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ABSTRACT 
 
 

The Japanese maritime forces (Blue) are required to detect, identify and intercept 

maritime terrorist threats (Reds) well before they reach Japanese shores. However, it is 

challenging for the limited number of Blue maritime assets to identify and intercept Reds 

out of large numbers of law-abiding neutral vessels (Whites) within the limited time 

available to intercept a Red; there is a need to estimate Blue Maritime Intercept 

Operation (MIO) capabilities (a series of detection, identification and interception 

capabilities), and to identify the significant factors influencing the MIO capabilities 

quantitatively in order to examine current programs and to study new, alternative 

programs. 

This thesis formulates and exercises stochastic and simulation models to assess 

Blue MIO capabilities. The models focus on the surveillance operations of the Maritime 

Patrol Aircraft (MPA). The analysis using the models estimates the probability with 

which a Red is detected, correctly classified, and escorted for intensive investigation and 

neutralization before it leaves an area of interest (AOI). The difficulty of obtaining 

adequate interception of the Red depends upon the AOI size, the number of Whites in 

the AOI, detection and identification capabilities, information retention, and close 

coordination between the MPA and investigative maritime vessels in various situations. 

The analysis ultimately provides quantitative guidance on the relative importance of the 

MIO capabilities. Although the models focus on the MPA operations, the analysis 

additionally provides various insights and recommendations to other defense 

components. 
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EXECUTIVE SUMMARY 
 
 

The Japanese maritime forces (Blue) are required to detect, identify and intercept 

maritime terrorist threats (Reds) well before they reach Japanese shores. However, it is 

challenging for the limited number of Blue maritime assets to identify and intercept Reds 

out of large numbers of law-abiding neutral vessels (Whites) within the limited time 

available to intercept a Red; there is a need to estimate Blue Maritime Intercept Operation 

(MIO) capabilities (a series of detection, identification and interception capabilities), and 

to identify the significant factors influencing the MIO capabilities quantitatively in order 

to examine current programs and to study new alternative programs. 

In this study, we formulate and exercise stochastic and simulation models in order 

to assess Blue MIO capabilities. Logistic regression models are used to summarize the 

simulation output. The models focus on the surveillance operations of the Maritime 

Patrol Aircraft (MPA). There is one MPA to patrol an area of interest (AOI), otherwise 

called the Domain. One Red enters the AOI at time 0. The analysis using the models 

estimates the probability with which the Red is detected, correctly classified, and escorted 

for intensive investigation and neutralization before it leaves the AOI. The difficulty of 

obtaining adequate interception of the Red depends upon the AOI size, the number of 

Whites in the AOI, detection and identification capabilities, information retention, and 

close coordination between the MPA and investigative maritime vessels in various 

situations. 

The principal measures of effectiveness (MOEs) used to quantify the 

effectiveness of Blue MIO capabilities are 

• CP =Probability a typical Red is detected and correctly classified before leaving 

the AOI (Domain) 

• EP =Probability a typical Red is detected, correctly classified, and escorted before 

leaving the AOI (Domain) 



 xviii

Three types of models are used in this study: a simulation model, an analytical 

stochastic model, and logistic regression models. The analytical stochastic model is a 

special case of the simulation model.  The MOEs for the stochastic model are expressed 

as closed-form formulas. The MOE formulas from the analytical stochastic model are 

used to check the output of the simulation in the special case. The formulas are also used 

to suggest useful independent variables for logistic regression models to summarize the 

simulation output in cases other than the special case. These independent variables 

include functions of the simulation input variables. 

In order to analyze the factors influencing Blue MIO capabilities, we eventually 

focus on the seven factors: (1) Dimensions of the rectangular AOI, xM and yM  (2) 

Constant number of Whites in the AOI, w  (3) Speed of Whites and Reds, u  (4) 

Processing time for each contacted vessel by the MPA, τ  (5) Probability that a detected 

White is correctly classified as White, wwc  (Note that 1wr wwc c= −  is the probability that a 

detected White is incorrectly classified as Red) (6) Probability that a detected Red is 

correctly classified as Red, rrc  (Note that 1rw rrc c= −  is the probability that a detected 

Red is incorrectly classified as White), and (7) The MPA’s information retention (length 

of time for which the MPA retains the classification information on a vessel; the mean 

time is 1/ψ ). For the MIO capabilities ( CP  and EP ), the results of the thesis identify the 

following tendencies: 

• When the AOI size ( w ,u , respectively) increases, the MIO capabilities decrease. 

• When wwc  ( rrc , respectively) increases, the MIO capabilities increase. 

• Changes to the value of τ  or 1/ψ  do not change the MIO capabilities as much as 

changing the values of the other factors: the AOI size, w , u , wwc , and rrc . 

• There is an interaction between the AOI size, w , and wwc . 

• w  is the most influential factor for the MIO capabilities among the considered 

factors.  



 xix

• Relatively high MIO capabilities can be achieved when there are a few Whites in 

a relatively small AOI; however, the MIO capabilities quickly decrease by 

increasing w  a small amount (0→10). 

 

For this analysis, we apply various assumptions (scenario, data, distributions, and 

modeling). If they are “reasonable,” it would imply that a single MPA is operationally 

inadequate to intercept a Red before it leaves an AOI. If more MPAs are 

simultaneously available, they should be used in the surveillance operation (MIO). 

Otherwise, measures which reduce the number of unidentified Whites in an AOI 

should be applied as much as possible – such measures include intelligence operations, 

maritime traffic control, and additional surveillance operations by other defense assets 

(satellites, helicopters, and maritime vessels). 

The results of the analysis cannot be directly applied to plan real concepts of 

operations (CONOPS) and operational plans (OPLAN) because the research is based on 

various assumptions. But they provide very useful intuition, enhancement, and 

stimulation. As a result, available field data should be collected to assess the 

reasonableness of the model assumptions. Although we focus on the MPA operations, the 

effects of other components (intelligence, helicopters, unmanned surveillance systems, 

maritime vessels, and C4I systems) can be studied using this MPA-based analysis. For 

example, reliable information of threatening vessels enables assignment of a small size 

AOI to an MPA, and surveillance operations by helicopters and maritime vessels can be 

used to complement the MPA’s surveillance operations. 
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I. INTRODUCTION 

Terrorism has become a serious threat to today’s global security environment – as 

demonstrated in the United States, Indonesia, Spain, Russia, and England from 2001 to 

2005. Japan has initiated several efforts to prevent terrorist attacks; however, its security 

is still vulnerable to threats (especially from the sea) resulting from its long coastlines, its 

large numbers of important facilities in coastal areas, and the large numbers of 

commercial ships and boats entering Japanese territorial waters. 

To protect Japan from maritime terrorist threats, the Japanese maritime forces 

(Blue) are required to detect, identify, and intercept the threats well before they reach 

Japanese shores. However, Blue has a finite number of assets (aircraft and vessels) used 

to execute a series of the operations called Maritime Intercept Operations (MIO). On the 

other hand, there are large numbers of vessels coming into or navigating in the waters 

around Japan, and terrorist vessels attempt to sneak into Japanese shores by camouflaging 

and hiding among these vessels. Thus, it is challenging for Blue maritime assets to detect, 

correctly classify, and intercept the threats out of the large numbers of law-abiding 

neutral vessels within the limited time available to intercept a terrorist vessel. 

The purpose of this thesis is to propose and analyze Blue surveillance, awareness, 

and neutralization capabilities to achieve Japanese maritime homeland security. 

 

A. CURRENT SITUATION 
For Japan’s maritime security during peacetime situations, the Japan Coast Guard 

(JCG), a police agency, is primarily in charge of the maritime security operations, and the 

Japan Maritime Self-Defense Force (JMSDF) does not have this responsibility under the 

existing law. If it is beyond the JCG’s power to perform maritime security operations, 

JMSDF shall take actions in a supporting position “in case it is particularly required.”1  

 

                                                 
1 Self-Defense Forces Law, Article 82 
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However, as a result of the revision of the Self-Defense Forces Law, (which 

followed the incident of suspicious boats off Noto Peninsula in 1999), a step is taken that 

JMSDF assets (aircrafts and maritime ships) can be ordered into operation from the 

beginning of an emergency situation against serious maritime threats, such as suspected 

spy vessels, armed boats, and terrorist vessels.2 Moreover, since the possible intention of 

the maritime terrorist threats is to conduct military activities, JMSDF is being required to 

join maritime security operations against the threats more than ever. 

Thus, the framework of Japan’s maritime security is gradually changing to 

correspond with the current security environment. JMSDF and JCG created a manual for 

joint responses to suspicious ships in 1999, and have started several joint training 

exercises for security operations. However, the manual currently targets only relatively 

low-intensity situations (i.e. police operations) and restricts its focus to identifying 

respective responsibilities and establishing rules for information sharing. So, there are 

still no comprehensive concepts of operations (CONOPS) and operational plans 

(OPLAN) for the two agencies to jointly deter maritime terrorist threats in Japan. 

To effectively implement maritime security operations or the challenging MIO, 

appropriate CONOPS and OPLAN – which include assets, systems, tactics, procedures, 

intelligence, and information sharing – are indispensable to the responsible maritime 

forces (JMSDF and JCG). Moreover, to enhance the MIO capabilities, the maritime 

forces are required to constantly examine current programs and to study new, alternative 

programs – such as system development, operational development, procurement, and 

training.  Thus, it is essential for the forces to assess their own MIO capabilities in order 

to study and plan the proper CONOPS and OPLAN. It is also desirable for the forces to 

identify and assess the factors influencing the MIO capabilities to examine current 

programs and study new, alternative programs using the quantitative methods of 

operations research. 

 

 

                                                 
2  Furusawa, Tadahiko, “On Territorial Defense – Policing Sea Area under Japanese Jurisdiction,” 
DRC  annual report, (2002) 
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B. CURRENT STUDIES 

So far, several studies of maritime security operations and the MIO have been 

performed, focusing on various aspects of the operations. [Salcedo Franco, 1997] studies 

the resource (patrolling vessels) allocation for the maritime traffic control in Venezuela in 

order to maximize the number of “bad” vessels encountered. [Komiya, 2000] analyzes 

the surveillance route which maximizes the number of vessels detected and processed 

based on the previous flight information. [Nagai, 2003] examines the MIO’s decision- 

making process that was used to intercept the suspicious vessels that appeared off Amami 

Ohshima in 2001. 

However, the previous studies only focus on specific aspects of the maritime 

security operations, such as how to increase the number of vessels the maritime assets 

can process effectively. To properly assess the challenging MIO capabilities and to 

properly estimate the significant factors influencing the success of the MIO as a whole, 

we should consider a series of surveillance and intercept operations – such as detection, 

identification, and interception. 

 

C. OBJECTIVES 

This study formulates and exercises stochastic and simulation models to assess 

the likely MIO capabilities (a series of detection, identification, and interception 

capabilities). Specifically, we focus on the surveillance operations of the Maritime Patrol 

Aircraft (MPA). Using the models, the analysis estimates the probability with which a 

terrorist vessel is detected, correctly classified, and escorted for intensive investigation 

and neutralization before the vessel is able to leave an area of interest (AOI) and achieve 

a lethal effect. 

The difficulty of obtaining adequate interception of the hostile vessel depends 

upon the AOI size, the number of neutral vessels in the AOI, detection and identification 

capabilities, information retention, and close coordination between the MPA and 

investigating maritime vessels in various situations. The analysis ultimately provides 

quantitative guidance on the effectiveness of the MIO capabilities. 
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D. STRUCTURE OF THESIS 

Chapter II describes the maritime intercept operations. Chapter III introduces the 

simulation model. An analytical stochastic model is formulated and studied. The 

analytical stochastic model is a special case of the simulation in that all random times are 

independent having exponential distributions. Formulas of the measures of effectiveness 

(MOEs) for the analytical stochastic model are presented. Results of a short study are 

displayed comparing the simulation output in this special case to that of the analytical 

stochastic model. Chapter IV presents the results from the simulation for cases in which 

the random times while independent are not necessarily exponentially distributed. 

Logistic regression is used to summarize the simulation output. The independent 

variables used in the logistic regression are suggested by the formulas from the analytical 

stochastic model. The independent variables include functions of the simulation input 

values. The operational implications of the models results are discussed. The thesis 

concludes with suggestions for further work. Appendices provide further details and 

model results. 



5 

II. SCENARIO DESCRIPTION 

A. JAPANESE FEATURES 
Japan is an island country surrounded by sea, having approximately 4,470,000 

square kilometers of territorial waters (territorial sea, contiguous zones, and economic 

exclusive zones) and 33,889 kilometers of coastlines. The oceans and maritime entries to 

Japan are sea routes for both good and bad influences. On the waters, commercial ships 

carry over 90 percent of the natural resources that are indispensable to Japanese 

existence. The same waters give illegal or asymmetric threatening vessels access to 

Japan. In the coastal areas of the Japanese islands, there are large numbers of important 

facilities – economic and military ports, atomic power plants, and oil refinery complexes. 

More than 11,000 commercial vessels come into Japanese ports from various foreign 

countries each month to access these facilities.3  There are also large numbers of 

domestic vessels and pleasure boats navigating in Japanese territorial waters. 

 
Figure 1.   Area around Japan 

 
                                                 

3 Ministry of Finance, “Entrance of Vessels by Nationality,” Trade Statistics of Japan, (2005) 
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B. TERRORIST THREATS 

Currently, there are several active terrorist groups: Al Qaeda, Jemaah Islamiyah, 

Basque Fatherland and Liberty (ETA), and Chechen separatists. Terrorists from these 

groups and others cause indiscriminate murders and subversive activities, both globally 

and regionally, in order to attain goals that are political, religious, or ideological in 

nature. In the vicinity of Japan, North Korean terrorist and guerrilla threats have become 

apparent through incidents such as the detection of suspicious boats appearing off Noto 

Peninsula in 1999 and off Amami Ohshima in 2001. 

