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ABSTRACT 
 
 
 
Wide bandgap semiconductors have entered into Naval radar use and will 

eventually replace vacuum tube and conventional solid-state amplifiers for all modern 

military radar and communications applications.  Gallium Nitride (GaN) High Electron 

Mobility Transistors (HEMTs) are on the leading edge of wide bandgap technology and 

have the performance characteristics to dominate in high power – high bandwidth 

applications. The Defense Advanced Research Projects Agency (DARPA), Office of 

Naval Research (ONR) and Missile Defense Agency (MDA) are all sponsoring research 

projects to apply wide bandgap technology. This thesis studies the effects of changing the 

substrate material of an existing GaN HEMT from sapphire to diamond through the use 

of commercially available Silvaco software for modeling and simulation.  The 

unparalleled thermal properties of diamond are expected to dramatically decrease device 

temperatures and increase component lifetimes and reliability. 
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EXECUTIVE SUMMARY 
 
 
 
A computer model of Gallium Nitride (GaN) High Electron Mobility Transistors 

(HEMTs) has been developed for the purpose of designing and modifying high power – 

high frequency amplifiers.  GaN HEMT and other wide bandgap semiconductor devices 

are being investigated for applications in communications and military radar.  Using GaN 

technology over currently fielded Gallium Arsenide (GaAs) could result in a tenfold 

increase in power density at identical frequencies.  GaN devices offer superior material 

properties for high power – high bandwidth applications, especially at high voltages 

where current GaAs technology is unsuitable. This model includes thermal effects and 

considers using a diamond substrate for thermal management.  Diamond has the highest 

thermal conductivity of any known substance and can be easily grown on large wafers. 

Current HEMTs achieve around 12 W/mm with gate geometries similar to those modeled 

here. Device performance in excess of 20 W/mm and an increase in component lifetimes 

by several orders of magnitude may be possible if a high thermal conductor such as 

diamond can be utilized in a GaN HEMT to reduce channel temperatures.  This would 

lower system downtime, reduce system lifecycle costs and increase overall system 

performance and warfighting capability. 

The Silvaco software, a physics-based modeling program, was utilized to model 

and simulate an Al0.28Ga0.72N/GaN HEMT on a sapphire and finally a diamond substrate.  

The model is based on an actual device built and tested while completing a doctoral 

dissertation by Suzie Tzeng at the University of California (UC) – Berkeley.  The model 

proved capable of closely matching the expected IV characteristics after numerous model 

parameters were adjusted.   

A three-dimensional thermal model of the device on sapphire was created and 

tested to be electrically similar to the two-dimensional model.  Thermal characteristics 

and localized heating effects can be observed while the model was biased at typical 

operating conditions.  A two-dimensional thermal comparison between sapphire and 

diamond substrates with devices of otherwise identical structure was conducted.  

Possibilities for improving the model are discussed and recommended for future research.   
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I. INTRODUCTION  

A. BACKGROUND  
Next generation communications and radar systems of our Navy require more 

capability in terms of bandwidth and power in continued support of the Sea Power 21. 

Radio Frequency (RF) amplifier technology is at the heart of every radar and 

communication system.  In the Navy, this technology has been dominated by vacuum 

tubes/traveling wave tubes for years.  Modern demands of bandwidth, power, space, 

weight, cost, efficiency and reliability have all but exhausted the capabilities of the 

venerable vacuum technology.   

The solid-state technology, specifically the semiconductor amplifier, is found in 

thousands of commercial communication devices such as cellular phones, wireless 

computers and commercial vehicle navigation systems.  Next-generation radar and 

communications devices require compound semiconductors for more bandwidth and 

higher power.  Compound semiconductors such as Gallium Nitride (GaN), Gallium 

Arsenide (GaAs) and Silicon Carbide (SiC) show the most promise.  GaAs technology is 

currently fielded by the Department of Defense (DoD) in low power receivers and SiC 

will be instrumental as we as a Navy transition to electric drive propulsion.  The 

continued improvements made in GaN technology make its widespread use in next 

generation Naval radar and communication systems inevitable.  High power – high 

bandwidth amplifiers based on solid-state technology are currently being developed by 

other DoD agencies for systems to be fielded in the near future.  

 

 
Table 1. Material Properties of Common Semiconductors [1] 
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Material properties of several semiconductors, summarized in Table 1, clearly 

show that GaN shows great promise for use in high power microwave applications.  Its 

wide bandgap allows for lower leakage and higher device breakdown voltages; the 

heterostructure capability decreases noise; and higher saturation velocity and breakdown 

field enable higher frequencies. GaN is among the most promising of known 

semiconductors when searching for highest power and highest bandwidth capability.  

B. RELATED WORK 
Previous NPS efforts have used Silvaco models to represent GaN HEMT devices 

[2, 3]. These works focused on the piezoelectric effect of GaN and AlGaN and how to 

implement the effect into a software model.  Naval Research Laboratories (NRL) had 

initially supplied data from actual devices for further study to NPS.  This work gleans 

some of the recommendations from the earlier research to incorporate thermal simulation 

capabilities of the Silvaco software suite to improve on the modeling an actual device.  

The real impetus of this work began with Jerry Zimmer and SP3 Diamond Technologies.  

SP3 approached NPS with high-quality polycrystalline diamond and a query as to its 

most promising use.  Professor Weatherford provided the direction necessary to attempt 

to substitute diamond as a substrate material for GaN HEMTs grown at UC – Berkeley 

and model it to further enhance GaN HEMT performance.  SP3, UC – Berkeley and NPS 

have pursued research funding through MDA solicitations of innovative wide bandgap 

semiconductor technology for RF application.  

C. OBJECTIVES 
The purpose of this research is to create a model that most closely mimics the 

actual electrical, physical and thermal characteristics of the device created by UC - 

Berkeley to allow for simulation of three-dimensional thermal characteristics.  With a 

complete and accurate device model, optimization and testing techniques can be used to 

guide the direction of future HEMT efforts.  Understanding the thermal and electrical 

properties will allow for optimization of the GaN transistor structure, the geometry of the 

diamond substrate and prediction of thermal conductivity across layer interfaces.  If a 

high thermal conductor such as diamond can be utilized in a GaN HEMT to reduce 

channel temperatures, both improved device performance and most importantly  
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component lifetimes may be increased by several orders of magnitude.  This would lower 

system downtimes, reduce system lifecycle costs and increase overall system 

performance and warfighting capability. 
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II. HEMT FUNDAMENTALS 

A. HIGH ELECTRON MOBILITY TRANSISTOR 
A HEMT is field-effect transistor that operates very similar to a Metal-

Semiconductor Field Effect Transistor (MESFET).  Electron flow across the carrier 

channel from source to drain is modulated by changing gate voltage.  The main 

difference between a MESFET and a HEMT is the device structure.  HEMTs use 

different compounds grown in layers to optimize and extend the performance of the 

MESFET.  The different layers form heterojunctions [4].  Figure 1 shows the basic 

HEMT structure. 

