs Working in a Block with Buffer Zone................................. 30
Figure 14. Graph of Two ASCs Performing in a Block with 20 Bays and 22%

Fullness. ... 45
Figure 15. Graph of Two ASCs Performing in a Block with 20 Bays 45
Figure 16. Graph of Two ASCs Performing in a Block with 60 Bays and 22%

Fullness. ... 46

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Performance of One and Two ASCs in Blocks with Different Bays. ... 43
Table 2. Performance of One and Two ASCs in Blocks with Different

Fullness. ... 44
Table 3. Run Time of the Algorithms .. 47

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I extend my personal thanks to Erik Tiemroth, Mehmet Ayik and John

Christman from Navis Llc for their expert guidance along the way and I

appreciate the significant efforts of Robert Dell and Johannes Royset.

For her devotion, sacrifice, patience and overwhelming support to the very

end, my wife, Evi.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

The number of containers shipped through ports has increased

substantially in recent years and has stimulated research and development of

ways to improve storage yard operations. A port’s storage yard productivity

depends, in part, on the cranes that are working in storage blocks. Each crane

follows a route described primarily by the order to move each container that

enters or leaves a block and the position to stack each container in the block.

Each container that leaves (enters) the block must be unloaded (loaded) in a

limited capacity transfer point before (after) a given time. This thesis is the first to

develop Integer Linear Programs (ILPs) to schedule routes for one and two equal

sized Automated Stacking Cranes (ASCs) in a single block working with straddle

carriers to load and unload containers from the transfer points.

When there is only one ASC, we schedule it in three connected steps.

First, containers that are entering (imported) or leaving (exported) the block are

scheduled. This is the primary step where a route is found that minimizes the

total travel distance of the ASC. The ASC considers moves that coordinate the

placement of imported and exported containers while giving priority to export

container requirements. We assume that the ASC removes containers above an

exported container for storage elsewhere (reshuffles) immediately before moving

the exported container. During the first step, we only reserve time to reshuffle.

In the second step we schedule the reshuffles. If there is still available time, we

schedule (the third step) reshuffles that reduce future reshuffles (house-keeping).

For two ASCs working in a single block, we divide the block into two sub-

areas: Water Side (WS) working area and Land Side (LS) working area. One

ASC is responsible for the demands on the LS working area and the other for the

demands on the WS working area. We use the same three steps described

 xvi

above and initially assume that the ASCs can crossover. At the beginning of the

third step, we adjust (if needed) the two ASCs’ moves to ensure no collisions

occur.

We investigate how different block characteristics influence the

performance of one and two ASCs. Using real world data, we construct test

problems varying both the number of container bays (length) and excess

capacity of each block. We find one ASC working alone over four hours requires

up to 70% more time than two ASCs working together to accomplish the same

required container movements. The length of the block and the area fullness

significantly affect the performance of one ASC. For two ASCs, only the length

of the block influences performance. We discover in all cases we consider that

the coordinated use of two ASCs significantly outperforms one ASC working

alone. ILP solution time is typically only a few seconds for all cases.

1

I. INTRODUCTION

The number of containers shipped through ports has increased

substantially in recent years and has stimulated research and development of

ways to improve storage yard operations. The productivity of storage yards

depends, in part, on the cranes that are working in storage blocks. Each crane

follows a route described primarily by the order to move each container that

enters or leaves the block and the position to stack each container in a block.

This thesis develops Integer Linear Programs (ILPs) to prescribe routes for one

and two Automated Stacking Cranes (ASCs) in a single block.

A. BACKGROUND
1. Overview of Container Transshipment
The handling of containers at Container Terminals (CTs) is becoming

more demanding in ports worldwide. Foxcroft [2002] reports that an estimated

15 million containers were handled in 2002 around the world. Aston et al. [2005]

report inbound containers into the U.S. will increase by 6.7% in 2005 and grew

50% over the last five years (2001-2005). Ioannou et al. [2002] forecasts that the

U.S. container trade will experience an average annual growth of 7.8% through

the year 2010.

The construction vessel industry is building ships with higher container

capacity (Figure 1) to respond to the increase in container shipments [Henesey

2004]. This increase also causes an increased demand for port storage that

influences port stacking policies and creates a demand for improved technical

equipment for container logistics [Volk 2002 and Stenken, Vob and Stahlbock

2003].

Figure 1. Number of Container Ships Built or on Order, 1995-2005. (From:

Henesey [2004])

2. Container Description
For each container already in a block or scheduled to arrive, we know the

following information:

a. Size (20 ft., 40 ft., and 45 ft.).
b. Identification number.
c. Content.
d. The name of the vessel.
e. Destination port.
f. Priority.
g. Status.
h. Future transfer point.
The content of the container is the type of material the container carries.

Hazardous containers are usually stacked in special blocks or in special areas

where they can be easily inspected. The name of the vessel and the destination

port are given for any container that will be loaded onto a vessel in the future.

This information helps to identify the best stacking location for a container. For

example, consider two containers (A and B) that will be loaded on the same

vessel. The container that has the most distant port destination (in this example,

assume A) should be placed above container B to allow A to be easily stacked in

a lower position when loaded on its future vessel. The priority of a container is

2

an estimate on roughly when this container will leave the block. The status

indicator declares if the container is empty, dry or fridge.

3. Container Handling in a Port
When a vessel arrives in a port, a berth location is assigned to the ship

and the procedure of unloading and loading containers into the vessel starts

almost immediately. Henesey [2004] describes four main ordered steps that

each container has to follow from the moment it arrives on a vessel until it exits a

port either on a truck, train, or in another vessel. A typical overview of a CT is

shown in Figure 2.

Water side buffer zone

Land side buffer zone

Train terminal
Main gate

Storage
yard

Ship 1 Ship 2

Water side buffer zone

Land side buffer zone

Train terminal
Main gate

Storage
yard

Ship 1 Ship 2

Figure 2. Operation Areas in a Sea Port Terminal.

Quay cranes unload and load containers from vessels. The blocks in the storage
yard are perpendicular to the shoreline, and the loading and unloading areas in
the storage yard can be described as Water Side (WS) and Land Side (LS).

The first step is the ship-to-shore movement where a Quay crane lifts a

container from a vessel and moves it to shore, where carriers are waiting to

transport it to a stacking area. Figure 3a shows Quay cranes unloading a vessel

and Automated Ground Vehicles (AGVs) transporting the containers to the

storage yard.

3

The second step is the transportation of the container to a storage yard.

In addition to AGVs, there are other transportation vehicles such as straddle

carriers (Figure 3b). AGVs do not need a driver but they require the assistance

of a crane to load or unload a container. A straddle carrier, unlike AGVs, can

pick a container from the ground or unload it without the presence of a crane.

The storage yard includes several blocks (Figure 2), where an AGV or straddle

carrier unload each container to its assigned block.

a. b.

Figure 3. Quay cranes, AGVs and Straddle Carrier.
a. Quay crane with AGVs transporting the containers (Gottwald Port Technology
[2005]). b. Straddle Carrier (Kalmar Industries [2005])

The third step, the focus of this thesis, is the storage of containers in a

block. Each block has a specified number of bays, rows, and tiers where

containers are stored in stacks (Figure 4). Cranes in each block are responsible

for the storage and transport of the container into and out of the block.

4

Water Side

Land Side

Row=6

Bay=20

Tier=4Height=5

Figure 4. Graphical Representation of an ASC Working in a Block.

The bay refers to the number of containers along the block, the row refers to the
width of the block, and tier refers to the maximum number of containers in each.

To improve block operations, there are many ports that are using two

cranes in each block. In most of these cases, the two cranes are of the same

size and type and they cannot crossover. There are also cases where two

cranes of different heights are working in the same block, giving more flexibility in

the movements they can make.

There are three main types of cranes and each one has the ability to

transport at most one container. The Rubber-Tired Gantry Crane (RTG) moves

on rubber tires and has the flexibility to move between blocks (Figure 5).

Figure 5. Rubber-Tired Gantry Crane (RTG). (From: Kalmar Industries

[2005])

5

The Rail-Mounted Gantry Crane (RMG) moves over railways only in a

specific block and does not have the ability to move between different blocks

(Figure 6).

Figure 6. Rail-Mounted Gantry Crane (RMG). (From: Kalmar Industries

[2005])

An Automated Stacking Crane (ASC) also moves over rails in a specific

block. It does not have the ability to move between blocks but is fully automated

in all of its operations and works without the assistance of a driver (Figure 7).

Figure 7. Automated Stacking Crane (ASC). (From: Kalmar Industries [2005])
ASC operating at ECT Delta terminal in Rotterdam

The blocks in the storage yard are either parallel or perpendicular to the

shoreline. Blocks parallel to the shoreline are most common at ports that are

using RTGs. Blocks perpendicular to the shoreline as in Figure 2 are common

when a RMG or ASC stacks the containers. In the latter case, due to the relative

position between the blocks and the shoreline, the containers arrive to the block

either from the Water Side (WS) or from the Land Side (LS).

