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ABSTRACT 
 
 
 
This thesis presents an overarching plan to migrate a time-optimal spacecraft 

control algorithm from the MATLABTM development environment into an FPGA-based 

embedded-platform development board.  Research at the Naval Postgraduate School has 

produced a revolutionary time-optimal spacecraft control algorithm based upon the 

Legendre Pseudospectral method.  Currently, the control algorithm is dependent on the 

MATLABTM environment, a fourth generation language (4GL).  4GLs are powerful high-

level abstraction and development tools, but are not efficiently instantiated into an 

embedded system.  This study establishes three distinct development phases to migrate 

the algorithm from 4GL dependency to embedded operation.  The first phase removes the 

algorithm’s dependency on the 4GL environment by translating the algorithm into the C 

programming language.  The second development phase compiles and embeds the 

algorithm into an FPGA-based development board.  The final development phase 

introduces a custom computing machine (CCM) instantiated in an FPGA to reduce the 

control calculation time, thereby broadening the algorithm’s potential application. 
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I. INTRODUCTION  

A. PURPOSE  
The purpose of this thesis is to provide an overarching plan to migrate a time-

optimal, spacecraft attitude-control algorithm from the MATLABTM development 

environment into an embedded development board.  The pace of advances within the 

electrical and electronic industry is rapid.  We recognize this fact and understand that in 

the course of this research, writing, and distribution, factors that influenced critical 

decisions in formulating the plan’s path selection may change.  To mitigate this effect, we 

will identify significant factors influencing the recommended development path.  The 

identification and discussion of key influence factors will allow personnel implementing 

this plan the opportunity to alter the plan as technological advances make previously 

unattractive or unachievable development paths obtainable.  The primary goal of this 

document is to develop a clear, concise, and methodical working-level plan, not an 

esoteric discourse.   

At the onset of this research, the assignment was to investigate the plausibility of 

migrating an existing algorithm from MATLABTM to an embedded system.  After 

preliminary research, the migration task appeared feasible.  The scope of research was 

then expanded to investigate potential migration paths, identify the most promising path 

in terms of cost and implementation time, and record key decision factors for these 

recommendations.   

This document is not intended to be a standalone migration plan; it is not all-

inclusive.  The intention is to use this document as a starting point and serve as an 

overarching plan to guide the overall migration of the algorithm from desktop PC to 

embedded-development-system operation.  This document will segment the migration 

process into distinct development efforts.  This method of work breakdown facilitates 

distributing segments of the plan among multiple students or industry partners for 

implementation.  Using the research information provided by this document, tasked 

individuals or organizations will formulate a more detailed plan for each respective work 

element.  
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B. CURRENT ALGORITHM STATE 
Several variants of the time-optimal spacecraft attitude-control algorithm exist at 

the Naval Postgraduate School.  The particular variant utilized in this work was originally 

developed by Andrew Fleming1 and modified by Pooya Sekhavat2.  The modifications 

removed fixed time-step calculations and improved problem scaling, reducing the time 

required to generate a solution.  Henceforth, the variant of the time-optimal spacecraft 

slew maneuver control algorithm utilized in this document will be referred to as the 

control algorithm. 

The control algorithm is based upon satisfying Pontryagin’s Maximum Principle3.  

The algorithm achieves the time-optimal maneuver solution by maintaining a set of 

Maximum Principle conditions.  The Legendre pseudospectral method4 is employed to 

derive solutions that meet, and maintain, the Maximum Principle requirements 

throughout the solution space.  The purpose of this thesis is to derive an achievable plan 

to migrate the algorithm from MATLABTM into embedded hardware.  This thesis does 

not delve deeply into the algorithm’s behavior, unless that behavior significantly 

influences the migration process. 

The control algorithm currently operates within MATLABTM, a proprietary fourth 

generation language (4GL) developed by The MathWorks, Inc.  The control algorithm 

implementation is comprised of numerous programming script files, M-files, and 

functions.  It is important to note that the implementation does not utilize SIMULINKTM.  

SIMULINKTM is a MathWorks block-library modeling tool that is integrated with 

MATLABTM.  The significance of this statement will be discussed further in the software 

section of this document.  Function calls provide MATLABTM’s interpreter the cueing 

required to link the script files and create an executable program. 

                                                 
1 Fleming, A. (2004). Real-Time Optimal Slew Maneuver Design and Control. Monterey, CA: Naval 

Postgraduate School. 
2 Sekhavat, P., Fleming A. and Ross, I. M. (2005, July). Time-Optimal Nonlinear Feedback Control 

for NPSAT1 Sapcecraft. Proceedings of the 2005 IEEE/ASME International Conference on Advanced 
Intelligent Mechatronics, Monterey, CA.. 

3 Kopp, R.E. (1962). George Leitman (Ed.) “Pontryagin Maximum Principle,” in Optimization 
Techniques. New York: Academic Press, Inc. 

4 Ross I. M. and Fahroo, F. (2003). “Legendre Pseudospectral Approximations of Optimal Control 
Problems,” Lecture Notes in Control and Information Sciences (Vol. 295). New York: Springer-Verlag. 
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The control algorithm contains three proprietary elements: Sparse Non-linear 

OPTimizer (SNOPT), TOMLAB Optimization wrappers, and DIDO.  SNOPT is a 

subservient algorithm, developed at Stanford University, which performs large-scale 

constrained optimization using sequential quadratic programming (SQP) methods5.  

TOMLAB Optimization, a Swedish company, developed a software adapter, wrapper, 

facilitating the use of SNOPT within MATLABTM.  DIDO, not an acronym, is a 

MATLABTM package capable of solving dynamic optimization problems6.  DIDO was 

conceived and written by professors at the Naval Postgraduate School in Monterey, 

California.  In its current configuration, DIDO is dependent upon the TOMLAB wrapper 

to access SNOPT in order to solve optimization problems.  

The following provides a simplified description of the control algorithm’s 

operation.  All user interaction with the control algorithm occurs within MATLABTM’s 

Development Environment, a Graphical User Interface (GUI).  The user specifies the 

initial and final spacecraft attitude and rotation rate in the main script file using 

programming constants.  Programming constants used in this manner is commonly 

referred to as “hard wiring” and is useful for developing programs that will eventually 

receive a range of input values.  The main script file includes programming constants that 

define the spacecraft’s physical characteristics, such as moment of inertia and 

maneuvering capability.  The main script file is synonymous with the spacecraft model.  

Once initial and final states are defined, the user runs the main script file within the 

MATLABTM development environment.  The main script file calls the DIDO function 

that, in turn, calls the SNOPT function.  SNOPT operates in a recursive manner, 

executing major and minor iterations.  DIDO collects SNOPT’s iterative solutions and 

derives the overall optimal control solution.  DIDO passes the control solutions back into 

the MATLABTM environment as objects within a predefined programming structure.  

Each process level described above interacts with the PC’s central processing unit (CPU) 

through the operating system, an important point when attempting to increase the 

                                                 
5 Gill, Philip E., Murray, Walter, and Saunders, Michael A. (2005). SNOPT: An SQP Algorithm for 

Large-Scale Constrained Optimization. Society for Industrial and Applied Mathematics Review (Vol. 47, 
No.1, pp. 99-131). Philadelphia: SIAM. 

6 Ross, I.M., and Fahroo, F. (2002). User’s Manual for DIDO 2003: A MATLABTMTM Application 
Package for Dynamic Optimization. Monterey, CA: Naval Postgraduate School. 
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performance of the control algorithm.  Figure 1 provides a representation of the 

hierarchical relationship between the spacecraft model, DIDO, SNOPT, and the operating 

system.  The TOMLAB wrapper is viewed as an access portal to SNOPT.  The wrapper 

does not perform any significant calculations. 

 

 

Figure 1.   Real-time Optimal Control Algorithm 
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II. MIGRATION PATH 

A. MIGRATION OVERVIEW 
The migration overview outlines the control algorithm’s transition from a 

MATLABTM executable to an embedded application.  The transition is performed using 

incremental development efforts.  Dividing the migration plan into smaller development 

efforts is beneficial for two significant reasons.  The work may be distributed among 

several students or contractors.  This work may be performed concurrently, as a 

development team, or sequentially over time.  The second benefit of dividing the 

development effort is that the algorithm can be tested, and validated, within each work 

element.  If the migration effort were accomplished in a single effort, locating error 

sources would potentially require investigating the entire migration process.  Conversely, 

if the migration process is broken into smaller work elements, developers can scrutinize 

the changes made within the bounds of the work element, assuming testing and validation 

was performed within each work element.  

 

1. Phase 1: MATLABTM Extraction 
 

a. Why Extract? 
Deploying a satellite attitude-control algorithm operating within 

MATLABTM is not practical.  Dependency on another application adds a layer of 

unnecessary hardware resources on the satellite.  The unnecessary hardware resources 

burden the satellite with unnecessary mass, volume, and power requirements.  Additional 

hardware resources increase the cost of the launch system and satellite.  Furthermore, 

MATLABTM script programs are interpreted during execution not compiled.  Interpreted 

programs tend to run slower than their compiled counterparts, due to the run-time 

interpretation.  Therefore, MATLABTM programs are slower than their compiled 

counterparts. 
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b. MATLABTM Extraction 
The first development effort extracts the control algorithm from 

MATLABTM.  The goal of control algorithm extraction is to operate as a stand-alone 

executable program within Microsoft® Windows XP.  The MATLABTM Compiler will be 

used to translate the control algorithm modules into the C programming language.  A 

programming-development environment will be used to compile and link the control-

algorithm modules and math libraries into a Microsoft® Windows XP executable 

program.  The extraction removes the control algorithm’s dependency on the 

MATLABTM development environment and frees the algorithm from the associated 

resource overhead.   

Modular testing will verify control signal generation and measure solution 

generation time.  The MATLABTM-generated control solutions are used as the baseline 

throughout the migration process.  The MATLABTM based control algorithm has been 

verified.  The developer will validate the stand-alone program by comparing its results 

with the MATLABTM solution.  Discrepancies will be investigated and corrected.  The 

stand-alone program is expected to generate control solutions faster due to shedding 

MATLABTM’s resource overhead.  However, there is possibility that the stand-alone 

control algorithm will perform slower.  MATLABTM contains an accelerator, JIT.  The 

accelerator’s enhancements may not translate or reside within the extraction libraries.  

The developer will execute a series of spacecraft maneuvers using both the MATLABTM 

and stand-alone algorithm variants.  The solution generation times will be recorded, 

compared, and analyzed during each phase of development. 

The operator will interact with the stand-alone control algorithm using a 

disk operating system (DOS) window.  Within the DOS window, the user will be 

prompted to enter the initial and final satellite orientation and rotation rates.  Once 

entered, the executable control algorithm calculates the time-optimal control signals and 

writes the results to an ASCII file.  The algorithm will also display the time required to 

generate the control solution in the DOS window.  Figure 2 summarizes the algorithm’s 

structure at the completion of phase one. 
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Figure 2.   Phase 1 Algorithm Development 

 

While developing an intricate graphical user interface (GUI) is tempting, it 

is not required.  A GUI will not be required during embedded operations and would only 

serve to increase the hardware resources required to host the control algorithm.  While a 

text based GUI is not impressive, the text-based interface within a DOS window is 

sufficient for testing and validating the extracted algorithm.  It would be wise to apply 

personnel efforts and resources in other areas, areas that would provide a more direct 

benefit. 

 

2. Phase 2: Embedded Platform Development 
Phase two migrates the algorithm onto an embedded platform-development board, 

not directly to flight hardware.  The control algorithm requires validation and verification 

in a stand-alone hardware configuration prior to expending resources for the transition to 

flight hardware.  Anticipated challenges during this portion of the migration are similar, 

if not identical, to the challenges to be encountered during the transitioning to flight 

hardware.  Resolving migration problems on an embedded development board that 

interfaces directly with a personal computer is more expedient and less expensive when 

compared to performing the same migration and troubleshooting on flight hardware. 

 

a. Phase One Dependency 

Phase two development utilizes source-code translated in phase one.  

Traditionally, source-code must be compiled for a specific target operating system and 
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processor.  With some of the new programming languages, such as Java, this is not 

always true.  However, this project is using programming languages and tools that 

compile to specific operating system and processor.  In phase one, the source-code is 

compiled to operate on the host computer running Microsoft® Windows XP and an x86 

CPU.  In phase two, the source-code is compiled for operation on an embedded platform 

development board running a real-time operating system and a microcontroller. 

 

b. Phase Two Hardware 
Embedded platform development boards are small computer boards 

containing many of the following components: clock, processor, memory, input-output 

(I/O) ports, and field programmable gates array (FPGA).  Embedded platform 

development boards are available through several manufactures.  Figure 3 provides an 

example of an embedded platform development board, the Virtex-4 ML403 Embedded 

Platform.  The ML403 is a very capable development board offered by Xilinx, Inc., a 

company headquartered in San Jose, California. 

 

 

Figure 3.   Virtex-4 ML403 Embedded Platform Development Board7 

 
                                                 

7 Courtesy of Xilinx, Inc. 
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The phase two development board will operate as a microcomputer, 

hosting a Real-Time Operating System (RTOS).  The control algorithm source-code 

developed in phase one will be compiled to operate with the development board’s RTOS 

and processor configuration.  The user will interact with the development board using a 

desktop PC.  The PC communicates with the development board via an I/O cable, 

preferably a USB interface.  The user will enter initial and final satellite state 

information.  Once this information is forwarded to the development board, the control 

algorithm will generate the control signals and store the information in a predefined 

memory location. 

The embedded development board will generate a control solution for the 

commanded maneuver and store the commands in the board’s memory.  The computed 

control commands will be extracted from the board using the I/O interface.  The control 

commands will be recorded and compared with the solutions provided by the 

MATLABTM algorithm.  The time required for the development board to perform the 

calculations will be recorded and compared to the other variants.  The control signal 

generation time will be used to determine potential aerospace applications. 

 

3. Phase 3: Hardware Acceleration 
After the control algorithm is successfully hosted within the development board, 

methods to reduce the computation time will be implemented in hardware.  The control 

algorithm performs repetitive, large-vector inner-product calculations during each 

control-signal generation.  Within a PC, these calculations are performed using the CPU’s 

floating-point unit (FPU).  These calculations can be performed faster using custom 

processing logic.  Custom computing logic is commonly referred to as a custom 

computing machine (CCM).  When used in conjunction with a generic processor, the 

CCM is also known as an auxiliary processing unit (APU). 

Cost-effective implementation of a CCM requires an FPGA and algorithm-

source-code modification.  The CCM performs large-vector inner-product calculations 

rapidly.  The design is instantiated within an FPGA residing on the development board.  

A data transfer bus connects the CPU and CCM.  The algorithm’s source-code requires 
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modification to utilize the CCM, vice an FPU, each time an inner-product calculation is 

required.  The double-precision floating-point inner-product result is returned to the CPU 

via a data return bus.  Figure 4 provides a block diagram of the phase three system. 

 

Generic CPU CCM

Real Time OS

Spacecraft Model

DIDO

SNOPT Vector / Vector 
Multiplier

I/O Bus

Generic CPU CCM

Real Time OS

Spacecraft Model

DIDODIDO

SNOPT Vector / Vector 
Multiplier

Vector / Vector 
Multiplier

I/O Bus

 

Figure 4.   Phase 3 Block Diagram 
 

Phase three operation is identical to phase two operations.  The hardware 

acceleration does not affect the manner in which the operator interacts with the embedded 

development board.  The embedded development board will generate a control solution 

for the commanded maneuver and store the commands in the board’s memory.  The 

computed control commands will be extracted from the board using the I/O cable.  The 

control commands will be recorded and compared with the solutions provided by the 

MATLABTM algorithm.  The time required for the development board to perform the 

calculations will be recorded and compared to the other variants.  Successful hardware 

acceleration will be apparent by experiencing a reduction in required calculation time.  

The control signal generation time will be used to determine potential aerospace 

applications. 
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III. PHASE ONE – EXTRACTION 

A. EXTRACTION OPTIONS 
MATLABTM Release 13 (version 6.5) and higher are fourth generation languages 

(4GLs).  The popularity of 4GLs is based on the ability to provide the user with high-

level abstraction capabilities.  MATLABTM provides a very powerful abstraction 

capability; however, this abstraction capability is not provided without penalty.  

Programs written for the MATLABTM development environment are dependent upon 

MATLABTM’s interpreter to execute.  Because of this dependency, MATLABTM 

programs are not directly executable within the PC’s operating system.  There are three 

primary options for severing the control algorithm’s dependency on MATLABTM and 

converting it into a stand-alone program: migrate to SIMULINK, rewrite, or translate.   

 

1. Convert to SIMULINK 
Conversion of the MATLABTM script code into a SIMULINKTM model is one 

potential conversion path.  MATLABTM and SIMULINKTM are highly integrated 

software products offered by MathWorks.  SIMULINKTM is a model and simulation 

software package.  MathWorks offers a SIMULINKTM companion module, Real-Time 

Workshop, which translates a model into stand-alone C code.  Furthermore, MathWorks 

sells additional SIMULINKTM companion products that provide rapid migration paths 

from modeling to select hardware devices. 

