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ABSTRACT 
 
 
 

The FAst THeater Model (FATHM) is a joint theater-level attrition model that 

combines a Lanchester ground combat model with a linear program, hereafter the Air 

model, that determines the optimal allocation of air strikes against ground forces.  

FATHM models time phased ground battles between two forces BLUE and RED, and 

calls the Air model based on the outcomes of the most recent ground battle, assuming 

BLUE air supremacy.  This thesis develops an enhanced Air model that endows RED 

with the ability to actively prepare for BLUE air attacks by deploying dummy targets and 

anti-aircraft artillery as two augmenting defense plans with the goal to more realistically 

reduce BLUE effectiveness in killing RED targets and simultaneously increase attrition 

to attacking BLUE aircraft.  This Air model is a mixed integer program (MIP), a 

defender-attacker model, with RED as the defender and BLUE as the attacker.  The MIP 

is a cost- and resource-interdicted model, combining interdiction-induced costs with 

restrictions on resources for some constraints.  This new defender-attacker model 

provides an optimal defense plan by RED in anticipation of optimized BLUE air attacks 

without changing FATHM’s basic concept or structure.  We demonstrate defensive 

actions by RED that can significantly reduce the BLUE attacker’s effectiveness. 
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EXECUTIVE SUMMARY 
 
 
 

The FAst THeater Model (FATHM) is a joint theater level attrition model that 

combines ground combat between two forces, BLUE and RED, with air strikes by BLUE 

aircraft on RED ground targets.  FATHM conducts a war in phases.  Each phase divides 

into three-day time periods.  For each time period, FATHM fights many battles on the 

ground (typically ten per day, or thirty in three days) and calls the air-to-ground model, 

hereafter the Air model, a large linear program that determines the optimal allocation of 

BLUE air strikes against RED ground forces based on the outcome of the most recent 

ground battles.  The linear program prioritizes sorties against RED ground platforms with 

high value that are most successful in killing BLUE ground forces.  FATHM assumes 

BLUE air supremacy and does not model RED air force, air combat and air defense.  

Prior to this thesis, defensive preparations by RED in anticipation of BLUE air strikes 

have not been represented. 

We develop a defender-attacker model as an enhanced Air model, with RED as 

the defender and BLUE as the attacker.  We endow RED with the ability to actively 

prepare for BLUE air attacks.  We formulate a mixed integer program that expresses the 

situation where RED must lead with its preparations, and then BLUE attacks having seen 

these preparations.  RED goals are to reduce BLUE effectiveness in killing RED target 

value and simultaneously increase attrition to attacking BLUE aircraft.  BLUE as the 

attacker has to pay penalties, increased cost and effort, for attacking RED’s defense.  We 

call our enhanced optimization model a cost- and resource-interdicted model.   

BLUE’s main objective is to maximize target value destroyed by killing as many 

targets with high target value as possible.  Simultaneously, BLUE wants to minimize its 

own casualties, minimize deficiencies in achieving kill goals for target classes, and 

minimize deviations from goals to equitably use Air Force, Marine, Navy, and allied air 

force components.  RED’s objectives are the reverse of BLUE’s.   

The main RED defense plan we model is the use of dummy targets.  Given these 

dummy operations, the attacker has to increase the number of sorties to achieve the same 

effectiveness.  If BLUE still chooses to attack the target, a penalty in the form of a 



 xvi

reduced effectiveness is incurred.  The number of available dummy targets for specific 

target types is limited, as is the number of dummy operations (setting up or building 

dummy targets, limited by factors like material, personnel and time). 

Our second plan represents enhanced air defense for specific targets by 

augmenting anti-aircraft artillery with the purpose of enhancing tactical air defense, and 

countering BLUE’s second objective to minimize its own losses.  Attrition increases for 

every platform that attacks a protected and actively defended target.  If BLUE still attacks 

that target, a penalty in the form of higher losses of aircraft is incurred. 

We implement our model using GAMS (General Algebraic Modeling System) 

and solve for both RED’s optimal defense and BLUE’s optimal attack plan using the 

input data for the first time period of a FATHM war.  We also solve the legacy (one-

sided) Air model and compare results.  We analyze the effects of both defense plans on 

the objective: the attacker’s effectiveness in killing RED target value. 

Our results show that RED dummy operations have the most significant impact on 

BLUE effectiveness in killing RED target value.  RED concentrates its efforts on 

prioritized target classes.  Even a few dummy targets result in a large increase in our 

objective function incurred by interdiction-induced cost for BLUE attacks.  Our model 

achieves significant reductions of the number of killed targets by deploying dummy 

operations and increases BLUE’s underachievement of preset kill goals.  We also see that 

the presence of dummies increases the number of BLUE attacks.  This increase in the 

number of sorties affects BLUE capacity goals, stressing some BLUE components.  

BLUE also suffers higher casualties because more aircraft are shot down by RED.  The 

number of weapons used and hours flown by BLUE aircraft increase proportionately with 

the number of BLUE attacks.  BLUE effectiveness in killing RED target value is reduced 

by more than 30% when RED deploys a sufficient number of dummies (about one 

dummy target for every two real targets) for the prioritized target class. 

Our defender-attacker model achieves the intended objective of reducing BLUE 

effectiveness by increasing his efforts in launching air strikes against RED’s defense.  

Dummy operations turn out to have the most significant effect when comparing the two 

augmenting plans. 



 xvii

Based on our results, we propose the defender-attacker model as an enhanced Air 

model within FATHM that more realistically represents what an intelligent RED 

adversary would do in combat. 
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I. THE FAST THEATER MODEL FATHM  

The FAst THeater Model (FATHM) [Brown and Washburn 2005], a large-scale, 

aggregated joint theater level attrition model, combines a two-sided Lanchester ground 

combat between two forces, BLUE and RED, with air strikes by BLUE aircraft on RED 

ground targets.  FATHM conducts a war in phases.  Each phase divides into three-day 

time periods.  A war phase completes either by achieving specific levels of targets killed 

in target classes or by reaching a limiting phase duration.  Each time period, FATHM 

fights many battles on the ground and calls the air-to-ground model, a linear program that 

determines the optimal allocation of BLUE air strikes against RED ground forces based 

on the outcome of the most recent ground battles.  The linear program prioritizes air 

attacks against ground platforms that are most successful in killing BLUE ground forces. 

FATHM does not model RED air force and air combat, air defense or other counter 

measures. 

This thesis proposes a defender-attacker model [e.g., Brown, Carlyle, Salmeron 

and Wood 2005] as an enhanced air-to-ground model, with RED as the defender and 

BLUE as the attacker.  We endow RED with the ability to actively anticipate BLUE air 

attacks, and to employ dummy targets as well as anti-aircraft artillery with the goals of 

reducing BLUE’s effectiveness in killing selected targets and simultaneously increasing 

attrition to attacking aircraft.  Understanding RED’s defense preparations as a frustration 

of BLUE’s attacks, we describe our model as a cost- and resource-interdicted model. 

 

A. BACKGROUND – THE FAST THEATER MODEL  
FATHM models the ground-to-ground battle as a Lanchester fire exchange model 

that uses attrition rates computed by the Army’s COmbat SAmple GEnerator (COSAGE) 

model [Jones, 1995].  COSAGE’s killer-victim scoreboards provide the input to FATHM 

for each phase of the modeled war to obtain appropriate Lanchester coefficients for the 

modeled aimed (direct) and un-aimed (indirect) fire.   

FATHM’s air-to-ground model, hereafter the Air model, is a large linear program 

that is called each time period after the ground battles have been fought.  It determines an 
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optimized set of BLUE air strikes, similar to the Air Force’s Conventional Forces 

Assessment Model (CFAM) [e.g., Brown and Washburn 2005].  The Air model uses the 

same kind of data CFAM uses.  Dynamic target values, derived from the status of the 

preceding ground battles, drive the optimization to maximize the target value destroyed.  

The target value reflects the performance of RED platforms, the targets in the Air model, 

in killing BLUE platforms on the ground. 

 

B. KEY FEATURES AS A JOINT COMBAT MODEL 
FATHM fuses two separate types of combat models, a ground combat model and 

an Air model.  FATHM calls the Air model after the ground battles of each time period to 

perform optimal air strikes based on the progress of the battle on the ground.  

Management of data describing the state of ground and air action of the two opposing 

forces becomes vital in this joint combat model.  The outputs of the two models have to 

provide the needed information for appropriate time period updates. 

These updates include crucial logistical data and performance parameters for both 

sides.  Logistic computations combine the results of both, ground battle and air assets, 

and consider pre-scheduled reinforcements for both sides, regeneration of destroyed or 

damaged targets.  Performance parameters that are subject to learning with ongoing battle 

duration, attrition to BLUE aircraft and kill expectations by those, are recalculated. 

The following diagram shows FATHM’s basic structure.  The only possibility for 

human interaction with the model is in the initialization phase. 



 Start

Initialize forces, phase, clock

Digest new COSAGE board,
advance phase

Fight ground battle (30 mini-
battles), find target values

Fight air battle

Do logistic computations,
advance clock

Stop

War
over?

Phase
over?

yes

no

yes

no

 

Figure 1.   Basic Flow Diagram for FATHM [from Brown and Washburn 2005] 

 

Based on the logistic calculations, FATHM computes a dynamic value after each 

ground battle for each RED ground platform that reflects its performance in killing 

BLUE ground platforms.  This dynamic value represents the target value (see Figure 1) 

from BLUE’s perspective and is the most significant parameter provided to the Air 

model.  It allows prioritizing the RED ground targets for the next air-to-ground 

engagement.  The dynamic target value is the linking parameter between ground battles 

and air strikes. 