6

Typically, an arriving container that will be loaded on a vessel is called an

inbound container and a container that will be loaded on a truck is called an

outbound container. A container that arrives in a block from the LS usually

comes on a truck, either from the gate of the port or from a train terminal. The

LS and WS buffer zones are the locations where the ASC loads and unloads

containers. In this study, a container that the ASC stacks in the block is

classified as an imported container and a container that is already stacked in the

block that the ASC transports to a transfer point is referred to as an exported

container.

The best position to stack a container depends on the container’s

characteristics and what containers are already in each of the stacks. It is found

that ports do not adopt the same stacking policy, mostly because of the

differences in the available area of the storage yards and the types of the cranes

and other equipment that they use.

The fourth step is a delivery-receipt movement where an ASC picks a

container from the stack and unloads it to the LS or WS buffer zone for a waiting

truck or vessel. Straddle trucks work on the LS of the block loading containers

on a truck (Figure 8). A straddle carrier transports a container from WS to the

berth area of a vessel.

Figure 8. Straddle Trucks are Loading Containers on Trucks. (From: Ceres

Paragon [2005])

7

8

B. OBJECTIVES
This thesis formulates and solves ILPs for scheduling one and two ASCs

in a block. An optimal schedule for an ASC has to satisfy all the demand that

appears on LS and WS without delays, while finding an optimal place to stack

each imported container. The optimal placement must consider containers that

are already in the stack as well as time limits. The primary objective is to satisfy

all the exported container time commitments. There are LS and WS buffer zones

where a carrier leaves a container to be stacked, so an ASC can more easily

delay the transport of an imported container for a short time without hampering

overall port operations. Finding efficient ASC schedules helps to increase the

productivity of the ASC, increase the number of containers that can be imported

and exported from the block, reduce the cost that a vessel or truck has to pay in

a port, and finally, improve the flow of the containers in the port.

9

II. OTHER CRANE SCHEDULING PROBLEMS

Port operations have been an area of increased study over the last few

years. Steenken et al. [2004] and Henesey [2004] present an integrated view of

current research. They categorize each study according to its focus (ship to

shore, transportation, stacking, delivery) and the type of analysis (operational,

tactical, or strategic). Lin [2000] shows that a general crane scheduling problem

is NP hard. Hence, crane scheduling optimization is expected to be

computational expensive.

We have not found any published reports on scheduling container

stacking with one or two ASCs and straddle carriers. Most related studies focus

on scheduling RMGs or RTGs and AGVs. They approach the problem in ways

that give useful background and insight.

An ASC schedule is a sequence of container moves, where each move

specifies the exact position to stack each container. Lin [2000] proposes

heuristic approaches for large-scale versions using RTGs. He deploys RTGs

among different storage blocks, depending on the workload in each block, and

suggests a network flow formulation with a piecewise-linear objective function

that minimizes the unfinished workload that is transferred each time to the next

time period. Similarly, Linn et al. [2003] explore the deployment of RTGs

between blocks and constructs an ILP to determine the optimal crane allocation

by minimizing the crane workload overflow. Zhang et al. [2002] formulate the

same problem as an ILP where they minimize the workload at the end of each

period, and apply Lagrangian relaxation to solve it.

Kozan and Preston [1999], without referencing to a specific crane,

minimize the traveling time of containers from a stack to a vessel. They

proposed an ILP for small-scale instances and a Genetic Algorithm solution for

large-scale instances. They show that a fixed storage policy significantly reduces

vessel load time compared with a random policy for various storage-area

fullness. In the same study, they conclude that the transfer time of a fixed

10

number of containers increases exponentially when the number of yard cranes

decreases. This result suggests the use of cranes that move among blocks such

as RTGs.

Kim and Kim [1997] propose a routing algorithm for a single crane working

in a block loading only exported containers out of the block. Kim and Kim [1999]

propose a heuristic algorithm to solve the same problem. In both cases, the

algorithm does not dynamically schedule imported and exported containers from

the block, and a specific sequence for each of the exported containers is not

determined.

The problem of scheduling two cranes that are working in the same block

has not been widely studied. Stenken et al. [2004] provide a reference for an

unpublished study (Eisenberg et al. [2003]) that examines the case of two RMGs

that can crossover.

Navis, a company that develops software for scheduling port operations,

offers SPARCS [2004] for heuristically scheduling one ASC. SPARCS is used in

many ports around the world. Navis reports that it finds efficient stacking

positions even for large-scale problems. SPARCS selects the stacking positions

according to a penalty system that evaluates the characteristics of each stack,

giving the flexibility to adopt different stacking policies according to a port’s

requirements. [Ayik 2005]

11

III. SCHEDULING ONE ASC

A. INTRODUCTION
We first consider only one ASC working in a single block. Given a

predefined time window (typically 15 minutes) the ASC must transport all

containers that are entering or leaving the block within the time window. An

entering container is either in a transfer point at the beginning of the time window

or arrives at a specific buffer zone during the time window. A container that the

ASC must export is currently in the block and must be transported to a transfer

point before a known time when a carrier will arrive. Any ACS delay in delivering

exported containers causes delays to the straddle carriers and ultimately to the

loading time of a vessel, truck or train.

Even with only a small number of containers there is a large number of

possible sequences. The value of stacking a container at the top of a stack

changes dynamically each time an ASC stacks, exports, or reshuffles a container

from a stack.

A heuristic solution to ASC scheduling is to order the containers according

to when they arrive or must be placed at a transfer point and then schedule the

jobs in that order. The ASC selects the first job in the schedule and finds the

shortest route to accomplish it. If the first job is to transport a container from the

block to a transfer point, then it calculates the travel time and any time for

reshuffling or rehandling (restacking containers that are over the exported

container). If the first job is to transport an imported container, then it finds a

position that it can stack the container, while satisfying time limits. If there are no

imported or exported containers, the ASC performs what is known as house-

keeping jobs where it restacks some of the containers in the block in order to

save future reshuffling time.

This heuristic approach can produce results that are far from optimal.

Figure 9 provides an example where the ASC starts in the WS and has two

containers to export (A and B identified by grey color in the block). For simplicity,

we assume that containers A and B are on the top of their stacks. In the first

case, the ASC first transports container A to the WS and then transports

container B to the LS. Figure 9a shows the step-by-step ASC route. By

transporting container B first (Figure 9b), the ASC accomplishes both jobs in a

significantly shorter distance and time. The example in Figures 9c and 9d

switches the destination for container A to the LS and again shows the

importance of selecting the best order to transport the containers.

LS

WS

A-WS

B-LS

Start

Finish

LS

WS

A-WS

B-LS

Start
Finish

WS

A-LS

B-LS

LS

Start

Finish

WS

A-LS

B-LS

LS

Star

Finish

STEP BY STEP STEP BY STEP OPTIMAL OPTIMAL

a b c d

Figure 9. The Importance of Selecting the Best Sequence.
The arrows indicate the route and the travel distance of the ASC. a. First case,
container A before container B. b. B before A. c. Second case, A before B. d. B
before A.

B. PROCEDURAL OVERVIEW

We schedule the ASC in three connected steps. First, containers that are

entering or leaving the block are scheduled. This is the primary step where a

route is found that minimizes the total travel distance and satisfies all the

requirements to export containers. We assume that the ASC moves containers

above an exported container (reshuffles) immediately before moving an exported

container. During the first step, we only reserve time to reshuffle. In the second

step, we schedule the reshuffles. The third step is the scheduling of house-

keeping jobs.

To formulate the first step, we divide the total path of the ASC during the

time window into m different moves. A move starts from one side of the block
12

and finishes on either side. Thus, there are four different routes that the ASC

can travel during a specific move. It can start from the WS and finish on the LS,

or from LS to WS, or from WS to WS, or from LS to WS.

We assume that exported containers have priority, so every ASC move

includes an exported container as long as one is available. The ASC may

combine the move (if there is available time) with importing a container and

stacking it in the block. Giving the exported containers priority should help

minimize the overall consequences of unexpected delays.

After finishing with all exported containers, we schedule the ASC to move

any remaining imported containers until the end of the time window. Figure 10

explains the movement of the ASC in these three different cases. For simplicity

of the example, a container that is already in the stack does not have other

containers above it.

LS

WS

LOAD A

Start

LOAD A

WS

UNLOAD B

LS

Start

Finish

UNLOAD A UNLOAD A

Finish

LS

WS

UNLOAD B

Start Finish

LOAD B

Finish

LOAD B

RETURN
 WS or LS

a b c

Figure 10. Three Different Types of Moves.
The arrows indicate the route and the travel distance of the ASC. a. The ASC
picks only one exported container (A) during this move. b. The ASC transports
an imported and an exported container during the same move. c. The ASC
transports only an imported container during the move from the transfer point to
the stack.