Japan is one of the leading economic powers in the world and also has close 

relationships with the United States politically and economically. As a result, Al Qaeda 

has listed Japan as a target country. Thus, it is possible that these terrorists will attack 

Japan in order to promote their influence or message to Japan and the rest of the world. 

There are roughly two ways for terrorist threats to intrude into Japan: airplanes and ships. 

To destroy important infrastructures and populations crowded in coastal areas, some 

terrorists may try to sneak into Japan by sea, by camouflaging and hiding among large 

numbers of law-abiding neutral vessels. 

 

C. MARITIME INTERCEPT OPERATIONS 
Japan’s maritime security policy is to make its utmost efforts, by utilizing all 

available means, to prevent any threats from reaching Japan directly. To achieve this, 

several maritime assets (aircraft and maritime vessels) conduct constant surveillance, 

attempting to identify ships and submarines transporting guerillas and special operations 

units as early as possible in order to prevent them from advancing.4 5  For further support, 

Japan also consistently executes information sharing about possible threats with other 

nations and their intelligence agencies. 

 The MIO’s surveillance operation by the Maritime Patrol aircraft (MPA) is the 

most vital in obtaining initial contact with threatening vessels, and is also the most vital 

in collecting information that can be used in the future by other defense assets. Thus, as a 

specific interest, we focus on the surveillance operations of the MPA of JMSDF. 

                                                 
4 Japan Defense Agency, “National Defense Program Guideline for FY 2005 and After,” (2004) 
5 Japan Defense Agency, “Defense of Japan 2005 White Paper,” (2005) 
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JMSDF has several squadrons using MPAs, which are designated to respective 

regions to execute maritime defense operations. In each region, the MPA constantly 

executes surveillance operations over the area of interest (AOI). All contacts within the 

AOI are tracked and identified. All available sensors (radar and visual) are used to detect, 

identify, and collect intelligence on contacts of interest. Every contact identified as a 

vessel is tracked, observed, and judged if it is a potential target. Maintaining accurate 

information on vessels previously processed is critical to prevent multiple interceptions 

of the same ships as they pass through specific areas.6  

If the MPA classifies a vessel as a target, it requests inspection units (maritime 

ships) to come and interrogate the vessel, and tracks the suspicious vessel until the 

inspection units reach the vessel to take over from the MPA. To keep from losing sight of 

the vessel, the MPA may not process other vessels while tracking the suspicious vessel. 

Tracking a real target is essential, but tracking a misclassified non-threatening vessel can 

impede the tracked vessel’s freedom of navigation, and also wastes time that is needed to 

detect and process real targets. Thus, it is important for the MPA coordinators to correctly 

identify each vessel contacted. After passing over the suspicious vessel to the inspection 

units, the MPA resumes the surveillance operations by returning to its flight route as soon 

as possible. 

 
Figure 2.   Maritime Intercept Operations 

                                                 
6Navy Tactical Support Activity, “Maritime Interdiction Force Procedures – Multi-National Maritime 
Manual,” (1996) 
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III. A MODEL OF MARITIME INTERCEPT OPERATIONS 

A. OBJECTIVE 
The objective of the model studied here is to estimate the Maritime Intercept 

Operations (MIO) capabilities – especially, the fraction of terrorist vessels that are 

detected, correctly classified, and escorted for intensive investigation and neutralization 

before the vessels leave an area of interest (AOI), otherwise called the Domain, and 

achieve a lethal effect. As a specific interest, we focus on the surveillance operations of 

the Maritime Patrol Aircraft (MPA). Obtaining adequate interception of hostiles depends 

upon the AOI size, the number of neutral vessels in the AOI, detection and identification 

capabilities, information retention, and close coordination between the MPA and 

investigative maritime vessels under various circumstances. 

 

B. MEASURES OF EFFECTIVENESS 
It is highly desirable for the Blue maritime assets to detect, identify, and intercept 

terrorist vessels before they leave an AOI. However, as a minimum, the MPA must detect 

and correctly classify hostile vessels before they pass through the AOI to Blue homeland 

(the coast of Japan). Thus, as measures of effectiveness (MOEs), we consider the 

following two measures: 

• Long-run fraction of terrorist vessels being detected and correctly classified 

before leaving the AOI 

• Long-run fraction of terrorist vessels being detected, correctly classified and 

escorted before leaving the AOI 

 

C. ASSUMPTIONS 

1. Intelligence 

Accurate information, intelligence, and knowledge of maritime terrorist threats – 

signs of activities, ship personnel, maneuvers, destinations, and possible areas where 

threat vessels exist – are important for the success of the MIO. However, intelligence is  
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not always available or incomplete, and terrorists may attempt to execute surprise attacks. 

In this study, precise and timely intelligence is assumed not to be available; this is a 

worst-case scenario. 

 

2. Multi-Agency Operations 
To implement the challenging MIO as successfully as possible, close coordination 

between the Japan Maritime Self-Defense Force (JMSDF) and the Japan Coast Guard 

(JCG) is required. The coordination results in layered defense and information sharing 

between the two agencies. In this study, we focus only on the JMSDF operations – 

especially, the surveillance operation of the Maritime Patrol Aircraft (MPA). The MPA 

performs the most vital role in the MIO to obtain an initial contact of threatening vessels 

and to collect information for future use by other defense assets. 

 

3. JMSDF Operations 

 
 

Figure 3.   JMSDF operations 
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To implement the MIO, JMSDF organizes a Maritime Intercept Group (MIG) that 

is composed of the MPA and maritime vessels, and specifies an area of interest (AOI) for 

surveillance far from Japanese shores. In this study, the following assumptions are made: 

 

 The AOI is a rectangle. 

 There is one MPA patrolling the AOI at a time. And, as a result of successive 

rotation of MPAs, there is constantly one MPA on patrol in the AOI. 

 Maritime vessels also execute (barrier) patrol at the lower boundary of the 

AOI (nearest the Japanese coasts). However, in this thesis, it is assumed that 

they are entirely engaged in the inspection operation of the vessels classified 

as “suspicious” by the MPA. 

 The patrolling MPA executes surveillance (here, random search) over the 

AOI. Whenever it detects an unknown vessel (usually by its radar), it 

approaches the vessel and judges if it is suspicious. It takes several minutes 

for the MPA to process (approach and classify) each contacted/detected 

unknown vessel. 

 Times between detections for unknown vessels are independent random 

variables having exponential distributions. The mean time between detections 

depends on the following factors: 

- Size of the AOI 

- Surveillance speed of the MPA 

- Radar coverage or radar sweep width of the MPA 

- Time to process (approach and classify) each detected vessel 

- Number of unknown vessels in the AOI 

Since the mean time between detections for unknown vessels depends on the 

number of unknown vessels in the AOI, the times between detections are not 

identically distributed: they tend to be longer if unknown vessels are few, and 

shorter if there are many unknown vessels.  

 The number of unknown vessels changes as they are classified and the 

classification information is retained. 
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 The process (approach and classify) time for each detected vessel is assumed 

to be constant. 

 If the MPA detects and classifies a vessel as “suspicious,” it tracks the vessel 

until the inspection unit (maritime ships) arrives to investigate and possibly 

escort the suspicious vessel. While tracking a suspicious vessel, the MPA 

cannot process other vessels. However, the MPA resumes the surveillance 

and the processing of other vessels after turning over the suspicious vessel to 

the inspection unit. Here we do not consider the possibility that the inspection 

units may be limited: there is always one available unit on station in the AOI. 

This is an optimistic assumption to be relaxed in future work. 

 The random time for an inspection unit to relieve the MPA tracking a 

suspicious vessel has an arbitrary distribution DF . Successive MPA tracking 

times are independent and identically distributed. In this study the spatial 

dependence of relief times is not explicitly considered. 

 If an MPA detects and classifies a vessel as “non-suspicious,” it permits the 

vessel to pass through and resumes surveillance to detect and process other 

vessels. The MPA can retain the information (possible position and direction) 

of the vessels classified as non-suspicious for awhile. However, after some 

time passes, the MPA loses the classification information of the vessels. 

Thus, when the MPA detects the vessels somewhere again, the MPA may 

have to process them again. 

 The random time for the MPA to lose the classification information of a 

classified vessel has an arbitrary distribution HF . The times the MPA retains 

information for different vessels are assumed to be independent and 

identically distributed. 

 The MPA has no learning capacity; that is, the MPA does not hold any 

information about a vessel after losing its classification information. 

 The MPA tries to classify each vessel correctly. However, since its 

classification ability is not perfect, commercial vessels may be incorrectly 

classified as “suspicious.” In this case, the MPA is occupied by tracking a 

misclassified commercial vessel for awhile and wastes time. Conversely, the 
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terrorist vessels may be erroneously processed as “non-suspicious.” In this 

case, the MPA ignores the terrorist vessel crossing through the AOI until it 

next detects it as an unknown vessel. 

 

4. Terrorist Vessels 
In this thesis we call hostile terrorist vessels “Red vessels”, “Reds” or “Rs”. We 

assume that Rs operate independently; that is, Rs are assumed not to be executing joint 

operations. If an R is classified as “suspicious” and escorted by the maritime inspection 

units, it has been correctly identified as “threat.” After identified as “threat,” Rs may 

escape, destroy themselves, or attack inspection vessels. However, we do not consider 

such situations in this thesis. 

Specifically, we focus on the interval of time that starts when one R enters the 

AOI and ends when it is either escorted while crossing the AOI or it successfully passes 

through the AOI. We assume there is one R entering the AOI at time 0. The random time 

for an R to pass through the AOI has an arbitrary distribution UF . All of the random times 

whose distributions are referred to above are assumed to be independent in this study. 

 

5. Commercial Vessels 

We call (non-hostile) commercial vessels “White vessels”, “Whites” or “Ws”. 

There are large numbers of Ws coming into, going out of, navigating, or staying in the 

AOI. Each W operates independently. Some Ws may be classified as “suspicious” and 

escorted by the maritime inspection units erroneously. In this thesis, we make the 

simplifying assumption that the total number of Ws in the AOI is constant. For more 

generality, see the working paper [Gaver, Jacobs, and Sato, 2005]7. 

At this point, we consider the legality of the MIO during peacetime situations. 

Subject to the United Nations Convention on the Law of the Sea, ships of all states, 

whether coastal or land-locked, enjoy the right of presumably innocent passage through 

the territorial sea.8 Thus, the maritime forces are not permitted to subjectively and 

                                                 
7 Gaver, Donald P., Jacobs, Patricia A, and Sato, Hiroyuki, “Assessing resource requirements for 

maritime domain awareness and protection,” Working paper, Naval Postgraduate School (2005) 
8 United Nations Convention on the Law of the Sea, Article 17 



14 

haphazardly inspect a vessel with its domestic police law. However, to prevent the 

infringement of the customs, fiscal, immigration or sanitary laws and regulations of the 

coastal state, the coastal state can adopt laws and regulations that conform with the 

provisions of the convention and other rules of international law relating to innocent 

passage through the territorial sea.9 Here we assume that the maritime assets are 

permitted to escort any suspicious vessels for intensive investigation by a specific law or 

regulation under an emergency situation declared by the authorities. 

 

D. STRUCTURES 

1. Notation 

:xM  Length of x -direction side of AOI (See Figure3), which corresponds to the 

length of homeland coastal region defended. 

:yM  Length of y -direction side of AOI (See Figure3) 

:v  Mean speed of the MPA 

:Iv  Mean speed of the inspection units (maritime vessels) 

:u  Mean speed of Ws and Rs 

:τ  Process (=approach and classify) time for each detected vessel 

:f  Radar coverage or radar sweep width of the MPA 

:wwc  Probability that a W is correctly classified as W 

:wrc  Probability that a W is incorrectly classified as R (=1 wwc− ) 

:rrc  Probability that an R is correctly classified as R 

:rwc  Probability that an R is incorrectly classified as W (=1 rrc− ) 

:jt  Time at which the MPA finishes processing the thj detected vessel 

( ) :u jW t  The number of Ws unknown in the AOI at time jt  

                                                 
9 United Nations Convention on the Law of the Sea, Article 21 
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( ) :i jW t  The number of Ws identified as W in the AOI at time jt  

:w  Total number of Ws in the AOI at time ( ( ) ( ))j u j i jt w W t W t= +  

( ) :u jR t  The number of Rs unknown in the AOI at time jt  

( ) :i jR t  The number of Rs thought to be W in the AOI at time jt  

( ) :jR t  Total number of Rs in the AOI at time ( ( ) ( ) ( ))j j u j i jt R t R t R t= +  

( ) :C jN t Cumulative number of Rs correctly classified at time jt  

( ) :E jN t  Cumulative number of Rs being escorted at time jt  

( ) :P jN t Cumulative number of Rs passing through the AOI at time jt  

:CT  Time at which an R is correctly classified before it leaves the AOI 

:ET  Time at which an R is escorted before it leaves the AOI 

1:          

( , )              

0 :  

j

WC j j

If a W is correctly classified at time t

I t H and returns to be unknown at time t H

otherwise

⎧
⎪= +⎨
⎪
⎩

 

1:            

( , )              

0 :  

j

RC j j

If an R is incorrectly classified as W at time t

I t H and returns to be unknown at time t H

otherwise

⎧
⎪= +⎨
⎪
⎩

 

( ) :jL t  Time until the next detection after time jt   

:U  Time an un-encountered R spends in the AOI 

:D  Time the MPA tracking a suspicious vessel is occupied 

:H  Time until the MPA loses classification information of a classified vessel 

( ) :jtδ  Detection rate at time jt  

1/ :µ  Mean time an un-encountered R spends in the AOI  



16 

1/ :φ  Mean time the MPA tracking a suspicious vessel is occupied  

 1/ :ψ  Mean time until the MPA loses classification information of a classified 

vessel 

:CP  Fraction of Rs being detected and correctly classified before leaving the AOI 

:EP  Fraction of Rs being detected, correctly classified, and escorted before 

leaving the AOI 

 

2. Simulation Formulations 

a. Detection Rate 

Most models for target detection are for situations in which there are one 

or few possible targets.10  In the MIO situation, there are many possible targets, and each 

possible target takes time to process. For the Maritime Interdict/Intercept Operations or 

the Maritime Traffic Control situation, target detection (rate) is not principal, but is a 

valuable measure in representing the number of vessels processed in a period. There are 

few quantitative studies concerning the rate at which vessels are processed in an MIO 

setting. The model in Salcedo Franco [1997] treats the number of vessels processed by 

the maritime assets in a period (the processing rate) as constant. 