 
Figure 1.   Basic Diagram of a HEMT 

 

The first HEMT was invented in 1979 by Takashi Mimura.  At that time, 

conventional thinking was that the only way to get electrons to move through a 

semiconductor was to add n-type impurities to create free electrons.  This convention, 

still applied in nearly all semiconductor technology, causes the electrons to ‘slow down’ 
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because of collisions with the same impurities used to create the free electrons.  The 

HEMT is the exception to the rule.  By exploiting the characteristics of a heterojunction, 

the bandgap differences between two materials create a quantum well in one dimension. 

The quantum well produces a 2-dimensional electron gas (2DEG) on one side of the 

boundary where electrons experience a substantial reduction in scattering effects.  

B. GALLIUM NITRIDE 

1. Material Properties 
The large bandgap and high dielectric strength of Gallium Nitride make it an ideal 

semiconductor for high-power devices such as diodes, amplifiers and switches.  The 

bandgap is the major property contributing to its low leakage current.  These 

characteristics make GaN ideal for creating smaller devices capable of higher operating 

frequencies and handling more power and voltage.  GaN is among the most promising 

compound semiconductors when considering material for high-power, high-frequency 

amplification.  The ability to function in a heterostructure configuration coupled with a 

high breakdown field make GaN far superior to GaAs or SiC for use in millimeter wave, 

low-noise, high-power applications.  As the manufacture of GaN continues to improve, 

defect densities will decrease; further increasing reliability and device noise 

characteristics.   

2.   GaN Challenges 
Current GaN limitations stem from a variety of sources.  Most notable is the 

absence of a native substrate.  Unlike silicon, GaN does not exist in a pure form in nature.  

GaN must be ‘grown’ in layers an atom at a time through chemical vapor deposition or 

electron beam epitaxy.  Additionally, the processes used to create GaN material in 

quantity leave many impurities and these impurities create problems for device 

production, performance and reliability.  To take full advantage of the material 

properties, GaN microwave devices are made increasingly smaller and the defects 

induced by impurities have made device reliability and performance quite variable.  

Methods to increase GaN HEMT performance have speculated that hydrogen passivation 

into epitaxial layers through a variety of plasma induced techniques during processing 

may make devices less susceptible to hot electron damage or mitigate the damage as it 

occurs during device degradation [5].  Defects introduced during growth of the AlGaN 
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layer, high temperature deposition of contacts and other device building processes are all 

compounded by the impurity levels in the original GaN material.  Ongoing efforts to 

determine device failure mechanisms and increase purity levels are necessary for GaN 

devices to become more reliable.  

Popular substrate materials currently used for GaN HEMTs include sapphire, 

Silicon Carbide (SiC), silicon and Aluminum Nitride (AlN).  Each substrate choice has 

been proven with individual successes and challenges.  At the outset of GaN research, 

sapphire (Al2O3) had been a popular choice for substrate material due to its high melting 

point and ready availability. GaN purity levels are affected during vapor growth by the 

interaction of hydrogen gas and the oxygen in sapphire, creating unwanted defects.  As 

GaN research was able to achieve higher power levels, the thermal conductivity of 

sapphire has also been a limiting factor [6].  To mitigate defects due to oxygen, pure 

silicon has been used quite successfully as a substrate material for GaN HEMTs.  

Thermal conductivity is similar to that of GaN. High purity silicon and large wafer sizes 

are readily available due to its popularity.  However, lattice mismatch requires the use of 

a nucleation or boundary layer, further increasing the channel distance from the thermal 

management substrate [1].  SiC has been a popular choice for high-power HEMT use 

providing a much higher thermal conductivity.  Defects in the GaN caused by micropipe 

and other defects in SiC have made GaN layer growth difficult as the crystal structure 

struggles to maintain uniformity during the growth process [6].  AlN is often used as a 

nucleation layer between silicon based substrates and GaN to allow for lattice matching 

during the growth process.  As a free standing substrate, AlN has shown some promise as 

a GaN HEMT substrate choice but its thermal conductivity is only equal to that of 

sapphire. 

The thermal conductivity of GaN is a challenge to overcome.  Table 2 shows 

several popular semiconductor device materials and their thermal conductivities.   The 

tabulated values were used in the device model.  While able to support high temperature 

operation, GaN by itself is unable to sufficiently remove the heat generated during 

intended device operation.  Increased thermal resistance and shortened device component 

lifetimes are just two of the many undesired effects of high device temperatures.  

Removing the heat generated during operation could dramatically increase device 
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performance, reliability and lifetime.  Substrate selection for GaN HEMTs has primarily 

focused on sapphire and SiC due to their availability and ease of growing GaN onto these 

substrates.  This work hopes to present diamond, the best thermal conductor known, as an 

option for GaN HEMT devices and the likely benefits if such a substrate solution is 

feasible.  

 

Substrate
Thermal Conductivity 

(W/cm·K) 
Diamond 10 
Sapphire 1.7 

GaN 1.3 
AlN 1.7 
SiC 4.9 
Si 1.5 

 
Table 2. Substrate Thermal Conductivities 

 

Thermal boundary resistance is another heat related challenge once a substrate 

material is selected.  The boundary between GaN and the substrate does not perfectly 

conduct heat energy away from the device.  The very tight covalent structure is missing at 

the interface so this thermally “high” resistance point will retard the heat flux generated 

above it providing a high temperature gradient locally at interface.  Self-heating effects 

have been observed in both GaN on SiC and GaN on sapphire. The GaN boundary layers 

have been theoretically estimated to dissipate power at 12 W/mm for GaN-on-SiC and 

2.5 W/mm for GaN-on-sapphire [7].  The GaN-diamond thermal boundary resistance has 

yet to be estimated but if the interface quality is similar to the GaN-on-SiC, GaN-on-

diamond should provide dissipation in excess of 20 W/mm due to the thermal 

conductivity value of diamond being more than twice that of SiC. 

 
C. STATE-OF-THE-ART GAN FETS 

Power and microwave devices for use in the commercial or military market share 

common needs listed in the first column of Table 3.  The second column lists the 

Enabling Feature of GaN-based devices to fulfill the need.  



