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ABSTRACT 
 
 

A finite element (FE) model is a computational representation of a given 

structure.  In order for the FE model to accurately predict structure response, the 

model is “updated” or improved.  This thesis investigates the use of artificial 

boundary conditions in sensitivity-based model updating and damage detection. A 

comparative analysis was conducted on the accuracy of error identification and 

location with respect to the artificial boundary conditions imposed and the number of 

modes retained.  Results are demonstrated with actual test data from a simple 

structure.  
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I. INTRODUCTION  

A finite element (FE) model is a computational model of a structure based on 

mathematical formulas and estimations.  A FE model can be defined by a large number of 

physical and material parameters. These parameters which include but limited to 

dimensional properties of structural elements, moduli of elasticity, and densities are also 

called adjustable parameters because these properties can be adjusted to improve the 

accuracy of FE model’s behavior with respect to the structure of which it is a model.  In 

order to correctly predict structure response, it is necessary to have the most accurate FE 

model. The accuracy of a FE model is improved by a method called “updating.” Updating 

involves measuring structural response, comparing the measured data to the FE response 

and making the appropriate adjustments to the FE model parameters.  

As stated above, a FE model can be defined by a large number of parameters 

however; only a small number of parameters can be measured from the structure in a 

modal test.  The measured parameters which define a structure are modal parameters, i.e. 

mode shapes and the natural frequencies of system. The disparity in number of measured 

modal parameters versus the number of adjustable parameters defines an undetermined 

problem.  In other words, there are too many unknowns for an accurate solution to be 

found. Therefore, a procedure is needed to collect more data thus increase the amount of 

known quantities. Given that modal parameters which are measured in the lab are based 

on boundary conditions of the structure, one method of collecting more data is by 

applying different boundary conditions to the same structure and measuring the modal 

parameters.  This procedure is effective but costly and time consuming.  

A more efficient method is to identify additional and distinct modal parameters 

from the same modal test without need for physical modification of the structure or for 

more time in the lab.  One method is that of applying Artificial Boundary Conditions 

(ABC) to the measured data.  The term “artificial” indicates that no physical change in 

the boundary conditions has been made but the application results in additional modal 

parameters that correspond exactly to the modal parameters found when combinations of 

measured coordinates are constrained to ground. [Gordis 1999] 
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When performing a modal test, a choice is made either by ease of placement or 

importance of location as to which set of coordinates are equipped with transducers.  In 

either case the resulting set of coordinates is the “analysis set” or “ASET.”  ABC can 

only be applied to ASET coordinates.  In a set of spatially incomplete frequency response 

function (FRF), the ABC are the boundary conditions that define an “omitted coordinate 

system (OCS)”, or “OSET.”   The ABC method can yield several sets of modal 

parameters for a given experimental database due to the fact that a spatially incomplete 

FRF matrix is identically equal to the FRF matrix that is calculated from the exact 

dynamic reduction. [Gordis 1999] 

  Each of the ABC system modal parameters can be used to generate a sensitivity 

matrix, which is the link between the known modal parameters and unknown adjustable 

parameters of the FE model which are needed in model updating.  In addition to 

providing a larger number of frequencies for a system using one measured database, the 

ABC can reduce the ill conditioning in the solution of the sensitivity equations by 

ensuring linear independence of equations. The application of ABC reduces the 

difficulties in determining which FE parameters are dissimilar to that of the actual model 

i.e. that are in error; therefore, improving error localization and FE model updating.  

 

 
 

  



II. THEORY  

The physical and material parameters, which define a finite element model, are 

categorized into three types: mass, damping, or stiffness parameters.  These parameters 

are used in the equations of motion (EOM) (Eq 2.1), which define an n DOF system.  

[ ]{ } [ ]{ } [ ]{ } { }ftxKtxCtxM =++ )()()( &&&        (2.1) 

Expanded (Eq 2.1) is written as  
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where {x} is a vector of n  coordinates needed to uniquely specify the configuration of 

the system at all instants of time and {f} is a vector of excitation associated with each 

coordinate x. [M], [C] and [K] are the mass, damping, and stiffness matrices, 

respectively.  All matrices are square and symmetric.  

In a modal test only a limited number of coordinates or DOF can be measured.  

This small group of DOF is considered the “ASET” or analytical set and accelerometers 

are mounted on these coordinates.  The remaining unmeasured DOF of the system are 

considered the “OSET” or omitted coordinate set.  

A. OMITTED COORDINATE SET   

Rewriting Eq (2.2) in the frequency domain for steady state harmonic excitation 

yields the steady state equation of dynamic equilibrium.   
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where Ω (rad/sec) is the forcing frequency.  

Since the total number of DOF, n, is the union of ASET and OSET, Eq (2.3) can 

be rewritten in portioned form as  
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where the subscript “a” refers to the ASET and “o” refers to the OSET. 

For use with Artificial Boundary Conditions it is necessary to identify the 

relationship between OSET and ASET coordinates.  For simplification in the 

development of required relationship, an undamped system where [C] = 0 is used and Eq 

(2.4) is rewritten as  
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A relationship between OSET and ASET coordinates implies that a solution for 

the OSET coordinates, {xo} must be developed in terms of ASET coordinates, {xa}.  If 

there is no excitation acting on the omitted coordinates then {fo} = {0} and Eq. (2.5) is 

rewritten as   
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When Eq (2.6) is mathematically rearranged two equations evolve.  However, 

only one equation is needed to solve for OSET coordinates in terms of ASET coordinates 

and it is  

[ ]{ } [ ]{ } [ ]{ } [ ]{ }[ ] 02 =+Ω−+ oooaoaoooaoa xMxMxKxK    (2.7) 

Grouping like terms and solving for xo, Eq. (2.7) becomes 

{ } [ ] [ { }aoaoooaooooooo xMKKKMKIx 121112 −−−− Ω+−Ω−= ]    (2.8) 

By definition, the bracketed inverse term is  
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where Det[…] indicates the determinant and Adj[…] indicates the adjoint matrix.  From 

Eq. (2.9), it is clear that the solution for {xo} in Eq. (2.8) does not exist at those 

frequencies, which satisfy  

[ ] 012 =Ω− −
oooo MKIDet        (2.10) 

Therefore, the relationship between the ASET and OSET does not exist at those 

same frequencies.  By definition the frequencies which satisfy Eq. (2.10) are the 

eigenvalues of the system defined by [Koo] and [Moo].  Since both the stiffness and mass 

matrices are composed solely of the OSET coordinates, the resulting system is the OSET 

system and the resulting frequencies are the OSET frequencies. 

Given the fact that the characteristics, i.e. eigenvalues and eigenvectors, of a 

system are defined by the unrestrained DOF of said system, the OSET system is a system 

where the OSET coordinates are unrestrained and the ASET coordinates are fully 

constrained to ground.   

Remembering that only a limited number of DOF responses are measured in a 

modal test it is necessary to understand how the spatially incomplete test data can be used 

in the identification of OSET frequencies.   However, before OSET frequencies 

identification can be discussed it is important to understand how spatially incomplete data 

compares to spatially complete data and how it can be used in experiments. 

Consider first the complete FRF matrix, which is n x n and then suppose that the 

description of the system is limited to only certain coordinates, thus ignoring what 

happens at the other coordinates.  (Please note that ignoring coordinates is not the same 

as supposing that the other coordinates do not exist.)  The resulting reduced model is now 

of the order N x N.  It is clear that because the basic system has not been altered and that 

it still has the same number of DOF even though it was decided not to describe all of 

DOF, the elements which remain in the reduced FRF matrix are identical to the 

corresponding elements in the full n x n matrix.  (Ewins 1982)  In other words the 

reduced matrix is formed simply by extracting the elements of interest and leaving behind 

those to be ignored and still contains all modal information of a fully decribed matrix.   
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 Given the before mentioned description of a reduced matrix and that the 

experimentally measured FRF matrix is based on a limited number of accelerometers i.e. 

a limited number of responses are measured and the rested are ignored, it is clear to see 

that the measured FRF matrix retains all the modal content of the orginial.  Also given 

that fact that the measured FRF matrix implicity defines a dynamically reduced 

impedence model the reduction of the FE model is pursued in the same manner. (Gordis 

1996)  

 The method of exact dynamic reduction and its use in the identification of OSET 

frequencies is discussed in the following section.  

B. EXACT DYNAMIC REDUCTION AND FRF MATRICES 

The complete or “full-order” model of a structure has a FRF matrix of infinite 

dimensions, which account for the infinite number of DOF, n, of the system.   

[ ] ⎥
⎦
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⎢
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⎡
=

oooa

aoaa

HH
HH

H         (2.11) 

However, the measured FRF matrix is of finite dimension because only a limited 

set of transducers or accelerometers, which correspond to the ASET are used to measure 

the FRFs of the system.  The resulting FRF matrix is a reduced order model of the 

system.  

[ ] [ aa
x HH = ]         (2.12) 

where the superscript x denotes an experimentally measured FRF and the overbar 

notation indicates a reduced model. [Haa] which is defined by Eq. (2.12) represents a 

structural dynamic model that has been reduced using exact dynamic reduction (Gordis 

1996). 

Given the identity [Z][H] = [I], [H] = [Z]-1, [Z] = [H]-1 where [Z] is the system 

impedance matrix a relationship can be found between the measured ASET data and the 

omitted OSET data of the system.  In other words, [Haa] can be defined in terms of the 

OSET frequencies. 

Impedance and FRF matrices are shown as partitioned matrices.  
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Four equations evolve from multiplying the impedance and FRF matrices. 

However, only two equations are needed for the development of the required ASET-

OSET relationship.  

0
1

=+
=+

oaooaaoa

oaaoaaaa

HZHZ
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             (2.14 a-b) 

After rearranging and shifting sides the relationship between ASET coordinates 

and OSET coordinates is found to be 

7

][ ] [ 11 −−−= oaooaoaaaa ZZZZH        (2.15) 

where the impedance of the reduced order model is linearly independent of the 

impedance of the full order model (Gordis 1999). 

Given that [ ] [ ]CjMKZ Ω−Ω−= 2  or [ ]MK 2Ω−  when [C] = 0 and that the 

eigenvalues or natural frequencies of a system are defined when  [ ]MK 2Ω−  = 0 then it 

is easy to see that the OSET system dynamics are present in Eq (2.15) in the term [Zoo]-1. 

Using the applicable identity of [Z][H]=[I] and the fact that [Zoo]-1 is undefined 

when [ ]oooo MK 2Ω−  = 0 or that every element in [Zoo]-1 is singular at the OSET 

frequencies, it is easily seen that the elements of [Haa]-1 will also be singular at the OSET 

natural frequencies (Gordis 1999).  Graphically speaking a plot of [Haa]-1 versus 

frequency shows that the function peaks correspond to the OSET frequencies of the given 

system.  

Given that a spatially incomplete FRF matrix implicitly defines a dynamically 

reduced impedance model and that from such a model the OSET frequencies are defined, 

it is concluded that a reduced model retains the modal content of the original model.  This 

conclusion states that a reduced model created by retaining only rows and columns 

associated with the ASET coordinates from a full, n DOF, FE generated FRF matrix will 

fully represent the structure being tested. 

 



C. DRIVING POINT FREQUENCY RESPONSE FUNCTION 

Following a mathematical derivation of the driving point formula an example is 

presented to demonstrate a unique characteristic of driving point function leaving for the 

chapter how this characteristic is used in ABC application.   

A driving point function or as Ewins refers “point mobility” is a function where 

the response coordinate and the excitation coordinate are identical.  The transfer function 

or Ewins’ “transfer mobility” is a function where the response and excitation coordinates 

are different.  (Ewins 1982)  The resultant FRF curve of a system develops from modal 

contribution of each function or simply stated a complete FRF curve of a system is a 

summation of all the individual driving point and transfer functions of the system.   

Recalling [ ] [ ]CjMKZ Ω−Ω−= 2  and the identity [Z] = [H]-1 Eq. (2.3) is 

rewritten as  
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Eq (2.16) is rewritten in modal coordinates by applying {x} = [Ф]{q} where Ф is the 

mass normalized mode shape and q is the generalized coordinate 

[ ][ ]{ } { }fqZ =Φ         (2.17) 

Premultipling by and expanding [Z] in terms of K,M,C yields [ ]TΦ

[ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ][ ]{ } [ ] { }ℑΦ=ΦΦΩ+ΦΦΩ−ΦΦ TTTT qCjMK 2    (2.18) 

Using orthogonality, [ ]  and assuming proportional damping,  [ ][ ] 1=ΦΦ MT
⎥
⎦

⎤
⎢
⎣

⎡
C

C
0

0

Eq (2.18) simplifies to  

[ ]{ } [ ] { }ℑΦ=Ω+Ω− T
ii qj ωζω 222       (2.19) 

where ωi is the natural frequency of the ith mode, ζ is the damping ratio and the modal 

impedance matrix [ ]ii j ωζω Ω+Ω− 222   is diagonal.  
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By premultipling by  and using [ ]Φ { } [ ] { }fTΦ=ℑ  Eq (2.19) is transformed back 

into physical coordinates resulting in 

{ } [ ][ ][ ] { }f
j

x T

ii

Φ
Ω+Ω−

Φ=
ωζω 2

1
22      (2.20) 

Recalling Eq (2.16),{ }   [ ]{ }fHx =

[ ] [ ][ ][ ]T
ii j

H Φ
Ω+Ω−

Φ=Ω
ωζω 2

1)( 22      (2.21) 

[H(Ω)] can also be written as  

[ ] { }{ }∑
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k kk
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j
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1
22 2
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      (2.22) 

or any element, 

[ ] { }{ }
∑
= Ω+Ω−

ΦΦ
=Ω

es

k kk

Tk
j

k
i

ij j
H

mod

1
22 2

)(
ωζω

      (2.23) 

 

To demonstrate the characteristics of both a driving point and transfer function on 

the complete FRF an example of a 2 DOF system shown in Figure 1 is used. 

 
M1 M2

 

Figure 1.   2 DOF System  

The matrices of this 2 DOF system are   

Stiffness matrix: [ ]     ⎥
⎦

⎤
⎢
⎣

⎡
+−

−+
=

322

221

KKK
KKK

K

Mass Matrix: [ ] 1

2

0
0

M
M

M
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  

Setting M1 = M2 = 1.0 and K1 = K2 = K3 =0.4  
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Mode shapes: { }   
⎭
⎬
⎫

⎩
⎨
⎧
−
−

=Φ
7071.0
7071.01 { }

⎭
⎬
⎫

⎩
⎨
⎧−

=Φ
7071.0

7071.02

Natural frequencies: { }  
⎭
⎬
⎫

⎩
⎨
⎧

=
0954.1
6325.0

sec)/(radω

 

Using Eq (2.23) [ ] { }{ }
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  and the above stated modal data for 

this undamped 2 DOF  

The driving point function is  
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and the transfer function [H12] is  
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The obviously difference between the driving point and transfer function is the sign of the 

modal constant or numerator of the second mode. The individual modal curves shown in 

Figure 2 do not show this sign difference given that the curves are plotted on a 

logarithmic scale.  However, the driving point and transfer functions which are 

summations of all modes and are also shown in Figure 2 and do show the sensitivity of 

sign changes in the modal constant.  

 Notice in the driving point function [H11] in the upper plot of Figure 2 at 

frequencies below the first natural frequency, indicated by a shape peak or resonance, 

that both terms have the same sign and are thus additive, making the total FRF curve 

higher than either compoment.  Due to the logarithmic scale the contribution of the 

second mode at these low frequencies is relatively insignificant.  This observation of 

additive behavior can also be applied to higher frequencies, above the second natural 

frequency, where the total plot is slightly higher than that of the second mode alone. 

However, in the region between the natural frequencies where the model curves have 
10



opposite signs, modal curves cross, the resultant is zero characteristized on a logarithmic 

plot as an anti-resonance, very similar a system resonance. A similar conclusion can be 

drawn between the additive and substractive characteristics of the individual modes in the 

transfer function shown in the lower plot of Figure 2.  At very low and very high 

frequencies, the resultant FRF curve lies just below that of the nearest individual modal 

curve while in the region between the resonances, the two modal curves have the same 

signs and thus are additive making the magnitude of FRF curve at cross over is the sum 

of both modal curves. (Edwins 1982).   

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-40

-20

0

20

40

60
Driving Point FRF, H11

lo
g1

0 
of

rad/sec

Sum of both modes
Mode 1
Mode 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-40

-20

0

20

40

60
Transfer FRF, H12

lo
g1

0 
of

rad/sec

Sum of both modes
Mode 1
Mode 2

 

 

Figure 2.   Plot of Driving Point [H11] and Transfer Function [H12] of 2 DOF System  

 

The principles illustrated in this example can be extended to any number of 

degrees of freedom, thus demonstrating a fundamental rule that if two consecutive modes 

have the same sign for the modal constants, then there will be an anti-resonance at some 

frequency between the natural frequencies of those two modes, otherwise there will only 

be a minimum. From Eq 2.23 it can be seen that in a driving point function the modal 
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constant for every mode must be positive, Φ2.  Using this information and the 

fundamental rule it is concluded that for every resonance of a driving point function there 

must be anti-resonance without exception.  The known existence of anti-resonance and 

how anti-resonances become resonances when H is inverted makes the driving point 

functions very important to the ABC application. The next chapter will illustrate how the 

anti-resonances found in the driving point function relates to the natural frequency of the 

structure with the same driving point DOF constrained to ground.   

