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ABSTRACT 
 
 
 
The robust symmetrical number system (RSNS) can play a significant role in the 

reduction of encoding errors within a low-power folding analog-to-digital converter 

(ADC). A key part of this ADC design is the logic block that converts the symmetrical 

residues from each channel into a more convenient binary output. This thesis describes a 

robust symmetrical residue-to-binary conversion algorithm for moduli , 1 7m = 2 8m =  

and  (ADC dynamic range 3 9m = 126M = ). Also described is a pipelined digital logic 

implementation for use in high speed programmable logic or application specific 

integrated circuits. To verify correct outputs of the robust symmetrical residue-to-binary 

conversion algorithm, a digital test circuit is described that generates the thermometer 

code (symmetrical residues) for the 3-channel ADC design. 
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EXECUTIVE SUMMARY 
 
 

The goal of this thesis is to expand on already existing theory in order to create a 

high resolution, high speed, low power, Analog to Digital Converter (ADC).  Once 

implemented, this ADC will have many uses to include incorporation into miniaturized 

sensor networks, system-on-a-chip (SOC), and many other areas where size and power 

consumption are limiting factors. 

The most recent work in this area was done by Brian Luke in a Dissertation for 

his Doctorate at the Naval Postgraduate School [1].  This work demonstrated the theory 

behind a 3 channel folding ADC that utilized the RSNS conversion in order to reduce the 

power consumption and size of a system.  The focus in his study was for SOC 

applications.  The power and size savings of the design were significant; however it did 

not achieve a high enough resolution. 

Utilizing the theory developed in the above dissertation, a project for a higher 

resolution folding ADC was initiated.  In this thesis, the focus was to expand on the 

folding ADC’s RSNS digital processing to achieve higher resolution from the overall 

circuit being developed. 

The contribution of the research contained in this thesis was two fold.  First, to 

verify the theory contained in [1] for a three channel RSNS folding ADC could be 

expanded to achieve higher resolution.  Second, to design and test a circuit using the 

expanded, higher resolution equations produced and to verify the actual results match the 

expected theoretical results. 

In order to accomplish the expansion verification, the first decision to be made 

was to establish the moduli for the three channels of the system.  Initially, 5, 6 and 7 were 

considered.  However, they did not sufficiently increase the resolution to the required 

value.  Moduli 7, 8, and 9 for channels 1, 2, and 3, respectively, were chosen and found 

to accomplish an acceptable resolution for theoretical validation of the digital system.    

This thesis demonstrated and verified the theoretical expansion of the folding 

circuit by implementing the equations in MATLAB.  The results of the MATLAB 
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simulation demonstrated a useful dynamic range of 126, or 7-bits.  The MATLAB also 

verified the proper test vectors and the operational range of the system.  

Once the theory was verified, a circuit was designed using Xilinx Project 

Navigator and Mentor Graphics’ Model Sim programs.  The schematic capture 

functionality of Xilinx was utilized, and due to the extensive amount of wiring, took 

several months to complete. 

In order to test the design captured in Xilinx, a Model Sim waveform had to be 

generated.  Due to limitations of the waveform generator associated with Model Sim, 

additional logic to produce a proper signal to test the system had to be designed. 

Utilizing the test vectors verified with MATLAB, a waveform was generated and 

processed through the Xilinx system.  The result of the testing was that a dynamic range 

of 126 was achieved and theoretical and actual results matched.  

The next step is to convert the Xilinx design over to application specific 

integrated circuit (ASIC) software for simulation with the folding analog portion of the 

ADC.  Once completed, this system will have far reaching application to the DoD in 

Electronic Warfare, Sensor Systems, Unmanned Aerial Vehicle (UAV), and any other 

area where power and size constraints are relevant. 
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I. INTRODUCTION  

A. FOLDING ANALOG TO DIGITAL CONVERTER BRIEF HISTORY  
Analog to Digital Converters (ADC) are integral parts of almost all 

communication and detection systems available today.  These devices allow a smooth 

flow into the digital processing capabilities of today’s high speed digital computing from 

our analog surroundings to process information. 

Folding circuits added a new dimension to the ADC implementation.  The folding 

of the analog signal allows the repetitive use of comparators thereby reducing the die size 

and increasing the current that can be used for each comparator, increasing the analog 

band-width.[2]  This significant attribute of lower power consumption and smaller die 

space has led to research in this area for use in data collection with unmanned aerial 

vehicles (UAVs), and System on a Chip applications that are of increasing interest to the 

DoD.   

Currently, most folding ADCs are using 64 comparators for an 8-bit resolution 

[2], [9], [10].  There are some ADCs that use 26 comparators for the 8-bit resolution.  

However, the error correction logic associated with this pipelined implementation creates 

an exorbitant amount of logic overhead [7].  The limitations of these current systems led 

to this thesis research. 

 

B. PRINCIPAL CONTRIBUTIONS 
In [1], it was shown theoretically that a three channel folding ADC of fold moduli 

3, 4, and 5 could be designed using the Robust Symmetrical Number System (RSNS).  In 

this thesis, the equations developed in [1] were scrutinized and the general equations for a 

larger moduli three channel folding ADC were expanded.  The moduli chosen for this 

thesis were 7, 8, and 9.  The equations resulting from this expansion were verified 

utilizing software analysis.   

Using the above moduli, a seven bit ADC can be designed using only 24 

comparators vice 64, which is the average number for an eight bit ADC [2, 3].  This  
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demonstrates the savings made possible in using the RSNS folding ADC model for on 

chip designs for significantly more complicated applications in terms of energy and space 

savings due to comparator savings. 

The major contribution of the research contained in this thesis is two fold.  First, it 

shows verification of the general equations for a three channel RSNS folding ADC.  

Second, it shows the testing of circuits designed using these equations and that they 

produce the expected theoretical output results. 

The first contribution was accomplished using MATLAB.  The fist step was to 

expand the equations given in [1], then convert them into MATLAB syntax for modeling 

and simulation.  The major portion of the work using MATLAB was creating the test 

vectors for the equations.  Once the code was written and executed, the result was a seven 

bit output with a useful dynamic range of 126. 

The second contribution was accomplished using Xilinx Project Navigator and 

Mentor Graphics’ Model Sim programs.  The first step was to convert the equations 

utilized for the MATLAB portion to NAND, NOR, INVERTER, and XOR gates for 

implementation in hardware.  The rewritten equations were then implemented using the 

schematic capture functionality of Xilinx Project Navigator.  As with the MATLAB code, 

the harder portion was creating the test signal for the system.  Using the Mentor Graphic 

Model Sim program that has a symbiotic relationship with the Xilinx Project Navigator, a 

test-bench waveform was created that produced the expected results and that were exactly 

the same as the MATLAB results. 

The thesis work was carried out by first accomplishing the MATLAB verification 

so that significant resources would not be brought to bear on this subject unless the 

equations and analysis were verified.  Once the MATLAB verification was completed, 

the schematic capture portion was started.  Due to the complexity and extensive amount 

of wiring, the implementation of the equations in logic took several months to complete.   

Once the schematics of the RSNS-to-binary system were completed, a test-bench 

waveform needed to be created to test the system using Model Sim.  Model Sim has a 

function generator for this purpose; however it did not possess the function needed to 

easily create the needed test-bench for this system.  The available functions were 
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evaluated and a resetting counter function was chosen.  Utilizing this function, additional 

logic was designed to convert a resetting counter input to the desired function needed for 

the RSNS-to-binary converter. 

The new logic was front loaded to the RSNS-to-binary logic and the appropriate 

waveform was processed through the system.  The resulting data demonstrated the circuit 

functioned properly.   

 

C. THESIS OUTLINE 
Chapter II is a brief summary of the RSNS and is an expansion of the equations 

used for the main body of work in this thesis.  This chapter will be used to reassert the  

model in [1] for the 3, 4, and 5 moduli ADC.  Along with the 3, 4, and 5 moduli, the 

general equations for each major component will be given and expanded to address 

moduli 7, 8, and 9.  This chapter will delineate all the equations used for the following 

chapters for design of the RSNS-to-Binary conversion circuit.  All equations in this 

chapter and all following chapters will be Boolean expression using a binary numbering 

system unless otherwise specified.  Table 1 is a list of the most commonly used variables 

in this thesis.  The bit order will use the highest number as the most significant bit (MSB) 

and zero as the least significant bits (LSB) as denoted by the bit order subscript.   

 

 

 

 

 

 

 

 

 

 



Variable Description Subscript i  Subscript k  

    

im  Modulus Channel Number  

iks  Thermometer Code 

Input from  

Comparators 

Channel Number Bit Order 

ikp  Position bit 

conversion 

Channel Number Bit Order 

in  Dynamic Range 

Filtered Output 

Bit Order  

ig  Encoder Output Bit Order  

ih  System Output Bit Order  

Table 1. List of Variables 
 

Chapter III will outline the process used to convert the equations developed in 

Chapter II from general Boolean equations into MATLAB code and the appropriate least 

product term equations for the Xilinx Project Navigator schematic capture.  The chapter 

is broken into two major sections; the first is on the implementation of the general 

equations from Chapter II to MATLAB code and the second section the implementation 

for the Xilinx schematic capture.  Each section breaks down the conversion by the major 

components for the RSNS-to-binary converter. 

Chapter IV is a detailed description of how the testing of the system had to be set 

up in order to verify the proper functioning of the RSNS-to-binary conversion logic.  The 

first section of this chapter focuses on the development of the creation of inputs for the 

system.  There are specific requirements placed on the inputs for the system and the 

second portion of this chapter ensures that these requirements are satisfied. 