In the first step, an ILP finds the moves that the ASC makes and routes

that it follows in order to transport the exported and imported containers. We

13

14

assume the ASC is able to transport all the exported containers within an

allowable delay of being on time. To reduce ILP solve time, we do not schedule

the reshuffle of any container above an exported container. We only reserve

time to reshuffle. A high reserved time helps ensure sufficient time to stack them

in the best position, but reduces the time for importing and exporting containers.

A reserve time must be at least the sum of loading, unloading, and minimal ASC

travel time.

In order to evaluate the relative merit of different positions and find the

position for an ASC to place a specific container, we use a penalty system. We

evaluate each stacking position in the block considering the specific container

and each available stack of the block, using the following factors:

1. Height of stack - the number of containers in a stack can not
exceed a height limit.

2. Size of containers - containers in each stack should be of equal
size or stacked in a descending order.

3. Content – nonhazardous containers can not be mixed in the same
stack with hazardous containers.

4. Status - containers with different status should be stacked in
different stacks.

5. Priority - stacking a container over containers with higher priority
should be avoided.

6. Buffer zone capacity - avoid leaving an imported container in the
buffer zone for a long time.

7. Future saving time – we add bonus to a stack position that is close
to a container’s future transfer point.

In step 2, we find the best positions to stack containers above exported

containers using the reserved time and the same penalty system from step 1.

In step 3, if there is time available, house-keeping jobs are assigned to the

ASC. The jobs with the highest position value that satisfy time limitations are

selected in order to decrease future reshuffling.

C. STEP 1 FORMULATION.
The step 1 formulation is an ILP. The objective function seeks to

maximize the position values of imported containers. This objective function

encourages the ASC not to select short and fast moves that would result in a

stacking with increased future travel time. A solution to this problem provides the

moves that the ASC should make in order to transport all the exported containers

before the time limits, and as many imported containers as possible in the best

selected positions.

1. Indices

c, c´ container position in the block. { }∈ 1,2,...,c C

i, i´ container from WS or LS. { }∈ 1,2,...,i I

m, m´ ASC move. { }∈ 1,2,...,m M

r ASC route in one move (1 if it starts from WS and
finishes on the LS , 2 from LS to WS, 3 from WS to
WS , 4 from LS to LS).

x, x´ bay. { }∈ 1,2,...,x X

(0 refers to WS and X refers to LS position).

y, y´ row. { }∈ 1,2,...,y Y

a area of a block. { }∈ 1,2,...,a A

2. Sets
E positions of exported containers.

RF available container c and route r combinations.

3. Scalars
height maximum number of containers that can be stacked

on top of one another (usually 4 or less).

idleTimeB bonus for every minute that the ASC remains idle.

inCrPos position of the ASC at the beginning (0 LS, 1 WS).

noImpPen penalty for an imported container that is not stacked.

timeWindow time period for the ASC’s schedule [min].

15

16

timePerCont time available to reshuffle and find a good location to
stack a container that is above an exported container
[min].

4. Parameters
destc destination of container in position c (0 LS, 1 WS).

expTc,r travel time (reshuffling times are not included) to move
a container in position c to its transfer point following
route r [min].

impTi,a,r travel time to move an imported container i to a
selected position in area a using route r [min].

impExpTc,i,a,r travel time (reshuffling times are not included) to move
an imported container i to a selected position in area a
and then move an exported container in position c to
its transfer point using route r [min].

inStackNumi,a height (number of containers) in area a where
imported container i could be stacked.

limitTc time the container in position c must be available at
the LS or the WS [min].

limMoveAbTc time to remove and stack all the containers that are
above an exported container in position c [min].

maxValAri,a the value of stacking container i in area a.

schedTi the earliest imported container i is available [min].

xInc initial x-position (number of bay) of container in
position c at the beginning of the period.

xStacki,a x-position in area a that container i could be stacked.

yInc initial y-position (row number) of container in position
c.

yStacki,a y-position in area a where container i could be
stacked.

zInc the z-axis position for a container in position c (1 =
bottom, 2 = second place from bottom, and so on).

5. Binary Variables
CRm 1 if the ASC ends move m at the WS and 0 if it ends at

the LS. ∀ m

Gi,a,m,r 1 if the ASC transports imported container i to area a
during move m following route r. ∀ i,a,m,r

Qc,m,r 1 if the ASC transports exported container from
position c during move m following route r (maybe
another imported container i is transferred in the same
move m). (,) , | |c r RF m E∀ ∈ ≤

QGc,i,a,m,r 1 if the ASC transports exported container from
position c and imports container i to area a. Both
containers are going to be transported during move m
by following route r; 0 otherwise.

 (,) , , | |c r RF i m E∀ ∈ ≤

QQc,m,r 1 if the ASC is going to transport only one exported
container from position c during move m following
route r (when the value is 1, it also means that no
imported container i is moved). (,) , | |c r RF m E∀ ∈ ≤

6. Continuous Variables
DELm idle time at the beginning of move m. When idle, the

ASC remains either at the WS or the LS where it is at
the end of move m-1 [min]. ∀ m

SNi,a,m height (number of containers) in the area a stack at
the end of move m where container i could be
stacked. ∀ , ,i a m

TOTALTm time at the end of move m [min]. ∀ m

TRAVELTm travel time during move m. It does not include the
time that the ASC might remain idle in the beginning of
move m [min]. ∀ m

7. Objective Function

(1)
⎛ ⎞

⋅ − ⋅ − + ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑, , , , , , ,,
, , , , , ,

max i a i amr i amr mQG
i amr i amr m

maxValAr G noImpPen I G idleTimeB DEL∑

17

8. Constraints

(2) ∀ ≤ 1
(,)

c,m,r
c r RF

Q
∈

=∑ | |m E

(3) ∀ ∈ 1=∑ , ,
,

c m r
m r

Q c E

(4) ∀
1≤∑ , , ,

, ,
i a m r

i a r

G
m

(5) ∀ 1≤∑ , , ,
, ,

i a m r
m a r

G i

18

,r

c,m,r

1 r

(6) ∀ ≤
(,)

m c c,m
c r RF

CR dest Q
∈

= ⋅∑ | |m E

(7)

(,)
m m 1 m m c

c r RF

TOTALT TOTALT DEL TRAVELT limMovAbT Q−

∈

= + + + ⋅∑
1∀ >m

(8) 1 1 1 , ,
(,)

c c
c r RF

TOTALT DEL TRAVELT limMovAbT Q
∈

= + + ⋅∑

(9) − + ≥ ⋅∑ , , ,
, ,

m 1 m i i a m r
i a r

TOTALT DEL schedT G 1∀ >m

(10) 1 1≥ ⋅∑ , , ,
, ,

i i a r
i a r

DEL schedT G

(11)

(a)
1 3 2 4

2 1
(,) , (,) ,

m-1 c,m,r c,m,r
c r RF c r RF

r or r r or r

CR Q Q
∈ ∈

= = = =

⋅ − = −∑ ∑ 1 | |m and m E∀ > ≤

(b) ()
1 4 2 3

1
(,) , (,) ,

c,m,r c c,m,r c
c r RF c r RF

r or r r or r

Q dest Q dest
∈ ∈

= = = =

⋅ = ⋅ −∑ ∑ | |m E∀ ≤

(c) ()1 1

2 4 1 3

1
(,) , (,) ,

c, ,r c, ,r
c r RF c r RF

r or r r or r

Q inCrPos Q inCrPos
∈ ∈

= = = =

⋅ = ⋅ −∑ ∑

(12)

(a) 1

1 3

, , ,
, ,

i a m r m
i a r
r or r

G CR −

= =

≤∑ 1| |m E and m∀ > >

(b)

1 4

1, , ,
, ,

i a m r m
i a r
r or r

G

= =

≤ −∑ CR | |m E∀ >

(c)

2 3

, , ,
, ,

i a m r m
i a r
r or r

G C

= =

≤∑ R | |m E∀ > |

(d) 1

2 4

1, , ,
, ,

i a m r m
i a r
r or r

G CR −

= =

≤ −∑

 1∀ > >| |m E and m

(e) ()1 1

2 4 1 3

1, , , , , ,
, , , ,

i a r i a r
i a r i a r
r or r r or r

G inCrPos G inCrPos

= = = =

⋅ = ⋅ −∑ ∑ 0| |if E =

(13)
∈

≤∑ ∑, , , , ,
,

i a m r c m r
i a c E

G Q | |,m E r∀ ≤

(14)

(a) ≥ −∑, , , , , , ,
,

c m r c m r i a m r
i a

QQ Q G ∀ ∈(,) ,c r RF m

(b) 2≤ − −∑, , , , , , ,
,

c m r i a m r c m r
i a

QQ G Q ∀ ∈(,) ,c r RF m

(c) 1≤ −∑, , , , ,
,

c m r i a m r
i a

QQ G ∀ ∈(,) ,c r RF m

(d) ≤ +∑, , , , , , ,
,

c m r i a m r c m r
i a

QQ G Q ∀ ∈(,) ,c r RF m

(15) 1, , , , , , , , , , ,
(,)

c i a m r c m r i a m r cc m rr
cc rr RF

QG Q G QQ
∈

≥ + − − ∑ (,) , , ,c r RF i a m∀ ∈

19

(16)