 



III. NATURAL FREQUENCIES OF ABC CONFIGURED 
SYSTEMS 

As discussed in Chapter II a spatially incomplete FRF matrix obtained in a modal 

test contains the characteristics of the complete system and can be used to find the natural 

frequencies of a system whose ASET coordinates are pinned to ground. The pinning of 

the ASET is not a physical modification to the system but merely a mathematical 

manipulation of the measured data; therefore, the boundary conditions imposed on the 

ASET are artificial and as such are referred to as Artificial Boundary Conditions, ABC. 

A. THE IMPORTANCE OF ABC FREQUENCIES IN MODEL UPDATING  

It is essential to understand the importance ABC in model updating. Since the 

goal in updating a FE model is to have the greatest correlation of the dynamic behavior of 

the FE model and the actual structure, it is necessary to have an accurate comparison 

method of the systems.  The best measure of correlation of dynamic behavior is how 

close the natural frequencies of the FE model are to the actual natural frequencies of the 

structure.  As mentioned in the introduction FE models can be defined by a large number 

of adjustable parameters which can be referred to as design variables.  Although an actual 

structure is composed of infinite number of DOF and thus has infinite number of modal 

parameters only a limited number of the structure’s actual modal parameters, i.e. FRF, 

can be measured in the laboratory.  The disparity in number of measured modal 

parameters versus the number of adjustable parameters defines an undetermined problem. 

Simply stated from an ordinary modal test there are far too many of the unknown 

variables and too few of the known variables for the solution to be accurate.  
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 where k << ,      (3.1) 

where 2 2
x

2
aω ω ω∆ = − , ω is the modal parameter, xω  = undamped natural frequency of 

the actual structure and aω  = undamped natural frequency of the FE model, dV is the 



adjustable parameters of the FE model and [T] is a matrix which relates the modal 

parameters to the adjustable parameters, referred to as a sensitivity matrix, and is 

discussed in great detail later (Gordis 1999). 

As shown in Eq.(3.1) with k<<n more modal parameters are needed for an 

accurate solution to be calculated. Since modal parameters are directly related to the 

boundary conditions of the structure, one method of measuring more modal parameters 

without introducing more adjustable parameters is to impose physical boundary 

conditions on the structure and measure new modal parameters.  This method is time 

consuming, costly and frequently impossible. The method of Artificial Boundary 

Conditions is easy and can generate multiple sets of Artificial Boundaries from one set of 

measured data of a given structure reducing time and money.  Therefore, the answer of 

“why study ABC?” is simple; it can generate more equations which lead to increased 

determinability of the system of equations and accuracy of error localization between the 

FE model and actual structure. For n ABC systems Eq. (3.1) would be   
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Although the theory of ABC frequencies is mathematically sound only a few 

computer simulations have been run to evaluate its improvement of error localization. 

Since ABC could potentially play an important role in model updating a complete 

understanding of the subject is necessary.  Chapter II only hinted at how ABC are 

imposed and how the additional OSET frequencies are found. The following examples 

will explain in detail the easy process of gathering OSET frequencies via ABC.  



 The first example shows the relationship between the driving point function and 

the natural frequencies of the same system with an ABC imposed on the driving point 

DOF.  

B. ABC FREQUENCIES OF A GIVEN ASET ARE DEFINED BY THE 
CORRESPONDING DRIVING POINT ANTI-RESONANCES 

It was proven in the previous chapter that although anti- resonances can exist in 

transfer function their existence is always guaranteed in driving point functions.  In a 

graphical plot of a FRF matrix versus frequency the anti-resonances will be represented 

by negative peaks or valleys following each positive peak of the FRF as shown in a 

sample plot in Figure 3. 
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Figure 3.   Plot of a Driving Point FRF,[H11] and inv [H11]  

 
The anti-resonances of the system are marked with red circles in the top plot of Figure 3. 

It is easily seen in Figure 3 that the anti-resonance valleys of [H11] become the peaks of 

[H11]-1 which is plotted in bottom plot again marked with red circles.  Recalling that the 
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elements of [ ] 1
aaH −  will be singular, at the frequencies which satisfy  

and that singular elements are represented by peaks on a graphical plot of the function in 

question, the peaks of [

2 0oo ooK M⎡ ⎤−Ω =⎣ ⎦

] 1
aaH − are always located at the natural frequencies of a system 

whose ASET coordinates are pinned.  

To assist in understanding this conclusion a few example follow. 

 1. ABC Example using 2 DOF System 

 A simple 2 DOF system, masses (M1, M2) and springs (K1, K2) is shown in 

Figure 4 (Gordis 1999). 
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Figure 4.   2 DOF system 
 

M2M1

From Eq.  2.23, the undamped driving point FRF of any structure is given by 
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where Фi is the mass normalized mode shape element, ωk is the kth natural frequency, 

and Ω is the forcing frequency.  The frequency of the anti-resonance of [H11 (Ω)] is given 

by (Gordis 1999). 
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where the modal residue is Rij
k = {Φ(:, k)} {Φ(:, k)}. 

 

The matrices of 2 DOF system are   

Stiffness matrix: [ ]     1 1

1 1 2

K K
K

K K K
−⎡ ⎤

= ⎢ ⎥− +⎣ ⎦

Mass Matrix: [ ] 1
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Setting M1 = M2 = 1.0 and K1 = K2 = 1.0  

Mode shapes: { }  1 -0.85065
-0.52573
⎧ ⎫

Φ = ⎨ ⎬
⎩ ⎭

{ }2 -0.52573
0.85065
⎧ ⎫

Φ ⎨ ⎬
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Natural frequencies: { }
0.618

( / sec)     
1.618

radω
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

  

Using the above modal parameters and Eq (3.2), the resulting in a single anti-

resonance is located at the frequency Ωanti-res = √2 rad/sec. The driving point FRF, [H11] 

is shown in Figure 5. The single anti-resonance is noticeable at √2 rad/sec. 
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Figure 5.   Driving Point FRF, H11 

 

Given that for this system [Haa]= [H11], i.e. ASET = [1], calculations were done 

for the natural frequency of system in Figure 6, which is the same system as the one in 

Figure 4 but with ASET coordinate, DOF 1, pinned.  
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M1 M2

 
Figure 6.   ASET, DOF #1 constrained to ground.  

 

The single natural frequency of the system in Figure 6 is √2 rad/sec which is 

identically equal to anti-resonance frequency calculated for 2 DOF system in Figure 4.  

[Haa (Ω)]-1 = [H11 (Ω)]-1 corresponding to system 2 and ASET = [1] was 

calculated using Eq (2.16) and plotted at each frequency.  The impedance Z11 of system 2 

is plotted the plot of driving point FRF of system 1 to show clearly that the anti-

resonance of system 1 (Plot A) is equal to the singular frequency of system 2 (Plot B).    
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Figure 7.   Plot A. Driving Point H11(Ω) of system 1 Plot B. [Haa(Ω)]-1 of system 2  

 

This example demonstrates nicely the relationship between the anti-resonance of the 

driving point FRF and natural frequency of system with the driving point DOF.  Since 

confusion is possible with the use of only 2 DOF another example will be calculated 

using a multi-DOF system.  
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 2. ABC Example using Multi - DOF System, Single Coordinate ASET. 

 A simple cantilever beam shown in Figure 8 is simply supported at one end.  The 

beam has ten 2 node beam elements with a total of 20 DOF.  

 
Figure 8.   10 Element Cantilever beam 

 

The driving point function for the cantilever was calculated using Eq 2.23 in the 

same fashion as example 1.  The natural frequencies of this system under 800 Hz are 

4.9186, 30.826, 86.332, 169.29, 280.29, 419.91, 589.15, 789.3 and the respective anti-

resonances calculated using Eq. (3.2) are 6.8697, 43.856, 124.28, 245.53, 406.42, 586.39, 

704.69. The driving point FRF of DOF 3, i.e. [H33] was calculated using Eq (3.1) and 

plotted versus frequency.  With ASET = 3, an ABC was applied to DOF 3, shown in 

Figure 9.  

 
Figure 9.   10 Element Cantilever beam, DOF 3 Artificially pinned 

 

and the natural frequencies were calculated using the reduced order [K], [M] and 

compared with the graphical plot of [H33] -1 which was calculated using Eq (2.16). The 

natural frequencies of the ABC system, DOF 3 pinned, under 800 Hz are 6.8697, 43.856, 

124.28, 245.53, 406.42, 586.39, 704.69.  There compare nicely with peaks of [H33] -1. 

The same as example the plots of [H33] and [H33] -1 are combined on Figure 10 for easier 

comparison of the location of peaks and anti-resonances.  
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Figure 10.   Plot A. Driving Point H33 (Ω) of cantilever beam Plot B. [H33 (Ω)]-1 of 

ABC system, DOF 3 Artificially pinned.  
 

The relationship between the anti-resonance of the driving point FRF and the 

natural frequencies of the ABC system is again visible in the plots of H33 (Ω) and [H33 

(Ω)]-1.  This example takes away any confusion about the frequency relationship and 

gives way to an example of a multiple coordinates ASET.  

3. ABC Example using Multi - DOF System, Multiple Coordinate ASET 

 The same simply supported cantilever in Figure 8 is used for this example. 

However, five accelerometers have been added to the beam at translational DOF # 

1,7,11,15,19, therefore the ASET = [1,7,11,15,19].   

 

 
Figure 11.   10 Element cantilever beam, Accelerometers located at DOF # 

1,7,11,15,19 
20



 

If this was an actual experiment and each accelerometer was excited the measured 

FRF would be a spatially incomplete FRF matrix of 5x5 due to the length of ASET 

vector. In a MATLAB simulation of such an experiment the spatially incomplete FRF is 

calculated using the Eq (2.16) and by building a complete FRF matrix and retaining the 

columns and rows corresponding to ASET coordinates.  The results of both [H] are 

identical and plotted versus frequency on arrange of 0-800Hz in Figure 12.  
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Figure 12.   [Haa (Ω)]-1 of 10 element cantilever beam with ASET = [1,7,11,15,19] 

 

The peaks of [Haa] correspond to the natural frequencies of the system (249.17, 

369.26, 497.32, 665.56 Hz) which were calculated from the reduced system [K] and [M].  

The term “reduced” is used to indicate that the rows and columns corresponding to the 

ASET were removed from the respective matrices prior to the calculation of natural 

frequencies, since natural frequencies are calculated using only unrestrained DOF and the 

ASET DOF are fully restrained. 
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Although two methods were used in calculating [Haa(Ω)]-1  Figure 12 only shows 

one function thus confirming that both methods are correct. Since in modal testing only 

FRF matrices are measured and the stiffness and mass matrices of the system are 

unknown it is impractical to use an equation which requires the knowledge of [K] and 

[M] to determine OSET frequencies.  Therefore, the proof that retaining the ASET rows 

and columns from a given FRF matrix provides the same accurate information as the Eq 

(2.16) is very important information.  In the next chapter, examples are presented to 

demonstrate the use of ABC frequencies in locating errors between the FE model and 

actual structure.  The method for finding ABC frequencies will be that of retaining the 

ASET coordinates from a base FRF matrix and not by Eq. (2.16).  

C. MULTIPLE ABC SYSTEMS AVAILABLE 

All examples demonstrated so far have applied ABC to the complete ASET thus 

retaining all rows and columns of the measured FRF matrix implying that only one set of 

ABC frequencies can be obtained from a spatially incomplete FRF matrix measured in 

the laboratory. This is not true.  In ABC application the term ASET evolves from just an 

analysis set to a set of potentially bounded coordinates. From a measured 6 x 6 FRF 

matrix there are over 36 different combinations of applicable artificial bounded 

coordinate sets, i.e. only one coordinate pinned or sets of pairs and so forth. The only 

limitation is the size of the original data set.  

D. OBTAINING OSET FREQUENICES GRAPHICALLY 

Since OSET frequencies are obtained from the graphical representation of 

[Haa(Ω)]-1  a method of curve fitting is used to approximate the frequency of the peaks.  

Curve fitting techniques are used to extract frequency data from FRF plots and are not 

valid for impedance plots however because of the behavior of  [Haa(Ω)]-1  near the peak is 

similar to that of a FRF plot curving fitting techniques are valid for obtaining OSET 

frequencies from [Haa(Ω)]-1 plots. 

1. Theory of Curve Fitting 

In order to understand the validity of the usage of curve fitting to find the OSET 

frequencies the following theory is provided.   
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The goal of data or curve fitting is to find a mathematical model by which a set of 

empirical data can be accurately described. These models depend on adjustable 

parameters. With the correct model and corresponding equations, one can determine what 

parameter values correspond to the data.  In order to select an accurate curve fit model a 

good understanding of the underlying physics or properties of the system to be curve fit is 

needed.  Once a model is picked, a rough assessment can be made by plotting it with the 

data.  At least some agreement is needed between the data and the model curve before 

continuing.   

To find the values of the model’s parameters that yield the curve closest to the 

data points, a function that measures the closeness between the data and the model must 

be defined. This function depends on the method used to do the fitting, and the function is 

typically chosen as the sum of the squares of the vertical deviations from each data point 

to the curve.  (The deviations are first squared and then added up to avoid cancellations 

between positive and negative values.) This approach is called the method of least 

squares.  This method assumes that the measurement errors are independent and normally 

distributed with constant standard deviation.  Once the correct function is found it is 

minimized to the smallest possible value.  The parameters valves that minimize the 

function are the best-fitting parameters.  In most engineering models the dependent 

variable depends on the parameters in a nonlinear way. 

Nonlinear fitting usually can not use the system equation to solve for the 

minimizing parameters instead various iterative procedures are used.  Nonlinear fitting 

always starts with an initial guess of the parameters values.  User usually looks at the 

general shape of the model curve and compares it with the shapes of the data points.  A 

good understanding of the selected model is important because the initial guess of the 

parameter values must make sense in the real world.   

In the process of interpreting results the user must see whether the program can fit 

the model to the data that is whether the iteration converged to a set of values for the 

parameters.  A look at the graphed data points and fitted curve can show of the curve is 

close to the data.  If it is not, then the fit has failed, perhaps because the iterative  

 



procedure did not minimize the parameters or the wrong model was chosen. If the model 

yields a physically meaningless result then the curve is wrong regardless if it seemingly 

does fit the data well.  (Ledvij 2003) 

2. Amplitude Fitting 

After understanding the basic theory behind curve fitting this section will describe 

the specifics of the curve fitting performed in this experiment.  

Rinawi and Clough developed a new non-iterative least squares method that 

weighs all the data points of a transfer function more uniformly and is more reliable and 

is easily programmed.  Their method was applied successfully to identify the frequency 

and damping of a test structure during seismic simulation tests.   

The procedure for this method which was used to identify the OSET frequencies 

from [Haa(Ω)]-1 plots.  Since the peak of [Haa(Ω)]-1  was well separated it can be 

approximated by a single mode response as (Rinawi & Clough): 

ti
nnnn ePyyy Ω=++ 22 ωξω &&&        (3.3) 

In which nn ξω ,  are the structural frequencies for a particular mode.  Pn is the 

participation factor for the mode.   It is for this reason that the MATLAB program written 

for the identification of OSET frequencies evaluated only a small range of frequencies 

near the resonance peak. When the range was too large the OSET frequencies calculated 

had too great a variance to be considered accurate.  Emphasis was placed on finding the 

most best usable range.  

 At a given input frequency Ωk, the steady state amplitude of the response y is 

given by:  
2222 )2()( knnkn
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ξωω
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     (3.4) 

The unknown parameters in the above equation are  nn ξω ,  and Pn. It is importmant to 

note that the above equation is valid for a transfer function relating the input force to the 

output displacement otherwise the amplitude needs to be scaled by the appropriate power 

of Ωk to transform the equation into the above form. 

Eq (3.4) can be written as: (Notice the scale factor) 
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0223 =− nkkk PADA          (3.5) 

Substituting Dk of Eq (3.5 ) results in  
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When this equation is solved over a range of frequencies Ωk using least squares 

solution resulting the following equations used to compute modal parameters of the data 

set (Rinawi & Clough). 
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         (3.7) 

During programming it was noticed the correct frequency was identified without 

identifying the correct damping ratio.  Since frequencies were more important in this 

experiment the issue of incorrect damping ratio was not explored.    
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IV. SENSITIVITY–BASED UPDATING WITH ARTIFICAL 
BOUNDARY CONDITIONS 

A. SENSITIVITY MATRIX DEFINED 

In addition to the problem of not being able to measure enough parameters to 

have a determined system of equations needed to properly update a FE model, there 

exists a problem with determining exactly what parameters are in error and in need of 

adjustment.  Sensitivity-based updating is used to localize those parameters that require 

adjustment.  

Simply stated the equation for sensitivity - based updating is  

{ } [ ]{ }2 T DVω∆ = ∆         (4.1) 

where { }2ω∆ is a vector of eigenvalues λ, ( λ = ω2) errors. The errors are the difference 

between the experimental eigenvalues and the analytical eigenvalues{ }2 2
x aω ω− , “x” 

represents the experimental data, “a” represents the analytical data. {DV} is the vector of 

design parameters, which are adjustable for the FE model.  The vector represents location 

and quantity of change. [T] is the sensitivity matrix. The following section 

mathematically derives the sensitivity matrix used in this thesis.  

B. SENSITIVITY MATRIX MATHEMATICALLY DERIVED 

The sensitivity analysis used in this thesis is based on parametrizing the 

eigenvalue problem.  