While MATLABTM and SIMULINKTM are closely integrated, migration of the 

control algorithm into SIMULINKTM may introduce two insurmountable problems.  As 

discussed in section one, the control algorithm is dependent upon a module called 

SNOPT.  This module is accessed using a third-party software wrapper.  The wrapper 

was written to support MATLABTM, not SIMULINKTM.  If SNOPT does not operate 

properly after the control algorithm is migrated into SIMULINKTM, it will be difficult to 

identify whether a problem resides in the wrapper or within SNOPT.  Furthermore, the 

wrapper is proprietary.  Isolating and correcting a problem will require negotiating a 

business agreement with TOMLAB.  Secondly, at this time, several SIMULINKTM 
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library blocks will not compile into ASNI C code.  The control algorithm is constructed 

using a layering of MATLABTM functions.  While the SIMULINKTM library contains a 

user-defined MATLABTM function block, the function block (fcn) is one of several 

library blocks that do not compile to production code8.  The user can create custom 

SIMULINKTM blocks by writing S-Function9 or Embedded MATLABTM functions10.  An 

S-Function is script code that defines the behavior of the SIMULINKTM block, and can 

be written in C, C++, Ada, or FORTRAN programming languages.  It is conceivable that 

the control algorithm could be disassembled into basic function blocks, converted into S-

Functions or Embedded MATLABTM Functions, reassembled, debugged, and verified in 

SIMULINKTM.  After studying the control algorithm source-code, the time and effort 

required to perform this task is forecasted to rival the rewrite migration effort.   

 

2. Rewrite 
Rewriting the entire algorithm in a computer language that compiles to the desired 

embedded hardware is another migration option.  A validated and verified control 

algorithm exists within MATLABTM.  Figure 6 displays the modular structure of the 

MATLABTM -hosted control algorithm.  The existing structure parallels the structure 

developers would use to implement the control algorithm in a programming language.  

This existence and similarity of the MATLABTM variant provides a useful tool to verify 

proper operation of each programmed function.  Results from the corresponding 

MATLABTM function can be used to verify the results provided by the written code. 

Re-writing the control algorithm in a programming language requires a significant 

investment of time by proficient programmers.  The programmers require training in 

advanced mathematical concepts, such as Pseudospectral methods11, central to the 
                                                 

8 A complete list of SIMULINKTM blocks suitable for production code generation can be retrieved 
from  <www.mathworks.com/access/helpdesk/help/toolbox/rtw/ug/bqecl8b.html> or by typing 
“showblockdatatypetable” at the command line in MATLABTM . 

9The MathWorks. SIMULINKTM Product Page. Retrieved 10 Nov. 2005, from 
<www.mathworks.com/access/helpdesk/help/toolbox/simulink/sfg/f6-151.html> 

10The MathWorks. MATLABTM Product Page. Retrieved 10 Nov. 2005, from 
<www.mathworks.com/access/helpdesk/help/toolbox/simulink/slref/embeddedMATLABTMfunction.html
> 

11 Ross I. M. and Fahroo, F. (2003). “Legendre Pseudospectral Approximations of Optimal Control 
Problems.”  Lecture Notes in Control and Information Sciences (Vol. 295). New York: Springer-Verlag.  
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control algorithm.  The time and training requirement is the result of using MATLABTM, 

a 4GL, to create and validate the control algorithm.  The 4GL provides a very high level 

of abstraction through complex, pre-packaged function calls.  MATLABTM functions are 

proprietary and native to its development environment.  Equivalent functionality must be 

implemented in the selected programming language in order to extract the control 

algorithm from MATLABTM.  In their current form, the MATLABTM functions are not 

directly accessible by a stand-alone application running within a PC operating system.  

Secondly, if the functions are called from the operating system using a library scheme, 

propriety issues must be resolved with MathWorks prior to system deployment. 

 

3. Translate and Compile 
MATLABTM contains a compiler capable of converting M-files into four different 

products: stand-alone applications, C or C++ shared libraries, Excel add-ins, or 

Component Object Models (COM).  Throughout this thesis, a capital “C” will 

differentiate between a programming compiler and MATLABTM’s Compiler module.  

The control algorithm is comprised of a main M-file that calls a series of M-file 

functions.  The goal of phase one is to develop a stand-alone control algorithm executable 

program.  The Compiler option provides two paths in which to convert the control 

algorithm into a stand-alone application: translate and compile directly to a stand-alone 

program or C/C++ source-code modules. 

 

4. Path Selection Influence: Embedded Programming Language 
While there are several embedded programming languages, C has become the 

dominant language in embedded programming12.  Several programming languages 

support embedded programming: assembly, Pascal, FORTRAN, C++, Ada, and Java.  C 

is a dominant embedded programming language because it allows low-level control and 

provides high-level abstraction.  These traits are often mutually exclusive, or significantly 

out of balance, in the other programming languages.  Because of C’s balance and  

 
                                                 

12 Barr, Michael. (1999). Programming Embedded Systems (p. 9). Sebastopol, CA: O’Reilly & 
Associates, Inc.  
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flexibility, there is a plethora of C development and compiler tools.  C is one of the 

programming languages that can be used within MATLABTM and SIMULINKTM using 

wrappers. 

C is the recommended programming language based on three factors.  First, C is 

the dominant embedded programming language and enjoys widespread industry support.  

Most embedded hardware manufactures provide and support C compilers for their 

products.  Secondly, The MathWorks offers a C compiler module that integrates with 

MATLABTM.  The compiler translates M-file code into C or C++ object code.  Lastly, 

Stanford University has provided the Naval Postgraduate School with a copy of SNOPT 

written in C code.  This provision significantly reduces the development effort required to 

migrate the control algorithm should the C programming language be utilized. 

 

5. Path Selection 
The MATLABTM Compiler option is recommended because it provides the best 

opportunity to achieve near-term migration advances.  The SIMULINK migration path 

was not selected due to the limited library model set and potential proprietary delays.  

The risk of encountering time and cost delays during the limited time of this research 

versus the anticipated results made the SIMULINK option less attractive.  The rewrite 

option was not pursued due to the time and programming proficiency required.  The time 

required to pursue the rewrite option was beyond the limits of this research.  Translating 

the control algorithm’s M-files using MATLABTM’s established Compiler provided the 

most promising migration path.  The MathWorks’ Compiler literature indicated that the 

control algorithm’s functions could be translated and compiled directly into a stand-alone 

application or the modules translated into C/C++ code. 

 

B. MATLABTM COMPILER 
 

1. Single-step or Modules? 
The MATLABTM Compiler option offers two methods to translate and compile 

the control algorithm into a stand-alone application.  The first method compiles the entire 
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algorithm into an application in a single step.  This approach accomplishes the goal of 

phase one; however, the single-step compile approach is not the best method to support 

the following project phases.  The single-step compile method compiles an application 

that operates only on the specified target operating system and CPU.  The application 

cannot continue the migration process in phases two and three.  Development effort must 

backtrack and repeat the translation process from within the MATLABTM environment in 

order to proceed into phases two and three.  The algorithm would be translated into C 

code, which, in turn, would then be linked and compiled for the target hardware platform. 

The second compiler option translates the MATLABTM control algorithm 

modules, not entire application, into the C programming language.  The C modules are 

linked using a commercial programming application.  Once linked, the code is compiled 

into executable code for a host platform.  Potential host platforms range from common 

mainframe and desktop computers to embedded systems.  Because C is a prevalent 

programming language, most manufacturers provide C compilers for their hardware. 

Translating and compiling modules provide three benefits: reduced redundant 

effort, migration flexibility, and verification.  The single-step compiled control algorithm 

cannot migrate into phases two and three.  The single-step compiled control algorithm is 

fixed to the target operating system and processor for which it was compiled.  Translators 

are available in industry.  However, translators are often proprietary and are written to 

support a transition from a single application to a particular hardware platform, i.e. 

MATLABTM to C.  At the time of this report, a translator did not exist for the control 

algorithm.  Therefore, prior to proceeding into phase two, the MATLABTM control 

algorithm modules would require translation.  A programming-development environment 

would be used to link and compile the translated code into an executable program capable 

of being hosted on a development board.  Translating and compiling the entire control 

algorithm in one step requires redundant work. 

Translating the individual control algorithm modules into C code provides 

migration flexibility.  The control algorithm modules are translated into C using the 

MATLABTM Compiler.  A commercial programming application is used to link and 

compile the C modules.  The liked code may then be compiled into an executable 
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program for a variety of host systems.  In the translated state, the control algorithm may 

be compiled and hosted on a desktop PC, to support phase one, or on an FPGA-based 

embedded-platform development board, to support phase two and three.  Borland C++ 

Builder, GCC, LCC-WIN32, Microsoft® Visual Studio are a few examples of common 

programming environments that accept C code.  These programming packages provide 

their own integrated development environment, which compiles and links object code 

into executable programs for a variety of operating system and processor combinations.  

Additionally, some programming environments, like GCC, allow the user to add 

hardware manufacturer compilers.  This addition allows the user the ability to cross-

compile executable programs for the embedded hardware.   

Translating the individual control algorithm modules provides a verification and 

comparison tool for phases two and three.  The linking and compiling individual modules 

maintains a common control algorithm structure through each phase of development.  If 

the phase one algorithm is translated and compiled directly into a stand-alone application, 

algorithm structure similarity cannot be guaranteed.  The Compiler’s manipulation of the 

control algorithm is unknown.  Therefore, execution time comparisons between the 

development phases may not be directly comparable, nor future performance 

enhancements predictable.  Additionally, if the generated control signals are in error, it 

will be difficult to determine the source of the error.  A common development approach 

between phases one and two increases familiarity, maintains a common algorithm 

structure, and assists measuring algorithm performance in each development phase.  

Modular translation provides a means to introduce algorithm improvements in a 

disciplined and verifiable manner.  Modularity provides a natural means to make 

improvements.  As improvements to the algorithm are introduced, the affected module 

can be updated, tested, and verified prior to integration into the algorithm.  This modular 

approach provides discreet boundaries within which the changes have been made.  If the 

algorithm fails verification after the introduction of a changed module, the boundary of 

change is known.  This knowledge localizes the error source to one or more modules, 

vice the entire algorithm. 
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2. Compiling Modules 
The control algorithm’s modules are translated into C code using the MATLABTM 

Compiler.  The Compiler is an add-on companion to MATLABTM and must be purchased 

separately from MathWorks.  The control algorithm consists of a conglomeration M-files 

linked by function calls.  The control algorithm structure is displayed in Figure 5.  Note 

that the “.m” file extensions are omitted for brevity.  Additionally, MATLABTM function 

calls are not displayed due to their number and relationship complexity.  

 

 

Figure 5.   Control Algorithm Structure 
 

The algorithm execution begins by opening and executing Mag_Open_Main from within 

the MATLABTM IDE.  Mag_Open_Main first collects information from MinTimeCost 

and ScaledMagDynamics and then calls Dido_2003f.  Single-headed arrows represent 

information flow in one direction; dual-headed arrows represent information flow in both 

directs.  Once called, Dido_2003f controls the algorithm process and now directly pulls 

information from MinTimeCost and ScaledMagDynamics.  Dido_2003f calls the 

surrounding functions in a clockwise manner, beginning with spray and followed by 

psgang.  Psgang calls its own function, lobatto, which is transparent to Dido_2003f.  The 
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clockwise progression continues until DidoSolve.  DidoSolve is the parent calling 

function to SNOPT, the Stanford University code.  DidoSolve calls SNOPT repeatedly.  

The bolded arrows annotate multiple execution cycles.  The function call execution 

continues the clockwise progression ending on lamfilt.  Lamfilt is another function that is 

called on several occasions, but at different times earlier in the clockwise cycle.  Two-

dimensional representation of the algorithm execution makes it difficult to reproduce the 

calling sequence exactly, without generating further confusion. 

MATLABTM versions 7.0 and 6.5.1 utilize two different Compilers; each 

produces significantly different results.  The companion compiler to MATLABTM 

7.0.1.24704 service pack 1 is Compiler version 4.1.1.  The companion compiler to 

MATLABTM 6.5.1.199709 service pack 1 is Compiler version 3.0.1.  Phase one’s 

migration effort translates the control algorithm’s M-files into C source-code.  Compiler 

4, and later, does not generate C code for the entire M-function13.  Beginning with 

Compiler version 4, the MATLABTM Compiler generates wrappers, interface code, which 

allow the compiled M-files to be executed within the MATLABTM Runtime Component 

(MCR).  MCR is a set of proprietary MathWorks stand-alone runtime libraries.  The 

MCR libraries are not C/C++ libraries and are not suitable for embedded deployment14.  

Compiler versions prior to Compiler version 4 translate the M-file into C code15, minus 

library function calls.  The desired migration path requires complete C code.  The 

research and work presented in this document utilized Compiler version 3.0.1.  

Each module in Figure 5, except SNOPT, has been translated into C code.  The 

Compiler translates functions only.  Therefore, the Mag_Open_Main module was 

converted into a function prior to translation; see Appendix A.  The stand-alone algorithm 

will require the creation of a C main file to accept the user commands and initiate the 

stand-alone algorithm by calling the Mag_Open_Main function.  Note: the 

Mag_Open_Main file executes the open-loop control algorithm.  The closed-loop control 

algorithm is the more useful version.  Therefore, when phase-one algorithm migration 

begins, the developers should use the Mag_Closed_Main file. 
                                                 

13 The MathWorks. MATLABTM Compiler Release Notes Page. Retrieved 15 Nov. 2005, from < 
http://www.mathworks.com/access/helpdesk/help/toolbox/compiler/rn/compiler4_rn_fcs3.html> 

14 The MathWorks. MATLABTM Compiler Release Notes Page. Retrieved 15 Nov. 2005, from < 
http://www.mathworks.com/support/solutions/data/1-H3RQL.html?solution=1-H3RQL> 
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The Compiler translation is performed by executing the mcc command from 

within the MATLABTM development environment.  The Compiler’s output may be 

changed using option switches.  Table 1 provides the Compiler command and options 

used to translate the control algorithm modules into C code.  

 

Command: mcc –t –A debugline:on –L c –d  C:\filelocation\t2tau.m  translated_t2tau
Options Meaning

mcc Calls the compiler
–t Directs the compiler to translate the code to the target language specified

If omitted, a C or C++ wrapper file is generated
–A debugline:on Supports run-time error messages reporting source file name & line number

–L The character following the switch specifies target language
c Specifies C as the target language translation

cpp is used, vice c,  when C++ translation is desired
–d All files are placed in the directory following the switch

C:\filelocation\t2tau.m Identifies the file path and file name
translated_t2tau User provided name for the translated files

 

Table 1. MATLABTM Compiler Command and Options 

 

The switch options identified in table one are a subset of the available Compiler options.  

An exhaustive listing can be reviewed by entering “help mcc” on the interpreter 

command line in the MATLABTM development environment if the Compiler is installed.  

The Compiler options are also accessible through The MathWorks website15. 

The Compiler produces two or more files for each translated M-file.  The 

translated files are placed in the same location as the source file, specified in the 

command line.  The Compiler generates a translated *.c file and one or more *.h header 

files.  The wild card”*” represents the compiled source file name.  The header files are 

invaluable when compiling and linking the individual modules within a programming 

environment.  This can be a tedious process without header files.  A single translated file 

may generate more than one header file due to MATLABTM function calls, not displayed 
                                                 

15The MathWorks. MATLABTM Compiler Online Guide. Retrieved 15 Nov. 2005, from  <http//: 
www.mathworks.com/access/helpdesk_r13/help/toolbox/compiler/compiler.html >  
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in Figure 5.  The original, modified, and translated control algorithm files are maintained 

in CD-ROM media format and referenced as Appendix A.  The files are available to 

persons involved with the migration project. 

While translators are a powerful tool, translators can accept relatively simple 

source-code and produce nearly unreadable translated code.  MATLABTM’s translator is a 

prime example.  Appendix D displays the lobatto.m source file and Appendix E provides 

the translated C code.  The files are provided as appendices due to their length.  The 

Compiler’s translator generates very lengthy and confusing variable names.  Debugging 

translated code will be a challenge.  One approach to simplifying the translated code is 

variable renaming.  Most programming-development environments contain powerful 

editors.  Most editors contain a search and replace function.  Confusing or lengthy 

variable names can be changed using the editors search and replace function.  If the 

programming editor does not have the search and replace function, the source-code can 

be copied and pasted into a modern word processor, such as Word Perfect.  The word 

processor’s search and replace function can be used to rename the variables.  Once 

complete, the code can be copied and pasted back into the original code file and saved.  

Microsoft® Word is not a good editing environment for programming.  Word has a 

tendency of adding hidden characters and formatting which cause untraceable compiler 

errors, even if the “save as type” is Rich Text Format or Plain Text.  Some text editors, 

such as Microsoft®’s TextPad, are not powerful enough to handle large text files.  

TextPad is a low cost but powerful editor that can be easily configured to incorporate 

many different compilers.  It can be downloaded from the internet and evaluated, free.  A 

copy is included in Appendix A, along with the configuration instruction.  Lastly, it is 

recommended that the programmer does not select search and replace all; rather, the 

programmer should step through and review each replacement prior to accepting the 

change.  This prudent method will prevent the inadvertent partial renaming of long 

strings that contain the name being replaced.  

The following are two practical comments concerning the Compiler options.  The 

file name, and possibly location, will change for each module.  Secondly, do not add an 

“o” or “c” extension to the translated filename.  The Compiler automatically adds the 

extension.  For example, do not use “translated_t2tau.c” as the target filename.  The 
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Compiler will translate the source M-file into C code and name the file 

“translated_t2tau.c.c”.  The double “.c” extension may cause problems when using a 

programming-development environment later in the migration process.  The Lcc 

programming-development environment had difficulty properly recognizing files 

containing double extensions. 

