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ABSTRACT 

This thesis studies the feasibility of developing a smart shipboard sensor network.  

The objective of the thesis is to prove that sensors can be made smart by keeping 

calibration constants and other relevant data such as network information stored on the 

sensor and a server computer.  Study will focus on the design and implementation of an 

Ipsil IPµ8930 microcontroller, which is then connected, by the standard TCP/IP 

implementation, to a network where the sensor information can be seen using a web page.  

The information to make the sensor �smart� will be stored on the Ipsil chip and server 

computer and can by accessed by a HTML based program.  By taking pre-computed 

calibration constants that minimize the measurement errors and writing them through the 

web page stored in the Ipsil chip�s EEPROM, the calibrated sensor reading can be 

calculated. 

The expected contribution from the research effort would be a reduction in 

manpower, increased efficiency, and a greater awareness of plant and equipment 

operation among naval vessels, specifically the DDX.  Hardware is relatively 

inexpensive, reliable, and COTS (Commercial Off the Shelf) available.  If implemented, 

a Smart Shipboard Sensor Network would allow the watch standers, CHENG, OOD, and 

CO, to all see the same information about the ship�s engineering plant and equipment. 

A prototype sensor test bed was constructed in the laboratory, which consists of 

an Ipsil IPµ8930 microcontroller, a Linksys LAN router, and a Dell Inspiron 9300 laptop.  

The newly developed smart sensor was successfully demonstrated. 
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EXECUTIVE SUMMARY 
 
 

 

The number of sensors onboard naval ships is rapidly increasing, and the accurate 

reading of these sensors is becoming more crucial to successfully completing the 

missions they carry out.  However, with the reduction in manning, the ability to calibrate, 

test, and maintain sensors needs to be accomplished with fewer people. 

The solution to this problem is to create a sensor network that will allow a single 

person to observe and maintain all the shipboard sensors.  To do this, each sensor must 

have its own unique IP address as well as have the ability to store information about itself 

and about the network it is on. 

The objective of this thesis was to build and test a �smart� plug and play Ethernet 

based sensor that can be used on equipment in such a shipboard sensor network.  �Smart� 

means that if a pressure reading from a piece of equipment is desired, the sensor will 

know what piece of equipment it is being used on, the range of pressure readings required 

from it, how to connect and send it�s information to the network, and most importantly 

what its calibrations contents are.  This research will expand upon previous work done by 

Professor Yun and others on network-based shipboard sensors and the closed-loop 

calibration of those sensors on wireless LAN�s, however now an Ipsil microcontroller 

will be used to create a network to be used in the engineering spaces on naval vessels.  

Ipsil chips are built to be reliable, long-term, and cost-effective. 

The main thrust of the study was the design and implementation a smart sensor 

using Ipsil�s IPµ8930 which is then connected to a network where the sensor information 

can be seen using an html based web page.  The information to make the sensor �smart� 

will be stored on both the EEPROM of the IPµ8930 and on server computer.  A web page 

located on the Ipsil chip interfaces with a user in the form of a java applet program. 

A working prototype �smart� sensor has been produced in the laboratory for a 

shipboard environment.  It consists of an Ipsil IPµ8930 microcontroller, a Linksys LAN 

router, and Dell Inspiron 9300 laptop.  However, it was for lab use only and not for a 



 xvi

shipboard environment.  The thesis proves that a smart shipboard sensor network is 

feasible and that it can be constructed using commercial-off-the-shelf (COTS) hardware 

along with developed software.  
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I. INTRODUCTION  

A. REASON FOR NEW TECHNOLOGY 
 

There are 3,742 hull, mechanical, and electrical (HM&E) sensors on DDG ships.  

Readings such as temperature, pressure, and flow rate are taken frequently and, with the 

United States Navy progressing towards lower manning levels, more sensors will be 

required to monitor shipboard equipment.  As the number of sensors increases (it is 

expected to be around 200,000 for the DDX) and the number of people available to 

maintain these sensors declines, new technology will be required to modernize the 

maintenance and repairs of these sensors.  Over seventy percent (2,669) require periodic 

calibration, forty-five percent (1,189) of those that require calibration have standard 

visual gauge type displays, and the other fifty-five percent (1,480) of those that require 

periodic calibration send data for display on the ship Machinery Control Systems (MCS) 

displays.  Calibration constants are used to accurately convert the output voltage or 

current to usable information.  Previous efforts have been made to make the calibration of 

these sensors easier and faster, however there is still a need to store the data from the 

sensors and their calibration constants as well as making the sensors themselves easier to 

install, use, and display their valuable information.  Accurate sensor data is crucial to the 

reliable operation and readiness of a ship.  In order to meet the future needs in increased 

sensors and a reduction of manpower shipboard, sensor equipment needs to be designed 

and integrated into a network capable of meeting these requirements.  [Ref. 1] 

 

B. CURRENT PROCESSES 
 

Even though work has been done to wirelessly calibrate HM&E sensors, the new 

processes have yet to take effect and the current system is still very slow and requires a 

large amount of labor from a ship�s work force when manual paper procedures are used 

on standard �dumb� sensors.  A team of at least two or more technicians from a shore 

command (SISCAL) must come aboard with heavy (around 100 pounds) portable 
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equipment and, after the ship�s force tags out the equipment from service, the SISCAL 

team isolates the sensor from the system.  At least two people are needed; one to read the 

calibration standards and instruments at the sensor and the other technician at the MCS 

console.  The calibration constants are changed by hand.  The biggest problem to 

automating this process is that there is no common interface between both hardware and 

software to the monitoring and/or control systems.  [Ref. 2] 

 

C. PROPOSED CONCEPT OF NEW TECHNOLOGY 
  

Conventional, �dumb� analog and digital sensors provide a simple measured 

voltage or current output proportional to what they are reading.  The calibration constants 

are stored somewhere away from the sensors themselves.  New, �smart� plug and play 

sensors will have the capability to store their own adjustable calibration constants as well 

as being network capable, and have retainable configurations in their RAM or EEPROM. 

With the introduction of the Wireless Enhancement of the Integrated Conditioning 

Assessment System (WEI), shipboard sensor monitoring may be done using PC access 

through the 802.11b wireless standard.  This open architecture system will allow a roam-

able notebook computer to capture sensor readings from the smart sensors and compare 

them to a calibration standard and then re-write the calibration constants.  This is possible 

because each sensor can be assigned its own static IP address. 

Already a feasibility demonstration of this concept and a proof of concept aboard 

the ex-USS FOSTER have been accomplished.  Smart plug and play Ethernet based 

sensors can also be configured to ICAS.  Ipsil chips are specifically designed to be used 

for networking without complicated programming.  This technology is also built to be 

reliable, long-term, and cost-effective.   
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D. BENEFIT OF CONCEPT TO THE NAVY 
 

The expected contribution from the research efforts would be a reduction in 

manpower, increased efficiency, and a greater awareness of plant and equipment 

operation among naval vessels, specifically the DDX.  Hardware is relatively 

inexpensive, reliable, and COTS (Commercial Off the Shelf) available.  The plausible 

benefits to the maintenance of U.S. Navy ships come from the modernization of 

calibrating, configuring, and networking of shipboard sensors.  All of which could be 

accomplished by trained shipboard personnel following Admiral Vern Clark�s Sea Basing 

portion of Sea Power 21 direction to transfer shore-based capabilities to sea-based 

systems [Ref. 3].  �As the Navy experiments with optimum manning initiatives to reduce 

crew size while increasing sustainability, this technology makes sense for the 

transformation of the Navy to a world of fewer operators, more condition based 

maintenance and a more precise automated environment� [Ref. 4]. 
 

E. DESCRIPTION OF CHAPTERS IN THESIS 
 

This first chapter is an introduction to the thesis.  The second chapter covers the 

problem statement and proposed approaches to the research.  The third chapter 

concentrates on the hardware components.  It discusses each component�s specifications, 

operating conditions, and use in the sensor/monitoring system.  The fourth chapter 

investigates the software designed.  Each code has its own section to discuss its role in 

the system, the inputs and outputs, and operating procedures.  The operating procedures 

section also explains each additional code that may be found within the main code being 

discussed.  The fifth chapter presents the results that were found and discusses what 

worked and what failed.  The sixth chapter has the conclusions from the thesis as well as 

the final analysis, recommendations, and proposed future work.  Finally, the appendices 

contain the HTML and JAVA code that was designed and used for this thesis. 
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II. PROBLEM STATEMENT AND PROPOSED APPROACHES 

A. PROBLEM STATEMENT 
 

Chapter I reveals that there is a need to have a reduced amount of labor and 

manning to maintain and calibrate shipboard sensors.  Smart sensors will satisfy this need 

by combining the capability to save and store their own adjustable calibration constants, 

being network capable, and having retainable configurations in their RAM or EEPROM. 

The goal of this thesis is to develop a working prototype smart sensor for a 

shipboard environment.  Limitations of the study will be based on equipment used, and 

access to a naval vessel for testing of a wireless network in the engineering spaces, and 

how to incorporate these smart sensors into current shipboard equipment. 

 

B. PROPOSED APPROACHES 
 

Currently the ex-USS FOSTER is being used as a test platform for wireless 

technology that is designated to be installed and used in future U.S Navy ships.  In 

addition, the USS HOWARD (DDG-83) had 40 wireless Network Capable Application 

Processors (NCAPs) installed for at-sea testing in January of 2002.  The USS MASON 

(DDG-87) is also slated to be built with wireless NCAPs and Gateways.  Figure 1 shows 

how a wireless environment can work on a ship.  [Ref 3. and Ref 5]. 
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Figure 1.   Diagram Showing Use of Wireless NCAP and Gateway in Shipboard 
Environment Such as DDG 83.  [From Ref. 6] 

 

Ipsil chips are specifically designed to be used for networking without 

complicated programming.  This technology is also built to be reliable and cost-effective.  

