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S [i] The solar-terrestrial events of late October and early November 2003, popularly >4ý

referred to as the Halloween storms, represent the best observed cases of extreme space "C.a
weather activity observed to date and have generated research covering multiple aspects of CL
solar eruptions and their space weather effects. In the following article, which serves as
an abstract for this collective research, we present highlights taken from 61 of the 74 . .
papers from the Journal of Geophysical Research, Geophysical Research Letters, and
Space Weather which are linked under this special issue. (An overview of the 13 20 60 14 011
associated papers published in Geophysics Research Letters is given in the work of
Gopalswamy et al. (2005a)).
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1. Introduction degradation to solar arrays, changes to orbit dynamics, high
levels of accumulated radiation, and proton heating were[2] The violent solar eruptions of October-November observed. Most Earth-orbiting spacecraft were put into

2003 are one of the best observed outbreaks of intense safed. Most from the paceradiatin to

solar activity to date. These events, referred to as the safe mode to protect from the particle radiation. Major
Halloween storms, are extreme events in terms of both theirsouthernHowcen stopermes ar extre even t ind their s h ofc both e- Sweden (Malmoe) experienced a blackout when the oil in a
source properties at the Sun and their heliospheric conse- transformer heated up by 10 degrees; surge currents were
quences. The plasma, particle, and electromagnetic conse- observed in Swedish pipelines; and several occurrences

quences of these events were detected at several locations in were noted pipein and outa l occurrenes
thehelosper thnksto hedisribtednewor ofspae-were noted of degradation and outage of GPS systems.the heliosphere thanks to the distributed network of space- Teams climbing Mount Everest experienced interference on

craft. Disturbances associated with two of the October- hequncyiraio oun ication pathse

November 2003 eruptions arrived at Earth in less than a day. high-frequency radio communication pathso

Historically, only 13 such "fast transit" events, including the resulted in significant ozone depletion between 40 and

Carrington event of 1 September 1859, have been observed. 90 km from the ground. A tenfold enhancement in the

Remarkably, the two fast transit events in October 2003 inos toa eron c ont ent inland
occuredon onseutie dys, ollwin a dlayof verionospheric total electron content over the US mainlandoccurred on consecutive days, following a delay of over occurred during 30-31 October. Extraordinary density

30 years from the previous such event on 4 August 1972. enhancements in both the magnetosphere and ionosphere

Several aspects of the Halloween storms, including active coincidinth in o f th wardtsMr and ioh-spee

region size and potential energy, flare occurrence rate and solar gind with interved.

peak intensity, CME speed and energy, shock occurrence s] Effet oftererv
rate, SEP occurrence rate and peak intensity, and the [s] Effects of the eruptions were observed progressively

geomagnetic storm intensity, displayed extreme behavior later beyond Earth to the farthest reaches of the heliosphere
[Gopalswamy et al., 2005b]. [Lario et al., 2005; McKibben et al., 2005; Crider et al.,

[3] As expected, this outbreak of strong solar a 2005; Intriligator et al., 2005]. At Mars, the MARIE
ctivity instrument on board the Mars Odyssey mission was corn-

resulted in a broad spectrum of space weather impacts. pletely damaged by particle radiation. The disturbances
About 59% of the reporting spacecraft and about 18% of the continued to the orbits of Jupiter and Saturn as detected
onboard instrument groups were affected by these storms; by Ulysses and Cassini, respectively. Wind, Ulysses, and
electronic upsets, housekeeping and science noise, proton Cassini radio instruments observed a radio burst resulting

from colliding CMEs on 4 November from widely different
'Laboratory for Extraterrestrial Physics, NASA Goddard Space Flight vantage points. Finally, the disturbances reached Voyager 2

Center, Greenbelt, Maryland, USA.2Space Vehicles Directorate, Air Force Research Laboratory, Hanscom after about 180 days, piled up together as a single merged
Air Force Base, Massachusetts, USA. interaction region (MIR), which led a large depression in3High Altitude Observatory, National Center for Atmospheric Research, cosmic ray intensity, lasting more than 70 days.
Boulder, Colorado, USA. [6] In summary, the Halloween 2003 events serve as a4Naval Research Laboratory, Washington, D.C., USA. useful benchmark of the extreme solar activity and its

-Los Alamos National Laboratory, Los Alamos, New Mexico, USA. terrestrial and heliospheric effects [Gopalswamy et al.,