20

⋅

i,a,m,r

(a)

, , , , , , , , ,
(,) , , (,)

m c i a r c i a m r c,r c m r
c r RF i a c r RF

TRAVELT impExpT QG expT QQ
∈ ∈

= ⋅ +∑ ∑
∀ ≤| |m E

(b) = ⋅∑
, ,

m i,a,r
i a r

TRAVELT impT G ∀ >| |m E

(17)
(,)

m c
c r RF

TOTALT limitT Q
∈

≤ ⋅∑ c,m,r ∀ ≤| |m E

(18) ≤mTOTALT timeWindow ∀ m

(19)
≤ ≤

≥∑ ∑, ', ', ',
'| ' , '| ' ,

c m r c m r
m m m r m m m r

Q Q ∀ ∈ ∀, ' ,c c E m

 = =' 'c c cif xIn xIn and yIn yInc

 > ≠' 'c cand zIn zIn and c c

(20)
1≤ ≤ +

≥∑ ∑, ', , , ',
'| ' , '| ' ,

c m r i a m r
m m m r m m m r

Q G , , ,c E i a m∀ ∈

 =,i a cif xStack xIn and

 =,i a cyStack yIn

(21)

(a) 1−= +∑, , , , ', , ,i a m i a m i a m r
r

SN SN G 1, ', ,i i a m if m and∀ >

=, 'i a i a,xStack xStack

 =, 'i a i aand yStack yStack ,

(b) 1 1= +∑, , , ', , ,i a i a i a r
r

SN inStackNum G ∀ , ',i i a

 =, 'i a i aif xStack xStack ,

= ≠, ', 'i a i aand yStack yStack and i i

(22) ∀ ≤, ,i a mSN height , ,i a m

(23)

(a) 0≥, ,, , ,m m m i a m mTOTALT TRAVELT DEL SN S URS ∀ , ,i a m

(b) , , , , , , , , , , , ,, , , , binary variablesc m r i a m r c m r c i a m r mQ G QQ QG CR ∀c,i,a,m,r

9. Objective Function and Constraint Description
The objective function expresses the total value for stacking imported

containers as well as penalties for not placing imported containers. Constraint

sets (2) and (3) require the ASC to transfer every exported container. Constraint

sets (4) and (5) require the ASC to transfer at most one imported container per

move. Constraint set (6) specifies the position of the ASC at the end of each

move. Constraint sets (7) and (8) calculate the time at the end of move m.

Constraint sets (9) and (10) ensure an imported container i is not moved before it

arrives. Constraint sets (11) and (12) link binary variables Qc,m,r , Gi,a,m,r with

CRm and destc . Constraint set (13) links constraints between binary variables

Qc,m,r and Gi,a,m,r . If a container in position c and container i are going to be

moved in the same move m, then the ASC follows one route r during move m.

The constraint refers to the initial moves where there are still exported containers

to transport. Constraint sets (14) and (15) link constraints between binary

variables QQc,m,r , QGc,i,a,m,r , Gi,a,m,r , and Qc,m,r,. Constraint set (16) calculates the

travel time that the ASC needs to finish move m. Constraint set (17) balances

time at the end of each move m. Constraint set (18) assigns time limits for each

move m. Constraint set (19) assigns priority between two exported containers c

and c´ of the same stack. Constraint sets (20) to (22) specify limitations where

an imported i container can be stacked. Constraint set (23) defines variable type.

10. Additional Data
There are substantial additional data needed to calculate some of the

parameters for the previous formulation. We provide a description of these

additional parameters as follows.

21

22

row number of rows.
bay number of bays.
conflictc parameter with value 1 if a container in position c is an

exported container or a container over an exported
container.

contAbc number of containers that are above a container in
position c at the beginning of the current time period.

contentc content of container in position c (0 empty, 1 dry, 2
fridge).

content_Ii content of imported container i (0 empty, 1 dry, 2
fridge).

contentPen penalty for stacking a container over a container that
has different content.

contIDc the ID of the container in position c.
contID_Ii the ID of imported container i.
crAcc acceleration of the ASC in the x-axis [meters/min2].
dest_Ii future transfer point for imported container i (0 LS, 1

WS).
impPosValuei,x,y the value of stacking imported container i at the top of

stack with coordinates x and y.
maxSpeed maximum speed of the ASC in the x-axis [meters/min].

moveTx,x´ time that the ASC needs to move from position x to
position x´ (along bay axis) [min].

overstackPen penalty for stacking a container on a stack that
already has the maximum height capacity.

portDestc the port destination for the container in position c
(blank if it will not be loaded on a vessel).

portDest_Ii the port destination for imported container i (blank if it
will not be loaded on a vessel).

portDestPen penalty for stacking a container that has the same
destination ship, but its destination port is later.

priorityc priority of the container stacked in position c; the
smaller the number, the higher the priority.

priorityPen penalty for stacking a container over one with higher
priority.

sameShipBonus bonus for stacking a container on a stack where there
is already a container that is going to be loaded on the
same vessel.

23

savingTimeBonus bonus for each minute saved from future
transportation when an imported container is stacked
close to the transfer point where it is going to be
loaded.

shipNamec the vessel for loading container in position c (blank if it
will not be loaded on a vessel).

shipName_Ii the vessel for loading imported container i (blank if it
will not be loaded on a vessel).

sidei transfer point for imported container i (0 LS, 1 WS).
sizec size of container in position c (20 - 40 - 45) [ft].
size_Ii size of the imported container i [ft].
sizePen penalty for stacking a container over a container of

larger size.
transferPen penalty for stacking a container over a container that

has a different future transfer point (WS or LS).
unwrapT time the ASC needs to unwrap (unlock) a container

[min].
wrapT time the ASC needs to wrap (lock) a container [min].
xStacki,a x-position (number of bay) in area a where imported

container i could be stacked.
yStacki,a y-position (number of row) in area a where imported

container i could be stacked.

11. Data Preprocess
To improve solution time, we calculate the values of some data for step 1

before using it in the ILP (i.e, the travel time for each move m).

We divide the block into different zones to avoid some of the complexity

caused by the large number of possible stacking positions, and because the

value of each position dynamically changes after each move m. We select the

best stacking position in each zone a, according to its stacking value, for each

imported container i (Figure 11).

LS

WS

Area 1

Area 2

Area 4

Area 3

LS

WS

Area 1

Area 2

Area 4

Area 3

Figure 11. An Example of a Block with Four Different Areas

For each container that is going to be placed in the block during the time window,
we use the best position from each area as a candidate for stacking.

The main parameters that determine the best position value for an

imported container are the available time and the value of the stack. The larger

the available time, the more time the ASC has to stack an imported container

close to its future transfer point. Different stacking policies imply different penalty

values.

The positions values for imported containers that the ASC transports

during the time window are calculated without considering the exported

containers. Constraints in the ILP restrict an imported container from moving to a

position where an exported container is stacked before the exported container is

transferred. Penalties also help avoid stacking a large container over a smaller

container.

D. STEP 2 FORMULATION
In step 2, we find the optimal positions for the containers that are above

exported containers. If the ILP in the first step provides an optimal (feasible)

24

solution, then the time to reshuffle these containers is known. These containers

(in step 2) are reshuffled to new positions that have the highest value within the

allowable time.

We solve a separate ILP, one for each move m, where an exported

container has other containers above it. Preprocessing the data is necessary to

reduce the solution time of the ILP. Reshuffling these containers in the same

stack requires more time than removing these containers to other stacks, so it is

not considered.

1. Sets
Em positions of exported containers during move m.
MCm containers in the same stack above an exported

container that the ASC transports in move m.
2. Parameters
conStackNumx,y,m the number of containers that are in the x and y

position stack at the beginning of move m.
limMoveAbTc time to remove and stack all the containers that

are above an exported container in position c
[min].

moveAbTc,x,y time that the ASC needs to move container in
position c to a new x and y position.

moveAbPosVc,x,y the value of moving container in position c to a
new x and y position.

3. Decision Variables
QABc,x,y,m binary variable with value 1 if the ASC transports

the container in position c, to the x and y position
during move m.

4. Objective

(1) ∀ , , , , ,
, ,

max
m

c x y c x y mQAB
c MC x y

moveAbPosV QAB
∈

⋅∑ m

5. Constraints

(2) =∑ ∑, , , ', ,
,

c x y m c m r
x y r

QAB Q , , 'm mm c MC c E∀ ∈ ∈

25

(3) , , , , , ', ,
, ,m

c x y c x y m c' c m r
c MC x y r

moveAbT QAB limMoveAbT Q
∈

⋅ ≤ ⋅∑ ∑ , ' mm c E∀ ∈

(4) , , , , ,

m

c x y m x y m
c MC

QAB conStackNum height
∈

+ ≤∑ , ,m x y∀

(5) binary variable , , ,c x y mQAB ∀ , , ,c x y m

6. Objective Function and Constraint Description
The objective function expresses the total value of the positions where the

ASC stacks the containers. Constraint set (2) ensures that the containers above

an exported container in position c are moved in same move m. Constraint set

(3) assigns the time limits. Constraint set (4) assigns the height limits in each

stack, while constraint set (5) defines variable type.

