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ABSTRACT 
 
 
Many military Intelligence Surveillance and Reconnaissance (ISR) 

operations would benefit greatly from a fleet of disparate sensor-bearing UAVs 

that are tightly integrated via a communications network, work cooperatively for a 

common operational objective, enhance situation awareness of the areas of 

operation, and increase persistence of sensor dwell time on strategic targets.  

This would enable continuity in the entire target acquisition cycle, from detection 

to classification to identification and finally localization of targets, in a diverse and 

dynamic environment. The integration of sensors and development of tactics in a 

cooperative sensing environment is one of the current focuses among the military 

intelligence community, and hence motivates this thesis effort. By building 

models with an existing agent-based simulation platform and using an extremely 

efficient experimental design methodology, numerous factors which could 

potentially affect the effectiveness of a cooperative sensing network against two 

arrays of targets are explored. The factors considered include UAV airspeed, 

reliability, detection/classification coverage and probability, network latency and 

degradation, UAV configurations and responsiveness, as well as air space 

separation. The two arrays of targets are mobile armor concentrations and time 

critical targets; these vary in their deployment profiles, vulnerability constraints 

and ease of detectability. Factors characterizing these targets, such as the shoot-

and-scoot behavior of time critical targets, are also investigated. The study 

provides operational insights pertaining to the design and effective use of 

cooperative sensing for ISR purposes.  These include the importance of having 

good UAV sensor capabilities, the need for a suite of sensors to aid in locating 

well-camouflaged time-critical targets, and the need for “intelligent” application of 

UAV cooperation tactics based on the characteristics of recently-classified 

targets. 
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THESIS DISCLAIMER 
 

 

 The reader is cautioned that computer programs developed in this 

research may not have been exercised for all cases of interest. While every effort 

has been made, within the time available, to ensure that the programs are free of 

computational and logic errors, they cannot be considered validated. Any 

application of these programs without additional verification is at the risk of the 

user. 
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EXECUTIVE SUMMARY 
 
 
As a result of combat operations during Operation Iraqi Freedom, a major 

lesson learned indicates that the success of a battle is increasingly reliant on 

more accurate and timely collection of the battle-space intelligence. Unmanned 

systems, and certainly Unmanned Aerial Vehicles (UAVs), are widely used in 

today’s military ISR operations, and will be even more prevalent in the next 

generation military as warfighting concepts such as Network Centric Warfare and 

Distributed Operation emerge. A number of significant military Intelligence 

Surveillance and Reconnaissance (ISR) operations would benefit greatly from a 

fleet of disparate sensor-bearing UAVs that are integrated via a communications 

network, work in a cooperative manner for a common operational objective, 

enhance situation awareness of the areas of operation, and increase persistence 

of sensor time on strategic targets. Furthermore, the cooperative sensing 

network enables continuity in the entire target acquisition cycle, from detection to 

classification to identification and finally localization of interested targets, in a 

diverse and dynamic environment. The integration and tactics development in a 

cooperative sensing environment are currently key focuses among the military 

intelligence community, and serve as the motivation for this thesis. 

The objective of the thesis is to explore the enhancement in detection and 

classification capabilities for mission critical and time critical targets, should the 

capability of a cooperative sensing network becomes available to the Marine 

Expeditionary Brigade commander. Two types of UAVs are considered: the Low 

Altitude and Endurance (LAE) and the Medium Altitude and Endurance (MAE). 

The two target types in the study include the time critical targets and the mobile 

armor concentrations; they represent the two main arrays of targets 

characterized by their deployment profiles, vulnerability constraints and ease of 

detectability. The study measures the proportion of the enemy’s mobile targets 

and Time Critical Targets (TCTs) classified over a four-hour period for 

Intelligence Preparation of the Battlefield prior to a Marine Expeditionary 



 xviii

amphibious assault. In doing so, the author applies suitable analytical 

methodologies to gain insights into questions as these: 

• What are good cooperative sensing network configurations? 

• Are there diminishing returns with increasing UAVs allocated? 

• What are good UAV responses in a cooperative sensing environment? 

• What are the effects of degraded communications and increasing 

latency? 

• What are the effects of UAV failure in the presence of cooperative 

sensing? 

A number of models are developed with reference to the Marine Corps 

Warfighting Laboratory’s Sea Viking 2004 scenario using the agent-based 

simulation platform Map Aware Non-uniform Automata (MANA). The computing 

resource requirements for these models are much lower than for most 

conventional simulation models, and can be executed over tens of thousands 

repetitions to explore many possible representations of real-life situations Time 

and cost considerations would preclude running even a fraction of these 

situations in a field experiment, so the simulation results provide useful insights 

regarding overall system effectiveness. A total of 20 factors varying over 1290 

design points are considered. Controllable factors pertaining to the number of 

LAEs, UAV characteristics such as airspeed, detection range, classification 

range and probability of classification, network parameters including link reliability 

and message latency, as well as air-space separation are explored. Factors 

uncontrollable in real-world settings, such as enemy concealment, counter 

detection sensor range and period of vulnerability, are also varied in the 

simulation runs. The 1290 excursions with 50 repetitions each, amounting to 

64,500 MANA runs, are submitted to the MAUI High Performance Computing 

Center for computation. Another set of models and excursions are also 

generated to study the effects of an LAE failure at specific time periods during 

the four-hour operation. 



 xix

The data collected from the simulations is analyzed using several 

graphical and statistical tools. Multiple Linear Regression and Data Partitioning 

are used in conjunction with the results from other statistical techniques to draw 

useful insights and operational guidance relevant to the employment of 

cooperative sensing for military ISR purposes.  

The results show approximately 9.8% of the TCTs and 27.2% of the armor 

targets are classified with the configuration of an MAE and four LAEs at the end 

of the four-hour operation. The relatively low classification measures are 

attributed to the relatively small coverage area extended throughout the entire 

duration of operation as compared to the considerably large area of interest. The 

analysis leads to the observation that the classification effectiveness depends on 

the UAV routings, and is an important consideration when preparing an 

intelligence collection plan. Prior knowledge of the enemy’s courses of action, 

target’s profiles and terrain information is beneficial. An LAE should be more 

responsive to the MAE cueing to achieve higher classification performance 

against TCTs and less responsive to the MAE cueing when acquiring armor 

targets. However, an LAE should tend to follow a new classified enemy contact 

when searching out armor targets as they are generally deployed in formations.  

While much is discussed about the behaviors of the UAVs in a cooperative 

sensing environment with shared situation awareness, many fundamental sensor 

characteristics like longer classification range and higher classification probability 

also have impacts on the overall classification effectiveness. However, an LAE 

classification range that is larger than 5 km easily distracts the LAE; more clutter 

appears in the sensor view and penalizes the overall classification performance. 

An increase in number of LAEs generally improves the target classification 

proportions, but the proportion of armor classification seems to taper off at four 

LAEs for this scenario.  

Link reliability and message latency are shown to have no significant 

effects on the classification outcome. Air-space separations also do not matter. 

High TCT concealment capabilities and counter-detection sensor ranges 



 xx

significantly hinder good classification performance of the sensing network. A 

UAV equipped solely with an electro-optics sensor may not be effective against 

the well-camouflage TCTs. Against such targets, other sensors or radars may be 

a more viable option. 

There is some indication showing that cooperative sensing does provide a 

more robust solution in some scenarios in terms of the classification performance 

should an LAE fail or be shot down during the four-hour operation. Following a 

fixed set of standard operating tactics regardless of the targets of interest and 

enemy’s courses of action is not the way forward in employing a cooperative 

sensing network. 
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I. INTRODUCTION 

A. OVERVIEW 

Unmanned Aerial Vehicles (UAVs) are remotely piloted or self-piloted 

aircraft that carry cameras, sensors, communication equipment or other 

payloads. They have been used primarily in Intelligence, Surveillance and 

Reconnaissance (ISR) roles since the 1950s. Since 1964 the Department of 

Defense (DoD), having realized the potential of UAVs as a key component in ISR 

missions, had 11 different types of UAV developed. However, due to acquisition 

and development problems, only three entered production. The U.S. Navy has 

also studied the feasibility of operating Vertical Takeoff and Landing (VTOL) 

UAVs since the early 1960s to overcome the limitation of short takeoff distance 

from surface vessels, the QH-50 Gyrodyne torpedo-delivery drone being an early 

example. Nonetheless, high cost and technological immaturity precluded 

acquiring and fielding operational VTOL UAV systems at that time. By the early 

1990s, DoD sought UAVs capable of satisfying surveillance requirements in 

Close Range, Short Range or Endurance categories, where persistence, 

dynamic re-tasking capability and real-time imagery are critical to the mission. By 

the late 1990s, the Close and Short Range categories were combined, and a 

separate Shipboard category emerged. The current classes of these vehicles are 

the Tactical UAV and the Long Endurance UAV, however, both classes are still 

predominately employed for ISR purposes (Federation of American Scientists 

Intelligence Resource Program website, 2005). 

The use of UAVs evolved rapidly over the last two decades to conduct air-

to-ground strike missions with the development of the Unmanned Combat Aerial 

Vehicles (UCAVs). The operational UCAV system is envisioned as a force 

enabler for the U.S. Air Force that will conduct Suppression of Enemy Air 

Defense (SEAD) and strike missions in support of post-2010 manned strike 

packages. This SEAD/Strike mission will be the first instantiation of an UCAV 

vision that will evolve into a broader range of combat missions as the concept 
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and technologies mature, and the UCAV affordability potential is realized. The 

DARPA/Air Force/Boeing X-45A technology demonstration aircraft completed its 

first flight on 22 May 2002. Multi-aircraft testing began in 2003 when a second X-

45A became operational, leading to joint UCAV and manned exercises in 2006 

(Federation of American Scientists Military Analysis Network website, 2005). As 

technology advances and the importance of unmanned vehicles as a force 

enabler is realized by the military, the Stealth UAV becomes the current class of 

UAV to be researched and developed. 

Being an unmanned platform and generally smaller in size, the UAV is 

preferred over manned aircraft for strategic deployment into the airspace deep 

behind the adversary line of operations which is often protected by heavy air 

defense elements. Today UAVs are widely deployed in Time Critical Targeting 

(TCT) operations, where long endurance and dynamic re-tasking capabilities are 

imperative to the success of acquiring of high value targets and eventually 

executing the kill chain in prosecuting these targets. The concept of cooperative 

sensing soon evolved to offer the ability to cue available and suitable joint 

sensors networked together in the theatre of war to extend the persistence of 

sensor time on target.  This is currently drawing great attention of military 

strategists and technologists. Medium Altitude Endurance (MAE) UAVs have the 

capability of extended flight duration, typically 6-12 hours or longer. These are 

supplemented with the tactical Low Altitude Endurance (LAE) UAVs which 

enable near-real-time imagery and local tracking of targets. While the MAE UAVs 

have long-range deployment and wide-area surveillance or long sensor dwell 

over the target area to provide initial detections, the close-in LAE UAVs allow the 

identification, localization and tracking of interested targets with high accuracy.  

Today there are some 50 U.S. companies, academic institutions, and 

government organizations developing over 150 UAV designs. Forty of these 

companies have some 115 of these designs flying, i.e., at least one working 

prototype built. Fifteen of these companies have 26 models of UAVs in, or ready 

for, production (UAV Forum website, 2005). With recent emphasis in Network 
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Centric Warfare (NCW) which extensively exploits UAVs as an indispensable 

part of the sensor grid, the development of UAVs will definitely be an important 

part of military development and a future force multiplier. 

 

B. MOTIVATION 

As a result of combat operations during Operation Iraqi Freedom, a major 

lesson learned indicates that a better asset to collect battle-space intelligence is 

crucial to the way forward (U.S. Joint Forces Command, 2004). A number of 

significant military operations would benefit greatly from a fleet of disparate 

sensor-bearing UAVs that are integrated via a communications network, work in 

a cooperative manner for a common operational objective, enhance situation 

awareness of the areas of operation, and increase persistence of sensor time on 

strategic targets. Figure 1 depicts a cooperative sensing network employed in a 

Time Critical Targeting operation. Multiple UAVs allow sensing to be performed 

in parallel, thereby reducing the amount of time required to gather data. If a 

vehicle becomes disabled, the remaining vehicles can continue sensing, 

although at a reduced collection rate. Most importantly, the cooperative sensing 

network enables continuity in the entire target acquisition cycle, from detection to 

classification to identification and finally localization of interested targets, in a 

diverse and dynamic environment. The success of cooperative sensing depends 

significantly on two key technological emphases: the development of state-of-art 

imaging sensors and the integration of sensor and ISR systems in a seamless 

and cooperative manner. The ensuing paragraphs provide further discussion on 

these technologies. 

Perhaps the need for a complementary suite of sensors is of greater 

importance for surveillance on land than for a maritime environment. The 

richness of terrain variation and coverage on the ground mean that targets 

moving across land surfaces could employ effective Concealment, Camouflage 

and Deception (CCD) tactics to prevent being detected by the adversary. The 

entire battle of ground search and detection revolves around the ability to employ 
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sensing equipments and technologies that are superior to the adversary’s CCD 

capability. Over the last two decades, the development of air-to-ground sensor 

technologies has improved by leaps and bounds. Conventional microwave radar 

is now able to detect longer and perform better in a wider range of operating 

environments. Many Electro-Optics (EO) and Infra-Red (IR) imaging sensors can 

achieve astonishing spatial resolutions of less than one meter, the Foliage 

Penetration (FOPEN) Radar and Synthetic Aperture Radar (SAR) allow detection 

of targets hidden under concealment and camouflage, Laser Radar (LADAR) 

imaging is achievable with higher spatial resolution and precision up a tenth of a 

meter, and the “through-the-wall” imaging radar is under research and 

development to provide the capability to look into buildings at standoff distances 

and build a picture of the tactical situation. The availability of a diverse range of 

air-to-ground radars and imaging sensors makes it possible for a fleet of UAVs, 

each mounted with disparate sensors, to be integrated to form a cooperative 

sensing network to collect data in a parallel, coordinated and optimal manner.  

 

Figure 1.   A Cooperative Sensing Network Deployed for Time Critical Targeting 
Operation [Best Viewed in Color] 
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The greater challenge of cooperative sensing, in the author’s opinion, 

does not lie on the employment of advanced sensors as one could expect these 

sensors to be widely available in the near future given the amazing rate at which 

technology advances. The greater challenge involves seamless integration of all 

the sensors in the theatre of operations and tactics development to provide high-

quality, uninterrupted information over the entire target life to the commander for 

making battle decisions effectively. This involves an intelligent sensing system 

that is able to efficiently task suitable and available sensors on-the-fly given 

various tactical situations. The sensing system should also be capable of 

prioritizing conflicting sensing requirements, if any should occur. The 

development of such a smart system is by no means trivial; it is not uncommon to 

have overwhelming ISR requests beyond the availability of the sensors. The tight 

integration amongst sensor systems has prompted the need for developing a 

high throughput and robust communications network. Obviously, the availability 

of such a sensing network would not be effective without restructuring the military 

ISR processes, just as adopting the Network Centric Warfare paradigm would not 

be effective without changing the traditional ways of fighting a war. 