Phase one migration work was terminated at his point in order to explore phase 

two and three migration options.  Discussion concerning further work required to 

complete phase one is located in Section VI. 
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IV. PHASE TWO – HARDWARE MIGRATION 

A. PHASE TWO OBJECTIVES 
Phase two is comprised of three major objectives: embedding, verifying, and 

analyzing the control algorithm. 

 

1. Embedding the Algorithm 
The algorithm will be migrated into an embedded development board.  Direct 

migration to flight hardware requires a program sponsor to provide flight hardware.  Due 

to monetary limitations, sponsors cannot afford the cost of providing flight hardware 

every research and development program.  Furthermore, sponsors are hesitant to assume 

the risk of integrating an immature algorithm into their project.  The term “mature” 

algorithm refers to an algorithm that has been hosted on an embedded development 

board, verified, and performance metrics analyzed.  Based on this definition, the control 

algorithm presented in this thesis is classified as immature.  The process and problems 

experienced transitioning the algorithm to a development board is similar to the process 

and problems that will be encountered during the migration to flight hardware.  

Therefore, the lessons learned during the migration to a development board will be 

invaluable experience for the eventual migration to flight hardware.  

 

2. Verifying the Algorithm 
Control algorithm verification compares the embedded control algorithm’s 

solution to the baseline algorithm, the MATLABTM control algorithm.  A suite of 

standard test scenarios will be executed on each of the algorithm variants: MATLABTM, 

stand-alone, and embedded.  Each control algorithm will execute the same spacecraft 

control maneuver.  The three control signal results will be recorded, compared, and 

analyzed.  One important factor when analyzing control signal solutions is precision.  

Control signal precision should be tempered relative to the host spacecraft’s torque 

device.  Control solution precision to sixteen decimal digits is not required if the 

spacecraft’s torque devices are only sensitive to three significant digits. 
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3. Performance Measurement 
The initial migration onto an embedded development board may result in a 

performance reduction.  In comparison to personal computers (PC), most embedded 

programs and algorithms operate using slower processors with less memory resources.  

The faster embedded microcontrollers operate in the 200 to 500 MHz16 frequency range.  

New desktop and laptop computers operate in the 1.5 GHz to 3.8 GHz frequency range.  

Embedded development boards host approximately 32-Megabyte of RAM and 16-

Megabyte of ROM.  Their desktop and laptop computer counterparts are capable of 

hosting RAM memory sizes in excess of 1 Gigabyte and hard drives in the two hundred 

Gigabyte range.  The disparity between the embedded and personal computer system’s 

clock frequency and resource capacity provide the personal computers with a significant 

performance edge. 

Personal computers are generic computing devices and therefore must be capable 

of handling a variety of programs, applications, and algorithms.  To provide this broad 

capability, Personal computers maintain robust software and hardware features.  The 

conglomeration of the additional hardware and resident software processes hosted within 

a personal computer to handle the variety of tasks is often referred to as overhead.  

Overhead contributes directly to the system’s power consumption, memory capacity, and 

computational requirement.  While the PC features support broad capabilities, 

streamlined performance suffers.  The control algorithm currently operates within 

MATLABTM running on Microsoft® Windows XP, service pack 2.  A Dell Dimension 

4400 computer is the host platform for the research reported in this document: Pentium® 

IV 1.8GHz, 512 MB RAM, 400 MHz FSB, NVIDA GeForce2 MX/MX400 64 MB video 

card, and Maxtor® 6E040L0 hard drive.  In contrast, a potential embedded development 

board hosts a 200 MHz processor and 64 MB of RAM17. 

The control algorithm’s migration to embedded hardware introduces processing, 

memory, and power limitations could slow the calculation rate and may adversely affect 

precision.  An embedded computer is normally constrained by strict power, size, and 

                                                 
16 Xilinx MicroBlazeTM in a Virtex 2 Pro FPGA and an AMCC 440EP PowerPC. 
17 Axiom Manufacturing.  CML-5485 Development Board with BDM. Retrieved 21 Nov. 2005, from  

< http://www.axman.com/cgi-bin/products.pl?ProdName=CML-5485W;.State=Show> 
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weight limitations.  These three constraints form a trade space from which the final 

embedded computer design emerges.  Because of these constraints, the processor clock 

rates, computational capability, and memory capacity is normally less than a PC.  

Furthermore, many current embedded processors, like the popular ARM® series, do not 

contain a hardware floating-point unit.  The processor speed and memory size of the host 

system to potential development board mentioned above contrasts the significant 

computational difference between embedded computers and desktop PCs.  However, 

embedded systems normally provide computational services for a limited scope of work; 

therefore, the overhead resources may be removed to improve computational 

performance.  Estimating the control algorithm’s embedded performance is difficult due 

to these competing effects.  The control signal generation time and precision will be key 

metrics for comparison and analysis. 

 

B. COMPONENT REQUIREMENTS 
The following subsections provide a broad overview of the necessary 

development board hardware and system support capabilities.  At the time of writing, the 

decision concerning whether academia or industry would perform the phase two 

migration had not been determined.  Therefore, the assumption is made that a student will 

perform the work.  While it is assumed that the student performing the work holds an 

undergraduate degree in Engineering, it is understood that the student performing the 

work may not hold an undergraduate degree within the field of the work being 

performed.  The discussion serves to identify hardware and lab capabilities required to 

pursue phase two development; it is not intended to be an authoritative exposition.  An 

impressive reference for further study concerning embedded systems and architectures is 

a book recently written by Tammy Noergaard18.  A single book rarely bounds the 

spectrum of topics facing an embedded system development team. 

 
 

 
                                                 

18 Noergaard, Tammy. (2005). Embedded Systems Architecture: A Comprehensive Guide for 
Engineers and Programmers. Oxford: Elsevier, Inc. 
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1. Host System 
The term “host” is used to identify the general-purpose computer used for code 

development while “target” refers to the embedded development board.  The host system 

is a personal computer that performs the following functions: developing source-code, 

compiling, linking, locating, downloading, and running the remote debugger.  The 

progression from source-code to executable program for both PC and embedded system 

is displayed in Figure 6. 

 

 

Figure 6.   Software Development Flowchart 

 

Most modern personal computers meet the system requirements for the programming-

development environment, board support package utilities, and are capable of performing 

the host system duties.  Phase one discussed writing source-code, compiling, and linking.  

The compiler and linker in phase two operate in the same manner as their phase one 

counterpart; however, the phase two compiler and linkers are specific to the embedded 

development board hardware.  Since the compiler and linker behavior are the same, they 

will not be discussed further.  Locating, downloading, and running the remote debugger 

are specific to embedded development and will be discussed briefly. 

 

a. Locating 
Locating converts compiled and linked code into an executable binary 

image.  The locating process is performed by an application running on the host 

computer.  Once located, the code is considered a “relocateable program.”  The binary 
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image may be downloaded into the target’s memory and executed.  Locating is often 

labor intensive and requires a working knowledge of the development board’s memory 

configuration and operation.  Most locator tools are not part of the programming-

development environment.  The locator is often offered as a software program, which is 

part of a manufacturer’s board support package (BSP).   

 

b. Loading 
Loading transfers the executable binary file into the target board’s 

memory.  The transfer occurs over a communications link between the host and target.  A 

common communication link between the host and target is a serial link.  However, 

modern development boards are equipped with USB and Ethernet ports.  These advanced 

ports may be available for application development if the development board is running a 

stand-alone operating system.  The USB and Ethernet links will significantly reduce the 

loading time and expedite remote debugging efforts. 

 

c. Remote Debugger 
A remote debugger allows the developer to interact with the target 

hardware to study, locate, and correct errors in the code.  The remote debugger is 

comprised of two parts.  The first part is a graphical user interface (GUI) which runs on 

the host computer.  The second part is the key element and runs on the target.  This 

component provides the hardware control and reporting capability to the GUI.  The 

remote debugger software is often purchased from the development board manufacturer, 

as part of the board support package bundle. 

 

2. Target 

The target is the embedded system, the development board.  Many development 

boards are available for purchase on the commercial market.  A basic embedded system 

and development board consists of, at a minimum, a processor, memory, input-output 

ports, and a clock.  This section addresses necessary board components, capabilities, and 
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features required to host the control algorithm.  The requirement for a system clock is 

commonly understood and will not be discussed. 

 

a. The Processor 
The processor interprets instructions, executes instructions, and passes 

data.  It is a core component of all computational devices and has become a common 

term within today’s society.  Therefore, this thesis will not dwell on the specific 

capabilities; only identify important differences between a generic and an embedded 

processor.  The term generic processor and central processing unit (CPU) are often used 

as synonyms.  The term CPU frequently refers to generic microprocessors such as the 

Intel® Pentium® or AMDTM AthlonTM series used in personal computers.  Embedded 

processors are commonly referred to as microcontrollers.  Microcontroller designs are 

intended to be inexpensive yet possess greater self-sufficiency than their general-purpose 

counterpart.  The self-sufficiency is introduced through hosting input-output (I/O) and 

memory features on the microcontroller die.  Cost savings and self-sufficiency comes 

with a price.  Microcontrollers generally cannot execute instructions or perform 

computations as quickly as their general-purpose counterparts perform. 

Unlike the modern CPUs mentioned above, microcontrollers do not 

necessarily contain a floating-point unit (FPU).  FPUs provide processors the ability to 

perform floating-point math via hardware, vice a software emulator.  Hardware execution 

of floating-point math is faster but requires additional hardware circuitry.  Floating-point 

emulation is slower and requires additional software code, which must be stored on the 

embedded system. 

The development board selected for phase two development should 

contain a floating-point unit.  A FPU will help maintain the control algorithm’s current 

accuracy and speed of execution.  DIDO and SNOPT are intrinsic software modules to 

the control algorithm.  Both of these software modules are dependent upon floating-point 

calculations19.  Additionally, variables created in the MATLABTM script files, not 

declared as integer or single precision, are stored as double precision floating-point 

                                                 
19 Murray, Walter and I. M. Ross. Personal interview.  22 Apr. 05. 
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numbers, by default20.  A review of the control algorithm script files show numerous, 

numerically undeclared, variables meeting this condition.  Performing floating-point 

emulation will slow the control algorithm’s execution.  Xilinx’s MicroBlazeTM v4.00 

FPU boasts a performance improvement factor of 6 times for Joint Photographic Experts 

Group (JEPG) operations, 50 for Fast Fourier Transforms (FFT) manipulations, and 120 

for finite impulse response (FIR) filtering over software floating-point operations21.  One 

goal of embedding the control algorithm is to improve the control algorithm’s execution 

time, thus broadening the potential application.  Utilizing an onboard hardware FPU will 

improve the control algorithm’s embedded performance. 

The development board should contain a double-precision floating-point 

unit to remain consistent with the existing control algorithm results and analysis.  The 

previous paragraph details the control algorithm’s dependency on double-precision 

floating-point math.  Changing the development board to single-precision floating-point 

operations without analyzing the affects has the potential to allow coding or hardware 

error to propagate.  Future research should analyze the effects of single-precision 

floating-point math operations on the control algorithm’s accuracy and execution time.  

In the interim, microcontrollers containing double-precision FPUs are available.  Table 2 

provides an abbreviated list of FPU the more popular microcontrollers.  The core column 

identifies whether the microcontroller is an ASIC chip, hard-core, or instantiated within a 

Field Programmable Gate Array (FPGA), soft core.  Absent from the table is mention of 

ARM® processors.  ARM® processing cores do not contain hardware FPU22,23.  If future 

analysis indicates single precision calculations are sufficient, the microcontroller’s FPU 

can be shifted into a single precision mode and the results analyzed.   

 

                                                 
20 The MathWorks. MATLABTM Online Programming Documentation. Retrieved 17 Nov. 2005,  

<http//: http://www.mathworks.com/access/helpdesk/help/techdoc/MATLABTM_prog/ch11_st3.html> 
21 Xilinx, Inc. MicroBlazeTM Floating-Point Unit. Retrieved 17 Nov. 2005, from < 

http://www.xilinx.com/ipcenter/processor_central/microblaze/microblaze_fpu.htm#features> 
22ARM®. ARM® Technical Support FAQ. Retrieved 18 Nov. 2005, from  

<http://www.arm.com/support/vfp_support_code.html> 
23ARM®. ARM® VFP10 Coprocessor. Retrieved 18 Nov. 2005, from  

<http://www.arm.com/products/CPUs/VFP10.html> 
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Processor Core FPU Precision Company
Microblaze soft yes single Xilinx
TC1796 (AUDO-NG) hard yes single Infineon
PowerPC 440EP hard yes both AMCC
MPC5200 hard yes double Freescale
TSC695F hard yes double ATMEL
PowerPC 405 soft capable double Xilinx  

Table 2. FPU Microcontrollers 

 

b. Operating System 
Using a standalone operating system on the development board will 

expedite the migration process.  Embedded programs can integrate program functionality 

and board operating software into one executable program.  However, this integration is 

normally done with a simple or very mature program.  The control algorithm project 

meets neither of these criteria.  An onboard operating system will allow the developer to 

focus on debugging and refining the algorithm.  Combining an immature and untested 

algorithm with the development board’s operating system will make differentiating 

algorithm or operating system errors very difficult. 

A standalone-embedded operating system will allow the developers to 

focus on refining the algorithm.  Without an operating system, the developers will need to 

write and test software routines to handle basic board operations.  The developers would 

need to write code for operations such as input-output, interrupt handling, and 

multitasking.  These are only a few of the numerous functions and utilities that reside 

within, are executed by an operating system, and are often transparent to the user.  

Developing an “in-house” embedded operating system is not insurmountable, especially 

for an experienced operating system programmer.  However, this focus of this migration 

effort is the control algorithm, not embedded operating systems.  This project’s time and 

effort would be better utilized focusing on the control algorithm and purchasing a 

commercially available embedded operating system.  

Several commercial-off-the-shelf (COTS) real-time operating systems 

(RTOS) are available for immediate use.  There is a subtle, but notable, difference 

between operating systems and RTOS.  As the name implies, the Real-time Operating 

System supports programs that must provide results in real time, like the control 
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algorithm.  RTOS are compiled for operation on a specific target microcontroller.  The 

recommended FPGA development board supports two soft-core microcontrollers: 

MicroBlazeTM and PowerPC 405.  Several RTOS support these microcontrollers24.  Two 

notable RTOS' among the list are Nucleus RTOSTM from Accelerated Technologies, Inc. 

and MontaVistaTM’s Professional Edition 4.0 Linux RTOS.  Product data sheets for both 

RTOS’ are provided in Appendix B.  The Nucleus RTOS supports the MicroBlazeTM and 

PowerPC microcontrollers.  The MontaVistaTM Linux RTOS supports almost all popular 

hard microcontrollers and the soft PowerPC.  The Linux RTOS does not currently 

support Xilinx’s proprietary MicroBlazeTM microcontroller.  Literature review and 

discussions with MontaVistaTM indicate that the Linux RTOS would meet the needs of 

the project.  However, the cost of the Linux RTOS is high, $9,200 per retail copy25.  

Reduced pricing options were not pursed at this stage of the project.  The price includes 

the RTOS, software diagnostics, and user utilities to assist embedded program 

development.  Over the course of a development project, professionally supported, 

mature development utilities are often worth the added expense. 

 

c. Memory 
Development board memory is provided in three basic forms: read-only 

memory (ROM), random access memory (RAM), and cache.  Read-only memory (ROM) 

stores the embedded system’s programs, including operating system if present.  ROM is a 

non-volatile memory device.  Non-volatile memory retains the state information if the 

system’s power is interrupted.  Most embedded systems do not contain rotating memory 

storage systems, such as traditional hard drives found in personal computers.  Embedded 

systems tend to utilize solid-state memory technology such as programmable read-only 

memory (PROM), electrically programmable read-only memory (EPROM), or 

electrically erasable programmable read-only memory (EEPROM).  

 

                                                 
24 Xilinx, Inc. Alliance Embedded Program Member List. Retrieved 29 Nov. 2005, < 

http://www.xilinx.com/ise/embedded/epartners/listing.htm> 
25 Quesenbury, Ann. MontaVista Software, Inc. Phone conversation.  16 Sep. 2005. 
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Random access memory (RAM) provides storage space for pending and 

temporary calculations and information required by the operating system and 

applications.  RAM is a volatile memory storage device.  Information stored in RAM is 

lost if the system’s power is interrupted. 

Level 1 cache is high-speed memory, normally located on the same silicon 

die as the microprocessor.  Program information is loaded into the cache from ROM upon 

program initialization.  Programmers accelerate the execution of programs by loading 

large, frequently used segments of a program into the level 1 cache.  The amount of cache 

memory available to the development board is determined by the user’s microcontroller 

or development board selection. 

Calculating development board RAM and ROM requirements prior to the 

completion of phase one is difficult.  After phase one completion, stand-alone control 

algorithm application, the algorithm’s ROM requirements can be estimated from the size 

of the control algorithm’s executable file.  This value will be an estimate since the control 

algorithm’s size will not be the same for the embedded variant.  The embedded system 

has a different processor and operating system.  This difference will require the use of 

different libraries and assembly code.  However, this method will provide a reasonable 

estimate.  The RAM requirements can be estimated using Windows XP’s Task Manager.  

By selecting the Performance tab, the computer system’s memory usage may be 

monitored.  The algorithm’s RAM requirements can be estimated by recording the peak 

memory usage during the algorithm’s execution and subtracting the memory usage 

without the control algorithm running.  A similar process can be performed using a 

Linux-based system.  