Consider a conservative n DOF system defined by  

( ) ( ) ( ) ( )M DV x t K DV x t+&& 0=        (4.2) 

and the related eigenvalue problem 

[ ]{ } { }0i iK Mλ− Φ =          (4.3) 

The design parameter DV represents the change in mass matrix [M] and/or the 

stiffness matrix [K].  It is shown that [M] and [K] are dependent on the parameter as are 

the eigenvalue λi , modal frequency squares and eigenvalue Φi, mode shape. 
27



The derivation of the sensitivity matrices began with the differentiation of 

eigenvalue problem with respect to parameter DV,  

{ } [ ] { }0i
i i i

ddK dM M K M
dDV dDV dDV dDV

λλ λ Φ⎡ ⎤ ⎧− − Φ + − =⎨ ⎬⎢ ⎥⎣ ⎦ ⎩
id ⎫
⎭

                (4.4) 

Expand each term and premultiply by{ , for Eq (4.5) }T
iΦ

{ } { } { } { } { } [ ]{ } { } [ ] { }0T T T Ti i
i i i i i i i i i

d ddK dM M K M
dDV dDV dDV dDV

λλ λ Φ⎧ ⎫⎡ ⎤ ⎡ ⎤Φ Φ − Φ Φ − Φ Φ + Φ − ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎩ ⎭
=

 

Using the property { } [ ]{ } { } [ ]{ }T Ta b c c b a=  the last element of Eq (4.5) can be 

written as  

[ ]{ }
T

i
i

d K M
dDV

λΦ⎧ ⎫ − Φ⎨ ⎬
⎩ ⎭

i         (4.6) 

Since [ ]{ } { }0i iK Mλ− Φ = , the overall equation is reduced  

  

{ } { } { } { } { } [ ]{ } { }0T T Ti
i i i i i i i

ddK dM M
dDV dDV dDV

λλ⎡ ⎤ ⎡ ⎤Φ Φ − Φ Φ − Φ Φ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
=  (4.7) 

Using orthogonality, [ ] [ ][ ]T MΦ Φ  = 1, Eq (4.7) is reduced  

{ } { } { } { } { }0T T i
i i i i i

ddK dM
dDV dDV dDV

λλ⎡ ⎤ ⎡ ⎤Φ Φ − Φ Φ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
=    (4.8) 

The terms of Eq(4.8) are recombined for the following,  

{ } { }Ti
i i

d dK dM
dDV dDV dDV
λ λ⎡= Φ − Φ⎢⎣ ⎦

i
⎤
⎥       (4.9) 

Rearranging Eq 4.9 to solve for dDV in terms of known parameters, [K], [M], and λ 

{ } { }
i

T
i i

ddDV
dK dM

dDV dDV i

λ

λ
=

⎡ ⎤Φ −⎢ ⎥⎣ ⎦
Φ

      (4.10) 
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From Eq (4.10) it can be deduced that the associated sensitivities for [K] and [M] are as 

follows:  

Stiffness sensitivity { } { }T
i

dK
dDV
⎡ ⎤= Φ Φ⎢ ⎥⎣ ⎦

i      (4.11) 

where [ ] [ ]x adK K K= −         (4.11a)  

and  

Mass sensitivity { } { }T
i i

dM
dDV

λ⎡ ⎤= Φ − Φ⎢ ⎥⎣ ⎦
i      (4.12) 

where [ ] [ ]xdM M M= − a         (4.12a)  

 

C. SENSITIVITY MATRIX USED IN ERROR PREDICTIONS OF A SIMPLE 
CANTILEVER  

A sensitivity matrix can be described in words as how one element is affected by 

a small change in another element. As part of validating the usage of ABC configured 

systems in FE model updating a MATLAB simulation was conducted using a cantilever 

beam.  The beam represented the physical and material properties of the actual beam used 

in the experiment application which will be discussed in the following section.  The beam 

was 42 inches in length, 1.5 inches wide and 0.5 inches in thick, density of 0.11 lbf/in3 

and elasticity modulus of 10 E6 lbf/sec2-in and only 10 elements, yielding a total of 20 

DOF after original boundary conditions were applied. The quantity of 10 elements was 

chosen for ease of comparison between an underdetermined system and a fully 

determined system of equations.  

  

Figure 13.   FE model of cantilever beam with Accelerometers at DOF 
[1,3,5,7,9,11,13,15,17,19]  
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A series of computer programs were written to perform the MATLAB simulation.  

All programs are provided Appendix B. In the simulation, two beams are created: Beam 

A (represents Analysis or FE Beam), Beam X (represents experimental beam).   A known 

mass or EI is applied to Beam X on a specific element.    Although the quantity and 

location of the “error” was known it was assumed not to be, thus a sensitivity matrix was 

developed to account for any error location.  

Recalling Eq (4.12, 4.12a), a small change or perturbation of 1% mass was 

applied to each element one element at a time of the [M] without the error added. The 

perturbated [M] was considered [Mx], while FE model [M] was considered baseline or 

[Ma] for the purpose of calculating[ ] [ ]x adM M M= − .  Once [dM] was calculated the 

corresponding column of sensitivity matrix, [T] was calculated using Eq. (4.12). Each 

subsequent column of [T] was calculated using the same perturbation quantity but on a 

new corresponding element. The stiffness sensitivity matrix was calculated using the 

same procedure except for applying perturbation of 1% of EI to the stiffness matrix and 

using Eq. (4.11).  For full details on the development of sensitivity matrix refer to 

BeamSensitivity_crs.m in Appendix B.  

Once both of the sensitivity matrices [T(M)] & [T(K)] were developed of size m x 

p , where m is the number of modes and p is the number of elements,  a complete [T] was 

assembled, size m x 2p, yielding changes in mass in the first 10 elements of {DV} and 

changes in EI in the last 10 elements of {DV} for the baseline configuration.   

For each ABC system a new set of rows are created in { }2ω∆  and [  thus 

obtaining more set of equations in  

]T

2

12
11

2

BASE BASE

ABCABC

n
ABCnABCn

T
dV

T

dV
T

ω

ω

ω

⎧ ⎫∆ ⎛ ⎞
⎧ ⎫⎪ ⎪ ⎜ ⎟∆⎪ ⎪ ⎪⎜ ⎟=⎨ ⎬ ⎨⎜ ⎟⎪ ⎪ ⎪⎜ ⎟⎩ ⎭⎪ ⎪∆ ⎝ ⎠⎩ ⎭

M
MM

⎪
⎬
⎪

       (4.13) 

It is desired to have a fully determined set of equations for the best prediction of 

error quantity and location.  In the MATLAB simulation, DOF [1,3,5,7,9,11,13,15,17,19] 

were considered equipped with accelerometers and thus the only DOF available for 
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pinning. For a given error the simulation applies a pin at each accelerometer location, one 

at a time, and calculates the new natural frequencies and respective [T], resulting in 10 

ABC configured { }2
ABCω∆ and [ ]ABCT  for each type and location of error.    

A comparative analysis was conducted on the accuracy of error prediction with 

respect to error location and ABC used. The simulation compared mode shape 

differences or relative frequency errors between Beam A and Beam X, Norm of the 

columns and rows of the sensitivity matrix used in error prediction, the rank of [T] and 

figure of merit based on relative sum error.  However, only the figure of merit gave any 

pseudo relationship between error location, ABC system used, and the accuracy of the 

error prediction.   

The formula used for figure of merit (FOM) is  

{ }

2

2

1

n
cal

inumelem
cal

i

DV
error

FOM
DV
error=

⎛ ⎞
⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
       (4.14) 

where error is the actual % error added to beam,  
i

calDV
error

⎧ ⎫
⎨ ⎬
⎩ ⎭

 is the normalized predicted 

design variable vector of whole beam, 
n

calDV
error

⎛ ⎞
⎜
⎝ ⎠

⎟  is the normalized predicted design 

variable at actual location of error. All elements are squared to compensate for leakage 

defined as prediction of error on other elements and in order for the sum of all elemental 

predictions to be equal to the actual error.  It was noticed that if the elemental predictions 

were simply summed the negative leakage canceld out the positive leakage yielding false 

accurancy of the overall prediction.  Although, this formula was not as accurate as 

desired but it was sufficient in reducing the large quantity of calculations in order for the 

most accurate predictions to be further studied.  
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Even though twenty plots, each with 6 distinct scenarios, were generated to 

demonstrate the accuracy of error prediction with respect to error location and ABC 

system used, only four are shown in the following examples. The results of all 120 



scenarios are located in Appendix A in the form of 6 FOM tables. The tables show all 

ABC configurations and the modes used in error prediction versus the type and location 

of error added to Beam X.  The best representations of trends are exhibited by applying 

each type of change, mass or EI, to each end of the beam separately.  

1.  Error Prediction:  Example 1 

This example is of 10 % mass change applied to element 2 at the root end of the 

beam, node 11 pinned, shown in Figure 14.   

 

 

 

 

2  

mass 
10% 

  

Figure 14.   Diagram of Cantilever beam 10% change in mass applied to element 2, 
Node 11 pinned 

 
 

In order to correctly read the next two bar graphs the following information is 

given.  The yellow circle indicates the actual mass error in location and magnitude. The 

blue bars indicate the magnitude of the error for each element predicted using only the 

first 5 modes of the base system in development of the [T].  

The graphs on the left represent the development of { }2
ABCω∆  and ABCT⎡⎣ ⎤⎦  using 

only 5 modes of the ABC system, shown is ABC 10, node 11 pinned. Thus the system of 

equations { } [ ]{ }2 T DVω∆ = ∆  is underdetermined. The plots on the right represent the 

development of { }2
ABCω∆  and ABCT⎡⎣ ⎤⎦  using the first 5 modes of the BASE system, in 

addition to 5 modes of the ABC system. The top row of graphs represents the use of 

modes [1:5] of the ABC system; middle row, modes [6:10] and bottom row, modes 

[11:15].   For each subplot the condition number of [T] used and FOM of prediction are 

labeled.  
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Figure 15.   Plots of Error Prediction 10% change in mass applied to element 2, Node 

11 pinned 
 

In this case the error prediction using the first 5 modes of the baseline system 

provided a highly accurate result, FOM 100 with a [T] condition of 3370. Another highly 

accurate error prediction with a FOM of 100 was given by using the first 5 modes of the 

ABC system, node 11 pinned.  However, the condition of this ABC system [T] was 433, 

suggesting nothing of a relationship between Cond (T) and accuracy of error prediction.  

It was stated previously that the FOM formula was not completely accurate or 

sufficient. It was merely a method of reducing a large collection of data to a better handle 

collection for further study.  This insufficiency is seen in a comparison between the error 

predictions using only the second 5 modes of ABC system, modes: 6-10 where the size of 

[T] is 5 by 10 and using the same 5 modes of the ABC system in combination with the 
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first 5 modes of the baseline system, where [T] is 10 by 10.  The underdetermined of 

ABC modes alone has a FOM of 0 due to the fact that there is no error prediction on the 

correct element.  The determined ABC + Base system has a FOM of 16 due to the fact 

that there is a small error prediction on the correct element.  The FOM of these two 

system suggests that the ABC + Base system is the better error prediction even though 

the error prediction for the rest of beam is far worst than the beam error prediction of the 

underdetermined ABC only system.  However, the FOMs a good job of precluding the 

respective system set-ups from further study, seeing that neither system is accurate 

enough to validiate further study. 

2.  Error Prediction:  Example 2 

This example is of 10 % mass change applied to element 8 at the free end of the 

beam, node 11 pinned, shown in Figure 16.   

 

8   

mass 10% 

Figure 16.   Diagram of Cantilever beam 10% change in mass applied to element 8, 
Node 11 pinned 

 

The following error prediction graphs are displayed in the same fashion as those 

in Figure 15. The disparities between the graphs are based solely on the location of the 

error. 
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Figure 17.   Error Prediction Plots for a 10% change in mass applied to element 8, 
Node 11 pinned 

 

In this case the error prediction using the first 5 modes of the baseline system 

provided a highly inaccurate result, FOM 0 even though the condition [T] remained the 

same at 3370. The most accurate prediction was the system of ABC modes (1:5) + Base 

modes (1:5). This system had a FOM of 100 and a Cond ([T]) of 7333.  The condition 

numbers of ABC (11:15) system, Cond(T) of 92  and ABC(11:15) +Base (1:5) system, 

Cond(T) = 9.05e5, suggest that a relationship between accuracy and condition of [T] does 

not exist.  
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3.  Error Prediction:  Example 3 

This example is of 10 % EI change applied to element 2 at the root end of the 

beam, node 11 pinned, shown in Figure 18.   
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Figure 18.   Diagram of Cantilever beam 10% change in EI applied to element 2, Node 
11 pinned 
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Figure 19.   Error Prediction Plots for a 10% change in EI applied to element 2, Node 
11 pinned 
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Similar to Example 2, in which a  10 % mass change added to an element at the 

free end of the beam, this situation yielded an highly inaccurate error prediction using the 

first 5 modes of the baseline system, FOM 0 even though the condition [T] remained the 

same at 3370. Also as in example 2, the most accurate prediction of this situation was the 

system of ABC modes (1:5) + Base modes (1:5). This system had a FOM of 100 and a 

Cond ([T]) of 7279.   However, unlike the example 2, the current ABC (6:10) +Base (1:5) 

system, has an accurate error prediction with a FOM of 99.  

4.  Error Prediction:  Example 4 

This example is of 10 % EI change applied to element 8 at the free end of the 

beam, node 11 pinned, shown in Figure 20.   

 

  

8   

EI 10% 

 

 

 

Figure 20.   Diagram of Cantilever beam 10% change in EI applied to element 8, 
Node11 pinned 

 

In this last example a similar trend is visible. The Base (1:5) system yields an accurate 

error prediction similar to that of example 1.  However, ABC (1:5) + Base (1:5) and ABC 

(11:15) + Base (1:5) and ABC (11:15) systems all have FOM of 100 and prove to predict 

accurate error location and quantity without great leakage of error onto adjacent 

elements. Even ABC (6:10) + Base (1:5) system has a FOM and has only small leakage 

of error onto other beam elements.  
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Figure 21.   Error Prediction Plots for a 10% change in EI applied to element 8, 
Node11 pinned 
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V. EXPERIMENTAL APPLICATION 

Previous section discussed in length the role of ABCs in error prediction and 

localization using a MATLAB simulation of a cantilever.  This section explores the 

accuracy of OSET frequencies when ABCs are applied to experimentally measured 

spatially incomplete data. For comparison of data a FE model was created with the same 

dimensional and material properties of the cantilever beam used in the experiment.  The 

FE model had 42 elements and 43 nodes for a total of 86 DOF before original boundary 

conditions (BC) were applied and reduced the DOF to 84.  

A. CANTILEVER BEAM AND EQUIPMENT SETUP 

A block of steel 18 inches in length, 8 inches wide and 2 inches thick was placed 

on a platform as a foundation.  The cantilever beam made of T-6061 Aluminum, 48 

inches in length, 1.5 inches wide and 0.5 inches thick, density of 0.11 lbf/in3 and 

elasticity modulus of 10 E6 lbf/sec2-in was then placed on top of foundation steel with 42 

inches of length extending over the edge of the foundation steel.  Two shorter length steel 

beams, each 6 inches long, 2 inches wide and 1 inch thick were used to access in the 

elimination platform generated modes.  One short steel beam was placed above the 

Aluminum beam and another was placed beneath the platform.  In order to represent a 

simply supported cantilever, C-clamps were used to clamp the Aluminum beam and 

associated steel pieces in place as shown in Figure 22.  

 

 

 Steel 

 Aluminum 

  Platform 

 

Figure 22.   Diagram of Cantilever beam laboratory set-up 
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The beam consisted of 42 elements, each 1 inch in length; this corresponded to FE 

model element quantity and length. A Series 336 FLEXCEL ICP accelerometer was 

threaded into position at node 41 of the beam and wired into Channel 2 on a DACTRON 

Focus front end digital signal processor (DSP).  An excitation was applied by a load cell, 

which was wired into Channel 1on the DSP. The accelerometer was calibrated and 

sensitivity adjustment applied in the set-up of RT Pro Focus 5.57 software.  

B. DATA COLLECTION 

Using DACTRON RT Pro Focus 5.57 software, FRFs were collected when the 

roving force was applied by the load cell at each node.  Node 41 remained the reference 

as the load cell roved from one node to next allowing for the measurement of the 

response at each node. Due to this set-up only one column or row of the complete FRF 

matrix [H] was actually measured.  The feasibility of measuring such a small quantity of 

data is explained in the next section.  

1. A RT Pro Focus 5.57 software “Real-time” project was configured to measure 

3200 spectral lines, 8192 points, with a delta T of 166.7µs over the frequency range 0-

2400Hz.  The frequency range of 0-2400 Hz was chosen because it covered the first 10 

modes of system and signal resolution was sufficient for data acquisition. The excitation 

signal proved to be clean and thus no window was used for data measuring. 

2. Channel set-up 

   Channel 1 (Excitation) Channel 2(Response) 

Max Volts (mV):  0.1    0.3 

Quantity:   Force    Accel. 