 

C. THE IDEA OF AN ENHANCED AIR MODEL 
FATHM assumes BLUE air supremacy.  Therefore, the Air model only considers 

platforms that are directly involved in an air attack:  the attacked RED ground platforms 

and the attacking BLUE aircraft.  RED’s air defenses and their suppression, air combat 

and electronic counter measures are not modeled, but rather are assumed to be static  

exogenous conditions that may lead to attrition of BLUE aircraft.  Possible anticipation 

3 
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by RED of BLUE’s air-to-ground attacks and use of this to program defensive actions are 

not represented. 

FATHM’s Air model determines the optimal allocation of air strikes by BLUE 

aircraft on RED ground systems with respect to 

• assigned RED target values 

• attrition of BLUE platforms 

• BLUE kill goals and 

• efforts of the services 

in a variety of conditions and subject to limiting resources.  The objective function 

evaluates aircraft sorties in an attempt to simultaneously kill targets, avoid attrition and 

equalize the efforts among the involved services, and to end a war phase as soon as 

possible by quickly achieving preset phase goals.   

This thesis presents a defender-attacker model that solves at once for an optimal 

defense plan by RED against anticipated optimal BLUE air attacks without changing 

FATHM’s basic concept and structure, and by maintaining the basic objectives of the 

existing Air model.  We call the enhanced optimization model a cost- and resource-

interdicted model, combining a cost interdiction model [e.g., Brown, Carlyle, Salmeron 

and Wood 2005] with changes on the resources governing constraints.  We give RED the 

ability to prepare to frustrate BLUE air attacks with tactically reasonable counter 

measures.  In FATHM, RED wants to reduce the number of targets killed and to increase 

the number of BLUE platforms lost.  In this way, BLUE has to pay a penalty, increased 

cost and effort, if attacking any given target hardened by RED defensive measures. 



II. FATHM’S UNIQUENESS: JOINING GROUND COMBAT 
WITH OPTIMIZED AIR STRIKES 

A. OPTIMIZATION WITHIN A DYNAMIC COMBAT MODEL 
The Air model, the optimization model within FATHM, allocates air strikes 

against RED ground forces involved in the preceding ground battle.  The data are either 

static, direct input by the planner, or dynamic, computed by FATHM at the end of ground 

battles in each time period.  Dynamic data, in particular the target values of RED ground 

platforms, is most significant.  Because FATHM computes these dynamic target values 

based on the result of the most-recent ground battles, the Air model directly supports the 

ground model.  FATHM can provide optimal planning guidance for decision makers 

concerned with theater level combat such as joint staffs and commanders. 

 

B. THE AIR MODEL 
The Air model is a large linear program that combines and balances objectives of 

air models commonly used by the U.S. Air Force for decades to maximize target value 

destroyed and minimize losses of BLUE aircraft [e.g., Yost 1996].   

Original FATHM (see the Appendix) features passenger variables TGTKILLSk, 

PLTSLOSTp, HRSUSEDpw, WEPUSEDm and SVCCAPs that are each functions of Xapmklw.  

We replace these variables by their defining functions and reformulate the model so that 

our intended RED frustrations can be recognized more easily.  For consistency, we 

maintain as much of the original notation as possible. 

 

1. Subscripts and Sets 

s S∈   set of services 

p P∈   set of aircraft platforms 

sP   partition of P, s S∈  

m M∈  set of weapon types 

k K∈   set of target types 

5 



a A∈   set of attack profiles 

l L∈   set of loadouts 

w W∈   set of weather states 

j J∈   set of target classes 

jk K∈   subset of target types k referenced in target class j 

 

2. Data [units] 

kmxtargk  upper bound on target type k kills (the number available) [targets] 

kkvalue  target value for each target of type k [value/target] 

pmxplats  upper bound on aircraft platforms type of p 

pwmxhours  upper bound on aircraft type p hours used in weather state w 

[hours] 

kpwused  hours required for an attack on target k by aircraft p in weather w 

[hours] 

mmxwepns  upper bound on weapon type m use [weapons] 

pcap  capacity of aircraft p (used only in service equity computations) 

[value/platform] 

λ   multiplier for attrition in objective function 

apmklwe   expected kills per sortie of attack profile a, aircraft p, weapon m 

  on target k with loadout l in weather w [targets/attack] 

apmklwatt  expected attrition per sortie as above [platforms/attack] 

apmklwc   weapons used per sortie as above [weapons/attack] 

, jj
jgoal jgoal lower and upper goals for kills of target class j [targets] 

6 



, jj
jpen jpen  lower and upper penalties for violating kill goals for target class j 

[value/target] 

, ss
sgoal sgoal  lower and upper goals for capacity used by service s [capacity] 

, ss
spen spen  lower and upper penalties for violating capacity goals for service s 

[value/capacity] 

 

3. Variables (all nonnegative) 
Variable 

apmklwX  attacks in attack profile a with platform p, weapon m and loadout l 

on target k in weather w [attacks] 

 

Deficiency Variables 

, ,j jUNDERKILLS MIDKILLS OVERKILLS j  

under, slack, and over-kills with respect to kill goals of target 

class j [targets] 

, ,s s sUNDERCAP MIDCAP OVERCAP   

under, slack, and over-achievement with respect to service s goals 

[capacities] 

 

4. Formulation 
The objective balances the efforts between killing target value, avoiding attrition 

to BLUE aircraft, achieving kill goals of target classes critical to the current war phase 

and equitably stressing the BLUE air services. 

Minimize  

 

k apmklw apmklw
apmklw

kvalue e X− ∑

p apmklw apmklw
apmklw

cap att Xλ+ ∑
7 



( )j j j
j

jjpen UNDERKILLS jpen OVERKILLS+ +∑  

( )s s s
s

spen UNDERCAP spen OVERCAP+ +∑ s

k

 

The numbers of targets killed, linear functions of the numbers of attacks Xapmklw 

assigned, are subject to not killing more targets than exist.  The constraints on the number 

of platforms lost, hours and weapons used are similar. 

k

apmklw apmklw k
apmlw

TGTKILLS
e X mxtargk≤ ∀∑  

p

apmklw apmklw p
amklw

PLTSLOST

att X mxplats p≤ ∀∑  

pw

kpw apmklw pw
amkl

HRSUSED

used X mxhours pw≤ ∀∑  

m

apmklw apmklw m
apklw

WEPUSED
c X mxwepns m≤ ∀∑  

For each target class j, upper and lower soft goals mark the desired range of the 

number of targets to kill in that class. 

Kill goals JGOALj

j

apmklw apmklw j j j j
apmk K lw

j j j

e X UNDERKILLS MIDKILLS OVERKILLS jgoal j

MIDKILLS jgoal jgoal j

∈

+ + − =

≤ −

∑ ∀

∀

Similarly, for each service capacity, there are lower and upper soft goals in order to avoid 

overstressing the respective BLUE air service components.  The service capacity 

SVCCAPs is a linear function of HRSUSEDpw, which itself is a linear function of the 

number of sorties Xapmklw.   
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Service goals SGOALs

s

p kpw apmklw s s s s
ap P mklw

s s s

cap used X UNDERCAP MIDCAP OVERCAP sgoal s

MIDCAP sgoal sgoal s

∈

+ + − =

≤ −

∑ ∀

∀

 

All variables are nonnegative. 

0

, , 0

, , 0

apmklw

j j j

s s s

X apmklw

UNDERKILLS MIDKILLS OVERKILLS j

UNDERCAP MIDCAP OVERCAP s

≥ ∀

≥ ∀

≥ ∀

 

 

The possible combinations of aircraft, weapons and loadout, attack profiles on 

specific targets in different weather states are summarized in a catalog of system specific 

missions.  These missions are pre-determined static input data missionnapmklw provided by 

the planner.  The index n herein represents mission number, an identifier.  missionnapmklw 

not only ensures realistic attack configurations, it also restricts the number of variables in 

the linear program for mission n. 

9 
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III. THE DEFENDER – ATTACKER FATHM 

A. ENHANCEMENT TO A TWO-SIDED DEFENDER-ATTACKER MODEL 

Building upon the existing Air model, we have identified two possible RED 

preparations in anticipation of BLUE’s attack intentions.  BLUE’s main objective is to 

maximize target value destroyed by killing as many targets with high target values as 

possible.  Simultaneously, BLUE wants to minimize its own losses. 

We employ the basic concept of an intelligent attacker and defender, and 

sequential actions by each side [e.g., Brown, Carlyle, Salmeron and Wood 2005].  We 

classify our model as a defender-attacker model with target value destroyed as the more 

critical component for both opponents.  We seek an optimal defense plan with limited 

resources.  Two clearly distinguishable and separate preparations may augment RED’s 

defense plan. 

The main plan, hereafter plan Yk, represents dummy operations taken by RED in 

order to reduce the effectiveness of the launched attacks against target k by setting up, if 

available, or building dummy targets (Figure 2).  Given that these dummy targets are 

indistinguishable from the real target, the BLUE attacker has to increase sorties to 

achieve the same effectiveness on real targets.   



 

Figure 2.   Illustration of an attack without and with defense plan Yk (dummy targets) 

Dummy targets, indistinguishable from real ones, complicate BLUE’s attacks by 
requiring more of them. 
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Yk is subject to limited resources: the number of available dummy targets for 

specific target types k and the number of dummy operations (setting up or building 

dummy targets) that that are limited by factors like material, personnel, units and time. 

Our second plan, hereafter plan Zk, represents an enhanced air defense plan for 

specific targets by augmenting anti-aircraft artillery (hereafter AAA) in order to enhance 

tactical air defense in anticipation of the attacker’s plan (Figure 3).  The plan Zk counters 

BLUE’s second objective to minimize own losses.  Zk is intended to increase attrition to 

every BLUE platform that attacks the protected or actively defended RED target k.  If 

BLUE still attacks a protected target, a penalty in the form of higher attrition and 

consequently higher losses of aircraft is incurred. 
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Figure 3.   Illustration of attrition without and with defense plan Zk  

An aircraft attacking a target with enhanced defenses suffers increased attrition. 