Phase two development can proceed in parallel with phase one using a 

low-confidence estimation.  Development programs are not always afforded the luxury of 

waiting until a definitive hardware accounting is available.  Table 3 provides a summary 

of the estimated control algorithm size.  The detailed spreadsheet supporting the 

summary is provided in Appendix A.  The operating system requirements were obtained 

from vendor product sheets and modified by information provided during phone 
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conversations with the vendor26,27.  Since this is a gross estimation, a factor of 100% will 

be added to the development board’s ROM and RAM requirements.  A conservative 

assumption is that the entire program must be resident in RAM during operation; 

therefore, potential development boards should contain a minimum of 23-Mbyte of RAM 

to be considered as a host for the control algorithm. 

 

Component Size (MBytes)
S/C Model 0.098
DIDO Files 0.539
MATLAB Libraries 4.447
SNOPT 5.16
RTOS 1.1

Control Algorithm: 11.344  

Table 3. Control Algorithm Code Estimate 

 

d. Input-Output 
Input-output (I/O) ports allow the host computer and other electronic 

devices to communicate with the target.  Traditionally, the I/O link has been a serial 

communications link.  Serial communication links can lead to long delays when loading a 

large program to the target.  Modern development boards contain Ethernet and USB 

ports.  These advanced ports are accessible to the user if the development board is 

running an operating system, e.g. Linux, with Ethernet and USB support. 

 

e. Board Indicator 
The presence and type of board indicator should be factored into the 

development board selection.  Board indicators range from light emitting diodes (LEDs) 

to liquid crystal displays (LCDs).  These devices are invaluable tools when attempting to 

configure, operate, and debug a development board with a new operating system or 

program.  The indicators can be programmed to flash or display simple communication 

sequences to verify basic board level operation. 
                                                 

26 MontaVista Software, Inc. Linux Professional. Retrieved 16 Sep. 2005, from  
<http://www.mvista.com/products/pro/features.html> 

27 Murecky, John. MontaVista Software, Inc. Phone conversation.  16 Sep. 2005. 
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f. Development/Design Tools 
The development and design tools included with a development board 

factor into the selection process.  Development and design tools are a collection of 

software programs and utilities used to perform tasks supporting the embedded 

programming process.  The term is being used in a very broad manner in this thesis.  

These tools range from self-written to professionally developed tools.  Open source 

software provides another avenue by which these tools may be acquired.  Development 

board and RTOS manufactures often provide a very useful collection of development 

tools to enhance their product’s functionality.  Too many development tools exist to 

coherently present in this thesis.  Without adequate design and development tools, a 

development board is of little value.  The cost of a development board is relatively 

inexpensive; $495 for an FPGA based board28.  The price nearly doubles when the 

software development tools and intellectual property (IP) cores are added29.   

 

C. CANDIDATE DEVELOPMENT BOARDS 
It is difficult to select an embedded development board without the completion of 

phase one.  However, critical hardware requirements have been identified and discussed.  

These requirements can narrow the development board selection.  First, the algorithm 

requires a fully functional microcontroller.  Secondly, the current control algorithm 

requires floating-point math operations.  In addition, the current control algorithm utilizes 

double-precision floating-point operations.  Therefore, until analysis proves otherwise, 

the microcontroller will require access to a double-precision floating-point unit.  Third, 

the estimated size of the algorithm’s software is 23 Megabytes, rounded up.  Lastly, the 

development board must be supported by a RTOS vendor.  The RTOS is required to 

support real-time optimal-control calculations.  The recommended development boards 

are detailed in Section VI, following the custom computing machine design discussion 

presented in the next section. 
                                                 

28 Xilinx, Inc. Xilinx Virtex-4 ML-403 Embedded Platform.  Retrieved 11 Nov. 2005, from  
<http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=HW-V4-ML403-
USA&sGlobalNavPick=PRODUCTS&sSecondaryNavPick=BOARDS> 

29 Xilinx, Inc. Xilinx PowerPC & MicroBlazeTM Development Kit. Retrieved 30 Nov. 2005, from 
<http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?sGlobalNavPick=PRODUCTS
&sSecondaryNavPick=Intellectual+Property&category=&iLanguageID=1&key=DO-ML403-EDK-ISE> 
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V. PHASE THREE – CUSTOM COMPUTING MACHINE (CCM) 

A. HARDWARE ACCELERATION 
Phase three development enlists an FPGA to decrease the time required for 

embedded control-signal generation without degrading precision.  The FPGA will host a 

segment of the control algorithm, acting as an auxiliary math unit to the microcontroller 

and floating-point unit.  ASIC algorithm implementations are often superior to their 

FPGA counterparts in the areas of power consumption, initialization, and clock rates30.  

However, the cost of designing and fabricating application-specific integrated circuits 

(ASIC) for rapid prototyping in a research environment is excessive31.  Therefore, this 

thesis recommends the use of FPGAs to design and test algorithm modules.  This 

approach does not concede that an FPGA variant will be the optimal platform for 

deployment, only development. 

FPGA algorithm implementation does not avoid error introduction due to binary 

math operations.  Precision degradation issues that have plagued ASIC math processors 

for decades directly are applicable to FPGA-based math computations.  While dated, 

David Goldberg’s paper, “What Every Computer Scientist Should Know About Floating-

Point Arithmetic,” explains the challenges facing binary floating-point computations32.  

More than a decade has past since the paper’s publishing and numerous algorithms and 

libraries developed to mitigate error effects; yet, the basic concepts presented in his paper 

remain relevant. 

VHDL33 and Verilog34 are the two dominant hardware descriptive languages 

(HDLs).  These languages translate a hardware design into the digital format required for 
                                                 

30 Bartos, Frank J. (2005). Chip Wars: ASICs Versus FPGAs. Control Engineering. Retrieved 20 Nov. 
2005, from < http://www.manufacturing.net/ctl/article/CA607224> 

31 Bursky, Dave. (2005). We Must Hold The Line On Soaring ASIC Design Costs. Electronic Design. 
Retrieved 20 Nov. 2005, from <http://www.elecdesign.com/Articles/Index.cfm?AD=1&ArticleID=1955>. 

32 Goldberg, David. (1991). What Every Computer Scientist Should Know About Floating-Point 
Arithmetic. Sun Microsystems. Retrieved 30 Nov. 2005, from <http://docs.sun.com/source/806-
3568/ncg_goldberg.html> 

33 Hwang, Enoch O. (2006). Digital Logic and Microprocessor Design with VHDL. Canada: 
Thompson. 

34 Brown, Stephen and Zvonko Vranesic. (2002) Fundamentals of Digital Logic with Verilog Design. 
New York: McGraw-Hill.  
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FPGA or ASIC design implementation.  Both are used for low-level hardware 

development.  Traditionally, VHDL and Verilog have not provided the high-level 

algorithm abstraction capability enjoyed by C.  VHDL shares a pedigree with Ada while 

Verilog shares its pedigree with C.  Despite VHDL’s association with Ada, a 

programming language that is often shunned, VHDL has become a dominant language 

for FPGA development.  Xilinx’s Project Navigator 6.2i and ModelSim® SE 5.8a 

integrated development environments (IDE) were used to test FPGA modules during this 

research.  The mentioned IDEs, and subsequently the Xilinx product line, were not 

selected based on superior performance with respect to their competitors; rather, their 

selection was simply based on cost, schedule, and availability. 

 

B. MODULE IMPLEMENTATION 
A single algorithm module is targeted for hardware implementation.  One 

approach would be to migrate the entire control algorithm into hardware.  However, 

performing the transition in one development step is challenging and cost prohibitive in 

an academic environment. 

 

1. Ultimate Goal 
The ultimate migration plan maintains the spacecraft model in executable 

software and incorporates the remaining portion of the algorithm into hardware.  This 

configuration, displayed in Figure 7, provides control algorithm flexibility.  Maintaining 

a software spacecraft model allows the incorporation of spacecraft design changes due to 

manufacturing problems or engineering changes.  Furthermore, this hardware-software 

configuration provides the opportunity for the hardware to be coupled to practically any 

control system model, not limited to spacecraft.  While this configuration is the 

program’s ultimate goal, the work breakdown is still too large and cumbersome for the 

guidance and control lab’s current staffing, expertise, and facility. 
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Figure 7.   Ultimate Control Algorithm Goal 

 

2. Proposed Goal 
A single function will be migrated into hardware in phase three.  This approach is 

based upon generating a plan that is measurable and achievable.  As discussed above, 

migrating a large portion of the control algorithm in one development effort is a 

challenging task.  Establishing and maintaining the personnel expertise and facility 

capability to migrate software algorithms into FPGA-based hardware is a development 

effort in itself.  Given the current level of personnel experience and lab capability, 

attempting to implement the complete migration in one effort may prove too daunting.  

Migrating small control algorithm functions at the onset will serve to establish and 

mature the migration process and build the requisite expertise.  Furthermore, migrating 

individual functions modularizes the development into achievable and executable tasks.   

 

3. Targeted Function 
The candidate function for initial hardware implementation is a vector inner-

product multiplier.  The ideal candidate function for hardware implementation is a 

repetitive, discrete math calculation.  At the innermost core of the control algorithm 

resides the SNOPT function35.  One of the fundamental calculations buried within the 

sub-functions of the SNOPT solver is vector multiplication.  SQOPT is a sub-function to 
                                                 

35 Due to the proprietary nature of the SNOPT algorithm, a detailed discussion concerning its internal 
structure is not offered.  Additional SNOPT information may be obtained from Stanford University. 
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SNOPT and is dependent on large-vector inner-product calculations.  Figure 8 provides a 

pictorial representation of the SNOPT to inner-product call sequence.  The vector lengths 

range from ten thousand to fifty thousand real-numbered elements.  The control 

algorithm calls SNOPT repeatedly during control signal generation.  

  

 

Figure 8.   Inner-Product Call Sequence 

 

In turn, SNOPT performs major and minor iterations that call the SQOPT sub-function 

several times.  During each call, SQOPT performs numerous inner-product calculations 

prior to returning a solution to SNOPT.  According to the algorithm’s author, 

approximately forty inner-product calculations are performed each time SQOPT is 

called36.  Figure 9 displays the control algorithm’s structure after the creation of the 

inner-product multiplier. 

 

                                                 
36Murray, Walter. Personal interview.  22 Apr. 2005. 
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Figure 9.   Control Algorithm with Inner-product Multiplier 

  

4. FPGA Function Implementation 
There are three development paths available to implement an FPGA inner-product 

core.  The first two paths leverage the use of existing FPGA modules.  The first method 

requires a notable monetary expenditure but shortens the development and 

implementation time.  The second path utilizes open source FPGA modules and assumes 

greater compatibility and stability risk.  The last path designs a new inner-product 

multiplier, avoiding the large monetary expenditure but extending the development time. 

 

a. Modular Implementation – Commercial 
The first development path involves leveraging existing commercially 

developed FPGA core components, commonly called intellectual property (IP) cores.  

For development purposes, the FPGA will be connected to the microcontroller via a high-

speed data bus.  This configuration is analogous to the old Intel® 386 CPU to 387 math 

co-processor design, circa 1987.  Figure 10 is provides the conceptual layout of the 

development design. 
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Figure 10.   Conceptual FPGA Implementation 
 

An inner-product multiplier may be constructed using existing double-

precision floating-point IP cores developed by Nallatech37.  Figure 11 is a block diagram 

of the proposed modular inner-product processor (IPP).  Yellow blocks identify the 

pipelined Nallatech IP cores.  Housekeeping commands such as clear, clock, and reset 

have been omitted for clarity.  The required clock cycles for double-precision floating-

point conversion, multiplication, and accumulation are displayed along the bottom.  A 

copy of Nallatech’s product sheet is included in Appendix C.  Based on the datasheet, the 

adder module is the limiting IPP core component, 193 MHz clock frequency.  

Performance estimations are calculated with the IPP implemented as a co-processor to the 

microcontroller on the development board.   

When calculating performance estimations in the co-processor 

configuration, a microcontroller to co-processor bus frequency is assumed.  The control 

algorithm’s intended host is a space-based platform.  Therefore, the bus frequency limit 

was set conservatively at 50 MHz.  This bus frequency is below the 66 MHz currently 

used by two commercial space processor vendors, SEAKR Engineering, Inc.38 and EMS 

Technologies39.  The 48.25 MHz clock rate is the assumed FPGA-to-microcontroller bus 

frequency.  The input, output, and transfer clock counts are also assumed. 

                                                 
37 Nallahtech.  Double-Precision Floating-Point Core. Retrieved 18 Mar. 2005, from < 

http://www.nallatech.com/mediaLibrary/images/english/3269.pdf> 
38 Jungkind, Dave. SEAKR Space Processor Cards. E-mail to Ron Moon. 06 Dec. 2005. 
39 EMS Technologies. ESP603e PowerPC Space Processor Card Data Sheet. Retrieved 30 Nov. 2005, 

from < http://www.emsstg.com/pdf/esp603.pdf> 
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Figure 11.   Modular Inner-Product Processor (IPP) 

 

Multiple 64-bit input busses will be required feed the IPP’s pipeline.  The 

disparity between the input-output (I/O) bus frequency and the IPP core operating 

frequency would cause the IPP’s pipeline to receive data once per four clock cycles.  If 

this condition were allowed to exist, the IPP would operate in a data-starved condition.  

Therefore, eight 64-bit data busses will be required between the microcontroller and IPP, 

four data busses per 64-bit input.  Current FPGAs provide I/O pins in excess of the 

required 512 pins. Each of the two input’s four data busses will be multiplexed into a 

single data stream.  Each clock cycle will cause the multiplexer to shift inputs, thus 

providing a continuous feed of data to the IPP.  This data-feed design is an interim work-

around and is not viewed as a desirable design, but necessary given the current state of 

FPGA technology.   

The data-bus disparity identifies the significant problem of maintaining 

data-flow to a high-throughput custom computing machine.  The computer industry 

experienced a similar problem when the desktop computer’s CPU and FPU were 

mounted as separate devices on a motherboard.  The significant I/O delay between the 

FPU and CPU led to the hosting of the FPU on the same die as the CPU.  This dual 
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hosting allowed the construction of a high-speed data-bus between the two devices.  

Custom computing machines would benefit greatly from a similar design technology; 

hosting FPGA fabric on the same die as a hard-wired microcontroller.  This arrangement 

would provide high-performance CCM capability.  The I/O bottleneck can also be 

avoided if the IPP is connected to a soft-core microcontroller on the same FPGA; the IPP 

can potentially run at the clock rate as the microcontroller.  These two configurations 

would not require the data-multiplexing scheme.  The hard-wired microcontroller option 

is the desired solution.  Hard-wired microcontrollers are capable of operating at a higher 

frequency; furthermore, they are not as susceptible to ionizing events in space 

applications. 

The proposed inner-product processor utilizes a Multiply and ACcumulate 

(MAC) methodology.  The IPP accepts two IEEE-754 double precision numbers.  Both 

numbers are converted into a 70-bit Nallatech floating-point format and multiplied.  The 

resulting product is transferred to accumulator input one.  The accumulator is configured 

to operate as an adder.  The accumulator’s second input normally contains the 

accumulated inner-product value; provided by the multiplexer via register one in the 

inner, 70-bit, feedback loop.  The outer-loop de-multiplexer feeds registers two and three.  

The outer-loop de-multiplexer continually steps through an address of one to nineteen; 

this stepping process populates registers two and three with the accumulator’s output.  

Register three’s last position, twenty in Figure 11, contains a fixed zero.  The 50,000-

element accumulation and register population process continues until the final vector 

product.  An “end-of-vector” flag, not shown, accompanies the final vector product.   

At the end of a calculation sequence, the accumulator’s pipeline must be 

cleared to obtain the correct final value.  The pipeline clear procedure is required because 

the accumulation process is carried out in a recursive manner.  The accumulator’s 

nineteen partial-sums must be added to obtain the total, final sum.  These partial-sums 

were stored in registers two and three by the de-multiplexer during the MAC process.  

When the end-of-vector flag reaches the accumulator’s output, registers two and three 

contain the last nineteen partial sums.  An important note, the partial sum capture process 

is independent of the vector length.  However, the registers’ size is dependent upon the 

number of accumulator stages. 
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Once a pipeline clear is initiated, the accumulator’s input switch and 

multiplexer change positions.  With the new input paths, the accumulator now operates as 

a nineteen-stage pipeline adder.  Register two and three begin feeding the nineteen partial 

sums through the pipeline adder.  The summing sequence will require a five-layered 

process, determined by Equation 5.1 and rounded up. 

 

min log 2( ) 2(19) . 5.1
4.358 5
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Figure 12 provides a register state diagram for the following pipeline clear 

process explanation.  The first layer begins with nine partial-sum pairs and one non-

paired number.  The non-paired number remains in register two, position ten, for the next 

layer calculation; it does not pass through the accumulator.  The second layer contains 

five partial-sum pairs.  The third layer contains two partial-sum pairs and one non-paired 

number.  The non-paired number remains in register two, position three, for the next 

layer calculation; it does not pass through the accumulator. 