EU:    lbf    gn 

mv/EU:   9.48    101.3 

Coupling:   ICP AC 7.0 Hz   ICP AC 7.0 Hz 

Sensitivity Adjustment: 0    -0.3710 
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3. Trigger set-up  

Source: Analog input 

Run Mode:  Manual Arm every frame 

Input:  Channel 1 

Slope:  Bi-polar 

Level (%):  1, Level (V): 0 

Pre/Post Points (-/+):  -10 

Pre/Post Time (-/+):  -1.67µs 

 

4. Average set-up:  

Type: Linear  

Domain:  Frequency  

Frames: 5  (Each node was excited 5 times and an average taken and saved.) 

Accept/Reject: Manual Accept/Reject every frame.  

 (The user rejects double taps, under powered or overloaded signals.) 

 

5. Modal Coordinate set-up: 

Auto increment: ON 

Rove: Excitation 

Point increment: 1 

Export: UFF text format, frequency response.  

 
C. DATA ANAYLSIS  

Since the procedure for picking OSET frequencies involved inverting the 

complete FRF matrix after ABC are applied, smooth FRF signals were ideal.  Since the 

FRFs measured were only one column or row of the complete FRF matrix, the complete 

FRF matrix was developed by synthesizing the measured FRFs.  The smoothing of the 

FRFs was achieved through curve fitting the measured FRF. ME’Scope’VES was used to 

analyze, curve fit and synthesize FRFs. 



Once all of the FRFs are imported collectively as a “Data Block” into 

ME’Scope’VES ensure that each trace is labeled correctly in the DOF column.  The label 

should read Roving: Reference, i.e. excitation at node 1 with reference at 41 is 1Z:41Z, Z 

indicates the axis of motion. In this experiment the Z-axis is the vertical axis.  

Under “Modal Parameters” from the “Modes” drop down menu there are three 

steps used to curve fit and synthesize the data block.  

Step 1 - Count peaks. With all traces selected, “Count peaks.” Ensure the peak 

count is the correct quantity of natural frequencies in the frequency range measured, 

peaks = 10 in this experiment. Also ensure the correct location of peaks.  To capture more 

or less peaks move the horizontal bar accordingly and recount.  Once the correct quantity 

and location is counted proceed to step 2. 

Step 2 – Frequencies and damping. The polynomial method was used globally to 

curve fit the data block.  This method uses four extra polynomial terms to compensate for 

modes not measured.  After clicking the “F&D” button a list of damped natural 

frequencies and % damping ratios was displayed.  Check for accuracy of curve fit by 

selecting “Display, Fit Functions” from “Modes” drop down menu. The curve fit 

functions for measured FRFs are displayed in Figure 23.  

 

Figure 23.   Driving Point Function (41Z:41Z)                                                              
Measured FRF = black, Curve Fit  = red 
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Step 3 – Residues and Mode Shapes.  With all traces still selected, create 

“Resides” using polynomial method and save corresponding mode shapes as a Shape 

Table file (*.shp), ensuring all residues are selected.  

In order to save mode shapes in the proper format to be used with MATLAB 

simulation, 1) display the Shape Table file in “Co-Quad” which displays real and 

imaginary parts not magnitude and phase of the mode shapes and 2) “Save as ASCII, 

ASCII text file (.txt).” Attached MATLAB code, Hresidues.m explains in detail the final 

steps in the proper preparation of shape table file for use with MATLAB. 

Once the mode shapes have been saved the synthesized FRFs can be displayed by 

selecting “Synthesize FRFs…” from the Data Block’s “Modes” drop down menu or the 

Shape Table’s “Tools” drop down.  These synthesized FRFs are displayed in Figure 24. 

 

Figure 24.   Driving Point Function (41Z:41Z) Measured FRF = black, Synthesized 
FRF = green 
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The disparity between the synthesized FRF and measured FRF in the locations of 

the anti-resonances was an area of great concern because of the importance of the anti-

resonance with the inversion of FRF matrix when ABCs are applied.  It was believed that 

the synthesized FRF matrix would not yield accurate OSET and more data would be 

required to complete the study of ABC in damage detection.  

The discrepancy between the synthesized FRF and the curve fit FRF was due to 

the extra polynomial terms used in curve fit equation but not in the synthesis equation. 

Synthesized FRF are necessary due to the fact that only one column of the 

complete FRF matrix was measured but a complete FRF matrix was needed.   The 

following formula shows why only one row or column of the FRFs needs to be measured 

in order to completely represent the resonant vibration of a structure in terms of its 

modes. This formula is utilized by ME’Scope’VES in calculating the synthesized FRF 

Matrix whose driving point FRF is shown in Figure 24. 

 

[ ] [ ] *
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( )( )
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( ) ( )
modes
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R kR k
H

j p k j p k=

⎡ ⎤⎡ ⎤⎣ ⎦⎢Ω = +
Ω+ Ω+⎢ ⎥⎣ ⎦

∑ ⎥         (5.1) 

[H(Ω)] = FRF matrix (nxn) 

Ω = forcing frequency 

p(k) = pole location for the kth mode = -σ(k) + jω(k) 

σ(k) = modal damping for the kth mode = ω(k)ζ(k)/(1-ζ(k)2)½

ω(k) = damped natural frequency for the kth mode 

ζ(k) = percent of critical damping for the kth mode 

[R(k)] = Residue matrix for the kth mode (nxn) = A(k){Φ(:,k)}{Φ(:,k)}T

{Φ(:,k)} = mode shape for the kth mode (n-vector) 

A(k) = scaling constant for the kth mode 

n – number of DOFs of the FRF model 

* = denotes complex conjugate 

j = denotes imaginary axis in the complex plane 

T = denotes transposed vector 
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Since mode shapes have unique internal relationships and not value, the scaling 

constant A(k) can always be chosen so that A(k) =1. With A(k) = 1, the equation 

simplifies so that,   

[ ]
{ }{ } { }{ }* *

*1

(:, ) (:, )(:, ) (:, )
( )

( ) ( )

TT

modes

k

k kk k
H

j p k j p k=

⎡ ⎤⎡ ⎤⎡ ⎤ Φ ΦΦ Φ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣Ω = +⎢ ⎥Ω+ Ω+⎢ ⎥⎣ ⎦

∑ ⎦    (5.2) 

 

A simulation was conducted using the natural frequencies, damping ratios and 

residues generated by ME’Scope’VES.  The plots generated from said simulation verified 

proper use of the above equation and allowed for the comparison to be completed using 

only MATLAB generated data.  

A MATLAB simulation was used to find the effects of quantity of modes used in 

the calculation of the synthesized FRF matrix and the accuracy of the OSET frequencies 

when said synthesized FRF matrix was used in conjunction with ABC. 

The FE model contained the given dimensions and material properties of the 

laboratory beam.  The FE model was composed of 42 elements with 43 nodes (2 DOF per 

node for 86 DOF total before cantilever boundary conditions (BC) reduced the DOF to 

84.) 42 elements corresponded to the locations of excitation on the beam and made for an 

easier comparison.  

There are a few differences between the formula ME’Scope’VES used and the 

formula coded for MATLAB use. 

1. Mode shapes {Φ(:,k)} is real, {Φ*(:,k)}  = {Φ(:,k)}  

2. σ(k) = 0, p(k) = jω(k) and p*(k) = - jω(k) 

3. A (k) = 1. Scaling is wrong but the trend of the synthesized [H] remains 
the same.  
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The following three plots show the convergence of the anti-resonance with 

respect to the quantity of modes used in the development of synthesized FRF matrix in 

MATLAB.   

Figure 25 is of the driving point function (41Z:41Z). Notice the shift of the anti-

resonance to the left.  This shift would indicate at first glance that more modes make the 

synthesized FRF less accurate since the anti-resonance of the measured FRF is to the 

right.  This quick analysis of the plot is inaccurate and will be proved as such later.  

Before that discussion other FRF should be studies to see what, if any, difference exist in 

the synthesized FRF with respect to location on beam.    

 

0 100 200 300 400 500 600 700
-10

-5

0

5

Hz

lo
g 

M
ag

Syn FRF for 41Z:41Z

Modes sum = 42
Modes sum = 30
Modes sum = 20
Modes sum = 10

Figure 25.   MATLAB Synthesized Driving Point Function (41Z:41Z) 

46



Figure 26 shows the MATLAB synthesized FRF of 31Z:41Z.  Notice the quick 

convergence of the anti-resonance locations.  This FRFs only ten inches away from 

Driving point and the effects of the quantity of modes used are considerable less visible.  
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Figure 26.   MATLAB Synthesized FRF (31Z:41Z)  
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In the last plot, Figure 27 which is the MATLAB synthesized FRF of 21Z:41Z, 

the plots of corresponding quantities of modes used in synthesis nearly lie top each other.  

This absence of convergence suggests that the effects of the quantity of modes used in 

synthesis become considerably less important as the distance from the driving point 

increases.  
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Figure 27.   MATLAB Synthesized FRF (21Z:41Z)  
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An evaluation of the accuracy of the OSET frequencies when ABCs were applied 

was conducted using a MATLAB simulation.  The simulation obtained OSET 

frequencies of the cantilever beam system:  

1) The actual application of the boundary condition, a pin at node 41, to 

the [K] and [M] and solving for natural frequencies. 

2) Synthesis of [H], keeping the pinned DOF, inverting [Haa] and plotting 

the coordinating impedance matrix, [Z] over the range of 1-600Hz.  

The smaller range was used for great definition of plots.   

Figure 28. shows the overlaying plots of inv [Haa], each plot represents a different 

quantity of modes used in the synthesis of [H].  The vertical red lines capped with circles 

represent the actual frequencies of the system with node 41 pinned.   
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Figure 28.   Comparison of OSET Frequencies using inv [Synthesized] and Actual 
Natural frequencies of the system, pin at node 41.  
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The convergence of the plots increases as the number of modes used in synthesis 

is increased thus the improving the accuracy of OSET frequencies.  As seen in Figure 28 

the higher natural frequencies require a higher quantity of modes to be used in the 

synthesis of [H].  This conclusion is expected; however, Figure 28 also verifies the use of 

synthesized FRFs in combination with ABCs which is contrary to the expected result 

from Figure 24, the comparison plot of the synthesized driving point FRF and the 

measured driving point FRF.  However, synthesizing the complete FRF matrix in 

ME’Scope’VES was difficult due to a unit problem. If time would have permitted a 

complete FRF matrix using ME’Scope’VES residues would have been synthesized by a 

MATLAB program, Hresidues.m and an error localization would have been performed 

between the most accurate FE model and the measured data.  

Since this comparison was not completed and it is recommended that such a 

comparison be run to validate ABC usage in combination with sensitivity based model 

updating with actual measured data.  
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VI. CONCLUSIONS AND RECOMMENDATIONS 

Previous works had verified the use of artificial boundary conditions as a method 

of obtaining additional system frequencies from a single experimental database for 

improved error localization.   The main objective of this thesis was to find a relationship 

between the accuracy of error location and the artificial boundary conditions used in 

frequency acquisition.  

A. CONCLUSIONS 

The following conclusions can be drawn from the analyses presented of ABC 

configured systems in combination with sensitivity updating: 

1. The improvement of error prediction with respect to ABC is relative to the 

actual location of discrepancy between the model and actual structure.  

a. The underdetermined baseline system utilizing only the first 5 modes 

predicted with high accuracy if the error was a Mass error near the root 

end or an EI error near the free end. 

b. In general, the addition of ABC system frequencies improved the error 

prediction when error was a Mass error near the free end or an EI error 

near the root end. 

2. An accurate method of evaluating accuracy of error prediction with respect to 

ABC configuration was not satisfactorily found. 

a. The relationship between the mode shapes of the Beam A and Beam X 

with ABC applied did not provide a good avenue of comparison of the 

accuracy of error prediction.  

b. A relationship between the condition of the sensitivity matrix and 

accuracy of error prediction was not found in this study.  

c. The FOM formula used to evaluate the 600 cases run in MATLAB 

simulation accounted for accuracy of location of error in spite of 

magnitude of the error.  
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The following conclusions can be drawn from the experimental data collection: 

1. Synthesized data from Me’Scope’VES has an accuracy high enough to 

yield accurate OSET frequencies if enough modes are measured. 

However, synthesizing complete FRF matrix was difficult due to unit 

problem.  

B. RECOMMENDATIONS 

The following are areas of recommended improvement to continue with this field 

of study. The first three are recommendations for improving sensitivity-based error 

localization.  

1. Apply two or more changes in varying locations and evaluate error 

localization with respect to ABC systems. 

2. Build a sensitivity matrix by applying a perturbation to every other 

element and evaluate error localization.  

3. Research more accurate methods of evaluating error localization.  

4. Before data measuring conduct a MATLAB analysis to find the quantity 

of modes needed for convergence of anti-resonances.  This would improve 

OSET frequency calculations and reduce time in laboratory.  

5. Explore how to synthesis a complete FRF matrix using ME’Scope’VES.  

6. Since a comparison between real data and FE data was not completed and 

it is recommended that such a comparison be run to validate ABC usage in 

combination with sensitivity based model updating with actual measured 

data.  

 

 
 

 
 



APPENDIX A 

The following tables for Figure of Merit (FOM) Charts for 10% change either in 

Mass or EI applied to elements 1:10, but only one change and element at a time. Each 

columns represents the elements the change is located.  Each row represents system used 

to predict the error. The FOM formula is located in Chapter IV.  FOMs of 100 are 

highlighted. 

  Element where the MASS Error is located  

  1 2 3 4 5 6 7 8 9 10
BASE 69 28 65 0 6 74 21 29 40 72
ABC 1 100 89 94 92 93 94 96 96 98 97
ABC 2 97 90 92 79 80 89 92 95 94 99
ABC 3 46 29 30 18 34 16 14 3 33 19
ABC 4 33 19 85 82 53 71 52 27 93 49
ABC 5 37 13 0 7 5 58 75 11 29 34
ABC 6 98 98 95 98 99 99 98 98 97 97
ABC 7 98 97 99 98 98 99 98 87 98 89
ABC 8 36 50 70 3 59 61 18 51 44 55
ABC 9 75 90 92 74 72 97 46 43 25 14

ABC 10 92 95 99 90 90 99 89 72 82 99
Table 1. FOM of MASS Error Prediction using 10 modes of each system. 

 
 

 

  Element where the EI Error is located  

  1 2 3 4 5 6 7 8 9 10
BASE  77 27 38 12 52 23 3 6 9 74
ABC 1 100 96 92 95 73 50 53 81 95 85
ABC 2 93 99 48 36 29 4 1 0 69 1 
ABC 3 53 0 96 4 6 3 1 4 8 2 
ABC 4 64 56 63 64 27 43 15 14 77 39
ABC 5 0 2 0 8 68 0 5 1 1 0 
ABC 6 99 99 97 97 98 96 99 99 91 97
ABC 7 97 98 97 96 95 90 93 99 95 90
ABC 8 99 99 95 93 93 98 99 99 98 96
ABC 9 98 99 98 93 94 96 99 97 98 100

ABC 10 99 99 99 98 98 99 99 98 96 95

Table 2. FOM of EI Error Prediction using 10 modes of each system. 
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    Element where Mass Error is located. 
    1 2 3 4 5 6 7 8 9 10 
  Modes   

1:5 100 77 60 52 47 34 53 64 48 8 
6:10 100 94 86 37 25 1 9 19 98 33 

ABC 1+Base (1:5) 11:15 4 3 1 8 12 14 36 1 19 0 
1:5 100 98 97 67 81 71 69 92 67 27 

6:10 16 5 85 80 85 83 43 84 82 84 
ABC 2 +Base (1:5) 11:15 29 42 73 81 97 90 96 63 87 96 

1:5 100 0 4 7 5 11 4 18 7 1 
6:10 56 76 15 93 65 73 78 58 88 78 

ABC 3 +Base (1:5) 11:15 87 78 91 98 95 99 94 100 98 99 
1:5 100 97 100 99 100 92 94 100 93 78 

6:10 7 69 85 53 43 23 43 2 65 9 
ABC 4+Base (1:5) 11:15 92 71 54 66 93 89 98 83 86 97 

1:5 1 2 9 19 17 18 18 1 2 0 
6:10 34 39 12 66 0 52 1 5 52 24 

ABC 5+Base (1:5) 11:15 92 66 23 14 88 95 12 0 15 96 
1:5 100 98 100 100 100 98 97 98 99 87 

6:10 72 90 53 98 72 82 72 84 49 80 
ABC 6+Base (1:5) 11:15 93 96 61 93 97 99 93 83 59 99 

1:5 100 10 19 3 96 95 100 11 6 2 
6:10 48 90 89 88 19 56 72 23 7 23 

ABC 7+Base (1:5) 11:15 87 72 72 72 99 51 63 81 47 64 
1:5 100 96 99 97 84 62 40 97 75 3 

6:10 64 66 28 1 59 37 97 94 5 6 
ABC 8+Base (1:5) 11:15 97 99 99 100 95 92 98 99 11 64 

1:5 100 46 48 100 39 97 100 3 3 0 
6:10 83 97 92 78 64 92 98 89 93 92 

ABC 9+Base (1:5) 11:15 100 99 60 90 84 88 99 75 83 10 
1:5 100 97 100 98 100 100 99 100 92 66 

6:10 4 16 32 5 19 11 78 28 1 17 
ABC 10+Base (1:5) 11:15 97 94 97 98 100 98 98 99 95 81 

  
Table 3. FOM of Mass Error Prediction using Base modes (1:5 ) and 5 modes from 

ABC system, (1:5), (6:10), or (11:15) 
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    Element where Mass Error is located. 
   1 2 3 4 5 6 7 8 9 10 
  Modes   