9 

 
Table 3. Competitive Advantages of GaN Devices [8] 

 

The most significant benefits of GaN are highlighted in Table 3.  For example, 

“the high power per unit width translates into smaller devices that are not only easier to 

fabricate but also offer much higher impedance” [8].  This feature allows for easier 

source and load matching to existing power supplies, transmission lines and antennas.  

Current GaAs amplifying devices require impedance and voltage matching transformers, 

which add cost, complexity and weight where GaN devices can operate at higher voltages 

and do not require the extras.   

Recent advances in GaN HEMT technology have shown rapidly increasing device 

performance.  In the late 1990’s, GaN HEMTs on sapphire were tested at power ratings 

around 10 W/mm but experienced almost instantaneous power and noise degradation.  

The negative effects of poor thermal conductivity and growth related defects of sapphire 

saw SiC emerge as the substrate of choice soon thereafter. In 2002 reported HEMT 

power outputs on SiC achieved merely single digit W/mm ratings [8].  Research in 2003 

saw power levels of around 14 W/mm as passivation methods and growth techniques 

improved [9].  Field plate gate fabrication methods have been able to increase device 

performance to a healthy 32 W/mm.  The field plate technique is diagramed in Figure 2 
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[10].  First demonstrated on GaAs HFETs, the field plate technique was first 

implemented on a GaN HEMT by Chini.  This technique greatly reduced drain current 

dispersion, avoiding the ‘knee walk-out’ phenomena shown in Figure 3 as gate bias is 

increased [11]. 

 

 
Figure 2.   Field-Plated Device Structure[10] 

 

  
Figure 3.   IV Characteristics Showing Knee Walk-Out [11] 
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III. DEVICE MODELING AND SIMULATION 

A. SILVACO 
The device simulation software package by Silvaco International was used to 

perform the modeling in this thesis work.  Silvaco’s ATLASTM program performed the 

device structuring and subprogram calls while BLAZE2D/3DTM and GIGATM performed 

specialized functions required for III-IV, heterojunction devices, and thermal modeling.  

The model parameters were programmed with DECKBUILDTM and the device 

parameters and graphics were extracted using TONYPLOTTM and TONYPLOT3DTM. 

The Silvaco software models a device in either two- or three-dimensional matrix-

mesh format.  Each mesh point represents a physical location within the modeled device 

and at that point, the program simulates transport properties via differential equations 

derived from Maxwell’s equations.  Numerical analysis is used to solve for electrostatic 

potential and carrier densities within the model.  In addition to Poisson’s equation, the 

continuity equations and the transport equations; the Lattice Heat Flow equation, listed in 

Appendix A, is added by using GIGATM.  The heat generation term in the Lattice Heat 

Flow equation is further enhanced in this model by utilizing the Joule Heating function of 

GIGATM. 

B. PRIOR THERMAL MODELING EFFORTS 
Prior thermal modeling of GaN HEMTs with was performed by Kenneth Holmes 

in 2002 at the Naval Postgraduate School under the guidance of Todd Weatherford [3].  

The model was also created using the Silvaco software suite.  The model reported by 

Holmes was a modified model initially created by the Office of Naval Research and 

heavily modified by Karl Eimers using a novel piezoelectric subroutine within the 

existing model [4].  The thermal aspects of Holmes’ model are inferred through electron 

concentration under bias conditions; thermal conductivities of semiconductor and 

substrate materials, thermal resistance and induced boundary conditions were neglected.   

Another modeling effort available to this researcher was provided by Bob Cottle 

of Silvaco International.  Mr. Cottle had developed a Silvaco model that closely 
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resembled the device reported by Khan et al [12].  The Khan model aided this researcher 

in developing the model reported in this work. 

C. THIS EFFORT 
This work is based on a physical device created and tested by S. Tzeng at the 

University of California – Berkeley.  Figure 4 is a picture of the device created by UC 

Berkeley and Figure 5 is a TONYPLOT3DTM created image of the device.  

 

 
Figure 4.   Scanning Electron Microscope (SEM) Image of GaN HEMT.[13] 

 
Figure 5.   TONYPLOT3DTM Generated Image of Modeled GaN HEMT 
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1. Model Regions 
The HEMT modeled in this work uses nine unique regions to represent the 

different materials and components of an actual physical HEMT device.  Appendix B 

contains the text code used in the 2-dimensional model of the device created at UC – 

Berkeley.  Figure 6 shows the regions of the model.  Region 1, as listed in Appendix A, is 

the oxide region, silicon dioxide, which electrically isolates the gate, drain and source 

contacts.  Regions 2-4 are the source, gate and drain electrodes, respectively.  Region 5 is 

the AlGaN layer.  This region vertically separates the gate contact from the GaN region 

and horizontally separates the source and drain contacts.  The AlGaN is the top layer of 

the heterojunction that creates the 2DEG channel which is modulated by the gate bias 

during HEMT operation.  Region 6 is an extremely thin layer of GaN directly below the 

AlGaN layer that also extends horizontally from source to drain.  This thin GaN layer is 

used to simulate the 2DEG.  A more detailed explanation of this region is found in the 

Model Development section.  Regions 7 and 8 are the bulk GaN regions that vertically 

separate the contacts and heterojunction from the substrate material.  Due to the 2-

dimensional constraints and lattice-style computational nature of the Silvaco software, 

the bulk of the GaN region was constructed of two regions to accommodate the 90 degree 

angles of the source and drain contact edges.  This building block style of construction 

was necessary for mathematical convergence of the model; this researcher learned ‘the 

hard way’ when trying to compile the model using other than 90 degree angles with the 

physical model construction.  Region 9 is the substrate used for thermal management.  

Sapphire was the substrate used in the UC – Berkeley device.  In the Results chapter of 

this work, diamond substrate is modeled and compared with the sapphire.  
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Figure 6.   TONYPLOTTM View of Device Regions 

 
2. Input File  
The design and construction of this model was done using the DECKBUILDTM 

module within the Silvaco software suite.  The code used to build the 3-dimensional 

model in this work is provided in Appendix C.  Following is an explanation of the 

general sections of the input file code used to make the 3-D model created in this 

research.  

The first section of the input file is Variable Definitions. This section comes after 

the call ‘go atlas’ is executed to enter the ATLASTM module.  In the Variable Definitions 

section, a number of useful user-defined variables are created to allow for easy changes 

to the physical dimensions of the model.  This was quite useful when comparing different 

structure geometries as the model was changed throughout this research.  For instance, 

changing the gate length from 1 micron to 2 microns required only one change to 

accomplish within the input file.  

The Mesh Construction section of the input file allows for adding ‘equation 

points’ to the lattice mesh of equation points within the model.  For instance, the level of 

detail and the number of individual points within the model is much greater within the 
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channel region than the substrate region.  Figure 7 shows the lattice of 221,520 grid 

points created within the 3D model; the vector intersections define mesh points.   