Copyright 2005 by the American Geophysical Union. 2005b; Cliver and Svalgaard, 2004; Penna and Quillen,
0 148-0227/05/2005JA0 I 1268509.00 2005; Malandraki et al., 2005; Ebihara et al., 2005; Dmitriev
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etal., 2005a, 2005b; Belov et al., 2005; Hu etal., 2005;Nose November using SMEI and Wind/WAVES data. They used
et al., 2005; Rosenqvist et al., 2005; Miroshnichenko et al., these observations to constrain the parameters of a simple
2005]. The following provides a synopsis of results obtained kinematic model of CME propagation and to derive the
by analyzing data acquired during this interval. At this early radial speed profile for this CME from the Sun to 1 AU.
stage in the data analysis, the emphasis is on the severity of the Their method may provide a framework for more accurate
disturbances and their impacts. Nonetheless, the dynamic predictions of the arrival of CMEs at I AU and thus
range provided by such disturbances has yielded, and con- improved forecasts of space weather events. Tokumaru et
tinues to yield, insight to their physics. al. [2005] used interplanetary scintillation measurements to

establish unambiguous associations between interplanetary
2. Overview shocks and solar events in the period from 21 October to

[7] Gopalswamy et al. [2005b] summarize the properties 8 November. Together, these papers illustrate the impor-

of all the CMEs during this period in comparison with tance of tracking disturbances continuously from the Sun to

those of all the CMEs observed during SOHO's mission I AU in order to establish the link between solar events and

life until the end of 2003. They find that an unusually in situ measurements of the solar wind near the Earth.

large fraction of fast Tnd wide CMEs and halo CMEs [ii] Jackson et al. [2005] use a kinematic solar windlarg frctin o fas •n wie C~s ad hlo M~sdensity model to perform a three-dimensional (3-D) recon-

occurred during this period. They report the observation of stdnction of the 28 October CME from SMEI observations.
at least 16 shocks near the Sun using radio data, while (For a CME reconstruction for this event based on cosmic
eight of them were intercepted by spacecraft along the ra obereonstrucinfrt et a se on cmSun-Earth-line [see afso Terasawa et a!., 2005]. The CMEs ray observations, see Kuwabara et a!. [2004].) Jackson et

inTense al. [2005] also derive an estimate for the total mass of this
impacting the magnetosphere resulted in intenseCME in the inner heliosphere. This is the first 3-D recon-
netic storms, some of them among the largest ones of solar struction of a CME from SMEI white light data.
cycle 23. Very intense SEP events, including three ground [truc t a [M 5 f rom the use ofta.
level enhancements (GLEs) occurred in association with [12] Wu et al . [2005] describe the use of a 1.5-D MHD
the CMEs. Gopalswamy et al. find that the extreme CME model to study the evolution and interaction of a series ofshocks associated with the events from 28 October to 2
kinetic energy in the Halloween eruptions is consistent Novme Theirt s sh the impotance of i
with the largest energy extractable from the huge associ- Novemberactions whonsiderimpothe omnic
ated active regions. A plot summarizing solar, interplane- shock interactions when considering the geomagnetic
tary, and geomagnetic conditions from 19 October to 21 impacts of successive solar events. Dryer et al. [2004]
November is given in Figure 1. Note the large numbers of evaluate the application of their "fearless forecasts" to the

flares, CMEs, and SEP events in the top three plots. The epoch from 19 October to 20 November. During this period,

lull in flare activity during 6-11 November is because the a total of 19 solar flares were accompanied by metric type 11
three main active regions rotated off to the backside of the radio bursts, the triggering event for a forecast. The authors
Sun. The activity returned when one of the active ofgionscompare forecasts of the time of interplanetary shock arrival
(AR 484) returned as AR 501. The number of CMEs is at Earth obtained by four different (analytic/heuristic, MHD,

possibly an underestimate because the SOHO detectors or kinematic) models. Best results are obtained for the
were temporarily saturated by the SEPs during 28-30 Hakamada-Akasofu-Fry kinematic model with a success
October. The bottom two plots show extreme solar wind rate of 74% (defined as the ratio of hits (forecast arrival

speeds and superintense geomagnetic storms. Detailed time within e15 hours of observed time) plus correct nulls
conditions in the corona overlying the eruptive regions divided by the total number of forecasts).
can be found in the work of Butala et al, [2005] and
Grechnev et al. [2005]. 5. Solar Energetic Particles (SEPs)

3. Solar Sources [13] Mewaldt et al. [2005] determine that high-energy
particle fluence recorded during the late October to early

[8] Woods et al. [2004] report on total solar irradiance November 2003 period constituted 20% of that observed
(TSI) measurements in the UV and EUV spectral regimes from 1997-2003. The authors estimate that the energy in
during this active period. They find that the TSI drops by an the energetic particles in each of the major events during
unprecedented 0.34% due to the presence of large sunspots this 2 week interval ranged from -1 to 25% of the kinetic
on the solar disk. They also report the first definitive energy in the associated coronal mass ejections. For each
detection of a flare in TSI on 28 October. event, they construct energy spectra for H, He, and 0 over