4 
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Chapter V shows the combined results of the test vectors and waveforms created 

in Chapter IV and the implementing of them via the program and circuit design in 

Chapter III. 

Chapter VI wraps up the conclusions of the work and future work to be 

accomplished. 
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II. RSNS RESIDUE-TO-BINARY CONVERSION 

A. GENERAL BACKGROUND 
The Robust Symmetrical Number System (RSNS) utilizes modulo arithmetic to 

decompose an integer into one or more symmetrical residues.  Unlike other numbering 

systems, such as the Residue Numbering System (RNS) or Symmetrical Numbering 

System (SNS), the RSNS contains built-in redundancy to eliminate the need for extensive 

error correction [1].  In [1], three methods for converting RSNS residues to binary were 

discussed and this thesis utilizes the third method in which an algorithmic approach is 

used that is based on the underlying RNS structure of RSNS.   

 

B. APPLICATION TO ADC 

Information obtained for this chapter follows the previous work in [1] and utilizes 

the equations given therein to generate the equations for the basic design demonstrated in 

Chapter III.  This Chapter attempts to summarize the information in [1] and use that 

information to develop the equations for this thesis.   

The RSNS-to-binary portion developed in this thesis takes logical 1’s and 0’s 

from the outputs of a bank of 24 comparators at the end of an analog folding circuit.  

These comparator outputs are separated into 3 channels of moduli 7, 8, and 9 with the 

same number of comparator outputs as the moduli number for each channel.  These 

comparator signals are the input to the RSNS-to-binary conversion system and are 

labeled , with each channel labeled with .  The three channels are broken down as 

follows;

ijs im

[ ]1 16 15 14 13 12 11 107 , , , , , ,m s s s s s s s= ⇒ , [ ]2 27 26 25 24 23 22 21 208 , , , , , , ,m s s s s s s s s= ⇒ , and 

[ ]3 38 37 36 35 34 33 32 31 309 , , , , , , , ,m s s s s s s s s= ⇒ s  representing the thermometer code for each 

channel.  A block diagram of the thermometer code to binary conversion algorithm is 

shown in Figure 1.  

The dynamic range for the 3-channel system, with pair-wise relatively prime 

moduli, is found using equation (1) from [4]. 

7 



 2
1 1

3 15 7
2 2

RSNSM m m= + +  (1) 

With , the maximum dynamic range for the 1 7m = 1 7m = , 2 8m = , and system 

designed in this thesis is 

3 9m =

( ) ( )23 157 7 7 133
2 2

RSNSM = + + = . 

 

Position Bit
Even Residue

MRSS

Conditional 
Inversion Alignment Encoder Adder

16 10[ ... ]s s

27 20[ ... ]s s

38 30[ ... ]s s

16 10[ ... ]p p

27 20[ ... ]p p

38 30[ ... ]p p

16 10[ ... ]a ap p

27 20[ ... ]a ap p

38 30[ ... ]a ap p
20 0[ ... ]n n 4 0[ ... ]g g 6 0[ ... ]h h

1 2 3[ , , ]e e e
0 2[ , ]MRSS MRSS

Position Bit
Even Residue
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20 0[ ... ]n n 4 0[ ... ]g g 6 0[ ... ]h h

1 2 3[ , , ]e e e
0 2[ , ]MRSS MRSS0 2[ , ]MRSS MRSS

 
Figure 1.   Block Diagram of the Symmetrical Residue-to-Binary Converter 

 
 
1. Position Bit Equations 

The Thermometer code inputs , , and  are first 

converted to RSNS Position Bits.  Position Bits are moduli dependent and are 

decomposed modulo residues of the Thermometer code inputs.  Position Bits map from 

the Thermometer code inputs in accordance with the moduli of the channel.  , 

, and  map to 

16 10[ ... ]s s 27 20[ ... ]s s 38 30[ ... ]s s

16 10[ ... ]s s

27 20[ ... ]s s 38 30[ ... ]s s 16 10[ ... ]p p , 27 20[ ... ]p p , and 38 30[ ... ]p p for , 1 7m = 2 8m = , 

and .  For , , and 3 9m = 1 3m = 2 4m = 3 5m = , , , and  map to 12 10[ ... ]s s 23 20[ ... ]s s 34 30[ ... ]s s

12 10[ ... ]p p , 23 20[ ... ]p p , and 34 30[ ... ]p p . 

The following equations were taken from [1] and used in the development of this 

thesis work.  The following are the derived position bit equations utilizing binary 

thermometer code inputs from the analog circuit for moduli three, four, and five: 

 
10 11

11 11

12 10 12

,
,

,

p s
p s

p s s

=

=

=

 (2) 
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for , 1 3m =

 

20 21

21 21 23

22 22

23 20 22

,

,
,

,

p s

p s s
p s

p s s

=

=
=

=

 (3) 

for , 2 4m =

 

30 31

31 31 33

32 33

33 32 34

34 30 32

,

,
,

,

,

p s

p s s
p s

p s s

p s s

=

=
=

=

=

 (4) 

for . 3 5m =

Using truth tables and Boolean algebra, the general forms of the above equations 

for even and odd moduli were shown to be: 

 

( ) ( )

( )

( ) ( )

( )

( )

( )

0 1

1 1 3

2 3 5

3 11
2

2
2

4 21
2

4 63

2 42

0 21

,

,

,

,

,

,

,

,

,

i i i

i i

i i i

i

i

i

i i

i i i

i i i

m i m i mi

m i mi

m i m i mi

i ii m

i ii m

i ii m

p s

p s s

p s s

p s s

p s

p s s

p s s

p s s

p s s

− −⎛ ⎞−⎜ ⎟
⎝ ⎠

−⎛ ⎞
⎜ ⎟
⎝ ⎠

− −⎛ ⎞+⎜ ⎟
⎝ ⎠

−

−

−

=

=

=

=

=

=

=

=

=  (5) 

for even moduli, and  
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( ) ( )

( )

( ) ( )

( )

( )

( )

0 1

1 1 3

2 3 5

4 2
1

2

2
2

3 1
1

2

4 63

2 42

0 21

,

,

,

,

,

,

,

,

,

i ii

ii

i ii

i

i

i

i i

i i i

i i i

i m i mm
i

i mm
i

i m i mm
i

i ii m

i ii m

i ii m

p s

p s s

p s s

p s s

p s

p s s

p s s

p s s

p s s

− −⎛ ⎞⎢ ⎥−⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

−⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

− −⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

−

−

−

=

=

=

=

=

=

=

=

=  (6) 

for odd moduli.  The term
2

im⎢ ⎥
⎢ ⎥⎣ ⎦

is defined as the greatest positive integer less than or 

equal to 
2

im , i.e., if the result is 3.54, then 3.54 3=⎢ ⎥⎣ ⎦ . 

Equations (5) and (6) above were used to generate the signal bit mapping to 

position bits for the higher moduli used in this thesis.  The equations are as follows: 

 

10 11

11 11 13

12 13 15

13 15

14 14 16

15 12 14

16 10 12

,

,

,
,

,

,

,

p s

p s s

p s s
p s

p s s

p s s

p s s

=

=

=

=

=

=

=

 (7) 

for , and  1 7m =
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20 21

21 21 23

22 23 25

23 25 27

24 26

25 24 26

26 22 24

27 20 22

,

,

,

,
,

,

,

,

p s

p s s

p s s

p s s
p s

p s s

p s s

p s s

=

=

=

=
=

=

=

=

 (8) 

for , and 2 8m =

 

30 31

31 31 33

32 33 35

33 35 37

34 37

35 36 38

36 34 36

37 32 34

38 30 32

,

,

,

,
,

,

,

,

,

p s

p s s

p s s

p s s
p s

p s s

p s s

p s s

p s s

=

=

=

=
=

=

=

=

=

 (9) 

for .  An example of the above equations would be = [0,0,1,1,1,1,1] would 
map to 

3 9m = 16 10[ ... ]s s

16 10[ ... ]p p  = [0,0,1,0,1,0,0]. 
 
 
2. Even Residue Flags 
After position bit conversion, the next step is to determine if the Thermometer 

code input to the three channels is even or odd.  This is done in by counting the number 

of input bits that are one for each of the Thermometer code channels and asserting the 

even signal if the number is even and not asserting the signal if the number is odd.  That 

is, for channel two ( )2 8m =  if the Thermometer code input bits are 

[ ] [ ]20 27... 1,1,1,1,0,0,0,0s s = , then the even residue flag for channel two would be asserted 

since there are four ones in the thermometer code input. 
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The equations for an even residue with 1 3m = , 2 4m = , and , from [1], are 

shown in equation (10).  The e  represents an even bit flag, and will be asserted when the 

channel is even, with the subscript designating the channel. 

3 5m =

 
1 10 11 12

2 20 21 22 23

3 30 31 32 33 34

,

,

,

e s s s

e s s s s

e s s s s s

= +

= + +

= + +

 (10) 

In general, the equations for even moduli (11) and for odd moduli (12) can be generated 

as   

 ( )0 1 2 3 4 1 ,
ii i i i i i i me s s s s s s −= + + + +  (11) 

 ( ) ( )0 1 2 3 4 2 1 ,
i ii i i i i i i m i me s s s s s s s− −= + + + +  (12) 

This thesis chose to use equations (11) and (12) to get the following equations for 

the even flags for , , and 1 7m = 2 8m = 3 9m = . 

 
1 10 11 12 13 14 15 16

2 20 21 22 23 24 25 26 27

3 30 31 32 33 34 35 36 37 38

,

,

,

e s s s s s s s

e s s s s s s s s

e s s s s s s s s s

= + + +

= + + + +

= + + + +

 (13) 

Following the example above for 2 8m = , 2 1e =  would be asserted. 