 

 
Figure 7.   Lattice Mesh Rendering of Device Showing Electron Concentration 

 

The Region Statements define areas within the mesh to have properties such as 

material type, doping levels, and compound composition percentages.  This is the section 

where the device is built by assigning Cartesian-style corner points to each physical 

region of the device.  Also, by assigning a material name to a region, a list of standard 

material properties is assigned to that region of the mesh.  These properties can be further 

modified within the ‘region’ statement.  More options are also available in next section.  

The Modifying Statements section of the input file contains many function 

statements that allow for model adjustments.  For example, the bandgap offset between 

the AlGaN/GaN heterojunction is not automatically accounted for and must therefore be 

modified for the model to be more realistic.  Also in the Modifying Statements section is 

the ‘interface charge’ function where spontaneous polarization and piezoelectric effect 

are accounted for.  Mobilities, saturation velocities, work functions, thermal boundaries 

and conductivities are assigned in this region.  A very important function called ‘models’ 

is used in this section.  ‘Models’ specifies which physical mechanisms are included in the 
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model calculations.  It is here where the GIGATM functions involving lattice temperature 

and joule heating are called to be included in the model.   

Lastly, the Output Statements region is used to ‘bench test’ the model by applying 

biases and displaying effects brought on by external sources.  IV curves, electron 

concentrations, lattice temperatures and contact currents are examples of available 

outputs after the model solutions have been calculated using TONYPLOTTM and 

TONYPLOT3DTM.  Structure and log files can be saved at successive bias points for tests 

such as step biasing and multiple curve generations.   

3. Model Development 
Several assumptions were made when creating the model.  The boundary material 

used for the buffer layer between the sapphire substrate and the GaN is ignored.  Ignoring 

this layer may have an effect on thermal management, but because a layer of similar 

buffer material would be used for a diamond or SiC substrate, comparing different 

substrates ignoring the buffer layer is reasonable.  The bottom of the device, at the lowest 

point at the edge of the substrate, is a ‘perfect heat sink’ kept at 27 degrees Celsius.  

Another assumption is the gate, drain and source contacts in the model are treated 

as perfect electrical conductors.  Lastly, the interfaces between the layers were considered 

ideal with no modeled defects or surface modifications besides the interface charge to 

simulate the piezoelectric effect.  

Starting with a model based on the Khan device, this researcher first attempted to 

create an electrically accurate 2-dimensional model of the device from UC - Berkeley.  

The Khan model was being used by Mr. Bob Cottle to more closely simulate the 

piezoelectric effect using the ‘piezo’ function of ATLASTM and comparing the results 

with a model using an interface charge.  Mr. Cottle is a software developer at Silvaco 

International who had been working on modifying the ATLASTM code, specifically the 

‘piezo’ function, when the Khan model was made available to this researcher.  After 

several unsuccessful attempts by this researcher using the ‘piezo’ function to accurately 

model the electrical effects of a heterojunction, an interface charge was inserted at the 

AlGaN/GaN boundary.  When combined with a thin GaN region of increased mobility 

directly below the AlGaN/GaN junction, the desired effect is achieved.  One of the goals 
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of this research was to model the device in 3-dimensions and the ‘piezo’ function and 

prior piezoelectric modeling efforts such as Reference 4 are not available for use in 3-D 

models at the time of this writing; the interface charge was the only available solution.  

Structuring the model to match the dimensional characteristics of the physical 

device was paramount.  Such an approach seemed the most logical with the end goal to 

eventually use 3-dimensional thermal modeling.  Starting from there, an accurate 

electrical model was created by varying the electron mobilities and saturation velocities 

of the AlGaN and GaN layers, donor concentration within the GaN and AlGaN regions, 

interface charge value and the gate work function.  The values chosen were based on 

published data and refined through trial and error to achieve the best match of drain IV 

curves.  The Results section of this work compares the model to the actual device in more 

detail. 

The individual values that were most often modified throughout the model 

development were AlGaN layer thickness, Gate Work Function (WF), donor levels in 

AlGaN and GaN layers, the interface charge at the heterojunction and the electron 

mobilities and saturation velocities in each of the AlGaN and GaN layers.  Early in the 

model development, the AlGaN layer thickness was given the most attention.  In the 

work by Tzeng, no clear AlGaN layer thickness was evaluated as optimum, so a variety 

of layer thicknesses were modeled to determine which would give the closest electrical 

output characteristics to Tzeng’s results.  Eventually, the 267 angstrom thickness was 

chosen because AlGaN thickness did not have a notably strong effect on modeled device 

performance. Also, results for the most often referenced HEMT device of exact thickness 

given by Tzeng for the 0.28 Al mole fraction of AlGaN was the 267 angstrom device.  

Gate WF had the largest effect on device linearity and drain current over the modeled 

bias ranges plotted in the next section.  This researcher decided to use a gate WF of 4.3 to 

coincide with the generally accepted WF of Aluminum when used as a gate contact for a 

FET.  Generally accepted ranges of available extra electrons at the heterojunction for the 

piezoelectric and polarization effects of a GaN HEMT are around 1013 cm-2.  Therefore, 

an interface charge near that level was necessary to model the piezoelectric effect.  The 

interface charge and donor levels, saturation velocities and electron mobilities within the 

semiconductor layers were the four values that this researcher changed most often to 
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achieve a final model that most closely resembled the actual device.  The highest levels 

were naturally given to the 2 angstrom GaN layer directly below the heterojunction to 

simulate the 2DEG.  Final values were chosen through trial and error until the most 

accurate representation of IV curves was achieved.  

A third dimension to the model was included after the 2-dimensional model 

closely resembled the electrical characteristics of the Tzeng device.  The gate width of 

the model is 100 microns with between 15 to 20 microns of GaN and sapphire substrate 

extending around the active region to allow for thermal spreading.  A picture of a 3-D 

model showing localized heating of the HEMT on sapphire at a drain bias of 55 V is 

shown in Figure 8. The base of the substrate is fixed at 27°C and the maximum localized 

temperature in Figure 8 is 215°C.  