 

Besides AAA, FATHM also models surface-to-air missile systems (SAM).  The 

missile air defense is in control and command at a division or higher echelon.  They build 

the air defense umbrella for the entire area of operation.  AAA units are transferred to the 

fighting mechanized regiments to provide close air defense support to the frontline 

armored and infantry battalions [e.g., Russia/Soviet Special Weapons Agencies 2005 and 

Russia Military Guide 2005]. 

We characterize our defender-attacker model as a cost- and resource interdicted 

model with BLUE as the attacker and RED as the defender.  With the target value 

destroyed, based on the dynamic target values, as the most critical component in the 

attack plan, we solve for an optimal defense plan with the components Yk and Zk as the 

augmenting plans.  We introduce binary variables Yk and Zk, whose values represent the 

optimal preparation for the attack subject to limited resources or decisions to interdict 

attacks against specific targets k.  Fixing the binary variables to their optimal values, we 

solve for an optimal attack plan with a linear program in order to determine an optimal 



strategy for BLUE given RED optimal defense.  We expect the strategy to change 

compared to the non-interdicted battle. 

The objective of our defender-attacker model remains the same for BLUE as the 

attacker, to balance efforts in killing target value destroyed, avoiding casualties, and 

achieving kill goals and capacity goals for the services, but now includes the defender’s 

optimal preparations.  In terms of objective function values, BLUE seeks the minimum, 

whereas RED seeks to maximize BLUE’s optimal solution. 

Our defender-attacker model objective is: 

,Y Z
Maximize

X
Minimize  ( )k apmklw k apmklw

apmklw

kvalue e penaltyY Y X− −∑  

( )p apmklw k apmklw
apmklw

cap att penaltyZ Z Xλ+ +∑  

( )j jjj
j

jpen UNDERKILLS jpen OVERKILLS+ +∑  

( )s sss
s

spen UNDERCAP spen OVERCAP+ + +∑
 

 

B. ASSUMPTIONS 
The basic assumption is transparency.  In order to solve for an optimal defense 

plan against anticipated BLUE attacks, RED requires knowledge of the underlying data, 

including the most critical factor, the target value for each RED ground platform.  Once 

the optimal defense plan is obtained, it is the crucial input for the model to solve again for 

an optimal, but changed attack plan, given RED defense. 

We introduce additional data and parameters.  Our intention for this thesis is 

either to treat these data as static, not subject to changes, or dynamic, derived as functions 

of FATHM’s original dynamic input data.  This enables our model to perform the same 

updates with our new data that FATHM performs with the original data at the end of the 

last ground battle in each time period. 

We maintain the basic concept of FATHM’s original Air model for the choice of 

RED targets by BLUE.  The dynamic target values in combination with preset kill goals 

determine BLUE’s target selection. 
14 
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We assume RED dummy targets to be indistinguishable from real RED targets.  

In other words, they have the same kill probability and thus expected number of kills per 

BLUE sortie as real targets, e.g., eapmklw. 

FATHM has no direct concept of geographic position of targets.  So we are not 

able to position AAA to protect specific geographic positions.  We assume the average 

attrition of all available AAA against each platform p (see aap defined below), as the 

measure of the augmented air defense capability when Zk is deployed for air defense of 

specific targets k. 

 

C. ADDITIONAL SETS, DATA AND DECISION VARIABLES 
The formulation of our defender-attacker model requires the introduction of 

additional sets, data and decision variables. 

 

1. Subscripts and Sets 

k ∈ KAAA subset of target types k that are AAA 

 

2. Data 
We first introduce the additional data needed to initialize the state for every new 

time period. 

mxdumkk upper bound on dummy target type k kills (the number 

available) 

dumops upper bound on dummy operations Yk

aaops upper bound on AAA enhancements Zk 

 

All the following are dynamic data and computed by our model as functions of 

FATHM’s original input data.   

edecapmklw expected reduction of eapmklw, if defense plan Yk is 

deployed; penalty in the objective function 



aap average attrition by AAA k ∈ KAAA to platform p, for all 

attack configurations a,m,l,w; 

1
AAA

AAA

apmklw
amk K lw

p

amk K lw

att
aa p∈

∈

= ∀
∑
∑

 

aaaapmklw additional attrition by augmented AAA to platform p with 

loadout l and weapon m in attack profile a and weather 

state w attacking actively defended target type k, if defense 

plan Zk is active; penalty in the objective function 

 

3. Variables (all binary) 
To represent RED defense plans as discussed in Chapter II, we introduce the 

binary variables 

Yk 1, if RED sets up dummy targets for target type k,  

0 otherwise, 

Zk 1, if RED augments AAA to enhance air defense 

capabilities for target k, 0 otherwise. 

 

4. Data Pre-processing 

In a first step, we analyze simple scenarios in order to derive appropriate 

expressions for our additional data.  In a second step, we transfer the results to parameters 

with the full set of indices in order to be able to pre-compute the dynamic data our 

defender-attacker model requires as additional input. 
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a. Defense Plan Yk – Dummy Targets 
Defense plan Yk, setting up dummy targets for specific target types k, has 

the purpose to reduce BLUE’s effectiveness against these targets.  Without RED 

defensive actions Yk, all sorties launched by BLUE are directed against real targets, which 

results in killing real targets only.  Given that dummy targets are deployed, the total 

number of BLUE attacks against RED targets divides into a proportion against real 

targets and a proportion against dummy targets.   

We consider the case that the attacker is able to kill all targets.  We 

assume (without indices) 

e = 0.5  (interpretation: need two attacks to kill a target) 

mxtargk = 10 

mxdumk = 10 

kvaluek = 1. 

For a non-interdicted attack, Y = 0, the number of attacks needed to kill all 

targets is 10 20.
0.5

mxtargkX
e

= = =  This solution has an objective function value of  

. 1  0.5  20 = 10value kvaluek e X= ⋅ ⋅ = ⋅ ⋅

Given a defense plan Y = 1, the number of attacks needed to kill all (real) 

targets becomes 10 10 20 20 40.
0.5 0.5

mxtargk mxdumkX
e e

= + = + = + =   With 

mxtargkk = mxdumkk, BLUE has to launch twice as many sorties in order to kill all real 

targets. Half of the attacks are directed against real targets, the other half against 

indistinguishable dummies.  Because the objective function measures target value 

destroyed, its value has to remain the same and calculates as  

, where  is the reduced effectiveness 

caused by defense plan Y.  We derive an expression for  as  

    X = 1 ' 30 10value kvaluek e' e= ⋅ ⋅ ⋅ ⋅ = e'

e'

| 0 20' 0.5
| 1 40

X Ye e
X Y

=
= =

=
1
4

=   

or, using the declared parameters  
17 



'

mxtargk
ee e mxtargk mxdumk

e e

=
+

 which is equivalent to  

' mxtargke e
mxtargk mxdumk

=
+

. 

For the objective function in our defender-attacker model, we want this 

reduction to be the penalty that is incurred, if BLUE attacks the selected target.  We set 

 and obtain the reduction in effectiveness, the desired penalty, as  'e e ede= − c

' 1 k

k k

mxtargkedec e e e
mxtargk mxdumk

⎛ ⎞
= − = −⎜ ⎟+⎝ ⎠

 or equivalently  

mxdumkedec e
mxtargk mxdumk

=
+

. 

We can now formulate the objective function with the full set of indices as 

( )
...

where .

k apmklw apmklw k apmklw
apmklw

k
apmklw apmklw

k k

Minimize kvalue e edec Y X

mxdumkedec e
mxtargk mxdumk

− −

=
+

∑
 

When dummies are deployed by Yk, k

k k

mxdumk
mxtargk mxdumk+

 computes the 

proportion of attacks that are directed against dummies.   

Modeling defensive actions Yk, the number of real targets killed is 

( )apmklw apmklw k apmklw
apmlw

e edec Y X− ∀∑ k . 

 

The number of dummy kills is 

.apmklw k apmklw
apmlw

edec Y X k∀∑  
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To prevent killing more targets than exist on the battlefield, we include the 

constraint 

19 

k.apmklw apmklw k k k
apmlw

e X mxtargk mxdumk Y≤ + ∀∑  

 

The physical increase of the total number of targets available by dummy 

operations Yk also affects BLUE’s desired soft goals for the number of targets killed for 

each target class j.  For each of these target classes there are lower and upper goals, 

jjgoal and jjgoal  respectively.  These goals now have to include the number of dummy 

targets that have to be killed in order to achieve the jgoal, if Yk = 1. 

In this case, the goals become 

and

j

j

j

j

j
j j k k

k Kk
k K

j
j j k k

k Kk
k K

jgoal
jgoal jgoal mxdumk Y j

mxtargk

jgoal
jgoal jgoal mxdumk Y j

mxtargk

∈
∈

∈
∈

⇐ +

⇐ +

∑∑

∑∑

∀

∀

 

where 

j

j

k
k K

jgoal

mxtargk
∈
∑

 and 

j

j

k
k K

jgoal
mxtargk

∈
∑

 equal the relative soft goal hj for 

the number of targets killed for each target class j in each war phase h.  (hj * 100) is the 

kill goal in percent for each target class j relative to the maximum number of targets 

available in that class, which equals the sum of all targets k∈Kj, 
j

k
k K

mxtargk
∈
∑ . 