7. Data Preprocess
In the data preprocess phase of step 2, we calculate the values of the

parameters moveConc , inConStackNumx,y, moveAbTc,x,y and moveAbPosVc,x,y.

This identifies the positions that must be moved. The calculation is dynamic,

considers the containers that have been placed in the stack in the previous

moves, and is made for each move m. If in the beginning of the next move m+1

the ASC remains idle for some time, then we add this amount of time to the

available time that the ASC has in move m to transport these containers.

E. STEP 3
If after steps 1 and 2 there is time available, we schedule house-keeping

jobs. Because the purpose of the house-keeping jobs is to improve the block

stacking, we use a penalty system to evaluate the best house-keeping jobs that

can be done in each move m within the available time. After adjusting the time

from steps 1 and 2, the ASC may be idle at the WS or LS at the beginning of

some of the moves. If this idle time is higher than the time that the ASC needs to

load and unload a container, then we evaluate all containers on the top of their

stacks and each possible location that the ASC can place them. We select and

26

27

assign the best house-keeping job that has a position value over a specified

threshold. This repeats until there is no available time to accomplish an

improving house-keeping job.

28

THIS PAGE INTENTIONALLY LEFT BLANK

29

IV. SCHEDULING TWO ASCS

A. INTRODUCTION
For two ASCs working in a single block, we divide the block into two

areas: WS working area and LS working area. One ASC is responsible for the

demands on the LS working area and the other for the demands on the WS

working area. The primary contrasts with scheduling one ASC are:

1. The ASCs cannot crossover.
2. The moves of the ASCs do not have the same duration.
3. There is a single route that each ASC can follow in each move.

The WS (LS) ASC starts and ends each move at WS (LS).
4. The ASCs must maintain a security distance between them.
5. The value of placing a container in a stack changes dynamically at

the end of each move of each ASC.
We use an example with three containers (A, B, and C) to help highlight

some of the issues of using two ASCs (Figure 12). The destination of container

C is LS so the LS ASC must be used. Containers A and B (above container C)

can be reshuffled either by the WS ASC, the LS ASC, or both. If the LS ASC

reshuffles containers A and B then the WS ASC must wait until the LS ASC

leaves. A better approach would be to assign the reshuffling of containers A and

B to the WS ASC. The LS ASC can use this time for other jobs. After the WS

ASC finishes reshuffling, the LS ASC picks container C and transports it to LS

transfer point.

Water Side

Land Side

WS ASC

LS ASC

A
B
C

Water Side

Land Side

WS ASC

LS ASC

A
B
C

Figure 12. Two ASCs that Cannot Crossover Are Working in the Same Block

Container C has to be transported to LS and containers A and B have to be
reshuffled.

A reported approach for two ASCs is to use a buffer zone in the middle of

the block (Figure 13). The ASC on the WS (LS) working area transports all

containers stacked in the WS (LS) working area to the buffer zone that have to

be moved to the LS (WS) transfer point (for example container B in Figure 13).

This requires every such container to be loaded and unloaded twice.

LS

WS
Working

area

WS

LS
Working

area

A-WS

D-LS

B-LS

C-WS

E

Buffer
zone

LS

WS
Working

area

WS

LS
Working

area

A-WS

D-LS

B-LS

C-WS

E

Buffer
zone

Figure 13. Two ASCs Working in a Block with Buffer Zone

30

31

We require a container that is to be delivered to the LS (WS) to be

transported only by the LS (WS) ASC. This eliminates the use of a middle buffer

zone.

We make the following assumptions:

1. Each imported container can be stacked only in the working area of
the ASC that is responsible to pick it from the transfer point.

2. Each container above an exported container can be reshuffled in a
position in the same working area.

3. The house-keeping jobs for each ASC are inside the limits of the
working area of the ASC.

4. An ASC enters to the opposite working area only when it has to
pick an exported container.

Under these assumptions, we may not always provide an optimal solution

but the solution provided has (without considering reshuffles) the minimum

number of handlings of a container from the time that it enters into the block until

the time that it leaves.

B. PROCEDURAL OVERVIEW
Like the one ASC scheduling problem, we schedule the two ASCs in three

steps: (1) we schedule containers that are entering or leaving the block, (2) we

schedule containers that are above containers that are leaving the block and (3)

we schedule house-keeping jobs.

To formulate and solve the first step problem, we divide the total path of

each ASC during the time window into m different moves. For the ASC in the

WS (LS) working area each move starts from the WS (LS) and finishes in the WS

(LS).

In step 2, we find the best positions to stack containers above exported

containers using the reserved time and evaluating the same penalty system of

step 1.

In step 3, we identify conflicts that may occur from the solution of the

previous steps and we add appropriate delays to each ASC that enters the

opposite working area. If there is time where ASC remains idle on WS or LS,

house-keeping jobs are assigned.

C. STEP 1 FORMULATION.
We formulate the first step as an ILP where we assume that the ASCs can

crossover. This provides the order of moves that each ASC has to follow to

satisfy all the demands of the imported and exported containers. The ASC in the

WS (LS) working area is responsible for imported containers in the WS (LS)

transfer point and for exported containers that have WS (LS) as a destination.

An amount of time (not necessarily equal) is reserved for an ASC in each move

in the following cases:

1. An ASC that is about to enter into the opposite working area is
delayed until the other ASC finishes the current move.

2. When there are containers above an exported container that the
ASC is responsible to reshuffle.

3. An ASC with its working area occupied by the opposite ASC is
delayed until that ASC returns to its working area.

An ASC can enter into the opposite working area to pick an exported

container only if the containers above it are already reshuffled by the other ASC.

In case all exported containers for one ASC are in the opposite working area and

they all have containers above them, the first move of this ASC should not

include the transport of an exported container but the transport of an imported

container or a reshuffling job. The description that follows includes only the

elements that change from the one ASC formulation.

1. Indices
w working area (0 LS, 1 WS).
2. Sets
Ew positions of exported containers for the ASC in working area

w (e.g., c ∈ E0 in Figure 12)
Iw containers for the ASC in working area w.
Vw positions of exported containers with containers above them

that must be reshuffled by an ASC in working area w before
the ASC in the other area can transport the exported
container (e.g., c ∈ V1 in Figure 12).

32

3. Scalars
delayType1 time reserved for an ASC each time it enters into the

opposite working area [min].
delayType2 time reserved for an ASC each time the other ASC enters

into its working area [min].
noImpPenw penalty for an imported container in working area w that is

not stacked.
4. Binary Variables
Gw,i,a,m 1 if the ASC in working area w transports imported container

i to area a during move m. , Ww i I ,a,m∀ ∈

Qw,c,m 1 if the ASC in working area w transports exported container
from position c during move m (maybe another imported
container i is transferred in the same move). , ,Ww c E m∀ ∈

QGw,c,i,a,m 1 if the ASC in working area w transports an exported
container from position c and imports container i to area a.
Both containers are going to be transported during move m.

 , , , ,W Ww c E i I a m∀ ∈ ∈

QQw,c,m 1 if the ASC in working area w transports only one exported
container from position c during move m (when the value is 1
it also means that no imported container i is moved).

 , ,Ww c E m∀ ∈

Jw,c,m 1 if the ASC in working area w transports the containers
above a container in position c during move m (where the
ASC in the opposite working area is going to transport the
container in position c). , ,Ww c V m∀ ∈

5. Continuous Variables
DELw,m idle time at the beginning of move m for the ASC in working

area w [min]. m∀

SNw,i,a,m height (number of containers) in the area a stack in working
area w at the end of move m where container i could be
placed. , , ,Ww i I a m∀ ∈

TOTALTw,m time for the ASC in working area w at the end of move m
[min]. m∀

TRAVELTw,m travel time for the ASC in working area w during move m. It
does not include the time that the ASC might remain idle in
the beginning of move m [min]. m∀

33

6. Objective Function

34

∑

|w

(1) (), , , , , , ,, , , , , , ,

max
⎛ ⎞

⋅ − ⋅ − + ⋅⎜ ⎟
⎝ ⎠

∑ ∑i a w i a m w i a m mQ G w i a m w i a m m

maxValAr G noImpPen I G idleTimeB DEL

7. Constraints

(2) 1, ,

w

w c m
c E

Q
∈

=∑ 1, | | | | |w Ww m if m E and V E−∀ ≤ <

(3) 1, ,
| | |w

w c m
m m E

Q
≤

=∑ 1, | | |w ww c E if V E− |w∀ ∈ <

(4) 1, ,

w

w c m
c E

Q
∈

=∑ 1 1, | |ww m if m E∀ < ≤ + |

|w

1| | |w wand V E− =

(5)
1 1

1, ,
| | |w

w c m
m m E

Q
< ≤ +

=∑ 1, | | |w ww c E if V E−∀ ∈ =

(6) 1 1 1, , , , ,
,W W

w c w i a
c V i I a

J G
∈ ∈

+ ≥∑ ∑ 1| | | |w ww if V E−∀ =

(7) 1, , ,
,W

w i a m
i I a

G
∈

≤∑ ,w m∀

(8) 1, , ,
,

w i a m
m a

G ≤∑ , Ww i I∀ ∈

(9) 1, ,w c m
m

J =∑ , Ww c V∀ ∈

(10)