 

C. BACKGROUND WORK 

There have been a number of preceding theses at the Naval Postgraduate 

School (NPS) that use an agent-based modeling approach to explore the use of 

UAVs for military intelligence gathering missions. Each thesis focuses on a 

different aspect of using UAVs on a targeted ISR operational scenario. Below are 

brief summaries of some of these works. 

Raffetto (2004) analyzes the impact various UAV capabilities have on 

intelligence gathering missions for a Marine Expeditionary Brigade (MEB) 

commander’s 2015 UAV to support rapid planning and decision making for 

multiple concurrent operations. This facilitates maneuver and precision 

engagement based on the UAV operations in the Sea Viking 2004 (SV04) 

scenario provided by Marine Corps Warfighting Lab (MCWL). He explores the 
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validity of current requirements and provides insights into the importance of 

various UAV characteristics, such as airspeed, endurance, sweep width, and 

sensor capability for a single UAV. The analysis seeks to measure the proportion 

of the enemy’s entities detected over time, hence the ability to gain superiority in 

situation awareness (Raffetto, 2004). 

Berner (2004) explores the effective use of multiple UAVs for the Navy’s 

Surface Search and Control mission based on a coastal environment scenario 

with dense shipping traffic and sparse enemy contacts. In addition to the impacts 

various UAV parameters have on the detection and classification effectiveness of 

the enemy contacts, he also shows the ISR effectiveness for different UAV 

tactics and combinations (Berner, 2004). However, although the contacts 

acquired by each UAV are routed to a central command, this has no influence on 

the collection plan of the other UAVs as would occur within a cooperative sensing 

network. 

McMindes (2005) looks at how UAV survivability is affected by UAV 

speed, stealth, altitude, and sensor range, as well as enemy force sensor ranges, 

probability of kill, array of forces, and numerical strength. The analysis, which is 

based upon the SV04 scenario of Raffetto (2004), concludes that a UAV is highly 

survivable with fast speed, with the exception that stealth becomes more 

important than speed alone when the enemy has extremely high-capability 

assets (McMindes, 2005). 

 

D. THE PROBLEM 

The Sea Viking Division of the MCWL is responsible for experiment 

planning and design of the ongoing Sea Viking live experimentation campaign. 

Sea Viking is planned and executed in two-year segments. The current focus for 

Sea Viking 2006 (SV06) is to conduct live experimentation that will assist in the 

development of operational maneuver from the sea/ship to objective maneuver 

tactics, techniques and procedures and to develop and assess experimental 
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capabilities that support these concepts. Additionally, SV06 will examine the 

emerging Distributed Operations (DO) concept which will deploy for operations in 

the Global War on Terror (Marine Corps Warfighting Laboratory Sea Viking 

website, 2005). General Hagee, Commandant of the Marine Corps, highlights the 

required capabilities for enhanced intelligence capabilities to collect, report, and 

exploit intelligence for small units employing DO. These include employment or 

direction of unmanned ground or air vehicles, or the ability to access command 

and control networks for the purpose of extracting specific intelligence pertinent 

to the unit’s local situation (Hagee, 2005). A cooperative sensing capability will 

indeed provide the required strategic and tactical ISR requirements for the 

emerging DO concept. 

The objective of this study is to explore the enhancement in the 

effectiveness on detection and classification capabilities of mission critical and 

time critical targets, should the capability of a cooperative sensing network 

become available to the MEB commander. These targets are deemed to have 

significant implications for subsequent battle developments, and hence warrant 

elaborate sensing requirements directed toward them. The study aims to 

measure the proportion of the enemy’s mobile and time critical targets classified 

over a four-hour period for Intelligence Preparation of the Battlefield (IPB) prior to 

an amphibious assault, thus offering insights about the effectiveness of the 

cooperative sensing network for ISR missions against these target types.  

 

E. SCOPE AND ASSUMPTIONS 

The research focuses primarily on formulating and building models to 

capture essential characteristics of UAVs in an IPB operation. These models are 

explored extensively to uncover how the effectiveness of cooperative sensing 

capability is affected by ISR processes and structures as well as UAV responses 

to shared Situation Awareness (SA). An existing agent-based distillation called 

Map Aware Non-uniform Automata (MANA) is used to construct the scenario. 

The scenario is modified from Raffetto’s SV04 base scenario to eliminate the red 



 8

infantry elements and include high value targets such as the Air Defense Artillery 

(ADA) elements, Surface-to-Air Missile (SAM) launchers, armor concentrations 

and Multiple Launched Rocket Systems (MLRS). To further evaluate the effects 

of cooperative sensing, communications models are incorporated into the 

network of UAVs, and various mixes of MAE and LAE UAVs are introduced. 

The model exploration uses a very efficient experimental design 

methodology to capture a large number of factors and their interactions which 

potentially affect the scenario outcomes. The controllable factors to be 

considered include UAV parameters (airspeed, reliability, detection/classification 

coverage and probability), network parameters (latency and degradation), ISR 

configurations (number of LAEs to one MAE), UAV behaviors (reactivity to other 

UAVs’ Situation Awareness, reactivity to spontaneous enemy contacts) and 

airspace deconfliction rules (minimum tactical separation in time and space). The 

uncontrollable factors to explore, which are often ignored in other studies, include 

the enemy Time Critical Target’s parameters (concealment, detection range and 

vulnerability duration) that characterize the shoot-and-scoot behaviors. 

The experiment consists of running the agent-based models over a large 

combination of design points (i.e., settings for the controllable and uncontrollable 

factors) and collecting the measures of effectiveness. Regression and other 

statistical analysis techniques are then used to analyze the data and to provide 

insights to the following questions: 

• What are good cooperative sensing network configurations? 

• Are there diminishing returns with increasing UAVs allocated? 

• What are good UAV responses in a cooperative sensing environment? 

• What are the effects of degraded communications and increasing 

latency? 

• What are the effects of UAV failure in the presence of cooperative 

sensing? 
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Furthermore, the analysis allows identification of main effects and 

interactions which may have significance impacts on ISR effectiveness for a 

cooperative sensing network, thus providing areas of focus for more detailed 

experiments and analysis. 

One should be aware that the employment of a disparate suite of sensors 

is an important consideration for cooperative sensing. However, it is not the focus 

of this thesis to model detailed sensor performances against a wide spectrum of 

terrains and targets. The sensors in the agent-based model, though they 

consider factors of detection degradation imposed by the different terrain 

features, are subjected to the same degradation on each terrain feature 

irrespective of the types of sensors and targets. The range of sensors explored is 

broadly classified into two main categories: the stand-off wide area sensors on 

board the MAE and the close-in small area sensors on board the LAE. 

 

F. AGENT-BASED SIMULATION 

Reductions in military operating budgets and improvements in computer 

technology have driven the increasing use of simulations throughout the military. 

Simulations are being employed in a wide variety of military applications 

including training, mission rehearsal, system analysis, system acquisition and 

tactical decision aiding. Furthermore, high complexity and nonlinearities in 

combat, where outcomes are highly correlated to battlefield conditions and 

events, make it too complicated and costly - if not impossible - to explore a full 

range of possibilities for any useful study in field experiments. In most of these 

cases, simulations are used for initial exploration to bound complex problems 

and tease out areas of emphasis relevant to the questions at hand that can then 

be expounded more meaningfully using methods such as field experiments and 

live tests and evaluations. The mission of the Defense Modeling and Simulation 

Office (DMSO) is to support the war-fighter by leading a defense-wide team in 

fostering interoperability, reuse, and affordability of Modeling and Simulation 

(M&S), as well as the responsive application of these tools to provide 
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revolutionary war-fighting capabilities and improve aspects of DoD operations. As 

a catalyst organization for the DoD, DMSO ensures that M&S technology 

development is consistent with other related initiatives by performing key 

corporate level functions necessary to encourage cooperation, synergism, and 

cost-effectiveness among the M&S activities of the DoD Components (Defense 

Modeling and Simulation Office website, 2005). 

The traditional (and widely used) modeling technique in the DoD uses 

differential equations to calculate casualties and changes in the frontlines. These 

equations are called Lanchester equations and were originally published in 1914. 

Many modern simulation models use variants of the Lanchester equations to 

predict the attrition rates of opposed forces massed in parallel strips across the 

battlefront. According to a RAND study, “these models were developed when 

computers had much more limited capabilities, making it necessary to reduce the 

number of simulation entities and to use aggregation techniques” (Gonzales, et 

al., 2001). The aggregated Lanchester equation-based models are beginning to 

fall out of favor in some DoD agencies for several reasons. Tighe cites a paper 

by Battilega and Grange that shows that the equations “do not accurately model 

many historical battles” (Tighe, 1999). This is surprising given that many of these 

battles follow the massive force-on-force attrition warfare formula for which the 

equations are designed. With modern warfare increasingly reliant on C4ISR 

systems, the old models break down even further. Gonzales points out that the 

legacy models cannot model individual C4ISR effects, and can only be 

represented by adjusting parameters. He continues by highlighting the fact that 

these models cannot take into account how information is used to support 

command decision-making processes. This severely limits their utility for 

assessing many Information Superiority concepts, such as force synchronization, 

that may be enhanced or enabled by advanced C4ISR systems (Gonzales, et al., 

2001). In other words, what good is C4ISR when your forces’ movements are 

scripted?  
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These problems have been addressed by a new generation of models that 

attempt to model complex adaptive systems. Forces are made up of individual 

“agents” that are programmed to follow a rough set of rules. “The individual 

agents are then responsible for making their own decisions as to how they 

should prosecute the battle” (Tighe, 1999). Hence they are adaptive. While the 

rules that govern an individual agent may be simple, a collection of agents 

interacting with one another (and the synthetic environment) will exhibit complex 

behaviors. These agent-based models, which are better suited for the analysis of 

modern concepts such as Network Enabled Warfare and Effects Based 

Operations, have begun to catch on in the DoD M&S community (Bjorkman and 

Sheldon, 2002; North, et al., 2003). 

 

G.  MAP AWARE NON-UNIFORM AUTOMATA (MANA) 

The benefits of agent-based simulation models are greatly harnessed by 

the combat researchers and analysts in the Marine Corps Warfighting Laboratory 

(MCWL). The MCWL’s Project Albert is the research and development effort 

whose goal is to develop the process and capabilities of Data Farming. Data 

Farming is a method to address decision-maker's questions by applying high-

performance computing to relatively simple models in order to examine and 

understand the landscape of potential simulated outcomes, enhance intuition, 

find surprises and outliers, and identify potential options. Data Farming is the 

method by which potentially millions of data points are explored and captured. 

This process is made possible, in part, by the exploitation of High Performance 

Computing assets and methods, and the project is fully supported by the Maui 

High Performance Computing Center (MHPCC). The Project Albert modeling 

approach is achieved through the development of a suite of models, sometimes 

called distillations, to drive home the point that these models are produced as an 

intentional complement to the very highly-detailed simulations being developed 

and used within the DoD, which by the very fact that they are so highly-detailed 

and encumbered, do not permit the examination of a very wide range of 
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possibilities and outcomes. By virtue of distillations being much easier to run and 

understand, they are proving to be effective tools that help capture and 

scientifically reproduce the ideas of subject matter experts, such as those 

thinking about tomorrow's concepts, doctrine, and requirements. This suite of 

entity-based models allow for rapid and highly tailorable changes in entity 

characteristics and behaviors, quite amenable to, and intentionally designed for 

rapid, repeatable concept exploration. Project Albert develops a suite of modeling 

platforms, rather than a single realization of a model. This has the added benefit 

of allowing the robustness of observations across modeling platforms to be 

examined. Also, each model has inherent strengths and unique capabilities with 

regard to each aspect of modeling how entities think, decide, shoot, move, and 

communicate (Marine Corps Warfighting Laboratory Project Albert website, 

2005). 

The MANA software, developed by the New Zealand Defense Technology 

Agency, is one of the distillation modeling platforms extensively used by the 

Project Albert Team to answer real world questions. The authors of the MANA 

User Manual (Galligan, et al., 2004) present a powerful illustration, “…the world 

is far more complicated than Newton’s equations (laws of motion)… Therefore, to 

rely on models built “on a bedrock of physics” is to deceive ourselves. It is a myth 

that a more detailed model is necessarily a better model, because it is impossible 

to capture accurately every aspect of nature”. They further their arguments by 

noting that the non-linear nature of equations describing many real world 

phenomena makes them extremely sensitive to initial conditions. This means that 

even infinitesimal errors in describing the real world initial conditions will cause 

the model to make predictions that are almost uncorrelated with actual events. 

The illustration provides a clear motivation for the design of MANA as what they 

refer as a scenario-exploring model. 

MANA is in a general class of models called agent-based models (ABMs), 

which have the characteristics of containing entities that are controlled by internal 

decision-making algorithms. Hence, an ABM combat model contains entities 
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representing military units that make their own decisions as they react to their 

surroundings, as opposed to the modeler explicitly determining their behaviors in 

advance. Models built in MANA, like those built using other Project Albert 

modeling platforms, are sometimes called agent-based distillations because their 

common intention is to model the essence of a problem rather than to describe 

every aspect of a military operation. MANA is designed to explore key concepts 

such as Situation Awareness, Communications, Terrain Features, Waypoints and 

Event-Driven Personality Changes. In MANA, agents can exhibit a surprisingly 

wide set of behaviors as long as careful configurations are given to sets of 

parameters that determine the agents’ propensities, move constraints, basic 

capabilities (such as sensors, weapons, interactions and movement speed) and 

movement characteristics (Galligan, et al., 2004). 

The model is designed to analyze the value of things such as situation 

awareness, command and control, and the informational edge that enhanced 

sensors provide. These features are limited in those models which purport to be 

detailed, highly physics based and rigorous where these aspects of combat can 

only be represented within the model in a completely arbitrary way by the 

modeler (Galligan, et al., 2004). These strengths of MANA as an agent-based 

model ties in closely to Gonzales’ (2001) presentation about the limitations of 

DoD legacy models as discussed in Section F. These are also the strengths that 

attracted the author to selecting MANA as a modeling tool for the analysis of 

cooperative sensing.  

 

H. THESIS ORGANIZATION 

Chapter II begins by painting the modified Sea Viking scenario which 

includes the area of operation and the two sided force deployments and 

objectives. The chapter also describes the model development and in particular 

the modeling parameters and techniques used to achieve the desired agent 

behaviors.   
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Chapter III covers a detailed discussion of the controllable and 

uncontrollable factors of interest in the analysis and their operational significance 

and tradeoffs. It also provides a brief contrast of various possible designs of 

experiments and concludes that a Nearly Orthogonal Latin Hypercube design is 

the most efficient choice for running the experiments.  

In Chapter IV, the data analysis process is presented and followed by a 

meticulous exploration of the simulation results using regression and statistical 

analysis techniques. 