 In this section, we formulate a detection rate model to handle the number 

of unknown vessels encountered and processed. The detection rate model ( )jtδ depends 

on the five variables: size of the AOI, surveillance speed of the MPA, radar coverage or 

radar sweep width of the MPA, processing (classification) time for each detected vessel, 

and the number of unknown vessels in the AOI. 

 The MPA searches a rectangle region AOI with area x yM M⋅ . The MPA 

travels the AOI at a speed v . The radar coverage or radar footprint is assumed to be a 

square with sides of length f . The number of radar footprints necessary to cover the  

 

 
                                                 

10 Landa Borges, Jose Manuel, “Radar Search and Detection with the CASA 212 S43 Aircraft,” Naval 
Postgraduate School, (2004) 
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whole AOI is ( ) 2/x yM M f⋅  (see Figure4); the time for the MPA to cross one footprint 

area is /f v . Hence, the time for the MPA to transit the entire AOI (with no processing 

time) is 

2
x yM M f
f v
⋅⎛ ⎞

⎜ ⎟
⎝ ⎠

       (3.1) 

 
Figure 4.   The number of footprints necessary to cover the whole AOI  

 

  We assume that the positions of Ws are uniformly distributed over the 

AOI. Our model considers the time interval starting with the entrance of one R into the 

AOI until the R leaves the AOI; no other Rs enter the AOI. During this time interval, the 

number of (unknown) vessels the MPA expects to process while transiting the entire AOI 

is (roughly) 1w + . The processing time of each detected vessel isτ . Thus, the total time 

the MPA spends detecting (transiting) and processing vessels in the AOI during one pass 

through the AOI is 

( )2 1x yM M f w
f v

τ
⋅⎛ ⎞

+ +⎜ ⎟
⎝ ⎠

     (3.2) 

 

 



18 

The long run average rate of target detections/classifications is 

( )2

1

1x y

w
M M f w

f v
τ

⋅

+
⎛ ⎞

+ +⎜ ⎟
⎝ ⎠

       (3.3) 

Hence, detection rate at time is jt is taken to be 

                         
( )2

( ) ( )
  ( )   

( ) ( )

u j u j
j

x y
u j u j

W t R t
t

M M f W t R t
f v

δ
τ

⋅

+
=
⎛ ⎞

+ + ⋅⎜ ⎟
⎝ ⎠

      (3.4) 

If τ =0 and there are always the same number of unknown vessels in the 

AOI, the model (3.4) is the common random search model11. However, in this study, the 

detection rate ( )jtδ depends on τ  and the number of unknown vessels in the AOI at time 

jt . Thus, it is not constant and will vary over time.  

 

b. Mean Time an Un-encountered R Spends in the AOI 

We assume that an R travels along the y -direction of the AOI. The mean 

time an un-encountered R spends in the AOI is 

  1/   yM
u

µ =       (3.5) 

 

c. Mean Time an MPA Tracking a Suspicious Vessel is Occupied 

We approximate the y -position in the AOI where a vessel is detected and 

classified as suspicious by / 2yM . After being classified as R, the vessel keeps advancing 

toward the Japanese shores (the bottom of the AOI) until it meets the inspection maritime 

units. The x -position of the inspection units is assumed to be the same as that of the 

vessel. The relative speed the vessel and the inspection units approach is Iv u+ . The mean 

time an MPA tracks a suspicious vessel is taken to be 

                                                 
11 Wagner, Daniel H., Mylander, Charles W., and Sanders, Thomas J., “Naval Operations Analysis, 3rd 
ed, ” Naval Institute Press, (1999) 
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/ 2
  1/   y

I

M
v u

φ =
+

      (3.6) 

 

d. Mean Time Until the MPA Loses Classification Information of a 
Classified Vessel 

The mean time until the MPA loses classification information depends on 

the MPA’s tactics, systems, human factors, C4ISR capabilities, and vessels behaviors. In 

this thesis the mean time until the MPA loses information concerning a previously 

classified vessel is treated as an external parameter. 

 

e. Fraction of Rs Being Detected and Correctly Classified Before 
Leaving the AOI 

  The fraction of Rs being detected and correctly classified before leaving 

the AOI is taken to be  

( )( )  ,   ,    
( ) ( )

C
C C

C P

N TP T min T U
N T N T

= =
+

     (3.7) 

Below are further details of the simulation. We abbreviate the expression 

“with probability” as w.p. 

( ) ~jL t An exponential distribution LF  with rate ( )jtδ  

~U  An arbitrary distribution UF with mean1/ µ  

~D  An arbitrary distribution DF with mean1/φ  

~H  An arbitrary distribution HF with mean1/ψ  

All sample realizations of the above four random variables are mutually 

independent. 

( )

( )
1

( ) ( )
         . .  

( ) ( ) ( ) ( )

( ) ( )
  . .   

( ) ( ) ( ) ( )

u j u j
j j ww rw

u j u j u j u j
j

u j u j
j j j wr rr

u j u j u j u j

W t R t
t L t w p c c

W t R t W t R t
t

W t R t
t L t D w p c c

W t R t W t R t

+

⎧
+ +⎪ + +⎪= ⎨

⎪ + + +⎪ + +⎩
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jD  in the expression above is the MPA tracking time of the thj classified 

vessel given the vessel is classified as a R; successive MPA tracking times are 

assume to be independent and identically distributed. 

1

1

        

1

        

1

( )
( ) 1 ( , )    . . 

( ) ( )
( )

( )     ( , )    

( )
( ) 1 ( , )    . . 

( )
( )

j k k j

j k k j

u j
u j WC k k

k j u j u j
t t H t

u j

u j WC k k
k j

t t H t

u j
i j WC k k

u j

i j

W t
W t I t H w p

W t R t
W t

W t I t H otherwise

W t
W t I t H w p

W t R
W t

+

+

≤
< + ≤

+

≤
< + ≤

+

⎧
− +⎪ +⎪

= ⎨
⎪ +
⎪
⎩

+ −
+

=

∑

∑

1

1

1

        

        

        

1

( )

( )      ( , )    

( )
( ) 1 ( , )    . . 

( ) ( )
( )

( )     ( ,

j k k j

j k k j

j k k j

k j u j
t t H t

i j WC k k
k j

t t H t

u j
u j RC k k

k j u j u j
t t H t

u j

u j RC k k

t

W t I t H otherwise

R t
R t I t H w p

W t R t
R t

R t I t H

+

+

+

≤
< + ≤

≤
< + ≤

≤
< + ≤

+

⎧
⎪
⎪
⎨
⎪ −
⎪
⎩

− +
+

=
+

∑

∑

∑

1

1

1

        

        

1

        

)    

( )
( ) 1 ( , )    . . 

( ) ( )
( )

( )      ( , )    

(

j k k j

j k k j

j k k j

k j
t t H t

u j
i j RC k k

k j u j u j
t t H t

i j

i j RC k k
k j

t t H t

WC

otherwise

R t
R t I t H w p

W t R t
R t

R t I t H otherwise

I

+

+

+

≤
< + ≤

≤
< + ≤

+

≤
< + ≤

⎧
⎪
⎪
⎨
⎪
⎪
⎩
⎧

+ −⎪ +⎪
= ⎨
⎪ −
⎪
⎩

∑

∑

∑

1

1

( ) 1    . . 
( ) ( ), )

 0    

( ) 1     . . 
( ) ( )( , )

 0     

u k

u k u kk k

u k
rw

u k u kRC k k

W tw p
W t R tt H

otherwise

R tw p c
W t R tI t H

otherwise

+

+

⎧
⎪ += ⎨
⎪⎩
⎧ ⋅⎪ += ⎨
⎪⎩

 

kH  in the expressions above is the random time the MPA retains 

classification information concerning the thk  vessel classified. The information 

retention times are assumed to be independent and identically distributed. 
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( )
1

1 1
1

1 1 1

( )
 1    . .    

( ) ( ) ( )  
 0    

 1        ( ) 0
 ( )

 0    

     ( )  1    
 

       

u j
rr j j

u j u jC j

j C j
P j

j C j j
C

R t
w p c and if t L t U

W t R tN t
otherwise

if t U and N t
N t

otherwise

t if N t becomes at time t
T

other

+

+ +
+

+ + +

⎧
⋅ + ≤⎪ += ⎨

⎪
⎩

> =⎧
= ⎨
⎩

=
∞ wise

⎧
⎨
⎩

    (3.8) 

                         

f. Fraction of Rs being Detected, Correctly Classified, and Escorted 
before Leaving the AOI 

  The fraction of Rs being detected, correctly classified, and escorted before 

leaving the AOI is taken to be 

( )( )  ,   ,    
( ) ( )

E
E E

E P

N TP T min T U
N T N T

= =
+

     (3.9) 

This simulation is the same as the one above (Fraction of Rs being 

detected and correctly classified before leaving the AOI) except for using (3.10) 

instead of (3.8).  
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=
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    (3.10) 

                                   

E. IMPLEMENTATION 
To implement the simulation formulations, we develop a discrete event simulation 

model using Simkit (initially developed by K. Stork12 and subsequently reviewed and 

                                                 
12 Stork, Kirk A., “Sensors in Object Oriented Discrete Event Simulation,” Naval Postgraduate 
School, (1996) 
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extended by Professor Arnold Buss13, Naval Postgraduate School). Simkit has a number 

of pseudo-random generators. The default generator is a Mersenne Twister14. 

Additionally, a variant of the Mersenne Twister is also included, as well as some other 

generators – SIMSCRIPT’s linear congruential generator (based on Peter Lewis' work15), 

a Tausworth generator, and several mixtures. The pooled random number generator in 

Simkit has a cycle length of approximately 262. The pooled generator guarantees that the 

cycle length of random numbers is the product of the two separate cycle lengths of the 

two underlying generators, as long as the two cycle lengths are relatively prime.16  The 

following random variates are generated in Simkit according to the specified 

distributions. All random times are assumed to be independent. 

• ( ) :jL t  Time until the next detection at time jt   

• :U  Time an un-encountered R spends in the AOI 

• :D  Time the MPA tracking a suspicious vessel is occupied 

• :H  Time until the MPA loses classification information of a classified vessel 

 

F. VALIDATIONS 
We assume one R enters the AOI at time 0 and there is a constant number of Ws 

in the AOI, w . When the three distributions, ,  ,   L D UF F and F  are all exponential and the 

MPA has no memory of its classification information, the probability that a typical R is 

detected and correctly classified before the R leaves the AOI, CP , and the probability that 

a typical R is detected, correctly classified, and escorted before the R leaves the AOI, EP , 

                                                 
13 Buss, Arnold H., “Discrete Event Programming with Simkit,” Simulation News Europe, (2001) 
14 Matsumoto, Makoto and Nishimura, Takuji, “Mersenne Twister: A 623-Dimensionally 
Equidistributed Uniform Pseudo-Random Number Generator,” Keio University, (1998)  
15  Lewis, Peter A. W. and Learmonth, Gerard G., “Naval Postgraduate School random number 
generator package LLRANDOM,” Naval Postgraduate School, (1973) 
16 Hovda, Erik K., “A Simulation to determine the Effect that the Army Basic Officer Leadership 
Course will have on Accession Training,” Naval Postgraduate School, (2002) 
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can be calculated analytically.17 To verify the simulation model, we compare the results 

of the simulation model with those of the analytical model. 

• :LF  Distribution of the time between detections 

• :UF  Distribution of the time an un-encountered R spends in the AOI 

• :DF  Distribution of the time the MPA tracking a suspicious vessel is occupied 

 

1. Input Data 
 As an example, we consider the following case as input data: 

:xM  Length of x -direction side of AOI (=400NM) 

:yM  Length of y -direction side of AOI (=200NM) 

:v  Mean speed of the MPA (=200kt) 

:Iv  Mean speed of the inspection units (=30kt) 

:u  Mean speed of Ws and Rs (=15kt) 

:τ  Process (=approach and classify) time for each detected vessel (=4min) 

:f  Radar coverage or radar sweep width (=25NM) 

:wwc  Probability that a W is correctly classified as W (=0.95, 0.99) 

:wrc  Probability that a W is incorrectly classified as R (=1 wwc− ) 

:rrc  Probability that an R is correctly classified as R (=0.6, 0.8) 

:rwc  Probability that an R is incorrectly classified as W (=1 rrc− ) 

:w  Total number of Ws in the AOI (=100) 

( ) ~jL t An exponential distribution LF  with rate δ  (constant) 

                                                 
17 Donald P. Gaver and Patricia A. Jacobs, “A Stochastic Modeling of a Variety of Simple MDA 
Situations,” (June), Naval Postgraduate School (2005). 
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2. Derivation of the Measures of Evaluation (MOEs) for the Analytical 
Model 
a. Probability that one R is detected and correctly classified before 

leaving the AOI, CP  
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b. Probability that one R is detected, correctly classified, and escorted 

before leaving the AOI, EP  
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3. Simulation Implementations 

• For each case, 10,000 replications of the simulation are executed. 