 
3. Modulus Residue Sub-Sequence Flags 
The Modulus Residue Sub-Sequence (MRSS) flags are used to determine if the 

position bits of a channel ( )ijp  must have the bit order reversed.  The discussion of this in 

[1] explains how these flags effect the conditional bit reversal of channel two and three of 

the system.  Equation (14) shows the general equations from [1], with the sub-

script being the number of channels in the system.   N

12 



 

1 1 2

2 2 3

2 2

1 1

0 1

,
,

,
,

,

N

N

N N

N N

N

MRSS e e

1

MRSS e e

MRSS e e
MRSS e e

MRSS e e

−

−

− −

−

= ⊕
= ⊕

= ⊕
= ⊕

= ⊕

 (14) 

The three-channel circuit utilized in this thesis uses equation (14) to generate 

equation (15), which is used in the next section to perform the conditional inversion of 

the position bits. 

 
0 3 1

1 3 2

2 2 1

,
,
,

MRSS e e
MRSS e e
MRSS e e

= ⊕
= ⊕

= ⊕
 (15) 

For example, for  , 3 1e = 2 1e = , and 1 0e = , 2 1MRSS =  and 0 1MRSS =  

4. Conditional Bit Reversal

Conditional bit reversal of the position bits is based on the MRSS’s, where each 

channel is reversed depending on a different MRSS flag.  When a channel is reversed, its 

bit order is reversed, i.e., if the signal 20, 21 27...p p p⎡ ⎤⎣ ⎦ met the conditions to be inverted it 

would be transposed to .  In order to keep continuity of variable naming, 

all position bits after the conditional bit reversal will have a subscript of “a” added to 

delineate them from the bits before the conditional bit reversal logic, i.e., channel two 

position bit labels would be changed to

27, 26 20...p p p⎡⎣ ⎤⎦

20 , 21 27...a a ap p p⎡ ⎤⎣ ⎦  

Channel one is never reversed.  Channel two is bit reversed if 2MRSS  is asserted.  

Channel three is reversed if 0MRSS is asserted.  This can be accomplished with simple 

multiplexers.  The logic and equations used for this will be shown in Chapter III.  For our 

3-channel case, 1MRSS is not used. 

 

 

13 



5. Alignment Logic 
The RSNS relies on least positive solution (LPS) positional alignment to align the 

congruence equations resulting from the incoming RSNS symmetrical residue vectors.  It 

can be shown that the RNS residue position bits for the 1 3m = , , and 2 4m = 3 5m =  

system can be aligned using eight 3-input NAND gates.  Using 3-input NAND gates the 

, , and  system can accomplish the alignment using twenty-one 

gates.  Utilizing the code in the appendices of [1], the start point for the alignment logic is 

1 7m = 2 8m = 3 9m =

14 23 36a a ap p p .  Equation (16) shows all twenty-one of the gate equations needed for the 

system.   

 

0 14 23 36

1 15 24 37

2 16 25 38

3 10 26 30

4 11 27 31

5 12 20 32

6 13 21 33

7 14 22 34

8 15 23 35

9 16 24 36

10 10 25 37

11 11 26 38

12 1

,

,

,

,

,

,

,

,

,

,

,

,

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

n p p p

n p p p

n p p p

n p p p

n p p p

n p p p

n p p p

n p p p

n p p p

n p p p

n p p p

n p p p

n p

=

=

=

=

=

=

=

=

=

=

=

=

= 2 27 30

13 13 20 31

14 14 21 32

15 15 22 33

16 16 23 34

17 10 24 35

18 11 25 36

19 12 26 37

20 13 27 38

,

,

,

,

,

,

,

,

,

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

p p

n p p p

n p p p

n p p p

n p p p

n p p p

n p p p

n p p p

n p p p

=

=

=

=

=

=

=

=

 (16) 
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This range determination of  is the longest vector, where the combinations of 

the positions bits 

n

1 2 3, ,ja ka lap p p⎡⎣ ⎤⎦  does not have a repeated combination of . ,  ,  and j k l

Within the dynamic range of the system, only one NAND gate output from 

equation (16) will be active at a time.  This unique attribute of the RSNS-to-binary 

algorithm is where the usefulness of RSNS is realized.   

 
6. Encoder 

The outputs from the alignment logic are encoded into a 5-bit output because only 

one NAND gate is active at one time and 21 can be encoded in binary in 5 bits.  The 

equations for the encoding logic are not difficult and  will not be included in this section.  

They are shown graphically in Chapter III.   

 

7. Adder 
The adder designed for this thesis follows the equation shown in Figure 1 and is 

for the , , and system [1].  The RSNS-to-binary implementation in this 

thesis is three-channels and uses the same basic equations.  However, the equations are 

expanded in this thesis so that the inputs to the adder are consistent with the 5-bit output 

from the Encoder described in the previous section.  This is shown in Figure 3. 

1 3m = 2 4m = 3 5m =

 
3 2 1 0 1 0 2

3 2 1 0 1

5 4 3 2 1 0

carry-ing g g g e MRSS MRSS

g g g g e

h h h h h h

←

+  

Figure 2.   Adder implementation for RSNS-to-binary for [1]. 
 
 
 

 
4 3 2 1 0 1 0 2

4 3 2 1 0 1

6 5 4 3 2 1 0

     carry-in

    

    

g g g g g e MRSS MRSS

g g g g g e

h h h h h h h

←

+  

Figure 3.   Adder implementation of RSNS-to-binary for this thesis. 
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The chapter contained an explanation of the concept for the Symmetrical Residue-

to-binary conversion algorithm.  This information will be the basis for the following 

chapters and will aid the process of designing the code and logic in the next chapter.   



III. LOGIC DESIGN FOR ROBUST SYMMETRICAL 
NUMBERING SYSTEM LOGIC BLOCK 

An overview of the RSNS circuit for processing the thermometer code produced 

by the analog folding circuits is shown in Figure 4.  The 6 major levels of logic were 

developed from the theory and equations discussed in Chapter II.   

 

Position Bit
Even Residue

MRSS

Conditional 
Inversion

Alignment

Encoder

Adder

Position Bit
Even Residue

MRSS

Conditional 
Inversion

Alignment

Encoder

Adder

 
Figure 4.   Hierarchical View of RSNS-to-binary converter 

 
A. MATLAB REALIZATION 

17 

Programming the RSNS-to-binary logic equations in MATLAB, for verification 

of the equations derived in Chapter II, was the next step in developing the 1 7m = , 

, and converter.  This section walks through the basic algorithm to convert 

the binary logic equations to MATLAB logical equations.  The code developed during 

this phase was based on the assumption that the thermometer code, or symmetrical 

2 8m = 3 9m =



residues, would be passed as a parameter to the system.  Appendix B shows the code 

created by using the algorithm shown in the following sections.   

First the algorithm maps the input to the proper variable naming for the system, 

i.e., it takes the twenty-four binary input bits and renames them [ ]10 16...S S ,  [ ]20 27...S S , 

and [ ]30 38...S S .  The twenty-four bits are then processed as described in the remainder of 

this section.   

 

1. Thermometer Code to Position Bit Conversion  
Equations (7), (8), and (9) show the general Position Bit conversion equations for 

the RSNS-to-binary converter developed in this thesis.  Changing these equations from 

standard Boolean format to MATLAB syntax we would get, for example,  31 31 33p s s=  

mapped to P31=and(S31,not(S33)).  Apply this mapping to equations (7), (8), and (9), 

gives the position bit conversion for 1 7m = , 2 8m = , and 3 9m = . 

 

2. Even Residue Flags  
Equation (13) shows the specific Even Residue Flag equations.  A simple 

mapping to MATLAB syntax from equation (13) would map 

1 10 11 12 13 14 15 16e s s s s s s s= + + + to 

  

Applying this mapping to the remainder of equation (13), gives the even residue flags for 

, , and . 

E1=or(not(S10),or(and(S11,not(S12)),or(and(S13,not(S14)),and(S15,not(S16))))).

1 7m = 2 8m = 3 9m =

 

3. MRSS 

Equation (15) shows the MRSS flag generation.  The MATLAB syntax for 

1 3 2MRSS e e= ⊕  is MRSS1=xor(E3,E2).  Apply this syntax to the remaining portion of 

(15) gives the MRSS flags for 1 7m = , 2 8m = , and 3 9m = .  
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4. Conditional Bit Reversal 
Conditional bit reversal is accomplished by use of a multiplexer.  Multiplexers are 

implemented  using an OR of the AND of a signal and its compliment with the two 

outputs, i.e., P20a is either P27 or P20, depending on MRSS2 being asserted or not 

asserted, respectively.    The Boolean expression for this multiplexer portion would be  

20 27 2 20 2(a )p p MRSS p MRSS= + , which is then converted and mapped in MATLAB to 

P20a=or(and(P27,MRSS2),and(P20,not(MRSS2))).  Applying this logic to all the 

positions bits of channel two and three generates the conditional bit reversal for 1 7m = , 

, and .  Figure 5 shows a 2-to-1 multiplexer where the output is input 1 if 

the control signal is asserted and input 2 otherwise. 

2 8m = 3 9m =

Control signal

Input 1

Input 2

Output

Control signal

Input 1

Input 2

Output

 
Figure 5.   2-to-1 Multiplexer 

 

5. Alignment Logic 
The theory presented in Chapter II called for 3-input NAND gates to be used in 

the alignment logic.  However, MATLAB does not have NAND commands.  Therfore, 

modifications to the system had to be made to the alignment logic to allow the use of  an 

AND gate in the MATLAB code.  This was accomplished by following which signal 

should be asserted and adjusting accordingly to allow proper use of MATLAB coding.  