The expressions for the soft goals can be simplified to 

and
j

j

j j j k k
k K

j j j k k
k K

jgoal jgoal h mxdumk Y j

jgoal jgoal h mxdumk Y j

∈

∈

⇐ +

⇐ +

∀

∀

∑

∑
 

The  constraint set in our defender-attacker model is: jJGOAL

j

j

apmklw apmklw j j j
apmk K lw

j k kj
k K

j j j

e X UNDERKILLS MIDKILLS OVERKILLS

jgoal h mxdumk Y j

MIDKILLS jgoal jgoal j

∈

∈

+ + −

= + ∀

≤ −

∑

∑

∀

 

The number of dummy operations deployed by Yk is limited by RED’s 

respective resources and represented in our model by dumops: 

k
k

Y dumops≤∑ . 

 

b. Defense Plan Zk – Dynamic Air Defense 
Defense plan Zk augments AAA to better protect high value targets from 

BLUE air strikes and has the purpose to increase BLUE losses when attacking these 

targets.  We define this increase of attrition as aaaapmklw, the penalty that is incurred if 

BLUE aircraft p attack targets k with weapons m and loadout l in attack profile a and 

weather w.  We require Zk = 0 for k ∈ KAAA, because our goal is to enhance the air defense 

capability of RED platforms without organic air defense weapons that are more 

vulnerable against BLUE aircraft, i.e., artillery, tanks, armored personnel carriers and 

infantry fighting vehiles.  Following our main assumption regarding FATHM’s spatial 

management of platforms, we set apmklw paaa aa= .  Every BLUE attack will suffer the 

additional average attrition by RED AAA. 
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Consider the following example: 

att = 0.1 (interpretation: loss of 1 platform when BLUE launches 10 

attacks); 

aaa = 0.5 (interpretation: loss of 1 platform when BLUE launches 2 

attacks); 

mxplats = 10; 

Without defense plan Z, Z = 0, BLUE loses all platforms, if launching 

10 100
0.1

mxplats
att

= =  sorties.  The augmentation of AAA, Z = 1 and 

( ) ( )0.1 0.5 10att aaa X X+ = + =  yields 10 16.667
0.6

X = = .  RED performs six times 

better with active defense of a selected target.  BLUE’s objective to minimize own losses 

discourages sorties against AAA protected targets. 

We formulate the respective part of the objective function  

( )
...

...

p apmklw apmklw k apmklw
apmklw

Minimize

cap att aaa Z Xλ +∑ . 

Because we do not physically change resources, i.e., aircraft available 

mxplatsp, and overall losses are small compared to these limits, the penalized objective 

function fully captures the effect of the defense Zk and no modification of constraints is 

required. 

The number of AAA augmentations by Zk, represented by aaops, is limited 

by the availability of RED AAA: 

k
k

Z aaops≤∑ . 
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We assume that RED wants to actively defend as many targets k as 

possible with its given resources.  So we only allow one defensive operation at a time for 

one target k: 

1k kZ Y k+ ≤ ∀ . 

 

5. Formulation as a Nonlinear-Integer Program 

Our aim is still to optimize the attacker’s (BLUE) air strikes, but now against a 

defender (RED) with an optimal defense plan.  BLUE seeks to minimize the objective 

function by the choice of attacks X, RED wants to maximize BLUE’s optimal solution by 

the choice of the defense plans Y and Z.  This leads to the following maximin 

formulation, with dual variables shown in brackets.  Thus: 
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( )

( )

( )
( )

,

. .

k apmklw apmklw k apmklwX apkmlw

p apmklw apmklw k apmklw
apmklw

j jjj
j

s sss
s

k

apmklw apmklw
apmlw

Y Z

Minimize kvalue e edec Y X

cap att aaa Z X

jpen UNDERKILLS jpen OVERKILLS

spen UNDERCAP spen OVERCAP

s t KILLS

e X

Maximize

λ

− −

+ +

+ +

+ +

≤

∑

∑

∑

∑

∑

[ ]

[ ]

[ ]

j

k k k

p

apmklw apmklw p p
amklw

pw

kpw apmklw pw pw
amkl

m

apmklw apmklw m m
apklw

j

apmklw apmklw
apmk K lw

mxtargk mxdumk Y k

PLTSLOST

att X mxplats p

HRSUSED

used X mxhours pw

WEPUSED

c X mxwepns m

JGOAL

e X UNDERKILLS

α

β

γ

δ

∈

+ ∀

≤ ∀

k

⎡ ⎤≤ ∀ ⎣ ⎦

≤ ∀

+

∑

∑

∑

∑

[ ]
[ ]

0

j

s

j j j

j k kj
k K

j jj j

s

p kpw apmklw s s s
ap P mklw

ss

s ss s

apmklw

MIDKILLS OVERKILLS

jgoal h mxdumk Y j

MIDKILLS jgoal jgoal j

SGOAL
cap used X UNDERCAP MIDCAP OVERCAP

sgoal s

MIDCAP sgoal sgoal s

X apmklw
UN

ε

ϕ

η

κ

∈

∈

+ −

j⎡ ⎤= + ∀ ⎣ ⎦

⎡ ⎤≤ − ∀ ⎣ ⎦

+ + −

= ∀

≤ − ∀

≥ ∀

∑

∑

, , 0

, , 0

1

j j j

s s s

k
k

k k

k
k

DERKILLS MIDKILLS OVERKILLS j

UNDERCAP MIDCAP OVERCAP s

Y dumops

Z Y k
Z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

≥ ∀⎢ ⎥
⎢ ⎥≥ ∀⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥

≤

+ ≤ ∀

∑

∑

{ }
{ }
0,1

0,1
k

k

aaops

Y k

Z k

≤

∈ ∀

∈ ∀
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Fixing the binary variables and taking the dual of the interior linear program 

yields a linear program with the fixed binary variables appearing in the objective function 

and the right hand side.  Releasing the binary variables, we obtain a non-linear integer 

program. 

 

( ) ( )
,

:

j

p p pw pw m mk k k k k
k k p pw m

j j j j s sj j s sk k j s
j j k K j s s

p pwapmklw k apmklw kpw a

Maximize
mxtargk mxdumk Y mxplats mxhours mxwepns

jgoal h mxdumk Y jgoal jgoal sgoal sgoal sgoal

subject to

e att used c

α α β γ δ

ε ε ϕ η κ

α β γ

∈

+ + + + +

+ + − + + −

+ + +

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

( ) ( ) , , , ,

0

m j p spmklw apmklw kpw

p s jk apmklw apmklw k apmklw apmklw k apmklw

j jj

j j j

j jj

s s

e cap used

kvalue e edec Y cap att aaa Z amlw j s p P k K X

jpen j UNDERKILL

j M

jpen j OVERKILL

spen s UNDE

δ ε η

λ

ε

ε ϕ

ε

η

⎡ ⎤⎣ ⎦

IDKILL

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

+ + ≤

− − + + ∀ ∈ ∈

≤ ∀

+ ≤ ∀

− ≤ ∀

≤ ∀

{ }
{ }

1

0

0
0
0
0
0
0

0,1

0,1

k
k

k k

k
k

s

s s s

s ss

k

p

pw

m

j

s

j

s

k

k

Y dumops

Z Y k
Z aaops

RCAP

s M

spen s OVERCAP

k
p
pw
m
j
s

unrestricted j
unrestricted s

Y k

Z k

η κ

η

α
β
γ
δ
ϕ
κ
ε
η

IDCAP

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

≤

+ ≤ ∀

≤

+ ≤ ∀

− ≤ ∀

≤ ∀
≤ ∀
≤ ∀
≤ ∀
≤ ∀
≤ ∀

∀
∀

∈ ∀

∈ ∀

∑

∑
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6. Formulation as an Mixed Integer Program (dual MIP) 
We reformulate the nonlinear-integer program as a mixed integer program (dual 

MIP).  The only features violating an integer linear program form are the nonlinear terms 

in the objective function Ykαk and Ykεj.  These are products of binary Yk with dual 

variables.  We reformulate these terms. 

We introduce two continuous non-positive variables Ak, Bk ≤ 0, and substitute the 

first product Ykαk = Ak.  The resulting expression in the objective function becomes 

, which is linear in Ak k
k

mxdumk A∑ k. 

If Yk = 0, we want Ak = 0, and if Yk = 1, we want Ak = αk.  We are able to achieve 

the appropriate setting of Ak’s values by adding the constraints  

(1 ) ( #) .

k k k

k k

A B k

Y negative B k

α+ = ∀

− ≤ ∀

)

 

Bk may attain a nonzero value if Yk = 0.  Because Bk is not an element of our 

substitution, it is not part of the objective function. 

We choose the lower bound of the dual variable αk as the .  α( #negative k 

represents the change in the objective function if the right hand side of the constraint 

KILLSk is increased by one unit, i.e., the value of one additional target.  We estimate this 

conservatively by min k
k apmlw

apmklw

kvalue
e

α
⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

.   

To substitute the second product, Ykεj, where this time εj is unrestricted in sign, 

we follow a similar approach.  We introduce four non-negative continuous variables 

 and substitute Y, , ,jk jk jk jkEY EY E E+ − + − ≥0 kεj = jk jkEY EY+ −− . 

Depending on the value of Yk and the sign of εj, we want the new variables to 

have the values shown in Table 1. 
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Yk = 1 Yk = 0 

0jε ≥  0jε <  0jε ≥  0jε <  

jk jEY ε+ =  jk jEY ε−− =  jk jE ε+ =  jk jE ε−− =  

0jk jk jkEY E E− + −= = =  0jk jk jkEY E E+ + −= = = 0jk jk jkEY EY E+ − −= = = jk jk jkEY EY E+ − += = =
 

Table 1. Variable values for Yk and εj combinations 

 

We can get the appropriate values for the four new variables by adding the 

constraints 

( )

( )

( #)

( #) 1

( #)

( #) 1

, , , 0

jk jk jk jk j

jk k

jk k

jk k

jk k

jk jk jk jk

E EY E EY jk

EY big Y jk

E big Y

EY big Y jk

E big Y

EY EY E E jk

ε+ + − −

+

+

−

−

+ − + −

+ − − = ∀

≤ ∀

≤ − ∀

≤ ∀

≤ − ∀

≥ ∀ .

jk

jk

 

Analyzing the objective function, we identify the penalties jjpen and jjpen  for 

not achieving the corresponding kill goals jjgoal and jjgoal as the parameters that 

cause the change in the objective function, if the right-hand side of the constraint JGOALj 

is increased by one unit, i.e., target.  This increase implicitly incurs a respective increase 

of UNDERKILLSj or OVERKILLSj.  Keeping the optimal attack plan  constant, 

e.g., keeping the number of targets killed constant, an increase of the right-hand side 

results in an increase of UNDERKILLS

*
apmklwX

j, which causes the objective function to change by 

the respective penalty jjpen . 