• Each replication begins with a warm-up period. Specifically, about one 

week of operations (surveillance) is simulated before one R enters the AOI 

at time 0. Thus, the R may enter the AOI when the MPA is tracking a 

misclassified W. 
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4. Comparison (Analytical Model vs. Simulation Model) 

a. Probability that one R is detected and correctly classified before 

leaving the AOI, CP  

Simulation model wwc  rrc  
Analytical 

Model 
Estimated 

Mean 
95%LB 95%UB 

0.6 0.1987 0.1976 0.1898 0.2054 
0.95 

0.8 0.2485 0.2483 0.2398 0.2568 

0.6 0.2451 0.2390 0.2306 0.2474 
0.99 

0.8 0.3021 0.2951 0.2862 0.3040 

Table 1. Analytical results vs. simulation results for PC 

 

 
Figure 5.   Analytical results vs. simulation results for PC 

 

Since each analytical result falls in the 95% confidence interval of the 

estimated probability obtained from the simulation model, the results of the simulation 

model and the analytical model are not statistically/significantly different. Thus, we 

validate the simulation model to study the MIO capabilities ( CP ) in various situations. 
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b. Probability that one R is detected, correctly classified and escorted 

before leaving the AOI, EP  

Simulation model wwc  rrc  
Analytical 

model 
Estimated 

Mean 
95%LB 95%UB 

0.6 0.1703 0.1687 0.1614 0.1760 
0.95 

0.8 0.2130 0.2129 0.2049 0.2209 

0.6 0.2101 0.2086 0.2006 0.2166 
0.99 

0.8 0.2590 0.2524 0.2439 0.2609 

Table 2. Analytical results vs. simulation results for PE 

 

       
Figure 6.   Analytical results vs. simulation results for PE 

  

Since each analytical result falls in the 95% confidence interval of the 

estimated probability obtained from the simulation model, the results of the simulation 

model and the analytical model are not statistically/significantly different. Thus, we 

validate the simulation model to study the MIO capabilities ( EP ) for a variety of 

situations. 
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IV. ANALYSIS 

Our interest is to estimate the results of likely Maritime Intercept Operations 

(MIO) capabilities (a series of detection, identification and interception capabilities) and 

to identify the significant factors influencing the results of MIO capabilities 

quantitatively. The MIO capabilities depend on several factors which are tactically 

controllable, systematically controllable, and uncontrollable. In this study, we consider 

the following factors: the size of an area of interest (AOI), the number of neutral vessels 

(Ws) in the AOI, detection and identification capabilities, information retention, and 

coordination between Maritime Patrol Aircraft (MPA) and maritime vessels. 

First, we (hypothetically) specify the factor values for each factor considered in 

this thesis (called Phase1). Next, we design an input data acquisition set by the Nearly-

Orthogonal Latin Hypercube (NOLH) design, and implement the simulations in order to 

establish appropriate regression models of the MIO capabilities (called Phase2). Last, 

based on the regression models, we examine the impact of each factor simultaneously by 

changing the specified factor values (called Phase3). 

 

A. PHASE_1: FACTOR VALUES 

1. Area Size  

The size of the AOI is tactically controllable. It depends on the range of territorial 

waters, geographic features, the number of maritime assets (aircraft and maritime vessels) 

available, intelligence, and emergency levels. Here, we assume yM  is 200NM as 

constant. xM  is considered as being a value in the range 200NM– 400NM.  

 

2. Mean Speed of the MPA 

 We define the mean speed of the MPA, v , as the MPA’s transit speed between the 

location at which the MPA has processed a vessel and the next location the MPA contacts 

another unknown vessel. The maximum speed of the MPA is about 400kt. However, to 

process many vessels, the MPA is frequently forced to fly at low altitudes with a 

relatively low speed. Thus, we assume that v  is 200kt and is constant. 
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3. Mean Speed of Inspection Units 

 When required, the inspection units (maritime ships) should advance toward the 

possible area the suspicious vessel is in as soon as possible. Since the maximum speed of 

a maritime vessel is about 30kt, we assume Iv  is 30kt and is constant. 

 

4. Rader Sweep Width  
 The radar sweep width depends on the radar performance, flight height, target 

strength, human factors, and environmental conditions.18 We can estimate the radar 

sweep width in some specific conditions. In this section, we assume that f  is estimated 

as 15NM and is constant during the MPA’s surveillance operations. This value may 

realistically change with atmospherics and altitude. 

 

5. Processing Time for Each Detected Vessel 

 We define this processing time τ as the time between when the MPA contacts an 

unknown vessel and when the MPA approaches and finishes classifying the vessel. Thus, 

τ depends on radar sweep width, density of vessels in the AOI, appearance of vessels, 

and operator’s skill. Using the values of f  and v  considered above, τ can be considered 

as"( / 2) /  ( ) 3( ) "f v classification time minα α+ = ≈ + .Thus, we assume that  τ  is a 

constant value selected between 4min and 8min. 

 

6. Probability That a W is Correctly Classified as W 
 The MPA operators have knowledge and experience about Ws navigating in 

Japanese territorial waters as a result of their constant surveillance operations. Thus, the 

probability of correctly classifying a White as W, wwc , may be estimated to be fairly high. 

However, some Ws may not have been detected and classified before, or may behave 

strangely or may be required to be inspected. Thus, we assume wwc  is constant with a 

value between 0.8 and 1.0. 

 
                                                 

18 Frederickson, P. A. and K. L. Davidson, “An operational bulk evaporation duct model,” Working 
paper, Meteorology department, Naval Postgraduate School (2003) 



31 

7. Probability That an R is Correctly Classified as R 

 The MPA operators have knowledge and experience about Ws. Thus, if the MPA 

operators find an R behaving unusually among other Ws, the MPA operators may easily 

classify the R as suspicious. However, Red vessels (Rs) may camouflage themselves 

cleverly, or some Ws may be hijacked by terrorist groups. Thus, we assume rrc  is 

constant with a value between 0.6 and 1.0. 

 

8. Mean Time Until the MPA Loses Classification Information of a 
Classified Vessel 

The time until the MPA loses classification information depends on the MPA’s 

tactics, systems, human factors, C4ISR capabilities, and target behaviors. In this section, 

we consider 1/ψ to be a constant with a value between 0 hrs (the MPA has no memory of 

its classification information) and 4 hrs (each classified vessel is tracked by satellite or is 

held in a database or C4ISR systems). 

 

9. Mean Speed of Ws and Rs 

 Based on the common speed of commercial vessels, we consider u as a constant 

with a value between 15kt and 30kt.  

   

10. Total Number of Ws in the AOI 

In this study, we make the simplifying assumption that the total number of Ws in 

the AOI is constant. We can estimate the approximate number of vessels in the AOI by 

the previous flight information and several statistical data. Furthermore, under emergency 

situations, the maritime forces may control maritime traffic (the number of vessels) in the 

AOI. Thus, total number of Ws in the AOI can be known approximately. Here, we 

assume w  is a constant with a value between 0 and 100. 

 

11. The Distribution of Time Between Detections 

 The mean time between detections, which is the reciprocal of the detection 

rate ( )jtδ , is 
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In this study, we assume that the distribution of the times between detections ( LF ) 

is exponential. The times between detections are independent. The following figure 

displays the cumulative distribution function of LF  when xM =200NM yM =200NM, 

f =15NM, v =200kt, ( )u jW t =100, ( )u jR t =1, and τ =4min. In this case, the mean time 

between detections is 

( )2
200 200 15 4100 1

1 15 200 60 12  
( ) 100 1j

min
tδ

⋅⎛ ⎞ + + ⋅⎜ ⎟
⎝ ⎠= ≈

+
 (4.2) 

 

 
Figure 7.   Cumulative distribution function of FL 

 

The assumption that the times between detections have an exponential distribution 

with mean 12 minutes implies that about 2/3 of the times between detections are less than 

12 minutes. 
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12. The Distribution of Time an Un-encountered R Spends in the AOI 

In this study, we assume that the random time an encountered R spends in the 

AOI has a Gamma distribution ( UF ) with mean 1/ yM
u

µ =  and shape parameter Uβ =25. 

The following figure is the cumulative distribution function of UF  when yM =200NM, 

u =20kt and Uβ =25. In this case, the mean time an un-encountered R spends in the AOI 

is 

2001/ 10  
20

yM NM hrs
u kt

µ = = =   (4.3) 

 

 
Figure 8.   Cumulative distribution function of Fu 

 

The figure implies that the time an encountered R spends in the AOI is a random 

value between 5hrs and 15 hrs. When the time is as small as 5hrs, we can consider the 

situation; the R grazes the AOI.  On the other hand, when the time is as large as 15hrs, 

the R can be considered to have crossed the AOI diagonally. 
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13. The Distribution of Time the MPA Tracking a Suspicious Vessel is 
Occupied 

We assume that the random time an MPA tracking a suspicious vessel is occupied 

has a Gamma distribution ( DF ) with mean 
/ 2

1/ y

I

M
v u

φ =
+

 and shape parameter Dβ =25. The 

successive tracking times are independent and identically distributed. The following 

figure displays the cumulative distribution function of DF  when yM = 200NM, Iv =30kt, 

u =20kt, and Dβ =25. In this case the mean time the MPA tracks a suspicious vessel is 

/ 2 200 / 2 1/ 2  
(30 20 )

y

I

M NM hrs
v u kt kt

φ = = =
+ +

   (4.4) 

 This is an approximate time for an inspection unit (maritime vessels) to meet the 

tracked suspicious vessel and release the MPA. 

 
Figure 9.   Cumulative distribution function of FD 

The figure implies that the time the MPA tracks a suspicious vessel is a random 

value between 1hr and 3hrs. When the time is as small as 1hr, we can consider the 

situation; a vessel is classified as R at a position close to the bottom of the AOI (near the 

Japanese shores). On the other hand, when the time is as large as 3hrs, a vessel is 

classified as R at a position far from the bottom of the AOI. 
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14. The Distribution of Time Until the MPA Loses Classification 
Information of a Classified Vessel 

We assume that the random time until the MPA loses classification information of 

a classified vessel has a Gamma distribution ( HF ) with mean 1/ψ  and shape parameter 

Hβ =50. The retention times for different classified vessels are independent and 

identically distributed random variables. The following figure displays the cumulative 

distribution function of HF  when1/ 4hrsψ =  and Hβ = 50. 

 
Figure 10.   Cumulative distribution function of FH 

 

The time until the MPA loses classification information of a classified vessel is a 

random value between 2.5hrs and 5.5hrs. The MPA may lose its classification 

information before the mean time 4.0hrs resulting from the MPA’s tactics and target 

behaviors. On the other hand, it is also possible that the information (possible position) of 

some vessels previously classified is available to the MPA for a long time by the renewal 

of the database (surface pictures) by other defense assets (Satellite, Automatic 

Identification System (AIS)19 ).  

                                                 
19 United States, Government Accountability Office, “Maritime Security: Partnering could reduce 
federal costs and facilitate implementation of automatic vessel identification system ” (2004) 
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B. PHASE_2: LOGISTIC REGRESSION MODELS 

In this phase, we describe and explore appropriate regression models of the MIO 

capabilities by designing the input data by the Nearly-Orthogonal Latin Hypercube 

(NOLH) designs and implementing the simulations. 

 

1. SIMULATION IMPLEMENTATION 

a. Multi-level Factor Values 
Table 3 shows the specified factor values of the multi-level factors. 

 Low High 

xM  200NM 400NM 

w  0 100 

u  15kt 30kt 

τ  4min 8min 

wwc  0.8 1.0 

rrc  0.6 1.0 

1/ψ  0hrs 4hrs 
Table 3. Multi-level factor values 

 

b. Design of Experiment 
For the experiment involving less than 23 factors, NOLH designs are 

available for examining the impact on the simulated MOEs of simultaneously changing 

the specified factor values.20 Since the number of factors of this case is only 7 as shown 

in Table 3, we apply the NOLH to produce our basic design of experiments. However, 

the independent variables in the logistic regression models for CP  and EP , are obtained 

from the analytical Markov model.21  Details are in Appendix_1. 

                                                 
20Kleijnen, Jack P.C., Sanchez, Susan M., Lucas, Thomas W., and Cioppa, Thomas M., “A User’s 
Guide to the Brave New World of Designing Simulation Experiments,” INFORMS Journal on 
Computing, (2005) 
21 Gaver, Donald P. and Jacobs, Patricia A., “A Stochastic Modeling of a Variety of Simple MDA 
Situations,” Naval Postgraduate School, (2005) 
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Table 4 displays the 34 design points. These design points are used as 

input to the simulations. Design points (#1 – 17) are obtained from the NOLH based on 

Table 3 using the NOLH design spreadsheet22. The spreadsheet uses the designs based on 

the Cioppa’s basic NOLH designs23. The Design points (#18 – 34) are intentionally 

added to obtain relatively higher probabilities for CP  and EP  by using the other NOLH 

based on Table 5. 