Chapter V concludes the thesis with a presentation of operational insights 

and recommendations from the results of the analysis. It also presents 

suggestions for follow-on work that the author considers worthwhile exploring. 
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II. SCENARIO AND MODEL DEVELOPMENT 

A. THE SCENARIO 

The IPB scenario prior to the Marine’s amphibious assault depicted in 

Figure 2 provides the basis for the study of the effectiveness of a cooperative 

sensing network. The area of operation extends across the Los Angeles and San 

Diego city areas represented in the map as light orange regions. The Red target 

types included in this scenario represent two main arrays of targets characterized 

by their deployment profiles, vulnerability constraints and ease of detectability.  

 
Figure 2.   IPB Scenario for Marine Amphibious Assault [Best Viewed in Color] 

 

Area 5 at the upper right corner shows the Twenty-nine Palms 

encompassing the Red objective and their senior leadership, and is protected by 

an armored battalion. Area 4 in the central region defines the deployment ground 

of the multiple launched rocket systems and the anti-aircraft artillery elements for 

the defense of the Red objective. These targets are commonly deployed in 

isolation in a small fighting unit. They are usually well-concealed and have limited 
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windows of vulnerability, which makes detection and prosecution of these targets 

very challenging. The three armor battalions concentrated in Areas 1, 2 and 3 

move along the axis as shown in the map to stage a barrier patrol line against the 

coastal assault. The armor concentrations represent target arrays that are 

commonly deployed in formations and are “noisy” from the electronic and visual 

detection perspectives, hence making them easier targets for detection and 

prosecution. Area 6 represents the Blue MAE and LAEs supporting the IPB 

operation for the MEB. Each LAE has a pre-assigned area of responsibility to 

provide classification of enemy contacts, while the single MAE sweeps through 

the whole area of operation to provide wide area sensor coverage. 

 

B. MODEL DEVELOPMENT 

1. Environment  

The terrain shown in the Figure 3 is created by Raffetto (2004). The dark 

yellow in the terrain depiction represents city areas; the blue regions signify 

bodies of water; the brown, dark and light green regions identify the desert, 

dense and sparse forested areas respectively; the light yellow lines show the 

highways and major road networks in the cities. The terrain features are 

associated with parameters that affect the movement speed, engagement 

effectiveness, and concealment of the agents. These values provide multipliers 

to compute the overall effective speed, kill and detection outcomes of the agents 

at every time step. The blue aircraft icons depict the Blue MAE and LAEs; the red 

icons represent the Red armored vehicles and time critical targets; the pink icons 

identify the neutral elements.  
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Figure 3.   MANA Model for IPB Scenario [Best Viewed in Color] 
 
The battle-space extends across 32.6 to 35.1 degrees in latitude and -

118.8 to -115.6 degrees in longitude, which equates to 160 nm in width and 150 

nm in height. The maximum spatial resolution that can be represented in MANA 

is 1000 by 1000 cells, which computes to an average of approximately 287 by 

287 meters in both length and width per cell for this scenario. The model is set to 

elapse 10 real-time seconds for every time step taken for the simulation. Since 

the total amount of time for the IPB operations takes four hours, the simulation 

terminates after 1440 time steps have elapsed. The conversions between MANA 

units and real-world units are tabulated in a spreadsheet as illustrated in Figure 4 

to facilitate subsequent unit conversions in the development of the models. 
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R e a l W o rld
L a titu de L ong itu de

L ow er Le ft 32 .6 -118 .8 d eg ree 1  d eg ree  la titude  = 60 .0 0 n m
U ppe r R igh t 35 .1 -115 .6 d eg ree 1  d eg ree  lon g itude  = 49 .8 3 n m

W id th 1 59 .4 6 n m
H e igh t 1 50 .0 0 n m

M A N A  N u m b e r o f C e lls
X 100 0
Y 100 0

C o n vers io n  M a trix
each  ce ll is  ho w  m a ny u n its…

nm m ile s fe e t km m e te rs
1 1 .1 50 8 60 76 .1 155 1 .8 520 1 852

X 0 .1 6 0 .1 8 9 68 .87 0 .30 29 5 .31
Y 0 .1 5 0 .1 7 9 11 .42 0 .28 27 7 .80

X /Y 0 .1 5 0 .1 8 9 40 .15 0 .29 28 6 .56

each  un it is  h ow  m any  ce lls…
X 6 .271 3 5 .4 49 6 0 .0 010 3 .3 862 0 .0 034
Y 6 .666 7 5 .7 93 2 0 .0 011 3 .5 997 0 .0 036

X /Y 6 .469 0 5 .6 21 4 0 .0 011 3 .4 930 0 .0 035 < -- U sed  fo r conve rs ion  be tw ee n  ac tua l a nd  M A N A

each  tim e  s tep  is…
secs m ins ho u rs

1 0 0 .1 66 7 0 .0 028

each  tim e  un it is  ho w  m any  s teps…
secs m ins ho u rs

0 .1 6 360 < -- U sed  fo r con ve rs ion  be tw e en  ac tua l and  M A N A

#  tim e  s teps  in  rea l tim e…
h ours tim e  s teps

4 1 44 0

B A T T L E F IE L D  S E T T IN G S

 
Figure 4.   Unit Conversions Between MANA Model and Real-World Units 

  

2. Time Critical Target 

Time Critical Targets (TCTs) are targets requiring immediate response 

because they either pose (or will soon pose) a danger to friendly forces, or they 

are highly lucrative, fleeting targets of opportunity with an extremely limited time 

window of vulnerability, the attack of which is critical to ensure the successful 

execution of the subsequent battle operations. The Red MLRS and ADA 

elements in the model, totaled 30, are classified as time critical targets as they a 

limited windows of vulnerability characterized by their shoot-and-scoot tactics. 

These targets are generally deployed in terrains where concealment to escape 

enemy’s detection is almost perfect. The TCT comes out of its “hiding place” to a 

nearby operational spot only when it is ready to fire a salvo or there is a need to 

reload its ammunitions, and then goes right back into “hiding”. The TCT only 

subjects itself to detection and engagement vulnerabilities during this limited 

period of vulnerability which generally last no longer than 30 minutes, hence 

acquiring and prosecuting such targets is challenging.  
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The TCT in the model is developed by creating a cycle of waypoints and 

altering the behaviors of the agents in each state. The agent moves from the 

current waypoint to the next during the RunStart state and stays in this state for a 

defined vulnerable duration which will eventually be data farmed. Once it reaches 

the next waypoint and the vulnerability duration elapses, the agents change into 

the ReachFinalWaypoint state where the concealment rate (another parameter to 

be data farmed) is applied to these targets to emulate the “hide” behaviors. The 

TCT is assumed to have the capability to detect an approaching UAV with its 

counter-detection sensor and evade detection by the UAV by setting the 

concealment rate in the EnemyContact state. The TCT loops through the cycle 

until it is detected and classified by a Blue UAV as shown in the state transition 

diagram of Figure 5. 

  

Figure 5.   State Diagram of a Time Critical Target Agent 
 

3.  Armor Battalion 

The model consists of four armor battalions; each is implemented as a 

separate squad and comprises 40 medium tanks. The three coastal battalions 

are scripted to follow pre-defined routes along the road axes and the last 

battalion is setup to patrol around the parameter of Twenty-nine Palms. The 
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agents are set up with propensities (or weights, as commonly known in many 

agent-based models) to move towards the next waypoint and to move on terrains 

that are easy-going, in this case, to follow the road networks whenever possible. 

 

4.  MAE and LAE UAVs 

Due to the considerably limited area of operation, it is operationally 

infeasible to devote more than one MAE like the Predator to support the mission. 

However, an amphibious strike force commander may have up to five LAEs like 

the Pioneer at his disposal. While the MAE provides wide area surveillance and 

reconnaissance for the entire area of operation with poor classification capability, 

an LAE can provide effective close-in classification of the enemy contacts within 

its higher resolution sensor range. The models characterize these UAV 

parameters by varying the detection and classification ranges and the 

corresponding probabilities. 

The UAVs are given a “weapon” to shoot at the targets with range and 

probability equal to the range and probability for sensor classification, 

respectively. This means that a target is “killed” when being classified to prevent 

repeated classification of the same target. The “weapon” is loaded with a very 

large amount of “ammunition” to ensure the ammunition is not depleted. 

To support the analysis of the effects of LAE failure on ISR effectiveness 

of the cooperative sensing network, one UAV killer agent is created to “shoot” 

and disable a single LAE after a pre-determined time from the beginning of the 

scenario. The UAV killer is randomly positioned in the area of operation and 

remains inactive in the Default state until it is time for an LAE to fail. It then 

switches to another state where the “weapon” is enabled and “fires” a single shot 

with a probability of kill equal to 1.0 at the nearest LAE, hence disabling that LAE. 

The MAE in the model is assumed to be 100% reliable over the four-hour IPB 

operation, as MAEs are generally designed for longer endurance missions and 

with longer mean-time-to-failure parameters. 
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The movements and interactions of the UAV are characterized by a set of 

propensities in the model. Each UAV’s responsiveness to either an incoming 

contact from another UAV or a newly sighted enemy contact determines its 

tendency to be diverted from its original route. The propensity for each UAV to 

move towards the next waypoint is set to 50. By changing the propensities to 

move towards enemy in the Agent SA properties, and move towards unknown in 

the Inorganic SA, the reactivity of the UAV to such targeting information can be 

explored. Additionally, the airspace deconfliction parameter which determines the 

spatial separation of the UAVs in flight is varied by changing the propensities to 

move away from friends in the models. Further details on how these propensities 

are data farmed will be discussed in Chapter III. 

It should also be noted that the effectiveness of enemy contact detection 

and classification are very sensitive to the routes taken by the UAVs due to the 

relatively small UAV sensor coverage compared to the area of operation. If no 

UAV flies near a target, there will be neither a detection nor a classification. The 

routes for the LAEs are developed based on intuitive justifications after analyzing 

the terrain and target profiles. Refer to Appendix A for the design rationale and 

snapshots of the set of MAE and LAE routes. For the development of these 

routes, the author consulted with Captain Starr King, USN, NWDC-Sponsored 

Chair of Warfare Innovation and Chair of Applied Systems Analysis of the Naval 

Postgraduate School and Captain Kevin McMindes, a USMC pilot; both consider 

them reasonable and sufficiently detailed for the purpose of modeling and 

analysis to answer the questions of interest. However, one should not preclude 

other alternative routes based on various operational judgments and objectives. 

 

5.  UAV Communications Network 

A communications network is set up in MANA to facilitate the sharing of 

information between the MAE and the LAEs, as illustrated in Figure 6. Two types 

of situational awareness maps are provided in MANA: a squad map which holds 

direct squad contact memory, and an inorganic map which stores contact 
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memories provided by other squads through communications links (Galligan, et 

al., 2004). The contacts discovered by the MAE are sent through the 

communications links and updated on the inorganic map of the LAE agents, and 

vice versa. The data links for both MAE and LAE are C-Band/UHF and are 

assumed to have communications ranges sufficient for coverage throughout the 

entire area of operation as long as there is Line Of Sight (LOS) between the 

UAVs. Although modern communications technologies offer superb link quality 

and availability from a technical view, communications degradation is, none the 

less, an important consideration in most military networks in which the systems 

are deployed due to the adverse operating environments and weather conditions. 

Hence, factors related to communications degradation are considered in the 

models by changing the values corresponding to message delay and link 

reliability over each communications link.  

 
Figure 6.   Information Flow Between the MAE and the LAEs in the UAV Network for 

Shared Situation Awareness 
 

In actual operational environments, message latency represents the delay 

from the time a message is sent from the source UAV to the time it is received at 

the destination UAV, and varies depending on the distance between the two 

nodes and the current loading on the network. The link reliability in the model 

emulates the availability of the communications links for transmissions. There 

could be times where the LOS between two UAVs for transmission is not 

LAE1 LAE2 LAE3 

MAE 

UAV Network
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available, in particular, when they are flying at low altitudes across rough terrains. 

Another major threat to link reliability could be the enemy’s act of electronic 

attack, which is a prevalent form of interdiction in modern warfare.  

 

C. MEASURES OF EFFECTIVENESS 

The DMSO defines a Measure of Effectiveness (MOE) as “a qualitative or 

quantitative measure of the performance of a model or simulation or a 

characteristic that indicates the degree to which it performs the task or meets an 

operational objective or requirement under specified conditions” (Defense 

Modeling and Simulation Office Online M&S Glossary, 2005). This study 

measures the expected proportion of Red TCT and armor entities classified at 

the end of the four-hour IPB to assess the effectiveness of employing 

cooperative sensing to detect each type of targets. The MOEs distinguish 

between different target types; this could potentially provide insights to the 

decision makers about appropriate ways to apply different UAV tactics and 

behaviors depending on the target characteristics and their deployment profiles 

in the presence of a cooperative sensing environment. For instance, when an 

LAE establishes a new armor contact, it may be inclined to follow the contact 

knowing that armors tend to operate in formation. This could result in a higher 

classification rate. In contrast, following a TCT contact may not result in a higher 

classification rate since TCTs tend to deploy in isolation. 
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III.  DESIGN OF EXPERIMENT 

A.  EXPERIMENTAL FACTORS 

1.  Controllable Factors – Blue ISR Parameters 

The number of factors affecting a cooperative sensing network’s 

effectiveness is large, and each factor may have a wide variation of potential 

levels (i.e., settings). The factors are often confounded and some even exhibit 

conflicting interactions among them.  For instance, it may appear obvious that a 

faster UAV is desirable because it can cover a larger sweep area in a fixed 

duration of time. However, in most sensor systems involving human operators, a 

minimum integration time is needed for a target to “remain visible” within the 

sensor field of view to be considered a positive detection. As the UAV travels 

faster, the probability of detection and classification decreases since the time 

available for the sensor to look at the target reduces. From an endurance 

standpoint, a faster UAV is generally less fuel efficient, thus has less endurance 

than a slower UAV. Another case for conflicting interactions between factors 

includes the optimal use of MAE and LAE UAVs. The MAEs, in general, provide 

wider sensor coverage than the LAEs due to their higher operational altitudes. In 

reality, higher altitudes are associated with reduced signal strengths, reduced 

angular resolutions, and increased interferences; all of these are culprits for 

driving down the probabilities of detection and classification. Similarly, it may 

appear desirable to have a wider Field Of View (FOV) in compensation for lower 

altitude flights to have an equivalent sweep area. Again, one would quickly end 

up sliding on the tradeoff curve between a wide FOV with low resolution and 

narrow FOV with high resolution, and imagery resolutions have direct impact on 

the target classification abilities. These illustrations clearly present the case that 

many of these factors are closely interrelated; the analysis of their interactions is 

not trivial. 
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Factors are classified as controllable in the simulation experiments if they 

represent action options to decision makers for the real-world problems. For this 

reason, controllable factors are also commonly known as decision factors. In 

concert with cooperative sensing, the decision factors that potentially contribute 

to the effectiveness of the sensing network in performing ISR-related missions, 

thus having direct relevance to gaining insights in our analysis, include: 

Factors related to sensing network configurations 

• Number of LAEs to one MAE  

Factors related to UAV parameters 

• Airspeed 

• Detection range 

• Classification range 

• Classification probability 

Factors related to network parameters  

• Link reliability 

• Message latency 

Factors related to UAV routing behaviors 

• Reactivity to friendly UAV SA versus tendency to follow a planned 

route 

• Reactivity to a newly sighted enemy contact versus tendency to follow 

a planned route 

Factors related to airspace deconfliction 

• Minimum separation between UAVs 
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The UAVs selected for the study are not intended to be homogeneous but 

broadly classified into two categories, namely the MAE and LAE. The 

simultaneous investigation over the two categories of UAVs allows one to identify 

factors which are deemed important to the questions to be expounded, therefore 

provides further design considerations for architecting a cooperative sensing 

network for operational deployment. The factors include UAV airspeed, ranges 

for detection and classification, and detection and classification probabilities. To 

ensure the model is valid, the factors are varied with ballpark values based on 

current to near-future published technologies. These materials can be easily 

found from open-source literatures and databases such as The JANES Defense 

databases, The UAV Forum and Federation of American Scientist websites. The 

MAEs in the model have operational airspeed ranging from 60 to 100 knots and 

sensor detection range from 5,000 to 12,000 meters. The LAEs have operational 

airspeed ranging from 40 to 65 knots and sensor detection range from 2,000 to 

7,000 meters. In the model, the classification range is set no farther than the 

detection range by taking values from 0.6 to 1.0 of the detection range. 