1:5 0 0 100 100 0 100 100 0 0 100 
6:10 0 97 0 98 97 93 0 0 0 99 

ABC 1 11:15 96 0 98 99 99 99 0 0 0 0 
1:5 0 0 0 100 100 100 100 0 0 100 
6:10 0 76 99 97 0 0 0 0 98 99 

ABC 2 11:15 80 71 97 0 0 0 0 97 91 0 
1:5 0 96 0 0 100 0 100 100 100 0 
6:10 0 0 85 97 99 96 0 0 0 97 

ABC 3 11:15 0 83 91 0 0 0 99 100 99 0 
1:5 0 0 100 0 0 100 100 0 100 100 
6:10 0 97 0 96 99 99 0 0 0 97 

ABC 4 11:15 0 0 81 83 97 0 0 0 98 99 
1:5 0 95 97 95 0 100 0 0 0 100 
6:10 57 0 87 0 0 76 92 0 0 94 

ABC 5 11:15 0 0 96 97 98 0 0 98 98 0 
1:5 0 100 0 100 100 0 0 100 0 100 
6:10 98 0 0 0 99 99 98 99 0 0 

ABC 6 11:15 0 0 0 100 100 0 0 98 95 100 
1:5 0 0 100 100 0 100 0 0 99 100 
6:10 97 0 0 0 96 99 97 85 0 0 

ABC 7 11:15 0 0 100 99 0 100 0 0 97 99 
1:5 0 99 100 0 100 100 0 0 0 99 
6:10 99 99 0 0 0 0 96 99 0 83 

ABC 8 11:15 99 100 99 0 0 94 0 0 0 31 
1:5 0 0 100 100 0 100 0 100 0 96 
6:10 97 0 0 0 94 0 97 0 96 98 

ABC 9 11:15 0 100 98 99 0 0 100 0 0 74 
1:5 0 100 100 100 0 100 100 0 0 0 
6:10 98 0 0 0 96 0 99 0 98 100 

ABC 10 11:15 99 98 0 0 100 96 0 99 0 0 
  
 

Table 4. FOM of Mass Error Prediction using 5 modes from ABC system, (1:5), 
(6:10), or  (11:15)  
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  Element where EI Error is located. 
  1 2 3 4 5 6 7 8 9 10
 Modes  

1:5 5 98 100 100 97 96 93 100 88 100
6:10 100 98 95 97 88 81 82 93 98 95

ABC 1 +BASE(1:5) 11:15 97 88 56 97 78 66 97 74 82 78
1:5 91 100 98 99 100 100 99 100 96 100
6:10 22 96 64 87 70 77 83 85 47 95

ABC 2+BASE(1:5) 11:15 37 94 97 74 86 81 91 91 81 91
1:5 15 41 97 48 88 97 98 98 75 100
6:10 8 13 49 97 24 1 2 64 38 5 

ABC 3+BASE(1:5) 11:15 13 2 11 21 0 19 10 5 2 7 
1:5 94 99 99 100 100 100 100 100 99 100
6:10 5 15 2 0 28 14 37 5 86 23

ABC 4+BASE(1:5) 11:15 70 0 11 92 99 76 98 29 86 96
1:5 1 2 41 17 50 2 26 3 2 42
6:10 6 82 0 34 63 48 7 1 11 43

ABC 5+BASE(1:5) 11:15 84 63 25 50 100 94 37 34 58 94
1:5 99 99 99 100 100 96 98 87 89 100
6:10 32 40 26 6 18 16 75 59 7 22

ABC 6+BASE(1:5) 11:15 100 94 95 99 98 99 100 68 81 99
1:5 98 100 100 100 100 98 96 97 85 100
6:10 76 87 59 17 24 70 81 99 78 35

ABC 7+BASE(1:5) 11:15 97 96 94 98 99 87 99 100 95 88
1:5 100 93 100 94 97 98 90 100 90 100
6:10 95 98 18 40 22 56 61 97 78 63

ABC 8+BASE(1:5) 11:15 92 97 86 99 92 72 95 89 98 9 
1:5 97 100 99 100 99 99 100 100 69 100
6:10 98 99 96 90 84 90 91 96 98 100

ABC 9+BASE(1:5) 11:15 99 87 93 94 97 91 99 90 97 95
1:5 100 100 100 100 100 100 100 100 100 100
6:10 99 99 97 97 97 98 92 91 75 95

ABC 10+BASE(1:5) 11:15 98 94 94 96 100 95 95 100 98 97
  

Table 5. FOM of EI Error Prediction using Base modes (1:5) and 5 modes from 
ABC system, (1:5), (6:10), or (11:15) 
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    Element where EI Error is located. 
    1 2 3 4 5 6 7 8 9 10 
  Modes   

1:5 0 100 0 0 0 100 100 100 100 0 
6:10 0 99 97 0 97 0 0 0 98 98 

ABC 1 11:15 0 94 96 99 0 0 99 0 0 100 
1:5 0 0 0 100 100 100 0 100 100 0 
6:10 90 0 0 98 0 96 0 0 98 98 

ABC 2 11:15 85 0 0 0 98 0 0 98 82 97 
1:5 0 100 0 100 0 0 100 100 100 0 
6:10 83 0 0 0 99 94 0 93 0 98 

ABC 3 11:15 98 88 0 0 99 0 99 100 0 0 
1:5 0 0 100 0 100 0 100 100 100 0 
6:10 83 93 0 0 0 97 0 89 0 98 

ABC 4 11:15 0 0 71 100 0 0 0 96 99 100 
1:5 0 0 0 0 0 100 57 100 16 100 
6:10 70 84 0 97 0 0 0 68 0 56 

ABC 5 11:15 0 0 92 92 0 0 0 92 95 99 
1:5 0 100 0 100 100 100 0 100 0 0 
6:10 99 0 98 0 99 0 0 0 99 96 

ABC 6 11:15 0 99 0 100 100 0 0 97 0 100 
1:5 0 0 100 100 0 100 100 0 98 0 
6:10 98 0 97 0 98 99 0 0 0 81 

ABC 7 11:15 0 0 100 99 0 99 0 0 96 100 
1:5 0 0 0 100 100 100 0 100 100 0 
6:10 99 99 0 0 92 98 0 0 90 0 

ABC 8 11:15 0 99 97 0 95 90 0 0 0 40 
1:5 0 0 0 0 0 100 100 100 99 100 
6:10 98 0 97 0 88 97 0 0 0 100 

ABC 9 11:15 100 99 0 0 0 0 100 97 0 100 
1:5 100 0 0 100 0 100 100 0 100 0 
6:10 99 0 0 0 95 0 99 0 98 100 

ABC 10 11:15 0 95 0 0 100 93 0 100 98 0 
  

 
Table 6. FOM of EI Error Prediction 5 modes from ABC system, (1:5), (6:10), or  

(11:15) 
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APPENDIX B 

ABCrunTHRU_crs.m 

 

% This program calculates the condition number of the following  
% sensitivity matrices used to calculate the DV (error prediction).  
% 1) Base system only 5 modes (underdetermined) 
% 2) ABC system 10 modes  
% 3) Base system 5 modes + 5 modes from ABC system 
% The last system is calculated 3 times.  Once for modes 1-5,  
% another for modes 6-10, and again for modes 11-15. 
% 
% This program is called from Build2Beams.m.  
% 
% Written by Constance R S Fernandez, Spring 2004 
% INPUTS 
% -------- 
% icnt_oset 
% T_sens_tot 
% vect_lam_tot 
 
% OUTPUTS 
% ------- 
% aa 
% dv_a,  dv_b,  dv_c 
% intervel 
% mode 
% startmode 
% ten 
% dv_cal_ABC - matrix 
% dv_calABCten - matrix 
% dv_cal_BasePlus - matrix 
% cond_ABC - matrix 
% cond_ABCten - matrix 
% cond_basePlus - matrix 
 
% ----INITIALIZATION------- 
 
abc = 0; 
ten = 1; 
intervel = 1; 
int_abc = 1; 
for aa = 1:icnt_oset +1 % number of conditions (base + ABC) 
    a_c = 1; % reinitialize for each ABC system 
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    for mode = 1:3 % 3 sets of modes per ABC system (10 element beam)  
        % (modes 1:5, 6:10, 11:15) 
        startmode = abc + a_c; 
         
        dv_a = [startmode: startmode+4]; % modes  
        dv_c = [ten:ten+9]; % the first 10 modes of each ABC system  
        % (modes 1-10 only) 
         
        if dv_a == [1:.25*size(T_sens_tot,2)]; % if sensitivity matrix  
            %has only 5 rows than the modes used are all 5, else modes  
            %used are first five (base) and a set of selected 5 modes  
            %of ABC system for a total of 10 modes.  
            dv_b = [dv_a];    
        else 
            dv_b = [1:.25*size(T_sens_tot,2), dv_a];     
        end 
        %---Base System only---(underdetermined) 
         
        % save DV calculates of as matrix for plotting  
        dv_cal_ABC(:,intervel) = T_sens_tot(dv_a,:)\vect_lam_tot(dv_a); 
        % condition number of Sensitivity matrix used in DV cal. 
        cond_ABC(intervel,1) = cond(T_sens_tot(dv_a,:)); 
         
        % ---Base + 5 modes of ABC system ---- 
        dv_cal_BasePlus(:,intervel) = T_sens_tot(dv_b,:)\vect_lam_tot(dv_b); 
        cond_basePlus(intervel, 1) = cond(T_sens_tot(dv_b,:)); 
         
        intervel = intervel + 1; 
        a_c = a_c + 5; % five modes used at a time 
         
    end % "mode" loop 
     
    % ---ABC system only ---- 
        dv_cal_ABCten(:,int_abc) = T_sens_tot(dv_c,:)\vect_lam_tot(dv_c); 
        cond_ABCten(int_abc,1) = cond(T_sens_tot(dv_c,:)); 
         
    int_abc = int_abc + 1; 
    abc = abc + 19; % advances to next ABC system, must change number "19"  
    % to reflect the number of DOF in beam.  This beam had 10 elements thus  
    % 19 DOF.  
    ten = ten + 19; % advances to next ABC system 
end % "aa" loop 
% ******************** END  ABCrunTHRU_crs.m  *********************** 
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AddLumpMass.m  
 
%  This script constructs a vector of lumped masses  
%  which is added to the diagonal of the BeamX mass matrix. 
%           Mass added to [mx] in Assemble2Beams.m 
% 
%  Written by Prof J.H. Gordis 
 
% Inputs needed 
% ----------------- 
% num_elements 
% mx 
 
% Outputs 
% ----------------- 
% mass_diag 
% mass_node 
% mass_coord 
% mass_DOF 
% mx - updated 
 
disp(' ');disp(' '); 
disp(' ********************************************************') 
disp(' ****          Lumped mass addition to beams         ****') 
disp(' ****  Lumpmass DOFs defined for UNRESTRAINED beams  ****') 
disp(' ********************************************************') 
 
% initalize 
if exist('mass_diag') == 0;  % define and apply lumped mass vector. 
 
add_mass = 'n'; 
add_mass = input(' Add lumped masses to BeamX ? (y/n) ','s'); 
 
% Initialize vector to add to [mx] diagonal. 
 
mass_diag = zeros(2*(num_elements+1),1);   
 
  while add_mass == 'y'; 
 
    mass_node = input(' Node number for lumped mass ? '); 
  
    mass_coord = input(' Translation or Rotation for lumped mass ? (t/r) ','s'); 
  
    if mass_coord == 't'; % Translational lumped mass 
        mass_DOF = 2 * mass_node - 1; 
    elseif mass_coord == 'r'; % rotational lumped mass 
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     mass_DOF = 2 * mass_node; 
 end 
  
 mass_diag(mass_DOF) = input(' Enter value of mass/inertia (in "lbf-sec^2/in" '); 
    % puts lumped mass on correct DOF 
 add_mass = input(' Add another lumped mass ?  (y/n) ','s'); 
    % can continue adding mass until 'n' is entered 
 
  end;   % End while loop 
 
end;   % End exist('mass_diag') 
 
mx = mx + diag(mass_diag);   % Add lumped masses to [mx]: 
 
% ********************  END ADDLUMPMASS.M  *********************** 
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Assemble2Beams.m 
 
% This program assembles the [K] and [M] matrices of 2 beams 
% Written by Prof Gordis 
% ~~~~~~~ ~~~~~~~~~~~~~~~~ 
 
% Inputs needed 
% ----------------- 
% ndof 
% num_elements 
% element_length 
% element_EI 
% element_mass 
 
% Programs needed: 
% ----------------- 
% fbeamkm 
 
% Outputs 
% ----------------- 
% ka ma kx mx 
% (all others cleared) 
 
 
% Loop over the two beams: 
% ~~~~ ~~~~ ~~~ ~~~ ~~~~~~ 
for icnt_beams = 1:2; 
 
  k=zeros(ndof,ndof); 
  m=zeros(ndof,ndof); 
 
% Loop over the number of elements in the structure: 
% ~~~~ ~~~~ ~~~ ~~~~~~ ~~ ~~~~~~~~ ~~ ~~~ ~~~~~~~~~~ 
 
  for elnum = 1:num_elements; 
 
    dof1=2*connect(elnum,1)-1; 
    dof2=dof1+1; 
    dof3=2*connect(elnum,2)-1; 
    dof4=dof3+1; 
 
% ... set up beamel function call: 
 
    l_temp = element_length;       % Using fixed element lengths 
    ei_temp = element_EI(elnum,icnt_beams); 
    m_temp = element_mass(elnum,icnt_beams); 
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    [kbeam,mbeam]=fbeamkm(l_temp,ei_temp,m_temp); 
 
    k(dof1:dof2,dof1:dof2)=k(dof1:dof2,dof1:dof2)+kbeam(1:2,1:2); 
    k(dof1:dof2,dof3:dof4)=k(dof1:dof2,dof3:dof4)+kbeam(1:2,3:4); 
    k(dof3:dof4,dof1:dof2)=k(dof3:dof4,dof1:dof2)+kbeam(3:4,1:2); 
    k(dof3:dof4,dof3:dof4)=k(dof3:dof4,dof3:dof4)+kbeam(3:4,3:4); 
 
    m(dof1:dof2,dof1:dof2)=m(dof1:dof2,dof1:dof2)+mbeam(1:2,1:2); 
    m(dof1:dof2,dof3:dof4)=m(dof1:dof2,dof3:dof4)+mbeam(1:2,3:4); 
    m(dof3:dof4,dof1:dof2)=m(dof3:dof4,dof1:dof2)+mbeam(3:4,1:2); 
    m(dof3:dof4,dof3:dof4)=m(dof3:dof4,dof3:dof4)+mbeam(3:4,3:4); 
 
% end loop over the number of elements: 
  end 
 
% Reassign k and m to new variables and add lumped masses 
% ~~~~~~~~ ~ ~~~ ~ ~~ ~~~ ~~~~~~~~~ ~~~ ~~~ ~~~~~~ ~~~~~~ 
 
  if icnt_beams == 1; 
        ka = k;ma = m; 
  elseif icnt_beams == 2; 
        kx = k;mx = m;   
  end 
 
% End icnt_beams loop: 
end 
 
clear dof1 dof2 dof3 dof4 l_temp ei_temp m_temp icnt_beams 
clear k m kbeam mbeam elnum 
%  ********************  END Assemble2Beams.m  *********************** 
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AssembleSens_crs.m    
% 
% This program assembles the total sensitivity matrix, T_sens_tot and  
% total lam vector,  vect_lam_tot and assembles the relative frequency 
% error between the natural frequencies of Beam A and Beam X 
% Written By Constance R S Fernandez, Spring 2004 
 
% INPUTS 
% ------- 
% vect_lamx_oset 
% vect_lam_oset 
% vect_lam 
% T_sens_oset 
% T_sens 
%  
% OUTPUTS 
% ------- 
% vect_OSET 
% vect_lam_tot 
% T_sens_tot 
% freq_OSET  
% freq_OSETx  
% rel_freqERROR  
 
vect_OSET = vect_lamx_oset - vect_lam_oset;  
% lamx from actual beam with error oset, lam from FE model oset 
% Creating a vector of lam differences calculated (Lx-La) 
 
if vect_OSET == 0; 
    % when vector is empty at first, the total vector is equal to the 
    % lam vector of Beam A, i.e. the first 19 values of vect_lam_tot are 
    % the natural freq squared (rad^2/sec^2) of Beam A 
     
    vect_lam_tot = vect_lam; 
else 
      vect_lam_tot = cat(1, vect_lam, vect_OSET); 
end 
 
 
if T_sens_oset == 0; 
     
    T_sens_tot = T_sens; 
else 
    T_sens_tot = cat(1, T_sens, T_sens_oset); 
end 
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freq_OSET = sqrt(abs(vect_OSET))/2/pi;  
% Natural frequency vector of Beam A in Hz 
freq_OSETx = sqrt(abs(vect_lamx_oset))/2/pi; 
% Natural frequency vector of Beam X in Hz 
rel_freqERROR = freq_OSET./freq_OSETx*100;  
% Relative error between Beam A OSET natural freq and Beam X OSET natural Freq.  
 