 
Table 4. Design of experiment 

 

                                                 
22 Sanchez, Susan M., Sanchez, Paul J, Lucas, Thomas W., “NOLH designs spreadsheet,” Naval 
Postgraduate School,(2005). Available online via http://diana.cs.nps.navy.mil/SeedLab/ 
23 Cioppa, Thomas M. “Efficient Nearly Orthogonal and Space-filling Experimental Designs for High-
dimensional Complex Models,” Naval Postgraduate School, (2002) 
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 Low High 

xM  200NM 250NM 

w  0 20 

u  15kt 20kt 

τ  4min 6min 

wwc  0.95 1.0 

rrc  0.90 1.0 

1/ψ  0hrs 4hrs 
 

Table 5. Multi-level factor values additionally considered 

 

2. OUTPUT DATA 

a. Probability that the one R is detected and correctly classified before 

leaving the AOI, CP  

The probability CP  is estimated as the fraction of replications for which the one R 

is detected and correctly classified before leaving the AOI. Table 6, which is sorted in 

descending order based on CP , displays the outputs of the simulation model. Under the 

favorable situations (Design points #18 – 34), CP  is estimated as in the range 0.40 to 0.58 

(Note: CP  can not be more than about 0.6 because the design point #20 is nearly the most 

favorable situation for the Blue force). On the other hand, under the moderate situations 

(Design points #1 – 17), CP  is estimated as in the range 0.10 to 0.37. 
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Table 6. Output of PC 

b.  Probability that the one R is detected, correctly classified, and escorted 

before leaving the AOI, EP  

The probability EP  is estimated as the fraction of replications for which the one R 

is detected, correctly classified, and escorted before leaving the AOI. Table 7, which is 

sorted in descending order based on EP , displays the outputs of the simulation model. 

Under the favorable situations (Design points #18 – 34), EP  is estimated as in the range 

0.34 to 0.51 (Note: EP  can not be more than about 0.53 because the design point #20 is 

nearly the most favorable situation for the Blue force). On the other hand, under the 

moderate situations (Design points #1 – 17), EP  is estimated as in the range 0.08 to 0.32. 
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Table 7. Output of PE 

 

3. LOGISTIC REGRESSION MODELS 

a. Preliminary Study 
As a preliminary study, we explore appropriate logistic regression models 

for the following two cases. Details are in Appendix1. 

Notation: 

:LF  Distribution of the time between detections 

:UF  Distribution of the time an un-encountered R spends in the AOI 

:DF  Distribution of the time for the MPA to track a suspicious vessel 
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CASE-1: 

• LF  is an Exponential distribution with rate ( )jtδ  

• UF  is a Gamma distribution with mean 1/µ  and shape 1 (i.e. Exponential 

distribution) 

• DF  is a Gamma distribution with mean 1/φ  and shape 1 (i.e. Exponential 

distribution) 

• The MPA has no memory of its previous classification information 

(pessimistic assumption) 

CASE-2: 

• LF  is an Exponential distribution with rate ( )jtδ  

• UF  is a Gamma distribution with mean 1/µ and shape β  (=5 to 50) 

• DF  is a Gamma distribution with mean 1/φ  and shape β  which is the same as 

that of UF . (U and D are statistically independent.) 

• The MPA has no memory of its previous classification information 

(pessimistic assumption) 

 

 Our situation assumed in the Phase_1 is a specific case of CASE-2 except 

that the MPA has memory of its previous classification information. Thus, first, we 

explore appropriate logistic regression models which do not consider the MPA’s 

information retention (do not include the mean time until the MPA loses classification 

information of a classified vessel,1/ψ ), based on the following statistically fitted logistic 

regression models (4.5) and (4.6) introduced in CASE2 of Appendix1; (this attempt is 

called “Not considering the MPA’s information retention”). After that, we explore 

appropriate logistic regression models which consider the MPA’s information retention; 

(this attempt is called “Considering the MPA’s information retention”).  
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• Probability that the one R is detected and correctly classified before leaving 

the AOI, CP  
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     This model is the same as (A.13) in Appendix1. 

 

• Probability that the one R is detected, correctly classified, and escorted before 

leaving the AOI, EP  
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    This model is the same as (A.17) in Appendix1. 

 

 Note: The form of the independent/explanatory variables are derived from an 

analytical model. Simple use of the raw parameter values results in uselessly inferior 

predictions. See Appendix1. 
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b. Not Considering the MPA’s Information Retention 

To find appropriate logistic regression models which do not include the 

mean time until the MPA loses classification information of a classified vessel,1/ψ , we 

consider all independent variables of (4.5) (respectively (4.6)) except for ln β  (because 

we assume β =25 as constant in the Phase-1). The statistically fitted logistic regression 

models are follows 

• Probability that the one R is detected and correctly classified before leaving 

the AOI, CP  
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   (4.7) 

 

Since the R-square value of the regression model (4.7) is 0.998, and the p-

value of each independent variable is less than 0.05, the four independent variables of the 

model (4.7) are statistically significant in the logistic regression. Figure 11 and Figure 12 

display the outputs of the estimated regression model (4.7) and those of the simulation 

model. 



44 

     
Figure 11.   Logit [Estimated regression model (4.7) vs. Simulation model] 

 

             
Figure 12.   PC [Estimated regression model (4.7) vs. Simulation model] 

 

Even though the estimated logistic regression model (4.7) does not include 

the mean time until the MPA loses classification information of a classified vessel,1/ψ , 

it summarizes the simulation output well for the input values considered. 



45 

• Probability that the one R is detected, correctly classified, and escorted before 

leaving the AOI, EP  
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   (4.8) 

 

 

 

Since the R-square value of this regression model (4.8) is 1.000, and the p-

value of each independent variable is 0, the five independent variables of the model (4.8) 

are statistically significant in the logistic regression model. Figure 13 and Figure 14 

display the outputs of the estimated regression model (4.8) and those of the simulation 

model.  
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Figure 13.   Logit [Estimated regression model (4.8) vs. Simulation model] 

 

  
Figure 14.   PE [Estimated regression model (4.8) vs. Simulation model] 

 

Even though the estimated logistic regression model (4.8) does not include 

the mean time until the MPA loses classification information of a classified vessel,1/ψ , 

it summarizes the simulation output well for the input values considered. 
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c. Considering the MPA’s Information Retention 

The logistic regression equations (4.7) and (4.8) do not have the mean 

time of information retention,1/ψ , as an independent variable. In Appendix 3, we 

consider logistic regression models which include it as an independent variable. For the 

logistic regression models and input values considered, the estimated coefficient of the 

mean time of information retention,1/ψ , is not statistically different from 0. Thus, the 

regression models (4.7) and (4.8) are used to summarize the simulation output. 

 

C. PHASE_3: ANALYSIS OF THE SIGNIFICANT FACTORS 

1. Significant Factors 

We initially consider seven multi-level factors ( xM , w ,u ,τ , wwc , rrc , and 1/ψ ), 

however, 1/ψ  is omitted because its estimated coefficients in the logistic regression 

models are not statistically different from 0 in Phase_2 (Details are in Appendix3). 

Since yM =200NM, xM represents the size of the AOI. Table 8 displays the six significant 

factors that are analyzed in this phase and their values specified in Phase_1.  

 Low High 

xM  200NM 400NM 

w  0 100 

u  15kt 30kt 

τ  4min 8min 

wwc  0.8 1.0 

rrc  0.6 1.0 
 

Table 8. Significant factors and specified values 

 
2. Logistic Regression Models of the MIO Capabilities 

We use the logistic regression models (4.7) and (4.8) to analyze the significant 

factors influencing the Maritime Intercept Operations (MIO) capabilities. In Appendix4, 

these models are cross-validated by other input values. 
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3. Data Analysis 

CASE-0: 

Initially, we consider a specific situation ( xM =300NM, w =50, u =22.5kt, τ = 

6min, wwc =0.9, and rrc =0.8). Each factor value is the middle value of the specified factor 

values in Table 8. This situation is called CASE-0. 

Probability that the one R is detected and correctly classified before leaving the 

AOI, CP  

The probability CP  is estimated as “0.189” using the model (4.7). Fugure15 

displays the sensitivity of the probability CP  by changing each factor value when other 

factors values are fixed. Figure16 also displays the interaction of any two factors when 

other factor values are fixed. The value CP =0.189 is impractically low, and would be 

unacceptable operationally. The AOI size and the number of distracting Ws are simply 

too large for an unaided MPA to cover adequately. The Blue search capabilities must 

be enhanced in various ways. 

 

 
Figure 15.   Prediction Profiler (CASE-0: PC) 
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Figure 16.   Interaction Profiler (CASE-0: PC) 

 

The following tendencies are suggested by Figure 15 and 16: 

• When xM ( w ,u , respectively) increases, the probability CP  decreases. 

• When wwc  ( rrc , respectively) increases, the probability CP  increases. 

• Changes to the value of the mean time to classify a detected vessel,τ , do not 

change CP  as much as changing the values of the other factors. 

• There is an interaction between xM , w , and wwc .  

• w  is the most influential factor for the probability CP  among the considered 

factors.  

• A relatively high CP  value can be achieved when there are a few Ws and a 

relatively small AOI; however, the CP  value quickly decreases when w  

increases a small amount (0→10).  
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a. Probability that the one R is detected, correctly classified, and escorted 

before leaving the AOI, EP  

The probability EP  is estimated as “0.150” using the model (4.8). Fugure17 

displays the sensitivity of the probability EP  by changing each factor value when other 

factors values are fixed. Figure18 also displays the interaction of any two factors when 

other factor values are fixed. 

 
Figure 17.   Prediction Profiler (CASE-0: PE) 

 

 
Figure 18.   Interaction Profiler (CASE-0: PE) 
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The tendencies of the probability EP are quite similar to those of the probability 

CP . The second most influential factor for the probability EP  can be identified as the 

velocity of the R, u . 

CASE-1: 

 In CASE-1, we consider a specific situation [ xM =200NM, w =33, u =22.5kt, τ = 

6min, wwc =0.9, and rrc =0.8]. w  is the most influential factor in the regression models. 

To decrease w , we reduce the AOI size for an MPA. Here xM and w  are assumed to be 

reduced to 2/3 of the CASE-0 values ( xM =300NM→200NM, w =50→33). To 

implement this change, more MPAs or other surveillance assets are required in operation 

to cover the original size of the area ( x yM M× =300NM×200NM); otherwise more 

reliable intelligence about the path of Rs is required to designate a specific AOI whose 

size is relatively small. For these parameter values, the probabilities CP  and EP are 

estimated as 0.278 and 0.222 respectively. By reducing the AOI size by 2/3, CP  

(respectively EP ) becomes 1.47 times [0.189→0.278] (respectively 1.48 times 

[0.150→0.222]) of that of CASE-0. 

     
Figure 19.   Prediction Profiler (CASE-1: PC) 

 

     
Figure 20.   Prediction Profiler (CASE-1: PE) 
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CASE-2: 

In CASE-2, we consider a specific situation [ xM =300NM, w =50, u =22.5kt, τ = 

6min, wwc =0.95, and rrc =0.90] in which the AOI size per an MPA can not be reduced 

(because additional MPAs or other surveillance assets are not available or because more 

specific intelligence about the path of Rs is not available): however, high identification 

capabilities wwc and rrc  are attainable using identification systems (database, experiences, 

and training.) Here we assume that wwc =0.90→0.95, rrc =0.80→0.90. In this case, the 

probabilities CP  and EP are estimated as 0.236 and 0.187 respectively. By enhancing the 

identification capabilities as mentioned above, CP  (respectively EP ) becomes 1.25 times 

[0.189→0.236] (respectively 1.25 times [0.150→0.187]) of that of CASE-0. However, 

the effect obtained by enhancing identification capabilities is smaller than that obtained 

by reducing the AOI size. Such low values are operationally unsatisfactory. 

 

 
Figure 21.   Prediction Profiler (CASE-2: PC) 

 

 
 

Figure 22.   Prediction Profiler (CASE-2: PE) 
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CASE-3: 

 In Case-3, we consider a specific situation [ xM =200NM, w =33, u =22.5kt, τ = 

6min, wwc =0.95, and rrc =0.90] in which the changes in parameter values considered in 

CASE-1 and CASE-2 are applied simultaneously. In this case, the probabilities CP  and 

EP are estimated as 0.343 and 0.274 respectively. By considering both measures 

(tactically reducing the AOI size per an MPA, and enhancing the identification 

capabilities), CP  (respectively EP ) becomes 1.81 times [0.189→0.343] (respectively 1.83 

times [0.150→0.274]) of that of CASE-0. However, CP =0.343 and EP =0.274 are still not 

operationally acceptable. 

 
Figure 23.   Prediction Profiler (CASE-3: PC) 

 
Figure 24.   Prediction Profiler (CASE-3: PE) 

 

For this analysis, we apply various assumptions (scenario, data, distributions, and 

modeling). If they are “reasonable,” it would imply that a single Maritime Patrol Aircraft 

(MPA) is operationally inadequate to intercept an R before it leaves an AOI. If more 

MPAs are simultaneously available, they should be used in the surveillance operation. 

Otherwise, measures which reduce the number of unidentified Ws in an AOI should be  
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applied as much as possible. These measures include intelligence operations, maritime 

traffic control, and additional surveillance operations by other defense assets (satellites, 

helicopters, and maritime vessels). 
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V. CONCLUSION AND FUTURE IMPROVEMENTS 

A. GENERAL 
 This research formulates and exercises stochastic and simulation models to assess 

the Maritime Intercept Operations (MIO) capabilities and to quantitatively identify the 

significant factors influencing the MIO capabilities to detect and interdict hostile vessels. 