(a) 1, , ,w m w m w m w mTOTALT TOTALT DEL TRAVELT−= + + ,

1,w

, 1w m∀ >

(b) 1 1, ,w wTOTALT DEL TRAVELT= + w∀

(11)

(a) 1, ,
,W

w m w m i w i a m
i I a

TOTALT DEL schedT G−
∈

+ ≥ ⋅ , , ,∑ , 1w m∀ >

(b) w∀ 1,
,W

w
i I a

DEL schedT G
∈

≥ ∑ 1, , ,i w i a⋅

(12) 1, , , , , , , ,
, ,w W W

w c m w i a m w i a m
c V i I a i I a

J G G +

∈ ∈ ∈

+ ≥∑ ∑ ∑ , | |ww m if E m M∀ < <

(13)

35

G(a) 2, , , , , , ,
,W W W

w c m w c m w i a m
c V c E i I a

J Q
∈ ∈ ∈

≤ − −∑ ∑ ∑ ,w m∀

(b) 1, , , , ,
,W W

w c m w i a m
c V i I a

J G
∈ ∈

+∑ ∑ ≤ ,w m∀

(14)

(a) , , , , , , ,
,W

w c m w c m w i a m
i I a

QQ Q G
∈

≥ − ∑ , ,ww c E m∀ ∈

(b) 2, , , , , , ,
,W

w c m w i a m w c m
i I a

QQ G Q
∈

≤ − −∑ , ,ww c E m∀ ∈

(c) 1, , , , ,
,W

w c m w i a m
i I a

QQ G
∈

≤ − ∑ , ,ww c E m∀ ∈

(d) , , , , , , ,
,W

w c m w i a m w c m
i I a

QQ G Q
∈

≤ +∑ , ,ww c E m∀ ∈

(15)

(a) , , , , , ,w c i a m w c mQG Q≤ , ,w Ww,c E i I m∀ ∈ ∈

(b) , , , , , , ,w c i a m w i a mQG G≤ , ,w Ww,c E i I m∀ ∈ ∈

(c) 1, , , , , , , , ,w c i a m w c m w i a mQG Q G+ ≥ + , ,w Ww,c E i I m∀ ∈ ∈

(16)

(a) , , , , , , ,
, ,w W w

w m c i a w c i a m c w c m
c E i I a c E

TRAVELT impExpT QG expT QQ
∈ ∈ ∈

= ⋅ + ⋅∑ ∑ , , +

m

+, ,

()
1

, , , , , ,

w w
w

w

c w c m w c m w c
c V c E and
or c V
c E

limMovAbT J Q delayType1 Q

−

∈ ∈
∈

∈

+ ⋅ + + ⋅∑ ∑

1, | | | | | |w w ww m E if V E−∀ ≤ <

(b)
∈ ∈ ∈

= ⋅ + ⋅∑ ∑, , , , , , ,
, ,w W w

w m c i a w c i a m c w c m
c E i I a c E

TRAVELT impExpT QG expT QQ

36

|w W ww m if m E and V E−∀ < ≤ + =

, ,

|w

, ,

| |w w ww m if m or m E and V E−∀ = > + =

()
1

, , , , , ,

w w
w

w

c w c m w c m w c m
c V c E and
or c V
c E

limMovAbT J Q delayType1 Q

−

∈ ∈
∈

∈

+ ⋅ + + ⋅∑ ∑

11 1, | | | | |

(c) , , , , ,
,W w

w m i a w i a m c w c m
i I a c V

TRAVELT impT G limMovAbT J
∈ ∈

= ⋅ + ⋅∑ ∑
1, | | | | |w ww m E if V E−∀ > <

(d)
∈ ∈

= ⋅ + ⋅∑ ∑, , , , ,
,W w

w m i a w i a m c w c m
i I a c V

TRAVELT impT G limMovAbT J

11 1, | | | |

(17)

(a) ()1 10 2, ,w m w c w c mTOTALT timeWindow Q J−≥ − ⋅ − −, , ,

, ,ww c V m∀ ∈

(b) ()1 1 12, , , ,w m w mm w c m w c mmTOTALT TOTALT timeWindow Q J− − −≥ − ⋅ − − , ,

|w

| |w

,⋅

1, , ,ww c V m mm∀ ∈ >

(18)

(a) , ,

w

w m c w c,m
c E

TOTALT limitT Q
∈

≤ ⋅∑
1, | | | | |w ww m E if V E−∀ ≤ <

(b) , ,

w

w m c w c,m
c E

TOTALT limitT Q
∈

≤ ⋅∑
11 1, | | | |w ww m if m E and V E−∀ < ≤ + =

(19) , ,
(,)

w m w c m
c V w c

TOTALT timeWindow delayType2 J
∈

≤ − ∑ ,w m∀

(20) , , ' , ', '
'| ' '| '

w c m w c m
m m m m m m

Q Q
≤ ≤

≥∑ ∑ , , ' ,w ww c E c E m∀ ∈ ∈

 ' 'c c c cif xIn xIn and yIn yIn and= =

 ' 'c czIn zIn and c c> ≠

(21)
1

, , ' , , , '
'| ' '| '

w c m w i a m
m m m m m m

Q G
≤ ≤ +

≥∑ ∑ , , , ,w Ww c E i I a m∀ ∈ ∀ ∈

 ,i a cif xStack xIn and=

 ,i a cyStack yIn=

(22)

(a) 1, , , , , , , ', ,w i a m w i a m w i a mSN SN G−= + 1, , ' , ,W Ww i I i I a m if m and∀ ∈ ∈ >

 ,i a i a',xStack xStack=

 , 'i a i aand yStack yStack ,=

(b) 1 1, , , , , ', ,w i a i a w i aSN inStackNum G= + , , ' ,W Ww i I i I a∀ ∈ ∈

 , ',i a i aif xStack xStack and=

 , ', 'i a i ayStack yStack and i i= ≠

(23) , , ,w i a mSN height≤ , , ,Ww i I a m∀ ∈

(24)

(a)

0, , , , , , ,, , , ,w m w m w m w i a m w mTOTALT TRAVELT DEL SN S URS≥

, , ,Ww i I a m∀ ∈

(b)

, , , , , , , , , , , , , ,, , , , binary variablesw c m w i a m w c m w c i a m w c mQ G QQ QG J

, w Ww c E ,i I ,a,m∀ ∈ ∈

8. Objective Function and Constraint Description
The objective function expresses the total value for stacking imported

containers and penalties for not placing imported containers. Constraint sets (2)

to (5) define the moves where the ASC transfers all exported containers.

Constraint set (6) requires the ASC not to transfer exported container in the first

move if all of the exported containers are on the opposite working area and have

containers above them. Constraint sets (7) and (8) require the ASC to transfer at

most one imported container per move. Constraint set (9) ensures that the ASC

reshuffles all containers that are above exported containers in its working area.

37

38

Constraint set (10) calculates the time at the end of move m. Constraint set (11)

ensures an imported container i is not moved before it arrives. Constraint set

(12) requires that each move includes at least one job. Constraint set (13)

determines the possible combinations between jobs in each. Constraint sets (14)

and (15) link constraints between binary variables QQw,c,m , QGw,c,i,a,m , Gw,i,a,m

and Qw,c,m,. Constraint set (16) calculates the travel time that the ASC needs to

finish move m. Constraint set (17) ensures that the ASC will not enter to the

opposite working area to pick an exported container before the opposite ASC

reshuffles all the containers above it. Constraint set (18) balances time at the

end of each move m. Constraint set (19) assign time limit constraints for each

move m. Constraint set (20) assigns priority between two exported containers c

and c´ of the same stack. Constraint sets (21) to (23) specify limitations where

an imported i container can be stacked. Constraint set (24) defines variable type.

B. STEP 2 FORMULATION
In the second step, we find the optimal positions for the containers that are

above exported containers. An ASC reshuffles a container to a new position

inside the limits of its working area. The description that follows includes only the

elements that change from the one ASC formulation.

1. Sets
Ew,m positions of exported containers in working area w

during move m.
MCw,m positions of containers in the same stack and above

an exported container that the ASC in working area w
transports in move m.

2. Decision Variables
QABw,c,,x,y,m binary variable with value 1 if the ASC in working

area w transports the container in position c which is
above an exported container, to a new x and y
position during move m.

QOPw,c,,x,y,m binary variable with value 1 if the ASC in working
area w transports the container in position c which is
above an exported container that is going to be
picked from the opposite ASC, to a new x and y
position during move m.