It should be obvious that the ability of a UAV to detect and classify ground 

targets is dependent on its sensor coverage. The sensor coverage for a specified 

FOV increases with the UAV flight altitude as shown in Figure 7. The MAEs in 

the model have an operational altitudes ranging from 20,000 to 35,000 ft above 

ground level (AGL) while the LAEs from 5,000 to 20,000 ft AGL. The explored 

range of sensor FOV stretches from 300 to 600. Figure 7 displays the resulting 

range of possible sensor coverage considered in the study. As an illustration, a 

tactical LAE flying at 15,000 ft AGL carrying an EO payload with a 600 FOV has 

circular sensor coverage with radius 2,640 meters (i.e., 8,660 ft). If, on detecting 

an unknown target, the same sensor decides to close in and lower its altitude to 

10,000 ft AGL and switch the EO camera to a 300 FOV in order to classify the 

target, it then has a sensor coverage radius of 817 meters. 
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Figure 7.   Graph of UAV Detection Range As a Function of Altitude and Field of 

View [Best Viewed in Color] 
 

A complex and detailed representation that mimics a real world sensor in 

the model is viewed unnecessary, in the author’s opinion, for this analysis. It is 

not the intent of the study to focus on highly-detailed and cumbersome physical-

based modeling to give point estimate results. Instead, a simple model facilitates 

rapid execution to tap the power of agent-based distillations to provide insights 
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on the outcomes for varying model inputs. In this regard, cookie cutter models 

are assumed sufficient for detecting or classifying targets; targets falling within 

the sensor coverage have equal chance of being detected or classified. The LAE 

classification probability has values from 0.3 to 1.0. The MAE classification 

probability takes on values from 0.1 to 0.8 of the LAE classification probability to 

ensure that the latter is always lower than the former for every simulation run. 

One of the objectives as part of the study involves finding good sensing 

network configurations to support swift maneuver and precision engagement by 

the MEB. In the model, a single MAE having large sensor coverage for effective 

initial detection is supplemented by multiple LAEs to enable effective close-in 

target classification. The number of LAEs employed affects how much area can 

be covered and how long it takes to complete the search. An upper limit of five 

LAEs has been selected for the study. Although Raffetto suggests that it is 

unlikely that the Marine Corps will have the resources and personnel to employ 

more than three UAVs simultaneously as a current standard operating procedure 

for a MEB size area of operation (Raffetto, 2004), the addition of a fourth and fifth 

LAE is envisioned for future ISR capability extension due to constant reduction in 

the cost of acquiring and manning UAVs. The additional LAEs allow evaluation of 

overall ISR effectiveness as the number of LAEs increases in a cooperative 

sensing environment. 

The communications network forms the essential backbone for sharing 

detection information between the MAE and the LAEs. Degraded 

communications will inevitably shortchange the full potential one can harness 

from a cooperative sensing network to achieve high ISR capability. As discussed 

in the preceding chapter, electronic attack is becoming more prevalent in modern 

warfare. Coupled with the adverse weather and environmental conditions that 

these UAV networks are likely to operate in, the transmission reliability and 

accuracy of such information over the network must be considered. Link reliability 

and message delay are considered in the model to emulate such degradation in 

the communications network. While link reliability takes on values from 0% to 
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100%, the latency at which messages are transmitted from one UAV to another 

varies from 0 to 10 time steps in MANA, which corresponds to 0 to 100 seconds 

in real time. 

The interactions and behaviors amongst UAVs within the network are 

expected to have significant impacts on the effectiveness of a cooperative 

sensing network. The responsiveness of a UAV to other UAV SA determines how 

much the UAV’s next course of action is influenced by incoming targeting 

information from the network with respect to its original course of action. In 

MANA, this is achieved by changing the movement propensities of the UAV 

agents in response to an unknown contact in the inorganic SA. The ranges of 

weightings for these propensities vary from 0 to 100, and the responsiveness to 

the other UAV SA is computed as:  

(Move toward unknown – Follow waypoint) / (Follow waypoint) 

In the model, the follow waypoint weight is fixed at a value of 50; hence the 

responsiveness to other UAV SA ratio amounts to a range of -1.0 (completely 

unresponsive) to +1.0 (completely responsive).  

The other parameter that affects the behavior of a UAV is its reactivity to a 

newly sighted enemy contact. In reality, this defines the ISR tactics that permit 

dynamic redirection of UAVs from their intended routes toward newly detected 

hostile targets. In MANA, this is implemented by varying the movement 

propensity of the UAV agent towards unknown targets with respect to its 

propensity to follow waypoints. As in the previous metric, the response to a newly 

sighted target is computed as:  

(Move toward enemy – Follow waypoint) / (Follow waypoint) 

The weight for moving toward an enemy ranges from 0 to 100, giving the 

responsiveness to a newly sighted enemy contact ratio of -1.0 (completely 

unresponsive) to +1.0 (completely responsive). 



 31

The UAVs in the scenario are separated in time and space. This models 

the tactical airspace control rules that necessitate UAV controllers to plan for 

airspace deconfliction in any UAV operations. The analysis investigates the 

effects far and close airspace separations have on the effectiveness of 

cooperative sensing by modifying the UAV agent’s propensity to move toward or 

away from uninjured friends in MANA. A value of 0 corresponds to closer 

allowable airspace separation, while -100 leads to farther separation. These 

values represent the agents’ propensities to move toward or away from one 

another, and not the actual minimum separation distances between them. 

 

2. Uncontrollable Factors – Red Target Parameters 

Just as controllable factors are important in gaining insights about how 

they impact the ISR effectiveness of a cooperative sensing network, 

uncontrollable factors, which are often overlooked by operational analysts and 

decision makers, are of equal importance in this analysis, particularly since 

simulation is employed. In a mathematical modeling activity such as simulation 

one does, after all, get to control everything whether or not it is actually 

controllable in the real world. By exploring over ranges of settings for the 

uncontrollable factors, also known as noise factors, one could benefit by 

observing the influences these factors have on the system outcomes. These 

insights make the analyst more capable of deriving settings for the controllable 

factors that make the system more robust to a wider background variation, 

instead of one that optimizes decision factors after fixing each noise factor to a 

single value which is likely to deviate from reality. The robust design approach 

was first advocated by Taguchi for quality planning and engineering product 

design activities, and focuses on minimizing variation and sensitivity to noise 

(Taguchi and Wu, 1980). Sanchez (2000) suggests the following benefits of 

using a robust design approach for simulation: 

• Fewer surprises when decision is implemented 
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• Improved communication between analyst and “client” via expected 

loss 

• Ability to evaluate trade-offs between noise reduction costs and 

performance quality 

• Facilitates continuous improvement by seeking to reduce variability of 

response, not just achieving targeted value, and 

• Insights gained allow simultaneous improvement in performance and 

reduction in costs 

In the case of this analysis, valuable insights pertaining to the robustness 

of the cooperative sensing network can be achieved by varying those factors 

affecting the behaviors of the enemy’s forces. In particular, the TCT’s shoot-and-

scoot tactics are perceived to have significant impact on the UAVs’ detection and 

classification capability. The set of target parameters that contributes to its 

susceptibility to UAV detection include: 

• Concealment factor 

• Vulnerability time window 

• Sensor range for detecting nearby UAVs 

The target concealment factor has a range of 0% to 100%. The latter 

signifies that the target is completely invisible to passing UAVs; the former adds 

no additional reduction factor to the detection probability other than those already 

imposed by the terrain. The vulnerability time window describes the time duration 

for which a TCT exposes itself as it moves from its hiding position to its firing 

position or next deployment, thereby being vulnerable to UAV detections. The 

vulnerability duration varies from 10 to 30 real time minutes or 60 to 180 MANA 

time steps. The TCTs are assumed to have the capabilities to detect incoming 

UAVs and take positions for concealment thus reducing the signatures 

susceptible to detection. Whether the target can successfully take cover depends  
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largely on its sensor range for detecting nearby UAVs to provide sufficient 

response time for concealment. The TCT onboard sensor range varies from 0 to 

10 kilometers. 

One’s intuition suggests the reliability of UAVs may significantly impact the 

robustness of a cooperative sensing network. In addition to the base case, the 

overall classification effectiveness is explored for situations when a UAV fails or 

crashes, thus becoming unavailable in the IPB process. As the MAE in the 

sensing network is a critical node connecting and coordinating the ISR efforts 

amongst the LAEs, it is assumed in this study that the MAE has a long mean 

time to failure and the likelihood of its failure during the four hour IPB operation is 

negligible. Instead, the study expounds on the degree the ISR capability is 

degraded should a single LAE fail after some time into the operation, and 

evaluates how cooperative sensing could mitigate the “hole” in ISR plan. The 

model emulates a random failure to one of the LAEs at the zero, first, second, 

third and fourth hour. It should be noted that an LAE failure at the beginning of 

the IPB is nearly equivalent to the configuration of having one less LAE from the 

start, but will have a different and varied set of UAV routings since the failed LAE 

is chosen at random. Also, an LAE failing at the fourth hour has no effect on the 

classification outcome for the IPB since it fails right at the end of the scenario. 

This is a computationally efficient way to obtain some insights about the effects 

of LAE reliability without having to go into the details of modeling UAV 

breakdowns. 

The ranges of factors in both real world and MANA representations are 

depicted in Figure 8. 
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REAL WORLD & MANA METRICS

Low High Low High

# LAE # LAE - 1 5 1 5

MAE airspeed MAE Airspeed knot 60 100 108 180
LAE airspeed LAE Airspeed knot 40 65 72 117
MAE detection range MAE Detect Range km 5 12 17 42
LAE detection range LAE Detect Range km 2 7 7 24
MAE classification range MAE Class Range km 3 12 10 42
LAE classification range LAE Class Range km 1.8 7 6 24
MAE classification probability MAE Class Prob - 0.1 0.8 0.1 0.8
LAE classification probability LAE Class Prob - 0.3 1.0 0.3 1.0

Link reliability Comms Reliability percent 0 100 0 100
Message latency Comms Latency second 0 100 0 10

Reactivity to friendly UAV SA 
versus tendency to follow a 
planned route React Inorg SA - -1 +1 0 100
Reactivity to a newly sighted 
enemy contact versus 
tendency to follow a planned 
route React En Contact - -1 +1 0 100

UAV airspace separation Move Toward Friend - far near -100 0

Concealment factor TCT Conceal percent 0 100 0 100
Vulnerability time window TCT Vul Duration minute 10 30 60 180
Sensor range for detecting 
UAV TCT Detect Range km 0 10 0 35

UAV Parameters

Sensing Network Config

Network Parameters

ActualMANA NamesFactors Units MANA

UAV Routing Behaviors

Airspace Deconfliction

TCT Parameters

 

Figure 8.   Experimental Factors and Levels in Both Real World Metrics and MANA 
Representations 

 

B. ORTHOGONAL LATIN HYPERCUBE DESIGN 

In simulation, experimental design provides a way of deciding before the 

runs are made which particular configurations to simulate so that the desired 

information can be obtained with the least amount of simulating. Carefully 

designed experiments are much more efficient than a “hit-or-miss” sequence of 

runs in which one simply tries a number of alternative configurations 

unsystematically to see what happens. Factorial and fractional factorial 

experimental designs are particularly useful in the early stages of 

experimentation, when one is pretty much in the dark about which factors 
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(parameters under investigation which are deemed to contribute to the effects of 

an experimental outcome) are important and how they might affect the 

responses. As the model’s behavior is gradually understood and a set of more 

specific goals are determined, a whole variety of specific experimental 

techniques can then be used to seek optimal combinations of factor levels that 

maximize understanding toward these goals (Law and Kelton, 2000).  

The full factorial experimental design quickly becomes unmanageable 

because the number of simulation runs needed escalates exponentially with 

increasing number of factors and factor levels. In this exploration of the use of 

multiple cooperative UAVs for ISR missions, the total number of factors in 

consideration is 19 with some factors having as many as 10 levels. It works out 

that 1019 (10 quintillion) design points are needed to study all possible factor-level 

combinations. If it is desirable to make 10 replications per design point, certainly 

a modest sample size from a statistical viewpoint, the total number of simulation 

runs would sum up to 1020 (100 quintillion). If every replication takes a computing 

cluster one second to complete, the simulation would not finish even when the 

sun goes out and the earth dies; a problem one would not even think of solving. 

Fractional factorial designs provide a way to get good estimates of only 

the main effects and perhaps two-way interactions at a fraction of the 

computational effort required by a full factorial design. Basically, a 2k-p fractional 

factorial design is constructed by choosing 1/2p of all the possible design points 

and then running simulations for only these chosen points. Clearly, one would 

like p to be large from a computational efficiency viewpoint, but a larger p may 

also result in less information from the experiment, as one might suspect. 

Furthermore, the 2k-p fractional factorial experimental design does not allow the 

investigation of non-linearity effects. 

A smarter design of experiment is desired. The Orthogonal Latin 

Hypercube (OLH) design was pursued for its efficiency, excellent space filling 

properties and design flexibility. Excellent space filling results in low correlation 

between input factors; design flexibility imposes few restrictions on the number of 
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factors and levels, and thus provides the ability to identify nonlinear relationships. 

The Nearly Orthogonal Latin Hypercube (NOLH) has nearly the same properties 

but a small amount of orthogonality is allowed in order to get better space-filling. 

A good space-filling design is one in which the design points are scattered 

throughout the experimental region with minimal unsampled regions; that is, the 

voided regions are relatively small. This means that the design points are not 

concentrated in clusters or solely at corner points of the region, as can happen 

with two-level factorial designs (Cioppa, 2002; Cioppa and Lucas, 2006). For a 

general discussion of designing simulation experiments, see Kleijnen et al. 

(2005). 