The research is based on various assumptions: scenario, data, distributions of the events, 

and models. It also focuses explicitly on the surveillance operations of the Maritime 

Patrol Aircraft (MPA) in the MIO. The model is also not spatial. Thus, the results of the 

analysis can not be directly applied to plan real concepts of operations (CONOPS) and 

operational plans (OPLAN). But they provide very useful intuition, enhancement, and 

stimulation. As a result, available field data should be collected to assess the 

reasonableness of the model assumptions. Although we focus on the MPA operations, the 

effects of other components (intelligence, helicopters, unmanned surveillance systems, 

maritime vessels, and C4I systems) can be studied using this MPA-based analysis. For 

example, reliable information concerning presence of threatening vessels enables 

assignment of smaller size of Area of Interest (AOI) to an MPA, and surveillance 

operations by helicopters and maritime vessels can be used to complement the MPA’s 

surveillance operations. 

 

B. CONCLUSIONS 

1. MIO Capabilities 

 If our assumptions (scenario, data, distributions of the events, parameter values, 

and models) are “reasonable,” the probability that one R is detected and correctly 

classified before leaving the AOI, CP , is estimated as 0.189 (CASE-0) to 0.343 (CASE-

3); the probability that one R is detected, correctly classified, and escorted before leaving 

the AOI, EP , is estimated as 0.150 (CASE-0) to 0.274 (CASE-3). This would be 

operationally unacceptable and would imply that a single unassisted MPA is 

operationally inadequate. If more MPAs are simultaneously available, they should be 

used in the surveillance operation. Otherwise, the complementary surveillance 
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operations by other defense components (intelligence, helicopters, maritime vessels, 

C4ISR systems) are surely indispensable for the success of the MIO capabilities. 

• CASE-0 ( xM =300NM, w =50, u =22.5kt, τ = 6min, wwc =0.90, and rrc =0.80) 

• CASE-3 ( xM =200NM, w =33, u =22.5kt, τ = 6min, wwc =0.95, and rrc =0.90) 

 

2. Factors Influencing the MIO Capabilities 

 We initially consider more than ten factors that possibly influence the MIO 

capabilities. Since the length of y -direction side of the AOI, mean speed of the MPA, 

mean speed of Inspection Units, radar sweep width, and the distributions on the events 

(which are surely influential to the MIO capabilities) are assumed to be constant, we 

eventually consider the following seven factors which are important to evaluate current 

programs and study new, alternative programs. 

• :w The number of Ws in an AOI  

• :xM Length of x -direction side of the AOI 

• :u Mean speed of Ws and Rs 

• :τ Process time for each detected vessel 

• :wwc Probability that a W is correctly classified as W 

• :rrc Probability that a R is correctly classified as R 

• 1/ :ψ Mean time until the MPA loses classification information of a classified 

vessel. 

The most significant factor for the MIO capabilities is “ w ” that must be classified 

by one MPA. Relative high probabilities CP  and EP  can be achieved when there are few 

Ws (0 to 10) and a relative small AOI; however, the capabilities quickly decrease by 

increasing w  to more than 10. Thus, for the success of the MIO, we should plan possible 

programs that enable restriction of w  per one MPA. 
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• Increasing the number of the MPAs and reducing the number of unidentified 

Ws which should be processed by an MPA (i.e. reducing xM  of the AOI per 

one MPA) 

• Enhancing intelligence operations and specifying a small AOI (or choke point 

area) where Rs probably pass through.   

• If traffic control is available for vessels entering Japanese territorial areas, it 

should be applied as often as possible. 

The mean speed of the Ws and Rs is probably the second most significant factor 

for the MIO capabilities. Thus, for Rs, transiting with a high speed may be a good way to 

intrude Japanese shores successfully. However, their unusual behavior among other Ws 

may make them easily identifiable as R using overhead sensors (satellites, the MPAs, and 

helicopters). 

The AOI size (here, represented by xM  with a constant yM =200NM) influences 

w  which should be processed per one MPA. The large AOI forces an MPA not only to 

process more vessels and but also to take more time to cover the whole AOI. Thus, the 

AOI size can be considered as significant as w . 

 The identification capabilities wwc and rrc  are also important factors to enhance 

the MIO capabilities: however, their effects are smaller than the programs to restrict w  

which should be processed by one MPA – such as increasing the number of the MPAs in 

operation and enhancing intelligence operations. Since it is usually difficult to procure 

more MPAs or to assign many MPAs simultaneously to surveillance operations, our 

interests may focus on enhancing the identification capabilities to deter Rs.  However, 

since their effects are moderate, we should consider the cost effectiveness of procuring 

new identification systems or to applying new programs. 

 In this study, the process time for each detected vessel τ  and the mean time until 

the MPA loses classification information of a classified vessel 1/ψ  are identified as 

operationally insignificant factors. However, more time spent identifying the vessel may 

increase the MPA’s identification capability for an unknown vessel; this can enhance the 
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MIO capabilities; see the working paper [Gaver, Jacobs, and Sato, 2005]24. Moreover, 

although information retention may not be significant for one MPA itself, it is important 

when we consider joint operations with other defense components for which information 

sharing is required.    

 

C. FUTURE IMPROVEMENTS 
The analysis provides several insights on the MIO capabilities even though we 

focus only on MPA surveillance operations. However, to support the planning of 

appropriate CONOPS and OPLAN practically, we must not only review our arbitrary 

assumptions (scenario, data, distributions and models) by analyzing available field data 

but we must also study the MIO capabilities more intensively by considering/ 

coordinating other defense components (intelligence, helicopters, maritime vessels and 

C4ISR systems) and developing more comprehensive large-scale models to study the 

missions/functions of the defense components, the coordination of the components, the 

information sharing among the components, and the significance of each component and 

its sub systems. 

                                                 
24 Gaver, Donald P., Jacobs, Patricia A, and Sato, Hiroyuki, “Assessing resource requirements for 
maritime domain awareness and protection,” Working paper, Naval Postgraduate School (2005) 
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APPENDIX 1   LOGISTIC REGRESSION MODELS 

A. OBJECTIVE 
The objective of this appendix is to describe and explore appropriate logistic 

regression models for summarizing simulation output of the Maritime Intercept 

Operations (MIO) capabilities. 

 

B.    MEASURES OF EFFECTIVENESS 
1. Probability that a typical R is detected and correctly classified before 

leaving the Area of Interest (AOI), CP  

2. Probability that a typical R is detected, correctly classified and escorted 

before leaving the AOI, EP  

 

C. NOTATION 

:xM  Length of x -direction side of the AOI 

:yM  Length of y -direction side of the AOI  

:v   Mean speed of the Maritime Patrol Aircraft (MPA)  

:Iv  Mean speed of the inspective maritime vessels 

:u   Mean speed of Ws and Rs 

:τ  Process (=approach and identify) time for each detected vessel 

:f  Radar coverage or radar sweep width 

:wwc  Probability that a W is correctly classified as W 

:wrc  Probability that a W is incorrectly classified as R (=1 wwc− ) 

:rrc  Probability that an R is correctly classified as R 

:rwc  Probability that an R is incorrectly classified as W (=1 rrc− ) 
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:jt  Time at which the MPA finishes processing the thj  detected vessel 

( ) :u jW t  The number of Ws unknown in the AOI at time jt  

( ) :i jW t  The number of Ws identified as W in the AOI at time jt  

:w  Total number of Ws in the AOI at time jt  ( ( ) ( )u j i jw W t W t= + ) 

( ) :u jR t  The number of Rs unknown in the AOI at time jt  

( ) :i jR t  The number of Rs thought to be W in the AOI at time jt  

( ) :jR t  Total number of Rs in the AOI at time jt  ( ( ) ( ) ( )j u j i jR t R t R t= + ) 

( ) :jL t  Time until the next detection at time jt   

:U  Time an un-encountered R spends in the AOI 

:D  Time the MPA tracking a suspicious vessel is occupied 

:LF  Distribution of the time between detections 

:UF  Distribution of the time an un-encountered R spends in the AOI 

:DF  Distribution of the time for the MPA to track a suspicious vessel 

( ) :jtδ  Detections rate at time jt  

( )2

( ) ( )
 ( )  

( ) ( )

u j u j
j

x y
u j u j

W t R t
t

M M f W t R t
f v

δ
τ

⋅

+
=
⎛ ⎞

+ + ⋅⎜ ⎟
⎝ ⎠

       (A.1) 

1/ :µ  Mean time an un-encountered R spends in the AOI 

 1/  yM
u

µ =        (A.2) 

1/ :φ  Mean time for the MPA to track a suspicious vessel  
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D. CASE STUDIES 
In this appendix, we consider the following two cases: 

CASE-1: 

• LF  is an Exponential distribution with rate ( )jtδ  

• UF  is a Gamma distribution with mean 1/µ  and shape 1 (i.e. Exponential 

distribution) 

• DF  is a Gamma distribution with mean 1/φ  and shape 1 (i.e. Exponential 

distribution) 

• The MPA has no memory of its previous classification information 

(pessimistic assumption) 

 

CASE-2: 

• LF  is an Exponential distribution with rate ( )jtδ  

• UF  is a Gamma distribution with mean 1/µ and shape β  (=5 to 50) 

• DF  is a Gamma distribution with mean 1/φ  and shape β  which is the 

same as that of UF . (U and D are statistically independent.) 

• The MPA has no memory of its previous classification information 

(pessimistic assumption) 

 

E. MODEL IMPLEMENTATION 
Input parameters: 

1. Constant parameters 

300 ,   300 ,   30 ,   15y IM NM v kt v kt f NM= = = =  



62 

2. Multi-level parameters 

For the following six parameters/factors, we consider the range between 

Low and High respectively. 

 Low High 

xM  50NM 300NM 

w  0 50 

u  10kt 30kt 

τ  4min 8min 

wwc  0.9 1.0 

rrc  0.8 1.0 
Table 9. Multi-level parameters 

Design of experiments: 

For the experiment involving less than 23 factors, Nearly-Orthogonal Latin 

Hypercube (NOLH) designs are available for examining the impact on the simulated 

MOE when simultaneously changing the specified factor values.25  

Since the number of factors in CASE-1 is 6 ( ,  ,  ,  ,  ,  x ww rrM w u C Cτ ) and the 

number of factors in CASE-2 is 7 ( ,  ,  ,  ,  ,  ,   x ww rrM w u C Cτ β ), we apply the NOLH to 

produce our basic designs of experiment. However, the independent variables in the 

logistic regression models of CP  and EP  are those obtained for the logit of the 

probabilities obtained from the analytical Markov model.26 Details are in Appendix_2. 

The logit of the analytical Markovian model for CP  (respectively EP ) appears in (A.4) 

(respectively (A.5)). 

(1 ) 1 ln ln ln ln  
1 2 3

C ww x
rr

C I y

P w c M wc u
P v u f v M

τ
⎛ ⎞⎛ ⎞ − += − − + + ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟− + ⋅⎝ ⎠ ⎝ ⎠

  (A.4) 

                                                 
25 Kleijnen, Jack P.C., Sanchez, Susan M., Lucas, Thomas W., and Cioppa, Thomas M, “A User’s 
Guide to the Brave New World of Designing Simulation Experiment,” INFORMS Journal on 
Computing (2005) 
26 Gaver, Donald P. and Jacobs, Patricia A., “A Stochastic Modeling of a Variety of Simple MDA 
Situations,” (June), Naval Postgraduate School (2005) 
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CASE-1: 

Table 10 displays the 42 design points. These design points are used as 

input to the simulations. Design points (#1 – 34) are obtained from NOLH and design 

points (#35 – 42) are intentionally added to obtain higher probabilities for CP  and EP . 

For each design point, 104=10,000 replications of the simulation are executed. 

   
Table 10. Design of experiment (CASE-1) 
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CASE-2: 

Table 11 displays the 42 design points. These design points are used as 

input data sets for the simulation. Design points (#1 – 34) are obtained by NOLH and 

design points (#35 – 42) are intentionally added to obtain higher probabilities for CP  and 

EP . For each design point, 104=10,000 replications of the simulation are executed. 

 
Table 11. Design of experiment (CASE-2) 

 

F. DATA ANALYSIS 

CASE-1: 

1. Probability that the one R is detected and correctly classified before 

leaving the AOI, CP  
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Output data: 

The probability, CP , is estimated as the fraction of replications for which 

an R is detected and correctly classified before leaving the AOI. Table 12 displays the 

outputs of the analytical Markov model (A.4) and those of the Exponential simulation 

model (all random times in the simulation are independent and have exponential 

distributions). Table 12 is sorted in descending order based on the outputs of the 

Exponential simulation model. The maximum value of CP  is estimated as about 0.9. 

 
Table 12. Analytical Markov model (A.4) and Exponential simulation model 
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Figure 25 and Figure 26 display the outputs of the analytical Markov 

model (A.4) and those of the Exponential simulation model. 

 

 
Figure 25.   Logit [Analytical Markov model (A.4) vs. Exponential simulation model] 

 

         
Figure 26.   PC [Analytical Markov model (A.4) vs. Exponential simulation model] 
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Logistic regression model: 

We consider the following regression model based on (A.4) 

( )

0 1 2

3

 ln ln ln
1

1(1 )                             ln  
2 3

C
rr
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ww x

I y

P b b c b u
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v u f v M
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= + +⎜ ⎟−⎝ ⎠
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     (A.6) 

• When 0 0b ≠  

 
Since the p-value of 0b  is 0.225>0.05 and the 90% confidence interval 

contains 0. We next treat 0b  as 0.  