3. Objective

(1) ()
,

, , , , , , , , , ,,
, ,

max
w m

c x y w c x y m w c x y mQAB QOP
c MC x y

moveAbPosV QAB QOP
∈

⋅ +∑ mw,∀

4. Constraints
(2)

(a) , , , , , ',
,

w c x y m w c m
x y

QAB Q=∑ , ,, , ' ' ,w m w w mw m c E and c V c MC∀ ∈ ∉ ∈

(b) , , , , , ',
,

w c x y m w c m
x y

QOP J=∑ ,, , ' ,w ww m c V c MC m∀ ∈ ∈

(3)

(a)

,

, , , , , , ' , ',
, ,w m

c x y w c x y m c w c m
c MC x y

moveAbT QAB limMoveAbT Q
∈

⋅ ≤ ⋅∑
,, , ' 'w m ww m c E and c V∀ ∈ ∉

(b)
,

, , , , , , ' , ',
, ,w m

c x y w c x y m c w c m
c MC x y

moveAbT QOP limMoveAbT J
∈

⋅ ≤ ⋅∑
, , ' ww m c V∀ ∈

(4)
, ,

, , , , , , , , , ,

w m w m

w c x y m w c x y m x y m
c MC c MC

QAB QOP conStackNum height
∈ ∈

+ +∑ ∑ ≤

, , ,w m x y∀

(5) binary variable , , , , , , , ,,w c x y m w c x y mQAB QOP , , , ,w c x y m∀

5. Objective Function and Constraint Description
The objective function expresses the total value of the positions where the

two ASCs stack containers. Constraint set (2) ensures that the containers above

an exported container in position c will be moved in same move m. Constraint

set (3) assigns the time limits. Constraint set (4) assigns the height limits in each

stack. Constraint set (5) defines the variables.

C. STEP 3
In step 3, the exact position for each ASC for every small time step is

calculated in order to identify points of crossover. When a crossover occurs then

the appropriate delay time (delayType1 or delayType2) is added to create a

feasible schedule. The amount of the delay that we add also must include a

39

40

security distance that we want the two ASCs to have between them at all times.

After we achieve the elimination of the crossovers between the two ASCs, we

assign house-keeping jobs during the idle times of each move for each ASC.

41

V. COMPUTATIONAL STUDY

A. OBJECTIVE
We test the performance of one ASC, measure it under different types of

blocks, and compare it with the performance of two ASCs. We implement the

ILPs and the preprocessing algorithms in GAMS [GAMS 2005] and solve the

ILPs using CPLEX [ILOG 2003]. The step 1 ILP consists about 2,600 continuous

variables, 2,400 binary variables and 5,500 constraints. The step 2 ILP consists

about 6,000 continuous variables, 6,000 binary variables and 170 constraints.

We address the following questions:

1. How does the length of the block affect the performance of one and
two ASCs?

2. How does the fullness of the block affect the performance of one
and two ASCs?

3. When do two ASCs perform better than one ASC?
4. How fast are the two algorithms and how sensitive are they in

scheduling different types of blocks?
B. DESCRIPTION

The test data for the study are from the port of Rotterdam and refer to a

block with 60 bays. Each bay has six rows and a maximum height of four

containers, a total of 1,440 available positions for container stacking. The

number of containers that are initially stacked in the block is 318 (22.08% block

area fullness). Based on the original block of 60 bays, we create two blocks for

testing, one with length of 20 bays and 22.08% fullness (106 containers), and

one with length of 20 bays and 66.24% fullness (318 containers).

In this study, we measure the performance of one or two ASCs during a

time period of four hours. We assume we only know the containers in the current

status of the block and the containers that are entering or leaving the block in the

next fifteen minutes. For each imported container, we know when it arrives, and

for every exported container, we know the latest it must be available at its

transfer point. After the ASC finishes with all required containers or reaches

fifteen minutes, we consider the next time window of fifteen minutes. Although

42

the containers that need to be exported or imported to the WS (vessels) are often

known for more than fifteen minutes, truck arrivals at the gate for the LS of a

block are more unpredictable, so fifteen minutes seems like a reasonable time

limit.

At the end of the four-hour time period, imported containers might still be

stacked in the transfer points, implying that the ASC could not transport all

imported containers on time.

C. ASSUMPTIONS
We make some basic assumptions to have comparable results:

1. The ASCs have the same characteristics and capabilities.
2. The penalty values (stacking policy) are the same for both

algorithms and remain constant during the four hours. In general,
because there was no information about the future container
schedule, we prefer a low stack policy where empty stacks are
preferred locations for imported containers.

3. Imported and exported containers that need to be transported
during the four hours are separated in 16 different batches. In the
case of one ASC, if the ASC finishes all scheduled jobs (imported
and exported) before the end of the fifteen minutes, then it starts
working on the next batch of containers. In the case of two ASCs,
the next scheduling starts when both of the ASCs finish their jobs.

4. No unexpected delays or ASCs breakdowns.
5. The imported containers and their arrival time remain constant in all

cases.
6. The exported containers, their export time, and their placement

remain constant in the blocks of 20 bays with different fullness. We
use different exported containers stacked in different positions in
the comparison between 20 and 60 bays blocks, where the total
number of them remains constant in both cases.

7. If an ASC cannot transport an imported container during the time
window of fifteen minutes, the container remains in the transfer
point, and it can be imported in the next time window. There is a
buffer zone capacity limit of five containers on each side. For each
batch, an ASC transports all exported containers before the time
demand (if possible) and all imported containers that are necessary
to keep the buffer zone below the capacity limit.

8. If an ASC cannot transport an exported container during the time
window of fifteen minutes, there is a delay in the following schedule
until the demand for the exported containers is satisfied (possibly
causing delay to the delivery of the next batch of exported
containers).

D. RESULTS
1. Bay Size Factor
We measure the performance of one or two ASCs in two different blocks

with bay size 20 and 60 and present the results in Table 1. The fullness of the

blocks in both cases is 22%.

ASCs Bay Block
fullness

Number
imported

Number
exported

Number
reshuffles

Enter to
opposite
Working

Area

Travel
time
(min)

Total
time
(min)

1 20 22% 57 53 38 - 95.3 243.3
1 60 22% 57 53 41 - 243.7 394.7
2 20 22% 57 53 38 11 81.5 154.5
2 60 22% 57 53 41 21 204.7 279.7

Table 1. Performance of One and Two ASCs in Blocks with Different Bays.

The results above show that the number of bays significantly affects the

performance of one and two ASCs. As the total number of bays is tripled, the

total time for the one ASC increases by a factor of 1.62, and for the two ASCs a

factor of 1.81. The factor for two ASCs is higher because the number of times

that an ASC enters into the opposite working area is almost double in the 60-

bays block, and this causes additional traveling and idle time.

In comparing the performance between the one and two ASCs, for a 20-

bay block, the one ASC needs 57.4% more time than the two ASCs to finish all

the jobs. In the 60-bays block, the one ASC needs 41.1% additional time.

2. Number of Containers
Table 2 shows the performance of one or two ASCs in two different blocks

with bay size 20 and block fullness 22% and 66%.

43

ASCs Bay Block
fullness

Number
imported

Number
exported

Number
reshuffles

Enter to
opposite
Working

Area

Travel
time
(min)

Total
time
(min)

1 20 22% 57 53 38 - 95.3 243.3
1 20 66% 57 53 47 - 111.1 268.1
2 20 22% 57 53 38 11 81.5 154.5
2 20 66% 57 53 45 11 80.6 157.6

Table 2. Performance of One and Two ASCs in Blocks with Different
Fullness.

The results above indicate that when the fullness increases from 22% to

66%, the total time for only one ASC increases 10.2%. In the case of two ASCs,

the total time increases only 2%. The main reason for this result is the increase

in the number of reshuffles for one and two ASCs when 66% full. The increase is

less in the two ASC case because each ASC, on average, makes 5.5 reshuffles

instead of 11 reshuffles for one ASC.

When 22% full, one ASC needs 54.5% more time than two ASCs to finish

its schedule. When 66% full, one ASC needs 70.1% more time.

3. Two ASCs Route Graphs
The following graphs (Figures 14, 15 and 16) display the bay position of

each ASC in every time step of 0.125 min (7.5 sec). The bay number 0 refers to

WS position where the ASC either remains idle or loads or unloads containers at

the WS transfer point. The bay number 21 (or 61) refers to LS position where the

ASC either remains idle or loads or unloads containers at the LS transfer point.

44

2 ASCs - 20 BAYS - 22% FULLNESS

0
2
4
6
8

10
12
14
16
18
20

0 200 400 600 800 1000 1200
Time (1/8 min)

B
ay

 n
um

be
r

LS
WS

Figure 14. Graph of Two ASCs Performing in a Block with 20 Bays and 22%

Fullness.