 

Layer 1 Add Layer 2 Add Layer 3 Add Layer 4 Add Layer 5 Add
Reg 1 Reg 1 Reg 1 Reg 1 Reg 1 Reg 1

X X X X X Sum 1

Reg 2 Reg 2 Reg 2 Reg 2 Reg 2 Reg 2
1 Sum 2 1 Sum 1 1 Sum 2 1 X X X
2 Sum 4 2 Sum 3 2 X X X X X
3 Sum 6 3 Sum 5 3 3 3 3 3 X
4 Sum 8 4 X X X X X X X
5 X X X X X X X X X
6 X X X X X X X X X
7 X X X X X X X X X
8 X X X X X X X X X
9 X X X X X X X X X
10 10 10 X X X X X X X

Reg 3 Reg 3 Reg 3 Reg 3 Reg 3 Reg 3
1 Sum 1 1 Sum 2 1 Sum 1 1 Sum 1 1 X
2 Sum 3 2 Sum 4 2 X X X X X
3 Sum 5 3 X X X X X X X
4 Sum 7 4 X X X X X X X
5 Sum 9 5 X X X X X X X
6 X X X X X X X X X
7 X X X X X X X X X
8 X X X X X X X X X
9 X X X X X X X X X
0 0 0 0 0 0 0 0 0 0  

Figure 12.   Pipeline Clear Process 
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The fourth layer contains one partial-sum pair and one non-paired number.  The non-

paired number remains in register two, position three, for the next layer calculation; it 

does not pass through the accumulator.  The fifth layer contains one partial-sum pair; the 

sum is calculated and placed in register one.  The “X’s” represent don’t care states.  

While the addressing is critical, the calculation and register storage process does not 

corrupt the original nineteen partial sums.  The pipeline clear process requires one 

hundred and thirteen clock cycles.  The clock cycle derivation is provided in Equation 

5.2. 

 

(19 9) (19 5) (19 2) (19 1) (19 1) . 5.2
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After the pipeline clear, the vector inner-product is complete and initiates 

the conversion process back to the IEEE-754 double precision format.  The 

accumulator’s pipeline is zeroed to prevent corrupting future calculations.  The IEEE-754 

solution is transferred to an I/O register, setting a “ready” bit, which may be used for 

polling or interrupt request communication with the microcontroller.  The input 

conversion to accumulator output requires forty-three clock cycles per vector pair.  The 

pipeline clear process requires one hundred and thirteen clock cycles.  The conversion to 

IPP output requires an additional thirteen clock cycles; the output conversion cost is 

required once per vector inner-product calculation. 

An algorithm exploitation technique is expected to reduce the inner-

product calculation time, significantly.  The accumulator’s feedback loop contains two 

major paths: an inner and outer loop.  The outer loop is the key factor that allows the IPP 

to exploit SNOPT’s solution convergence behavior.  During each SNOPT major-minor 

iteration sequence, SQOPT requests approximately forty inner-product vector 

calculations.  After each individual vector inner-product calculation, SQOPT determines 

if the solution condition has been achieved.  If the solution condition is not met, another 

vector inner-product calculation is requested.  After the first vector inner-product 

calculation, the remaining thirty-nine vectors share kernel elements.  The first inner-
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product value may be stored and utilized to reduce the number of subsequent inner-

product multiplications and accumulations.  Subsequent vector inner-product calculations 

can avoid multiplying and accumulating 50,000 elements by subtracting off the unique 

portion of the original vector inner-product.  The new vector’s inner-product value is then 

obtained by adding the new unique vector inner-product elements.  This process is called 

segmenting and is explained further in the following paragraph. 

Segmenting the vector within the IPP hardware during the vector inner-

product calculation will reduce SQOPT’s execution time.  The user identifies a single 

element within the 50,000-element vector prior to the initial SQOPT call.  The number of 

vector elements preceding and including the user-selected element is called the segment, 

or segment size, see Figure 13.  A segment size of ten will be used for the analysis in this 

thesis.   

 

 

Figure 13.   Segmentation Process 

 

The IPP must calculate the first 50,000-element inner-product before the 

segmenting exploitation occurs.  An end-of-vector flag accompanies the last vector 

element through the IPP to indicate the last vector element pair.  When the end-of-vector 

flag reaches the output of the accumulator, a pipeline clear is performed, explained 
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previously.  With the vector inner-product complete, the inner-product solution resides in 

register one of the accumulator’s inner feedback loop.  A copy of the solution is passed to 

the converter and sent back to the microcontroller.  After the solution is stored in register 

one, the accumulator is reset, setting all pipeline stages to zero.  The accumulator zeroing 

procedure must be performed to clear the residual numbers residing in the pipeline.  The 

accumulator’s input switch and multiplexer is ready to change state and apply the vector 

inner-product solution to accumulator input two as soon as the subtraction segment 

arrives.  The subtraction segment elements are sequenced into the IPP, arriving at the 

accumulator’s input one at the same time as the previous inner-product is sent to input 

two.  Accumulator operation is shifted from addition to subtraction.  The ten-element 

subtraction segment is provided to the accumulator operating in the subtraction mode.  

The effective result is the kernel vector-value required for the subsequent vector inner-

product; see line two in Figure 13.  This is not completely true since we have not 

performed a pipeline clear. We forego this pipeline clear until the segment addition is 

complete, saving one hundred and thirteen clock cycles.  A nineteen clock cycle buffer is 

inserted to move the subtraction elements out of the accumulator pipeline prior to shifting 

to addition.  During the buffer clock cycles, zeros are fed to the accumulator’s input one.  

Accumulator operation is shifted from subtraction to addition. The subsequent inner-

product is rapidly calculated by accumulating the unique vector segment products from 

the following vector; see line three in Figure 13.  The final vector pair of the unique 

vector segment carries an associated end-of-vector flag.  When the end-of-vector flag 

reaches the output of the accumulator, a pipeline clear is performed to complete the new 

vector inner-product accumulation.  The new vector inner-product now resides on the 

accumulator’s output.  Segmentation reduces the cost for subsequent vector inner-

products to approximately twenty multiply and accumulation operations, vice an entire 

50,000.  The vector segmenting process continues until the inner-product meets SQOPT’s 

solution conditions, which are approximately thirty-nine segmented vector calculations. 

The segmenting size is not fixed; however, the segment size must remain 

constant for a forty-run solution sequence.  If the segment size does not remain the same, 

the vector kernel will not remain consistent, causing erroneous results.  The SQOPT 

developers have not determined an optimal segment size exists, if one exists.  Therefore, 
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the IPP design requires a control scheme allowing for a user defined segment size.  

Providing variable hardware segmenting requires additional FPGA resources and 

increases the IPP’s control complexity.  If an optimal, fixed segmenting size is 

determined, the IPP’s segmenting control can be reduced to a simple counter slaved to 

the vector’s “first element” flag.  Side note: a close variant of the segmenting process can 

be exploited using current desktop computers.  The SNOPT/SQOPT source code would 

need to be modified to execute the segmenting process using the CPU’s FPU and 

registers.  The IPP design in this thesis was pursued due to the desire to embed the 

control algorithm. 

A SNOPT test case was defined to calculate the projected performance of 

the IPP versus the host system, Pentium® IV system detailed in section IV.  The values 

provided in Table 4 were established to perform the comparison.  The vector elements 

and inner-products per SQOPT call were established by Dr. Murray40, SNOPT’s author, 

and the remaining values by Dr. I. M. Ross41, DIDO’s author.  These values represent the 

nominal occurrences for a single control algorithm solution. 

 

Vector Elements 50000
SNOPT_Calls/Solution 100
SQOPT_Calls/Solution 1000
Inner-products/SQOPT_Call 40
Inner-products/SNOPT Solution 40000  

Table 4. Nominal SNOPT Solution Vector Calculations 

 

Using the values in Table 4, the IPP’s performance is estimated using an 

Excel spreadsheet and compared to the host system.  The host system’s performance 

parameters were recorded using MATLABTM 6.5.1.  Two random 50,000-element vectors 

were created and their inner-product calculated.  The inner-product calculation was 

repeated in four different loops: 40, 100, 1,000, and 40,000.  The loop number 

corresponds to the number of times the inner-product was calculated in the particular 
                                                 

40Murray, Walter. Personal interview.  21 Jan. 2005.  
41 Ross, I. M. Personal interview.  21 Nov. 2005. 
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loop.  Forty represents the average number of times an inner-product is calculated per 

SQOPT call.  One hundred, one thousand, and ten thousand correspond to their respective 

Table 4 value.  The looping tests were conducted to determine if the Pentium® IV’s FPU 

utilized acceleration techniques, which were non-linear with respect to the number of 

inner-product calls.  The calculation times were captured using MATLABTM’s "cputime" 

function.  The total calculation time was divided by the number of inner-product 

operations performed to derive an average calculation time per inner-product.  The M-file 

performing the baseline test is included in Appendix C.  The host system’s operating 

system, Windows XP Professional SP2, runs numerous background processes.  Many of 

the running processes are not controlled by the user but could adversely affect the test 

time.  Therefore, the inner-product test was repeated four times and the values averaged 

in an attempt to mitigate the background process effects, see Table 5. 

 

Vectors Run 1 Run 2 Run 3 Run 4 Each Avg.
40 0.0043 0.0043 0.0035 0.0039 0.0040 seconds

100 0.0030 0.0036 0.0033 0.0031 0.0033 seconds
1000 0.0030 0.0038 0.0030 0.0030 0.0032 seconds

40000 0.0038 0.0043 0.0040 0.0038 0.0040 seconds
Run avg. 0.0035 0.0040 0.0035 0.0035 seconds

Total avg. 0.003606 seconds  

Table 5. Pentium® IV Inner-product Calculation Time (50,000 elements) 

 

An estimated IPP performance is calculated using the Figure 11 design 

and Nallatech’s reported performance specifications42.  Table 6 displays the clock cycles 

required for each operation.  The FPGA addition/subtraction IP core module is the clock 

frequency-limiting component at 193 MHz.  The IPP’s implementation is a The CPU bus 

frequency is an assumed value and will be addressed later.  

 

                                                 
42Nallatech. Double-Precision Floating-Point Core. Retrieved 10 Mar. 2005, from < 

http://www.nallatech.com/mediaLibrary/images/english/3269.pdf> 
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Cycles Nallatech Cycles
Function Double Freq (MHz) Single
Multiplication 10 202 6
Add/Sub 19 193 14
IEEE to Nallatech 8 227 6
Nallatech to IEEE 9 244 8
Transfer Delay 2 n/a 2
CPU Bus (50 MHz max) 4 48.25 4
FPGA Clock Rate n/a 193 n/a  

Table 6. IP Core Clock Cycles and Frequencies 

 

The formula in Equation 5.3 calculates the time required for the IPP to 

produce a full 50,000-element vector inner-product.  Each of the three lines in equation 

5.3 is in terms of time.  The “transfer in” on line one of equation 5.3 accounts for the four 

clock cycles required to transfer the vector element pairs into the IPP.  This transfer cost 

will accrue for each element pair, from the two input vectors.  Therefore, the number of 

vector element pairs multiplies the “transfer in” cost.  The frequency of the transfer in 

and out operates at the assumed CPU I/O frequency, 48.25 MHz, not the FPGA 

frequency. 
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/
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Line two of equation 5.3 accounts for the time required by the MAC 

process to calculate a 50,000-element inner-product.  Each element pair is converted into 

the Nallatech format, multiplied, transferred to the accumulator, and added.  The IPP is 
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pipelined; the clock count cost is the pipeline’s stage length plus the length of the input 

vector.  The clock cycles are assumed equal to the pipeline stages.  The IP cores are 

proprietary and the internal structures are not available for examination.  However, a 

senior Nallatech designer indicated that this assumption is reasonable43.  After the vector 

elements are accumulated, the accumulator’s feedback pipeline is cleared.  Once the 

pipeline is cleared, the solution resides on the output of the accumulator in the 70-bit 

Nallatech format.  The solution is converted back into the standard IEEE-754 format.  

The IEEE-formatted solution is returned to the microcontroller across the I/O bus.  The 

Excel spreadsheet developed to tabulate the estimated IPP performance is included in 

Appendix C. 
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Equation 5.4 calculates the time required to perform a segmented SNOPT 

solution.  Note, Equation 5.4 lines two through five are mathematically in series, inline.  

The segmentation process requires one full 50,000-element inner-product.  Line two of 

Equation 5.4 accounts for this cost.  The segmentation exploitation begins by subtracting 

the segment value from the previous vector’s inner-product solution; see line four of 

                                                 
43 Dunn, Paul. Nallatech Double-Precision FP Cores. E-mail to Ron Moon. 23 Nov. 2005.  
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Equation 5.4.  A segment subtraction contains the clock cycles identified in Equation 5.5.  

Since the IPP is pipelined, the required clock cycles will be the sum of the MAC pipeline, 

and segment size, see Table 6.  Technically, the segment addition operation requires the 

same number of clock cycles since the accumulator’s add and subtract operations is 

equal.  Equation 5.6 is provided for completeness.   

 

_
. 5.5

Segment Subtraction converstion multiply transfer subtract
segment size Eq

= + + +
+

 

_
. 5.6

Segment Addition converstion multiply transfer addition
segment size Eq

= + + +
+

 

Once the segment subtraction and addition are complete, the new vector 

inner-product has been calculated.  The new inner-product is converted back to the IEEE-

754 format and returned to the microcontroller.  The segmenting cost is multiplied by one 

less the number of times that SQOPT calls for an inner-product.  The minus one accounts 

for the first, full, inner-product that must be calculated.  In our example, the segmenting 

process is repeated thirty-nine times; see Table 4.  Lastly, line four multiplies the 

segmenting calls by the number of times that SQOPT is called by SNOPT during the 

course of a control algorithm solution; see Table 4. 

 

SNOPT 
Solution 

(Seconds)
Improvement 

Factor Scale Factor
Pentium IV 1.8 GHz 144.25 Baseline Baseline

1 IPP Core w/out I/O 0.30 473.95 0.0021
2 wI/O w/out Segmenting 176.20 0.82 1.2215
3 wI/O w/Segment (DP/DP) 4.52 31.93 0.0313
4 wI/O w/Segment (SP/DP) 4.52 31.95 0.0313
5 wI/O OpenCores Seg. (DP/DP) 44.75 3.22 0.3102  

Table 7. Estimated Inner-Product Processor Performance 

 

Table 7 summarizes the IPP’s estimated performance relative to the 

Pentium® IV’s FPU.  The table is based on calculating a complete SNOPT solution, 
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400,000 inner-products.  Without exploiting the segmenting technique, the IPP’s 

performance is significantly inferior to the Pentium® IV’s FPU.  This performance 

difference is primarily due to the difference in clock frequency between the two cores.  

The Pentium® IV core operates at 1.8 GHz while the IPP’s core operates at 193 MHz.  

Introducing segmenting reverses the results; the IPP provides a significant performance 

improvement.  Row four in Table 7 displays the projected performance improvement 

using a single precision multiplier.  Theory and practice indicates that the precision of a 

50,000-element multiply and accumulate solution is dominated by the accumulation 

process, not the multiplication process44.  A single precision floating-point multiplier 

requires six clock cycles vice ten for double precision.  Equations 5.3 and 5.4 were 

modified in the Excel spreadsheet to reflect the multiply savings realized in a single 

precision multiplier.  The estimated performance improvement achieved with a single 

precision multiplier does not appear to provide a significant timesaving, roughly three ten 

thousandths of a second for an entire SNOPT solution.  Therefore, it is recommended that 

the IPP design avoid the potential schedule risk and maintain the double precision 

multiplier, exploring the single precision multiplier design should time and resources 

permit. 

b. Modular Implementation – Public 
The second potential IPP development path involves constructing the IPP 

described in the preceding paragraph using publicly developed modules.  An internet-

based organization called OpenCores.org45 hosts the development and distribution of 

open source IP cores.  The development projects are primarily developed through a 

consortium of individuals.  The OpenCores organization uses CVS46 to maintain and 

distribute the latest version of an IP core along with providing the core’s development 

pedigree.  Usage of the OpenCores modules is governed by a document modeled after the 

Lesser General Public License47. 
                                                 

44 Loomis, Herschel. Personal Interview. 23 Nov. 2005. 
45 OpenCores Organization. Website. Retrieved 05 Mar. 2005, from  < http://www.opencores.org> 
46 Opencores Organization. CVS Howto. Retrieved 26 Nov 2005, from  < 

http://www.opencores.org/projects.cgi/web/opencores/cvs_howto> 
47 The GNU Operating System. GNU Lesser General Public License. Retrieved 26 Nov. 2005, from  < 

http://www.gnu.org/copyleft/lesser.html> 
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The inner-product processor (IPP) may be constructed in the same format 

as Figure 11 using modules obtained from the OpenCores organization.  The OpenCores 

site currently contains a CF Floating-point Multiplier and HCSA Adder48.  The CF in the 

Floating-point Multiplier’s title is notable and deserves a brief explanation.  CF is an 

abbreviation for Confluence, a programming language that compiles into VHDL, 

Verilog, or C.  The Confluence developers claim that CF provides high order functional 

programming, understandable source-code, and a two to ten time reduction in code size49. 

The IEEE-754 compliant multiplier may be configured to compute in 

single, double precision and combinatorial, or pipeline.  The pipeline latency is four plus 

the mantissa accuracy50; for this analysis, fifty-six is utilized.  The multiplier’s clock 

frequency is assumed greater than 150 MHz.  The Hierarchical Carry Save Algorithm 

(HCSA) adder accepts 128-bit operands and operates at 6.64 nanoseconds, 150 MHz51.  

The HCSA adder is assumed to require nineteen clock cycles to complete a pipeline 

addition.  Using the specifications and assumptions presented, the OpenCores IPP 

performance is modeled using the same Equations, 5.3 through 5.6, and Excel 

spreadsheet.  Row five in Table 7 shows the predicted the performance of the OpenCores 

IPP to rival the Nallatech-based design. 