•   When 0 0b =  
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      Thus, the estimated logistic regression model is  

            
( )

 Estimated ln
1

1(1 ) 1.025ln 1.001ln 1.007 ln  
2 3

C

C

ww x
rr

I y

P
P

ww c Mc u
v u f v M

τ

⎛ ⎞
⎜ ⎟−⎝ ⎠

⎛ ⎞+ ⋅−= − − + +⎜ ⎟⎜ ⎟+ ⋅⎝ ⎠

   (A.7) 

Since the estimated coefficients of the independent random variables are 

not statistically different than those of the Analytical Markov model (A.4), the estimated 

logistic regression model (A.7) is not statistically different from the Analytical Markov 

model (A.4). Table 13 displays the outputs of the estimated regression model (A.7) and 

those of the Exponential simulation model. Table 13 is sorted in descending order based 

on the outputs of the Exponential simulation model. 

 
Table 13. Estimated model (A.7) and Exponential simulation model 
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Figures 27 and Figure 28 display the outputs of the estimated regression 

model (A.7) and those of the Exponential simulation model. The estimated regression 

model (A.7) is not statistically different from the Exponential simulation model. 

 

         
Figure 27.   Logit [Estimated model (A.7) vs. Exponential simulation model] 

 
 

     
Figure 28.   PC [Estimated model (A.7) vs. Exponential simulation model] 
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2. Probability that the one R is detected, correctly classified and escorted 

before leaving the AOI, EP  

Output data: 

The probability, EP , is estimated as the fraction of replications for which 

an R is detected, correctly classified, and escorted before leaving the AOI. Table 14 

displays the outputs of the analytical Markov model (A.5) and those of the Exponential 

simulation model (all random times in the simulation are independent and have 

exponential distributions). Table 14 is sorted in descending order based on the outputs of 

the Exponential simulation model. The maximum value of EP  is estimated as about 0.8.  

 
Table 14. Analytical Markov model (A.5) and Exponential simulation model 
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Figure 29 and Figure 30 display the outputs of the analytical Markov 

model (A.5) and those of the Exponential simulation model. 

 

 
Figure 29.   Logit [Analytical Markov model (A.5) vs. Exponential simulation model] 

 

   
Figure 30.   PE [Analytical Markov model (A.5) vs. Exponential simulation model] 
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Logistic regression model: 

We consider the following regression model based on (A.5) 

 

( )

( )

0 1 2 3

4

 ln ln ln ln 2 2
1

1           ln (1 ) 2 3   

E
rr I

E

x
rr ww I

y

P b b c b u b v u
P

M wb c w c v u
f v M

τ

⎛ ⎞
= + + + + +⎜ ⎟−⎝ ⎠
⎛ ⎞⎛ ⎞++ − + + ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠

   (A.8) 

• When 0 0b ≠  

 
Since the p-value of 0b  is 0.738>0.05 and the 90% confidence interval 

contains 0. We next treat 0b  as 0.  

•  When 0 0b =  
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Thus, the estimated logistic regression model is  

            ( )

( )

 Estimated ln
1

     1.040ln 0.999ln 1.008ln 2 2

1         1.007 ln (1 ) 2 3   

E

E

rr I

x
rr ww I

y

P
P

c u v u

M wc w c v u
f v M

τ

⎛ ⎞
⎜ ⎟−⎝ ⎠

= − + +

⎛ ⎞⎛ ⎞+− + − + + ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠

   (A.9) 

Since the estimated coefficients of the independent variables are not 

statistically different from those of the Analytical Markov model (A.5), the estimated 

regression model (A.9) is not statistically different from the Analytical Markov model 

(A.5). Table 15 displays the outputs of the estimated regression model (A.9) and those of 

the Exponential simulation model. Table 15 is sorted in descending order based on the 

outputs of the Exponential simulation model. 

 
Table 15. Estimated model (A.9) and Exponential simulation model 
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Figures 31 and Figure 32 display the outputs of the estimated regression 

model (A.9) and those of the Exponential simulation model.  

 

 
Figure 31.   Logit [Estimated model (A.9) vs. Exponential simulation model] 

 

    
Figure 32.   PE [Estimated model (A.9) vs. Exponential simulation model] 
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CASE-2: 

• LF  is an Exponential distribution with rate ( )jtδ  

• UF  is a Gamma distribution with mean 1/µ and shape β  (=5 to 50) 

• DF  is a Gamma distribution with mean 1/φ  and shape β  which is same as 

that of UF . (U and D are statistically independent.) 

• The MPA has no memory of its previous classification information 

(pessimistic assumption) 

Input parameters: 

• Constant parameters 

300 ,   300 ,   30 ,   15y IM NM v kt v kt f NM= = = =  

• Multi-level parameters 

Table 16 shows the specified range of the seven multi-level 

parameters/factors respectively. β  is the common shape parameter for the Gamma 

distributions UF  (distribution of the time an un-encountered R spends in the AOI) and DF  

(distribution of the time for the MPA to track a suspicious vessel). 

 Low High 

xM  50NM 300NM 

w  0 50 

u  10kt 30kt 

τ  4min 8min 

wwc  0.9 1.0 

rrc  0.8 1.0 

β  5 50 
Table 16. Multi-level parameters 
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1. Probability that the one R is detected and correctly classified before 

leaving the AOI, CP  

Output data: 

The probability, CP , is estimated as the fraction of replications for which 

an R is detected and correctly classified before leaving the AOI. Table 17 displays the 

outputs of the Gamma simulation model. As a reference, the outputs of the analytical 

Markov model (A.4) ( UF  and DF  follow exponential distribution) are also shown. Table 

17 is sorted in descending order based on the outputs of the Gamma simulation model. 

The maximum value of CP   is estimated as almost 1.0. 

 
Table 17. Analytical Markov model (A.4) and Gamma simulation model 
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Figure 33 and Figure 34 display the outputs of the analytical Markov 

model (A.4) and those of the Gamma simulation model. 

  

 
Figure 33.   Logit [Analytical Markov model (A.4) vs. Gamma simulation model] 

 

    
Figure 34.   PC [Analytical Markov model (A.4) vs. Gamma simulation model] 
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Logistic regression model: 

We consider the following regression model based on (A.4). 
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0 1 2 3

4

ln ln ln ln
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2 3
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   (A.10) 

• When 0 0b ≠  

 
Since the p-value of 0b  is 0.683>0.05 and the 90% confidence interval 

contains 0, we next treat 0b  as 0.  

• When 0 0b =  
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Although the p-value of 3b  is 0.173>0.05 and the 90% confidence interval 

contains 0, here we hold the variable ln β  in the regression model. The estimated logistic 

regression model is 

( )

 ln 4.035ln 2.354ln 0.215ln
1

1(1 )                            2.445ln   
2 3

C
rr

C

ww x

I y

P c u
P

ww c M
v u f v M

β

τ

⎛ ⎞
= − +⎜ ⎟−⎝ ⎠

⎛ ⎞+−− + +⎜ ⎟⎜ ⎟+ ⋅⎝ ⎠

   (A.11) 

  

Table 18 displays the outputs of the estimated regression model (A.11) 

and those of the Gamma simulation model. Table 18 is sorted in descending order based 

on the outputs of the Gamma simulation model. 

 
Table 18. Estimated regression model (A.11) and Gamma simulation model 
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Figure 35 and Figure 36 display the outputs of the estimated regression 

model (A.11) and those of the Gamma simulation model. 

 

 
Figure 35.   Logit [Estimated regression model (A.11) vs. Gamma simulation model] 

 

 
Figure 36.   PC [Estimated regression model (A.11) vs. Gamma simulation model] 
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Here we still consider the regression model which includes quadratic terms. 

( ) ( ) ( )

( ) ( )
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   (A.12) 

             

The statistically fitted quadratic regression model, which includes linear and 

quadratic terms is 
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   (A.13) 

   

 
Although the p-value of 1b  is 0.05 and the 90% confidence interval barely 

contains 0, we treat the variable ln rrc  as a significant factor in the regression model. 



82 

Table 19 displays the outputs of the estimated quadratic regression model (A.13) 

and those of the Gamma simulation model. Table 19 is sorted in descending order based 

on the outputs of the Gamma simulation model. 

 

 
Table 19. Estimated regression model (A.13) and Gamma simulation model 
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Figure 37 and Figure 38 display the outputs of the estimated quadratic regression 

model (A.13) and those of the Gamma simulation model. Although, at each design point, 

the difference between the output of the estimated regression model (A.13) and that of 

the Gamma simulation model is moderate, the estimated regression model (A.13) 

summarizes the output of the Gamma simulation model well. 

 

 
Figure 37.   Logit [Estimated regression model (A.13) vs. Gamma simulation model] 
 

        
Figure 38.   PC [Estimated regression model (A.13) vs. Gamma simulation model] 
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2. Probability that the one R is detected, correctly classified, and escorted 

before leaving the AOI, EP  

Output data: 

The probability, EP , is estimated as the fraction of replications for which 

an R is detected, correctly classified, and escorted before leaving the AOI. Table 20 

displays the outputs of the Gamma simulation model. As a reference, the outputs of the 

analytical Markov model (A.5) ( UF  and DF  follow exponential distribution) are also 

shown. Table 20 is sorted in descending order based on the outputs of the Gamma 

simulation model. The maximum value of EP  is estimated as almost 1.0. 

 
Table 20. Analytical Markov model (A.5) and Gamma simulation model 
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Figure 39 and Figure 40 display the outputs of the analytical Markov 

model (A.5) and those of the Gamma simulation model. 

 

     
Figure 39.   Logit [Analytical Markov model (A.5) vs. Gamma simulation model] 

 

   
Figure 40.   PE [Analytical Markov model (A.5) vs. Gamma simulation model] 
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Logistic regression model: 

 We consider the following regression model based on (A.5) 
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   (A.14) 

•  When 0 0b ≠  

             
     Since the p-value of 0b  is 0.079>0.05 and the 90% confidence interval 

contains 0, we next treat 0b  as 0.  

•  When 0 0b =  
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Although the p-value of 4b  is 0.25>0.05 and the 90% confidence interval contains 

0, here we hold the variable ln β  in the regression model. The estimated logistic 

regression model is 
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  (A.15) 

 

Table 21 displays the outputs of the estimated regression model (A.15) and those 

of the Gamma simulation model. Table 21 is sorted in descending order based on the 

outputs of the Gamma simulation model. 

 
Table 21. Estimated regression model (A.15) and Gamma simulation model 
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Figure 41 and Figure 42 display the outputs of the estimated regression model 

(A.15) and those of the Gamma simulation model. 

 

 
Figure 41.   Logit [Estimated regression model (A.15) vs. Gamma simulation model] 

 

  
Figure 42.   PE [Estimated regression model (A.15) vs. Gamma simulation model] 
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Here we still consider the regression model which includes quadratic terms. 
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     (A.16) 

The statistically fitted quadratic regression model, which includes linear and 

quadratic terms is  

( )

( )

( )

 ln 1.871ln 2.689ln 3.911ln 2 2 0.302ln
1

1                 9.810ln (1 ) 2 3

1                  +2.128 ln (1 ) 2 3

E
rr I

E

x
rr ww I

y

x
rr ww I

y

P c u v u
P

M wc w c v u
f v M

M wc w c v u
f v M

β

τ

τ

⎛ ⎞
= − + + +⎜ ⎟−⎝ ⎠

⎛ ⎞⎛ ⎞+− + − + + ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠

⎛ ⎛ ⎞++ − + + ⋅ +⎜ ⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝

2

  
⎛ ⎞⎞
⎜ ⎟⎟⎜ ⎟⎜ ⎟⎠⎝ ⎠

 (A.17) 

 
Although the p-value of 1b  is 0.09>0.05 and the 90% confidence interval contains 

0, we treat the variable ln rrc  as a significant factor in the regression model. 
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Table 22 displays the outputs of the estimated quadratic regression model (A.17) 

and those of the Gamma simulation model. Table 22 is sorted in descending order based 

on the outputs of the Gamma simulation model. 

 

 
Table 22. Estimated regression model (A.17) and Gamma simulation model 
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Figure 43 and Figure 44 display the outputs of the estimated quadratic regression 

model (A.17) and those of the Gamma simulation model. Although, at each design point, 

the difference between the output of the estimated regression model (A.17) and that of 

the Gamma simulation model is moderate, the estimated regression model (A.17) 

summarizes the output of the Gamma simulation model well. 

 
Figure 43.   Logit [Estimated regression model (A.17) vs. Gamma simulation model] 

 

            
Figure 44.   PE [Estimated regression model (A.17) vs. Gamma simulation model] 
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G. DISCUSSION AND CONCLUSION 

 
CASE-1: 

• LF  is an Exponential distribution with rate ( )jtδ  

• UF  is a Gamma distribution with mean 1/µ  and shape 1 (i.e. Exponential 

distribution) 

• DF  is a Gamma distribution with mean 1/φ  and shape 1 (i.e. Exponential 

distribution) 

• The MPA has no memory of its previous classification information 

(pessimistic assumption) 

Tables 12 – 15 and the corresponding graphs show that if an all Markov model (in 

which all random variables are independent and exponentially distributed) is simulated, 

compared numerically to a corresponding analytical/numerical-calculated Markov model, 

and compared to a statistically fitted logistic regression model based on the explanatory 

variables/parameters suggested by the Markov model, the models’ results for both CP  

and EP are very close for the parameter values selected. However, the highest EP values 

are approximately 0.8, and these are achieved only when there are a few ( ≈ 0 or 1) 

Whites in the area of interest (AOI) and wwc ≈ 1.0 and rrc ≈ 1.0. A large number of 

Whites ( w ≈ 25–50) and only slightly less high classification capabilities wwc  and rrc  

( ≈ 0.90–0.95) reduces CP  and EP quickly, to approximately 0.25–0.50. This would be 

operationally unacceptable; so if the all Markov model were “reasonable,” it would imply 

that a single Maritime Patrol Aircraft (MPA) is operationally inadequate, especially if it 

has no effective memory of previous identifications, and/or is not effectively supported 

(by an overhead/satellite sensor system), and does not have warning intelligence. The 

number of unidentified vessels in the AOI may be decreased by a highly effective 

Automatic Identification System (AIS)27 coverage. 