% ********************  END AssembleSens_crs.m  *********************** 
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BeamA_Prompt.m  
% Written by Prof. Gordis 
 
% Programs needed: 
% ----------------- 
% BeamProperties_crs 
 
% Outputs 
% ----------------- 
% total_length 
% num_elements 
% nominal_EI 
% nominal_area 
% nominal_density 
% ndof 
% element_length  
% element_EI 
% element_area 
% element_density 
% element_mass 
 
 
% _____________________________________________________________________ 
% 
%                       Prompt User for BeamA Data  
% _____________________________________________________________________ 
 
 
  disp(' ');disp(' '); 
  disp(' Enter nominal physical properties for first beam') 
  disp(' ~~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~~~ ~~~ ~~~~~ ~~~~') 
 
props_file = 'n'; 
props_file = input('  Run "BeamProperties.m" script to define nominal properties ? (y/n) 
>> ','s'); 
 
if props_file == 'y'; 
 
  BeamProperties_crs; 
   
else; 
   
  total_length    = input('  Enter the total beam length in inches:  '); 
  num_elements    = input('  Enter the number of elements:  '); 
  nominal_EI      = input('  Enter the nominal EI value (lbf/in^2):  '); 
  nominal_area    = input('  Enter the nominal cross section area (in^2):  '); 
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  nominal_density = input('  Enter the nominal weight density (lbf/in^3):  '); 
 
end; 
 
  
  for icnt_elements = 1:num_elements; 
       connect(icnt_elements,1:2) = [icnt_elements,icnt_elements+1]; 
  end 
   
  %ndof=length(connect)*2+2;   % this is unrestrained beam DOF 
  ndof=num_elements*2+2; % CRS addition 
   
  element_length = total_length/num_elements; 
  element_EI(:,1) = nominal_EI * ones(num_elements,1);  
  element_area(:,1) = nominal_area * ones(num_elements,1);  
  element_density(:,1) = nominal_density * ones(num_elements,1); 
  element_mass(:,1) = (element_density .* element_area * element_length)/386.4; 
 
 
% Prompt to randomize the beam EI properties: 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
% randomize = input('  Randomize the beam EI properties?  (y/n) >> ','s'); 
% if randomize == 'y'; 
%  
%       load_rand_vec = 'b'; 
%  disp(' '); 
%  disp('  To build a new random vector      - type "b" '); 
%  disp('  To load an existing random_vector - type "l" '); 
%  load_rand_vec = input(' Enter choice >> ','s'); 
%  
%       if load_rand_vec == 'b';   % Build rand_vec 
%       RandomizeProps; 
%  else;                      % Load existing rand_vec from file 
%       load rand_vec 
%  end; 
%        
%        
%  element_EI(:,1) = element_EI(:,1) .* (1 + rand_vec); 
%  
%    
% end; 
 
  % End Data input for 1st beam: Copy data for 2nd beam: 
  % ~~~ ~~~~ ~~~~~ ~~~ ~~~ ~~~~  ~~~~ ~~~~ ~~~ ~~~ ~~~~~ 
    element_EI(:,2) = element_EI(:,1); 
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    element_area(:,2) = element_area(:,1); 
    element_density(:,2) = element_density(:,1); 
    element_mass(:,2) = element_mass(:,1); 
 
clear props_file 
 % ******************** END  BeamA_Prompt.m  *********************** 
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BeamH4141.m 
 
% This program plots the peak of driving point of Beam X  using impedence 
% formula Z = [K] - omega^2*[M] +j*c*omega and omegas near driving point. 
% Used for comparison of formula and natural frequencies calculations.  
 
% Inputs 
% ------- 
% kx_beamBC 
% mx_beamBC 
 
% Needed Programs 
% --------------- 
% fModes 
 
% Outputs 
% -------- 
% lam 
% phi 
% W 
% iR 
% f 
% freq 
% Zx_beam 
% omega 
% C 
% hx_beam 
% H4141 
 
% ----Start Program ---- 
load testBEAM % saved test data file from Build2Beams_crs.m 
 
c = 0.02; % damping ratio 
iR = 0; % initialize loop counter 
[lam,phi]=fModes(kx_beamBC,mx_beamBC); 
freq = sqrt(lam)/2/pi; 
disp('Natural freq in HZ') 
f = freq(1:5) 
for omega = [0:1.831050e-001:6.589949e+002]; % in Hz 
            omega = omega*2*pi; % rad/sec 
            iR = iR + 1;  
            % loop counter% system impedence of multi DOF system 
            Zx_beam= kx_beamBC - omega.^2 * mx_beamBC + j*c*omega;  
             
            hx_beam = inv(Zx_beam); 
            H4141(iR) = hx_beam(82,82); 
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        end 
        w =  [0:1.831050e-001:6.589949e+002]; 
plot(w, log(abs(H4141))), grid on 
axis tight 
title ('Driving point H(41,41), FE model') 
xlabel ('Hz') 
ylabel ('log Magnitude')    
% ********************  End BeamH4141.m  *********************** 
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BeamH4141q.m  
 
% Written by Constance Fernandez, Spring 2004 
% This program creates and plots mode summation for H4141, H4131, H4121, 
% H4111. 
 
% Inputs 
% ------- 
% kx_beamBC 
% mx_beamBC 
 
% Programs 
% --------- 
% fOset_from_Aset 
 
% Outputs 
% -------- 
% aset, oset 
% k,m 
% zeta 
% lam, phi 
% freq 
% mm 
% iR, i 
% SUM 
% omega 
% H4141, H4131, H4121, H4111 
% H41, H31, H21, H11 
% w, ww 
 
% ---Start Program ----- 
 
load testBEAM % FE generated data file 
load HsynMEscope % measured data file  
 
aset = [1:2:83]; 
oset = fOset_from_Aset(84, aset); 
k = kx_beamBC; 
m = mx_beamBC; 
 
zeta = .02; 
 
[lam,phi]=fModes(k,m); 
freq = sqrt(lam)/2/pi; 
for mm = 1:9; 
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    iR = 0; 
    SUM = [42, 40, 35, 30, 25, 20, 15, 10, 5]; 
     
    for omega = [0:.5:2240]; % in Hz 
        omega = omega; 
        iR = iR + 1;  
        H4141 = 0; 
        H4131 = 0; 
        H4121 = 0; 
        H4111 = 0; 
         
        for i = 1:SUM(mm) 
            H4141 = ((phi(82,i)).*(phi(82,i)))/((freq(i)).^2 - omega^2) + H4141; 
            H4131 = ((phi(82,i)).*(phi(62,i)))/((freq(i)).^2 - omega^2) + H4131; 
            H4121 = ((phi(82,i)).*(phi(42,i)))/((freq(i)).^2 - omega^2) + H4121; 
            H4111 = ((phi(82,i)).*(phi(22,i)))/((freq(i)).^2 - omega^2) + H4111; 
            % eq from ABC examples 
             
        end 
        H41(iR,mm) =  H4141 ; 
        H31(iR,mm) =  H4131 ; 
        H21(iR,mm) =  H4121 ; 
        H11(iR,mm) =  H4111 ; 
         
    end 
end 
w = [0:.5:2240]; 
ww =  [0:1.831050e-001:6.589949e+002]; 
 
figure(1) % Mode summation for H4141 
plot(w, log(abs(H41(:,1))),w, log(abs(H41(:,2))),w, log(abs(H41(:,3))),... 
    w, log(abs(H41(:,4))), w, log(abs(H41(:,5))),w, log(abs(H41(:,6))),... 
    w, log(abs(H41(:,7))),w, log(abs(H41(:,8))), w, log(abs(H41(:,9)))), grid on... 
%     ww, (log (abs(HH))),'r') 
axis tight 
xlabel ('Hz') 
ylabel ('log Mag')    
title( 'Syn FRF for 41Z:41Z') 
legend ('Modes sum = 42', 'Modes sum = 40', 'Modes sum = 35', 'Modes sum = 30', ... 
    'Modes sum = 25', 'Modes sum = 20', 'Modes sum = 15', 'Modes sum = 10', ... 
    'Modes sum = 5')%'MeScope Syn') 
 
figure(2)% Mode summation for H4131 
plot(w, log(abs(H31(:,1))),w, log(abs(H31(:,2))),w, log(abs(H31(:,3))),... 
    w, log(abs(H31(:,4))), w, log(abs(H31(:,5))),w, log(abs(H31(:,6))),... 
    w, log(abs(H31(:,7))),w, log(abs(H31(:,8))), w, log(abs(H31(:,9)))), grid on 
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axis tight 
xlabel ('Hz') 
ylabel ('log Mag')    
title( 'Syn FRF for 31Z:41Z') 
legend ('Modes sum = 42', 'Modes sum = 40', 'Modes sum = 35', 'Modes sum = 30', ... 
    'Modes sum = 25', 'Modes sum = 20', 'Modes sum = 15', 'Modes sum = 10', ... 
    'Modes sum = 5') 
 
figure(3)% Mode summation for H4121 
plot(w, log(abs(H21(:,1))),w, log(abs(H21(:,2))),w, log(abs(H21(:,3))),... 
    w, log(abs(H21(:,4))), w, log(abs(H21(:,5))),w, log(abs(H21(:,6))),... 
    w, log(abs(H21(:,7))),w, log(abs(H21(:,8))), w, log(abs(H21(:,9)))), grid on 
axis tight 
xlabel ('Hz') 
ylabel ('log Mag')    
title( 'Syn FRF for 21Z:41Z') 
legend ('Modes sum = 42', 'Modes sum = 40', 'Modes sum = 35', 'Modes sum = 30', ... 
    'Modes sum = 25', 'Modes sum = 20', 'Modes sum = 15', 'Modes sum = 10', ... 
    'Modes sum = 5') 
 
 
figure(4)% Mode summation for H4111 
plot(w, log(abs(H11(:,1))),w, log(abs(H11(:,2))),w, log(abs(H11(:,3))),... 
    w, log(abs(H11(:,4))), w, log(abs(H11(:,5))),w, log(abs(H11(:,6))),... 
    w, log(abs(H11(:,7))),w, log(abs(H11(:,8))), w, log(abs(H11(:,9)))), grid on 
axis tight 
xlabel ('Hz') 
ylabel ('log Mag')    
title( 'Syn FRF for 11Z:41Z') 
legend ('Modes sum = 42', 'Modes sum = 40', 'Modes sum = 35', 'Modes sum = 30', ... 
    'Modes sum = 25', 'Modes sum = 20', 'Modes sum = 15', 'Modes sum = 10', ... 
    'Modes sum = 5') 
 
% ********************  END BeamH4141q.m  *********************** 
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BeamProperties_crs.m 
 
% This is the "props_file" to load nominal beam data. 
% This program is called by BeamA_Prompt_crs to provide beam properties  
% in order to build Beam A. 
 
% Outputs 
% ------- 
% depth 
% width 
% E  
% rho 
% total_length 
% num_elements 
% nominal_EI 
% nominal_area 
% nominal_density 
 
% Following are actual measurements from experimental set-up cantilever 
% beam. 
 depth = .504;% in z-dir (inches) 
 width = 1.506; % in y-dir (inches) 
 E = 10e6; 
    %E = 1.65e6; % lbf/sec^2-in (10e6-ksi) 
    %(1bf/in^2 = 6894.76Pa)-> E(lbf/in^2) = ()Pa/6894.76 
 rho =0.110460934; %0.098;% lbf/in^3  
     
    % T6 temper alloys require a 35-ksi tensile strength, 30-ksi yield  
    % strength and a 10e6-ksi elastic modulus. Alloy 6061-T6 has 1.0  
    % pct magnesium, 0.6 pct silicon, 0.3 pct copper and 0.2 pct chromium.  
    % It has a 45-ksi tensile strength and 35-ksi yield strength.1 The  
    % machinability of aluminum alloys are high (300) compared to titanium 
    % (40). Aluminum alloys can easily be bent and provide easy loading and 
    % unloading of parts. Also, aluminum is a highly conductive metal  
    % compared to titanium. 
 
% all measurement of distance are in inches 
 total_length    = 42; 
 num_elements    = 10; 
 nominal_EI      = (width * depth^3 / 12) * E; 
 nominal_area    = depth * width;% in^2 
 nominal_density = rho;% lbf/in^3 
     
% ********************  END BeamProperties_crs.m  *********************** 
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BeamSensitivity_crs.m 
 
% Revision history: 
% ~~~~~~~~ ~~~~~~~~ 
% 
%  Ver. 1.0: 4/4/95  Basic frequency sensitivities 
%  Updated: Spring 2004  Constance R S Fernandez 
 
% ********************************************************************* 
% 
% Program Description: 
% ~~~~~~~ ~~~~~~~~~~~~ 
% 
%  This program calculates mode frequency sensitivities as given by the  
%  equation, 
% 
%          ¶w^2               ¶[k]       ¶[m] 
%          --    =  {P}' * [  ---- - w^2 --- ] * {P} 
%          ¶DV                ¶DV         ¶DV 
% 
%     where:  w  = natural frequency  
%            {P} = associated mode shape 
%             DV = design variable 
%  
%  The right side of the above equation is considered the addition of  
%  the sensitivity matrix wrt EI and the sensitivity matrix wrt mass. 
% 
%  The program calculates the stiffness and mass matrix partials by finite 
%  differences. That is, for example, the [k] matrix is assembled twice,  
%  once in for the nominal beam parameters, and a second matrix is  
%  assembled based on a small perturbation of element mass and/or EI. 
% 
%  This program makes use of the beam data created by the program  
%  "Build2Beams.m." 
%  1) Resets BeamX mass and EI data to be the same as BeamA data. 
%  2) Enters a loop to create a sensitivity matrix (T) 
%     In loop  
%     a)  A small perturbation of mass is added to BeamX on ele.1.  
%     b)  The mass matrix is assembled for this mass-perturbed beam, 
%         and the mass matrix partial derivative is calculated as  
%    
%                  ¶[m]        [m_perturb] - [m_baseline] 
%                  ---    =    -------------------------  
%                  ¶DV                    ¶DV 
%    
%     c)  The first column of Sensitivity matrix is calculated using: 
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% 
%            sens_mass = [phi_base]'*(-lam_base)*m_delta*[phi_base] 
% 
%     (Note: A column of T corresponds to the respective element on beam.) 
%       
%     d) T loop starts again but with the small change on element 2. 
%     e) Difference calculated and second column of T is calculated. 
% 
%   3) loop continues until all columns of T are calculated, corresponding  
%     to a small change added to the respective element.  
% 
%   4) The procedure is identical for stiffness sensitivity. 
%      Except: 
%      sens_EI = [phi_base]'*k_delta*[phi_base] 
%   
%   5)Combine the two T's into one complete sensitivity matrix : 
%          T_sens = [sens_mass,sens_EI].  
%     In words, the first set of columns (equal to number of elements)of  
%     the combined matrix is the sensitivity mass wrt mass changes and  
%     the last half is wrt EI changes. 
% 
% ****************************************************************** 
 
% Inputs Needed: 
% -------------- 
% mass_lbls 
% EI_lbls 
% element_mass 
% element_EI 
% num_rbm  
% num_elements 
% lamx (experimently measured nat freq of beam) 
 
% Programs called 
% -------------- 
% Assemble2Beams_crs;  
% BoundaryConditions_crs; 
% fmodes 
% fOset_from_Aset 
 
% Outputs: 
% -------------- 
% num_modes 
% lam_base 
% phi_base 
% sens_mass 
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% sens_EI 
% T_sens 
% dv_cal  
% freq_base 
% vect_lam 
 
%  Start code: 
%  ~~~~~ ~~~~~ 
format long; 
 
 
% ******************************************************************** 
% ************************* INITIALIZATION *************************** 
% ******************************************************************** 
 
mass_change = 1; % Percent mass change for sensitivity calculation. 
EI_change = 1;   % Percent EI change for sensitivity calculation. 
 
element_mass_orig =  element_mass;  % Copy properties to retain them. 
element_EI_orig   =  element_EI;     
 
% Prompt for number of mode frequencies to generate sensitivities for: 
% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
%num_modes = input(' Enter number of modes for sensitivity calculations>> '); 
num_modes = 19; % 19 is maximum number of modes in a 10 element cantilever 
                % beam.  This is hard coded for quicker run of simulation. 
 
start_mode = num_rbm + 1;   % Skip the rigid body modes. 
 
% ******************************************************************** 
% ************** MASS SENSITIVITY CALCULATION LOOP ************** 
% ******************************************************************** 
 
sens_mass = 0; % initialize Mass based sensitivity matrix 
 
if mass_lbls ~= 0; % From Beam_XPrompt as user inputs 
     
    for icnt_dv =  1:num_elements; % loop to create sensitivity matrix  
         
        %   Resetting BeamX properties to BeamA properties 
        element_mass(:,2)  =  element_mass(:,1); 
         
        %   each element, one at a time will have a change in mass            
        element_mass(icnt_dv,2) = element_mass(icnt_dv,2) * ... 
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            (1 + mass_change/100); 
         
        Assemble2Beams_crs;   % Run script to assemble beams. 
         
        BoundaryConditions_crs;  % Apply boundary conditions. 
         