The advantage of having a smart sensor network would be to reduce manpower and 

increase the overall operational awareness of shipboard equipment. 

To accomplish the task of creating a smart sensor in the laboratory an Ipsil 

IPµ8930 with a Linksys LAN router was used.  The assembly was then connected to a 

network where the sensor information can be seen using a html based web page on a Dell 

Inspiron 9300 laptop.  The information to make the sensor �smart� was stored in a server 

computer where a web page located in the EEPROM of the Ipsil chip can access it by 

using a java applet program.  The Ipsil IPµ8930 has a small built-in webserver that can 

deliver web pages on request for reporting sensor readings, or making changes to the 

calibration constants and configuration.  In addition, this allows a sensor to be assigned a 

static IP address making it network capable.  [Ref. 7] 
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C. PREVIOUS WORK 
 

Previous work on creating a smart sensor was done by two previous students at 

NPS, Steven Joseph Perchalski and Eusébio Pedro da Silva, as well as by Mr. Randy 

Rupnow of NAVSEA Corona, and Professor Xiaoping Yun.  Their work consisted of 

developing a new calibration system for analog and digital �smart� sensors.  The work 

concentrated on calibrating a sensor using a wireless tablet PC and a NCAP with one or 

several LabVIEW programs running on both.  The LabVIEW program used a least 

squares fitting method for the calibration process and then wrote the new constants to the 

sensor�s RAM or EEPROM.  This was a closed-loop process that wirelessly calibrated 

shipboard sensors reduced the number of personnel and time required to complete the 

task. 

In a recent test on board the ex-USS FOSTER.  Professor Yun and Mr. Rupnow 

were able to join the previous work using a LabVIEW program with the installed ICAS 

system.  This was a very important step towards demonstrating the feasibility of using a 

smart shipboard sensor network on navy ships. 

 

 

Figure 2.   Previous Concept of Operation.  [From Ref. 4] 
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D. SUMMARY 
 

In review, the research problem was to create a smart sensor in the laboratory 

using an Ipsil IPµ8930 microcontroller, a Linksys LAN router, and a Dell Inspirion 9300 

laptop where the sensor information can be seen  and accessed using an html based web 

page and java applet program.  Having a wireless smart sensor that is network capable 

with calibration constants and configurations that are changeable over the network will 

reduce man-power and increase the overall operational awareness of shipboard 

equipment.  This work continues the process of creating a smart shipboard sensor 

network by developing a prototype smart sensor using COTS hardware that is relatively 

inexpensive and reliable.  The next chapter more closely looks at the hardware used to 

accomplish this task. 
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III. HARDWARE DESCRIPTION AND DISCUSSION 

A. INTRODUCTION TO HARDWARE 
 

By the year 2010, 95% of internet connected devices will not be computers.  They 

instead will be network enabled electronic devices.  This thesis is proving that with an 

Ipsil product, shipboard engineering sensors can be network enabled and made smart 

with the use of both html web pages and java programs.  This chapter discusses the 

different types of hardware used in this thesis.  The equipment used includes an Ipsil 

IPµ8930 microcontroller, a Linksys LAN router, and a Dell Inspirion 9300 laptop.  [Ref. 

8] 

 

B. IPSIL IPµ8930 CHIP 
 

The IPµ8930 is a compact TCP/IP network controller and web server module 

designed to rapidly enable and network electronic devices.  It combines a TCP/IP 

controller, HTTP-compliant webserver, MCU peripheral, Modbus TCP node, 10BaseT 

Ethernet controller, and an A/D converter into a single daughterboard.  [From Ref. 11] 

 

 
Figure 3.   IPµ8930. [From Ref. 8] 

 



10 

1.   Specifications 
 

The IPµ8930 can be used to monitor and control analog devices, such as sensors, 

using the eight general-purpose I/O pins.  Access to these channels can be done through 

user-defined web pages, such as the ones created for this thesis.  Over 408 kilobytes of 

space is available for web pages and java programs, or other programs such as a lab view 

program.  Features include: [From Ref. 9] 

 

•  TCP/IP and UDP read and write 

•  HTTP v1.0 compliant embedded webserver 

•  8 Analog (10-bit) or digital ports 

•  MCU serial interface�that provides read/write access to all RAM 
channels. 

•  Supports DHCP and ICMP (ping) 

•  Secure mode with password 

•  Built-in file system�any file accessible from a browser 

•  5.0 Volt operation 

•  Size: 33.2 mm x 34.5 mm 

 

2.   Operating Conditions 
 

The IPµ8930 is the main piece of equipment that is what makes a �smart� sensor 

smart in this thesis.  It is the �brains� behind the operation and is what controls the 

operation of collecting data from a shipboard engineering sensor, attaching an IP address, 

and holds the sensor calibration constants, as well as process the sensor data using those 

constants, and sending the information on to the ship�s LAN.  Once the information has 

been put on the ship�s LAN it can be accessed by either a web page with a java applet or 

ICAS (Integrated Conditioning Assessment System). 
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3.   Use in Thesis 
 

The IPµ8930 is the main piece of equipment used in this thesis.  All tests and 

experiments were done with this chip.  The first experiment was that when the web page 

link is clicked, the java program runs and a display of eight LEDs turn on.  A user is then 

able to input a desired number (calibration constant) into the java program on the PC and 

then the corresponding number in hex is displayed by the LEDs.  Hence, the number is 

now stored with the sensor and can be seen by any user on the network that knows the IP 

address.  Figure 6 shows the IPµ 8930 and LED display. 

 

 
Figure 4.   Ipsil IPµ 8930 and 8 LED Display. 

 

C. IPSIL IP / HTML CAPABLE SENSOR BLOCKS 
 

The SensorBlock Wifi has a small built in webserver which delivers web pages on 

request for reporting sensor readings.  It also supports Modbus TCP that allows interfaces 

to industrial software such as National Instruments LabViewTM or users can develop and 

download their own web pages as in this thesis.  [From Ref. 10] 
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Figure 5.   SensorBock WiFi.  [From Ref. 8] 

 

1.   Specifications of Ipsil SensorBlock WiFi 
 

The Ipsil SensorBlock can support either 4-20mA, 0-5V signal, or a dry contact 

input signal.  The Sensorblock reports the raw values which can then be converted.  

[From Ref. 10]  Some of the specifications are: 

•  10-bit resolution 

•  Sampling Rate: 200 Hz 

•  Uses dynamic (DHCP) or fixed (user-defined) IP address 

•  Secure mode requiring a password for all access 

•  512KB non-volatile memory available for web pages/web object storage 

•  Can operate across routers/bridges 

•  Collision, Transmit, Receive LEDs 

•  Wireless technology: 802.11b 

•  Frequency: 2.4 GHz 

•  Radio output: +18dBm (64 mW) 

•  Receive sensitivity: -84 dBm 

•  Typical Range: 300+ feet indoors 

•  Speed: up to 11 mb/s 

•  Security: WEP 128-bit Encryption, MAC filtering 
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2.   Operating Conditions 
 

The SensorBlock WiFi collects data from a shipboard engineering sensor attaches 

an IP address to that sensor and can hold the sensor calibration constants for that specific 

sensor, process the sensor data using those constants, and then send this information on to 

the ship�s wireless LAN.  In effect the Ipsil chip inside of the sensor block is what makes 

that engineering sensor become a �smart� sensor.  Once the information has been put on 

the ship�s LAN it can be accessed by either a National Instruments LabViewTM program 

or  ICAS. 

 

3.   Use in Thesis 
 

In this thesis, the SensorBlock WiFi was not used because it was not available for 

purchase in a timely fashion for the completion of this thesis.  However, if it had been 

available, a web page similar to the ones produced could be uploaded to the SensorBlock 

along with a java program that stores calibration constants and converts the raw data into 

useable data.  More information on the web page and java program will be discussed in 

chapters four and five.  A LINKSYS wireless LAN router would connect the 

SensorBlock WiFi to the network where a PC could then be used to view the web page. 

 

D.   SILICON ON SAPPHIRE PRESSURE TRANSMITTER 
 

This is the PX4200 Series that comes with a Loop Pressure Monitor, and is made 

by Omega.  The pressure monitor displays the pressure right above the connection of the 

sensor to the IPµ8930.  This provides a visual check to coordinate between the actual 

reading and the reading received by the IPµ8930. 
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Figure 6.   PX4200 Pressure Sensor with Loop Powered Pressure Monitor.  [From 

Ref. 11] 
 
 
1.   Specifications 
 

The Omega silicon on sapphaire pressure transmitter has the following 

specifications: [From Ref. 11] 

•  Excitation: 13 to 36 Vdc with PM1000 

•  18 to 36 Vdc reverse polarity protected 

•  Load Driving Capacity: 1150Ω@ 

•  36 Vdc, R max = (Vs-13)/20 with 

•  PM1000 Rmax = (Vs-18)/20 

•  Output: 4 to 20 mA (2-Wire) with zero 

•  and span adjustments 

•  Accuracy: ±0.25% FS includes 

•  linearity, and hysteresis 

•  Repeatability: ±0.1% FS 

•  Long Term Stability (1yr): ±0.2% FS 
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•  Media Temperature: 

•  -50 to 120°C (-58 to 248°F) 

•  Ambient Temperature: 

•  -40 to 80°C (-40 to 175°F) 

•  Thermal Zero Effect: <±0.016% FS/°F 

•  Thermal Span Effect: <±0.016% FS/°F 

•  Humidity: 95% RH non-condensing 

•  Maximum Overpressure: 200% FS 

•  Sensor: Silicon on Sapphire 

•  Wetted Parts: Titanium 

•  Case Material: Stainless Steel, IP65 

•  Pressure Port: 1Ú4" NPT male 

•  Electrical Connection: Din 43650 

•  plug mating connector supplied 

•  Response Time: 10 ms 

•  Weight: 90 g (3.2 oz) 

 

2.   Use in Thesis 
 

The PX4200 pressure transmitter could be used to model a typical shipboard 

pressure sensor.  However, due to time constraints the programming to incorporate data 

from the PX4200 was not completed.  If it had been, the sensor would send a 4 to 20 mA 

current to the IPµ8930.  The IPµ8930 then receives the signal as an input and reads it into 

memory where a PC could then access the sensor reading. 
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E.   LINKSYS LAN ROUTER 
 
The LINKSYS LAN router was used to connect IPµ8930 to a network capable 

computer. 