Because the penalties for under achieving the soft goals are no less than the 

penalties for over achievement, we assign the maximum value of 
j

jpen  to the big 



positive number (  needed in our additional constraints.  We now perform the 

substitution and reformulate the expression as 

#)big

( )
, j

j k jk jk
j k K

h mxdumk EY EY+ −

∈

−∑ , 

which now is linear in the difference ( )jk jkEY EY+ −− . 

In substituting the non-linear expressions in the objective function, we can 

reformulate our previous model and obtain our defender-attacker model in form of a 

mixed integer program. 
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( ) ( ) ( )
,

:

j

p p pw pw m mk k k k
k k p pw m

j j j s sj j sk jk jk j s
j j k K j s s

papmklw k apmklw kpw

mxtargk mxdumk A mxplats mxhours mxwepns

jgoal h mxdumk EY EY jgoal jgoal sgoal sgoal sgoal

subject to

e att used

s

Maximize
α β γ δ

ε ϕ η

α β γ

+ −

∈

+ + + + +

+ − + − + + −

+ +

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

( ) ( )

κ

, , , ,

0

pw m j p sapmklw apmklw kpw

p s jk apmklw apmklw k apmklw apmklw k apmklw

j jj

j j j

j jj

s s

c e cap used
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IV. DEFNDER-ATTACKER RESULTS 

A. MODEL IMPLEMENTATION IN GAMS 

We generate the defender-attacker model using the General Algebraic Modeling 

System (GAMS) [Brooke, Kendrick, Meeraus and Raman 1998] and solve it using 

CPLEX version 9.0 [GAMS Development Corporation, CPLEX 9 2005]. 

Figure 4 shows the basic flow of the defender-attacker model.  We first solve the 

dual MIP.  By fixing the values of Yk and Zk from the dual MIP, the optimal defense plan, 

we solve the maximin program, a nonlinear integer program, as a linear program (LP) for 

the attack plan Xapmklw. 

Read Sets
and data

Generate and
solve dual MIP

Data pre-
processing

Fix Yk and Zk, and
recover the attack plan

by solving a LP

Output

Read Sets
and data

Generate and
solve dual MIP

Data pre-
processing

Fix Yk and Zk, and
recover the attack plan

by solving a LP

Output

 

Figure 4.   Basic program structure and flow for the defender-attacker model 

 

Our mixed integer program (MIP) has about 1,000 continuous variables, 200 

binary variables, and 44,000 constraints.  We solve for optimality within 1% (GAMS 

option optimality criterion optcr = 0.01) in about a minute on a 2.0 GHz personal 

computer. 

The linear program has about 44,000 continuous variables and 200 constraints.  It 

solves in a couple of seconds. 

29 



B. CRITICAL PARAMETERS AND ASSUMPTIONS FOR ACTIVE RED 
DEFENSE OPERATIONS 

We compare our defender-attacker version results with the legacy Air model for 

the first time period of a FATHM war.   

We have FATHM’s input data for a selected unclassified war scenario.  We see 

the target values, generated by FATHM, and the soft goals for killing targets in each 

target class j as the critical input data.  For the first time period, the target values for all 

targets k are set to one, implying no specific target is prioritized.  The kill proportion for 

target class j1 equals 1, whereas all other classes are 0.01.  We expect the legacy Air 

model to concentrate attacks on targets in target class j1.  We expect our defender-

attacker model to actively defend exactly these targets. 

We assume RED capable of conducting 10 dummy operations and three air 

defense augmentations.  With each dummy operation, RED is able to set up or build 

slightly more than half the number of real targets as dummies. 

Defender-Attacker Model specific input data: 

5
8

10
3.

k kmxdumk mxtargk k

dumops
aaops

⎢ ⎥= ∀⎢ ⎥⎣ ⎦
=
=

 

 

C. COMPARISON WITH THE AIR MODEL AND ANALYSIS OF RESULTS 
We expect that deployment of defense plans Yk and Zk will reduce the number of 

targets killed, the deviation from the kill goals to increase and the number of platforms 

shot down by RED to increase.  We concentrate on the attack plan Xapmklw, the number of 

RED targets killed KILLSk, the number of BLUE aircraft lost PLTSLOSTp, and the 

deficiency variables TKILLSj , with UNDERKILLSj, MIDKILLSj and OVERKILLSj as the 

kill deficiencies regarding the soft kill goals, and SHOURSs with UNDERCAPs, 

MIDCAPs and OVERCAPs for the capacity soft goals.   
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1. Attack Summaries 
We summarize results in Table 2.  The defender-attacker model reduces the 

number of targets killed by 20% (from 449.53 to 361.75), and increases the number of 

attacks by 6% (from 302.41 to 319.62).  The Air model kills 1.5 targets per sortie 

compared to 1.1 targets with the defender-attacker model.  BLUE’s casualties are 33% 

higher (from 4.93 to 6.55 platforms).  Furthermore, BLUE needs 13% more weapons to 

kill 20% fewer targets.  The objective function conveys these results.  The effectiveness 

of BLUE air strikes in killing targets against a RED defense decreases by 33% or, in 

other words, BLUE’s efforts in killing even fewer targets increases by one third.  The 

value of the objective function increases from 10,666.5 to 14,154.3. 

Air model defender-attacker model

OBJECTIVE 10666.5 14154.3

TOTALKILLS 449.5 361.8

TOTALATTACKS 302.4 319.6

TOTALPLATSLOST 4.9 6.6

TOTALWEPUSED 2771.2 3140.3

TOTALHRSUSED 302.4 319.6
 

Table 2. Air strike comparison 

The defender-attacker model causes a significant decrease of BLUE’s effectiveness when 
attacking RED’s active defenses. 

 

2. Effects of Active Defenses 

Facing active RED defenses Yk and Zk, BLUE achieves a smaller portion of the 

preset kill goals to a higher degree than without any defensive actions (Table 3).  There is 

a concentration of RED defense efforts on target class j1 resulting in an increase to 

UNDERKILLSj.  This increase of UNDERKILLSj reveals BLUE’s diminished success in 

killing targets. 
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Target
class under mid over under mid over

j1 330.2 662.2
j4 10.0
j13 0.7 0.7
j14 613.0 613.0

Air model defender-attacker model

 

Table 3. Comparison of JGOALj deficiencies TKILLSj 

The defender-attacker model defends targets in high-priority target class j1, and this 
leads to increased under kills (from 330.2 to 662.2) for BLUE. 

 

under mid over under mid over

Air Force 56.7 73.9
Navy 243.9 243.9
Army 0.1 0.8 0.1 0.8

Air model defender-attacker modelService
s

 

Table 4. Comparison of SGOALs deficiencies SHOURSs 

The defender-attacker model increases the over capacity (from 56.7 to 73.9) for the Air 
Force service component. 

 

Our defender-attacker model generally forces an increase in the number of BLUE 

attacks and thus increases weapons needed and hours flown.  This causes more deviation 

from equitable BLUE service use.  As Table 4 shows, the Air Force’s contribution 

required to perform the optimal attacks increases from 56.71 by 30% to 73.92 and incurs 

a higher penalty in the objective function.   

 

3. Target Kill Accounting 

The most influential factor attracting attacks should be the attacker’s preset phase 

goals for the current phase, hj.  As shown in Table 5, RED concentrates defense plans, Yk 

and Zk, on all targets in target class j1, for which the phase goal equals one.  Dummies are 

set up for all but one target (RED resources are limited by dumops).  The remaining 
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target, k69, is assigned AAA by plan Zk as protection against attacking aircraft.  Thus, all 

targets in target class j1 are considered in RED’s defense plan. 

We note significant reductions in the number of targets killed of 70% (from 80.8 

to 23.7) and 30% (from 69 to 48.4) for k1 and k17 respectively.  The defender-attacker 

model is only able to kill a total of 361.8 targets in that class, 20% less than the Air 

model’s 449.5 target kills (Table 2).  In addition to these 361.8 (real) targets, a total of 

191.6 dummy targets are attacked and “killed,” which adds up to a total of 553.4 attacked 

and destroyed targets.  We observe that the main plan Yk succeeds not only in reducing 

the number of targets destroyed, but also in increasing BLUE’s efforts to achieve the 

documented kills. 



killed

Air 
model

defender-
attacker
model

defender-
attacker
model

j1 k1 288 80.8 23.7 14.8 180 1
k2 32 32 32 20 20 1
k17 69 69 48.4 29.8 43 1
k18 69 69 69 43.0 43 1
k19 64 64 64 40 40 1
k38 36 22 1
k69 20 20 20 12 1
k74 61 38 1
k75 35 35 35 21 21 1
k79 26 16 1
k80 37 37 37 23 23 1

j2 k3 54 9.1 9.1 33 1
k16 43 26
k39 125 78
k68 21 13
k71 1 0
k72 12 7
k73 8 5
k76 3 1
k77 15 9
k78 7 4
k84 264 165
k85 88 55
k86 9 5
k93 264 165

j3 k64 4 2
k65 10 0.2 0.2 6
k66 3 1

j4 k4 44 27
k5 44 27
k6 2 1
k7 10 6
k8 9 5
k9 18 11
k10 17 10
k11 26 16
k13 44 27
k14 40 14.2 4.2 25 1
k32 20 12
k44 6 3
k45 39 24
k50 20 12
k51 20 12
k81 19 11
k82 1 0
k94 40 25