        [lam_base, phi_base] = fModes(ka,ma); 
         
        % ma is the basebeam without changes,  
        % mx is beam with small change in mass added (mass_change) 
         
        %    Form mass derivative matrices: 
        m_delta = (mx - ma)/(mass_change/100);    
        % converts precent change into decimal amount 
         
         
        %    Mode freq sens loop: 
        end_mode = start_mode + (num_modes - 1);  
        row_num = 0; % initialize loop 
        for icnt_modes = start_mode:end_mode; 
            row_num = row_num +1; 
            sens_mass(row_num,icnt_dv) = phi_base(:,icnt_modes)' *... 
                (-lam_base(icnt_modes) * m_delta ) *... 
                phi_base(:,icnt_modes); 
            % definition of mass sensitivity matrix 
        end; % for "icnt_modes" inner loop 
         
    end;  % End "for icnt_dv" outer loop for sensitivity calculations 
     
end;    % End "if mass_lbls ~= 0" 
 
 
% ******************************************************************** 
% ************** EI SENSITIVITY CALCULATION LOOP ****************** 
% ******************************************************************** 
 
sens_EI = 0;  % initialize EI based sensitivity matrix 
if EI_lbls ~= 0; % From Beam_XPrompt as user inputs 
     
    for icnt_dv =  1:num_elements; % loop to create sensitivity matrix  
         
        %   Resetting BeamX properties to BeamA properties 
        element_EI(:,2)  =  element_EI(:,1); 
         
        %   each element, one at a time will have a change in EI   
        element_EI(icnt_dv,2) = element_EI(icnt_dv,2) * ... 
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            (1 + (EI_change/100) ); 
         
        Assemble2Beams_crs;   % Run script to assemble beams. 
         
        BoundaryConditions_crs;  % Apply boundary conditions. 
         
        [lam_base, phi_base] = fModes(ka,ma); 
         
         
        % ka is the basebeam without changes,  
        % kx is beam with small sensitivity added 
         
        %    Form EI derivative matrices: 
        k_delta = (kx - ka)/(EI_change/100);    
        % converts precent change to decimal value 
         
        %    Mode freq sens loop: 
        end_mode = start_mode + (num_modes - 1);   
        row_num = 0; 
         
        for icnt_modes = start_mode:end_mode; 
            row_num = row_num +1; 
            sens_EI(row_num,icnt_dv) = phi_base(:,icnt_modes)' *... 
                k_delta * phi_base(:,icnt_modes);  
            %definition of EI sensitivity matrix 
        end; % for "icnt_modes" inner loop 
         
    end; % End "for icnt_dv" outer loop for sensitivity calculations 
     
end;    % if EI_lbls = 0;  
 
 
% Copy element EI and mass properties back into arrays: 
element_EI   = element_EI_orig; 
element_mass = element_mass_orig; 
 
% cleans up workspace by clears all unimportant parameters 
clear element_EI_orig element_mass_orig end_mode start_mode  
clear row_num icnt_modes EI_change k_delta mass_change m_delta 
clear ka kx ma mx icnt_dv 
 
% Assembles complete sensitivity matrix 
if sens_mass == 0& sens_EI ~=0; 
     
    T_sens = sens_EI; % resultant sensitivity matrix is equal 
    % to EI sensitivity matrix with only EI changes if no inputs  
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    % are given for mass changes 
     
elseif sens_mass ~= 0 & sens_EI == 0; 
    T_sens = sens_mass; % resultant sensitivity matrix is equal 
    % to Mass sensitivity matrix with only mass changes if no inputs  
    % are given for EI changes 
     
else  
    T_sens = cat(2, sens_mass,sens_EI);% else the resultant sensitivity 
    %matrix is teh combination of mass sensitivity matrix in first set  
    %of columns and EI sensitivity matrix in the last set of columns 
     
end 
 
freqx = sqrt(lamx)/2/pi; 
freq_base = sqrt(lam_base)/2/pi; 
% NOTE: % lamx = experiment measured natural freq of beam 
vect_lam = (lamx(1:num_modes)-lam_base(1:num_modes)); 
 
% ********************  END BeamSensitivity_crs.m  *********************** 
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BeamSensitivityOSET_crs.m  
 
% Revision history: 
% ~~~~~~~~ ~~~~~~~~ 
% 
%  Ver. 1.0: 4/4/95  Basic frequency sensitivities 
%  Updated: Spring 2004  Constance R S Fernandez to create resulting 
%  sensitivity matrix using lam vector of multiple ABC systems 
 
% ********************************************************************* 
% 
% Program Description: 
% ~~~~~~~ ~~~~~~~~~~~~ 
% 
%  This program calculates mode frequency sensitivities as given by the  
%  equation, 
% 
%          ¶w^2               ¶[k]       ¶[m] 
%          --    =  {P}' * [  ---- - w^2 --- ] * {P} 
%          ¶DV                ¶DV         ¶DV 
% 
%     where:  w  = natural frequency  
%            {P} = associated mode shape 
%             DV = design variable 
%  
%  The right side of the above equation is considered the addition of  
%  the sensitivity matrix wrt mass and/or EI. 
% 
%  The program calculates the stiffness and mass matrix partials by finite 
%  differences. That is, for example, the [k] matrix is assembled twice,  
%  once in for the nominal beam parameters, and a second matrix is  
%  assembled based on a small perturbation of element mass and/or EI. 
% 
%  This program makes use of the beam data created by the program  
%  "Build2Beams.m." 
%  1) Resets BeamX mass and EI data to be the same as BeamA data. 
%  2) Enters a loop to create a sensitivity matrix (T) 
%     In loop  
%     a)  A small perturbation of mass is added to BeamX on ele.1.  
%     b)  The mass matrix is assembled for this mass-perturbed beam, 
%         and the mass matrix partial derivative is calculated as  
%    
%                  ¶[m]        [m_perturb] - [m_baseline] 
%                  ---    =    -------------------------  
%                  ¶DV                    ¶DV 
%    
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%     c)  The first column of Sensitivity matrix is calculated using: 
% 
%            sens_mass = [phi_base]'*(-lam_base)*m_delta*[phi_base] 
% 
%     (Note: A column of T corresponds to the respective element on beam.) 
%       
%     d) T loop starts again but with the small change on element 2. 
%     e) Difference calculated and second column of T is calculated. 
% 
%   3) loop continues until all columns of T are calculated, corresponding  
%     to a small change added to the respective element.  
% 
%   4) The procedure is identical for stiffness sensitivity. 
%      Except: 
%      sens_EI = [phi_base]'*k_delta*[phi_base] 
%   
%   5)Combine the two T's into one complete sensitivity matrix : 
%          T_sens = [sens_mass,sens_EI].  
%     In other words, the first set of columns (equal to number of elements)of  
%     the combined matrix is the sensitivity with respect to (wrt) mass  
%     changes and the last half is wrt EI changes. 
% 
% 
% ********************************************************************* 
 
% Inputs Needed: 
% -------------- 
% mass_lbls 
% EI_lbls 
% element_mass 
% element_EI 
% num_rbm  
% mx_beam 
% kx_beam 
 
% Programs called 
% -------------- 
% Assemble2Beams_crs;  
% BoundaryConditions_crs; 
% fmodes 
% fOset_from_Aset 
% displacmentPlot_OSET 
 
% Outputs: 
% -------------- 
% num_modesO 
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% sens_massO, sens_EIO 
% num_rbmOSET 
% T_sens_oset 
% dispX_tot, dispA_tot 
% accel_plot 
% oset_choice 
% accelometer 
% BC, BCose, BCOSET 
% remaindof 
% ASETtot, OSET, OSETtot 
% inct_sens 
% mass_change, EI_change 
% phiXPLOT, phiAPLOT 
% maO_base, ka0_base 
% mxO, kxO 
% plotmx, plotkx 
% lamaOSET, phiaOSET 
% lamxOSET, phizOSET 
% lamxplot, phixplot 
% faO 
% m_deltaO, k_deltaO 
 
%  Start code: 
%  ~~~~~ ~~~~~ 
 
% ******************************************************************** 
% ************************* INITIALIZATION *************************** 
% ******************************************************************** 
T_sens_oset = []; 
vect_lam_oset = []; 
dispX_tot  = []; 
dispA_tot  = []; 
inct_sens = 0; 
icnt_oset = 0; 
BCOSET = zeros(ndof, ndof); 
OSETtot = zeros(ndof, ndof); 
ASETtot = zeros(ndof, ndof); 
 
oset_choice = 'n'; 
ndof % prints ndof to screen for user's reference 
accelometer = [3 5 7 9 11 13 15 17 19 21]; % use this line for convenience 
% in quicker calculation loops or use the next 2 lines. 
%accelometer = input('On what nodes are the accel. located','s'); %requests  
% user to input locations of accelometers 
%accelometer = eval(['[',accelometer,']']); % converts string to vector of 
% labels 
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% saved for plotting accelometers in correct position. 
accel_plot = floor(accelometer/2)+1;  
% graphical representation of accelometer locations 
 
oset_choice = input('  Do you want to use ASET and OSET (y/n)? ','s');  
% user can choose to use ASET and OSET calculations 
while oset_choice ~= 'n';   
    icnt_oset = icnt_oset +1; 
    disp(' locations of Accel.') % displays "location of Accel" on screen 
    accelometer % displays the vector of location of Accel for user's  
    % reference in choosing which DOF are to be pinned 
    disp(' ') 
    disp('   Enter pinned DOF label(s)') 
    disp('   Use MATLAB vector format> 1 3 5:7 9  ') 
    pinned = input('   >> ','s'); 
    pinned = eval(['[',pinned,']']); % Converts string to vector of labels 
    BC(icnt_oset,:) = [1,2,pinned]; % Boundry conditions for cantilever beam,  
    % change line if different beam is used 
     
    BCoset = fOset_from_Aset(ndof, BC(icnt_oset,:)); % gets OSET from ASET 
     
    BCOSET(icnt_oset, 1:length(BCoset)) = BCoset; % copies OSET into another  
    % vector to be used 
     
    % loop to find remaining accelometers. 
    for icnt = 1 : length(pinned); 
        remain(icnt,:) = find(pinned(icnt) == accelometer); 
    end 
     
    remaindof = fOset_from_Aset((length(accelometer)), remain); 
    % remaining unpinned DOF 
     
    % remaining accelometers 
    aset = accelometer(remaindof); 
    ASETtot(icnt_oset, 1:length(aset)) = aset; 
     
    % omitted oset, i.e. pinned accelometers 
    OSET = fOset_from_Aset(ndof, aset); 
    OSETtot(icnt_oset, 1:length(OSET)) = OSET; % copies OSET into another  
    % vector to be used in====== 
     
    inct_sens = inct_sens+1; 
     
    mass_change = 1;  % Percentage mass change for sensitivity calculation. 
    EI_change = 1;    % Percentage EI change for sensitivity calculation. 
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    element_mass_orig =  element_mass;  % Copy properties over to retain them. 
    element_EI_orig   =  element_EI;    % 
     
     
    % Prompt for number of mode frequencies for which to generate sensitivities  
    % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    % use the following three lines for user's input for number of modal 
    % frequencies for which to generate sensitivity or use the fourth line 
    % which uses the maximum number of modes for the defined system  
     
    %disp ('max number of modes  ') 
    %length(oset) 
    %num_modesO = input('  Enter number of elastic modes for sensitivity calculations>> 
'); 
    num_modesO = ndof - length(BC(icnt_oset,:));%max number of modes in system 
    start_mode = num_rbm + 1;   % Skip the rigid body modes. 
     
    % Initializes two vectors to be used in ploting program.  
    phiXPLOT = zeros(ndof,num_modesO); %cantilever beam 
    phiAPLOT = zeros(ndof,num_modesO); %cantilever beam 
     
     
    % ******************************************************************* 
    % ************** MASS SENSITIVITY CALCULATION LOOP ************** 
    % ******************************************************************* 
     
    sens_massO = 0; 
    if mass_lbls ~= 0; % from Beam_XPrompt as user inputs 
         
        for icnt_dv =  1:num_elements;  % loop to create sensitivity matrix  
             
            %   Resetting BeamX properties to BeamA properties. 
            element_mass(:,2)  =  element_mass(:,1); 
             
            %   each element, one at a time will have a change in mass            
            element_mass(icnt_dv,2) = element_mass(icnt_dv,2) * ... 
                (1 + mass_change/100); 
             
            Assemble2Beams_crs;   % Run script to assemble beams. 
             
            % Articial Boundry Conditions   
            maO_base = ma(BCoset, BCoset);  
            % new mass matrix of the system defined by OSET 
            mxO = mx(BCoset, BCoset); 
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            plotmx = mx_beam(BCoset, BCoset);  
            % resulting mass matrix with ABC used in plotting  
            plotkx = kx_beam(BCoset, BCoset); 
            % resulting stiffness matrix with ABC used in plotting  
             
            kaO_base = ka(BCoset, BCoset); 
            kxO = kx(BCoset, BCoset); 
             
            % lam (natural freq^2, rad^2/sec^2), phi (mode shapes) 
            [lamaOSET,phiaOSET] = fModes(kaO_base,maO_base);  
            % natural freq of new artifically bounded base system 
            [lamxOSET,phixOSET] = fModes(kxO,mxO);  
            % natural freq/ modes of new artifically bounded system with  
            % either EI or mass changes added similiar to orginial calculations 
            [lamxplot,phixplot] = fModes(plotkx,plotmx);  
            %resulting lam & phi of ABC system used in plotting  
             
            % Mode shapes              
            if pinned == 3 % the next DOF acts a little different  
                % because of the location on beam thus it was easier  
                % to program it seperately 
                phiAPLOT(2:ndof-2, :) = phiaOSET(1:ndof-3, :); 
                phiXPLOT(2:ndof-2, :) = phixplot(1:ndof-3, :); 
            else 
                phiAPLOT(1:pinned-3, :) = phiaOSET(1:pinned-3, :); 
                phiAPLOT(pinned-1:ndof-2,:) = phiaOSET(pinned-2:ndof-3,:); 
                phiXPLOT(1:pinned-3, :) = phixplot(1:pinned-3, :); 
                phiXPLOT(pinned-1:ndof-2,:) = phixplot(pinned-2:ndof-3,:); 
            end % "if pinned ==3" 
             
            num_rbmOSET = length(find(lamaOSET < 1));  
            % find number of rigid bodies in new ABC system 
            start_mode = num_rbmOSET + 1;   % Skip the rigid body modes. 
             
            faO = sqrt(lamaOSET)/(2*pi); %natural freq of the ABC in Hz             
             
            %    Form mass derivative matrices: 
            m_deltaO = (mxO - maO_base)/(mass_change/100);    
            % converts percent change to decimal value 
            % NOTE: mass_change needs to be the same change used in 
            % orginial mass sensitivity matrix calculation 
             
            %    Mode freq sens loop: 
            end_mode = start_mode + (num_modesO - 1);   
            row_num = 0; 
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            for icnt_modes = start_mode:end_mode; 
                row_num = row_num +1; 
                sens_massO(row_num,icnt_dv) = phiaOSET(:,icnt_modes)' *... 
                    (-lamaOSET(icnt_modes) * m_deltaO) *... 
                    phiaOSET(:,icnt_modes); 
            end; % end "for icnt_modes" inner loop 
             
        end;  % End "for icnt_dv" outer loop for sensitivity calculations 
         
        displacmentPlot_OSET % calls a program 
         
        % This program assembles the beam displacement vector for  
        % sens_beam(dispX) and base beam(dispA) under ABC  
         
        if  dispX_tot  == 0; % when the vector is empty 
            dispX_tot = disp1; % displacement vector used in plotting 
            dispA_tot = disp1a; 
        else  
            dispX_tot = cat(1,dispX_tot,disp1); 
            dispA_tot = cat(1, dispA_tot,disp1a); 
        end % end "if dispX_tot  == 0" 
         
    end;    % end "if mass_lbls = 0" 
     
     
    % ******************************************************************* 
    % ************** EI SENSITIVITY CALCULATION LOOP ***************** 
    % ******************************************************************* 
    sens_EIO = 0; 
    if EI_lbls ~= 0; 
        
        for icnt_dv =  1:num_elements; % loop to create sensitivity matrix  
             
            %   Resetting BeamX properties to BeamA properties 
            element_EI(:,2)  =  element_EI(:,1); 
             
            %   each element, one at a time will have a change in EI   
            element_EI(icnt_dv,2) = element_EI(icnt_dv,2) * ... 
                (1 + (EI_change/100) ); 
             
            Assemble2Beams_crs;   % Run script to assemble beams. 
 