While the IPP could be constructed using the OpenCores multiplier and 

adder, this development path is not recommended unless the Nallatech IP cores cannot be 

purchased.  As noted in the previous paragraph, many assumptions were made to estimate 

the OpenCores IPP performance.  The performance estimate is a likely a best-case 

scenario.  Furthermore, the OpenCores IP modules will require modification.  The 

OpenCores HCSA IP module is not currently pipelined; therefore, the design must be 

modified prior to implementation.  While the existing modules provide a starting 

foundation, they do not come with professional documentation.  Attempting to 
                                                 

48 Opencores Organization. Projects by category.  Retrieved 01 Nov. 2005, from  < 
http://www.opencores.org/browse.cgi/by_category> 

49Confluence. Confleunce Overview. Retrieved 26 Nov. 2005, from  < 
http://www.confluent.org/wiki/doku.php> 

50 Opencores Organization. CF Floating Point Multiplier. Retrieved 01 Aug. 2005, from  < 
http://www.opencores.org/projects.cgi/web/cf_fp_mul/overview> 

51 Opencores Organization. HCSA Adder. Retrieved 01 Aug 2005, from  < 
http://www.opencores.org/projects.cgi/web/hsca_adder/overview> 
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understand another engineer’s design, without credible documentation, has the potential 

to consume more time than creating a new design.  A professionally supported product 

has the benefit of technical support.  A company will often allow the design engineer to 

be contacted to answer questions.  While the OpenCores designers can be contacted, their 

response is not required, nor the response time known. 

c. Custom Inner-product Processor 

The final IPP design option is to forego the pre-fabricated IP core modules 

and design a completely custom FPGA core.  This design could implement the scheme 

outlined in Figure 11 or exploit other implementation methods.  Other methodologies 

exist by which vector multiplication and accumulation are exploited using parallel 

operations52.  The investigation and pursuit of these designs are left to the student, or 

developer, employed to execute this migration phase. 

Should the migration effort pursue the design of a completely custom 

FPGA core design, it is recommended that the design use a hardware descriptive 

language (HDL) such as VHDL or Verilog, previously discussed.  An HDL provides 

three main benefits over schematic designs.  HDL designed components and modules can 

be simulated immediately using the Xilinx or third party simulator, such as ModelSim®.  

Secondly, an HDL design is product or device independent; a common buzzword is 

technology independent.  This provides design portability across different vendors, or 

among a vendor’s own product line, to locate the most cost effective hosting device.  

Lastly, Xilinx claims that large designs are better managed using HDL design tools, vice 

schematic design tools53. 

                                                 
52Loomis, Herschel. Personal Interview. 23 Nov. 2005.  
53Xilinx, Inc. Design Entry and Synthesis. Retrieved 04 Dec. 2005, from  < 

http://toolbox.xilinx.com/docsan/xilinx7/books/data/docs/dev/dev0014_5.html>  
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VI. FUTURE WORK ROADMAP 

The three-phase migration process further subdivides into task elements.  Figure 

14 displays the relationship between the task elements and each phase.  Each element is 

formulated to require the talents of a primary engineering discipline and focus on a single 

task.  Each task element contains a recommendation regarding whether academia or 

industry should perform the task.  It is recognized that the academia or industry 

recommendation may not be followed.  Therefore, a recommended academic discipline 

for each task element will be included.  Because each task element has the potential to be 

accomplished by a thesis student, each task element is designed to fit within a thesis 

student’s schedule. 

 

Figure 14.   Migration Task Breakdown 

 

A. PHASE ONE: SOFTWARE 
Phase one contains two work elements; generating the standalone executable 

algorithm and evaluating single-point precision. 
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1. Stand-alone Algorithm 

The hardware and work required to migrate the MATLABTM control algorithm 

into a standalone program is outlined in the work, development, and task sub-sections.  

Of the two phase one tasks, the stand-alone algorithm is the most time consuming and 

challenging. 

a. Scope of Work 
Generating the standalone algorithm will require modifying, translating, 

compiling, and linking the existing spacecraft and DIDO functions.  Once this work is 

complete and proper operation verified, the spacecraft and DIDO portion of the control 

algorithm must be linked with SNOPT.  This two-step approach assists in the localization 

of error sources by “half-splitting” the overall control algorithm.  SNOPT is provided by 

Stanford University as a “C” program.  SNOPT does require installation and setup effort, 

which is outlined in the provided “help” files; see Appendix A.  Once installed and 

configured, SNOPT may be provided test cases to verify proper operation.  The 

spacecraft and DIDO modules have yet to be executed outside the MATLABTM 

environment.  Therefore, these modules will need to be modified to provide intermediate 

solutions prior to translation. 

The MATLABTM 6.5.1 compiler will be used to translate the MATLABTM 

function files.  The command and associated options were detailed earlier.  Two C files 

are generated during the translation process: source and header.  The Compiler can also 

compile the code.  By default, the source code is compiled for the host platform’s CPU 

and operating system.  This setting can be changed by installing the desired compiler and 

configuring MATLABTM to call the new compiler.  The additional installation and 

configuration provides the ability to cross-compile for another platform.  The steps to 

change MATLABTM’s default compiler is located in the installed MATLABTM’s help 

files and can be found within the support section of the MathWorks website.  The 

translated code will be linked and compiled using a third-party integrated development 

environment; the reason for this recommendation was discussed earlier in this thesis and 

will not be readdressed.   
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Modifying each spacecraft and DIDO function module to display, or write 

to file, input and output results prior to translation will assist in isolating migration errors.  

Each spacecraft and DIDO mode must be converted into a function before the Compiler 

will translate the module.  Modifying the MATLABTM functions to display the results 

prior to translation will assist in testing.  The translated function’s operation may be 

verified by passing in known test cases.  The translation process makes the source-code 

very difficult to read, even by an experienced programmer.  Therefore, it is recommended 

that the modifications be made to the functions in the MATLABTM script files.  A simple 

main file can be written to pass a known test case to the function.  The main file and 

function is then compiled, linked into an executable program.  The program is executed 

and the results compared to the corresponding MATLABTM function.  Each of the 

MATLABTM functions’ operation has been previously verified.  Therefore, if the 

corresponding compiled and MATLABTM function results differ, a faulty compiled 

function is identified and can be corrected prior to linking it with other translated 

functions. 

After the functions have been translated and tested individually, a 

programming-development environment is used to link the translated and compiled code 

into an executable program.  The source, header, and MATLABTM library files must be 

imported into a programming-development environment.  The selection of the integrated 

development environment will be influenced by MATLABTM’s compiler library support.  

MATLABTM 6.5.1 contains math library support for Borland®, Digital, lcc, Microsoft®, 

and WATCOM.  The library support for each compiler is version dependent.  The 

MATLABTM library support for the different compilers and versions is the following: 

Borland® versions 5.0, 5.3, and 5.4; Digital 5.0 and 6.0; lcc versions not specified; 

Microsoft® Visual Studio® 5.0, 6.0, and 7.0; and Watcom 10.6 and 11.0.  One could 

select and integrated development environment that does not support the identified 

compilers; however, this is strongly discouraged.  The MATLABTM libraries provide the 

necessary C code to perform calculations previously performed by MATLABTM in the 

translated code.  Selecting a non-supported compiler will require the programmers to 

write their own math library to perform the calculations.  Writing a math library to  
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integrate into the control algorithm is a project, itself.  Therefore, utilizing an integrated 

development environment using one of the identified compilers is strongly 

recommended. 

An integrated development environment provides the user with powerful 

automated tools, depending on the selected environment.  The translated functions and 

library brought into the development environment must be compiled and linked.  Several 

professionally supported development environments now perform the linking 

automatically, in the background.  The compiler examines the main, header, and function 

files and determines the dependency between the files.  The resulting work of this 

examination is the creation of a “make” file.  The make file describes the relationships 

and dependencies that exist in order to compile the code into an executable program.  In 

the past, and with less capable development environments, the make file is manually 

written.  Programmer competency in writing a make files is slowly dwindling due to the 

automated process performed by modern development environments.  The Microsoft® 

Visual Studio® 6.0 integrated development environment was tested on a simple main and 

function file.  The environment produced the make file in the background and generated 

the executable program with little effort.  The Microsoft® Visual Studio® 6.0 integrated 

development environment was utilized simply because it was available and MATLABTM 

provided library support; no other selection criteria were utilized. 

The source-code is compiled and the individual modules linked into a 

standalone program.  The linking process includes linking the main, function, and 

MATLABTM math libraries into an executable program.  The development environment 

is useful for debugging problems encountered during the compile and linking process.  

As mentioned earlier, each function should be individually translated, compiled, and 

proper operation verified prior to attempting to link and compile the entire algorithm.  

After the individual functions are verified, a short main file will need to be written to 

request the ordered attitude, which then calls the “Mag_Open_Main” function to initiate 

the control algorithm.  Once the main file is written, it is recommended that function calls 

be added, individually, to the program.  After each addition, the program should be tested 

and the results verified against the MATLABTM variant.  The process is repeated until all 
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of the functions are incorporated and the program is complete.  Performing the outlined 

process is tedious; however, the process will quickly identify faulty functions.  

b. Development Hardware and Software 

Much of the development hardware and software required for this phase 

has already been discussed and is currently available within the guidance and control lab.  

The host system, Dell Dimension 4400, has MATLABTM 6.5.1 and Microsoft® Visual 

Studio® 6.0 installed.  Furthermore, should the developer desire to use the GCC compiler 

on a Linux operating system, the host system contains a rack-mount hard-drive system.  

A second, identical, hard-drive contains the Red Hat Work Station 4.0 operating system.  

The host system is capable of performing the phase one through three developments.  

Furthermore, maintaining the same host system provides each phase the ability to 

perform equitable control algorithm performance comparisons. 

c. Task Assignment 
The migration to stand-alone control algorithm should be accomplished by 

industry.  A computer science professional is a better choice to perform the stand-alone 

application development.  Generally, professional programmers are more proficient at 

using translators and integrated development environments.  While graduate students are 

intelligent and work diligently, on average, they do not posses the same level of 

programming technical expertise.  Furthermore, hiring a professional provides the 

flexibility to locate and hire a programmer intimately familiar with the translation and 

compiler tools for this project.  The disparity in proficiency would, most likely, lead to a 

longer phase one development time, should a student be used to perform the work. 

If the task is not assigned to industry, the migration to a stand-alone 

control algorithm should be performed by a Computer Science thesis student.  The ideal 

candidate would be a Space Systems Engineering student following the computer science 

track, vice a student within the normal computer science curriculum.  The Space Systems 

Engineering students understand the algorithm’s application due to their controls, 

optimization, and dynamics courses.  These courses are an integral part of the Space 

Systems Engineering curriculum and provide control algorithm familiarization 

opportunities, opportunities not afforded in the regular Computer Science curriculum. 
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2. Evaluate Single-Point Precision Performance 

The control algorithm’s execution time may be further reduced if the IPP’s 

multiplier does not require double precision.  In general, embedded single-precision 

floating-point calculations are faster than their double-precision counterparts54,55.  

Control algorithm calculations that can be shifted into single-point precision, without 

adversely affecting precision, will result in faster algorithm execution.   

a. Scope of Work 
The control algorithm’s single-point precision can be evaluated using 

MATLABTM.  MATLABTM contains a “single” function that forces a number or 

computational solution to single-point precision.  Using the single function, the control 

algorithm or its individual functions may be evaluated for precision affects.  If performed 

on the host system, the computation time is not expected to change.  MATLABTM, and 

the Pentium® IV’s FPU, performs all calculations in double precision and reports the 

results in the requested format. 

b. Development Hardware and Software 
A personal computer, MATLABTM, and the control algorithm are required 

to perform this analysis.  The control algorithm is comprised of the spacecraft model and 

DIDO.  This evaluation scrutinizes precision, not execution speed.  Therefore, the host 

computer is not required to perform this study.   It is recognized that other mathematics-

based software program exist that could perform the single-double precision evaluation.  

However, the control algorithm’s functions are written in, and executable within, the 

MATLABTM development environment.  The development time and effort required to 

translate, or reproduce, the control algorithm in different mathematical software is 

projected to be excessive. 

 

 

 
                                                 

54 Nallahtech.  Double-Precision Floating-Point Core. Retrieved 18 Mar. 2005, from  

< http://www.nallatech.com/mediaLibrary/images/english/3269.pdf> 
55 Nallahtech.  Single-Precision Floating-Point Core. Retrieved 18 Mar. 2005, from  

< http://www.nallatech.com/?node_id=1.2.2&id=20&searchTerm=single%20point%20floating> 
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c. Task Assignment 

The numerical analysis is best performed by academia.  A student with a 

math or numerical analysis background is desired.  Specifically, a student with a 

computational mathematics background is highly desirable.  The candidate should also 

posses programming and MATLABTM experience.   

 

B. PHASE TWO: HARDWARE 
Phase 2 is comprised of two work elements: establishing the embedded 

development board and cross compiling the algorithm for embedded operation. 

 

1. Establishing the Embedded Development Board 

Establishing the embedded development board’s operation requires a defined 

scope of work, embedded development hardware, and a student or contractor. 

a. Scope of Work 
This work element establishes the embedded development board to an 

operable state.  The real-time operating system is loaded into the board ROM, the 

onboard peripherals made operable, and the board support package utilities tested.  These 

tasks may appear to be a trivial work element.  However, this capability is being 

established in a lab that does not currently posses embedded systems development 

experience and capability.  Establishing the development board in a fully operable state 

and building experience with its operation will help minimize erroneous troubleshooting 

once the algorithm is migrated onto the development board.   

After the development board is operating, simple programs will be cross 

complied and executed to verify proper board operation.  The experience gained cross 

compiling and debugging will be recorded.  Often, the manufacturer’s support 

documentation is written poorly, missing key steps that are assumed or simply omitted 

out of error.  Cross-compiling, debugging, and running simple programs provides an 

opportunity to develop comprehensive “in-house” procedures for migrating programs 

onto the development board.  In this section, cross-compiling includes the development 

processes required to download an executable program onto the development board. 
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After the cross-compiling and downloading of simple programs is 

perfected, the developers will cross-compile control algorithm modules into executable 

code.  This effort will identify, early on, control algorithm code that does not compile to 

the embedded hardware.  Algorithms written in high-level programming languages, such 

as C, can utilize functions that may not have a cross-compiled equivalent for the 

embedded hardware.  In such a case, the offending function must be rewritten using 

hardware-supported functions.  Modules, which fail to cross-compile, will be studied and 

the code modified to support the embedded hardware. 

b. Development Hardware 

The double-precision floating-point unit (DPFPU) requirement narrowed 

the list of potential development boards significantly.  The research and 

recommendations are based upon locating current commercially available products.  The 

DPFPU requirement presented a significant challenge when trying to locate an FPGA-

based board.  An important note, phase two does not require an FPGA; only phase three.  

A development board hosting an FPGA would reduce program cost and redundant 

development effort since the same development board would be reused.  Phase two 

migration can be satisfied using a hard-core microcontroller containing a DPFPU.  If the 

hard-core microcontroller approach were selected for phase two, an FPGA-based 

development board must be purchased for phase three.  This approach will increase the 

program cost, but would decouple the development effort.  IPP designers could design 

and develop in parallel with phase two.  With this information in mind, a hard-core and a 

soft-core (FPGA-based) board are recommended and their benefits discussed. 

c. Hardcore CPU and FPU Board 

The AMCC PowerPCTM 440EP Evaluation Kit is very capable and meets 

phase two hardware requirements.  The PowerPCTM 440EP is a hard-core 

microcontroller.  The PowerPCTM 440EP microcontroller operates in excess of 500 MHz, 

over two times better than the FPGA-based development board.  While the development 

board is not space-rated, other PowerPCTM microcontroller variants are on orbit.  The 

common PowerPCTM pedigree and architecture will help identify non-compliable 

functionality, early.  This identification will help transitioning the control algorithm to a 
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space-rated processing board containing a PowerPCTM.  The advantages and 

disadvantages of the AMCC development board are summarized below. 

 

 

Figure 15.   AMCC PowerPC 440EP Evaluation Board56 

 

Pros: 
Double precision floating-point unit 
256-Mbyte RAM 
32-Mbyte Flash ROM 
Ethernet I/O connector 
USB I/O connector 
Linux Kernel OS and File system included on CD-ROM 
Firmware Bootstrap – in flash memory 
Kit cost: approximately $2,590.8057 

 

Cons: 
Lacks onboard FPGA 
Included Linux OS is not a real-time OS 
Not space rated 

 
                                                 

56 Provided courtesy of AMCC. 
57 Rodreguiez, Thomas. “EV-440EP-WIN-01 Price Quote.” E-mail to Ron Moon. 02 Dec. 2005. 
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d. FPGA-based Development Board 

The Xilinx PowerPCTM & MicroBlazeTM Development Kit Virtex-4 FX-

12 Edition is impressive.  This FPGA-based development board is very capable and has 

the potential to meet phase two hardware requirements after significant integration effort.  

The Xilinx ML403 board supports soft-core microcontrollers: MicroBlazeTM and 

PowerPC405.  The Xilinx PowerPC & MicroBlazeTM Development Kit Virtex-4 FX-12 

Edition product sheet is provided in Appendix B. 