Variable
Yk

Variable
Zk

killed
Dummy targets

available

Targets

class j type k available

 

Table 5. Target and dummy kill accounting and comparison for selected target classes j 

The defender-attacker model concentrates active defenses by Yk for target class j1 and 
kills fewer RED targets in that prioritized target class. A one for Yk indicates that dummy 
targets are deployed for that target. A one for Zk indicates that AAA is deployed for  
enhanced air defense. For instance, there are 69 targets type k17. The Air model kills 69, 
all of them. The defender-attacker model is only able to kill 48.4 targets, but additionally 
kills 29.8 of a total available 43 dummy targets.  
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4. Optimal Sortie Allocation and Effectiveness 
The defender-attacker model allocates sorties differently.  We compute the 

aircraft-target assignments based on optimal solutions for each attack plan Xapmklw (Table 

6).  We see a change in assignments of aircraft on targets in all cases except for the 

platforms p3, p4 and p7.  Defense plan Zk assigns AAA to targets k3, k14 and k69.  The 

number of sorties by p2 against k14 is reduced by 70% (from 6.7 to 2.0).  The Air model 

attacks k69 with 7.2 sorties by p11 compared with 3.8 sorties by p2.  The number of 

sorties decreases by 47%.  The Air model attacks k3 with aircraft p8 whereas the 

defender-attacker model assigns platform p9 to target k3.   

We also see increases in sorties against specific targets.  For example, aircraft p2 

and p11 are assigned to k19 in the Air model and fly 12.5 sorties in total.  The defender-

attacker model changes the assignment and assigns 30.4 attacks by p2 and now p9 against 

k19, which is an increase of 143% in the number of sorties. 



 

p2 k14 6.7 k14 2.0
k17 16.4

k19 11.9 k19 8.1
k21 0.03 k21 0.03
k22 0.1 k22 0.1
k28 0.1 k28 0.1
k37 0.1 k37 0.1
k52 0.03 k52 0.03

k69 3.8
k83 0.8 k83 0.8
k88 0.6 k88 0.6

p3 k17 9.1 k17 9.1
p4 k17 28.2 k17 33.8
p7 k1 1.4 k1 1.4

k17 36.5 k17 36.5
k61 0.5 k61 0.5

p8 k1 45.8 k1 48.0
k3 2.2

p9 k1 69.1 k1 4.2
k3 2.2
k18 22.0
k19 22.3
k75 0.6

k80 2.9 k80 20.8
p11 k1 3.5 k1 3.5

k2 39.3 k2 63.8
k18 13.6
k19 0.6
k65 0.1 k65 0.1
k69 7.2
k75 12.2 k75 19.1
k80 10.1

aircraft p
sortiestarget

defender-attacker
model

target sorties

Air model

 

Table 6. Comparison of the optimal sortie allocation of aircraft p on targets k 

The defender-attacker model reduces the number of sorties against actively defended 
targets with defense plan Zk. This table shows how the defender-attacker model changes 
assignments of sorties by some aircraft on specific targets. For instance, the Air model 
attacks with aircraft p2 target k14 and assigns 6.7 sorties, the defender attacker model 
still assigns p2 on k14, but reduces the number of attacks to 2.0.  

 

Table 6 shows that RED defenses change the strategy for BLUE attacks not only 

in the number of assigned sorties, but also in the aircraft-target combinations.  We 

compute the total number of sorties against specific targets in order to summarize this 

effect and identify Yk’s effects (Table 7).  We see an increase of the number of sorties 

against targets k2, k17, k18, k19, k75 and k80 with a minimum of 30% to 95.7 for k17, a 
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maximum of 144% to 30.4 for k19 and roughly 60% increases in between.  Referring to 

the results in Table 5, this increase of sorties can be attributed to the reduced 

effectiveness of BLUE’s attacks.  BLUE is still able to kill all targets k18, k19, k75 and 

k80, but also has to kill all dummies set up by defense plan Yk.  While BLUE kills all 

targets k17 in the Air model, active defenses reduce the number of kills by 30% even 

though 30% more sorties are flown. 

We see a reduction of sorties against target k1 by 52% to 57.1 attacks that are 

only able to kill 23.7 targets according to Table 5.  The effectiveness of these attacks 

decreases from 80.8/119.9 = 0.67 kills per sortie to 23.7/57.1 = 0.41 kills per sortie, or by 

40%. 

 

j1 k1 119.9 57.1 1
k2 39.3 63.8 1
k17 73.8 95.7 1
k18 13.6 22.0 1
k19 12.5 30.4 1
k38 1
k69 7.2 3.8 1
k74 1
k75 12.2 19.6 1
k79 1
k80 12.9 20.8 1

j2 k3 2.2 2.2 1
j3 k65 0.1 0.1
j4 k14 6.7 2.0 1
j5 k61 0.5 0.5
j6 k28 0.1 0.1
j7 k37 0.1 0.1
j8 k83 0.8 0.8

k88 0.5 0.6
j9 k22 0.1 0.1
j10 k21 0.03 0.03
j12 k52 0.03 0.03

class j target k
Variable

Yk

Variable
ZkAir model defender-attacker

model

attacks

 

Table 7. Comparison of the number of sorties against targets k 

The defender-attacker model increases the total number of sorties against prioritized 
target class j1 when dummy targets are installed by defense plan Yk. Table 7 shows the 
differences in the number of sorties against attacked targets between the two models. For 
instance, belonging to target class j1, target k1 is attacked by 119.9 sorties in the Air 
model compared to 57.1 attacks of the defender-attacker model. The value one for Yk 
indicates that RED deploys dummy targets. With no entry for Zk, target k1 is not defended 
by augmented AAA.  
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5. BLUE Aircraft Attrition 
The augmentation of AAA by defense plan Zk actively defends targets k3, k14 and 

k69 (Table 7).  BLUE aircraft that attack RED target k3 suffer increased attrition 

aaaapmklw between 0.014 and 0.034 platforms per sortie.  This results in increases of 

attrition between 11% and 736% compared to the attrition when AAA is not augmented.  

For BLUE platforms attacking k14 and k69, the incurred penalty attritions are between 

0.0002 and 0.066 aircraft per sortie, and between 0.008 and 0.066 respectively.  The 

resulting increases for k14 are in a range from 32% to 2,303% (up to 23 times higher), for 

k69 from 32% to 1,112% (up to 11 times higher). 

Aircraft p2, assigned to attack AAA-defended targets k14 (TANK) and k69 (IFV) 

according to Table 6, suffers an attrition almost eight times as high as in the Air model.  

Because our model still attacks AAA k19, k21 and k22 but reduces the number of sorties 

against these targets, we see deployed air defense Zk as the main cause for this high 

attrition.   

Aircraft p9, attacking k3 in our model, also suffers an increase of losses from 0.9 

to 2.9 (220%) compared to the Air model.  We see two reasons for this high attrition to 

aircraft p9.  Our defender-attacker model assigns BLUE platform p9 to primarily attack 

AAA k1, k18 and k19 (Table 6).  In addition, p9 now attacks target k3, which is assigned 

AAA by the dynamic air defense Zk

 

p2 0.05 0.4
p3 0.03 0.03
p4 0.9 1.0
p7 0.3 0.3
p8 0.7 0.6
p9 0.9 2.9
p11 2.2 1.3

Air model defender-attacker
model

aircraft lost

aircraft p

 

Table 8. Comparison of attrition per BLUE aircraft 

The defender-attacker model increases BLUE casualties by deploying optimal defense 
operations. Table 8 shows where attrition per BLUE aircraft changes with the defender-
attacker model. BLUE platform p2, for instance, suffers 0.05 expected losses in the Air 
model compared to 0.4 lost aircraft with the defender-attacker model.   
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6. Conclusion 
Comparison of our defender-attacker model with the legacy Air model shows that 

an optimal, active defense plan by RED reduces BLUE effectiveness in killing target 

value by reducing the number of targets killed, increasing casualties and thus influencing 

the degree (and rate) of goal achievements.  In terms of the objective function, BLUE’s 

progress is frustrated and its efforts are significantly increased. 

 

D. FURTHER COMPUTATIONS 
We further explore the effects of RED’s defense plans to gain insights about our 

defender-attacker model.  We want to learn how changing the number and characteristics 

of the defense plans Zk and Yk affect the attacker’s performance.  We vary the number of 

air defense operations aaops, the number of dummy operations dumops and mxdumkk, the 

number of dummy targets available for targets k as our factors in this study.  We analyze 

the effect on the number of aircraft lost PLTSLOSTp, targets killed TGTKILLSk, the 

deficiencies TKILLSj and SHOURSs, and the value of the objective function as our 

measurements for RED’s performance.   

 

1. Dynamic Air Defense Zk 
We analyze the effect of the plan Zk separately (without Yk) for this part of our 

study.  Using the data for the first time period as in Section IV.C., we solve the defender-

attacker model for different numbers of air defense operations and compare BLUE 

casualties (Table 9).  We observe a large increase of attrition to attacking BLUE aircraft 

when RED deploys only one AAA action.  RED is able to increase BLUE’s casualties 

from 4.9 to 7.3 platforms.  RED can increase BLUE losses to about 7.7 with a second 

AAA augmentation, and to 8.1 with a third one.  This yields a total relative increase of 

56% or 64% respectively.  We notice that the relative marginal increase by the 

deployment of two and three air defense operations declines to only 5.5% and 5.2%. 