 

1.   Specifications 
[From Ref. 12] 

•  IEEE specification: 10/100 fast ethernet 

•  Supports Dynamic and Static IP Addresses 

•  Creates a Firewall to Protect Your PCs From Outside Intruders 
 

2.   Operating Conditions 
 
This is COTS available and has the ability to create a firewall for security 

purposes.  For ease of use in this thesis the firewall was not used.  However, the firewall 

and 802.11b standard provide for any security that might be required onboard a ship. 

 

3.   Use in Thesis 
 

On board a ship the LINKSYS LAN Router would be connected to the Ship�s 

LAN.  It acts as the connection between the sensor with its IP address and the network 

capable computer. 

 

 
F.   NETWORK CAPABLE COMPUTER 

 
In this thesis the Dell Inspiron 9300 laptop PC acts as the user interface to the 

system.  In previous projects, it contained the wireless calibration software enabling the 

operating to calibrate the sensor wirelessly.  Now that information is held on a server 

computer and accessed by the IPµ8930 with the sensor. 
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Figure 7.   Dell Inspiron 9300 [From Ref. 13] 

 
1.   Specifications 
[From Ref. 13] 

•  Processor:  1.73 GHz 

•  Operating system:  Windows XP Professional 

•  RAM:  1.00 GB  

•  Networking cards:  Internal wireless 802.11 a/b/g, 54Mbps  

 

2.   Use in Thesis 
 

The PC was also used to write, store, and upload the html and java programs used 

on the IPµ8930. 

 

G.   SUMMARY 
 

In this chapter, all the hardware that was used in this thesis has been described.  

The equipment included an Ipsil IPµ8930, a Linksys LAN router, and a Dell Inspirion 

9300 laptop.  The next chapter discusses and describes the software that these 

components use, as well as the designed html and java programs used to make a smart 

shipboard sensor network. 
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IV. SOFTWARE 

A.   INTRODUCTION TO SOFTWARE 
 
In this thesis, two sets of programs were developed.  The first set consisted of one 

java program and one web page where the output of the Ipsil IPµ8930 was controlled 

through an input to the java program running inside of the web page.  The second set of 

programs consisted of three java programs and three web pages.  One of the web pages 

held a java applet program inside of it and could update and retrieve calibration constants 

from a server computer to the internal EEPROM of the IPµ8930 as well as calculate the 

value of the sensor reading after using the calibration constants.  The programs are 

explained in detail later in the chapter, and are also shown in the Appendices. 

 

B. IPSIL CONFIGURATION UTILITY 
 

The Ipsil Configuration Utility or ICU is provided by the manufacture and is the 

primary interface between the network capable computer and the IPµ8930.  

 

1.   Role in Thesis 
 

The ICU is used to configure the IPµ8930.  Parameters such as IP Address, device 

password, and a DHCP (Dynamic Host Configuration Protocol) are able to be configured.  

For this thesis, the main purpose for the ICU was to upload the java programs, web 

pages, and any other associated files needed, such as pictures that the web pages use to 

the IPµ8930.  Once a file is uploaded to the device into a memory location, it can then be 

accessed through a web browser such as Internet Explorer to access that file and the ICU 

is no longer needed.  It is the ability of the IPµ8930 of allowing for the use of COTS 

software that is partly what makes using it so attractive in making a smart sensor.  

Another very important feature is the network connection; the IPµ8930 can be connected 

to a network of computers.  The ICU allows for the ability to assign or change the IP 
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address of the IPµ8930.  The IPµ8930 hardware along with the ICU software is what 

�net-enables� a sensor in this thesis. 

 

 
Figure 8.   Ipsil Configuration Utility � Uploading a File. 

 

2.   Inputs and Outputs 
 

The ICU can search for and connect to any Ipsil device that it finds on the 

network.  Alternatively, a specific IP address may be entered for a connection to be made.  

When searching however, only devices that are within the same subnet network as the 

computer will be found, but if the exact IP address is known, a connection may be made 

outside of the local subnet.  Once a connection has been established, configuration 

changes may be made.  The ICU also has the ability to upload files to a specific location 
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in memory and download files to a specified directory on a computer.  A java program 

will carry out all other inputs and outputs for this thesis.  [Ref. 14] 

 
3.   Operating Procedures 
 

When the ICU software is started the connection window automatically pops up.  

Here either a search for a device can be preformed or an IP address may be entered as 

well as a password for the device.  After clicking on the, �OK� button the ICU access the 

device and forms a connection. 

To upload a file, the command from the file menu is chosen and another dialog 

box appears on the screen as in Figure 8.  The file path may be entered or the file chosen 

after clicking on the browse button.  Files are stored on 512KB memory.  This fact is 

important and will be explained in further detail later on in this chapter on how it affects 

the uploading and usage of web pages with java programs.  A specific file location may 

be chosen (between 0 and 511 for a total of 512), however if a file name starts with the 

same number that its location will be, the Starting File Number input box will 

automatically be filled in.  This feature makes it easy to remember where files are located 

in memory without having to either download from a memory location or use a web 

browser to see what is there.  [Ref. 14] 

To access a file location using a web browser the IP address along with the file 

number must be entered into the address location of the web browser.  For example if a 

user wanted to see what the file in memory location 42 was, a user would enter 

http://192.168.0.51/042.  If memory location 42 held a web page, then the web page 

would show up in the browser. 
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Figure 9.   Web Page Showing Modified Version of setDigitalHi.java Applet. 

 

C. USE OF JAVA 
 

Java is an object-oriented programming language based on C and C++.  It is 

described as a �web programming language� because it can be used to write programs, 

called �applets,� that run within a web browser.  This means that a web browser is 

required to execute Java applets.  Applets permit more dynamic and flexible distribution 
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of information on a network.  The language has what programmers call a clean design 

because only features that were essential were included.  [Ref. 15] 

 
1.   Role in Thesis 
 

The use of a java program or applet in this thesis is the principal software method 

for making a smart sensor smart.  The applet takes input from a user and can either save 

this information to a memory location in the IPµ8930 or send it to the output/input pins 

as appropriate.  

The development of the java applet programs in this thesis used the incremental 

software development process.  In each cycle there was a design, code, and test step.  

Ipsil did the initial cycle and an example code provided from which this thesis used as a 

starting point and then further developed.  This thesis does not take any credit for the 

development of the initial code, only for the changes made therein.  

 

2.   Inputs and Outputs 
 

The command for creating an input for the first java applet was: sIn.read() and the 

command for and creating an output was: sOut.write().  The second java applet used a 

standard server-client relationship.  This was accomplished using two java programs 

discussed later in this chapter.  These two processes formed the basis for reading, writing, 

and storing data to and from the IPµ8930.   

 

3.   Java Codes 
 

a.   First Program 
 

The first java program written for this thesis was based on a program 

developed by Ipsil.  The java applet developed by Ipsil first set all the input/output pins,  
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shown on the bottom part of the IPµ8930 in Figure 3, as digital, then it made them all 

high.  This program, called SetDigitalHi.java, did not require any input from a user in the 

java applet.   

The first step taken in this thesis was to create a user input in the java 

applet so that the output could be changed to a number the user chose instead of making 

all the output pins high as in the example applet from Ipsil.  The code for the java applet 

was very similar but now there was a textbox in the applet that had a place for a number 

to be inserted.  The user could insert a number between 0 and 255 (for a total of 256) and 

the corresponding output display (seen in Figure 4) would show the hex value of the 

number the user entered.  This was done by adding an object called changeLights().  

Then the previously mentioned commands for sIn.read() and sOut.write() were called.  

Doing this allowed for the byte of input that the user entered to be sent to the output of 

the IPµ8930 and the user could see the result on the display board of LEDs built 

specifically for this thesis.   