 

 

Figure 16.   Xilinx Virtex-4 ML403 Development Board58 
 

Pros: 
FPGA-based development board 
64-Mbyte DDR SDRAM 
1-Mbyte ZBT SRAM 
512-Mbyte Compact Flash EPROM 
Ethernet I/O connector 
USB I/O connector 
16x2 LCD Display 
GNU Tools and Debugger 
MicroBlazeTM IP Core 
Kit cost: approximately $895 

                                                 
58 Provided courtesy of Xilinx, Inc. 
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Cons: 
Lacks Double-precision FPU 

 Lacks RTOS 

e. Recommendation 

Unfortunately, neither of the discussed development boards fulfills the 

needs for both phase two and three.  The AMCC evaluation board meets the requirements 

for phase two but lacks an FPGA for phase three.  Therefore, the AMCC board will not 

support phase three’s hardware accelerator.  Xilinx’s Virtex-4 ML403 development board 

has the potential to meet phase two and three’s requirements but will require significant 

design and integration efforts.  Commercial developers are not currently selling soft-core 

IP microcontrollers with an integrated DPFPU. 

The AMCC PowerPC 440EP development board would provide an 

excellent migration platform.  The development board’s 256-Mbyte of RAM, 32-Mbyte 

of ROM, 440EP PowerPC microcontroller and DPFPU provide the necessary hardware 

processing capability to host the compiled control algorithm.  However, the development 

board does not contain an FPGA.  A second, FPGA-based development board would be 

required to support phase three’s hardware accelerator design.  The product data sheet for 

the AMCC 440EP PowerPC Evaluation Board is provided in Appendix B. 

The Xilinx ML403 supports two soft-core microcontrollers: Xilinx’s 

MicroBlazeTM and PowerPCTM 405.  The MicroBlazeTM microcontroller recently 

received the addition of a single-precision FPU.  The PowerPCTM 405 microcontroller 

does not contain a floating-point unit.  Both microcontrollers would require a DPFPU.  

The DPFPU would need to be purchased through a third-party company or designed.  

Once obtained, the DPFPU will require integration with the microcontroller via a high-

speed data and control bus.  An existing compiler will need to be modified, or one 

created, to support the new microcontroller and DPFPU combination.  Lastly, the 

combination will require integration with a RTOS prior to supporting the development 

board and compiled control algorithm.  The DPFPU design and integration process 

outlined is not a trivial task. 

The embedded processing and FPGA sectors are progressing rapidly.  The 

MicroBlazeTM microcontroller’s FPU debuted May 16, 2005.  Borrowing loosely from 
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Moore’s law, one could predict the release of a DPFPU IP core for the MicroBlazeTM 

around November 2006.  However, Xilinx is not working on, nor planning to create, a 

double-precision floating-point unit for the MicroBlazeTM IP core59.  Since phase one 

migration is not completed, phase two migration efforts could wait and anticipate the 

release of a soft-core microcontroller with an integrated DPFPU from  a third-party 

vendor.  In the meantime, phase two development can progress using the AMCC 

Evaluation Board.  A final option would be to purchase the AMCC board for phase two 

and the Xilinx board for phase three development.  Purchasing both development boards 

enables immediate and concurrent phase two and three development.  

f. Task Assignment 

This task assignment carries two recommendations based on the board 

selection.  If the FPGA-based board is selected, the design and integration of a DPFPU 

with either soft-core microcontroller should be performed by industry.  While students 

could perform this effort, a professional company is better equipped and staffed to 

provide an established, functioning, and well-documented development board in a timely 

manner.  If academia retains the development, a student from the Engineering 

curriculum, computing track, would be best suited to perform this work.  

If the AMCC hard-core microcontroller development board is selected, a 

thesis student or long-term research assistant, vice a dedicated hired contractor, is the best 

person to establish the embedded development board’s operation.  The development 

board would be operated over a period of twelve to twenty-four months.  The financial 

cost to maintain a dedicated contractor over this period would be excessive.  A student in 

the Space Systems Engineering – Electrical Engineering track would be best suited to 

perform this work. 

 

 

 

 

                                                 
59 Gazdik, Nate. “MicroBlazeTM Floating Point Unit.” E-mail to Ron Moon. 05 Dec. 2005. 
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2. Cross-compile Program 

a. Scope of Work 

This work element compiles the control algorithm for operation on the 

embedded development board.  The steps required create an embedded algorithm were 

displayed in Figure 6 and discussed in section IV.  The translated C-code function files 

are to be cross-compiled, linked, relocated, and downloaded for operation on the 

embedded microcontroller.  For the remaining discussion, the term “cross-compile” will 

be used to depict the entire compile to download process.  The modular build process 

discussed in phase one’s scope of work, migration to stand-alone program, should be 

mimicked.  The main file should be compiled, first, and verified.  Then, individual 

functions should be cross-compiled and merged with the main file.  The cross-compiled 

functions should contain input and output capability to verify the functions’ proper 

operation against the corresponding MATLABTM control algorithm function.  Individual 

functions are added until the entire control algorithm is operating on the embedded 

development board.  The process outlined in this paragraph is tedious, but quickly 

identifies problematic functions. 

b. Development Hardware and Software 
Often the compiler, linker, debugger, and locator are purchased with the 

development board, usually part of the Board Support Package (BSP).  However, if the 

microcontroller and RTOS are known, work may be able to progress prior to actually 

purchasing the development board.  GCC60 is an open source development tool that 

contains a cross-compiler, linker, debugger, and locator.  GCC is often found as part of 

the utility programs for Linux and UNIX based computers.  The new MAC operating 

system “OS X” is Linux-based and capable of hosting GCC.  Furthermore, the most 

promising microcontroller for hosting the control algorithm is a PowerPCTM.  The Apple 

iMac’s CPU is a PowerPCTM.  An iMac is available for use in the Guidance and Control 

Lab.  However, the iMac is not currently running OS X.  The OS X operating system 

would need to be purchased and installed.  Compiling to a host system’s processor that 

closely matches the microcontroller is advantageous.  The PowerPC core series share the 

                                                 
60 GCC. GCC Homepage. Retrieved 27 Nov. 2005, from <http://gcc.gnu.org> 
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same instruction sets.  While not the exact embedded PowerPC microcontroller, 

compiling the control algorithm code on a PowerPCTM CPU will advance the 

understanding of how the control algorithm will behave, vice compiling to an x86 CPU.  

This is applicable for phase one and two development. 

The x86 based host computer in the Guidance and Control Lab has two 

rack mount hard drives, each with a different operating system.  One hard drive contains 

Windows XP Professional, SP2.  The second hard drive contains Red Hat Linux Work 

Station 4.  Red Hat contains GCC as a native compiler.  However, the compiler is 

configured to support an x86 processor.  The Red Hat GCC compiler may be able to be 

configured to perform as a cross-compiler.  This avenue was not researched further due to 

time constraints. 

c. Task Assignment 

The cross-compile work element would, most likely, progress at a faster 

rate if a professional embedded programmer performed the work.  This recommendation 

is not based on student inability; rather, the recommendation is based on professional 

proficiency and providing the final product in an expeditious manner.  If the work is to be 

performed in the academic environment, a student experienced in embedded 

programming should perform the task.  Embedded programming falls within the 

boundaries of Electrical Engineering and Computer Science.  However, most Computer 

Science curriculums focus on object oriented programming and forego the topics critical 

to embedded programming.  Therefore, the potential student’s proficiency with 

embedded programming should drive the selection process, not the engineering 

discipline.   

 

C. PHASE THREE: ACCELERATOR 

Phase 3 contains three work elements: Design the IPP, modify the compiler, and 

integrate the IPP into the development board design. 
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1. Design and Test IPP 

The developer will design and test one of the three potential IPP development 

paths presented in section four.   

a. Scope of Work 
IPP development will be performed within an integrated development 

environment.  IPP design exploration, performed in conjunction with this research, 

utilized Xilinx’s  ISE 7.1i programmable logic design environment.  ISE 7.1i was used in 

this research due to availability and the development environment’s ability to meet the 

research goals.  Other programmable logic development environments exist, but were not 

explored.  The recommended FPGA-based development board is a Xilinx FPGA and 

board.  Therefore, the Xilinx development environment, ISE, was used to in an effort to 

reduce potential compatibility issues. 

ISE 7.1i is relatively easy to use due to the Project Navigator graphical 

user interface.  The IPP FPGA design may be constructed using a HDL programming 

language such as VHDL or Verilog, or constructed using a schematic method.  The 

schematic method involves selecting basic building blocks from a library.  The blocks are 

then wired together by the designer to create the functional design.  If the migration effort 

follows the Nallatech design option, the schematic design method will be followed.  The 

Nallatech modules are provided as NGC files on a CD-ROM and cost $9,20061.  The IP 

core data sheet is provided in Appendix C.  If the IPP is designed using the OpenCores 

modules, IPP development will also use the schematic design method.  Should the 

migration effort decide to follow the original design path, the design should be written in 

a HDL such as VHDL, not the schematic design method.  However, individual modules 

can be written in one of the HDL formats, then converted into a schematic library 

symbol.  Once converted into a symbol, the module can be wired within the schematic 

design environment.  It is strongly recommended that the design effort utilize a HDL 

whenever possible.  The Xilinx compiler optimizes the HDL files for optimal FPGA 

resource utilization.  The schematic design method is not as effective at performing this 

optimization.  Additionally, it is recommended that a single HDL is used, VHDL or 

                                                 
61 Houlihan, Paul. Phone conversation. 18 Mar. 2005. 
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Verilog.  An overall design can use modules written in different languages.  However, 

Xilinx’s website discussion board contains numerous posts by people trying to solve a 

development problem due to modules using different HDL languages. 

As the design progresses within ISE, the IPP is tested within the ISE or 

externally using third-party modeling tools.  The internal ISE testing module provides 

limited testing.  However, ISE can identify improper results, estimate propagation delays, 

and identify the amount of FPGA resources required by the design.  If the internal testing 

capabilities are not sufficient, third-party testing software may be used.  The school 

currently uses ModelSim®62, a powerful HDL simulator.  The simulation testing 

capabilities provided by ISE and ModelSim® helps reduce the frustration of 

troubleshooting design errors on the development board.  Many  design errors are located 

prior to downloading the design to the FPGA.  Once the IPP design is complete and 

tested using simulation tools, the design is downloaded into the FPGA for hardware 

testing.  Test vectors can be stored in the development board’s memory.  The IPP test will 

include calling the test vectors from the development board’s memory and performing the 

inner-product calculation.  The testing metrics are calculation time and solution precision.  

A benefit of the design and simulation software, ISE and ModelSim®, is that this 

software can reside on the host computer.  The purchase of additional computer hardware 

is not required. 

b. Development Hardware and Software 
The FPGA-based board selection was discussed earlier; therefore, the 

discussion will not be duplicated other than reiterate that the cost of ASIC fabrication for 

research designs is beyond current research funding levels.  Once a complete deign 

scheme is formulated, microcontroller, DPFPU, and IPP, obtaining an ASIC fabrication 

cost estimate would be prudent for cost comparison purposes. 

The recommended development board for phase three is an FPGA-based 

development board.  Currently, industry does not offer a single development board 

hosting a microcontroller, DPFPU, and FPGA.  As development phases one and two 

                                                 
62 ModelSim®. Products List. Retrieved 11 Dec. 2005, from  < 

http://www.model.com/products/60/default.asp> 



71 

progress, industry may release a development board containing these desired capabilities 

on a single board.  Currently, the most promising board is the Xilinx Virtex-4 ML403 

Development Board. 

The developer will require an integrated development environment, such 

as ISE 7.1i.  A copy of Xilinx ISE will need to be purchased.  A limited-use version of 

ISE 7.1i is available for download.  The developer will need to verify if the limited 

version will meet the project’s design needs.  A limited-use version of ModelSim®, 

ModelSim® XE-III Starter, may be downloaded from Xilinx’s website.  The ModelSim® 

company provides Xilinx users a one-year license after registering via e-mail.  If the 

developer determines that the limited version does not meet the project’s design needs, a 

site license copy of ModelSim® PE for VHDL costs $5538.0063.  The ModelSim® 

product is much more capable than the simulation software included within Xilinx’s ISE 

and will help the individual assigned to the task to identify design problems prior to 

embedded operations. 

c. Task Assignment 

The IPP design and implementation work would, most likely, progress at a 

faster rate if a professional FPGA core designer performed the work.  Similar to the 

programming work, this recommendation is not based on student inability; rather, the 

recommendation is based on professional proficiency and providing the final product in 

an expeditious manner.  However, building the proposed Nallatech-based IPP as thesis 

work is within the capability of a Naval Postgraduate School Electrical Engineering.  If 

the work is to be performed in the academic environment, an Electrical Engineering 

student proficient with HDL programming should perform the task.  A student with 

experience using a FPGA integrated development environment is desired.  However, this 

experience can be provided through online and on-site vendor classes. 

 

2. Modify Microcontroller/IPP Compiler 

The addition of the IPP changes the control algorithm’s use of the 

microcontroller, which includes the DPFPU.  In phase two, the microcontroller’s DPFPU 
                                                 

63 Reynolds, Dennis. Phone conversation. 13 Dec. 2005.  
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performed the inner-product calculations.  With the introduction of the IPP, the control 

algorithm can realize a performance increase by using the IPP.  In order to achieve this 

performance improvement, the microcontroller’s compiler must be updated to reflect the 

existence, and potential use, of the IPP. 

a. Scope of Work 
A developer will modify an existing compiler to include IPP functionality.  

The project’s selected microcontroller will be supported by one, possibly more, software 

compilers.  A compiler supporting the selected microcontroller and DPFPU will be 

modified to reflect the presence and capability of the IPP.  The new compiler will direct 

the use of the IPP each time the control algorithm requests an inner-product, vice the 

DPFPU.  After compiler modification, the compiler will be introduced into the 

programming-integrated development environment.  This integration will allow the 

compiling of the control algorithm modules using the new, modified, compiler.  The 

deliverable from this work element is a modified compiler and a compiled control 

algorithm.  The brief scope of work explanation may make this task appear trivial.  

However, compiler generation, or modification, is not a simple task.  The work is tedious 

and requires detailed knowledge of the hardware components involved.  The tools used to 

perform compiler work are common to the tools used in phase one. 

b. Development Hardware and Software 
This should not require the purchase of new hardware or software.  The 

developer should be able to utilize the same host system and programming-integrated 

development environment used in phase one to modify the compiler.  The developer will 

require access to the development board and working IPP. 

c. Task Assignment 

The migration to stand-alone control algorithm should be accomplished by 

industry.  A professional programmer is the best choice to modify the existing compiler.  

Specifically, the company that wrote the existing compiler for the microcontroller should 

be contracted to perform this work.  Generally, professional programmers are more 

proficient at writing compilers.  A detailed understanding of the microcontroller is 

required to modify the existing compiler.  The project’s schedule would benefit from 
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using a programmer that is currently familiar with the microcontroller.  While students 

are intelligent and work diligently, on average, they do not posses the same level of 

programming technical expertise.  The disparity in proficiency would, most likely, lead to 

a longer phase one development time, should a student be used to perform the work. 

If the task is not assigned to industry, the compiler modification should be 

performed by a Computer Science thesis student.  The ideal candidate would be a Space 

Systems Engineering student following the computer science track, vice a student within 

the normal computer science curriculum.  The Space Systems Engineering students 

understand the algorithm’s application due to their controls, optimization, and dynamics 

courses.  These courses are an integral part of the Space Systems Engineering curriculum 

and provide control algorithm familiarization opportunities, opportunities not afforded in 

the regular Computer Science curriculum.  The student should form a partnership, or 

trusted working relationship, with the company that wrote the original compiler.  If it can 

be arranged, it may be beneficial for the student to work at the company’s facility for an 

extended period of time.  This on-site work will foster a working relationship with the 

compiler developers. 

 

3. Integrate IPP 
After the IPP and the compiler modification are complete, the design must be 

integrated into the development board. 

a. Scope of Work 
The IPP module design will be instantiated into the development board’s 

FPGA.  The new control algorithm, compiled with the modified compiler, will be 

downloaded into the development board ROM.  The board will be tested for proper 

operation.  The control signal generation time and precision will be compared to the 

MATLABTM baseline.  It is difficult to provide additional details outlining this work task 

due to the number of development path variables.  These variables include the IPP 

development path, the integrated development environment software, and the modeling 

software selected. 
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Integrating the IPP into the development board will be challenging and 

may require more than a single person.  It is highly recommended that the person 

performing the integration work overlap with the IPP design and Compiler modification 

work.  The overlap should be, at a minimum, three months.  The integrator will require 

the assistance of the IPP designer and compiler writer.  It would be ideal if the two, or 

more, personnel performing the IPP design and compiler modification also perform the 

integration work.  However, as explained at the beginning of this section, the task 

elements were broken down into work elements capable of fitting within a thesis 

student’s schedule.  Since integration work often uncovers previously undiscovered 

errors, the integration work may require more than one person. 

b. Development Hardware and Software 
This task will utilize hardware and software obtained in the earlier phases 

of work.  New hardware and software should not be required unless a new development 

board is obtained.  Should a new development board be introduced, the similar utilities, 

tools, and support software identified in the earlier sections will need to be obtained. 

c. Task Assignment 
Selecting an individual to perform the IPP integration will be difficult.  

Systems integration is a challenging interdisciplinary field.  The integration phase would 

most likely progress at a faster rate if industry performed the work.  Industry will likely 

avoid accepting an integration project that has been piecemealed between academia and 

industry, unless they have been a significant contributor in the development.  The 

recommendation to employ industry is not based on student inability; rather, the 

recommendation is based on professional proficiency and the ability of industry to draw 

from various engineering disciplines to provide the final product in an expeditious 

manner.   