Equation (16) shows all equations for the alignment, by mapping 0 14 23 36a a an p p p=  to 

n0=(and (P14a,and(P23a,P36a))); and continuing this for the rest of (16) we get the 

Alignment Logic portion. 
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0

6. Encoder 
The Encoder expresses the subscript number of the asserted AND gate and 

generates a five bit output, [g4,g3,g2,g1,g0].  For example, if n14 was the active AND 

gate, then the output of the encoder would be [0,1,1,1,0].  The equations utilized in 

Appendix B were derived from the truth table shown in Table 2.  Each output bit of the 

Encoder is the OR of all the logic 1s in the column below the respective output designator 

in Table 2.  For example, if we look at g4, there are logic 1s at n16, n17, n18, n19 and 

n20.  If any of these gates are active then g4 will be asserted.  Thus, 

(where + represents OR) which converts to MATLAB 

of g4=or(n16,or(n17,or(n18,or(n19,n20)))).  Following this we get the Encoder from 

Table 2. 

4 16 17 18 19 2g n n n n n= + + + +

Active 
AND gate 

  g4 g3 g2 g1 g0 

              
n0   0 0 0 0 0 
n1   0 0 0 0 1 
n2   0 0 0 1 0 
n3   0 0 0 1 1 
n4   0 0 1 0 0 
n5   0 0 1 0 1 
n6   0 0 1 1 0 
n7   0 0 1 1 1 
n8   0 1 0 0 0 
n9   0 1 0 0 1 
n10   0 1 0 1 0 
n11   0 1 0 1 1 
n12   0 1 1 0 0 
n13   0 1 1 0 1 
n14   0 1 1 1 0 
n15   0 1 1 1 1 
n16   1 0 0 0 0 
n17   1 0 0 0 1 
n18   1 0 0 1 0 
n19   1 0 0 1 1 
n20   1 0 1 0 0 

Table 2. Encoder Truth Table 
 



7. Adder 
The adder is a standard 7 bit adder.  Once the inputs are arranged according to 

Figure 3, the equations for the adder can be produced as shown in Appendix B.  The 

output is given by 7 matrices, h0, h1, h2, h3, h4, h5 and h6.  Since the binary output is 

not easily verified using MATLAB plots, a matrix called decimal was created for easier 

visual verification of the output and is the decimal conversion of the h6 to h0 binary 

output.  Verification and testing for this code will be discussed in Chapters IV and V. 

 

B. XILINX REALIZATION 

This section shows the schematics created in Xilinx Project Navigator to create 

the RSNS-to-binary conversion logic.  Xilinx was chosen for this because it was a readily 

available program with schematic capture functions, along with a good test-bench 

simulator for verification of proper circuit operation.  The equations used were 

modifications of those in Chapter II.  The only changes were the application of 

DeMorgan’s Theorem to those equations in order to predominantly use NAND, NOR, 

and INVERTER gates only.  A few XORs were used for the adder and MRSS logic 

blocks.  Note, in the following schematic diagrams, the labels are as in Xilinx Project 

Navigator. 

 
1. Thermometer Code to Position Bit Conversion and Even Residue 

Flags 

For , equation (7) and (13) are used, and DeMorgan’s Theorem was 

applied to get equation (17) and (18), and when drawn in Xilinx, results in Figure 6. 

1 7m =

 

10 11

11 11 13 11 13

12 13 15 13 15

13 15

14 14 16 14 16

15 12 14 12 14

16 10 12 10 12

,

,

,
,

,

,

p s

p s s s s

p s s s s
p s

p s s s s

p s s s s

p s s s s

=

= = +

= = +
=

= = +

= = +

= = +

 (17) 

21 



 ( )( )( )1 10 11 12 13 14 15 16 10 11 12 13 14 15 16e s s s s s s s s s s s s s s= + + + =  (18) 

  

 

P1(10:16)

Input (0:6)
From 
Moduli 7
Folded 
Wave 
comparators

1e

P1(10:16)

Input (0:6)
From 
Moduli 7
Folded 
Wave 
comparators

1e

 
Figure 6.   Channel 1 Position Bit and Even Bit Flag Schematic  

 

For , equation (8), and (13) are used, and DeMorgan’s Theorem applied to 

get equation (19) and (20), and when drawn in Xilinx, results in Figure 7. 

2 8m =

 

20 21

21 21 23 21 23

22 23 25 23 25

23 25 27 25 27

24 26

25 24 26 24 26

26 22 24 22 24

27 20 22 20 22

,

,

,

,
,

,

,

,

p s

p s s s s

p s s s s

p s s s s
p s

p s s s s

p s s s s

p s s s s

=

= = +

= = +

= = +
=

= = +

= = +

= = +

 (19) 

22 



 ( )( )( )2 20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 2e s s s s s s s s s s s s s s s s= + + + + = 7  (20) 

 

 

 

Input (0:7)
From 
Moduli 8
Folded 
Wave 
comparators

S2(20:27)

2e

Input (0:7)
From 
Moduli 8
Folded 
Wave 
comparators

S2(20:27)

2e

 
Figure 7.   Channel 2 Position Bit and Even Bit Flag Schematic  

 

For , equation (9) and (13) are used, and DeMorgan’s Theorem applied to 

get equation (19) and (22), and when drawn in Xilinx, results in Figure 8. 

3 9m =

23 



 

30 31

31 31 33 31 33

32 33 35 33 35

33 35 37 35 37

34 37

35 36 38 36 38

36 34 36 34 36

37 32 34 32 34

38 30 32 30 32

,

,

,

,
,

,

,

,

,

p s

p s s s s

p s s s s

p s s s s
p s

p s s s s

p s s s s

p s s s s

p s s s s

=

= = +

= = +

= = +
=

= = +

= = +

= = +

= = +

 (21) 

 ( )( )( )( )3 30 31 32 33 34 35 36 37 38 30 31 32 33 34 35 36 37 38e s s s s s s s s s s s s s s s s s s= + + + + =  (22) 

 

Input (0:8)
From 
Moduli 9
Folded 
Wave 
comparators

P3(30:38)

3e

Input (0:8)
From 
Moduli 9
Folded 
Wave 
comparators
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3e
 

Figure 8.   Channel 3 Position Bit and Even Bit Flag Schematic 
 
2. Modulus Residue Sub-Sequence Flags 
Equation (15) is used to get Figures 9 and 10.   
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Input  1e
Input  3e 0MRSS

OutputInput  1e
Input  3e
Input  1eInput  1e
Input  3eInput  3e 0MRSS

Output

 

Figure 9.   0MRSS Xilinx Schematic 
 

Input  1e
Input  2e 2MRSS

OutputInput  1e
Input  2e
Input  1eInput  1e
Input  2eInput  2e 2MRSS

Output

 
Figure 10.   2MRSS  Xilinx Schematic 

 
 
3. Conditional Bit Reversal 
Channel 1 is never reversed.  Therefore, in Xilinx, P1(6:0) will be a single bus 

line to the next block of logic.  Channel 2, which is an 8-bit to 8-bit multiplexer with 

2MRSS as the control signal, is shown in Figure 11.  Again, this reverses the Position Bit 

order when 2MRSS is asserted. 

P2a (7:0)

P2 (7:0)

2MRSS

P2a (7:0)

P2 (7:0)

2MRSS
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Figure 11.   Channel 2  Conditional Bit Reversal Schematic 



Channel 3, which is a 9-bit to 9-bit multiplexer with 0MRSS as the control signal, as 

shown in Figure 12.  Again, this inverts the Position Bit order when 0MRSS is asserted. 

 

P3a(8:0)

P3 (8:0)

0MRSS

P3a(8:0)

P3 (8:0)

0MRSS

 
Figure 12.   Channel 3 Conditional Bit Reversal Schematic 

 
4. Alignment Logic 
Figure 13 is a direct mapping of equation (16).  The only modification is the 

insertion of inverters for proper functioning of the follow on encoder. 
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P1(0:6)
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Figure 13.   Alignment Logic for Position Bits after Inversion 

 

5. Encoder 

The component equations in Equation (23) are the logical binary expressions for a 

21 to 5 bit encoder.  The circuit is shown in Figure 14.  This simple logic is all that is 

required for this section because only one NAND in the Alignment Logic can be active in 

the Dynamic Range at one time. 

 

( )( )( )( )
( )( )( )( )
( )( )( )
( )( )( )
( )( )

0 1 3 5 7 9 11 13 15 17 19

1 2 3 6 7 10 11 14 15 18 19

2 4 5 6 7 12 13 14 15 20

3 8 9 10 11 12 13 14 15

4 16 17 18 19 20

g n n n n n n n n n n

g n n n n n n n n n n

g n n n n n n n n n

g n n n n n n n n

g n n n n n

= + + + + + +

= + + + + + +

= + + + + + +

= + + + + +

= + + +

 (23) 
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g (0:4)

N(0:20)

g (0:4)  
Figure 14.   Binary 21 to 5 Bit Encoder Schematic 

 

6. Adder 

A standard adder design was selected for this thesis vice a carry-look-ahead adder 

since the logic involved in the design of the RSNS-to-binary logic will be faster than the 

analog circuit providing the inputs.  Figure 15 shows the adder circuit and Figure 3 shows 

the proper bit alignment for the inputs. 
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Carry-in

A(0:6)
B(0:5)

h (6:0)

Carry-in

A(0:6)
B(0:5)

h (6:0)  
Figure 15.   7 Bit Adder Schematic 

 

This chapter has shown the implementation of the theory and design of the 

previous chapter.  The next step is to ensure the inputs to these systems meets the RSNS 

residue requirements of the Residue-to-Binary converter. 
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IV. TEST DEVELOPMENT AND VERIFICATION 

A. THERMOMETER CODE DEVELOPMENT 

The inputs for the RSNS-to Binary logic must be the three thermometer codes for 

each channel, having RSNS Gray code properties for all 24 inputs.  Table 3 demonstrates 

a small section of the thermometer code for 1 7m =   and shows that  higher-order bits can 

only be asserted as 1 after all the less significant bits are asserted to 1.  The bits fill and 

ebb in bit order from lower to higher without skipping any bits.  The thermometer code 

property is present in all three RSNS channels. 