[9] Using riometer measurements at 20.1 MHz, Brodrick the range from ,-,0.1 to >100 MeV, and for electrons from
et al. [2005] reconstructed the X-ray flare on 4 November 40 keV to 8 MeV. Both the ion and electron spectra can be
which was found to be saturated in the GOES-12 data. The fitted with double power laws.
authors suggested that an approximated energy flux of [14] Cohen et al. [2005] combine SIS and ULEIS data
3.8 mW/m (X38) flare seems to be a more suitable value from ACE to construct heavy ion spectra over more than
than the X28 flare estimated from the GOES data. This was 3 decades of energy for the five large events of October-
the largest soft X-ray flare yet recorded. November 2003. Despite considerable event-to-event vari-

ation, two interesting trends are observed: (1) the ratios

4. Disturbance Propagation of abundances at SIS (12-60 MeV) to ULEIS (0.64-
0.91 MeV) energies increased in all cases with ionic charge

[io] Reiner et al. [2005] report on a combined analysis to mass ratio (decreased with nuclear charge); and (2)
of radio and white-light observations of a CME on 2 fluence spectra of 0, Ne, Mg, Si, Ca, and Fe within each
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event could be organized remarkably well by assuming that [2005] showed that the spread F features formed over Brazil
the positions of spectral breaks for the different elements and wave-like disturbances in the F region height and
were governed by their diffusion coefficients. The latter electron density in both the Brazilian and east Asian
result finds support in the study by Mewaldt et al. [2005]. longitudinal sectors were observed.
Cohen et al. [2005] argue that knowledge of the charge [18] A dramatically decreased plasma density was
states of heavy ions, and their variation with energy, is reported in the southern midlatitude and high-latitude
critical for obtaining further insights into the abundance regions following the storm commencement on 29 October
variations observed in large SEP events. [Yizengaw et al., 2005]. The plasma depletion was accom-

[15] The current state of understanding of the acceleration panied by a deep oxygen dayglow depletion observed by
and release of SEPs in conjunction with solar eruptions can IMAGE/FUV, and the region remained depleted for more
be seen in a comparison of analyses by Klassen et al. [2005] than 24 hours until 31 October when the second storm
and Simnett [2005] of the electron event associated with the - began. The depletion of plasma density extended up to
X17 flare on 28 October. These authors independently ,--800 km as measured by DMSP. Lin et al. [2005] showed
identify phases of SEP injection during this event and an expanded equatorial ionization anomaly (EIA) up to
suggest acceleration mechanisms for the various phases. 140°1 latitude during the 29-30 October storm interval,
From an analysis of radio and electron data, Klassen et al. and they attributed it to the strong upward E x B drift that
deduce three phases of particle injection: (1) acceleration of produces a strong plasma fountain effect. Suppression of the
-30 keV electrons associated with an intense type III radio EIA during the storm recovery phase was also found to be
burst; (2) a delayed impulsive injection of <300 keV elec- associated with the downward drift. A negative storm effect
trons and GeV protons; and (3) a further delayed injection of was observed in the Southern Hemisphere, which was
electrons with a hard spectrum at energies above ,-'100 keV. corroborated by a reduction in O/N2 ratio in the TIMED/
While the first of these components is attributed to the flare GUVI observations. During the 20-21 November storm, a
impulsive phase, the origin of the second and third compo- phenomenon known as a tongue of ionization (TOI) was
nents could lie either in acceleration in a coronal shock or in a formed when a continuous stream of cold and dense
reconnection related process in the wake of the CME. In the plasmas is being transported from middle latitudes into
electron data, Simnett identifies a precursor, a main pulse, the polar region [Foster et al., 2005]. The TIMED/GUVI
and a delayed prolonged component. Simnett attributes the measured a severe depleted zone of the O/N2 column
main pulse to a fast CME and the delayed component to density which extended from high latitudes to near the
the flare. In order to explain the isotropic distribution of equator at the peak of the storm [Meier et al., 2005].
the delayed electrons at 1 AU, Simnett postulates that [i9] The storm also caused significant disturbances in the
flare electrons are trapped within the CME magnetic struc- thermosphere. Enhanced meridional and zonal neutral
ture, from which they leak out over time to fill the inner winds of 400 m/s were observed over Scandinavia [Thuillier
heliosphere, and are subsequently backscattered from a et al., 2005]. The CHAMP satellite measured a dramatic
boundary somewhere in the heliosphere beyond 1 AU. increase in neutral mass density by 200-,300% in the

thermosphere at an altitude of ,410 km [Liu and Liihr,
2005; Sutton et al., 2005]. The CHAMP measurements