 

 
Figure 8.   TONYPLOT3DTM Lattice Temperature View of HEMT on Sapphire 

 

Through model development several notable discoveries were made based on 

intermediate simulation results.  When the device drain is biased at 55 V, the layer of 

diamond required to properly cool the device to 27°C at the base of the substrate is 14 

microns.  Using thinner diamond substrates prevents the model engine from converging 

and displays much higher maximum channel temperatures while the simulation is 
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running when compared to a model that will converge with appropriate substrate 

thickness.  Another discovery was that the GaN model layer could be as thin as 0.5 

microns and the electrical results were identical over the same bias conditions reported by 

Tzeng.  Thermal results were also identical over the same bias conditions when compared 

to the initial model with over 1.4 microns of GaN.  Conditions at higher bias were not 

modeled during this research.  One can postulate that decreasing the GaN layer will have 

multiple effects at higher bias conditions due to the depletion region necessary during 

device operation, but further research would have to be done to support this.  
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IV. RESULTS 

A. ELECTRICAL COMPARISON TO ACTUAL DEVICE 

1. IdVd Curves 
Figures 9 and 10 are the actual device and modeled device IdVd curves.  Although 

not an exact match, the model shows remarkably similar trends in behavior as the gate is 

stepped and drain swept over the same voltages.  Especially noteworthy is the ‘dip’, 

caused by negative differential resistance, in the topmost curve of each figure. 

Differential resistance is a physical effect caused by a varying effective mass at different 

velocities. Although not as linear as the measured results, the model output can be 

considered an electrical near match to the physical device and quite sufficient for 

modeling purposes especially considering the thermal nature of the remainder of this 

work. 

 

 
Figure 9.   The Drain Current-Voltage Measurement of Al0.28Ga0.72N/GaN HEMT 

with Gate Length of 2 µ m.[13] 
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Figure 10.   TONYPLOTTM Output of Drain IV Curve 

 
2. IgVg Curves 
Figures 11 and 12 are the actual device and modeled device IgVg curves.  Each 

plot portrays the model and device with identical gate geometries.  The sharp downward 

trend as the gate bias is swept through zero is similar in both plots.  The gate current is 

off by many orders of magnitude; the ideal nature of the model shows a much lower gate 

leakage current.  The model assumes zero defects at the AlGaN/GaN interface and zero 

trap defects in any of the materials used.  Figures 9 and 11 are the only IV plots currently 

available of the device this research is modeled upon.  Several GaN HEMTs created by 

UC – Berkeley of similar characteristics to those reported by Tzeng are being tested at 

NPS and will be the subject of further research. 
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Figure 11.   Gate Leakage Current of HEMT with Gate Length 2 µ m and Gate Width 

100 µ m.[13] 
 

 
Figure 12.   TONYPLOTTM Output of 3-D Sapphire Model Gate Leakage Current of 

with Gate Length 2 µ m and Gate Width 100 µ m. 
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B SUBSTRATE COMPARISONS 

The models created in this work sought to match the electrical characteristics of 

the device created by Tzeng.  After electrical similarity was achieved in a 2-dimensional 

model, the third dimension was added and the electrical results were identical over the 

ranges in Figures 9-12.  The final simulation of this work compares changing the 

substrate material in the model from sapphire to diamond to show lower localized 

temperatures and increased device performance.  When diamond was substituted in place 

of the sapphire in the 3-dimensional model, the model engine would not converge.  

Successful three-dimensional model run times were on the order of 15 hours per 

simulation on a 3 GHz dual-processor workstation.  Non-convergence of models usually 

occurred around 35 minutes into the simulation.  Reducing the number of grid points and 

removing the joule heating lattice temperature equations did not solve the convergence 

dilemma.  Exhaustive model adjustment by this researcher did not produce a solution. 

The 2-dimensional model did not have a problem converging when diamond was used, 

nor was there any appreciable difference in electrical characteristics over the ranges in 

Figures 7-10 when compared to the device on sapphire.  All heat comparisons are based 

on 2-dimensional simulations of sapphire versus diamond. The tests run by Tzeng did not 

include any record of temperatures while bias conditions were changed, so modeled 

temperatures cannot be correlated to actual data.  NPS is currently testing GaN HEMT 

devices on sapphire over a range of temperatures.  This will be reported in later research 

studies. 

1. Electrical Differences 
As stated above, there were no observable electrical differences between modeled 

devices when changing substrates over the electrical ranges tested on the physical device.  

When drain bias was brought up to ranges considered for device application, thermal 

effects dominated device performance.  Figure 13 shows drain current performance of the 

modeled device with diamond and sapphire substrate material.   
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Figure 13.   TONYPLOTTM Generated IdVd Curves – Diamond vs. Sapphire 

 

The modeled device on sapphire achieved a power output of approximately 16.5 

W/mm while the device on diamond achieved approximately 22 W/mm with Vgate=0 V 

and Vdrain=55 V. Gate leakage currents (see Figure 14) were on the order of 4 x 10-7 A on 

sapphire and 8 x 10-13 A on diamond.  These output power results compare favorably 

with other recent GaN device research [8-11].  The thermal management properties of 

using diamond increased output power by 33% and decreased gate leakage by six orders 

of magnitude when compared to the same device modeled on sapphire.   
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Figure 14.   TONYPLOTTM of Gate Leakage Currents - Sapphire (left) vs. Diamond 

(right) 
 
2. Thermal Differences 
The maximum temperature of the modeled device on sapphire at 55 V drain bias 

was 319°C.  The same device on diamond decreased the temperature to 148°C.  These 

temperatures were observed on the same modeled device operating at 16.5 and 22 W/mm 

for sapphire and diamond with Vgate=0 V and Vdrain=55 V. Drain currents are 

approximately 4 mA with the diamond substrate and 3 mA on sapphire (see Figure 13) 

each with a gate width of 100 microns. Gate leakage currents (see Figure 14) were on the 

order of 4 x 10-7 A on sapphire and 8 x 10-13 A on diamond.  The difference in gate 
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leakage between the substrates may be attributed to the 171°C temperature difference.  

Figure 15 shows maximum localized heating occurred at the heterojunction almost 

directly below the gate on the drain side.  This is consistent with actual device heating 

profiles.   

 

 
Figure 15.   TONYPLOTTM of Sapphire (left) vs. Diamond (right) Substrate 

Comparison @ 55 V Drain Bias Condition. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 
An AlGaN/GaN HEMT model can accurately simulate an actual device over a 

similar range of measured bias conditions.  Using IV plots, measured material 

characteristics and dimensions an accurate computer model of an AlGaN/GaN HEMT 

can be used to simulate extreme bias conditions, find estimated regions of highest heat 

generation and uncover bias conditions that gate leakage will occur without stressing an 

actual device.  Furthermore, an accurate model can be used to show marked 

improvements in device performance and thermal management by replacing a sapphire 

substrate with diamond.  Maximum device temperatures as predicted by the simulation 

can be reduced from 319°C to 148°C while performing under likely operating conditions.  

This temperature reduction leads to an immediate device output power increase of 33% 

and would lead to higher reliability and longer component lifetime without an input 

power increase. 