 

Bit number t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 

         

P16 0 0 1 0 0 0 0 0 

P15 0 1 1 1 0 0 0 0 

P14 1 1 1 1 1 0 0 0 

P13 1 1 1 1 1 1 0 0 

P12 1 1 1 1 1 1 1 0 

P11 1 1 1 1 1 1 1 1 

P10 1 1 1 1 1 1 1 1 

Table 3. Channel 1 Thermometer Code 
 

Gray code sequences only change 1 binary bit in the code group when going from 

one sample period to the next [5].  Table 4 shows the Gray code scheme used for the 

RSNS-to-Binary logic.  The number in the channel rows are the number of 1’s asserted 

for that channel.  As shown in Table 4, only one bit in all channels changes at any time 

sampling.  In terms of the circuit, this means only one of twenty-four comparator inputs 

change at any one sample time.  Another fact demonstrated in Table 4 is that each 
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channel will hold a value for three sample periods before changing.  This is to assist in 

ensuring the Gray code property of the inputs. 

Channel  t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 

          

1  6 6 6 5 5 5 4 4 

2  6 6 7 7 7 8 8 8 

3  6 5 5 5 4 4 4 3 

Table 4. RSNS Gray Code Property Showing the Number of Comparators for each channel 

 

Another property of the inputs is that the channels are time shifted.  Channels two 

and three are shifted left one and two sample periods, respectively, as is shown in Table 

4.  This is critical to the conversion process and assists in the Gray code functionality of 

the system.     

The development of the thermometer code for testing both the MATLAB code 

and the Xilinx Project Navigator schematic turned out to be much more difficult than 

initially expected because of these unique input requirements.  The following section will 

elaborate on how this was accomplished for the testing and ultimate verification of the 

RSNS-to-binary algorithm. 

 

1. MATLAB 

Creating a thermometer code with Gray code properties in MATLAB was a 

tedious task.  The first task was to create twenty-four matrices to represent the twenty-

four inputs from the comparators.  To accomplish this, the matrices were sorted by 

channel, that is, utilizing the fact that there are seven matrices in channel 1, ,  eight 

matrices representing channel 2, 

1 7m =

2 8m = , and nine matrices representing channel 3, 

.  Each channel holds a signal for three sampling periods.  One full cycle of the 

thermometer code would be from 0 to  down to 1, i.e., with =7, one full cycle 

would be[0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1].  With the 3 sample hold and thermometer 

3 9m =

im 1m

32 



code properties applied, it can be seen that the size of a matrix for a RSNS moduli is 

.  Applying this equation to moduli 3(2 1)im − 1 7m = , 2 8m = , and , it is found that 

the matrices for the channels are 42, 48, and 54, respectfully.  Utilizing these numbers, 

the MATLAB code in Appendix A generates matrices for each comparator output of the 

appropriate length for one full thermometer cycle and include the appropriate shifts for 

channels two and three. 

3 9m =

The next step is to make all the matrices equal size in order to cover all possible 

combinations of the shifted channels.  This was accomplished by using iterative ‘for’ 

loops to expand the matrices.  Equation (24) was used to establish the number of copies 

of each matrix that must be concatenated together in order facilitate proper alignment.   

  (24) 
1 2 3

2 1 3

3 1 2

[3(2 1)*3(2 1)] 1,
[3(2 1)*3(2 1)] 1,
[3(2 1)*3(2 1)] 1,

m m m
m m m
m m m

⇒ − −
⇒ − −
⇒ − −

−
−
−

Once the first two sections of MATLAB code in Appendix A are executed, 

twenty-four matrices of equal length, and encompassing all combinations of alignment, 

are produced and ready to be passed to the code in Appendix B for processing.  

 

2. Field Programmable Gate Array Schematic Capture 

Xilinx test-bench software does not have a thermometer code production function, 

but it does have a resetting counter.  The resetting counter will not produce the sequence 

[0, 1, 2, 3, 2, 1, 0, 1…] but will produce [0, 1, 2, 3, 0, 1, 2, 3, 0…].  Therefore to get 

thermometer code inputs for the system, some digital logic to convert the resetting 

counter to a thermometer code had to be designed.  The outputs of reset counters are the 

binary equivalent of the decimal value and the input to the thermometer code generators 

described in the following paragraphs and tables.  As an example, Table 5 shows the 

inputs to the thermometer code generator for 1 7m =  as [I13, I12, I11, I10]. 

Table 5 shows a truth table for channel 1.  The information in Table 5 is then put 

into Karnaugh maps for bits S10 thru S16 as shown in Figures 16, 17, 18, and 19.  These  
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Karnaugh maps produce the least sum equations shown in Equation(25).  These equations 

were then utilized to implement the channel 1 thermometer code generator in Xilinx, as 

shown in Figure 20. 
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1111110000168

1111111111077

1111110011066

1111100101055

1111000001044

1110000110033

1100000010022

1000000100011

0000000000000

S10S11S12S13S14S15S16I10I11I12I13ThermDecimal
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1111111111077
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1111100101055
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1110000110033

1100000010022

1000000100011

0000000000000
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Table 5. Channel 1 ( 1 7m = ) Waveform Truth Table 

 

111110

xx1111

111101

111000

10110100
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I3,I2
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I1,I0
I3,I2
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Figure 16.   Karnaugh maps for Channel 1 ( 1 7m = )Thermometer code, bits S10 and S11 

 



S12
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xx0011

111101
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000000
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S13
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000000
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I1,I0
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Figure 17.   Karnaugh maps for Channel 1 ( 1 7m = )Thermometer code, bits S12 and S13 
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000000
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Figure 18.   Karnaugh maps for Channel 1 ( 1 7m = ) Thermometer code, bits S14 and S15 
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Figure 19.   Karnaugh map for Channel 1 ( 1 7m = ) Thermometer code, bit S16 

 



 

( )( )( )
( )( )( )

( )( )( )
( )( )( )

( )

10 3 2 1 0 3 2 1 0

11 1 3 2 3 2 3 0 1 3 2 3 2 3 0

12 3 2 3 2 1 0 3 2 3 2 1 0

13 3 2 3 2 1 3 2 0 3 2 3 2 1 3 2 0

14 2 1 3 2 0 3 2 1 2 1 3 2 0 3 2 1

15 2 1 3 2 1 0 2 1 3 2 1

s I I I I I I I I

s I I I I I I I I I I I I I I

s I I I I I I I I I I I I

s I I I I I I I I I I I I I I I I

s I I I I I I I I I I I I I I I I

s I I I I I I I I I I I

= + + + = + + +

= + + + =

= + + =

= + + =

= + + =

= + = ( )0

16 2 1 0 2 1 0

I

s I I I I I I= = + +

 (25) 
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Figure 20.   Thermometer Code 7-Bit Generator 

 

Table 6 shows a truth table for channel 2 ( 2 8m = ).  The information in Table 6 is 

then put into Karnaugh map for bits S20 thru S27, as seen in Figures 21, 22, 23, and 24.  

These Karnaugh maps produce the least sum equations shown in Equation(26).  These 
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equations were then utilized to implement the channel 2 ( 2 8m = ) thermometer code 

generator in Xilinx, as shown in Figure 25. 
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Table 6. Channel 2 ( 2 8m = ) Waveform Truth Table 
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Figure 21.   Karnaugh maps for Channel 2 ( 2 8m = ) Thermometer code, bits S20 and S21 
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Figure 22.   Karnaugh maps for Channel 2 ( 2 8m = ) Thermometer code, bits S22 and S23 

 

111110

000011

111001

000000

10110100

I1,I0
I3,I2

S24

111110

000011

111001

000000

10110100

I1,I0
I3,I2

S24

101110

000011

110001

000000

10110100

I1,I0
I3,I2

S25

101110

000011

110001

000000

10110100

I1,I0
I3,I2

S25

 
Figure 23.   Karnaugh maps for Channel 2 ( 2 8m = ) Thermometer code, bits S24 and S25 
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Figure 24.   Karnaugh maps for Channel 2 ( 2 8m = ) Thermometer code, bits S26 and S27 

 



 

( )( )( )( )
( )( )( )( )

( )( )( )
( )( )( )

20 3 2 1 0 3 2 1 0

21 3 2 3 1 2 1 1 0 3 2 3 1 2 1 1 0

22 3 2 3 0 3 1 0 2 1 3 2 3 0 3 1 0 2 1

23 3 2 3 2 3 2 0 3 2 3 2 3 2 0

24 3 2 3 2 0 3 2 1 3 2 3 2 0 3 2 1

25 3 2 1 3 2

s I I I I I I I I

s I I I I I I I I I I I I I I I I

s I I I I I I I I I I I I I I I I I I

s I I I I I I I I I I I I I I

s I I I I I I I I I I I I I I I I

s I I I I I

= + + + = + + +

= + + + =

= + + + =

= + + =

= + + =

= + ( )( )( )
( )( )