6. Magnetospheric Impacts displayed a significant hemispheric asymmetry in the
[16] Looper et al. [2005; see also Lopez et al., 2004] neutral density variations, with the Northern Hemisphere

describe the profound impact that major ICMEs can have on showing a greater density increase than the Southern
Earth's inner radiation belt. On 29 October 2003, SAMPEX Hemisphere.
observed that the usual belt of>20 MeV protons around L = [20] The solar forcing was felt on Mars. The Mars Global
2 almost completely disappeared, to be replaced over the Survey Magnetometer/Electron Reflector experiment
next several months by a belt of >10 MeV electrons that detected strong magnetic field oscillations at and below
diffused from higher altitudes. Such inner belt disturbances the oxygen gyrofrequency, an indication that ions of
are rare; the only comparable event was the first recognized planetary origin are interacting with the solar wind plasmas.
disturbance of this type, observed by CRRESS in March Espley et al. [2005] speculated that such an interaction may
1991. result in a significant atmospheric loss during the passage of

large solar storms at Mars.

7. Ionospheric and Thermospheric Responses

[17] From an analysis of DMSP ion drift measurements, pact of SEPs on the Earth's Atmosphere
Hairston et al. [2005] concluded that the polar cap electric [21] The October-November 2003 solar proton events
potential drop was saturated during the 29-31 October were ranked as the fourth largest period of SEPs over the
superstorm, with the saturation limit at about 260 kV. The past 40 years [Jackman et al., 2005]. The highly energetic
ionosphere was severely disturbed during the storms. A protons penetrate into the mesosphere and stratosphere
highly elevated F2 layer was observed by an ionosonde in where they produce excitations, ionizations, dissociations,
Kazakhstan, where hmF2 (the height of the F layer peak and dissociative ionizations. A strong depletion of ozone by
electron density) was raised as high as 700 km, along with a 50-70% was observed in the mesosphere and stratosphere
60% decrease of foF2 (the critical frequency of the F layer in the northern polar cap and a smaller (40%) reduction in
peak electron density) [Gordienko et al., 2005]. In addition, the southern lower mesosphere [Jackman et al., 2005;
the unusual formation of the E, E2, and F] layers at night as Rohen et al., 2005; L6pez-Puertas et al., 2005a]. The ozone
well as the sporadic E layer was also detected. Sahai et al. depletion was attributed to the enhanced production of HO,
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(H, OH, HO2) and NOx (NO and NO2) by energetic solar alent dose rate was ,-'37%. Thus solar events can signif-
protons. Model simulations carried out by Verronen et al. icantly affect the total absorbed dose on longer flights.
[2005] showed that an order of magnitude enhancement in
HOx and NOx in the D region could cause a 20-95% 10. Conclusion
reduction in ozone at 40-85 km. The HALOE (Halogen
Occultation Experiment) on board the UARS (Upper At- [25] We have presented an overview of key findings on
mospheric Research Satellite) detected an increase of NOx the size/impact of the Halloween storms of 2003 as pre-
by more than 20 ppbv over the southern polar region sented in AGU journals. This overview is representative,
[Jackman et al., 2005], and the MIPAS (Michelson Inter- not comprehensive. All of the papers collected electronical-
ferometer for Passive Atmospheric Sounding) instrument on ly in this special series are listed in the reference section.
ENVISAT measured an elevated NO,, density of 20- Despite the substantial amount of work that has been
70 ppbv in the Northern Hemisphere and 10-35 ppbv in completed, the cited references represent only a first install-
the Southern Hemisphere in the altitude range of 40-60 km ment of observations, analyses, and models of a series of
[L6pez-Puertas et al., 2005a]. Enhancement of other ozone- events that provide the definitive example of an outburst of
destruction compounds was also measured by MIPAS/ extreme space weather activity.
ENVISAT, including a 0.2-0.4 ppvb increase of CIO, a
more than 0.3 ppvb increase of HOCI, a 2 ppvb increase of [26] Acknowledgments. Some of these results were presented at the
HNO 3, a 0.5•-1.2 ppbv increase of N20 5, and an increased Fall 2003 and Spring 2004 meetings of the American Geophysical Union in
CION0 2 of 0.4 ppbv [von Clarmann et al. 2005; L6pez- special sessions on the October-November 2003 events. We thank
Puertas et al., 2005b]. Gardner et al. [2005] showed that S. Yashiro for help with Figure 1. The special sections team acknowledges

the efforts by A. Richmond, L. Lanzerotti, and M. Moldwin in making theauroral activity during the storm may also lead to an trijoumal special section happen. The effort of NG was supported by
increased production of N(4S) and N(2D), resulting in NASA/LWS program.
enhanced chemical formation of NO in the thermosphere [27] Shadia Rifai Habbal thanks the reviewers for their assistance in

and enhanced 5.3 um emissions such as measured by evaluating this paper.

ENVISAT/MIPAS.
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