While industry would be the best candidate, the most likely result will be 

that the systems integration will be preformed by a thesis student.  The IPP integration 

and compiled code migration fall within embedded systems development.  The student 

system integration recommendation closely follows the embedded programming 

recommendation provided in phase two.  The IPP integration work falls within the 
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boundaries of Electrical Engineering and Computer Science.  Therefore, it is 

recommended that the IPP integration be carried out by two students, an electrical 

engineering and computer science student.  Additionally, the integration work should 

overlap with the IPP design and Compiler modification work.   The overlap will allow the 

system integrators to familiarize themselves with the existing work, prior to the IPP 

designer and Compiler programmer’s departure. 

 

D. FURTHER RESEARCH 

 

1. State Update Rate - Sensor Saturation 

Classical control theories are constrained in their ability to provide control signal 

updates by the rate at which their sensors can provide state determination updates.  The 

work performed in association with this migration plan suggests that the real-time 

optimal-control algorithm may be able to decouple the sensor update rate for some 

control applications.  If the system’s control model is accurate and error-generating 

disturbances are small in relation to the control authority, the control algorithm may be 

able to achieve acceptable performance even though the sensor update rate is slower than 

the control command rate. 

Each real-time optimal-control algorithm solution provides the complete control 

sequence required to go from the existing state to the ordered final state.  In spacecraft 

attitude-control applications, each control algorithm solution provides the entire control 

signal stream required by the torque devices to maneuver the spacecraft from the current 

attitude orientation to the commanded orientation.  The spacecraft can execute the control 

sequence and achieve a final orientation without further updates.  The final orientation 

will contain sensor and disturbance errors.  However, the important distinction is that the 

classical control system produces one control signal, and holds that control signal.  

Classical control systems cannot provide a control update without first obtaining a 

spacecraft state condition, one control command per state determination. 

The control algorithm may be able to provide acceptable performance in 

applications where classical control systems fail.  The proposed control algorithm 
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implementation would utilize two control storage register sets and a switch.  The first 

register set stores the first control solution.  The spacecraft begins the maneuver, 

executing the control signal stream in the first register set.  As soon as the sensors can 

provide a state update, the control algorithm generates a new control solution.  In the 

meantime, the spacecraft continues to execute the maneuver using the control signals in 

the first register set.  Once the new control solution is complete, the solution is stored into 

the second register set.  The switch changes and places the second register set into 

service.  The spacecraft torque devices then receive the control commands stored in the 

second register set.  The process continues until the spacecraft reaches the commanded 

orientation. 

 

2. C to VHDL Compilers/Function Generators 

Both academia and the private sector are pursuing the development of C to VHDL 

compilers.  In the academia world, the University of California campuses of Irvine and 

San Diego have collaborated and developed a C to VHDL compiler, SPARK64, with 

private sector research support.  Nallatech will soon release their C to VHDL function 

generator, Dime-C.  Dime-C will be integrated into their DIMEtalk-3 development 

suite65.  Both products are in an infancy stage.  When developed further, these products 

will provide users the high-level abstraction capability of C and allow rapid migration of 

behavioral algorithms into hardware.  Currently, the conversion of behavioral C 

algorithms into hardware requires a design team to replicate the algorithm’s behavior.  

Some industry professionals predict that efficient C to VHDL tools will remain beyond 

reach.  While not mature at this time, this technology is worth watching. 

                                                 
64 UC San Diego. Center for Embedded Computer Systems. Retrieved 01 Nov. 2005, from < 

http://mesl.ucsd.edu/spark/> 
65 Nallatech. FPGA Computing Application Development Environment–DIMEtalk3. Retrieved 14 

Dec. 2005, from <http://www.nallatech.com/?node_id=1.2.2&id=19> 
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APPENDIX A: PHASE ONE MATERIALS 

1. Master Files 

a. NPSAT Model 

b. DIDO_2003f 

c. SNOPT 

2. Modified Files 

a. NPSAT Model 

b. DIDO_2003f 

c. SNOPT 

3. Translated (Modified) Files 

a. NPSAT Model 

b. DIDO_2003f 

c. SNOPT 

4. MATLABTM Compiler 3 User’s Guide 

5. LCC Programming Development Environment 

a. Programming Manual 

b. Install Files  

6. GCC Compiler Manual 

7. Control Algorithm Code Estimation 

8. TextPad 4 

9. Spark (XP Pro Version) 
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APPENDIX B: PHASE TWO MATERIALS 

1. MontaVista RTOS Product Sheet 

2. Nucleus RTOS Product Sheet 

3. PowerPC Microcontroller Product Selector 

4. AMCC PowerPC 440EP Evaluation Kit 

5. Xilinx Virtex-4 Product Family 

6. Xilinx Virtex-4 FX Embedded Development Kit 
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APPENDIX C: PHASE THREE MATERIALS 

1. Xilinx Virtex4 FX FPGA Device Combination Table 

2. Nallatech Double-Precision Floating-point Core Product Sheet 

3. Pentium® 4 Inner-product Test M-file 

4.  IPP Performance Estimator Excel File 

5.  IEEE VHDL Reference Manual 2002 

6. VHDL Cookbook 

7. IEEE RTL Synthesis Manual 2004 
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APPENDIX D: LOBATTO.M (MATLABTM) 

Note: due to the file’s length, a partial reproduction is provided.  Appendix 

A’s CD-ROM contains the entire translated file. 

 
function [x,w] = lobatto(n,a,b) 
%   [X, W] = LOBATTO(N) or [X, W] = LOBATTO(N,ALPHA,BETA): 
% 
%     Computes abscissa and weights for the n-point Gauss-Jacobi-
Lobatto 
%     quadrature formula using the method of Gene H. Golub, Some 
modified 
%     matrix eigenvalue problems, SIAM Rev. 15 (1973) 318-334.  Another 
early 
%     algorithm for this is by David Galant, An implementation of 
Christoffel's 
%     formula in the theory of orthogonal polynomials, Math. Comp. 25 
(1971) 
%     111-113.  All such algorithms should be "reviewed", in light of 
recent 
%     improvements in tqr and Cholesky LR algorithms.  But, this 
algorithm 
%     "ain't bad". 
  
%     Copyright (c) 23 August 1997 by Bill Gragg.  All rights reserved. 
%       Edited by I. Michael Ross, 17 April 2001 
  
%     lobatto calls subfunctions:  mxtj, mxt and tqr. 
  
  
%     begin lobatto 
  
         if nargin < 2 
        a = 0;   b = 0; 
         end 
  
         m = 2^(a + b + 1)*beta(a+1,b+1);   us = a == b; 
  
         n = n - 1;           [a b] = mxtj(n,a,b);   T = mxt(a,b); 
     I = eye(n);          e = zeros(n,1);        e(n) = 1; 
     c = (T + I)\e;       c = c(n);              d = (T - I)\e; 
     d = d(n);            e = c - d;             c = (c + d)/e; 
     d = sqrt(2/e);       a(n+1) = c;            b(n) = d; 
     [x u] = tqr(a,b);    u = u';                w = m*u.^2; 
  
%        "Purify" formulas in the ultraspherical case. 
  
         if us 
            x = (x - flipud(x))/2;   w = (w + flipud(w))/2; 
         end 
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%       Consider sorting x for future reference 
%     end lobatto 
%        
%       BEGIN SUBFUNCTION MXTJ 
  
function [a,b] = mxtj(n,alpha,beta) 
  
% [a b] = mxtj(n,alpha,beta), [a b] = mxtj(n,alpha), [a b] = mxtj(n), 
%     T = mxtj(n,alpha,beta),     T = mxtj(n,alpha) or   T = mxtj(n): 
% 
% mxtj(n,alpha,beta):  T = mxt(a,b) is the Jacobi matrix whose 
characteristic 
% polynomial p is (a nonzero scalar multiple of) the nth JACOBI 
polynomial. 
% The eigenvalues of T are the abscissas of the nth order Gauss-
Christoffel 
% quadrature formula for the weight function ((1 - t)^alpha)((1 + 
t)^beta) on 
% the interval - 1 < t < 1.  The Gauss-Christoffel weights are m(0) 
times the 
% squares of the first elements of the normalized eigenvectors of T, 
where 
% m(0) = b(0)^2 = B(alpha + 1,beta + 1)2^(alpha + beta - 1) is the 
total mass. 
% B is the beta function.  The weight function is positive and 
integrable if 
% alpha + 1 > 0 and beta + 1 > 0. 
% 
% mxtj(n,alpha) takes beta = alpha.  p is the nth ULTRASPHERICAL 
polynomial, 
% with weight function (1 - t^2)^alpha on the interval - 1 < t < 1.  
Special 
% cases are the CHEBYSHEV polynomial of the FIRST KIND, with alpha = - 
1/2, 
% and of the SECOND KIND, with alpha = 1/2. 
% 
% mxtj(n) takes alpha = beta = 0.  p is the nth LEGENDRE polynomial, 
with  
% weight function w(t) = 1 on the interval - 1 < t < 1.  The quadrature 
% formula here is originally due to Gauss.  Christoffel generalized 
Gauss' 
% formula to a wide class of weight functions.  Because of this the 
Gauss- 
% Christoffel weights are usually called Christoffel numbers. 
  
% Copyright (c) 2 February 1991 by Bill Gragg.  All rights reserved. 
  
% mxtj calls mxt. 
  
% begin mxtj 
     if nargin < 2  alpha = 0;  end;   if nargin < 3  beta = alpha;  
end 
     a = alpha;   b = beta;   c = a + b;   d = b - a; 
     s(1) = d/(c + 2);   t(1) = (a + 1)*(b + 1)/(c + 2)^2/(c + 3); 
     if n > 2 
        d = c*d; 



85 

        n = (2:n)';   m = 2*n;   mm = m - 1;   mp = m + 1; 
        s(n) = d./(c + m)./(c + (m - 2)); 
        t(n) = n.*(a + n).*(b + n).*(c + n)./(c + mm)./((c + m).^2)./(c 
+ mp); 
     end 
     a = s(:);   b = 2*sqrt(t(:)); 
     if nargout < 2  a = mxt(a,b);  end 
% end mxtj 
% 
%       BEGIN SUBFUNCTION MXT 
  
      function T = mxt(a,b,c) 
  
%     T = mxt(a,b,c) or T = mxt(a,b): 
% 
%     T = mxt(a,b,c) is the TRIDIAGONAL MATRIX with diagonal elements 
a(1:n), 
%     subdiagonal elements b(1:n-1) and superdiagonal elements c(1:n-
1). 
% 
%     T = mxt(a,b) is the HERMITIAN tridiagonal matrix with diagonal 
elements 
%     real(a(1:n)) and subdiagonal elements b(1:n-1). 
  
%     Copyright (c) 1 December 1990 by Bill Gragg.  All rights 
reserved. 
%     Revised 21 November 1992. 
  
  
%     mxt calls no extrinsic functions. 
  
  
%     begin mxt 
  
         if nargin < 3 
            a = real(a);   c = b'; 
         end 
  
         n = length(a);   b = b(1:n-1);   c = c(1:n-1);   z = zeros(n-
1,1); 
  
         if n < 500 
  
            B = diag(b);   B = [z' 0; B z];   C = diag(c);   C = [z C; 
0 z']; 
            T = diag(a);   T = T + B + C; 
  
         else 
  
            T = zeros(n); 
  
            for k = 1:n-1 
               T(k,k) = a(k);   T(k+1,k) = b(k);   T(k,k+1) = c(k); 
            end 
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            T(n,n) = a(n); 
  
         end 
%     end mxt 
% 
%       BEGIN SUBFUNCTION TQR (note: TQR calls SGN) 
  
      function [lam,U] = tqr(a,b,U) 
  
%     [lam u] = tqr(a,b) or [lam U] = tqr(a,b,U): 
% 
%     [lam u] = tqr(a,b): 
% 
%     The column lam contains the eigenvalues of the Hermitian 
tridiagonal 
%     matrix T = mxt(a,b) computed by one version of the (real 
symmetric) tqr 
%     algorithm with Wilkinson's shift.  The column u contains the 
first 
%     elements of the eigenvectors of T normalized to be nonnegative 
and such 
%     that the eigenvectors are unit vectors.  In practice this is an 
O(n^2) 
%     process.  If u is omitted only the eigenvalues are computed.  The 
%     computed eigenvalues are real and are sorted to be nonincreasing. 
% 
%     [lam U] = tqr(a,b,U): 
% 
%     This replaces the input U by UV with V a matrix of orthonormal 
eigen- 
%     vectors of T.  If the input U is I the output U is V.  If the 
input U is 
%     unitary with AU = UT then the output U is unitary with AU = UD 
and D = 
%     diag(lam). 
% 
%     If the input U is e(1)' the output U is u'.  If the input U is 
%     [e(1)'; e(n)'] the output U is [u'; v'] with v the column of last 
%     elements of the normalized eigenvectors.  If the subdiagonal 
elements of 
%     T are all nonzero then the elements of v alternate in sign, at 
least 
%     mathematically. 
  
%     Copyright (c) 2 February 1991 by Bill Gragg.  All rights 
reserved. 
%     Revised 15 July 1994. 
%     begin tqr 
  
File truncated here due to length!  
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APPENDIX E: LOBATTO.C (TRANSLATED) 

Note: due to the file’s length, a partial reproduction is provided.  Appendix 

A’s CD-ROM contains the entire translated file. 

/* 

 * MATLAB Compiler: 3.0 

 * Date: Thu Jul 21 18:35:55 2005 

 * Arguments: "-B" "macro_default" "-O" "all" "-O" "fold_scalar_mxarrays:on" 

 * "-O" "fold_non_scalar_mxarrays:on" "-O" "optimize_integer_for_loops:on" "-

O" 

 * "array_indexing:on" "-O" "optimize_conditionals:on" "-t" "-A" "debugline:on" 

 * "-L" "c" "-d" 

 * 

"C:\Ron_Moons\DIDO_Convert_to_C\DIDO_Working_Folder\DIDOmodules\Compiled

_Fold 

 * ers\lobatto_compiled" "lobatto"  

 */ 

#include "lobatto.h" 

#include "beta.h" 

#include "flipud.h" 

#include "libmatlbm.h" 

static mxArray * _mxarray0_; 

static mxArray * _mxarray1_; 

static mxArray * _mxarray2_; 

static mxArray * _mxarray3_; 
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static mxArray * _mxarray4_; 

static mxArray * _mxarray5_; 

static mxArray * _mxarray6_; 

 

static mxChar _array8_[7] = { 'c', 'o', 'm', 'p', 'a', 'c', 't' }; 

static mxArray * _mxarray7_; 

static mxArray * _mxarray9_; 

static mxArray * _mxarray10_; 

 

static mxChar _array12_[45] = { 't', 'q', 'r', ' ', 'i', 't', 'e', 'r', 'a', 

                                't', 'i', 'o', 'n', ' ', 'd', 'i', 'd', ' ', 

                                'n', 'o', 't', ' ', 't', 'e', 'r', 'm', 'i', 

                                'n', 'a', 't', 'e', ' ', 'i', 'n', ' ', '1', 

                                '0', 'n', ' ', 's', 't', 'e', 'p', 's', '!' }; 

static mxArray * _mxarray11_; 

 

void InitializeModule_lobatto(void) { 

    _mxarray0_ = mclInitializeDouble(0.0); 

    _mxarray1_ = mclInitializeDouble(2.0); 

    _mxarray2_ = mclInitializeDouble(1.0); 

    _mxarray3_ = mclInitializeDouble(3.0); 

    _mxarray4_ = mclInitializeDouble(500.0); 

    _mxarray5_ = mclInitializeDoubleVector(0, 0, (double *)NULL); 

    _mxarray6_ = mclInitializeDouble(1024.0); 
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    _mxarray7_ = mclInitializeString(7, _array8_); 

    _mxarray9_ = mclInitializeDouble(-1.0); 

    _mxarray10_ = mclInitializeDouble(10.0); 

    _mxarray11_ = mclInitializeString(45, _array12_); 

} 

 

void TerminateModule_lobatto(void) { 

    mxDestroyArray(_mxarray11_); 

    mxDestroyArray(_mxarray10_); 

    mxDestroyArray(_mxarray9_); 

    mxDestroyArray(_mxarray7_); 

    mxDestroyArray(_mxarray6_); 

    mxDestroyArray(_mxarray5_); 

    mxDestroyArray(_mxarray4_); 

    mxDestroyArray(_mxarray3_); 

    mxDestroyArray(_mxarray2_); 

    mxDestroyArray(_mxarray1_); 

    mxDestroyArray(_mxarray0_); 

} 

static mxArray * mlfNLobatto_mxtj(int nargout, 

                                  mxArray * * b, 

                                  mxArray * n, 

                                  mxArray * alpha, 

                                  mxArray * beta); 
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static void mlxLobatto_mxtj(int nlhs, 

                            mxArray * plhs[], 

                            int nrhs, 

                            mxArray * prhs[]); 

static mxArray * mlfLobatto_mxt(mxArray * a, mxArray * b, mxArray * c); 

static void mlxLobatto_mxt(int nlhs, 

                           mxArray * plhs[], 

                           int nrhs, 

                           mxArray * prhs[]); 

static mxArray * mlfNLobatto_tqr(int nargout, 

                                 mxArray * * U, 

                                 mxArray * a, 

                                 mxArray * b, 

                                 mxArray * U_in); 

static void mlxLobatto_tqr(int nlhs, 

                           mxArray * plhs[], 

                           int nrhs, 

                           mxArray * prhs[]); 

static mxArray * mlfLobatto_sgn(mxArray * Z1, mxArray * Z2); 

static void mlxLobatto_sgn(int nlhs, 

                           mxArray * plhs[], 

                           int nrhs, 

                           mxArray * prhs[]);   File truncated here 
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