To construct the NOLH for this analysis, we used a Microsoft Excel 

spreadsheet created by Professor Susan Sanchez (Sanchez, 2005). The NOLH 

design considers 18 factors with 129 levels for each factor. Figure 9 is an extract 

of the NOLH design that depicts the first 50 of the 129 design points. 
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low level 0 0 0 0 0 0 0 108 72 17 7 0.6 0.6 0.3
high level 10 100 100 100 100 100 100 180 117 42 24 1 1 1
decimals 0 0 0 0 0 0 0 0 0 0 0 1 1 1

factor name

[1]
Comms 
Latency

[2]
Comms 

Reliability

[3]
MAE 

Reactivity 
to Inorgan 

SA

[4]
LAE 

Reactivity 
to Inorgan 

SA

[5]
MAE Re-

directivity 
to New 

Sighting

[6]
LAE Re-

directivity 
to New 

Sighting

[7]
Air-space 

Separation

[8]
MAE 

Airspeed

[9]
LAE 

Airspeed

[10]
MAE Detect 

Range

[11]
LAE Detect 

Range

[12]
MAE Class  
to Detect 

Range 
Ratio

[13]
LAE Class  
to Detect 

Range 
Ratio

[14]
LAE Class 

Prob

2 45 45 34 69 56 76 148 114 36 20 0.8 1 1
9 30 46 9 45 42 20 142 89 40 17 0.8 1 0.8
4 76 27 41 16 75 65 152 98 29 10 0.8 0.9 1
7 89 37 44 76 7 41 127 93 27 13 0.7 1 0.8
0 39 23 10 53 36 93 180 100 20 24 0.9 0.7 0.6
7 43 1 40 33 59 4 126 77 21 24 0.9 0.8 0.5
4 100 29 16 23 24 94 177 105 35 9 0.6 0.6 0.6
6 70 6 34 92 87 2 130 81 29 8 0.7 0.7 0.5
0 5 20 20 98 73 43 160 110 36 12 0.8 0.7 1
10 8 27 12 10 20 55 122 78 29 9 0.9 0.6 0.9
0 98 28 31 7 77 22 152 109 21 16 0.7 0.7 0.8
9 98 38 14 100 51 91 128 86 23 18 0.7 0.8 0.9
5 26 18 41 72 5 36 155 112 17 11 1 0.9 0.5
8 22 35 9 23 91 54 123 90 17 12 0.9 1 0.6
3 52 23 47 21 3 14 179 108 38 20 0.7 0.8 0.5
8 75 3 17 52 98 73 125 91 41 17 0.7 0.8 0.5
2 18 74 4 70 69 49 123 99 33 17 0.7 1 0.3
10 35 78 42 20 15 48 161 74 32 19 0.8 0.8 0.4
2 77 52 21 3 68 53 125 113 25 15 0.9 1 0.3
6 97 75 13 80 34 16 147 83 18 15 0.9 0.8 0.3
3 20 95 49 66 30 100 115 101 21 24 0.6 0.8 0.9
6 27 92 38 13 86 27 178 97 18 17 0.6 0.7 0.7
2 72 98 33 34 5 95 111 111 37 8 1 0.8 0.9
7 62 98 19 63 81 28 179 90 33 9 1 0.7 0.8
3 23 61 32 99 47 26 140 109 31 14 0.7 0.6 0.3
9 1 57 15 29 38 81 153 85 33 13 0.6 0.7 0.6
2 71 100 5 12 60 30 129 110 29 19 0.8 0.7 0.6
10 94 70 16 75 28 59 178 74 24 21 0.8 0.6 0.7
3 45 55 36 54 0 38 131 93 18 8 0.6 0.9 0.8
6 46 70 48 42 74 91 149 88 25 10 0.7 0.9 1
5 73 76 7 39 4 1 117 111 40 21 0.8 0.9 0.7
5 63 89 13 73 66 77 164 73 35 19 0.9 0.9 0.8
1 36 34 55 49 91 56 173 95 39 20 0.8 0.9 0.8
9 48 9 54 40 38 3 132 96 40 23 0.8 0.9 0.9
4 93 41 73 15 94 82 146 91 23 13 0.7 0.9 0.7
5 87 44 63 95 11 13 137 108 24 9 0.7 0.8 0.8
1 32 10 77 84 48 66 150 72 22 20 0.9 0.7 0.6
8 15 40 99 30 59 61 114 107 21 19 1 0.7 0.6
3 95 16 71 5 22 85 157 76 32 14 0.8 0.8 0.4
9 84 34 94 86 99 37 119 107 34 16 0.7 0.7 0.4
3 49 20 80 68 55 10 169 83 39 8 1 0.7 0.9
8 38 12 73 52 2 71 121 104 39 10 0.9 0.6 0.7
5 67 31 72 27 90 11 168 87 26 20 0.7 0.8 1
6 81 14 62 74 23 92 129 102 19 21 0.7 0.8 0.7
2 4 41 82 56 29 55 174 87 22 8 1 0.9 0.4
9 42 9 65 2 52 67 138 110 26 10 0.8 1 0.5
0 79 47 77 13 17 16 168 73 32 15 0.6 1 0.4
6 88 17 97 78 70 98 141 105 32 18 0.8 0.9 0.4
5 41 96 74 96 88 95 137 83 41 14 0.7 0.9 0.4
8 9 58 78 41 16 40 176 109 31 17 0.6 0.9 0.5  

Figure 9.   Nearly Orthogonal Latin Hypercube of the Design of Experiment 
 

Figure 10 plots the design points derived from the 18 factor NOLH crossed 

with a single-factor, five-level design for the number of LAEs to each MAE to 

yield a total of 645 design points. An individual dot on each grid represents a 

design point with levels corresponding to the factors denoted on the row and the 

column. The pairwise scatter plot shows good space filling properties. The design 

points are highly orthogonal (all correlation values lower than 0.05), with the 

exception of the LAE classification and detection range pair, the MAE 

classification and detection range pair, as well as the LAE and MAE classification 

probability pair. These pairs of factors are deliberately constrained such that one 

factor is expressed as a random fraction of the other for every design point while 

creating the NOLH. For instance, the LAE classification range is restricted to a 
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varying fraction of the LAE detection range since it is illogical to have the former 

parameter larger than the latter for the same sensor system on an LAE. The 645 

design points are run for 50 replications each, which results in a total of 32,250 

MANA runs. 
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Figure 10.   Pairwise Scatter Plot of Design Points Using a Nearly Orthogonal Latin 
Hypercube Crossed With a Single-Factor 
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The Tiller is a software tool in the Project Albert’s toolkit that allows the 

setup of XML study files comprising a large number of design points based on 

the experimental design. The study files provide the sequence of changing 

values for the associated MANA parameters, thus enabling batch processing 

without the need to load each simulation run manually. The study files, together 

with the base case simulation model file, are then submitted to the computing 

clusters in the MAUI High Performance Computing Center (MHPCC) hosted by 

the Air Force Research Laboratory Center, and managed by the University of 

Hawaii (Maui High Performance Computing Center, 2005). 
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IV.  DATA ANALYSIS 

A. DATA PRE-PROCESSING 

The output data generated from the MHPCC is in either the Comma 

Separated Value (CSV) or the Microsoft Data Base (MCB) file format. The data 

file contains the excursion number for each design point and a random index 

representing the replication number in each design point, as well as the settings 

for factors that vary in the NOLH design. Each row in the data file includes the 

number of Blue and Red killed, the numbers of agents injured and killed per 

squad, the time steps for completing the simulation run, and a few other values. 

The only data of interest in the output files are the total number of Red killed and 

those relating to squads corresponding to the TCTs and armor battalions, and 

obviously, those parameter values that are varied in each simulation run. These 

data are then imported into the JMP IN Statistical Software (JMP Statistical 

Discovery Software website, 2005) on which data analysis is performed. The 

JMP Statistical Software provides many valuable analytical tools with a superior 

graphical user interface so there is a relatively short learning curve in using the 

basic features sufficient for most analytical use. The software is also selected for 

its powerful data pre-processing capability and its ability to handle extremely 

large data sets. 

The number of Red agents killed represents the number of Red targets 

that are classified by the Blue UAVs at the end of the simulation run. The 

expected proportion of targets classified for each target type is derived by 

summarizing the data over the replications for each design point and dividing the 

mean number of targets classified by their start-off total. These expected 

proportions of targets classified provide the MOEs for analyzing the effectiveness 

of the cooperative sensing network and the effects the factors in consideration  
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have on such sensing capability. The MANA parameters are also transformed 

back to their real-world representations before analyzing the data in order to 

ease interpretation of the results.   

 

B. ANALYSIS TOOLS AND METHODOLOGIES 

Several analytical tools and methodologies are applied to the model 

outputs. These sift out trends intrinsic within the data to help answer the 

questions of interest and provide useful insights and operational guidance 

relevant to the employment of cooperative sensing for military ISR purposes. The 

paragraphs below give brief descriptions of the main techniques used throughout 

the analysis. These techniques should by no means be used in exclusion of the 

others; using all in a complementary manner can provide better perspectives and 

operational insights. 

 

1. Data Partitioning 

Data partitioning is a form of exploratory modeling (sometimes known as 

data mining). It is a process of exploring a large amount of data, usually using an 

automated method, to find patterns and discoveries. Data partitioning is used to 

recursively partition a data set, automatically splitting the data at optimum points 

to maximize the difference in the values of the response variables between the 

branches of the split. The result is a decision tree that classifies each observation 

into a group (Sall et al., 2005). The technique is often used for exploring 

relationships without having a good prior model. It can handle large problems 

with relative ease and the results are very interpretable. 

 

2. Multiple Linear Regression 

Multiple Linear Regression is the technique of fitting or predicting a 

response variable from a linear combination of several other variables. The fitting 

principle is least squares, which finds a line through the data points that 
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minimizes the sum of squared distances to the line of fit (Sall et al., 2005). It is 

not the intend of this analysis to use the regression technique in the conventional 

way of deriving a mathematical model for predicting the proportion of Red targets 

classified given a set of cooperative sensing parameters; the agent-based 

distillation models are not set up for such details. However, the technique is used 

to provide valuable insights into the factors of significance, their interactions with 

one another, and the discovery of any non-linearities that might exist. Pareto 

plots are often used to visually plot bars emphasizing the order of importance of 

the factors from the most importance to the least. The prediction profiler in JMP 

IN presents a useful interface to show the predicted response for each 

combination of factor settings. It provides a handy way to look at the effect on the 

predicted response of changing one factor setting while holding the others 

constant, which can be useful for judging the contribution of each factor to the 

response.  

 

C. RESULTS OF ANALYSIS 

1. Sensing Network Configurations 

To investigate the impact the number of LAEs have on the proportion of 

targets classified, regression analysis is performed to obtain the best fit for the 

proportion of total Red targets, TCTs and armor targets classified against the 

number of LAEs respectively. Refer to the bivariate fits in Section 1 of Appendix 

B. The regression models show that the quadratic effects are significant for the 

proportions of total Red target and armor classifications (p-value < 0.001), but not 

for the proportion of TCT classification (p-value = 0.2870). 

For ease of illustration, the proportions of targets classified are grouped by 

the number of LAEs to obtain the average proportions of targets classified for 

each configuration with various numbers of LAEs. A quadratic curve is fitted for 

the proportion of total Red target classifications as shown in Figure 11; a line and 

a curve are fitted for the proportions of TCT and armor classifications 



 44

respectively, as depicted in Figure 12. An initial look at the results depicted by 

the curve in Figure 11 seems to suggest that one MAE and four LAEs is the most 

cost-effective cooperative sensing network configuration for the scenario in 

consideration. However, the detailed breakdown of the proportion of targets 

classified into the types of targets shown in Figure 12 reveals that while the 

classification rate for armor targets saturates when number of LAEs reaches four, 

the classification rate for TCT targets continues to increase with more than five 

LAEs. TCTs are less susceptible to UAV detections due to their higher 

concealment abilities. Armor battalions have strong detection signatures and are 

easily classified by relatively fewer LAEs, or even by the MAE itself which has a 

less superior classification capability. These imply that an investment of more 

sensing resources is required to detect TCTs. Another reason for the differences 

in the number of LAEs associated with diminishing returns could be due to the 

fleeing characteristics of TCTs and their ability to evade detections, thus a 

denser LAE concentration is required in the entire area of operation to defeat 

their counter-detection capability and limited windows of vulnerability. One would 

have completely missed these observations without looking at the detailed target 

classification proportions by types. This illustrates the importance of defining the 

correct set of MOEs. 
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Figure 11.   Quadratic Fit for the Average Proportion of Red Targets Classified Against 

the Number of LAEs 
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The sudden drop in the proportion of armor targets classified for five LAEs 

is found to be attributed to the distribution of routes. When the fifth LAE is 

introduced, it misses most of the armor elements in Area 1 as the convoy 

proceeds northward. This observation further demonstrates the sensitivity of the 

MOEs to variation in UAV routings, as anticipated during the model development 

phase and discussed in Chapter II. 
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Figure 12.   Linear and Quadratic Fits for the Average Proportion of TCT and Armor 

Targets Classified Against the Number of LAEs 
 

The histogram plots depicted in Figure 13 allow further exploration of the 

proportions of TCT and armor targets classified for each MAE-LAE configuration. 

These reveal high frequencies at low classification rate for both types of targets, 

even though the means and the modes generally increase with the number of 

LAEs. Two categorical response variables are defined for the proportions of TCT 

and armor classification lower than 0.05 and 0.1 respectively. A logistic 

regression model is fitted for each of these response variables to investigate the 

rationales for the low classification rates. The details of the logistic regression 

models are shown in Appendix B. The analysis identifies LAE classification range 

and LAE responsiveness to MAE cueing as common factors of significance that 

contribute both to the low TCT and armor classification rates amongst few other 

factors. In the case of classifying TCTs, the TCT ability to conceal and its sensor 

range to evade UAV detection are important factors explaining the low 

classification rates. The partitioning analysis (refer to the partitioning tree in 
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Appendix B, Section 1) also suggests that LAE classification ranges less than 

3,200 and 2,600 meters can only classify an average of only 4% and 6% of the 

total TCT and armor targets, respectively. 
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Figure 13.   Distributions of the Average Proportion of TCT (Top Row) and Armor 

(Bottom Row) Targets Classified for One LAE (Left) to Five LAEs (Right) 
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2. Factors of Significance 

The Multiple Linear Regression technique is used to determine factors that 

are significant to the proportion of targets classified during the four-hour IPB with 

the cooperative sensing network. Separate analysis are conducted for the TCT 

and armor targets, as distinctive differences exist between the two arrays of 

targets in terms of their target profiles and operational characteristics. 