1 3 2 0 3 2 1 3 2 1 3 2 0

26 3 2 1 3 2 1 0 3 2 1 3 2 1 0

27 3 2 1 0 3 2 1 0

I I I I I I I I I I I I I

s I I I I I I I I I I I I I I

s I I I I I I I I

+ =

= + =

= = + + +

 (26) 
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Figure 25.   Thermometer Code 8 Bit Generator 

 

Table 7 shows a truth table for channel 3( 3 9m = ).  The information in Table 7 is 

then put into Karnaugh maps for bits S30 thru S38, as shown in Figures 26, 27, 28, 29, 

30, 31, 32, 32, and 34.  These Karnaugh maps produce the least sum equations shown in 

Equation (27).  These equations were then utilized to implement the channel 3 

thermometer code generator in Xilinx, as shown in Figure 35. 
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Table 7. Channel 3 ( 3 9m = ) Waveform Truth Table 
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Figure 26.   Karnaugh map for Channel 3 ( 3 9m = ) Thermometer code, bit S30 
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Figure 27.   Karnaugh map for Channel 3 ( 3 9m = ) Thermometer code, bit S31 
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Figure 28.   Karnaugh map for Channel 3 ( 3 9m = ) Thermometer code, bit S32 
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Figure 29.   Karnaugh map for Channel 3 ( 3 9m = ) Thermometer code, bit S33 
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Figure 30.   Karnaugh map for Channel 3 ( 3 9m = ) Thermometer code, bit S34 
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Figure 31.   Karnaugh map for Channel 3 ( 3 9m = ) Thermometer code, bit S35 
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Figure 32.   Karnaugh map for Channel 3 ( 3 9m = ) Thermometer code, bit S36 
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Figure 33.   Karnaugh map for Channel 3 ( 3 9m = ) Thermometer code, bit S37 
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Figure 34.   Karnaugh map for Channel 3 ( 3 9m = ) Thermometer code, bit S38 
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( )( )
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( )( )
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( )( )( )( )

30 4 3 2 1 0 4 3 2 1 0

31 4 0 3 2 1 4 0 3 2 1

32 3 2 1 0 3 2 1 0

33 3 2 3 1 3 2 3 0 3 2 3 1 3 2 3 0

34 3 2 3 1 2 1 0 3 2 1 3 2 3 1 2 1 0 3 2 1
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s I I I I I I I I I I

s I I I I I I I I I I

s I I I I I I I I

s I I I I I I I I I I I I I I I I

s I I I I I I I I I I I I I I I I I I I I

s I I I I I I I I I I

= + + + + = + + +

= + + + = + +

= + + = +

= + + + =

= + + + =

= + + = ( )( )( )
( )( )
( )( )

2 3 1 0 3 2 1
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I I I I I I

s I I I I I I I I I I I I

s I I I I I I I I I I I I

s I I I I I I I I

= + =

= + =

= = + + +

 (27) 
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Figure 35.   Thermometer Code 9 Bit Generator  

 

These logic blocks will enable the production of a test-bench waveform that will allow 

the testing of the logic designed in Chapter III. 
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B. THERMOMETER CODE VERIFICATION 
The next step is to verify the thermometer code with Gray code properties was 

actually generated using the methods described in Section A.  Without proper inputs, the 

functioning of the symmetrical residue thermometer code-to-binary conversion circuit 

cannot be verified to be operating correctly.   

 

1. MATLAB 
Figure 36 is the graph of the outputs of the MATLAB code in Appendix A, sorted 

by channel.  As shown, Channel 1 goes from 0 to 7, Channel 2 goes from 0 to 8, and 

Channel 3 goes from 0 to 9, showing that each channel has its individual thermometer 

code properties.  Figure 36 also shows the Gray code and shifting properties that are 

required for the inputs of the system.  The figure also shows that in any one sampling 

period, the signal of only one channel changes..  The left shift of one and two for 

Channels 1 and 2, respectively, can be seen if we look at Channel 1 being the base.  In 

this case,  Channel 2 changes one cycle before, and Channel 3 changes 2 cycles before 

Channel 1. 
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Figure 36.   MATLAB Thermometer Code sample 



2. Field Programmable Gate Array Schematic Capture 
In order to test the RSNS-to-binary thermometer code generating circuits, the 

generators first needed to be incorporated into the main system as shown in Figure 37.  

I1, I2, and I3 are the reset counter inputs generated by the Xilinx test-bench waveform.  

The Verification Outputs, S1, S2, and S3, were included to ensure the generators 

functioned properly and that the RSNS-to-binary circuit receives the proper signals.  

Once the system is wired together, a test-bench waveform with the properties discussed 

above for testing the system and the thermometer code generators was executed.   
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Figure 37.   Hierarchal Schematic of Additional testing circuits. 

 

The result of executing the test-bench waveform through the thermometer code 

generators is shown in Figure 38.  I1, I2, and I3 are the decimal equivalents of the binary 

inputs, being executed by the test-bench waveform for channels 1, 2, and 3, respectively.  

S1, S2, and S3 are the binary thermometer outputs resulting from the Inputs I1, I2, and I3 

respectively.  S1, S2, and S3 are all shown with the LSB being to the left most bit and the 

MSB to the right.   

The Gray code property needed for the RSNS-to-binary system is also verified by 

looking at Figure 38.  Remembering that channel 2 is shifted one left and channel 3 is 

shifted two left, we see channel 2 changing one sample time prior to channel 1 and 

channel 3 changing two time samples prior to channel 1.  The further Gray code property 
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of only one bit changing can be seen by looking at the bits in S1, S2, and S3 and seeing 

that only one bit changes at each time sampling.     

 
 

2t = − 1t = − 0t =

I1(0:3)
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I3(0:4)

S1(0:6)
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S3(0:8)

 
Figure 38.   Test-Bench Inputs and Outputs from Thermometer Code Generators 

 

This chapter verified that both the MATLAB and Xilinx programs were 

generating an appropriate test signal that met all the requirements for the RSNS-to-binary 

converter.  The next chapter will use these verified signals to test and verify the 

functioning of the symmetrical residue-to-binary algorithm.   
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V. VERIFICATION OF TEST RESULTS 

A. MATLAB CODE 

Chapter IV showed that the MATLAB code in Appendix A generates a 

thermometer code for the three channels of the RSNS-to-binary circuit.  It also showed 

that the MATLAB code was properly shifted and possessed Gray code properties as 

needed by the system. 

When the MATLAB code in Appendix A is executed, the matrices generated 

represent the input bits to the MATLAB code in Appendix B.  At the conclusion of the 

execution of both sets of code, Figure 37 is produced. 

The desired output of the RSNS-to-binary system is a linear region of length 126.  

Figure 39 shows the output for the test vector passed to Appendix B.  There is a linear 

region of 126, demonstrating that the desired output for the RSNS-to-binary system was 

accomplished with the MATLAB code.   

Max 125Max 125

Dynamic Range of 126

Max 125Max 125

Dynamic Range of 126

 
Figure 39.   Graph of Output of MATLAB Logic code. 
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The other critical portion that was found with the MATLAB code was the 

beginning vector for the dynamic range.  The vector that produces the zero at the 

beginning of the dynamic range of the system is [6, 6, 6].  That is, the thermometer codes 

from Channel 1, Channel 2, and Channel 3 are [1111110], [11111100], and [111111000] 

respectively.  There are possible occurrences of this vector in the three channel vector 

of inputs as each of the three channels can be either increasing or decreasing.  Therefore, 

the beginning vector description has to be more specific.  It was found that the beginning 

vector is [6, 6, 6], with Channel 1 decreasing, Channel 2 increasing, and Channel 3 

decreasing. 
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B. FPGA DESIGN 
Chapter IV showed that the thermometer code generators for the Xilinx schematic 

RSNS-to-binary circuit functioned properly.  Utilizing the starting vector found after the 

execution of the MATLAB code, the output shown in Figure 40 is achieved from the 

Xilinx RSNS-to-binary circuit.  The starting point of the system is shown and each 

transition of the decimal output coincides with the positive edge of the clock due to the 

use of an output register made with positive edge triggered D flip flops.  The output 

depends on the twenty-four inputs that are active at the positive edge of the clock signal 

for the three channels, i.e., as shown in Figure 38, the transition from 5 to 0 depends on 

Channel 1, 2, and 3 having values of [1111110], [11111100], and [111111000] 

respectively. 
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Figure 40.   RSNS-to-Binary Waveform Outputs for Dynamic Range Values 0:12 
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Figures 41 thru 50 show the remaining 113 outputs of the dynamic range of the 

system.  Therefore, we know the RSNS-to-binary logic design functions correctly, as 

designed. 
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Figure 41.   RSNS-to-Binary Waveform Outputs for Dynamic Range Values 12:24 
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Figure 42.   RSNS-to-Binary Waveform Outputs for Dynamic Range Values 24:36 
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Figure 43.   RSNS-to-Binary Waveform Outputs for Dynamic Range Values 36:48 
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Figure 44.   RSNS-to-Binary Waveform Outputs for Dynamic Range Values 48:60 
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Figure 45.   RSNS-to-Binary Waveform Outputs for Dynamic Range Values 60:72 
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Figure 46.   RSNS-to-Binary Waveform Outputs for Dynamic Range Values 72:84 

 

S1(0:6)
S2(0:7)
S3(0:8)

Clock

Output

S1(0:6)
S2(0:7)
S3(0:8)

Clock

Output

S1(0:6)
S2(0:7)
S3(0:8)

Clock

Output  
Figure 47.   RSNS-to-Binary Waveform Outputs for Dynamic Range Values 84:96 
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Figure 48.   RSNS-to-Binary Waveform Outputs for Dynamic Range Values 96:108 
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Figure 49.   RSNS-to-Binary Waveform Outputs for Dynamic Range Values 108:120 
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Figure 50.   RSNS-to-Binary Waveform Outputs for Dynamic Range Values 120:125 
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VI. CONCLUSION AND RECOMMENDATIONS FOR FUTURE 
WORK 

A. CONCLUSIONS 

The goal of this thesis was to create a logic block that would effectively convert 

twenty-four RSNS comparator outputs into a useful binary output that had a linear range 

of operation.  Verification of the symmetric residue-to-binary algorithm was 

accomplished by utilizing two separate software applications. 