Device temperature is directly related to reliability and lifetime.  An often cited 

approach to predicting device median lifetimes is the Arrhenius Model for Temperature 

Dependence. [14] 

/( ) AE kT
mt T A e= ⋅  [Arrhenius Model for Temperature Dependence] 

where:  

EA is Activation energy (eV) 

A is a constant acceleration factor (dimensionless) 

k is Boltzmann’s constant (eV/°K) 

Activation energies will typically range from 0.3 to 1.7 for GaN HEMTs. Given 

an acceleration factor (A) of 1 and EA of 0.3 eV, a typical activation energy for a gate-

related defect, and using the temperatures from the model output at 55 V gate bias, the 

expected lifetime of the device could be increased from 358 hours to 3903 hours by 

replacing the sapphire substrate with diamond; an order of magnitude increase can be 

expected in device lifetime at similar power levels. 
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Finally, the most promising conclusion is the output power of the modeled device 

compared to the theoretical approximation of GaN-on-diamond from Chapter Two 

Section B of this work.  Filipov concluded that GaN-on-sapphire could achieve a 2.5 

W/mm thermal dissipation performance and GaN-on-SiC 12.5 W/mm.  The thermal 

conductivities of the sapphire and SiC are 1.7 and 4.9 W/cm•K, respectively.  The value 

for diamond used for this research was conservatively chosen to be 10 W/cm•K. 

Assuming that thermal boundary resistance is proportional to substrate thermal 

conductivity given equal boundary interface quality, GaN-on-diamond could have a 

thermal dissipation performance over 20 W/mm.  The output power of the model using a 

diamond substrate was approximately 22 W/mm.  Based on findings in Reference 7 and 

the thermal conductivity values used in the model, the results of this work are in order of 

expectation.  

B. RECOMMENDATIONS 
Before electrical and noise characteristics can be accurately extracted from this 

model more work should be done to correctly utilize the ‘piezo’ function of ATLASTM 

within this model.   Although the approach used by this researcher provided an excellent 

match to IV characteristics over the measured ranges, the small signal analysis and output 

given a high-frequency input could give inaccurate results.  Relying on an ATLASTM 

function specifically built for the piezoelectric effect and using constant saturation 

velocities and electron mobilities over a contiguous device region would make for a more 

plausible model at high frequencies.   

To provide a more accurate model from a thermal standpoint more data should be 

gathered from an actual device while under a variety of measured thermal conditions.  

This data could be correlated to modeled data and lead to the use of alternative thermal 

functions to provide a more accurate overall model.  Another way to increase thermal 

accuracy would be to incorporate hot carrier effects into the model.  This researcher 

avoided adding hot carrier effects due to the inordinate amount of time an individual 

simulation was taking to converge.  By decreasing the amount of mesh points and 

simplifying the physical dimensions of the device (i.e., using linear electrical contacts 

and removing insulator regions), the model may converge in a more tolerable time frame 
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and more functions within ATLASTM could be incorporated.  Boundary layer interface 

analysis for thermal conductivity could also be investigated. 

The differences in device temperature at identical bias conditions between the 2-D 

and 3-D models of GaN-on-sapphire are dramatic.  The 2-D model has a maximum 

localized temperature of 319°C while the 3-D model only 215°C.  The increase in heat 

dissipation of the added dimension is very significant.  Follow-on efforts should 

concentrate on solving the convergence problem when modeling with diamond. 

The device modeled in this work was built and tested by S. Tzeng at UC 

Berkeley. Currently Dr. Petra Specht and her researchers at UC – Berkeley’s Eicke 

Weber Group are striving to accurately grow Gallium Nitride layers directly on Diamond 

substrate material, as well as GaN on a several micron thin layer of silicon which has 

diamond grown on its backside.  Based on the output power and thermal results from this 

research, such an accomplishment has the potential to revolutionize GaN device thermal 

management and provide the missing piece in device reliability that GaN-based devices 

require.  
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APPENDIX A.  EQUATIONS ADDED TO BASIC SILVACO MODEL 

Following is a list of equations used by the various mathematical functions within 

the model.  These equations were added specifically by this researcher in addition to the 

standard equations used within ATLASTM to more accurately model the actual device.  

The heat related equations were the most significant additions to this research.  The 

Lattice Heat flow equation, with inputs from the Thermal Conductivity equation and Heat 

Generation Equation, is solved at each mesh point along with five other physics equations 

based on Maxwell’s laws to provide an accurate lattice temperature model output.  

( )L
L

TC T H
t

κ∂
= ∇ ∇ +

∂   [Lattice Heat Flow Equation] 

2( ) 1/( )T A B T C Tκ = + × + ×  [Thermal Conductivity Equation] 

2 2

n p

n p

J J
H q q

n pµ µ

⎡ ⎤
⎢ ⎥= +
⎢ ⎥
⎢ ⎥⎣ ⎦

     [Heat Generation Equation using joule heating function] 

1.5

300
L

n no
Tµ µ

−
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 [Mobility Equation] 

( ) 0.65C AlGaN GaNE E E∆ = − ⋅   [Heterostructure Bandgap alignment 65%] 

 

where:  

C is the heat capacitance per unit volume (F/cm3) 

κ  is the thermal conductivity (W/cm·°K). 

TL is the local lattice temperature (°K). 

nJ and pJ are the electron and hole current densities, respectively (carrier/cm3). 

nµ  is the material’s electron mobility constant with units of cm2/(V·s). 
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APPENDIX B.  2-D DECKBUILD INPUT FILE 

Following is the text code used for the 2-dimensional simulation of GaN on 

Sapphire: 

go atlas 

Title - 2D GaN on Sapph 

######  VARIABLE DEFINITIONS ############ 

#  267 AlGaN layer default mobility MUN=1000/1620/1000 carr=1 WF=4.3 

#   1e10 doping in all AlGaN & GaN layers IF charge=3.2e12 

############################## 

 

set devthk=20 

set sourcegatespace=2 

set gatedrainspace=3 

set devwidth=4+$sourcegatespace+$gatedrainspace   

set reg3xmin=$devwidth-1 

set reg4xmin=1+$sourcegatespace 

set reg4xmax=2+$reg4xmin 

set reg5xmax=$devwidth-.5 

set drainxmin=$devwidth-1 

set drainxmax=$devwidth-.6 

set ifchargemax=$devwidth-1.05 

set WF=4.3 

 

#  Set IV Limits 
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set vstart = 0 

set vstop = 7 

set vinc = 1 

 

 