Three stepwise linear regression models are fitted for the proportion of 

TCT classified with consideration of simply the main effects, the main and 

quadratic effects, and including the two-way interactions (Refer to Appendix B for 

the detailed models). The adjusted R-square values, instead of the standard R-

square values, are considered when comparing the models to take into account 

the number of terms used to achieve the explanatory power of the models. The 

quadratic and interaction terms in the full model account for approximately 20% 

of explanatory power and are therefore included in the model for subsequent 

analysis. There are seven main effects, two quadratics and five interaction terms 

in the selected model as depicted in Figure 14. These fourteen terms explain 

73% of the total variability, based on the adjusted R-square value. 
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Figure 14.   Multiple Linear Regression Model for the Proportion of TCT Classification 



 48

The Pareto plot in Figure 15 ranks the factors in the full model in 

descending order of importance. The number of LAEs is listed as having the 

greatest impact on TCT classification rate. The prediction profiler in Figure 16 

highlights a substantial increase in the proportion of TCTs classified – from 0.047 

to 0.126 (approximately 2.5 times) – as the number of LAEs in the sensing 

network increases from one to five with all the other factors held constant. 
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Figure 15.   Pareto Plot of Factors Significant to the Classification of TCTs 
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Figure 16.   Prediction Profiler Showing Approximately 2.5 Times Improvement in TCT 

Classification By Increasing the Number of LAEs From One to Five 
 

It is also apparent that improving the LAE sensor qualities (from the 

aspects of classification range and classification probability) contributes 

considerably to the increase in the overall effectiveness of classifying the TCTs. 



 49

The MAE is generally inferior in its ability to classify targets due to the high flight 

altitude and wide sensor FOV in order to satisfy the wide area coverage 

requirement. In contrast, the LAEs have lower flight altitudes and more focused 

sensors that enable them to see targets with better resolutions, so though LAEs 

are myopic in their coverage, they have much better chances of classifying 

targets. The overall classification effectiveness of the cooperative sensing 

network increases when the LAEs are more responsive to the MAE cueing 

instead of following their pre-assigned routes. The interaction plot in Figure 17, 

however, shows an adverse effect when the LAEs have short classification 

ranges while being responsive to the MAE cueing. An LAE with small 

classification coverage, on being cued by the MAE, might take so long to fly 

close towards the TCT that it will miss its limited vulnerability window and lose 

the target completely. Even if the LAE arrives before the TCT again takes cover, 

a short classification range means the LAE has a limited number of classification 

opportunities, hence a low chance of successfully classifying the contact during 

its time on target. This wasteful trip can cost the LAE classification opportunities 

which would have arisen if it kept following its pre-assigned route. The results 

also show that extending the MAE classification range has a small but positive 

impact in the performance. This increases the number of classification 

opportunities during the MAE’s time on target and helps compensate for the poor 

classification probability per attempt. Note that the benefits of having higher 

classification probabilities for LAEs are greater when there are more LAEs than 

when there are fewer.  

The negative coefficients associated with the TCT concealment and TCT 

detection range factors present the obvious case that TCTs which are well 

concealed with longer counter-detection sensor ranges are better able to evade 

incoming UAVs and avoid detection and classification. However, the interaction 

profiler (Figure 16) points out that the drop in the proportion of classification with 

increasing TCT concealment ability is more substantial for larger number of 

LAEs. On top of that, it is also observed that enhancing the two TCT’s 
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parameters simultaneously has a synergistic effect in reducing their susceptibility 

to UAV classification. This makes perfect sense, as it is not helpful for a TCT to 

be forewarned by its counter-detection sensor of an approaching UAV if it does 

not have an effective concealment capability. 
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Figure 17.   Interaction Plot of Factors Significant to the Classification of TCTs 

  

Figure 18 shows the partitioning tree for the proportion of TCTs classified. 

The number of LAEs is the first break point for this model, which indicates the 

number of LAEs has a substantial impact on effectiveness; this is consistent with 

the results presented from the regression analysis. The tree displays a mean 

proportion of TCT classification of only 4.5% with fewer than four LAEs and 

10.2% with four or more LAEs (refer to Appendix B for the full partitioning tree). 

Moving down the right branch (i.e., using four or more LAEs), only 3.8% of the 

TCTs are classified if the LAE classification range is less than 2,866 meters. So it 

is futile to invest in more LAEs alone but it is important to invest in more LAEs 

that have sensors with longer classification ranges. Note, however, that despite 
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the investment one might devote into the cooperative sensing network, the 

increment in classification effectiveness against very well-concealed TCTs is 

negligible.   
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Figure 18.   Right Branch of the Partitioning Tree for Proportion of TCT Classification 

With Four or More LAEs 
 

While partitioning trees are useful for exploring relationships without 

having a good prior model and inherently a powerful tool for capturing 

interactions, McMindes (2005) highlights a few drawbacks associated to such 

form of exploratory modeling. There is no sense of relative importance between 

the factors other than the hierarchical representation of the tree structure. For 

instance, Figure 18 shows the number of LAEs is more important than LAE 

classification range, but how much more important? There is also no sense of 

indication of the sensitivity of a split. The LAE classification range is best split at 

2,866 meters, which is something absolutely not controllable in practice. So how 

much is lost if the splitting is shifted to the left or right by 50 meters? The break 

points also tend to be somewhat unstable, especially as the groups become  
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small. For these reasons, partitioning trees are used in conjunction with results 

from other techniques, such as Multiple Linear Regression, and to provide 

qualitative insights. 

A similar stepwise linear regression approach is again conducted for the 

proportion of armor targets classification. Three models were constructed using 

three sets of potential terms: the first model involved only the main effects, the 

second model involved both main and quadratic effects, and the third (full) model 

also included the two-way interactions. Here, the full model explains 80% of the 

total variability while the quadratic model already explains a notable 77%. The 

interaction terms account for less than 4% of the explanatory power in the full 

model, so the simpler model is chosen for subsequent analyses (refer to 

Appendix B for the detailed models). The seven main effects and two quadratic 

terms in the selected model are highlighted in Figure 19. These nine terms 

explain 77% of the total data variability. 
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Figure 19.   Multiple Linear Regression Model for the Proportion of Armor 

Classification 
 

The LAE classification range and the number of LAEs are ranked as the 

two most important factors that affect the proportion of armor classification, as 
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the Pareto plot in Figure 20 illustrates. The quadratics of the two main effects are 

next on the list, and indicate strong non-linear effects; the negative regression 

coefficients for the quadratic terms with positive corresponding main effect 

coefficients indicate that increasing either the LAE classification range or the 

number of LAEs will eventually lead to diminishing returns. This is illustrated 

clearly in the prediction profiler graphs in Figure 21. In fact, the proportion of 

armor classification shoots up from 0.053 to 0.311 (almost a fivefold 

improvement) as the LAE classification range extends from 1,433 to 4,900 

meters, and enlarging the LAE classification footprint beyond this upper limit 

reduces the overall classification effectiveness of the sensing network. Visually 

watching a few simulation runs suggests why this occurs. An LAE with long 

classification range is easily distracted by the surrounding neutral vehicles within 

the sensor footprint, and this renders the LAE ineffective in its mission to search 

out the Red targets. As discussed in the earlier section, the drop in the proportion 

of armor classification for five LAEs is attributed to the distribution of routes when 

the fifth LAE is introduced, since these routes miss most of the armor elements in 

Area 1. 
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Figure 20.   Pareto Plot of Factors Significant to the Classification of Armor Targets 
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Figure 21.   Prediction Profiler Showing Almost 5 Times Improvement in Armor 

Classification By Increasing LAEs Classification Range Less Than 3.5 Times 
 

As in the case of TCT classification, better quality LAE sensors (in terms 

of higher classification probabilities) enhance the classification effectiveness 

against the armor targets. Increasing the MAE classification range leads to a 

marginal improvement on the classification effectiveness as well, perhaps 

because it also increases the number of classification opportunities. In contrast, 

increasing the MAE classification probability was not shown to have an impact. 

The probability of an MAE successfully classifying an intended target in each 

opportunity is too low to make significant contribution to the overall effectiveness 

even at the highest range, and therefore not a significant factor. To find more of 

the highly mobile armors that are commonly deployed in a formation, a faster 

LAE does contribute to a higher classification success. This is not true for 

detecting the TCTs in this scenario, as they generally move over shorter 

distances. 

Unlike classifying TCTs, an LAE should lean towards being more 

responsive to follow a newly classified armor element since the discovery of one 

is likely to lead to the entire formation. Such LAE behaviors would not benefit 

TCT classification since they are mostly sparsely deployed in isolation. Being 
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responsive to the MAE cueing, in this case, may result in lower proportion of 

armor classification, but higher TCT discovery. 

The partitioning tree for the proportion of armor classified (Figure 22) 

shows LAE classification range to be the first break point for this model, which is 

consistent with the results presented from the regression analysis. The tree 

presents a mean proportion of armor classification of 23.2% when the LAE 

classification range is at least 2,579 meters and 5.8% below that. The next two 

levels of partitioning are based on the number of LAEs on both branches, thus 

indicating a non-linear relationship between the number of LAEs and the 

response variable with the best values around three to four LAEs. As discussed 

earlier, the introduction of the fifth LAE misses most of the armor elements in 

Area 1 due to its pre-assigned routing. A faster LAE could, however, mitigate this 

by reaching the area of responsibility earlier before the armor battalion moves 

away. 
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Figure 22.   Partitioning Tree for Proportion of Armor Classification 

 

3. UAV Behaviors 

The contour plots in Figure 23 depict the contours for the proportions of 

TCT and armor classification with respect to the LAE responsiveness toward new 

enemy contacts they make (labeled “LAE React En Contact” on the Y-axis) and 
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MAE redirections (labeled “LAE React Inorg SA” on the X-axis). The dark blue 

patches represent higher proportions of classification in contrast to the light blue 

patches. The points on the plots indicate combinations of these two factors that 

appeared among the experiments. 

The plot shows a higher concentration of dark blue patches on the right 

half of the plot, thus suggesting better classification effectiveness against the 

TCTs when the LAEs have better responsiveness towards the MAE cueing. 

However, LAE response to a newly classified enemy contact does not seem to 

matter in achieving better overall classification performance. The result is intuitive 

since the TCTs are mostly sparsely distributed in this scenario. It is more likely 

that they are first detected by the MAE with the wide area sensor which then 

cues the LAEs to perform a close-in classification of these targets. Since the 

TCTs are sparsely located, having the LAEs follow newly discovered contacts is 

unlikely to lead to another TCT detection. 
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Figure 23.   Contour Plots Showing Proportions of TCT (Left) and Armor (Right) 

Classification With Respect to LAE responsiveness Toward New Enemy 
Contacts and MAE Redirections [Best Viewed in Color] 

 

For classifying armor targets, the dark blue patches clustering around the 

top left of the plot suggest that having LAEs that are more responsive towards a 

newly classified enemy contact and less towards the MAE cueing significantly 

improves the overall classification effectiveness against armor targets. As armor 

elements tend to appear in formations, following a newly classified armor 
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element is likely to lead to the discovery of more armor elements in close 

neighborhood. However, once an LAE has found a cluster of targets, being too 

responsive to the MAE cueing might distract the LAE from making its kill and 

result in a lower overall proportion of armor classification. 

 

4. Impact of LAE Failure 

To examine how an LAE failure during the four-hour IPB operation might 

affect the overall classification performance – and how a cooperative sensing 

network could mitigate this performance degradation – the scenario with four 

LAEs is modified slightly so that one LAE is randomly selected to fail. Successive 

sets of experiments are conducted where this LAE fails immediately from the 

start of the scenario, and at the first, the second, and the third, and the last hour 

of the operation. When an LAE fails, the other UAVs continue on with the pre-

assigned routes unless otherwise influenced by their responses to UAV 

redirections; there is no re-planning of the UAV routes. A few other factor ranges 

are modified based on the results described earlier in this chapter. First, only two 

discrete levels are used for link reliability: 0 represents no cooperation and 100 

represents full cooperation. The ranges of reactivity to other UAV SA for both the 

MAE and LAEs are also modified to take on values between 0 to +1. This 

represents that the UAVs are at least as reactive to redirection as to following 

their pre-assigned routes. The new NOLH is then crossed with the LAE lifetime 

(i.e., number of hours before a randomly selected LAE fails) to obtain the new 

experimental design matrix. 

The graphs in Figure 24 show the average proportions of TCT and armor 

classification when an LAE fails at various time instances with and without 

cooperative sensing capability. The graphs again clearly illustrate that 

cooperation does help in classifying TCTs but not armor targets. However, for 

both target types, having a failed LAE significantly degrades classification 

performance – as much as 21% in the four-hour operation, comparing an LAE 

failing at the start and the end of the operation. Although the improvement gained 
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in classification proportion for TCTs is constant regardless of the time of LAE 

failure, an improvement of 0.012 from a base of 0.065 to 0.087 is worth noting. 
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Figure 24.   Graphs Depicting Average Proportions of TCT and Armor Classification 

Against LAE Lifetime With and Without Cooperative Sensing Capability 
 

In contrast, the gentler slope in the armor classification proportion when 

the LAE lifetime drops from four to zero hours shows that less degradation in 

classification performance occurs when the UAVs are part of a cooperative 

sensing network. This indicates that although cooperative sensing does not help 

in the overall armor classification in this particular scenario, it may provide a 

more robust solution in some scenarios. 
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In conjunction with the earlier observations, one should note that while it is 

undesirable for an LAE to be responsive to MAE redirection for a while once an 

armor entity is found, but instead follow the new contact which will likely lead to 

the discovery of more armor targets, at other times it may be worthwhile to react 

to an MAE redirection before the LAE has even made its initial classification. This 

suggests that appropriate switching between these behaviors during different 

phases of an LAE operation is necessary. In summary, being responsive to MAE 

cueing may not always give the best overall classification results; reacting to a 

cueing request may lead to the classification of other potential targets but risk the 

opportunity of a greater payoff by remaining in its path. Prior intelligence of the 

enemy’s courses of action and deployments is important for deciding appropriate 

redirections of LAEs even in the presence of cooperative sensing. Following a 

fixed set of standard operating tactics regardless of the targets of interest and 

enemy’s courses of action is not an effective way to deploy a cooperative 

sensing network. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. KEY OPERATIONAL INSIGHTS 

The overall effectiveness of the cooperative sensing network for 

classifying TCTs and armor targets with four LAEs stand at relatively low mean 

percentages of 9.8% and 27.2%, respectively. The low classification proportions 

are attributed to the limited time frame the UAVs have for the IPB operation and 

the modestly large number of neutral vehicles. Depending on the setup of the 

UAV behaviors and sensor parameters, the UAVs may be distracted by this 

clutter around interesting targets, thus unable to complete the routes they were 

initially designated. However, based on the author’s past experiences with 

intelligence collection experiments, the results fall within the respectable range 

from an operational standpoint, given the short-range optical sensory assets 

searching in a considerably large area of operations. The relative classification 

performance of approximately one TCT to three armor targets makes reasonable 

sense as the armor targets have unlimited durations of vulnerability and the 

movement of an armor battalion generally emits strong signatures which leads to 

easy detection. They are also closely clustered which means the acquisition of 

one tank gives away the others in the formation. However, the TCTs are direct 

opposites in their operations; they are well concealed, operate individually and 

have limited periods of vulnerability, thus making them hard targets to catch. 