0 1 2 3 4 5 6 7 8 9 10
p2 (lost) 0.05 0.05 0.05 0.05 0.08 0.08 0.13 0.13 0.13 0.14 0.14

p3 (lost) 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

p4 (lost) 0.86 2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71

p7 (lost) 0.25 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.76 0.76 0.76

p8 (lost) 0.65 0.65 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55

p9 (lost) 0.92 0.92 1.14 1.14 1.15 1.18 1.18 1.18 1.18 1.18 1.18

p11 (lost) 2.17 2.17 2.45 2.85 2.85 2.89 2.89 2.89 2.89 2.89 2.89

SUM 4.93 7.29 7.69 8.09 8.13 8.20 8.25 8.26 8.26 8.27 8.27

47.9% 56.0% 64.1% 64.9% 66.3% 67.3% 67.5% 67.5% 67.7% 67.7%

47.9% 5.5% 5.2% 0.5% 0.9% 0.6% 0.1% 0.0% 0.1% 0.0%

aircraft p
RED air defense operations aaops

Total increase

Marginal increase  

Table 9. Effect of RED air defense operations on BLUE casualties 

Zk is most effective when deploying up to three air defense operations. The marginal 
increases for more than three air defense operations are less than 1%. 

Figure 5 shows the number of aircraft shot down by RED.  We see that the 

deployment of more than three reinforcements by AAA, i.e. aaops > 3, only yields a 

marginal increase of less than 1%.  We interpret this result as a rapid decrease in the 

efficiency of defense plan Zk with an increasing number of air defense operations aaops.   
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Figure 5.   Number of BLUE casualties for different numbers of target reinforcements by Zk 
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Zk is most incrementally effective when deploying AAA reinforcements for no more than 
three targets. 



Our model primarily assigns AAA to targets in target class j1, the class that is 

prioritized for attacks by the phase goals hj in the current time period.  The targets k17 

(TANK), k80 (RAD), k75 (ARTY) and k69 (IFV) are assigned AAA with the first four 

aaops as active defense reinforcement against the attacking BLUE aircraft.  These 

primary targets are subject to 106 attacks (73.8 attacks on k17, 12.9 on k80, 12.2 on k75 

and 7.2 attacks on k69) compared to the total number of 11 attacks on targets not 

belonging to the target class j1.  Because the number of aircraft lost is a function of the 

attacks Xapmklw, these numbers imply the highest losses when AAA is assigned to targets 

under massive attack by the three or four aaops as shown above. 

Zk does increases the objective function modestly from 10,666.5 to 10,670.  We 

conclude that Zk achieves its intended purpose, even though the effect on the objective 

function is not of large magnitude:  Zk causes more BLUE casualties. 

 

2. Number of Dummy Targets 
Dummy targets are the main element in our defense plan Yk.  We start by 

conducting only one dummy operation, dumops = 1, without any defense plans Zk.  We 

calculate the number of dummy targets as stepwise increasing percentages of the 

respective maximal available numbers of real targets k.  We choose a step size of ten 

percent between 0 and 100%.  Beyond 100%, we only consider 120% and 150%.  

Solving our defender-attacker model, we observe that dummy operations are conducted 

for target k1, an AAA, which belongs to targets class j1.  The reason for the selection of 

k1 is seen in the number of available targets, mxtargkk1 = 288, the maximum among all 

targets in the prioritized class.  Table 10 shows a steady reduction of the number of killed 

targets as the result of deployed dummies.  The third row shows the reduction of BLUE’s 

effectiveness in killing RED targets with increasing numbers of dummy targets.  This 

reduction also represents the relative reduction of sorties against real targets that is 

caused by the respective number of dummies.  For instance, deploying half of the number 

of real targets as dummies reduces the effectiveness by exactly one third, equivalently to 

the reduction of the attack ratio against real targets k

k k

mxdumk
mxtargk mxdumk+

. Setting up the 
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same number of dummies as there are real targets yields a 50% reduction in BLUE 

effectiveness. 

0 10 20 30 40 50 60 70 80 90 100

target kills 80.8 73.6 67.4 62.2 57.7 53.9 50.6 47.6 44.9 42.5 40.4

dummy kills 0.0 7.2 13.4 18.6 23.1 26.9 30.2 33.2 35.9 38.3 40.4

Total reduction -8.9% -16.6% -23.0% -28.6% -33.3% -37.4% -41.1% -44.4% -47.4% -50.0%

Marginal reduction -8.9% -8.4% -7.7% -7.2% -6.6% -6.1% -5.9% -5.7% -5.3% -4.9%

target k1
number of dummy targets in percent of mxtargkk

 

120 150

target kills 36.8 32.3

dummy kills 44.0 48.5

Total reduction -54.4% -60.0%

Marginal reduction -8.9% -12.2%

number of dummy targets
in percent of mxtargkktarget k1

 

Table 10. Number of targets killed for increasing number of dummies deployed for target k1 

The Defender-Attacker Model steadily reduces the number of targets killed with 
increasing number of dummies deployed for target k1. 

 

42 



Figure 6 shows the relation between real target kills and dummy kills.  We 

recognize a steeper descent for the number of targets k1 killed in the graph for the range 

0% to about 50%.  We see the same behavior for the number of killed dummy targets in 

the opposite, increasing direction. 

target k1
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Figure 6.   Target and dummy kills for increasing number of available dummy targets in 
percent of mxtargkk1 

The number of dummy targets killed increases as the number of killed targets decreases. 
When as many dummies are set up as there are targets, BLUE kills approximately as 
many dummies as targets. 

 

Dummy targets increase the total number of potential targets.  This increase also 

affects soft goals for killing targets of specific target classes, JGOALSj.  Consequently, 

dummy operations increase UNDERKILLSj at the same time as fewer targets are killed 

(Table 11).  The effect of the number of dummy targets deployed is even bigger for the 

deficiency UNDERKILLSj1.  An addition of 40% as dummies increases UNDERKILLSj1 

by about one third; an addition of 60% increases it by about one half compared to the 

undefended case.  UNDERKILLSj1 doubles with 120% of mxtargkk1 built up as dummy 

targets.   
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0 10 20 30 40 50 60 70 80 90 100
UNDERKILLS j1 330.2 358.2 387.2 416.2 445.2 474.2 502.2 531.2 560.2 589.2 618.2

Total increase 8.5% 17.3% 26.0% 34.8% 43.6% 52.1% 60.9% 69.6% 78.4% 87.2%

Marginal increase 8.5% 8.1% 7.5% 7.0% 6.5% 5.9% 5.8% 5.5% 5.2% 4.9%

target class j1
number of dummy targets in percent of mxtargkk1

 

 

120 150
UNDERKILLS j1 675.2 762.2

Total increase 104.5% 130.8%

Marginal increase 9.2% 12.9%

target class j1
number of dummy targets

in percent of mxtargkk1

 

Table 11. Deficiency UNDERKILLSj1 for target class j1 with increasing number of dummies 

UNDERKILLS for the prioritized target class j1 increases rapidly. If 60% of the 
available number of (real) targets are set up as dummies, UNDERKILLSj1 increases by 
approximately 50%. 

 

Plotting the data of Table 11, we see in that UNDERKILLSj1 continuously 

increases and seems to be nearly linear in the number of deployed dummy targets for k1 

(Figure 7). 
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Figure 7.   UNDERKILLSj1 versus available dummy targets in percent of mxtargkk1 
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We recognize a continuous, nearly linear increase with growing number of dummy 
targets deployed. 



The attacker’s effectiveness in killing targets or target value decreases with an 

increasing number of dummy targets.  This has a significant effect on the objective 

function (Table 12).  The objective function values steadily increase with the increasing 

number of dummy targets.  We see an approximate increase of 25% if 90% of the number 

of available targets are set up as dummies and almost a 50% increase when 1.50 times the 

number of real targets are dummies. 

0 10 20 30 40 50 60 70 80 90 100

values 10666.5 10953.6 11249.8 11545.1 11839.5 12133.4 12416.7 12709.7 13002.4 13294.7 13586.9

Total increase 2.7% 5.5% 8.2% 11.0% 13.8% 16.4% 19.2% 21.9% 24.6% 27.4%

Marginal increase 2.7% 2.7% 2.6% 2.5% 2.5% 2.3% 2.4% 2.3% 2.2% 2.2%

objective Function
number of dummy targets in percent of mxtargkk1

 

 

120 150

Values 14160.5 15350.0

Total increase 32.8% 43.9%

Marginal increase 4.2% 8.4%

Objective Function
Number of dummy targets

in percent of mxtargkk1

 

Table 12. Objective function value for increasing numbers of dummies 

The objective function increases continuously approximately with an average rate of 
2.5% for every 10% increase in the number of dummy targets. 

 
3. Dummy Operations Only 
We now solve our model for different numbers of dummy operations.  We do not 

allow air defense operations ( 0kZ k= ∀ ).  We assume the number of dummy targets as 

about 60% (5/8 mxtargkk) of the available real targets mxtargkk for the respective targets 

k.  We solve our model for up to 15 dummy operations, dumops = 15. 