The display board seen in Figure 4 consisted of a 16 pin connector that 

attached to the input/output pins of the IPµ8930.  The other end of the connector was split 

into 16 individual wires where there were eight pairs.  The 16 pins on the IPµ8930 were 

paired to form one input/output pin and one ground pin.  Each of these pairs was then 

connected to a small prototype board where each ground pin was connected to a ground 

line and each input/output wire connected to a LED.  Next the LED connected to a 

resistor (to keep the LED from burning out) and then back to ground.  In this way each 

LED would represent the on (high) or off (low) state of each input/output pin of the 

IPµ8930.  When a user entered a number the LEDs would turn on according the the HEX 

value of that number.  This java program is shown in Appendix A.  Figure 10 is a block 

Diagram of the LED set-up, and Figure 10 shows the java applet running in the 

associated web page. 
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Figure 10.   Block Diagram of LED Set-up.  [From Ref. 16] 

 

b.   Second Program 
 

The second java program developed for this thesis further modified the 

first java program but with a few key differences.  The program, called 

insertCalConstants.java, did not write to an output display as the modified setDigitalHi 

program did.  Instead, there were three places for inputs from a user.  These were the 

calibration constants previously determined for a sensor and the value of the sensor 

reading itself.  Once entered the values were stored in a text file located on a server and 

accessed by the applet.  The calibrated value is calculated and displayed using the 

equation: 

 *y m x b= +  

where the values of m and b were the calibration constants and x was the sensor reading 

value and y the calibrated sensor value.  The values for m and b are updated by the 

IPµ8930 and displayed each time the applet is run.  It is this key information being stored 

on the server and accessed by the client web page (discussed later in the chapter) in the 

EEPROM of the IPµ8930, combined with a sensor, which creates a smart sensor.  The 

sensor now has its own IP address and the calibration constants for that sensor may be 

seen and accessed through any computer on the network through a web page by anyone  
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who knows the IP address of the sensor/IPµ8930 combination.  This java program is 

shown in Appendix A and Figure 11 shows the java applet running in the associated web 

page. 

 
c. ServerExample.java and ClientExample.java 
 

These two programs, written by LT Carl Trask, set up a typical client-

server relationship.  When the SeverExample.java is running on the computer that is 

connected to the IPµ8930, it allows a connection to be made either by telnet or through 

the web page shown in Figure 11.  The ClientExample.java is the program that access the 

server and either uploads or downloads the calibration constants m and b to it.  The 

ClientExample.java is called by the insertCalConts.java and is part of the JAR archive 

package discussed later on in this chapter.  Both java programs are shown in Appendix A. 

 
Figure 11.   Web Page Showing insertCalConstants.java Applet. 
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D.   USE OF HTML CODE 
 

HTML or Hyper Text Mark-up Language was the programming code used to 

create the web pages for this thesis.  The web pages themselves play an essential role in 

accessing, gathering, and displaying information.  They are necessary for executing the 

java applets for without them the applets would not run, and provide a COTS 

programming and networking solution.    

 
1.   Role in Thesis 
 

In this thesis the HTML based web pages are used to run the java applets, display, 

and gather information about the IPµ8930 and associated sensor.  They also provide a 

means to access the IPµ8930�s EEPROM. 

 

2.   Inputs and Outputs 
 

Almost all of the inputs and outputs for this thesis are completed through java 

applets even though Ipsil has provided a way to use only html code and �web holes.�  

However, this process is complicated and time consuming to develop.  An example of 

using the html code with web holes is shown in Appendix B.  It is a web page that Ipsil 

created which reads from the IPµ8930 how long it has been turned on for. 

 
3. Web Pages 
 

a.   First Web Page 
 

The first web page used with the modified setDigitalHi.java was the same 

web page that Ipsil developed with minor modifications to the references it used.  The 

code is listed in Appendix B.  There is no special or extraordinary html code used.  It is 

simple and written for functionality.  This does not mean that the web pages cannot be 
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more complex; however, for demonstration purposes in the lab there was no reason to use 

more than a functional code.  The code calls for the use of javascript and gives the web 

page a name, �Control 8930.  Set Digital Outputs Hi.�  Also, the html code writes an 

applet code that called, �SetDigitalHi.class� and calls the archive, �207Classes.jar� as 

well as setting the size of the applet area.  More information on the *.jar archive will be 

presented in the next section of this chapter. 

 

b. Second Set of Web Pages 
 

1.   Web Page 208.  This web page is modeled after the one by 

Ipsil.  However, it has been changed to show a few of the simple capabilities that html 

can provide.  The first change was to incorporate a picture at the top of the web page.  

This picture is a jpeg file borrowed from the Naval Postgraduate School�s web page and 

can be seen in Figure 11.  It was uploaded into memory location 165 in the  IPµ8930�s 

EEPROM.  To make this easier it was named, �065nps.jpg� and this can be seen in the 

code shown in Appendix B.  The next major modification was to add two links under the 

picture.  The links were to the following two web pages and can also be seen in Figure 

11. 

 

2. Web Page 020.  This web page, shown in Figure 12, was 

developed by Ipsil and shows the status of the IPµ8930.  The most important feature 

however is that it can read from the IPµ8930 the current running time and display it 

straight to the web page without having to use a java applet.  This feature is called using 

�Web Holes� by Ipsil and was thoroughly investigated in the course of this thesis.  It was 

determined that for simple processes using Web Holes is easier than using a java applet.  

However, if more than one read or write needs to be completed using Web Holes can 

become very complex and time consuming for a programmer.  Using a java applet would 

then be recommended. 
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Figure 12.   Web Page 020. 

 

3.   Web Page 160.  The last web page, shown in Figure 13, 

created for this thesis was a modified version of Ipsil�s web page in file 020 of the 

IPµ8930�s EEPROM.  It is shows information on the sensor that is connected to the 

input/output pins of the IPµ8930.  This web page allows a user to not only read the 

current sensor reading but also shows other information that might be of importance to 

the user such as: sensor name, location, current IP address, default IP address, product 

type, secure mode, MAC address, and product/version.  Having a web page such as this 

plays a key role in the development of a shipboard sensor network because it allows for 

information access flow to anyone on the network that may require it. 
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Figure 13.   Web Page 160. 

 

E.  UPLOADING AND ARCHIVING: THE JAR COMMAND 
 

Unlike the process for uploading a web page the process for uploading a Java 

program is a little more complex.  The use of a java applet archive file (JAR) must be 

included and uploaded separately in order for the Java applet to work correctly with the 

input/output resources of the IPµ8930.  Java applets can only establish a TCP/UDP 

connection with the same device that the applet is being run on in order to access read 

and write commands.  For this thesis this process is done between the IPµ8930 and the 

computer running the server program. 
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A JAR file is a compressed archive of Java applets and other files.  It is used for 

two reasons.  The first is that it takes up less space in memory, and the second is that 

since class names cannot start with a number, the use of a JAR file allows the 

programmer to use an associated number in the file name to memory location as 

discussed in the operating procedures of the ICU. 

There were three steps taken in order to create the JAR files used for this thesis.  

The first step was to change the computer�s path environmental variable so a JAR 

command could be used in any directory while using a command prompt.  The second 

step was to use the command, �jar cfv 209Classes.jar *.java *.class *.htm save.txt.�  This 

command created a JAR file in the current directory that held all of the java programs, 

class files, web pages, and text files.  The actual files in 209Classes.jar were 

inseretCalConts.java, ClientExamle.java, insertCalConts.class, ClientExample.class, 

208_JavaDemo, and save.txt. 

The size of the newly created JAR file must be a multiple of 512 bytes in order 

for the file to store correctly in the IPµ8930.  This is because the file sytem clusters in the 

IPµ8930 are 512 byte blocks.  When a JAR file is served to a client web browser, a data 

stream that is a multiple of 512 bytes is returned.  If the JAR file is not exactly a multiple 

of 512 bytes there will be extraneous trailing bytes that will also be sent to the client web 

browser.  This may cause a problem in that the JAR file could be seen as a potential virus 

by the client web browsers.  The answer to this problem is to create a JAR files that is 

exactly a multiple of 512 bytes in size.  This is called adding padding to the JAR file and 

is done by adding an uncompressed text file that contains as many spaces as needed to 

make the JAR file to a 512 byte multiple.  [Ref. 16] 

Adding the padding to the JAR file is the third and final step taken to create the 

JAR files used for this thesis.  The command used was, �jar ufv0 209Classes.jar 

trailer.txt.�  This command attached the trailer text file that held a previously determined 

number of spaces in order to have the 209Classes.jar file be a multiple of 512 bytes.  

Figure 14 shows the relationship between the web pages, java code, and JAR file. 
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Figure 14.   Summary of Relationship Between Various Demo Files.  [From Ref. 16] 
 

 

F.   SUMMARY 
 

This chapter discussed in detail the different Java programs and web pages that 

were used or developed for this thesis.  The insertCalConts.java program is the applet 

located on the IPµ8930.  The ServerExample.java program is the primary data acquisition 

program located on the network computer and enables the operator to write or read the 

calibration constants from the web page with the java applet.  The JAR file is a special 

archive that allows the java programs to be run from the IPµ8930 web server.  All of 

these programs coordinate in order for a user to send and receive the calibration constants 

to and from the IPµ8930/sensor combination. 

The next chapter focuses on the results that were found in the development of the 

java programs and associated web pages.  The chapter discusses the lessons learned and 

talks about how suitable and capable the IPµ8930 is. 
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V. RESULTS AND LESSONS LEARNED  

A. INTRODUCTION 
 

Previous chapters have covered the theory, software, and hardware used to design 

and implement a smart sensor.  This chapter sequentially analyzes the final product and 

design process from start to finish. 

 

B. THE CONCEPT 
 

From the start of this thesis project, the center of attention was on how to build a 

�smart �sensor.  The idea of what a �smart� sensor was first needed to be defined.  After 

a few days of deliberation and research it was decided that a smart sensor should enable 

users and systems integrators to automatically configure their measurement automation 

and network systems.  More specifically for this thesis, it would be the ability for a sensor 

to store its own calibration constants as well as any applicable network information.  