####################  Mesh Construction ############# 

mesh auto width=1000 

x.m l=0.0 s=0.1 

x.m l=0.5 s=0.1 

x.m l=1.0 s=0.1 

x.m l=$reg4xmin s=0.1 

x.m l=$reg4xmax s=0.1 

x.m l=$reg3xmin s=0.1 

x.m l=$reg5xmax s=0.1 

x.m l=$devwidth s=0.1 

y.m l=0 s=0.5 

y.m l=0.4 s=0.1 

y.m l=0.49 s=0.005 

y.m l=0.5 s=0.005 

y.m l=0.525 s=0.005 

y.m l=0.5267 s=0.00005 

y.m l=0.5269 s=0.00005 

y.m l=0.5270 s=0.005 

y.m l=1.0 s=0.1 
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y.m l=2 s=0.5 

y.m l=$devthk s=2.0 

 

 

######################## Region Definitions ################ 

region num=1 mat=oxide x.min=0 x.max=$devwidth y.min=0 y.max=1 

region num=2 mat=conductor x.min=0 x.max=.5 y.min=.5 y.max=1 

region num=3 mat=conductor x.min=$drainxmax x.max=$devwidth y.min=.5 y.max=1 

region num=4 mat=conductor x.min=$reg4xmin x.max=$reg4xmax y.min=0 y.max=0.5 

region num=5 mat=AlGaN donors=1e10 x.comp=0.28 x.min=0.5 x.max=$reg5xmax 

y.min=0.5 y.max=0.5267 

region num=6 mat=GaN donors=1e10 x.min=0.5 x.max=$reg5xmax y.min=0.5267 

y.max=.5269 

region num=7 mat=GaN donors=1e10 x.min=0.5 x.max=$reg5xmax y.min=0.5269 

y.max=1 

region num=8 mat=GaN donors=1e10 x.min=0 x.max=$devwidth y.min=1 y.max=2 

region num=9 mat=Sapphire x.min=0 x.max=$devwidth y.min=2 y.max=$devthk 

 

elec num=1 name=source x.min=0 x.max=0.5 y.min=0.5 y.max=1 

elec num=2 name=drain x.min=$drainxmax x.max=$devwidth y.min=0.5 y.max=1 

elec num=3 name=gate x.min=$reg4xmin x.max=$reg4xmax y.min=0 y.max=0.5 

elec num=4 substrate 

 

############## Modifying Statements ################## 
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interface charge=3.2e12 y.min=.51 y.max=.6 s.s 

 

material mat=AlGaN align=.65 

 

mobility region=5 mun=1000 vsatn=2e7 

mobility region=6 mun=1600  vsatn=2.5e7 

mobility region=7 mun=1000 vsatn=2.5e7 

mobility region=8 mun=1000 vsatn=2e7 

 

material mat=GaN tcon.polyn 

material mat=AlGaN tcon.polyn 

material mat=Sapphire tcon.polyn 

 

models k.p print lat.temp joule.heat 

 

contact name=gate work=$WF 

thermcontact num=1 x.min=0 x.max=$devwidth y.min=14 y.max=$devthk temp=300 

^boundary alpha=1.7 

 

output con.band val.band charge 

method gumits=300 clim.dd=1e5 autonr block carr=1  

 

###################### Output Statements ########## 

# idvd curves 
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solve 

save outf=2D_SAP_g0.str 

log outf=2dGaNsap_d_0.log 

solve name=drain vdrain=$vstart vfinal=$vstop vstep=$vinc 

save outf=2D_SAP_g0d7.str 

log off 

tonyplot 2dGaNsap_d_0.log -set IDVD.set 

solve vdrain=0 vgate= -.6  

save outf=solve_vgate-.6.str 

log outf=2dGaNsap_d_1.log 

solve name=drain vdrain=$vstart vfinal=$vstop vstep=$vinc 

log off 

solve vdrain=0 vgate= -1.2  

save outf=solve_vgate-1.2.str 

log outf=2dGaNsap_d_2.log 

solve name=drain vdrain=$vstart vfinal=$vstop vstep=$vinc 

log off 

solve vdrain=0 vgate= -1.8  

save outf=solve_vgate-1.8.str 

log outf=2dGaNsap_d_3.log 

solve name=drain vdrain=$vstart vfinal=$vstop vstep=$vinc 

log off 

solve vdrain=0 vgate= -2.4  

save outf=solve_vgate-2.4.str 
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log outf=2dGaNsap_d_4.log 

solve name=drain vdrain=$vstart vfinal=$vstop vstep=$vinc 

log off 

solve vdrain=0 vgate= -3  

save outf=solve_vgate-3.str 

log outf=2dGaNsap_d_5.log 

solve name=drain vdrain=$vstart vfinal=$vstop vstep=$vinc 

log off 

solve vdrain=0 vgate= -3.6  

save outf=solve_vgate-3.6.str 

log outf=2dGaNsap_d_6.log 

solve name=drain vdrain=$vstart vfinal=$vstop vstep=$vinc 

log off 

solve vdrain=0 vgate= -4.2  

save outf=solve_vgate-4.2.str 

log outf=2dGaNsap_d_7.log 

solve name=drain vdrain=$vstart vfinal=$vstop vstep=$vinc 

log off 

tonyplot 2dGaNsap_d_0.log -overlay 2dGaNsap_d_1.log -overlay 2dGaNsap_d_2.log -

overlay 2dGaNsap_d_3.log -overlay 2dGaNsap_d_4.log -overlay 2dGaNsap_d_5.log -

overlay 2dGaNsap_d_6.log -overlay 2dGaNsap_d_7.log -set IDVD.set 

 

# idvg curve 

log outf=GaNsapp-gate_sweep.log 
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solve vdrain=0 

solve name=gate vgate=0 vfinal=-4.2 vstep=.6 

quit 
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APPENDIX C.  3-D DECKBUILD INPUT FILE 

Following is the text code used for the 3-dimensional simulation of GaN on 

Sapphire: 

 

go atlas 

Title - 3D GaN on Sapph 

#          #########    VARIABLE DEFINITIONS      ############ 

#  267 AlGaN layer default mobility MUN=1000/1620/1000 carr=1 WF=4.3 

#   1e14 doping in all AlGaN & GaN layers IF charge=3.2e12 

############################## 

set AlGaNlayer=0.0267 

 

set AlGaNdepth=.5+$AlGaNlayer 

set GASdepth=$AlGaNdepth+0.0002 

set GASmesh=$GASdepth+0.0002 

 

set devthk=20 

set sourcegatespace=2 

set gatedrainspace=3 

 

set devwidth=4+$sourcegatespace+$gatedrainspace   

 

set reg3xmin=$devwidth-1 

set reg4xmin=1+$sourcegatespace 
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set reg4xmax=2+$reg4xmin 

set reg5xmax=$devwidth-.5 

 

set drainxmin=$devwidth-1 

set drainxmax=$devwidth-.6 

 

set ifchargemax=$devwidth-1.05 

 

set WF=4.3 

 