2 ASCs - 20 BAYS - 66% FULLNESS

0
2
4
6
8

10
12
14
16
18
20

0 200 400 600 800 1000 1200
Time (1/8 min)

B
ay

 n
um

be
r

LS
WS

Figure 15. Graph of Two ASCs Performing in a Block with 20 Bays and 66%

Fullness.

45

2 ASCs - 60 BAYS - 22% FULLNESS

0

10

20

30

40

50

60

0 500 1000 1500 2000
Time (1/8 min)

Ba
y

nu
m

be
r

LS
WS

Figure 16. Graph of Two ASCs Performing in a Block with 60 Bays and 22%

Fullness.

Apparently there are some long time periods where one of the two ASCs

remains idle at its transfer point. The reasons for this are:

a) We have no information about the future workload and cannot
identify house-keeping jobs that reduce future reshufflings.

b) An ASC finishes its assigned jobs earlier than the other ASC
because it has less workload to satisfy. This ASC remains idle
because we assume that the information of a new batch of
container that needs scheduling in both sides of the block arrives
when both ASCs finish their scheduled jobs.

c) A sufficient security distance is required when an ASC enters to the
opposite working area.

d) An ASC is loading or unloading a container the transfer point.
4. Algorithm Running Time
We report (Table 3) the run times of the ILPs in different types of blocks.

46

ASCs Bay Block
fullness

Aver.
total
time
(sec)

Min
total
time
(sec)

Max
total
time
(sec)

Aver.
time
per

batch

Max
time
(sec)

Aver.
time
per

batch

Max
time
(sec)

1 20 22% 10.50 4 20 <1 2 <1 2
1 60 22% 51.50 38 75 <1 2 <2 4
1 20 66% 13.81 4 29 <1 2 <1 2
2 20 22% 28.50 5 57 <1 2 <1 2
2 60 22% 156.31 40 499 <1 2 <2 4
2 20 66% 41.56 7 111 <1 2 <1 2

2nd Step 1st Step

Table 3. Run Time of the Algorithms

The 1st and 2nd step columns describe the time CPLEX uses to solve the

ILPs and not any preprocessing computation. The results show that the average

time to solve the ILP in the first step is always less than one second and in the

second step is always less than two seconds. The total time includes the time

that GAMS needs to generate the ILP, preprocess the data, solve the problem

and produce the output. This time increases as the number of bays increases

mostly because the number of possible stacking positions in step 2 also

increases and more calculations need to be made. This generation time could

be significantly reduced by writing a custom generator that is compiled in place of

the interpreted GAMS code.

47

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

VI. CONCLUSIONS

This thesis is the first to develop Integer Linear Programs (ILPs) to

prescribe routes for one and two equal sized Automated Stacking Cranes (ASCs)

in a single block working with straddle carriers to load and unload containers.

We compare the performance of one and two ASCs working in blocks with

different characteristics during a four-hour period. Using real world data, we find

that the length and the fullness of the block significantly affect the performance of

one ASC. For two ASCs, only the length of the block influences performance.

We also find that the performance of the two ASCs is dependent on the number

of times that an ASC enters to the opposite working area. As a general

conclusion, two ASCs outperform one ASC in all our test cases.

In addition to ASCs studied in this thesis, there are other carriers and yard

cranes currently used for transporting and stacking containers. Future work

should consider extending results from this thesis to blocks that use other

equipment. Additionally, the characteristics of a block in the performance of one

or two yard cranes could be further investigated to gain insight into various port

stacking policies.

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

LIST OF REFERENCES

Aston, A., Arndt, M., and Zellner, W., 2005, “Choked Ports, Pricier Products,”
http://www.businessweek.com/magazine/content/05_19/b3932126.htm - check of
address: December 01, 2005.

Ayik, M., 2005, Personal conversation with Dr. M. Ayik, Advanced Applications
Manager, May 2005, Navis Llc.

Ceres Paragon, 2005, http://www.ceresglobal.nl/resourcecenter/photos.asp -
check of address: December 01, 2005.

Eisenberg, R., Stahlbock, R., Vob, S., and Steenken, D., 2003, “Sequencing and
scheduling of movements in an automated container yard using double rail-
mounted gantry cranes,” Working paper. University of Hamburg.

Foxcroft, A., 2002, “Balancing the Books,” Containerisation, Vol. 35, pp. 45-47.

GAMS, 2005, http://www.gams.com - check of address: December 01, 2005.

Gottwald Port Technologies, 2005, http://www.gottwald.com/start.htm - check of
address: December 01, 2005.

Henesey, E., 2004, “Enhancing Container Terminal Performance: A Multi Agent
Systems Approach,” PhD in Systems and Software Engineering, Blekinge
Institute of Technology, Sweden, http://www.ipd.bth.se/lhe/Lic.pdf - check of
address: December 01, 2005.

ILOG, 2003, CPLEX 9.0, ILOG Inc., Mountain View, California.

Ioannou, A., Kosmatopoulos, B., Vukadinovic, K., Liu, I., Pourmohammadi, H.,
and Dougherty, E., 2000, “Real time testing and verification of loading and
unloading algorithms using Grid Rail (GR),” Final report for Center for Advanced
Transportation Technologies. University of Southern California.

Kalmar Industries, 2005, http://www.kalmarind.com - check of address:
December 01, 2005.

Kim, H. and Kim, Y., 1997, “A routing algorithm for a single transfer crane to load
export containers onto containership,” Computers & Industrial Engineering, Vol.
33, pp. 673-676.

Kim, H. and Kim, Y., 1999, “An optimal routing algorithm for a transfer crane in
port container terminals,” Transportation Science, Vol. 33, pp. 17-33.

52

Kozan, E. and Preston, P., 1999, “Genetic algorithm to schedule container
transfers at multimodal terminals,” International Transactions in Operational
Research, Vol. 6, pp. 311-329.

Lin, W., 2000, “On dynamic crane deployment in container terminals,” MS of
philosophy in industrial engineering and engineering management, Hong Kong
University of Science and Technology,
http://www.isye.gatech.edu/linq/mthesis.pdf - check of address: December 01,
2005.

Linn, R., Liu, J., Wan, Y., Zhang, C., and Murty, K., 2003, “Rubber tired gantry
crane deployment for container yard operation,” Computers & Industrial
Engineering, Vol. 45, pp. 429-442.

SPARCS Terminal Operation System – User’s Manual, 2004, Version 3.4, Navis
LLC.

Stenken, D., Vob S., and Stahlbock R., 2004, “Container terminal operation and
operations research-a classification and literature review,” OR Spectrum, Vol. 26,
pp. 3-49.

Volk B., 2002, “Growth factors in container shipping,” Australian Maritime
College, http://maritimebusiness.amc.edu.au/papers/AMC3_GRO.pdf - check of
address: December 01, 2005.

Zhang, C., Wan, Y., Liu, J., and Linn, R., 2002, “Dynamic crane deployment in
container storage yards,” Transportation Research, Vol. B 36, pp. 537-555.

53

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. NAVIS LLC
Oakland, California

4. Associated Professor Robert Dell
Department of Operations Research
Naval Postgraduate School
Monterey, California

5. Research Assistant Professor Johannes O. Royset
Department of Operations Research
Naval Postgraduate School
Monterey, California

6. Captain Ioannis Zyngiridis
Command and General Staff College
Thessaloniki, Hellas

	I. INTRODUCTION
	A. BACKGROUND
	Overview of Container Transshipment
	Container Description
	Container Handling in a Port

	B. OBJECTIVES

	II. OTHER CRANE SCHEDULING PROBLEMS
	III. SCHEDULING ONE ASC
	A. INTRODUCTION
	B. PROCEDURAL OVERVIEW
	C. STEP 1 FORMULATION.
	1. Indices
	2. Sets
	3. Scalars
	4. Parameters
	5. Binary Variables
	6. Continuous Variables
	7. Objective Function
	8. Constraints
	9. Objective Function and Constraint Description
	10. Additional Data
	11. Data Preprocess

	D. STEP 2 FORMULATION
	1. Sets
	2. Parameters
	3. Decision Variables
	4. Objective
	5. Constraints
	6. Objective Function and Constraint Description
	7. Data Preprocess

	E. STEP 3

	IV. SCHEDULING TWO ASCS
	A. INTRODUCTION
	B. PROCEDURAL OVERVIEW
	C. STEP 1 FORMULATION.
	1. Indices
	2. Sets
	3. Scalars
	4. Binary Variables
	5. Continuous Variables
	6. Objective Function
	7. Constraints
	8. Objective Function and Constraint Description

	B. STEP 2 FORMULATION
	1. Sets
	2. Decision Variables
	3. Objective
	4. Constraints
	5. Objective Function and Constraint Description

	C. STEP 3

	V. COMPUTATIONAL STUDY
	A. OBJECTIVE
	B. DESCRIPTION
	C. ASSUMPTIONS
	D. RESULTS
	1. Bay Size Factor
	2. Number of Containers
	3. Two ASCs Route Graphs
	4. Algorithm Running Time

	VI. CONCLUSIONS
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