Next was to choose the hardware that could accomplish this task.  The Ipsil IPµ8930 is a 

small TCP controller module that contains everything needed to add internet-based 

monitoring and control to an application.  Connecting an IPµ8930 to a sensor along with 

the appropriate software would create a �smart� sensor.  [Ref. 8 and 17] 

 

C. THE BEGINNING 
 

At first, it was thought possible to use an Ipsil IPµ8930 chip and a single web 

page that would hold both the network information and the sensor calibration constants.  

This process would use, �web holes� (discussed in the previous chapter).  The sensor 

calibration constants would reside in the EEPROM of the IPµ8930 and could be accessed 

by a user who knew the IP address of the IPµ8930/sensor combination thereby creating a  
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�smart� sensor.  However, it soon became apparent that the use of web holes was 

complicated and time consuming.  Another way needed to be found if the use of the 

IPµ8930 was to be continued. 

Fortunately, Ipsil had also provided an example of using Java with the IPµ8930.  

Their example was simple and showed how a Java applet could be written and uploaded 

in a JAR file to be used inside of another uploaded web page.  The Java applet could 

control the input/output pins of the IPµ8930 by either turning them all high (on) or low 

(off). 

The Java example provided by Ipsil was then taken one step further by having a 

user input a number into the java applet on the web page and then set the input/output 

pins to the HEX value of that number.  This required a modification to the java applet but 

not the web page it was being used on.  This program is listed in Appendix A as, 

setDigitalHi.java.  The process of developing and uploading the �First Java Program� 

had a high learning curve, however once the process was completed, repeating it became 

much easier. 

After understanding the process for creating a JAR file and the interaction 

between it and the IPµ8930, the next step was to develop the Java applet that could store 

sensor calibration constants, make calculations using them, and display the result.  It was 

thought at first that this could be done just using a text file that would be included in the 

JAR file that the Java applet could read/write from.  In this way the calibration constants 

would reside in the IPµ8930�s EEPROM.  Although this is possible, it will be shown in 

the next section why this was not done.  The insertCalConts.java is the final program 

designed in this thesis for making a �smart� sensor and is shown in Appendix A. 

 

D. THE ADJUSTMENT PHASE 
 

As mentioned in the previous section, using a JAR file with an included text file 

to store calibration constants by itself was not done.  The reason for this was because in 

taking another look at the objective of this thesis and its benefit to the Navy, it made 

more sense to have the calibration constants stored on a server computer as well the text 
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file.  This way if power is lost to the IPµ8930/sensor combination, the calibration 

constants are saved on the server computer and can be accessed by the IPµ8930/sensor 

when the java applet is run.  In addition, it is now possible to keep a record of what the 

sensor calibration constants are and send this information offboard the ship for 

evaluation. 

The method for implementing this was to create two new java programs.  With 

the invaluable help of LT Carl Trask, the ClientExample.java and ServerExample.java 

programs were written.  They are shown in Appendix A.  The combination of both of 

these programs allows for the java applet in insertCalConts.java to send the calibration 

constants to the computer running the server program.  Now, the calibration constants are 

held in both the text file in the JAR file that resides in the IPµ8930�s EEPROM and on a 

server computer.  Figure 15 is an information flow diagram showing how information 

from the java applet is sent to the IPµ8930/sensor combination and then on to the server 

computer. 

 

 
Figure 15.   Information Flow Diagram. 

 

Server Computer 

IPµ8930/sensor combination 

Computer running sensor web page 
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The server/client relationship intent is such that the java applet is the client, 

however it is also possible to telnet into the server computer if the IP address is known 

along with the correct port and sever ID.  Doing this allows a user to either retrieve the 

calibration constants or update them.  When the java applet is restarted by either 

refreshing the web page or switching from another web page and back, it automatically 

retrieves the current calibration constants from the server computer and displays them. 

 

E. THE FINISHING TOUCHES 
 

Most of the effort for this thesis went to making the Java programs and JAR 

archive files work correctly with the IPµ8930.  The web pages created were roughly 

designed and for demonstration purposes only.  Final finishing touches completed to the 

web pages included making them more user friendly and more professional in 

appearance.  Lastly, the text boxes inside the Java applet were adjusted so that they 

appeared in rows.  Figure 16 is a picture of the IPµ8930 microcontroller attached to the 

PX4200 pressure sensor. 

 
Figure 16.   IPµ8930 With Sensor and Network Connections. 
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F. LESSONS LEARNED 
 

There were five main lessons learned from this thesis project. 

 

•  Using Ipsil�s Web Holes is time consuming and tedious. 

•  Web pages are simple to write and can be made user friendly. 

•  Java is a very adaptable and useful programming language. 

•  Different Java versions would not work together. 

•  Newer versions of Java would not work with the IPµ8930 

 

1. Using Web Holes 
 

Ipsil has developed a method for integrating HTML straight into the IPµ8930�s 

EEPROM.  This method while at first seemed to be an easy and reliable way to 

incorporate information from a sensor was in fact complicated and time consuming to 

implement.  The reason for this is because the exact space number of the �hole� in the 

HTML code being used needs to be known in order to have the web hole work correctly.  

If the space number is even off by one not only will that hole not work, but any holes 

following it will not work as well.  Therefore it was found that the use of a Java applet 

was much easier to implement with the HTML code. 

 

2. Using HTML 
 

The internet has exploded over the past decade and along with it the programming 

language that made it happen.  HTML has become the primary means to writing web 

pages, is easy to learn, and has the ability to be very adaptable to many types of 

applications.  In the case of this thesis it is used as a shell to hold information and 

implement Java applets.  The focus on this thesis was the Java programming and not the 

HTML, however future work should focus more on the use of HTML as will be discussed 

in the next chapter. 
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3. Using JAVA 
 

Java is an extremely flexible programming language that can adapt to multiple 

hardware devices.  The fact that it is an object oriented programming language makes it 

very versatile and because it is a COTS available makes it perfect for developing a smart 

sensor without the use of proprietary software. 

 

4. Different Versions of JAVA 
 

Java, however, is not without its downsides as with all programs.  As great as it is 

as a programming language, it gets more complicated because a run time environment is 

required that is separate from the developer platform.  There were problems at first with  

 

using an older version of the developer platform with a newer addition of the runtime 

environment.  However, when both were switched to either new or old there were no 

more problems. 

 

5. IPµ8930 and JAVA  
 

As discussed above there were a few problems encountered with the different 

versions of Java.  Part of the reason those problems were encountered is because the 

IPµ9030 would only work with older versions of Java when compiling and creating JAR 

files.  Once uploaded a computer with a newer version of the runtime environment could 

access and use the Java applet stored on the IPµ8930, but the process of compiling the 

Java programs and JAR files required an older version.  However, the older versions were 

available from www.java.sun.com at no cost and it is believed that newer models of the 

IPµ8930 from Ipsil will be able to work with the never versions of Java. 
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G. SUMMARY 
 

The entire process from start to finish has been presented in this chapter.  The 

next chapter discusses the conclusions that were developed from the research and any 

suggested future work that for completion. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. INTRODUCTION 
 

So far this thesis has covered the theory, hardware, and software for a smart 

shipboard sensor network.  This chapter contains conclusions of the research and 

recommendations for future work. 

 

B. CONCLUSIONS 
 

As previously stated the goal of this thesis was to develop a working prototype 

smart sensor for a shipboard environment.  This goal was partially achieved in that a 

working prototype smart sensor was developed.  However, it was for lab use only and not 

for a shipboard environment.  That part of the goal was not accomplished because the 

equipment needed to achieve it was not available for purchase in a timely fashion for the 

completion of this thesis.   

 

C. RECOMMENDATIONS FOR FUTURE WORK 
 

The product of this research is a prototype only.  It is only intended to be used in a 

laboratory environment.  Future work should center on using Ipsil�s Wireless Sensor 

Block which hardens the IPµ8930 to be used in a shipboard environment and makes it 

wireless.  Also, the software should be improved so it is more user friendly and can 

integrate with the ICAS technology.  Lastly, a better method for storing the calibration 

constants on the server computer should be developed.  This will make the process of 

transferring the calibration information off-board ship easier and more organized so that 

examination of the data can provide useful results for improving the sensors accuracy and 

the associated equipment behavior. 
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1. Using Wireless SensorBlock 
 

The use of Ipsil�s Wireless SensorBlock will allow for the ability to not have 

extensive wiring in shipboard engineering spaces.  The SensorBlock uses the IEEE 

802.11b wireless standard and can be used in the same way that this thesis has developed 

for the IPµ8930.  They are low-cost and especially designed to monitor a wide range of 

sensors. 

 

2. Improving Software 
 

There are several improvements that should be implemented in reference to the 

developed software for this thesis.  The first improvement recommended is to make the 

web page more user friendly.  Java applets are very versatile and may be applied to a 

wide variety of applications.  Future versions of the software should include options that 

will make the software more user friendly.  An example would be a �submit� button that 

could be clicked after the calibration constants have been entered.  Also, it should be 

possible to incorporate the information provided by several sets of IPµ8930/sensor 

combinations into one central user friendly location.  This would also serve as a database 

showing where all the installed IPµ8930/sensor combinations are located and on which 

piece of equipment. 