 
                                                 

27 United States, Government Accountability Office, “Maritime Security: Partnering could reduce 
federal costs and facilitate implementation of automatic vessel identification system ” (2004) 
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CASE-2: 

• LF  is an Exponential distribution with rate ( )jtδ  

• UF  is a Gamma distribution with mean 1/µ and shape β  (=5 to 50) 

• DF  is a Gamma distribution with mean 1/φ  and shape β  which is the same as 

that of UF . (U and D are statistically independent.) 

• The MPA has no memory of its previous classification information 

(pessimistic assumption) 

 

Examination of Tables 18, 19, 21, and 22 along with the corresponding graphs 

(Simulation model, Analytical/numerical-calculated Markov model, and statistically 

fitted linear logistic regression applied to simulated data) show that the results for CP  and 

EP  differ considerably between the models. The Markov model (in which all random 

variables are independent and exponentially distributed) is pessimistic when compared to 

the more physically plausible gamma model with shape parameter β (approximately 25 

or more). For example, for design point #39 with shape parameter β =5 (not large), the 

simple Markov model gives EP ≈ 0.76, while the simulated gamma model gives EP ≈ 0.96 

(which is possibly unrealistically high). However, when a statistically fitted quadratic 

regression model is considered, the results for CP  and EP  for the estimated logistic 

regression model are close to those of the gamma simulation model for design point #39; 

the estimated regression model gives EP ≈ 0.98, while the simulated gamma model 

gives EP ≈ 0.96), as shown in Tables 19 and 22, and the corresponding graphical figures. 
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APPENDIX 2   LOGIT OF ANALYTICAL MARKOVIAN MODELS 

1. Probability that the one R is detected and correctly classified before 

leaving the AOI, CP  
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Thus, the analytical logistic regression model is 
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2. Probability that the one R is detected, correctly classified and escorted 

before leaving the AOI, EP  
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Thus, the analytical logistic regression model is 
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APPENDIX 3   LOGISTIC REGRESSION MODELS (PART2) 

A. OBJECTIVE 
The objective of this appendix is to describe and explore appropriate logistic 

regression models for the Maritime Intercept Operations (MIO) capabilities which 

consider the effects of Maritime Patrol Aircraft (MPA)’s information retention. 

 

B.    MEASURES OF EFFECTIVENESS 
1. Probability that the one R is detected and correctly classified before 

leaving the Area of Interest (AOI), CP  

2. Probability that the one R is detected, correctly classified and escorted 

before leaving the AOI, EP  

 

C. PREVIOUS STUDIES 

The statistically fitted logistic regression models which do not consider the effects 

of the MPA’s information retention (do not include the mean time until the MPA loses 

classification information of a classified vessel,1/ψ ) are (A.18) and (A.19) introduced as 

(4.7) and (4.8) in the Chapter IV. 

1. Probability that the one R is detected and correctly classified before 

leaving the Area of Interest (AOI), CP  
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2. Probability that the one R is detected, correctly classified and escorted 

before leaving the AOI, EP  
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 (A.19)  

 

D. INPUT DATA 
1. Constant parameters 

200 ,   200 ,   30 ,   15y IM NM v kt v kt f NM= = = =  

2. Multi-level parameters 

Table 23 shows the specified factor values of the multi-level factors.  

 Low High 

xM  200NM 400NM 

w  0 100 

u  15kt 30kt 

τ  4min 8min 

wwc  0.8 1.0 

rrc  0.6 1.0 

1/ψ  0hrs 4hrs 
Table 23. Multi-level factor values 

 

3. Design of experiment 

Table 24 displays the 34 design points. These design points are used as 

input to the simulations. Design points (#1 – 17) are obtained from the Nearly-

Orthogonal Latin Hypercube (NOLH) based on Table 23, and design points (#18 – 34) 
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are intentionally added to obtain relatively higher probabilities for CP  and EP  by using 

the other NOLH based on Table 25. 

 
Table 24. Design of experiment 

 

 Low High 

xM  200NM 250NM 

w  0 20 

u  15kt 20kt 

τ  4min 6min 

wwc  0.95 1.0 

rrc  0.90 1.0 

1/ψ  0hrs 4hrs 
Table 25. Multi-level factor values additionally considered 
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E. LOGISTIC REGRESSION MODELS 

1. Probability that the one R is detected and correctly classified before 

leaving the Area of Interest (AOI), CP  

We consider the following two types of logistic regression models as alternatives. 

• 1/ψ  is considered as a single independent variable. 

     
( )

( ) ( )

0 1 2

3

2

4 5

 ln ln ln
1

1(1 )                      + ln
2 3

1(1 )                          + ln 1/  
2 3

C
rr

C

ww x

I y

ww x

I y

P b b c b u
P

ww c Mb
v u f v M

ww c Mb b
v u f v M

τ

τ
ψ

⎛ ⎞
= + +⎜ ⎟−⎝ ⎠

⎛ ⎞+− + +⎜ ⎟⎜ ⎟+ ⋅⎝ ⎠

⎛ ⎞⎛ ⎞+− + + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ ⋅⎝ ⎠⎝ ⎠

  (A.20) 

     When the fifth independent variable (the mean time until the MPA loses 

classification information of a classified vessel, 1/ψ ) is 0, the model (A.20) corresponds 

to the model (A.18) which does not consider 1/ψ . 

• 1/ψ  influences the number of White vessels in the AOI, w . 
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   (A.21) 

When the mean time until the MPA loses classification information of a 

classified vessel, 1/ψ  is 0 or n  is large, the model (A.21) corresponds to the model 
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(A.18) which does not include 1/ψ . n  is determined so that the four independent 

variables are statistically significant in this regression model. 

 

 The statistically fitted logistic regression models: 

• 1/ψ  is considered as a single independent variable 
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   (A.22) 

 

                  

  

Since the p-value of 5b  is 0.32>0.05 and the 90% confidence interval contains 0, 

5b  is not statistically different from 0. Figure 45 and Figure 46 display the outputs of the 

regression model (A.22) and those of the simulation model. 
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Figure 45.   Logit [Estimated regression model (A.22) vs. Simulation model] 

 

 
Figure 46.   PC [Estimated regression model (A.22) vs. Simulation model] 

 

The estimated regression model (A.22) summarizes the output of the simulation 

model well. However, we employ the estimated model (A.18) rather than the estimated 

model (A.22) because the fifth independent variable of the model (A.22) is not 

statistically significant in the regression model.  
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• 1/ψ  influences the number of White vessels in the AOI, w . 
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  (A.23) 

     

 

Since the R-square value of the regression model (A.23) is 0.998, and the p-value 

of each independent variable is less than 0.05, the estimated model (A.23) summarizes 

the simulation model output well. When n  is less than 30, we could not find an 

appropriate logistic regression model which satisfies a high R-square value and the 

significance of the four independent variables. Figure 47 and Figure 48 display the 

outputs of the regression model (A.23) and those of the simulation model. 
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Figure 47.   Logit [Estimated regression model (A.23) vs. Simulation model] 

 

              
Figure 48.   PC [Estimated regression model (A.23) vs. Simulation model] 

 

The estimated regression model (A.23) summarizes the simulation output well. 

However, we will use the simpler estimated model (A.18) rather than the estimated 

model (A.23).  
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Since we consider few alternative regression models which consider the effects of 

the MPA’s information retention (include the mean time until the MPA loses 

classification information of a classified vessel, 1/ψ  as an independent variable), there 

may be an appropriate regression model in which 1/ψ  is statistically significant to 

estimate the MIO capability ( CP ) well. However, because the estimated regression model 

(A.18) summarizes the simulation output well, we consider the logistic regression model 

(A.18) to analyze the MIO capabilities ( CP ). 

 

2. Probability that the one R is detected, correctly classified and escorted 

before leaving the AOI, EP  

We consider the following two types of logistic regression models as alternatives. 

• 1/ψ  is considered as a single independent variable. 
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  (A.24) 

When the sixth independent variable (the mean time until the MPA loses 

classification information of a classified vessel, 1/ψ ) is 0, the model (A.24) corresponds 

to the model (A.19) which does not consider 1/ψ . 
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• 1/ψ  influences the number of White vessels in the AOI, w . 
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  (A.25) 

When the mean time until the MPA loses classification information of a classified 

vessel, 1/ψ  is 0 or n  is large, the model (A.25) corresponds to the model (A.19) which 

does not include 1/ψ . n  is determined so that the four independent variables are 

statistically significant in this regression model. 

 

 The statistically fitted logistic regression models: 

• 1/ψ  is considered as a single independent variable 
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   (A.26) 
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 Since the p-value of 6b  is 0.455>0.05 and the 90% confidence interval contains 0, 

6b  is not statistically different from 0. Figure 49 and Figure 50 display the outputs of the 

regression model (A.26) and those of the simulation model. 

 

 
Figure 49.   Logit [Estimated regression model (A.26) vs. Simulation model] 
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Figure 50.   PE [Estimated regression model (A.26) vs. Simulation model] 

 

The estimated regression model (A.26) summarizes the output of the simulation 

model well. However, we employ the estimated model (A.19) rather than the estimated 

model (A.26) because the sixth independent variable of the model (A.26) is not 

statistically significant in the regression model.  

 

• 1/ψ  influences the number of White vessels in the AOI, w . 
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  (A.27) 
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Since the R-square value of the regression model (A.27) is 0.999, and the p-value 

of each independent variable is 0, the estimated model (A.27) summarized the simulation 

model output well. When n  is less than 10, we could not find an appropriate logistic 

regression model which satisfies a high R-square value and the significance of the four 

independent variables. Figure 51 and Figure 52 display the outputs of the regression 

model (A.27) and those of the simulation model. 

 
Figure 51.   Logit [Estimated regression model (A.27) vs. Simulation model] 



110 

          
Figure 52.   PE [Estimated regression model (A.27) vs. Simulation model] 

 

The estimated regression model (A.27) summarizes the simulation output well. 

However, we will use the simpler estimated model (A.19) rather than the estimated 

model (A.27). 

Since we consider few alternative regression models which consider the effects of 

the MPA’s information retention (include the mean time until the MPA loses 

classification information of a classified vessel, 1/ψ  as an independent variable), there 

may be an appropriate regression model in which 1/ψ  is statistically significant to 

estimate the MIO capability ( EP ) well. However, because the estimated regression model 

(A.19) summarizes the simulation output well, we consider the logistic regression model 

(A.19) to analyze the MIO capabilities ( EP ). 
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APPENDIX 4   VALIDATIONS OF THE ESTIMATED 
LOGISTIC REGRESSION MODELS 

A. OBJECTIVE 

The objective of this appendix is to study the ability of the estimated logistic 

regression models of Chapter IV for the Maritime Intercept Operations (MIO) 

capabilities to predict simulation output with new/different input values which lie in the 

parameter intervals given in Table 8 on page 47. The ability of the estimated regression 

models to predict simulation output using parameters outside of the intervals is not 

studied. 

 

B. ESTIMATED LOGISTIC REGRESSION MODELS 
1. Probability that the one R is detected and correctly classified before 

leaving the Area of Interest (AOI), CP  
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   (A.28) 

2. Probability that the one R is detected, correctly classified and escorted 

before leaving the AOI, EP  
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 (A.29)  
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C. INPUT DATA 

To design new input data set, we apply the similar approach by which we 

designed the original input data set. Design points (#1 – 17) are obtained from the NOLH 

based on Table 3 (page36), and design points (#18 – 34) are intentionally added to obtain 

relatively higher probabilities for CP  and EP  by using the other NOLH based on Table 5 

(page38). The design points of Table 26 are completely different from those of Table 4 

(page37); however they are chosen from the same parameter intervals given in Table 8 on 

page 47 as the original simulations. 

 
Table 26. Design of experiment 
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D. COMPARISON (LOGISTIC REGRESSION MODELS VS. SIMULATION 
MODELS) 

1. Probability that the one R is detected and correctly classified before 

leaving the Area of Interest (AOI), CP  

Table 27 displays the outputs of the estimated logistic regression model (A.28) 

and those of the simulation model. Table 27 is sorted in descending order based on the 

outputs of the simulation model.  

 
Table 27. Estimated regression model (A.28) and the simulation model 

 

 

 



114 

Figure 53 and Figure 54 display the outputs of the estimated logistic regression 

model (A.28) and those of the simulation model. The estimated regression model (A.28) 

summarizes the output of the simulation model well. 

 
Figure 53.   Logit [Estimated regression model (A.28) and the simulation model] 

 

         
Figure 54.   PC [Estimated regression model (A.28) and the simulation model] 
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2. Probability that the one R is detected, correctly classified and escorted 

before leaving the AOI, EP  

Table 28 displays the outputs of the estimated logistic regression model (A.29) 

and those of the simulation model. Table 28 is sorted in descending order based on the 

outputs of the simulation model.  

 
Table 28. Estimated regression model (A.29) and the simulation model 
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Figure 55 and Figure 56 display the outputs of the estimated logistic regression 

model (A.29) and those of the simulation model. The estimated regression model (A.29) 

summarizes the output of the simulation model well. 

 
Figure 55.   Logit [Estimated regression model (A.29) and the simulation model] 

 

         
Figure 56.   PE [Estimated regression model (A.29) and the simulation model] 
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