#  Set IV Limits 

set vstart = 0 

set vstop = 7 

set vinc = 1 

 

###################### Mesh Construction ########## 

mesh three.d 

x.m l=-20 s=2 

x.m l=-2 s=2 

x.m l=0.0 s=0.2 

x.m l=0.5 s=0.2 

x.m l=1.0 s=0.2 

x.m l=$reg4xmin s=0.2 

x.m l=$reg4xmax s=0.2 
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x.m l=$reg3xmin s=0.2 

x.m l=$reg5xmax s=0.2 

x.m l=$devwidth s=0.2 

x.m l=10 s=2 

x.m l=29 s=2 

y.m l=0 s=0.5 

y.m l=0.4 s=0.1 

y.m l=0.49 s=0.005 

y.m l=0.5 s=0.005 

y.m l=0.525 s=0.005 

y.m l=$AlGaNdepth s=0.0001 

y.m l=$GASdepth s=0.0001 

y.m l=$GASmesh s=0.005 

y.m l=1.0 s=0.1 

y.m l=2 s=0.5 

y.m l=$devthk s=2.0 

z.m l=-20 s=2 

z.m l=120 s=2 

############## Region Statements ################ 

region num=1 mat=oxide x.min=0 x.max=$devwidth y.min=0 y.max=1 z.min=0 

z.max=100 

region num=2 mat=conductor x.min=0 x.max=.5 y.min=.5 y.max=1 z.min=0 z.max=100 

region num=3 mat=conductor x.min=$drainxmax x.max=$devwidth y.min=.5 y.max=1 

z.min=0 z.max=100 
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region num=4 mat=conductor x.min=$reg4xmin x.max=$reg4xmax y.min=0 y.max=0.5 

z.min=0 z.max=100 

region num=5 mat=AlGaN donors=1e10 x.comp=0.28 x.min=0.5 x.max=$reg5xmax 

y.min=0.5 y.max=$AlGaNdepth z.min=0 z.max=100 

region num=6 mat=GaN donors=1e10 x.min=0.5 x.max=$reg5xmax 

y.min=$AlGaNdepth y.max=$GASdepth z.min=0 z.max=100 

region num=7 mat=GaN donors=1e10 x.min=0.5 x.max=$reg5xmax y.min=$GASdepth 

y.max=1 z.min=0 z.max=100 

region num=8 mat=GaN donors=1e10 x.min=-20 x.max=29 y.min=1 y.max=2 z.min=-20 

z.max=120 

region num=9 mat=Sapphire x.min=-20 x.max=29 y.min=2 y.max=$devthk z.min=-20 

z.max=120 

 

elec num=1 name=source x.min=0 x.max=0.5 y.min=0.5 y.max=1 z.min=0 z.max=100 

elec num=2 name=drain x.min=$drainxmax x.max=$devwidth y.min=0.5 y.max=1 

z.min=0 z.max=100 

elec num=3 name=gate x.min=$reg4xmin x.max=$reg4xmax y.min=0 y.max=0.5 

z.min=0 z.max=100 

elec num=4 substrate 

############### Modifying Statements ############# 

interface charge=3.2e12 y.min=.51 y.max=.6 s.s 

material mat=AlGaN align=.65 

mobility region=5 mun=1000 vsatn=2e7 

mobility region=6 mun=1600  vsatn=2.5e7 

mobility region=7 mun=1000 vsatn=2.5e7 

mobility region=8 mun=1000 vsatn=2e7 
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material mat=GaN tcon.polyn 

material mat=AlGaN tcon.polyn 

material mat=Sapphire tcon.polyn 

models k.p print lat.temp joule.heat 

contact name=gate work=$WF 

thermcontact num=1 y.min=14 y.max=$devthk temp=300 ^boundary alpha=1.7 

output con.band val.band charge 

method gumits=300 clim.dd=1e5 autonr block carr=1  

solve 

 

############## Output Statements ############## 

# idvd curves 

save outf=3D_SAP_g0_d0.str 

log outf=3dGaNsap_d_0.log 

solve name=drain vdrain=$vstart vfinal=$vstop vstep=$vinc 

save outf=3D_SAP_g0d7.str 

log off 

tonyplot 3D_SAP_g0d7.log -set IDVD.set 

solve vdrain=0 vgate= -.6  

save outf=solve_vgate-.6.str 

log outf=3dGaNsap_d_1.log 

solve name=drain vdrain=$vstart vfinal=$vstop vstep=$vinc 

log off 

solve vdrain=0 vgate= -1.2  
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save outf=solve_vgate-1.2.str 

log outf=3dGaNsap_d_2.log 

solve name=drain vdrain=$vstart vfinal=$vstop vstep=$vinc 

log off 

solve vdrain=0 vgate= -1.8  

save outf=solve_vgate-1.8.str 

log outf=3dGaNsap_d_3.log 

solve name=drain vdrain=$vstart vfinal=$vstop vstep=$vinc 

log off 

solve vdrain=0 vgate= -2.4  

save outf=solve_vgate-2.4.str 

log outf=3dGaNsap_d_4.log 

solve name=drain vdrain=$vstart vfinal=$vstop vstep=$vinc 

log off 

solve vdrain=0 vgate= -3  

save outf=solve_vgate-3.str 

log outf=3dGaNsap_d_5.log 

solve name=drain vdrain=$vstart vfinal=$vstop vstep=$vinc 

log off 

solve vdrain=0 vgate= -3.6  

save outf=solve_vgate-3.6.str 

log outf=3dGaNsap_d_6.log 

solve name=drain vdrain=$vstart vfinal=$vstop vstep=$vinc 

log off 
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solve vdrain=0 vgate= -4.2  

save outf=solve_vgate-4.2.str 

log outf=3dGaNsap_d_7.log 

solve name=drain vdrain=$vstart vfinal=$vstop vstep=$vinc 

log off 

 

tonyplot 3dGaNsap_d_0.log -overlay 3dGaNsap_d_1.log -overlay 3dGaNsap_d_2.log -

overlay 3dGaNsap_d_3.log -overlay 3dGaNsap_d_4.log -overlay 3dGaNsap_d_5.log -

overlay 3dGaNsap_d_6.log -overlay 3dGaNsap_d_7.log -set IDVD.set 

 

# idvg curve 

log outf=GaNsapp3d-gate_sweep.log 

solve vdrain=0 

solve name=gate vgate=0 vfinal=-4.2 vstep=.6 

quit 
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