 

3. Integrating With ICAS 
 

Future naval ships will include a single Integrated Conditioning Assessment 

System (ICAS) that will encompass their entire suite of engineering systems.  Integrating 

the technology derived from this thesis into ICAS will improve the overall efficiency of 

the engineering plant and awareness. 
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4. Improving Information Storage 
 

The ability to transmit sensor calibration data off the ship to a shore command 

such as SPAWAR or NAVSEA would be an important step towards the ability to make 

speedy improvements to the sensors and equipment that naval ships use.  Fleet 

maintenance is a very important process towards keeping ships ready to accomplish their 

missions.  In order to transmit sensor calibration data off the ship it needs to be stored in 

an organized fashion that is useful for analysis.  This analysis would help in making 

better decisions in the type of shipboard equipment used as well as sensor types. 
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APPENDIX A. JAVA CODES 

   A. FIRST JAVA PROGRAM: SETDIGITATHI.JAVA 
 
   import java.applet.Applet; 
   import java.io.*; 
   import java.net.*; 
   import java.util.*; 
   import java.awt.*; 
   import java.awt.event.*; 
 
    public class setDigitalHi extends Applet implements ActionListener 
   { 
   // Constants 
      private int IPSIL_PORT = 8930;  // Ipsil device port number 
      private String tfString = "NULL"; 
      private TextField tf; 
      private Label lb; 
      private byte by; 
    
   // Variables 
 
      InetAddress ia  = null; 
      Socket  sock = null;  // Socket  
      InputStream sIn = null;  // Input data stream  
      OutputStream sOut = null;  // Output data stream instance   
      
      StringBuffer buffer = new StringBuffer(); 
    
   // Arrays 
   // Write RAM variable ICP command 
   // Configures all channels as Digital Outputs 
   // Operation code = 0x06, address in RAM 0x113, bytes to write 2 
      byte [] setAllDigitalOutput = 
      { 0x00, 0x00, 0x00, 0x00, 0x00, // Password   (5 bytes len) 
         0x06,    // "Write EEPROM" cmd (1 byte len) 
         0x00, 0x00, 0x01, 0x13,  // Start location (4 bytes len) 
         (byte)0x86,   // All channels  Digital (1 byte len) 
         0x00,    // All channels as Outputs (1 byte len) 
         };    
    
   // Set all digital outputs to HI level 
   // Write RAM variable ICP command 
   // Operation code = 0x06, address in RAM 0x117, 1111 1111 - all channels "1" 
output 
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   // Each bit of the last byte represents each channel state accordinly 
      byte [] setAllDigitalHi = 
      { 0x00, 0x00, 0x00, 0x00, 0x00, // Password   (5 bytes len) 
         0x06,    // "Write EEPROM" cmd (1 byte len) 
         0x00, 0x00, 0x01, 0x17, // Start location  (4 bytes len) 
         (byte)0xff,   // All channels HI  (1 byte len)  
         };        
    
      byte [] resp = new byte[1024]; // Network response buffer 
    
       public void init() 
      { 
         try 
         { 
          
         //ia = InetAddress.getByName("192.168.1.101"); 
         //ia = InetAddress.getLocalHost(); 
         //addItem(ia.getHostAddress()); 
            ia = InetAddress.getByName( getCodeBase().getHost() ); 
          
         // Init TCP socket. Connect to the device itself on Ipsil port  
            sock = new Socket(ia, IPSIL_PORT); 
            addItem(ia.toString()); 
          
         // Create input data stream 
            sIn  = sock.getInputStream(); 
          
         // Create output data stream 
            sOut = sock.getOutputStream(); 
          
            tf = new TextField("Enter Number Here"); 
            lb = new Label (" The value of the TextField is " + tfString); 
            add(tf); 
            add(lb); 
            tf.addActionListener(this); 
            repaint(); 
            
         }  
          
             catch (Exception e) 
            {  
               e.printStackTrace(); 
               addItem(" Init " );  
            } 
       
      } 
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       private void addItem(String newWord)  
      { 
         System.out.println(newWord); 
         buffer.append(newWord); 
         repaint(); 
      } 
    
       public void paint(Graphics g)  
      { 
      //Draw a Rectangle around the applet's display area. 
         g.drawRect(0, 0, getSize().width - 1, getSize().height - 1); 
       
       //Draw the current string inside the rectangle. 
         g.drawString(buffer.toString(), 5, 15); 
      } 
    
       public void actionPerformed (ActionEvent e){ 
       
         try{ 
            by = (byte) Integer.parseInt(tf.getText()); 
            lb.setText(" The value of the TextField is " + by ); 
          setAllDigitalHi[10]=by; 
          changeLights(); 
         } 
             catch (NumberFormatException ne){ 
               lb.setText(" Please insert an Int "); 
            } 
          
         repaint(); 
      } 
    
    
       public void start() 
      { 
       changeLights(); 
      }  
    
       private void changeLights() { 
         try 
         { 
         // Send ICP command - Configure all channels as digital outputs 
            sOut.write(setAllDigitalOutput); 
          
         // Read and ignore replay byte from the Ipsil device 
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            sIn.read(resp); 
          
         // Send ICP command - Set HI all on all of the channels 
            sOut.write(setAllDigitalHi); 
          
         // Read and ignore replay byte from the Ipsil device 
            sIn.read (resp); 
         }     
          
             catch (Exception e)  
            { 
               e.printStackTrace(); 
               addItem(" Start "); 
            } 
      } 
   } //end of the applet 
 

B. SECOND JAVA PROGRAM: INSERTCALCONTS.JAVA 
 
   import java.applet.Applet; 
   import java.io.*; 
   import java.net.*; 
   import java.util.*; 
   import java.awt.*; 
   import java.awt.event.*; 
 
    public class insertCalConts extends Applet implements ActionListener 
   { 
   // Constants 
      private int IPSIL_PORT = 8930;  // Ipsil device port number 
       
  private String tfString = "NULL"; 
  private String tffString = "NULL"; 
  private String tfffString = "NULL"; 
       
  private TextField tf, tff, tfff, tf_y; 
     
  private Label comment_one, comment_two, lb, lbb, lbbb, lb_y; 
       
  private byte by, byy, byyy; 
   
  private int m,b,x,y;     
    
   // Variables 
      InetAddress    ia  = null; 
      Socket     sock = null;       // Socket  
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      InputStream   sIn = null;     // Input data stream  
      OutputStream sOut = null;  // Output data stream instance   
      
      StringBuffer buffer = new StringBuffer(); 
    
    
   // Arrays 
   // Write RAM variable ICP command 
   // Configures all channels as Digital Outputs 
   // Operation code = 0x06, address in RAM 0x113, bytes to write 2 
      byte [] setAllDigitalInput = 
      { 0x00, 0x00, 0x00, 0x00, 0x00, // Password    (5 bytes len) 
         0x06,                 // "Write EEPROM" cmd (1 byte len) 
         0x00, 0x00, 0x01, 0x13,     // Start location  (4 bytes len) 
         (byte)0x86,  // All channels Digital (1 byte len) 
         0x00,      // All channels as Outputs (1 byte len) 
         };    
    
   // Set all digital outputs to HI level 
   // Write RAM variable ICP command 
   // Operation code = 0x06, address in RAM 0x117, 1111 1111 - all channels "1" output 
   // Each bit of the last byte represents each channel state accordinly 
      byte [] setAllDigitalHi = 
     { 0x00, 0x00, 0x00, 0x00, 0x00,    // Password    (5 bytes len) 
         0x06,                   // "Write EEPROM" cmd (1 byte len) 
         0x00, 0x00, 0x01, 0x17,        // Start location  (4 bytes len) 
         (byte)0xff,       // All channels HI  (1 byte len)  
         };        
    
      byte [] resp = new byte[1024]; // Network response buffer 
    
       public void init() 
      { 
         try 
         { 
          
         //ia = InetAddress.getByName("192.168.1.101"); 
         //ia = InetAddress.getLocalHost(); 
         //addItem(ia.getHostAddress()); 
            
 ia = InetAddress.getByName( getCodeBase().getHost() ); 
          
         // Init TCP socket. Connect to the device itself on Ipsil port  
            sock = new Socket(ia, IPSIL_PORT); 
            addItem(ia.toString()); 
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         // Create input data stream 
            sIn  = sock.getInputStream(); 
          
         // Create output data stream 
            sOut = sock.getOutputStream(); 
           
 comment_one = new Label ("Enter the values for the calibration constants."); 
 comment_two = new Label ("The value of y is calculated using: y = m * x + b"); 
 add(comment_one); 
 add(comment_two); 
 repaint(); 
     
            tf = new TextField("Enter the slope value (m) here\n"); 
            lb = new Label (" The value of the slope (m) is " + tfString); 
            add(tf); 
            add(lb); 
            tf.addActionListener(this); 
            repaint(); 
            
 tff = new TextField("\nEnter the offset value (b) here\n"); 
 lbb = new Label (" The value of the offset (b) is " + tffString); 
 add(tff); 
 add(lbb); 
 tff.addActionListener(this); 
 repaint(); 
     
 tfff = new TextField("\nEnter the x value here\n"); 
 lbbb = new Label (" The value of x is \n" + tfffString); 
 add(tfff); 
 add(lbbb); 
 tfff.addActionListener(this); 
 repaint(); 
     
 lb_y = new Label ("\n The value of y is "); 
 tf_y = new TextField("\n"); 
 add(lb_y); 
 add(tf_y); 
 repaint(); 
         }  
          
             catch (Exception e) 
            {  
               e.printStackTrace(); 
               addItem(" Init " );  
            } 
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      } 
    
    
       private void addItem(String newWord)  
      { 
         System.out.println(newWord); 
         buffer.append(newWord); 
         repaint(); 
      } 
    
       public void paint(Graphics g)  
      { 
      //Draw a Rectangle around the applet's display area. 
         g.drawRect(0, 0, getSize().width - 1, getSize().height - 1); 
       