All performance measures are affected by dummy operations.  The value of the 

objective function increases due to a reduction of targets killed by a simultaneously 

increasing number of attacks and an increase in the number of platforms shot down, 

causing increased penalties with respect to the soft goals that can no longer be achieved 

on a par with the success of the Air model. 
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The number of killed (real) targets significantly decreases with the number of 

dummy operations.  We see three effects for the observed BLUE actions.  Either BLUE 

does not attack a target type at all, consequently no dummies are killed; or BLUE is 

driven by the kill goals and kills all targets, in which case all dummy targets are killed, 

too; or BLUE attacks targets k and the respective dummies, and reduces the number of 

sorties, i.e., changes attack strategy.  Figure 8 shows the observed evolution of RED’s 

defensive operations Yk with increasing number of dummy operations. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
j1 k1 t t+d t+d t+d t+d t+d t+d t+d t+d t+d t+d t+d t+d t+d t+d t+d

k2 t t t t t t+d t+d t+d t+d t+d t+d t+d t+d t+d t+d t+d
k17 t t t t+d t+d t+d t+d t+d t+d t+d t+d t+d t+d t+d t+d t+d
k18 t t t t t t t t t+d t+d t+d t+d t+d t+d t+d t+d
k19 t t t t t+d t t t+d t+d t+d t+d t+d t+d t+d t+d t+d
k38 d d d d d d d d d d d
k69 t t t t t t t t t t t t+d t+d t+d t+d t+d
k74 d d d d d d d d d d d d d d
k75 t t t t t t t t t t t+d t+d t+d t+d t+d t+d
k79 d d d d d d d d d d
k80 t t t t t t t t t t+d t+d t+d t+d t+d t+d t+d

j2 k3 t t t t t t t t t t t t t t+d t+d t+d
k93 d

j3 k65 t t t t t t t t t t t t t t t t
j4 k14 t t t t t t t t t t t t t+d t+d t+d t+d
j5 k61 t t t t t t t t t t t t t t t t
j6 k28 t t t t t t t t t t t t t t t t
j7 k37 t t t t t t t t t t t t t t t t
j8 k83 t t t t t t t t t t t t t t t t

k88 t t t t t t t t t t t t t t t t
j9 k22 t t t t t t t t t t t t t t t t
j10 k21 t t t t t t t t t t t t t t t t
j12 k52 t t t t t t t t t t t t t t t t
j13 k25 d d

Legend: t target attacked, no dummies deployed, some killed t+d target and dummies attacked, some killed
t target attacked, no dummies deployed, all killed t+d target and dummies attacked, all killed

target not attacked d dummies deployed, not attacked

target
class j

target
type k

number of dummy operations dumops

 

Figure 8.   Evolution of RED’s optimal defense strategy for dummy operations 

The Defender-Attacker Model prioritizes dummy operations in accordance with the phase 
and kill goals and concentrates efforts on target class j1. 

 

The chart clearly shows the prioritization of target class j1, where only few 

attacks are launched against targets of other classes due to the respective soft goals.  Our 

defender-attacker model concentrates BLUE sorties on all RED targets in this class and 
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kkills all targets k2, k17, k18, k19, k69, k75 and k80 when 0kY = ∀ .  We notice that this 

success can be maintained when dummies are deployed for the respective target for all 

but one target type.  By setting up dummies for k17, BLUE is no longer able to kill all of 

that target.  The attacks show partial success against k1, and k38, k74 and k79 are not 

attacked at all.  We observe in our outputs, that the more dumops are deployed, the fewer 

targets type k1 are killed.  Dummies do not affect the BLUE strategy when they are set up 

for targets that originally are not attacked. 

Dummy operations significantly affect BLUE’s effectiveness.  The presence of 

dummies reduces the number of killed targets and increases in particular the number of 

UNDERKILLS because the air strikes kill dummy as well as real targets (Figure 9).  We 

see that the number of UNDERKILLS doubles with ten and reaches its maximum when 

RED conducts eleven dummy operations.  RED reaches this point when all targets of j1 

are defended by Yk.  We recognize the greatest increase already with one dummy 

operation that sets up dummies for target k1.  Given equal target values, we see the 

reason in the largest number of available targets mxtargkk1 = 288 and dummies, 

mxdumkk = 180 in that class.  A significant decrease in the number of killed targets is 

caused by this operation. 
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Figure 9.   Total TGTKILLS and UNDERKILLS versus number of dummy operations 

The deficiency UNDERKILLS grows significantly faster than TGTKILLS decreases. 



We also see how Yk changes the number of sorties (Figure 10).  BLUE launches 

17.2 attacks more than without defense plan Yk.  We realize that this increase of the 

number of sorties causes an increase of over capacities OVERCAPs of one of the services 

by exactly the same number:  The Air Force has to carry all additional effort.  The 

increase of the number of the attacks is caused by the third dummy operation.  With this 

operation RED deploys dummies for two attacked targets.  The second dummy action 

does not have any influence, because it covers k74, which is not attacked (Figure 8).  This 

absolute increase of both, attacks and OVERCAP of 17.2 attacks represents only 6% with 

respect to the number of attacks without defense, but it increases the deficiency variable 

OVERCAP by 30 %.   
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Figure 10.   Number of attacks with increasing number of RED dummy operations 

With three dummy operations, the Defender-Attacker Model increases its sorties by 17.21 
attacks. More dummy operations have no further effect. 
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The reduced number of targets killed and the increase in the number of sorties 

have the greatest effect on our objective (Figure 11).  We see the steepest ascent with 

only one dummy operation.   
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Figure 11.   Defender-Attacker Model objective with increasing number of RED dummy 
operations 

One dummy operation causes an increase of the objective function value by 17%. 
Deploying further dummy operations, the Defender-Attacker Model is able to double that 
first increase to 33% with dumops = 10. 

 

Comparing the results for deployed decoy operations with those of the enhanced 

air operations by Zk, we conclude that deploying dummy targets with the defense plan Yk 

has a larger impact on the attacker’s effectiveness and performance. 
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V. CONCLUSIONS 

We enhance the FATHM Air model and formulate a defender-attacker model to 

give RED the capability to take defensive actions against anticipated BLUE air strikes.  

Our model solves an optimal defense plan for RED, augmented by dummy operations Yk 

and enhanced air defense operations Zk, that change BLUE’s attack plan.   

Our model reduces the attacker’s effectiveness: we increase BLUE efforts in 

launching air strikes against RED defense.  Given objective function weights we use, 

RED dummy operations in the defense plan Yk, turn out to be more significant than active 

air defense plans.   

Dummy operations reduce the number of targets killed by setting up dummy 

targets for specific targets k.  In reducing the number of kills, BLUE is no longer able to 

achieve preset kill goals for specific target classes j.  BLUE fails to a higher degree and 

must launch more sorties.  This increase in the number of sorties affects BLUE capacity 

goals, stressing some BLUE service components.  Finally, the increased number of 

sorties results in higher casualties for the attacker.  The number of weapons used and 

hours flown by the aircraft are proportional to the sorties assigned and increase.  

Summarizing these effects, dummy operations result in a very significant reduction of 

BLUE effectiveness in killing RED targets by addressing all critical elements of 

performance and resources, represented in the objective function.  The value of the 

objective function, which BLUE seeks to minimize, is successfully increased by RED’s 

main plan Yk. 

The second defense plan Zk, enhances air defense to actively defend prioritized 

targets against attacking BLUE aircraft by augmenting AAA.  This does not show nearly 

the results that Yk does on BLUE’s effectiveness.  The objective function increases by 

about 1% compared to the Air model.  On the other hand, Zk significantly affects the 

attacker’s most critical resource, the number of available aircraft.  We conclude that Zk 

has a far greater impact on BLUE attack plans with ongoing battle duration over several 

phases and time periods. 
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To represent an intelligent defender, we think our defender-attacker model has 

more to recommend it than traditional, one-sided models such as the FATHM Air model. 



APPENDIX 

THE AIR MODEL: ORIGINAL FORMULATION (EXTRACT) 

[from: Brown and Washburn 2005] 

 

Variables (all nonnegative) 

apmklwX  attacks 

kTGTKILLS  targets k killed 

pwHRSUSED  aircraft platform p hours used in weather state w 

pPLTSLOST  aircraft p lost 

mWEPUSED  air_weapons m used 

sSVCCAP  capacity used by service s 

, ,j jUNDERKILLS MIDKILLS OVERKILLS j  

 under, slack, and over-kills of target class j 

, ,s s sUNDERCAP MIDCAP OVERCAP   

under, slack, and over-achievement of service s goals 

 

Formulation 

The number of targets killed is a linear function of the number of sorties assigned, 

subject to not killing more targets than exist, and similarly for the number of platforms 

lost, hours used, and weapons used. 

  :kKILLS k apmklw apmklw
apmlw

TGTKILLS e X= ∑    k∀

kTGTKILLS mxtargkk≤     k∀
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:pPLATS   p apmklw apmklw
amklw

PLTSLOST att X= ∑   p∀  

   pPLTSLOST mxplatsp≤    p∀  

:pwWXHOURS  pw kpw apmklw
amkl

HRSUSED used X= ∑   pw∀  

pw pwHRSUSED mxhours≤    pw∀  

:mWEPNS   m apmklw apmklw
apklw

WEPUSED c X= ∑    m∀

m mWEPUSED mxwepns≤     m∀

The amount of a service’s capacity used is a linear function of the number of 

hours used by the service’s platforms. 

:sSERVICE   
,

s p p
sp P w

SVCCAP cap HRSUSED
∈

= w∑    s∀

For each class of target j, there are soft goals for the number of targets killed and 

for each service’s capacity. 

 

:jJGOAL    

j

k
k K

TGTKILLS
∈
∑ j jUNDERKILLS MIDKILLS OVERKILLS+ + − j =  

jjgoal       j∀  

j j j
MIDKILLS jgoal jgoal≤ −    j∀  

:sSGOAL  

sSVCCAP s sUNDERCAP MIDCAP OVERCAP+ + − s =  

ssgoal        s∀  

s s s
MIDCAP sgoal sgoal≤ −     s∀  
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The objective offers terms to balance effort between killing target value, avoiding 

Blue platform attrition, achieving kills of target classes critical to the war phase, and 

equitably stressing the services.  Attrition is emphasized when λ is large. 
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kMinimize    k
k

kvalue TGTKILLS−∑

p p
p

cap PLTSLOSTλ+ ∑   

( )j jjj
j

jpen UNDERKILLS jpen OVERKILLS+ +∑  

( )s sss
s s

spen UNDERCAP spen OVERCAP+ +∑ ∑  
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