As shown in Chapter II, the equations for the Position Bit conversion along with 

the sorting algorithm for the alignment logic, were not difficult to expand.  Given the 

general equations, the more difficult task was to verify functionality of the expanded 

version.   

The MATLAB code generated for this thesis, and shown in Appendix A and B, 

fully expanded the region of possible combinations of outputs from the analog circuit.  

This data was then searched and the dynamic range located.  Once this range was located, 

the code was modified to focus only on the functional range of the system.  As shown in 

Chapter V, the output of Appendix B had a linear region of length 126.   

Once the equations were verified utilizing the MATLAB code in the appendices, 

the next step was to create actual logic that could implement the system.  The RSNS-to-

binary logic created in this thesis did perform as expected and produced the results 

needed for further use. 

The ADC assumed design was not bipolar.  Therfore, an actual analog signal 

would have to be biased so that the mean amplitude would correspond to the center of the 

operating region of the RSNS-to-binary converter in order for the negative swing of the 

amplitude to be accurately converted to a digital signal.  The theory here is much like that 

of light emitting diode (LED) analog signal generation, the diode has to have a dc bias or 

it will not transit the negative amplitudes of the signal. 

This RSNS-to-binary system has been demonstrated to work and produces a 

seven-bit output for the cost of only 24 comparators and with relatively simple logic.  The 

savings in energy and size due to the reduced number of comparators and the relatively 
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small amount of logic will make this design appealing for low power and small size 

applications which are becoming more and more sought after.  Once implemented with 

the analog processing portion this design, this system will be ideal for unmanned aerial 

vehicles (UAVs), both for sensors and flight control, along with many other systems.   

 

B. RECOMMENDATIONS FOR FUTURE RESEARCH 
This thesis is only the digital portion of a larger ADC research project that also 

involved the design of the analog folding circuits.  There is still work to be done on this 

project in several areas. 

 

1. Program FPGA in Order to Test Performance of the Design. 

The RSNS-to-binary system has been tested and verified in [1] for the smaller 

moduli and this thesis verified the conversion for much larger moduli in software 

simulation only.  One possible extension of this research would be to program an FPGA 

with the data developed in this thesis and perform detailed testing of the design in 

hardware.   

 

2. Implement the RSNS Digital Processing Portion of the ADC and Test 
in ASIC Simulator Software. 

Currently, the code developed in the Xilinx Project Navigator system is being 

converted to netlist files for implementation into  an application specific integrated circuit 

(ASIC).  There are several areas where work on this project is continuing along this line.  

The final place and route layout will need to be complete, along with the link to the 

analog portion of the system 

Once the ASIC chip is designed and tested in software, it will need to be 

fabricated and hardware testing will need to be conducted.  Along this line, integration of 

this system into other research projects at the NPS is already being considered. 
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APPENDIX A. MATLAB CODE FOR GENERATING 
THERMOMETER CODE INPUTS 

 
%Ross A. Monta 
%Created 5 Jan 2004 
 
%Thermometer code establishment. 
%This code was written to generate thermometer code for input into the 
%Residue-to-binary logic written in file "Logic1.m". 
  
%Moduli 7 shifted 0 
  
clear all 
  
%S10 to S16 
for i=1:42 
if i>3 & i<43 
    S10(i)=1; 
else 
    S10(i)=0; 
end 
if i>6 & i<40 
    S11(i)=1; 
else 
    S11(i)=0; 
end 
if i>9 & i<37 
    S12(i)=1; 
else  
    S12(i)=0; 
end 
if i>12 & i<34 
    S13(i)=1; 
else  
    S13(i)=0; 
end 
if i>15 & i<31 
    S14(i)=1; 
else  
    S14(i)=0; 
end 
 if i>18 & i<28 
    S15(i)=1; 
else  
    S15(i)=0; 
end 
if i>21 & i<25 
    S16(i)=1; 
else  
    S16(i)=0; 
end 
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end   %end of moduli 7 for loop 
%The following vector was created for ease of visual verification of above 
%code. 
S1=S10+S11+S12+S13+S14+S15+S16;  
  
%Moduli 8 shifted left 1 
  
%S20 to S27 
for i=1:48 
if i>2 & i<48 
    S20(i)=1; 
else 
    S20(i)=0; 
end 
if i>5 & i<45 
    S21(i)=1; 
else 
    S21(i)=0; 
end 
if i>8 & i<42 
    S22(i)=1; 
else  
    S22(i)=0; 
end 
if i>11 & i<39 
    S23(i)=1; 
else  
    S23(i)=0; 
end 
if i>14 & i<36 
    S24(i)=1; 
else  
    S24(i)=0; 
end 
 if i>17 & i<33 
    S25(i)=1; 
else  
    S25(i)=0; 
end 
if i>20 & i<30 
    S26(i)=1; 
else  
    S26(i)=0; 
end 
if i>23 & i<27 
    S27(i)=1; 
else 
    S27(i)=0; 
end 
end   %end of moduli 8 for loop 
  
%The following vector was created for ease of visual verification of above 
%code. 
S2=S20+S21+S22+S23+S24+S25+S26+S27;   
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%Moduli 9 shifted 2 left 
  
%S30 to S38 
for i=1:54 
if i>1 & i<53 
    S30(i)=1; 
else 
    S30(i)=0; 
end 
if i>4 & i<50 
    S31(i)=1; 
else 
    S31(i)=0; 
end 
if i>7 & i<47 
    S32(i)=1; 
else  
    S32(i)=0; 
end 
if i>10 & i<44 
    S33(i)=1; 
else  
    S33(i)=0; 
end 
if i>13 & i<41 
    S34(i)=1; 
else  
    S34(i)=0; 
end 
 if i>16 & i<38 
    S35(i)=1; 
else  
    S35(i)=0; 
end 
if i>19 & i<35 
    S36(i)=1; 
else  
    S36(i)=0; 
end 
if i>22 & i<32 
    S37(i)=1; 
else 
    S37(i)=0; 
end 
if  i>25 & i<29 
    S38(i)=1; 
else 
    S38(i)=0; 
end 
     
end   %end of moduli 9 for loop 
  
%The following vector was created for ease of visual verification of above 
%code. 
S3=S30+S31+S32+S33+S34+S35+S36+S37+S38;  
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% Vector expansion to get the range of numbers for a right shifted 
% sequence.  Starting with the Mod 8 shifted 1 left, and Mod 9 shifted 2 
% left. For i = 1  the line up will have all elements equal to zero. 
  
%Mod 7 expansion 
T10=S10; 
T11=S11; 
T12=S12; 
T13=S13; 
T14=S14; 
T15=S15; 
T16=S16; 
for i=1:2591 
    T10=[T10,S10]; 
    T11=[T11,S11]; 
    T12=[T12,S12]; 
    T13=[T13,S13]; 
    T14=[T14,S14]; 
    T15=[T15,S15]; 
    T16=[T16,S16]; 
end 
%The following vector was created for ease of visual verification of above 
%code. 
T1=(T10+T11+T12+T13+T14+T15+T16); 
  
%Mod 8 expansion 
T20=S20; 
T21=S21; 
T22=S22; 
T23=S23; 
T24=S24; 
T25=S25; 
T26=S26; 
T27=S27; 
for i = 1:2267 
    T20=[T20,S20]; 
    T21=[T21,S21]; 
    T22=[T22,S22]; 
    T23=[T23,S23]; 
    T24=[T24,S24]; 
    T25=[T25,S25]; 
    T26=[T26,S26]; 
    T27=[T27,S27]; 
end 
%The following vector was created for ease of visual verification of above 
%code. 
T2=(T20+T21+T22+T23+T24+T25+T26+T27); 
  
%Mod 9 Expansion 
  
T30=S30; 
T31=S31; 
T32=S32; 
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T33=S33; 
T34=S34; 
T35=S35; 
T36=S36; 
T37=S37; 
T38=S38; 
for i= 1:2015 
    T30=[T30,S30]; 
    T31=[T31,S31]; 
    T32=[T32,S32]; 
    T33=[T33,S33]; 
    T34=[T34,S34]; 
    T35=[T35,S35]; 
    T36=[T36,S36]; 
    T37=[T37,S37]; 
    T38=[T38,S38]; 
end 
%The following vector was created for ease of visual verification of above 
%code. 
T3=(T30+T31+T32+T33+T34+T35+T36+T37+T38); 
  
%The following vector was created for ease of visual verification of the 
%required shifts of the moduli. 
T=[T1;T2;T3]; 
  
  
%Set Input vector size 
%The range of the entire system is to large to effectively run through the 
%"Logic1.m" file, therefore, this next section was used to parcel the 
%output of "Therm.m" into smaller more usable sections.   
%The section of T sent to "Logic1.m" is the correct portion for the dynamic 
%range of this system.  
%Values were picked of i to represent dynamic range or larger for data to 
%input to "Logic1.m" function. 
  