       //Draw the current string inside the rectangle. 
         g.drawString(buffer.toString(), 5, 15); 
      } 
    
       public void actionPerformed (ActionEvent e){ 
   
         try{ 
            by = (byte) Integer.parseInt(tf.getText()); 
 lb.setText(" The value of the slope (m) is " + by ); 
 setAllDigitalHi[10]=by; 
          changeLights();  
         } 
             catch (NumberFormatException ne){ 
               lb.setText(" Please insert an Int "); 
            } 
     
 try{ 
     
    byy = (byte) Integer.parseInt(tff.getText()); 
    bb.setText(" The value of the offset (b) is " + byy ); 
    setAllDigitalHi[10]=byy; 
               changeLights();  
         } 
             catch (NumberFormatException ne){ 
 lbb.setText(" Please insert an Int "); 
            } 
         try{ 
     
 byyy = (byte) Integer.parseInt(tfff.getText()); 
 lbbb.setText(" The value of x is " + byyy ); 
 setAllDigitalHi[10]=byyy; 
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          changeLights();  
         } 
             catch (NumberFormatException ne){ 
  lbbb.setText(" Please insert an Int "); 
            } 
          
         repaint(); 
    
 m = (int) Integer.parseInt(tf.getText()); 
 b = (int) Integer.parseInt(tff.getText()); 
 x = (int) Integer.parseInt(tfff.getText()); 
     
 y = m * x + b; 
   
 tf_y.setText("\n " + y); 
 tf_y.setEditable(false); 
    
      } 
    
    
       public void start() 
      { 
       changeLights(); 
      }  
    
       private void changeLights() { 
         try 
         { 
         // Send ICP command - Configure all channels as digital outputs 
          sOut.write(setAllDigitalInput); 
          
         // Read and ignore replay byte from the Ipsil device 
          sIn.read(resp); 
          
         // Send ICP command - Set HI all on all of the channels 
          sOut.write(setAllDigitalHi); 
          
         // Read and ignore replay byte from the Ipsil device 
          sIn.read (resp); 
         }     
          
             catch (Exception e)  
            { 
               e.printStackTrace(); 
               addItem(" Start "); 
            } 
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      } 
   } //end of the applet 

 

C. SERVEREXAMPLE.JAVA 
 

import java.net.*; 
import java.io.*; 
 
public class ServerExample { 
     
    private ServerSocket    serverSocket; 
    private Socket          clientSocket; 
    private PrintWriter     out; 
    private BufferedReader  in; 
     
    private String          inputLine; 
    private String          outputLine; 
     
    private double          m; 
    private double          b; 
     
    public static final int M = 1; 
    public static final int B = 2; 
    public static final int ERROR = 0; 
    public static final int RETRIEVE = 3; 
    public static final int UPDATE = 4; 
     
     
    public ServerExample(){ 
        try{ 
            init(); 
            doStartComms(); 
            getClientID(); 
             
            boolean flag = true; 
            double send = 0; 
             
            while(flag){ 
                int command = getCommand(); 
                switch(command){ 
                    case UPDATE: 
                        doGetVariableToUpdate(); 
                        flag = !doUpdate(); 
                        break; 
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                    case RETRIEVE: 
                        doRetrieve(); 
                        flag = false; 
                        break; 
                    case ERROR: 
                        flag = true; 
                        continue; 
                } 
            } 
            doSendDone(); 
            exit(); 
        }catch (IOException io){ 
            System.out.println(io); 
        } 
    } 
     
    public static void main(String[] args) throws IOException { 
         
        while (true){ 
            ServerExample se = new ServerExample(); 
        } 
    } 
     
    private void init() throws IOException{ 
         
        serverSocket = null; 
        try { 
            serverSocket = new ServerSocket(1234); 
        } catch (IOException e) { 
            System.err.println("<SERVER> Could not listen on port: 1234.\n"); 
            System.err.println(e); 
            System.exit(1); 
        } 
         
        clientSocket = null; 
         
        try { 
            clientSocket = serverSocket.accept(); 
        } catch (IOException e) { 
            System.err.println("Accept failed."); 
            System.exit(1); 
        } 
        out = new PrintWriter(clientSocket.getOutputStream(), true); 
        in  = new BufferedReader(new InputStreamReader(clientSocket.getInputStream())); 
         
    } 
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    private void exit() throws IOException{ 
        out.close(); 
        in.close(); 
        clientSocket.close(); 
        serverSocket.close(); 
         
    } 
     
    private String readData() throws IOException{ 
        inputLine = ""; 
        String tmp; 
        try{ 
            Thread.sleep(25); 
        }catch (Exception e){ 
             
        } 
         
        while (!in.ready()) { 
            try{ 
                Thread.sleep(25); 
            }catch (Exception e){ 
                 
            } 
        } 
         
        while (in.ready()) { 
            tmp = in.readLine(); 
            System.out.println("<SERVER Received> " + tmp); 
            inputLine += tmp; 
        } 
        return inputLine; 
    } 
     
    private void writeDataString(String outString){ 
        System.out.println("<SERVER Sent>" + outString); 
        out.println(outString); 
        out.flush(); 
    } 
     
    private void writeDataDouble(double outDouble){ 
        System.out.println("<SERVER Sent>" + outDouble); 
        out.print(outDouble); 
        out.flush(); 
    } 
    private void doStartComms(){ 
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        writeDataString("Welcome to the custom variable server"); 
    } 
     
    private int getClientID() throws IOException{ 
        writeDataString("Enter the server ID"); 
        String tmp = readData(); 
        return Integer.parseInt(tmp.trim()); 
    } 
     
    private int doGetVariableName() throws IOException{ 
        writeDataString("Enter the Variable."); 
        String tmp = readData(); 
        if (tmp.trim().equalsIgnoreCase("M")){ 
            return M; 
        }else if (tmp.trim().equalsIgnoreCase("B")){ 
            return B; 
        }else{ 
            return ERROR; 
        } 
    } 
     
    private void doSendVariable(double dataOut){ 
        writeDataDouble(dataOut); 
    } 
    private int getCommand()throws IOException{ 
        writeDataString("Press U for Update and R for Retrieve."); 
        String tmp = readData(); 
        if (tmp.equalsIgnoreCase("U")){ 
            return UPDATE; 
        }else if (tmp.equalsIgnoreCase("R")){ 
            return RETRIEVE; 
        }else 
            return ERROR; 
    } 
     
    private boolean doUpdate()throws IOException{ 
        try{ 
            writeDataString("Send the value for M"); 
            String mstr = readData(); 
            double m = Double.parseDouble(mstr); 
             
            writeDataString("Send the value for B"); 
            String bstr = readData(); 
            double b = Double.parseDouble(bstr); 
             
            writeFile(m,b); 



57 

            return true; 
        }catch (NumberFormatException e){ 
            System.out.println(e); 
            return false; 
        } 
    } 
     
    private void doRetrieve()throws IOException{ 
        readFile(); 
        writeDataString("Standby for values of M then B."); 
        doSendVariable(m); 
        writeDataString("\n"); 
        doSendVariable(b); 
        writeDataString("\n"); 
    } 
     
    private void readFile(){ 
        try{ 
            File infile = new File("c:/Documents and Settings/Andrew/My 
Documents/NPS/Thesis/Ipsil/Cal Constants/save.txt"); 
            FileReader fins = new FileReader(infile); 
            System.out.println("In file reader"); 
            BufferedReader bufRead = new BufferedReader(fins); 
            System.out.println("In buff reader"); 
             
            String tmp = bufRead.readLine(); 
            m = Double.parseDouble(tmp); 
            tmp= bufRead.readLine(); 
            b = Double.parseDouble(tmp); 
            bufRead.close(); 
            fins.close(); 
        }catch (Exception e){ 
            System.out.println(e); 
        } 
    } 
     
    private void writeFile(double m, double b){ 
        try{ 
            File outfile = new File("c:/Documents and Settings/Andrew/My 
Documents/NPS/Thesis/Ipsil/Cal Constants/save.txt"); 
            FileOutputStream fos = new FileOutputStream(outfile); 
            PrintWriter pw = new PrintWriter(fos); 
            pw.println(""+m); 
            pw.println(""+b); 
            pw.close(); 
            fos.close(); 



58 

        }catch (Exception e){ 
            System.out.println(e); 
        } 
    } 
  
    private void doGetVariableToUpdate(){  
    } 
     
    private void doSendDone(){ 
        writeDataString("Thanks Goodby!"); 
    } 
} 

 

D. CLIENTEXAMPLE.JAVA 
 

import java.io.*; 
import java.net.*; 
/* 
 * ClientExample.java 
 * 
 * Created on October 19, 2005, 1:00 AM 
 */ 
 
/** 
 * 
 * @author  carltrask 
 */ 
public class ClientExample { 
     
    Socket skt; 
    BufferedReader in; 
    PrintWriter out; 
    public double m; 
    public double b; 
    /** Creates a new instance of ClientExample */ 
    public ClientExample() { 
        init(); 
        getWelcomeMsg(); 
        getServerQuestion(); 
        sendServerID(1); 
        getServerQuestion(); 
    } 
    public void doUpdate(double m, double b){ 
            sendResponse("U"); 
            getServerQuestion(); 
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            sendResponse(Double.toString(m)); 
            getServerQuestion(); 
            sendResponse(Double.toString(b)); 
            getServerQuestion(); 
            close(); 
    } 
    public void doRetrieve(){ 
            sendResponse("R"); 
            getServerQuestion(); 
            m = Double.parseDouble(getData()); 
            getServerQuestion(); 
            b = Double.parseDouble(getData()); 
            getServerQuestion(); 
            getServerQuestion(); 
            close(); 
             