Two out of the seven main effects filtered out as factors of significance by 

the regression analysis describe Red TCT characteristics that are beyond the 

control of Blue forces. These two factors are the TCT concealment factor which 

dictates their ability to conceal themselves to avoid UAV detection and 

classification, and the counter-detection sensor range which determines their 

ability to detect approaching UAVs and hence evade UAV detection and 

classification. While TCT counter-detection sensor range does not show a steep 

impact on the UAV classification performance – and can be overcome with better 

LAE sensors with longer classification ranges and higher classification 
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probabilities – well-camouflaged TCTs reduce the overall UAV classification 

capability substantially. This suggests that mounting an EO sensor alone on the 

LAEs is not an effective solution to the problem of locating well-camouflaged 

TCTs. Perhaps a more viable option for classifying TCTs in densely forested 

areas is to equip the LAEs with IR sensors as well, to allow the targets to be 

tracked based on heat emissions instead of solely on optical detection. In this 

way, the classification opportunities are no longer limited to the windows of 

vulnerabilities when the TCT appears. 

The increase in the LAE responsiveness to an MAE redirection versus its 

tendency to follow its pre-assigned routes has a marginal positive effect on the 

proportion of TCT classification in the scenario. The MAE, which is designed to 

provide global initial detection, cues all the LAEs to perform a close-in 

classification when it finds suspicious contacts. Once the first LAE to arrive has 

successfully classified the contacts, the modeling approach used in this thesis 

makes certain that all other responding LAEs are turned back. However, such 

LAE behavior deters effective overall classification performance on armor 

targets. Instead, an LAE should adopt the tactics to follow a newly classified 

armor contact which would likely lead to the acquisition of more armor elements 

in the formation. An LAE that is responsive to the MAE cueing may benefit the 

first successful armor classification. However, if this LAE is frequently distracted 

by subsequent MAE redirections, and the associated traveling times are long 

because the cues are dispersed, then it may spend time traveling between 

unclassified targets that could otherwise be more effectively used to acquire 

more armor elements clustering around the first. 

Communication parameters such as link reliability and message latency 

are notably absent from the regression models that depict factors of significance 

in a cooperative sensing network deployment. The author opines the observation 

does correctly reflect the actual environment in that the range of message 

latency between 0 to 100 seconds is short compared to the LAE flight time to the 

suspicious contact in response to an MAE redirection, thus does not impact the 
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overall classification effectiveness of the sensing network. The relatively low 

tempo of MAE redirections during the short four-hour IPB operation might also 

give the MAE sufficient opportunities for retransmissions even in the presence of 

poor link availability. Note also that the airspace separation between the UAVs 

does not play a significant role in determining the overall classification 

proportions of the targets. The separations between the MAE and the LAEs in 

practice are not a concern since they tend to fly at different altitudes. Similarly, 

the separations between the LAEs are of little concern in this scenario since their 

flight plans have already ensured no two LAEs are close to each other at any 

point in time. On an MAE redirection, all other responding LAEs are turned back 

after the first LAE to arrive has successfully classified the contact; the likelihood 

of having two LAEs closing into the same target is small. It is obvious in 

retrospect that airspace separation has little impact, if not none at all, on this 

particular sensing network performance. 

While much is discussed about the behaviors of the UAVs in response to 

the presence of shared SA in a cooperative sensing environment in the earlier 

observations, many of the factors that contribute directly or indirectly to the extent 

of overall coverage of the sensing network appear in the analysis as significant. 

Factors such as MAE classification range, LAE classification range and number 

of LAEs show general trends of improving classification capabilities for both 

target types as their values increase. However, the increase in classification 

proportion for increasing LAE classification range tapers off, and even tips 

downwards around the 5,000 meters range. In this scenario, the surrounding 

neutral vehicles easily distract an LAE with a large classification footprint. This 

renders the LAE ineffective in its mission to search out the Red targets. In 

addition, the overall classification performance of the sensing network is very 

sensitive to the routings of the UAVs, which suggests that it is worthwhile to 

devote much time and effort into collecting information regarding the enemy’s 

target profiles, position and terrain prior to preparing the UAV search paths to 

provide the greatest ground coverage in areas of suspected operation. The 
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analysis reveals that while much is invested into netting UAVs together for 

interaction and cooperation, the traditional emphasis of investing in building 

better quality sensors that see further and clearer is as important.  

Cooperative sensing does provide a more robust solution in this scenario 

in terms of the classification performance should an LAE fail or be shot down 

during the four-hour operation. Without cooperation, an LAE failure will result in a 

“hole” in the ISR coverage of the entire area of operation unless a spare LAE is 

dispatched. The detrimental effect is mitigated to a certain extent with 

cooperative sensing in that another LAE may be redirected to patch this “hole.” 

However, an LAE being responsive to an MAE cueing may not always give the 

best overall classification results; reacting to a cueing request may lead to the 

classification of other potential targets but risk the opportunity of a greater payoff 

by remaining in its path. Prior intelligence of the enemy’s courses of action and 

deployments is important for deciding appropriate redirections of LAEs even in 

the presence of cooperative sensing. Following a fixed set of standard operating 

tactics regardless of the targets of interest and enemy’s courses of action is not 

the way forward in employing a cooperative sensing network. 

 

B. RECOMMENDATIONS FOR FUTURE WORK 

 As with all exploratory investigations, the thesis has led to more questions 

and identified other relevant areas of interest for follow-on work. The ensuing 

paragraphs recommend some possible aspects that merit further research. 

 The analysis highlights the sensitivity of the models and the MOEs to 

variations in the UAV routings. While the routings in this research are based on 

an intuitive justification which was deemed appropriate and sufficient for the 

study by subject matter experts, other routings would also be justifiable with 

differing operational considerations and other prior intelligence on the adversary 

courses of action, targets and terrains. Designing an experiment that explores 

various routing guidance and options, based on a broader number of scenarios 
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with possible enemy configurations (deployment plans and courses of action) to 

plan a robust set of routes, could yield a more accurate sense of the design of a 

cooperative sensing network and a robust solution.  

 Based on the findings from the analysis, the responsiveness of an LAE to 

an MAE redirection should vary depending on the current status and recent types 

of targets classified. For instance, an LAE which has recently made an armor 

classification might not want to respond to an incoming MAE cueing, but follow 

the newly classified contact which is likely to lead to more armor target 

acquisitions. On the contrary, an idling LAE flying on its designated flight plan or 

one that has just made a TCT classification might get better payoff by being very 

responsive to an MAE redirection. This prompts another area that is worth further 

exploration: using an agent-based simulation model to derive more “intelligent” 

means of cooperation, taking into account the LAE status and the type of recent 

classification. 

 Although MANA has been commonly used for evaluating ISR-related 

problems in a number of studies, such as those presented in the Background 

Work Section of Chapter I, it is seldom used for modeling cooperative sensing 

where information passing across a communications network could influence the 

behaviors of the agents. There is currently no accurate way to verify the models, 

except by visual inspection of a few instances of the model and by the 

justification of the set of average classification proportions of the targets falling 

within ballpark ranges. Porting the models over to another agent-based platform, 

like PYTHAGORAS (another agent-based distillation model in the Project Albert 

suite of models), would be beneficial for cross-validating the results of this 

analysis. This cross-validation is particularly useful to ensure that certain 

complex behaviors are not modeled incorrectly, or that insights obtained from the 

analysis are not due to artifacts of a specific modeling platform. However, one 

should be cautious to avoid focusing on specific numerical comparisons based 

on the model output data since different simulations yield different set of results. 
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Instead, a cross-validation process would reveal whether the two sets of model 

outputs yield qualitatively similar insights. 

 Another advantage of porting the models over to PYTHAGORAS would be 

to leverage the power and versatility of its sensor setup. An agent in 

PYTHAGORAS may carry up to three sensors, and each sensor may have 

different detection parameters with different detectability on various terrain 

features (Bitinas, 2004). This flexible sensor setup enables the exploration of a 

cooperative sensing network configured for multiple sensors, such as an EO and 

a FOPEN, on a UAV. The effects of having a mix of sensor-bearing UAVs in the 

area of operation could also be explored. The inclusion of FOPEN or even the 

multi-modal SAR sensors could facilitate exploration of the improvement in the 

overall classification performance of the sensing network. However, the 

downside of using PYTHAGORAS is its simplicity in modeling communications 

with the rudimentary broadcast mechanism. The broadcast mechanism does not 

permit the considerations of message latency and link reliability as implemented 

in the MANA models, but simply exchanges SA information among the UAVs. By 

studying similar models in MANA and PYTHAGORAS, an analyst could attempt 

to exploit the strengths of each specific modeling platform to gain better 

understanding of how a broader variety of sensors, cooperative information 

sharing, and UAV tactics influence the mission effectiveness. 

 To gain deeper insights on the effectiveness of a cooperative sensing 

network for ISR operations, scenarios where multiple local LAEs operate 

independently in the absence of a coordinating component like the MAE should 

be investigated. A greater challenge is modeling the effects of UAV swarming, 

where the deployment of a larger concentration of small UAVs with myopic 

sensors operating in a distributed yet cooperative manner could be explored. 
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C. SUMMARY 

 The success of a battle is increasingly reliant on more accurate and timely 

collection of the battle-space intelligence. Unmanned systems, and certainly 

UAVs, are widely used in today’s military ISR operations and will be more 

prevalent in the next generation military as war-fighting concepts such as 

Network Centric Warfare and Distributed Operation emerge. Tighter integration 

and tactics development to enhance cooperation between these intelligence 

collection assets is one of the current focuses among the military intelligence 

community, and the motivation for this thesis. 

 The use of agent-based simulation is definitely appropriate to seek 

insights relating to the tactics and behaviors in using a cooperative sensing 

network for military ISR. The models are easy to construct and consume 

relatively less computing power than most conventional simulation models. They 

can be executed for tens of thousands of replications to exhaust many possible 

representations of real-life situations. By applying suitable experimental designs, 

one can move from a realm of impossibility when the number of variations to be 

investigated is insurmountably large to a problem that can be realistically tackled 

within days or weeks. The simulation also provides ways to analyze a much 

wider variety of settings than time and cost would permit in a field experiment. 

The insights from agent-based simulation models may also provide guidance for 

setting up future higher-resolution simulation experiments or field tests. 

 In this thesis, the author has built a number of agent-based models 

intended to capture the essential details of UAV performance for the purpose of 

answering the questions that might be of interest for system designers and 

operators to implement a cooperative sensing network for the military. However, 

with careful considerations, appropriate assumptions are also made to keep the 

model manageable within the identified scope. The data collected from the 

simulations are analyzed and investigated using a wide array of complementary 

analytical tools and techniques. The study has successfully led to several 

operational insights pertaining to the design and use of cooperative sensing for 
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ISR purposes, including the importance of having good UAV sensor capabilities 

and “intelligent” application of UAV cooperation tactics based on the interested 

target characteristics, to achieve high overall effectiveness. The study has also 

spawned further questions and identified relevant areas for follow-on work. 
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APPENDIX A. UAV ROUTINGS 

 This appendix presents snapshots of the UAV routings for each MAE-LAE 

configuration as well as the rationales that led to these routings. During the 

development of these routes, the author consulted with Captain Starr King, USN, 

NWDC-Sponsored Chair of Warfare Innovation and Chair of Applied Systems 

Analysis of the Naval Postgraduate School and Captain Kevin McMindes, a 

USMC pilot. Both consider the routings reasonable and sufficiently detailed for 

the purpose of modeling and analysis to answer the questions of interest. 

However, one should not preclude other alternative routes based on various 

operational judgments and objectives. 
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1. MAE ROUTING 

The routing of the MAE is planned with the operational objective to provide 

a detection coverage that is as extensive as possible over the entire area of 

operation. The MAE performs the classic outward spiral search pattern by 

following the waypoints as depicted in Figure A-1. Note that the agents in MANA 

always start their movement from the waypoint with the largest index and 

proceed to the one with index zero in a reverse numerical order. In the models, 

the MAE is intended to loop around the waypoints such that it flies back to the 

starting waypoint once the last one is reached. 

 

Figure A-1 Routing of the MAE 
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2. ONE-LAE ROUTING 

In the One-LAE configuration shown in Figure A-2, the one and only LAE 

is allocated to provide surveillance around the parameter of the Red objective, 

Twenty-nine Palms, where critical Red activities are deemed to be of most 

interest to the MEB commander. 

 

Figure A-2 Routing of One LAE 
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3. TWO-LAE ROUTINGS 

On availability of a second LAE, it is assigned to provide coverage over 

the larger of the two cities, Los Angeles and its suburbs, while leaving the first 

LAE to continue its surveillance of Twenty-nine Palms. The only intuitive 

justification for giving priority to the cities over the forested and mountainous 

areas when allocating areas of responsibilities to the LAE assets is based on the 

assumption that the developed areas are considered to be more accessible by 

well-developed road networks and infrastructures that facilitate deployment of 

large Red forces. The routes of the two LAEs are shown in Figure A-3. 

 

 

Figure A-3 Routing of Two LAEs 
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4. THREE-LAE ROUTINGS 

With the third LAE, it is desired to extend the ISR coverage to the next 

larger city, San Diego, while focusing LAE assets on the regions that are in a 

direct path from the amphibious landing to the Red objective.  The routings are 

shown in Figure A-4. The area of coverage may appear ambitious for a local 

sensor capability as an LAE, but it is considered important to establish situational 

awareness in these regions where many Red air defense elements and time 

critical targets are expected to operate to defend Twenty-nine Palms against the 

Blue attack. 

 

Figure A-4 Routing of Three LAEs 
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5. FOUR-LAE ROUTINGS 

The addition of the fourth LAE provides more effective ISR coverage of 

the Los Angeles loop whose area of responsibility is initially very large for a 

single LAE. The original area of responsibility is now broken into two halves: the 

western and eastern loop, each allocated to an LAE as illustrated in Figure A-5. 

 

Figure A-5 Routing of Four LAEs 
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6. FIVE-LAE ROUTINGS 

With five LAEs, the large San Diego loop is now divided into a northern 

and southern loop as depicted in Figure A-6. A single LAE is responsible for the 

ISR coverage of each loop. 

 

Figure A-6 Routing of Five LAEs 
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APPENDIX B. LINEAR REGRESSIONS, PARTITIONING TREES, 
GRAPHS AND PLOTS FOR ANALYSIS 

This appendix contains the linear regression outputs, partitioning trees, 

prediction profiler graphs and other plots used in the complete analytical effort. 

The materials are arranged according to their relevance to the analytical focus 

provided by the initial questions of interest. 

 

1. SENSING NETWORK CONFIGURATIONS 

Distributions of the proportion of total red targets classified for one 

(leftmost) to five (rightmost) LAEs show a general trend of better average 

classification results as the number of LAEs increases. Note that poor results can 

occur for all situations. 
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Distributions of the proportion of TCT classified for one (leftmost) to five 

(rightmost) LAEs show a general trend of better classification results as the 

number of LAEs increases. Once again, poor outcomes can occur even when the 

number of LAEs is large. 
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Distributions of the proportion of armor classified for one (leftmost) to five 

(rightmost) LAEs show a general trend of better classification results as the 

number of LAEs increases. The exception observed for the scenario with five 

LAEs is attributed to the distribution of routes when the fifth LAE is introduced 

which misses most of the armor elements in Area 1 as the convoy moves 

northwards. 
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The bivariate fits for the proportion of target classification by the number of 

LAEs show that the quadratic terms are statistically significant in the models for 

the total red and armor targets but not in the model for the TCT targets. 
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A stepwise logistic regression model is fitted for the categorical response 

variable lowTCTclass to investigate the rationale for high frequencies clustering 

around the low value as depicted in the distribution graphs.  
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The model reveals that the factors of significance for the low classification 

rates are LAE classification range and classification probability, LAE 

responsiveness to other UAV SA, MAE detection range, TCT concealment and 

TCT evasion detection range.  