count=0; 
for i=700:900 
    count=count+1; 
     
    IT1(count)=T1(i); 
    IT2(count)=T2(i); 
    IT3(count)=T3(i); 
     
    I10(count)=T10(i); 
    I11(count)=T11(i); 
    I12(count)=T12(i); 
    I13(count)=T13(i); 
    I14(count)=T14(i); 
    I15(count)=T15(i); 
    I16(count)=T16(i); 
     
    I20(count)=T20(i); 
    I21(count)=T21(i); 
    I22(count)=T22(i); 
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    I23(count)=T23(i); 
    I24(count)=T24(i); 
    I25(count)=T25(i); 
    I26(count)=T26(i); 
    I27(count)=T27(i); 
     
    I30(count)=T30(i); 
    I31(count)=T31(i); 
    I32(count)=T32(i); 
    I33(count)=T33(i); 
    I34(count)=T34(i); 
    I35(count)=T35(i); 
    I36(count)=T36(i); 
    I37(count)=T37(i); 
    I38(count)=T38(i); 
end 
%The following vector was created for ease of visual verification of above 
%code. 
IT=[IT1;IT2;IT3]; 
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APPENDIX B. CODE FOR IMPLEMENTATION OF RESIDUE-
TO-BINARY IN MATLAB 

%Ross A. Monta 
%Created 5 Jan 2005 
%Program to evaluate logic equations for 3 Level Folding ADC using Moduli, 
%7,8,9 respectively. 
   
%S10 to S16, S20 to S27, and S30 to S38 would all be Thermometer 
%Code inputs from the analog portion of the system. 
%I10 to I16, I20 to I27, and I30 to I38 are all variables passed from the 
%execution of "Therm.m" file. 
  
S10=I10; 
S11=I11; 
S12=I12; 
S13=I13; 
S14=I14; 
S15=I15; 
S16=I16; 
  
S20=I20; 
S21=I21; 
S22=I22; 
S23=I23; 
S24=I24; 
S25=I25; 
S26=I26; 
S27=I27; 
  
S30=I30; 
S31=I31; 
S32=I32; 
S33=I33; 
S34=I34; 
S35=I35; 
S36=I36; 
S37=I37; 
S38=I38; 
  
%Channel 1 Moduli 7 
%Position Bit Conversion 
  
P10=not(S11); 
P11=and(S11,not(S13)); 
P12=and(S13,not(S15)); 
P13=S15; 
P14=and(S14,not(S16)); 
P15=and(S12,not(S14)); 
P16=and(S10,not(S12)); 
  
%Channel 2 Moduli 8 
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%Position Bit Conversion 
  
P20= not(S21); 
P21= and(S21,not(S23)); 
P22=and(S23,not(S25)); 
P23=and(S25,not(S27)); 
P24=S26; 
P25=and(S24,not(S26)); 
P26=and(S22,not(S24)); 
P27=and(S20,not(S22)); 
  
%Channel 3 Moduli 9 
%Position Bit Conversion 
  
P30= not(S31); 
P31= and(S31,not(S33)); 
P32=and(S33,not(S35)); 
P33=and(S35,not(S37)); 
P34=S37; 
P35=and(S36,not(S38)); 
P36=and(S34,not(S36)); 
P37=and(S32,not(S34)); 
P38=and(S30,not(S32)); 
  
%Testing Channels for even or odd%%%%%%%%%%%%%%%%%%%%% 
  
%Channel 1 even ? 
  
E1=or(not(S10),or(and(S11,not(S12)),or(and(S13,not(S14)),and(S15,not(S16))))); 
  
%Channel 2 even ? 
  
E2=or(not(S20),or(and(S21,not(S22)),or(and(S23,not(S24)),or(and(S25,not(S26)),S27)))); 
  
%Channel 3 even ? 
  
E3=or(not(S30),or(and(S31,not(S32)),or(and(S33,not(S34)),or(and(S35,not(S36)),and(S37,not(S
38)))))); 
  
%Inversion Controls 
  
E=[E1;E2;E3]; 
  
  
MRSS0not= xor(E3,E1); 
MRSS1=xor(E3,E2); 
MRSS2=xor(E2,E1); 
  
MRS=[not(MRSS0not);MRSS1;MRSS2]; 
  
%Signal Inversions%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%Channel 1 is never inverted.  For sake of consistent variables this 
%conversion is included. 
  
P10a=P10; 
P11a=P11; 
P12a=P12; 
P13a=P13; 
P14a=P14; 
P15a=P15; 
P16a=P16; 
  
%Channel 2 
  
P20a=or(and(P20,not(MRSS2)),and(P27,MRSS2)); 
P21a=or(and(P21,not(MRSS2)),and(P26,MRSS2)); 
P22a=or(and(P22,not(MRSS2)),and(P25,MRSS2)); 
P23a=or(and(P23,not(MRSS2)),and(P24,MRSS2)); 
P24a=or(and(P24,not(MRSS2)),and(P23,MRSS2)); 
P25a=or(and(P25,not(MRSS2)),and(P22,MRSS2)); 
P26a=or(and(P26,not(MRSS2)),and(P21,MRSS2)); 
P27a=or(and(P27,not(MRSS2)),and(P20,MRSS2)); 
  
%Channel 3 
  
P30a=or(and(P30,not(MRSS0not)),and(P38,MRSS0not)); 
P31a=or(and(P31,not(MRSS0not)),and(P37,MRSS0not)); 
P32a=or(and(P32,not(MRSS0not)),and(P36,MRSS0not)); 
P33a=or(and(P33,not(MRSS0not)),and(P35,MRSS0not)); 
P34a=P34; 
P35a=or(and(P35,not(MRSS0not)),and(P33,MRSS0not)); 
P36a=or(and(P36,not(MRSS0not)),and(P32,MRSS0not)); 
P37a=or(and(P37,not(MRSS0not)),and(P31,MRSS0not)); 
P38a=or(and(P38,not(MRSS0not)),and(P30,MRSS0not)); 
  
%Nand Logic%%%%%%%%%%%%%%%%%%% 
%This logic acts as a filter to use the dynamic range of this system 
  
n0=(and(P14a,and(P23a,P36a))); 
n1=(and(P15a,and(P24a,P37a))); 
n2=(and(P16a,and(P25a,P38a))); 
n3=(and(P10a,and(P26a,P30a))); 
n4=(and(P11a,and(P27a,P31a))); 
n5=(and(P12a,and(P20a,P32a))); 
n6=(and(P13a,and(P21a,P33a))); 
n7=(and(P14a,and(P22a,P34a))); 
n8=(and(P15a,and(P23a,P35a))); 
n9=(and(P16a,and(P24a,P36a))); 
n10=(and(P10a,and(P25a,P37a))); 
n11=(and(P11a,and(P26a,P38a))); 
n12=(and(P12a,and(P27a,P30a))); 
n13=(and(P13a,and(P20a,P31a))); 
n14=(and(P14a,and(P21a,P32a))); 
n15=(and(P15a,and(P22a,P33a))); 
n16=(and(P16a,and(P23a,P34a))); 



64 

n17=(and(P10a,and(P24a,P35a))); 
n18=(and(P11a,and(P25a,P36a))); 
n19=(and(P12a,and(P26a,P37a))); 
n20=(and(P13a,and(P27a,P38a))); 
  
N=[n0;n1;n2;n3;n4;n5;n6;n7;n8;n9;n10;n11;n12;n13;n14;n15;n16;n17;n18;n19;n20]; 
  
  
% 21 bit to 5 bit Encoder%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
g0=(or(n1,or(n3,or(n5,or(n7,or(n9,or(n11,or(n13,or(n15,or(n17,n19)))))))))); 
g1=(or(n2,or(n3,or(n6,or(n7,or(n10,or(n11,or(n14,or(n15,or(n18,n19)))))))))); 
g2=(or(n4,or(n5,or(n6,or(n7,or(n12,or(n13,or(n14,or(n15,n20))))))))); 
g3=(or(n8,or(n9,or(n10,or(n11,or(n12,or(n13,or(n14,n15)))))))); 
g4=(or(n16,or(n17,or(n18,or(n19,n20))))); 
  
%7 bit adder%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
h0=xor(MRSS2,xor(MRSS0not,not(E1))); 
%c0=carry out of h0 
c0=or(and(MRSS2,MRSS0not),or(and(MRSS2,not(E1)),and(MRSS0not,not(E1)))); 
  
h1=xor(c0,xor(not(E1),g0)); 
c1=or(and(c0,g0),or(and(c0,not(E1)),and(g0,not(E1)))); 
  
h2=xor(c1,xor(g0,g1)); 
c2=or(and(c1,g0),or(and(c1,g1),and(g0,g1))); 
  
h3=xor(c2,xor(g2,g1)); 
c3=or(and(c2,g2),or(and(c2,g1),and(g2,g1))); 
  
h4=xor(c3,xor(g2,g3)); 
c4=or(and(c3,g2),or(and(c3,g3),and(g2,g3))); 
  
h5=xor(c4,xor(g4,g3)); 
c5=or(and(c4,g4),or(and(c4,g3),and(g4,g3))); 
  
h6=xor(g4,c5); 
  
%The following vector was generated to make visual verification of the 
%output easier. 
decimal=h0+(2*h1)+(4*h2)+(8*h3)+(16*h4)+(32*h5)+(64*h6); 
  
plot(decimal) 
title('MATLAB Results') 
xlabel('Residue Increments') 
ylabel('Circuit Output in decimal') 
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