    } 
    private void getWelcomeMsg(){ 
        getData(); 
    } 
     
    private void getServerQuestion(){ 
        getData(); 
    } 
     
    private void sendServerID(int id){ 
        sendData(Integer.toString(id)); 
    } 
    private void sendVariableName(String name){ 
        sendData(name); 
    } 
    private void getVariableVal(){ 
        getData(); 
    } 
    /** 
     * @param args the command line arguments 
     */ 
    public static void main(String[] args) { 
        try { 
            ClientExample ce = new ClientExample(); 
            ce.doUpdate(12.89, .00023); 
            ce = new ClientExample(); 
            ce.doRetrieve(); 
            System.out.println("M is " + ce.m +"\n" ); 
            System.out.println("B is " + ce.b +"\n" ); 
            System.exit(0); 



60 

            
             
        } 
        catch(Exception e) { 
            System.out.print("<CLIENT> Whoops! It didn't work!\n"); 
            System.out.println(e); 
        } 
    } 
    private void init(){ 
        try { 
             
            skt = new Socket("localhost", 1234); 
            in = new BufferedReader(new InputStreamReader(skt.getInputStream())); 
            out = new PrintWriter(new OutputStreamWriter(skt.getOutputStream())); 
        }catch(Exception e) { 
            System.out.print("Whoops! It didn't work!\n"); 
            System.out.println(e); 
        } 
    } 
    private void close() { 
        try { 
            in.close(); 
            out.close(); 
            skt.close(); 
        } 
        catch(Exception e) { 
            System.out.print("Whoops! It didn't work!\n"); 
            System.out.println(e); 
        } 
    } 
     
    private String getData(){ 
        try{ 
            String tmp; 
            while (!in.ready()) { 
                Thread.sleep(25); 
            } 
             
            tmp = in.readLine(); 
            System.out.println("<CLIENT Received>" +  tmp); 
            Thread.sleep(50); 
            return tmp; 
        }catch (Exception e){ 
            System.out.println(e); 
            return "ERROR\n"; 
        } 
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    } 
     
    private void sendData(String output){ 
        try { 
            Thread.sleep(25); 
            System.out.println("<CLIENT Sent>" + output); 
            out.println(output); 
            out.flush(); 
            Thread.sleep(25); 
        }catch (Exception e){ 
            System.out.println(e); 
        } 
    } 
     
    private void sendResponse(String output){ 
        sendData(output); 
    } 
} 
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APPENDIX B. WEB PAGES 

A. FIRST WEB PAGE:  SETDIGITALHI.HTM 
 

<HTML> 
<SCRIPT LANGUAGE="Javascript"> 
<!-- 
function U() {return "http://"+location.hostname} 
// --> 
</SCRIPT> 
 
<HEAD> 
<META NAME="Control 8930. Set Digital Outputs HI." Content="Ipsil, Inc."> 
<TITLE> 
  Control Ipsil device. 
</TITLE> 
</HEAD> 
<BODY> 
 
<SCRIPT> 
document.write ("All Digital HI<br>") 
document.write("<APPLET CODE = setDigitalHi.class" + " "  
 +" CODEBASE = "+U( )+" "  
 +" NAME = setDigitalHi" + " "  
 +"ARCHIVE = 207Classes.jar" + " "  
 +"WIDTH = 500 HEIGHT =400" + " " 
 +"VIEWASTEXT >") 
</SCRIPT> 
 
</BODY> 
</HTML> 
 

B. SECOND WEB PAGE: 208 
 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> 
<HTML><HEAD><TITLE>Control Ipsil device.</TITLE> 
<META http-equiv=Content-Type content="text/html; charset=windows-1252"> 
<META content="MSHTML 6.00.2900.2668" name=GENERATOR></HEAD> 
<BODY><IMG src="165nps.jpg" border=0></IMG><BR> 
<SCRIPT language=Javascript> 
<!-- 
function U() {return "http://"+location.hostname} 
// --> 
</SCRIPT> 
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<META content="Ipsil, Inc." name="Insert Calibration Constants."><BR><BR> 
<LI><A 
href="020config.htm">View Ipsil Configuration</A> <BR><BR>  
<LI><A 
href="160_ipsil_nozik.htm">View Sensor Configuration</A> <BR><BR> 
<SCRIPT> 
document.write ("Java Constants Demo<br>") 
document.write("<APPLET CODE = insertCalConts.class" + " "  
 +" CODEBASE = "+U( )+" "  
 +" NAME = insertCalConts" + " "  
 +"ARCHIVE = 209Classes.jar" + " "  
 +"WIDTH = 500 HEIGHT =400" + " " 
 +"VIEWASTEXT >") 
</SCRIPT> 
</LI></BODY></HTML> 

 

C. THIRD WEB PAGE: 020 
 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> 
<!-- saved from url=(0029)http://192.168.0.51:01044/020 --> 
<HTML><HEAD><TITLE>IPµ8930 Config Info</TITLE> 
<META http-equiv=Content-Type content="text/html; charset=windows-1252"> 
<SCRIPT language=Javascript> 
<!-- 
function mod(divisee,base) { 
 return Math.round(divisee - (Math.floor(divisee/base)*base)); 
} 
function TimeOn(tmsw,tlsw){ 
t = tmsw*65536 + tlsw; 
t = t/125; 
hrs = Math.floor(t/3600); 
t = mod(t,3600); 
min = Math.floor(t/60); 
t = mod(t,60); 
sec = t; 
return hrs+" Hrs, "+min+" mins, "+sec+" secs"; 
} 
// --> 
</SCRIPT> 
 
<META content="MSHTML 6.00.2800.1523" name=GENERATOR></HEAD> 
<BODY><FONT face=Arial><IMG src="IPµ8930 Config 

Info_files/011_ipsillogo.gif"  
border=0></IMG><BR> 
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<TABLE width=707> 
  <TBODY> 
  <TR> 
    <TD> 
      <TABLE align=right> 
        <TBODY> 
        <TR align=right> 
          <TD width=60><A  
        

href="http://192.168.0.51:01044/">HOME</A></TD></TR></TBODY></TABLE></T
D></TR></TBODY></TABLE> 

<H1>IPµ8930 Configuration Information</H1> 
<H3>Factory Settings and Version Numbers</H3> 
<P>Note: Most of these parameters can be changed using the <A  
href="http://www.ipsil.com/products/icu.exe">Ipsil Configuration  
Utility.</A></P> 
<TABLE border=1> 
  <TBODY> 
  <TR> 
    <TD>IPu8930 Name</TD> 
    <TD>8930 S/N 11308 </TD> 
  <TR> 
    <TD>IPu8930 Location</TD> 
    <TD>My Location </TD> 
  <TR> 
    <TD>Current IP Address</TD> 
    <TD>192.168.0.51 </TD></TR> 
  <TR> 
    <TD>DHCP Enable </TD> 
    <TD>1</TD> 
  <TR> 
    <TD>Default IP Address</TD> 
    <TD>192.168. 0. 51</TD></TR> 
  <TR> 
    <TD>Product Type </TD> 
    <TD>1</TD> 
  <TR> 
    <TD>Secure Mode</TD> 
    <TD>0</TD> 
  <TR> 
    <TD>MAC address </TD> 
    <TD>00:08:1D:00:41:09</TD></TR> 
  <TR> 
    <TD>Product/Version </TD> 
    <TD>Ipsil IPu8930 v2.151 2003-05-27 

</TD></TR></TBODY></TABLE><BR>This IPµ8930  
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has been running continuously for 
<SCRIPT>document.write(TimeOn(   22,16894))</SCRIPT> 
 <BR><BR></FONT></BODY></HTML> 

 

D. FOURTH WEB PAGE: 160 
 
<HEAD><SCRIPT LANGUAGE="Javascript"> 
<!-- 
// --> 
</SCRIPT> 
<TITLE>Sensor Config Info</TITLE></HEAD> 
<BODY> 
<FONT FACE="Arial"> 
<TABLE WIDTH="707"><TR><TD> 
<TABLE ALIGN="right"><TR ALIGN="right"> 
<TD WIDTH="60"><A HREF="/">HOME</A></TD> 
<TD WIDTH="60"><A HREF="050help#2.htm">HELP</A></TD> 
</TR></TABLE> 
</TD></TR></TABLE> 
<LI><A 
href="020config.htm">View Ipsil Configuration</A> <BR><BR>  
<LI><A 
href="208_JavaDemo.htm">View Control Configuration</A> <BR><BR> 
<H1>Pressure Sensor Information</H1> 
<H3>This is an example of sensor information.</H3> 
                                          
<TABLE BORDER="1"> 
<TR><TD>Sensor Name</TD><TD>PX4200</TD> 
<TR><TD>Sensor Location</TD><TD>Bullard Hall RM-208</TD> 
<TR><TD>Equipment Part</TD><TD>test</TD> 
<TR><TD>Current IP Address</TD><TD>192.168.0.51</TD></TR> 
<TR><TD>Default IP Address</TD><TD>192.168.  0.254</TD></TR> 
<TR><TD>Product Type</TD><TD>Silicon on Saphire Pressure Sensor</TD> 
<TR><TD>Intall Date</TD><TD>05DEC05</TD> 
<TR><TD>Last Calabration Date</TD><TD>07DEC05</TD></TR>      
<TR><TD>Product/Version</TD><TD>N/A</TD> 
</TABLE> 
<BR> 
<BR> 
<BR> 
</FONT> 
</BODY> 
</HTML>  
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