The prediction profiler graph for the logistic regression model suggests 

that the LAE classification range is the most influential factor given that all others 

are kept constant at their nominal values. 
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The partitioning tree for the proportion of TCT targets further suggests that 

an LAE with classification range less than approximately 3,200 meters has a 

mean classification proportion of only 0.04. Even if the LAE has better 

classification capabilities, the TCT classification rate is even worse if the TCT 

concealment is above 85%. 
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A similar analytical approach is also conducted to investigate the rationale 

for the low proportion of armor classified. The categorical response variable 

lowARMORclass is defined as follows. 
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R-square = 0.341 
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The model suggests that LAE classification range, LAE responsiveness to 

other UAV SA, MAE classification range and classification probability are 

significant determinants of the low classification rates for armor targets. 

 

The LAE classification range is again identified by the prediction profiler as 

the most significant factor given that all others are kept at their nominal levels. 
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The partitioning tree shows that an LAE with classification range of less 

than 2,600 meters has a mean proportion of armor targets classified of about 

0.06. 
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2. FACTORS OF SIGNIFICANCE 

Next, Multiple Linear Regression models are provided for the proportion of 

TCT classified with consideration of only the main effects (top left), the main and 

quadratic effects (top right) and including the two-way interactions (bottom). 
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(LAE Class Range-3569.77)*(LAE Class Range-3569.77)
(TCT Conceal-50.0155)*(TCT Conceal-50.0155)

Term
 -0.06237

0.0117325
 0.000004
0.0000212
0.0503286
-0.000549
-0.003587
0.0198858
-6.907e-9
-0.000009

Estimate
0.008775
 0.00233
6.888e-7
0.000001
0.006507
0.000047
0.000451
0.000958
7.86e-10
0.000002

Std Error
 -7.11
  5.04
  5.84
 19.46
  7.74

-11.78
 -7.96
 20.76
 -8.79
 -5.19

t Ratio
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001

Prob>|t|

Parameter Estimates

Response Prop TCT Class

 

R-square = 0.494 
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RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.731611
0.725647
0.030259
0.067764

     645

Summary of Fit

Model
Error
C. Total

Source
  14
 630
 644

DF
 1.5723599
 0.5768141
 2.1491740

Sum of Squares
0.112311
0.000916

Mean Square
122.6672

F Ratio

  <.0001
Prob > F

Analysis of Variance

Intercept
LAE React InOrg SA
MAE Class Range
LAE Class Range
LAE Class Prob
TCT Conceal
TCT Detect Range
# LAE
(LAE React InOrg SA-0.00031)*(LAE Class Range-3569.77)
(LAE Class Range-3569.77)*(# LAE-3)
(LAE Class Prob-0.65039)*(# LAE-3)
(TCT Conceal-50.0155)*(TCT Detect Range-5.08527)
(TCT Conceal-50.0155)*(# LAE-3)
(LAE Class Range-3569.77)*(LAE Class Range-3569.77)
(TCT Conceal-50.0155)*(TCT Conceal-50.0155)

Term
-0.062471
0.0120452
0.0000039
0.0000212
0.0503922
-0.000549
-0.003615
0.0198858
0.0000076
 0.000006
0.0137356
-0.000093
-0.000156
-7.013e-9
-0.000008

Estimate
0.007717
0.002049
6.059e-7
9.586e-7
0.005722
0.000041
0.000397
0.000842
0.000002
6.537e-7
0.004044
0.000016
0.000029

   7e-10
0.000002

Std Error
 -8.10
  5.88
  6.50

 22.09
  8.81

-13.40
 -9.11
 23.60
  4.38
  9.19
  3.40
 -5.85
 -5.39
-10.02
 -5.05

t Ratio
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
0.0007
<.0001
<.0001
<.0001
<.0001

Prob>|t|

Parameter Estimates

Response Prop TCT Class

 

Note that the ratios used in the experimental design and their basic 

parameters (for example, ratio of MAE/LAE classification probabilities, MAE 

classification probability, and LAE classification probability) are all included as 

potential terms in the model selection process. However, none of the ratios 

appeared in any of the stepwise models, while some of the basic parameters (for 

example, LAE classification probability) are included in the selected model. 

The adjusted R-squares as opposed to the standard R-squares for the 

three models are considered when selecting the appropriate base model for 

analysis so that the matrices are normalized against the number of terms used in 

the models. The full model (includes the quadratic and interaction terms) explains 

73% of the variability, while the main effect model and quadratic model explain 

only 58% and 65% respectively. The quadratic and interaction terms account for 

about 20% of the explanatory power in the full model. These terms are therefore 

deemed important and the full model is used a baseline model for analysis. 
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The actual by predicted plot on the left shows the lower tail of the 

distribution being cut off as the actual proportion can only take on values 

between zero and one. Similarly, there are no negative residuals when the 

predicted value is less than or equal zero, hence the residual by predicted plot 

appears capped by the 45 degree boundary on the bottom left of the plot.  This 

departure from the regression assumption of additive constant variance noise 

would be of more concern if we were interested in making accurate numerical 

predictions of classification capabilities, rather than in identifying those factors 

that have the greatest impact on classification capability. It also shows the value 

of obtaining qualitatively similar results from several different analysis methods, 

such as partitioning trees, Multiple Linear Regression, and logistic regression. 
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The Pareto plot displays the factors of significance in descending order in 

accordance to their effects on the proportion of TCT classified.  

# LAE
LAE Class Range
TCT Conceal
(LAE Class Range-3569.77)*(LAE Class Range-3569.77)
(LAE Class Range-3569.77)*(# LAE-3)
TCT Detect Range
LAE Class Prob
(TCT Conceal-50.0155)*(TCT Detect Range-5.08527)
LAE React InOrg SA
MAE Class Range
(TCT Conceal-50.0155)*(# LAE-3)
(TCT Conceal-50.0155)*(TCT Conceal-50.0155)
(LAE React InOrg SA-0.00031)*(LAE Class Range-3569.77)
(LAE Class Prob-0.65039)*(# LAE-3)

Term
 0.0281228
 0.0240802
-0.0155919
-0.0134044
 0.0110785
-0.0108626
 0.0104792
-0.0082651
 0.0068911
 0.0068698
-0.0064212
-0.0060193
 0.0060000
 0.0041515

Orthog Estimate

Pareto Plot of Transformed Estimates

 

 



 87

The prediction profiler graph shows a significant increasing linear 

relationship between the response variable and the number of LAEs, which also 

appears in the Pareto plot as the factor with the greatest impact. The graph also 

illustrates the non-linear relationships of the response variable with both LAE 

classification range and TCT concealment ability. 
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The interaction plot highlights the statistically significant interactions in 

solid lines. 
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The partitioning tree shows a partition of the mean proportion of TCT 

classification that explains approximately 68.5% of the response variability. The 

right branch of each partition represents the split that offers a higher mean 

classification rate than the left branch. The first few tiers of the tree depict the 

most significant factors. The results are consistent with those suggested by the 

earlier observations. 

 

Count
Mean
Std Dev

      645
0.0677643
0.0577687

All Rows

Count
Mean
Std Dev

      387
0.0446202
0.0348481

# LAE<4

Count
Mean
Std Dev

      192
0.0293715
0.0197051

LAE Detect Range<4585
Count
Mean
Std Dev

      195
0.0596342
0.0397148

LAE Detect Range>=4585

Count
Mean
Std Dev

       30
0.0172667
0.0149793

TCT Conceal>=88
Count
Mean
Std Dev

      165
0.0673374
0.0379217

TCT Conceal<88

Count
Mean
Std Dev

       55
0.0391879
0.0240523

# LAE<2
Count
Mean
Std Dev

      110
0.0814121
0.0357398

# LAE>=2

Count
Mean
Std Dev

      258
0.1024806
0.0672464

# LAE>=4

Count
Mean
Std Dev

       76
0.0378333
0.0284235

LAE Class Range<2866
Count
Mean
Std Dev

      182
0.1294762
0.0599873

LAE Class Range>=2866

Count
Mean
Std Dev

       26
0.0446923
 0.028548

TCT Conceal>=86
Count
Mean
Std Dev

      156
0.1436068
0.0516129

TCT Conceal<86

Count
Mean
Std Dev

       38
0.1067719
0.0332393

LAE Class Range<3439
Count
Mean
Std Dev

      118
0.1554689
0.0509618

LAE Class Range>=3439

 

 

The Multiple Linear Regression models are also provided for the 

proportion of armor classified with consideration of only the main effects (left), the 

main and quadratic effects (right) and including the two-way interactions (next 

page). 

 

R-square = 0.685 
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RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.546679
0.541697
 0.07535
0.192601

     645

Summary of Fit

Model
Error
C. Total

Source
   7

 637
 644

DF
 4.3614987
 3.6166781
 7.9781769

Sum of Squares
0.623071
0.005678

Mean Square
109.7406

F Ratio

  <.0001
Prob > F

Analysis of Variance

Intercept
LAE React En Contact
LAE Airspeed
MAE Detect Range
LAE Detect Range
LAE Class Range
LAE Class Prob
# LAE

Term
-0.282286
0.0175678
 0.000538
0.0000049
0.0000168
 0.000032
0.0926305
0.0310841

Estimate
0.028265
0.005101
0.000126
0.000001
0.000005
0.000005
 0.01425
0.002098

Std Error
 -9.99
  3.44
  4.28
  3.42
  3.61
  6.25
  6.50
 14.82

t Ratio
<.0001
0.0006
<.0001
0.0007
0.0003
<.0001
<.0001
<.0001

Prob>|t|

Parameter Estimates

Response Prop Armor Class
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.777112
0.773953
0.052919
0.192601

     645

Summary of Fit

Model
Error
C. Total

Source
   9

 635
 644

DF
 6.1999396
 1.7782373
 7.9781769

Sum of Squares
0.688882
0.002800

Mean Square
245.9965

F Ratio

  <.0001
Prob > F

Analysis of Variance

Intercept
LAE React InOrg SA
LAE React En Contact
LAE Airspeed
MAE Class Range
LAE Class Range
LAE Class Prob
# LAE
(LAE Class Range-3569.77)*(LAE Class Range-3569.77)
(# LAE-3)*(# LAE-3)

Term
-0.218018
-0.014634
0.0154657
 0.000569
0.0000054
0.0000567
0.0964538
0.0310841
-2.196e-8
-0.022495

Estimate
0.019501
0.003583
0.003583
0.000088
0.000001
0.000002
0.010006
0.001473
1.187e-9
0.001245

Std Error
-11.18
 -4.08
  4.32
  6.45
  5.14
 33.85
  9.64
 21.10
-18.49
-18.06

t Ratio
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001

Prob>|t|

Parameter Estimates

Response Prop Armor Class

 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.808451
0.804814
0.049174
0.192601

     645

Summary of Fit

Model
Error
C. Total

Source
  12
 632
 644

DF
 6.4499617
 1.5282152
 7.9781769

Sum of Squares
0.537497
0.002418

Mean Square
222.2841

F Ratio

  <.0001
Prob > F

Analysis of Variance

Intercept
LAE React InOrg SA
LAE React En Contact
LAE Airspeed
MAE Class Range
LAE Class Range
MAE Class Prob
LAE Class Prob
# LAE
(LAE Airspeed-170.109)*(# LAE-3)
(LAE Class Range-3569.77)*(# LAE-3)
(LAE Class Range-3569.77)*(LAE Class Range-3569.77)
(# LAE-3)*(# LAE-3)

Term
-0.221601
-0.014474
0.0158282
0.0005793
0.0000056
0.0000568
0.0617215
0.0626223
0.0310841
0.0002518
0.0000091
-2.191e-8
-0.022495

Estimate
0.018155
 0.00333

0.003331
0.000082
9.857e-7
0.000002
 0.01893

0.013932
0.001369
0.000058
0.000001
1.103e-9
0.001157

Std Error
-12.21
 -4.35
  4.75
  7.06
  5.72
 36.48
  3.26
  4.49
 22.70
  4.34
  8.58

-19.85
-19.44

t Ratio
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
0.0012
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001

Prob>|t|

Parameter Estimates

Response Prop Armor Class

 

As before, the full model explains 80% of the variability while the main 

effect model and quadratic model explain only 54% and 77% respectively. The 

interaction terms account for less than 4% of the explanatory power in the full 

model. These terms are therefore deemed insignificant and the quadratic model 

is the model of choice for further analysis. 
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The actual by predicted plot on the left shows the lower tail of the 

distribution being cut off as the actual proportion can only take on values 

between zero and one. In the same manner, there are no negative residuals 

when the predicted value is less than or equal to zero, hence the residual by 

predicted plot appears capped by the 45 degree boundary on the bottom left of 

the plot. These results are less pronounced that for the TCT classification model.  

There is also some evidence of nonlinearity, which may be due to the omission of 

interaction terms, or because the underlying relationships that reveal diminishing 

returns are not exactly quadratic. 
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The Pareto plot displays the factors of significance in descending order in 

accordance to their effects on the proportion of armor targets classified.  

LAE Class Range
# LAE
(LAE Class Range-3569.77)*(LAE Class Range-3569.77)
(# LAE-3)*(# LAE-3)
LAE Class Prob
LAE Airspeed
LAE React En Contact
LAE React InOrg SA
MAE Class Range

Term
 0.0631298
 0.0439596
-0.0385286
-0.0376414
 0.0192751
 0.0134963
 0.0104379
-0.0086792
 0.0074305

Orthog Estimate

Pareto Plot of Transformed Estimates
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The prediction profiler graph shows significant non-linear relationships of 

the response variable against the number of LAEs and LAE classification range, 

both of these factors and their quadratics appear in the Pareto plot as the highest 

four factors with the most impact on the proportion of armor targets classified. 
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The partitioning tree depicts a partition of the mean proportion of armor 

classification which explains approximately 83.6% of the data variability. The first 

few tiers of the tree capture the non-linear relationships of the classification rate 

against the number of LAEs and LAE classification range as well. 
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R-square = 0.836 
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3. UAV BEHAVIORS 

Contour plots showing the responsiveness of the LAEs toward newly 

classified enemy contacts and MAE redirections with respect to following the pre-

assigned routings to support high target classification proportions. 
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The dark blue patches show higher proportions of target classification than 

the light blue patches. It should be noted that the scales for the two contour plots 

are different. The plots show generally higher classification proportions on TCTs 

if an LAE is more reactive to MAE redirection, while no obvious benefit is seen by 

having an LAE be more reactive to a new classified enemy contact. For 

classifying armor targets, having LAEs react less to MAE redirection and more to 

a new classified enemy contact seems to improve the overall classification 

performance. 
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4. IMPACT OF LAE FAILURE 

The following graphs depict the average proportions of TCT and armor 

classification due to the failure of an LAE at various time instances in the 

scenario with and without cooperative sensing capability. 
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