            % Artifical Boundary Conditions 
            maO_base = ma(BCoset, BCoset); 
            mxO = mx(BCoset, BCoset); 
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            plotmx = mx_beam(BCoset, BCoset); 
            plotkx = kx_beam(BCoset, BCoset); 
             
            kaO_base = ka(BCoset, BCoset); 
            kxO = kx(BCoset, BCoset); 
             
            % lam (natural freq^2, rad^2/sec^2), phi (mode shapes) 
            [lamaOSET,phiaOSET] = fModes(kaO_base,maO_base);  
            [lamxOSET,phixOSET] = fModes(kxO,mxO); %sens info 
            [lamxplot,phixplot] = fModes(plotkx,plotmx); %plot info 
             
             
            if pinned == 3 
                phiAPLOT(2:ndof-2, :) = phiaOSET(1:ndof-3, :); 
                phiXPLOT(2:ndof-2, :) = phixplot(1:ndof-3, :); 
            else 
                phiAPLOT(1:pinned-3, :) = phiaOSET(1:pinned-3, :); 
                phiAPLOT(pinned-1:ndof-2,:) = phiaOSET(pinned-2:ndof-3,:); 
                phiXPLOT(1:pinned-3, :) = phixplot(1:pinned-3, :); 
                phiXPLOT(pinned-1:ndof-2,:) = phixplot(pinned-2:ndof-3,:); 
            end 
             
            num_rbmOSET = length(find(lamaOSET < 1)); 
            start_mode = num_rbmOSET + 1;   % Skip the rigid body modes. 
             
            faO = sqrt(lamaOSET)/(2*pi); %natural freq of the ABC, Hz        
            %    Form EI derivative matrices: 
            k_deltaO = (kxO - kaO_base)/(EI_change/100);   % in %/100  
             
            %    Mode freq sens loop: 
            end_mode = start_mode + (num_modesO - 1);   
            row_num = 0; 
             
            for icnt_modes = start_mode:end_mode; 
                row_num = row_num +1; 
                sens_EIO(row_num,icnt_dv) = phiaOSET(:,icnt_modes)' *... 
                    k_deltaO * phiaOSET(:,icnt_modes); 
            end; %end "for icnt_modes" 
             
             
        end; % End "for icnt_dv" outer loop for sensitivity calculations 
         
         
        displacmentPlot_OSET % calls a program 
         
        % This program assembles the beam displacement vector for  
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        % sens_beam(dispX) and base beam(dispA) under ABC  
         
        if  dispX_tot  == 0; 
            dispX_tot = disp1; 
            dispA_tot = disp1a; 
        else  
            dispX_tot = cat(1,dispX_tot,disp1); 
            dispA_tot = cat(1, dispA_tot,disp1a); 
        end % end "if dispX_tot  == []" 
         
    end;    % end "if EI_lbls = []" 
     
     
    % Copy element EI and mass properties back into arrays: 
    element_EI   = element_EI_orig; 
    element_mass = element_mass_orig; 
     
    clear element_EI_orig element_mass_orig end_mode start_mode  
    clear row_num icnt_dv icnt_modes lbls num_EI_dv num_mass_dv 
     
    % assemble of total sensitivity matrix for ABC System 
    if sens_massO == 0 & sens_EIO ~=0; 
         
        T_sensO = sens_EIO; % no changes in mass 
         
    elseif sens_massO ~= 0 & sens_EIO == 0; 
        T_sensO = sens_massO; % no changes in EI 
         
    else  
        T_sensO = cat(2, sens_massO,sens_EIO); 
        % changes in both mass and EI 
         
    end %end "if sens_massO == 0 & sens_EIO ~=0" 
     
    % Builds complete sens matrix of all ABC systems 
    if  T_sens_oset == 0;% when matrix is originally empty 
         
        T_sens_oset = T_sensO; 
         
    else % after the matrix has some values 
        T_sens_oset = cat(1,T_sens_oset, T_sensO); 
    end %end "if  T_sens_oset == []" 
     
    lamaOSET = lamaOSET(find(lamaOSET > 1)); %skips Rigid body modes   
    vect_lamO = lamaOSET(1:num_modesO); % nat freq of base beam under ABC 
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    %builds a vector of natural freq of ABC systems 
    if vect_lam_oset == 0;% when matrix is originally empty 
 
         
        vect_lam_oset = vect_lamO; 
    else% after the matrix has some values 
        vect_lam_oset = cat(1, vect_lam_oset, vect_lamO);  
         
    end %end "if vect_lam_oset == 0" 
    disp(' ') 
    oset_choice = input('  Another cycle of ASET and OSET (y/n)? ','s');  
    % loop runs until "n" is inputed creating sens matrix & lam vector  
    % for all ABC systems 
    disp(' ') 
     
end; % end "while oset_choice ~='n'" 
 
% ********************  BeamSensitivityOSET_crs.m  *********************** 



92

BeamX_Prompt.m  
 
% Written By Prof Gordis 
 
% Inputs needed 
% ----------------- 
% element_EI 
% element_mass 
 
% Outputs 
% ----------------- 
% i_lbls 
% change_mass, change_EI  
% new_lbls 
% updated element_mass in column 2 
% updated element_EI in column 2 
% mass_lbls - index for sensitivy matrix 
% EI_lbls - index for sensitity matrix 
% dv_EI 
% dv_mass 
% dv_tot 
 
% _____________________________________________________________________ 
% 
%                     Prompt User for BeamX Modification Data  
% _____________________________________________________________________ 
 
 
disp(' ');disp(' '); 
disp(' Modify nominal physical properties for second beam') 
disp(' ~~~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~~~ ~~~ ~~~~~~ ~~~~') 
 
% Adjust mass values for second beam: 
i_lbls = 0; 
 
dv_mass =[]; 
mass_lbls = []; 
change_mass = 'n'; 
change_mass = input('  Modify single/range element mass values (y/n)? ','s'); 
% user input 
while change_mass ~= 'n';   
     
    disp('   Enter element label(s) for mass modification') 
    disp('   Use MATLAB vector format> 1 3 5:7 9  ') 
    new_lbls = input('   >> ','s'); 
    new_lbls = eval(['[',new_lbls,']']); % Converts string to vector of labels 
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    i_lbls = i_lbls + 1; 
     
    % CRS addition 
     
    mass_lbls(i_lbls,1:length(new_lbls))= new_lbls; % index for sensitivity matrix 
         
    disp('  Enter mass change for element range') 
    mass_change = input('  Enter percentage mass change (+/- %) '); 
     
    dv_mass(i_lbls,1) = mass_change/100; % vector of mass changes to second beam 
(BeamX) 
         
    element_mass(new_lbls,2) = element_mass(new_lbls,2)+... 
        (mass_change/100) * element_mass(new_lbls,2); 
     
    disp(' ') 
    change_mass = input('  Modify another element mass value (y/n)? ','s'); 
    disp(' ') 
     
end; % end while 
 
% Adjust EI values for second beam: 
i_lbls = 0; 
 
change_EI = 'n'; 
dv_EI =[]; 
EI_lbls = []; 
 
disp(' ') 
change_EI = input('  Modify single/range element EI values (y/n)? ','s'); 
while change_EI ~= 'n';   
     
    disp('   Enter element label(s) for EI modification') 
    disp('   Use MATLAB vector format> 1 3 5:7 9  ') 
    new_lbls = input('   >> ','s'); 
    new_lbls = eval(['[',new_lbls,']']); % Converts string to vector of labels 
     
    i_lbls = i_lbls + 1; 
     
    EI_lbls(i_lbls,1:length(new_lbls)) = new_lbls; % index for sensitivity matrix 
     
    disp('  Enter EI change for element range') 
    EI_change = input('  Enter percentage EI change (+/- %) '); 
     
    dv_EI(i_lbls,1) = EI_change/100; % vector of EI changes on second Beam 
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    element_EI(new_lbls,2) = element_EI(new_lbls,2)+... 
        (EI_change/100) * element_EI(new_lbls,2); 
     
    disp(' ') 
    change_EI = input('  Modify another element EI value (y/n)? ','s'); 
    disp(' ') 
end; % end while 
 
dv_tot = [dv_mass;dv_EI];  
% vector of total changes to second beam (BeamX) but not location. 
 
% End BeamX_Prompt.m 
clear EI_change mass_change 
 
% ********************  END BeamX_Prompt.m  *********************** 
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BoundaryConditions_crs.m 
 
% Written by Prof Gordis 
 
% This script prompts the user boundary condition information 
% The script creates a vector of DOF (with respect to the unrestrained 
% structure) and then extracts the rows and columns of the complementary  
% DOF. 
 
%  Script defines vector "free_dof_set" containing  
%  list of unrestrained dof.  
 
% The boundary conditions are applied in this script. 
 
% Inputs needed: 
% ------------- 
% ndof 
% ka, ma, kx, mx 
 
% Outputs: 
% ------------- 
% free_dof_set 
% updated ka, ma, kx, mx 
% icnt_dof 
% add_dof 
% bc_node 
% bc_coord 
% bc_DOF 
% bc_boolean 
% all_dofs 
% restraint_switch 
% *************************************************** 
% Start code: 
 
 
if exist('free_dof_set')==0;    %  Build free_dof_set vector 
     
    disp(' Select a boundary condition set:') 
    disp('    (1) Clamped-free') 
    disp('    (2) Clamped-Clamped') 
    disp('    (3) Pinned-Pinned') 
    disp('    (4) User-Defined') 
    disp('    (5) Free-Free') 
     
    BC_Choice = input(' >> Enter choice: '); 
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    if BC_Choice == 1;      % Clamped-free _____________________________ 
        free_dof_set = [3:ndof]; 
        restraint_switch = 'y'; 
         
    elseif BC_Choice == 2;  % Clamped-Clamped __________________________ 
         
        free_dof_set = [3:ndof-2]; 
        restraint_switch = 'y'; 
         
    elseif BC_Choice == 3;  % Pinned-Pinned ____________________________ 
         
        free_dof_set = [2:ndof-2  ndof]; 
        restraint_switch = 'y'; 
         
    elseif BC_Choice == 4;  % User-Defined _____________________________ 
         
        icnt_dof = 0; 
        add_dof = 'y'; 
        while add_dof == 'y'; 
             
            bc_node = input(' Node number for restraint ? "0" to end: '); 
             
            if bc_node == 0; 
                break 
            end; 
            bc_coord = input(' Translation or Rotation ? (t/r) ','s'); 
             
            icnt_dof = icnt_dof + 1; 
            if bc_coord == 't'; 
                bc_DOF(icnt_dof) = 2 * bc_node - 1; 
            elseif bc_coord == 'r'; 
                bc_DOF(icnt_dof) = 2 * bc_node; 
            end;   % End if-else block 
             
        end;  % End while add_dof 
         
        bc_boolean = ones(ndof,1);                   % [1 1 1 ... icnt_dof] 
        bc_boolean(bc_DOF) = zeros(length(bc_DOF),1);% Put zeros in restrained dof 
        all_dofs = [1:ndof];                         % List of all dof 
        free_dof_set = all_dofs(logical(bc_boolean));% Extract free dof 
        restraint_switch = 'y'; 
         
    elseif BC_Choice == 5; % Free-free beam _______________________________ 
         
        free_dof_set = [1:ndof]; 
        restraint_switch = 'n'; 



97

         
    end;                    % End if-elseif choice block __________________ 
     
end;   % End exist block                      
 
ka = ka(free_dof_set,free_dof_set); 
ma = ma(free_dof_set,free_dof_set); 
kx = kx(free_dof_set,free_dof_set); 
mx = mx(free_dof_set,free_dof_set); 
 
% ****************END BoundaryConditions_crs.m  *********************** 
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Build2Beams_crs.m 
 
clear 
clc 
% Revision history: 
% ~~~~~~~~ ~~~~~~~~ 
% 
%  Ver. 1.0: 9/22/94  Basic two beam assembly 
%       2.0:          Added multi-element changes 
%       2.1  3/28/95  Added read/write to file, rebuild capability 
%       2.2  3/29/95  Added lumped mass additions 
%            3/10/04  Added Sensitivity matrices, error prediction, plots 
                         
%********************************************************************** 
% 
% Program Description: 
% ~~~~~~~ ~~~~~~~~~~~~ 
% 
%  This program assembles the mass and stiffness matrices for 2 free-free  
%  beams, referred to as "BeamA" (analysis) and "BeamX" (experimental). The  
%  program can be run in several modes: 
% 
%  "Build" mode:  
%   ~~~~~  ~~~~~ 
%  The user provides baseline data for BeamA, assumed to be a  
%  homogeneous, uniform beam. Data provided: 
% 
%     (1) Beam length 
%     (2) Number of elements 
%     (3) Nominal EI 
%     (4) Nominal cross-sectional area 
%     (5) Nominal weight density 
% 
%  The program then prompts the user for instructions on how to modify  
%  "BeamA" data to arrive at "BeamX" data. The user can modify element  
%  masses, and/or element EI values. The modification can be applied to  
%  either a single element, or range of elements, e.g. 
% 
%      Modify single/range element mass values (y/n)?  y 
% 
%  If "y" is entered, the user enters the number of the element for mass  
%  adjustment: 
% 
%       Enter element label(s) for mass modification:  1 
%       Use MATLAB vector format> 1 3 5:7 9  
% 
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%               Enter percentage mass change (+/- %)  
% 
% The user is prompted to modify another element or range of elements: 
% 
%       Modify another element mass value (y/n)?  y 
% 
%  This process continues until the user enters an "n" for no change. 
%  This entire process can then be repeated for EI adjustment.  
% 
%  The program saves the beam definition data in a binary (.mat) file  
%  "beamdata" at the end of execution. 
% 
%  The program can also be run in "Read" mode by entering an "r" at  
%  the initial prompt. 
% 
% 
% Script Execution Path: 
% ~~~~~~ ~~~~~~~~~ ~~~~~ 
% 
% 
% 
%     Build2Beams_crs.m         -- User executes this program. 
%     BeamA_Prompt_crs.m        -- Prompts User for BeamA nominal beam data 
%     BeamX_Prompt_crs.m        -- Prompts User for BeamX modification beam data 
%     Assemble2Beams_crs.m      -- Called by Build2Beams, builds [ka] [ma] [kx]  
%                             [mx], plots freqs. 
%     Lumpmass_crs.m            -- Prompts User for BeamX lumped mass addition 
%     BoundaryConditions_crs.m  -- Prompts user for B.C.'s and applies them. 
%     PlotBeamModes_crs.m       -- Calculate beam modes and plot frequencies 
%                    
%     BeamSensitivity_crs.m     -- Calculate sensitivity matrix T-sens 
%     BeamSensitivityOSET_crs.m -- Calculate sensitivity matrix using ABC  
%     recorded_H_crs.m          -- Calculates the nat. freq of BeamX with ABC applied 
%     AssembleSens_crs.m        -- Assembles the sens matrices and calculates errors. 
%     ABCrunTHRU.m              -- Calculates the DV and cond number of matrix used 
%     Saves data to "beamdata.mat" 
 
%         
%  Start code: 
%  ~~~~~ ~~~~~ 
% ********************************************************************* 
 
   
disp('   Building 2 beams from scratch...') 
 
BeamA_Prompt_crs;       %  Prompt for BeamA Data: run prompt script 
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BeamX_Prompt_crs;       %  Prompt for BeamX Modification Data:  
Assemble2Beams_crs;     %   Run script to assemble mass and stiffness matrices 
AddLumpmass_crs;        %   BeamX lumped mass vector construction and  
%                             application 
 
kx_beam = kx;  % saves the Beam X matrices without BC to be used later 
mx_beam = mx;   
 
BoundaryConditions_crs; %   Prompt for, and apply boundary conditions 
 
kx_beamBC = kx;  % saves the Beam X matrices with BC to be used later 
mx_beamBC = mx;   
ka_beamBC = ka;  % saves the Beam A matrices with BC to be used later 
ma_beamBC = ma;   
 
PlotBeamModes_crs       %  Calculate beam modes and plot frequencies 
 
BeamSensitivity_crs;    %  Calculate sensitivity matrix T-sens 
BeamSensitivityOSET_crs;%  Calculate sensitivity matrix using ABC  
 
 
recorded_H_crs;    % Calulates the nat. freq of BeamX with ABC applied 
AssembleSens_crs;  % Assembles the sens matrices and calculates errors. 
ABCrunTHRU_crs;    % Calculates the DV and cond number of matrix used 
FOM_crs;            %Calculates the Figure of Merit for each prediction 
plottingBARS_crs;      % Bar plots of predicted DV vs. true error  
 
 
 
%  Save Defining Parameters for Beams and plots 
disp(' ...saving beam data to file') 
save beamdata.mat 
 
 
disp(' Build2Beams end.') 
% ______________________ 
 
% ********************  END Build2Beams_crs.m  *********************** 
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displacementPlot_crs.m 
 
% Written By Constance Fernandez Spring 2004 
% Program plots mode shapes (phi, lam) phi vs nodal position of beam. This 
% program plots the displacement of BeamX and BeamA with actual location 
% of errors used for visual comparison.  
 
% Inputs 
% -------- 
% kx_beamBC, ka_beamBC 
% num_elements 
% phix_plot, phia_plot 
% EI_lbls, mass_lbls 
% dv_mass, dv_EI 
 
% Outputs 
% --------- 
% displ_plot 
% displa_plot 
% ypos 
% jj, g 
 
disp1_plot = zeros(.5*size(kx_beamBC,1),2*num_elements);  
%initialize disp vector and provides the first zero of the vector. 
disp1a_plot = zeros(.5*size(ka_beamBC,1),2*num_elements);  
%initialize disp vector and provides the first zero of the vector. 
 
for jj = 1:.5*size(ka_beamBC,1); 
    disp1_plot(jj+1,:) = phix_plot(2*jj-1,:); % every other phi to give displacement at 
sequential nodes 
    disp1a_plot(jj+1,:) = phia_plot(2*jj-1,:); 
end 
 
% This loop normalizes the modes shapes to the tip modal displacement. 
for g = 1:2*num_elements-1 
    disp1_plot(:,g) = disp1_plot(:,g)/disp1_plot(num_elements+1,g); 
    disp1a_plot(:,g) = disp1a_plot(:,g)/disp1a_plot(num_elements+1,g); 
end 
 
ypos = [1:1:num_elements+1]; % position in y direction along beam used  
% to plot displacements at locations 
 
% -----PLOTTING ------- 
 
figure(1) % plot displacements along BeamA and BeamX used in comparison  
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plot(ypos, disp1_plot(:,1),'-d', ypos, disp1_plot(:,2),'-s',ypos, disp1_plot(:,3),'-.x',ypos, ... 
    disp1_plot(:,4),':+', ypos, disp1_plot(:,5),'--^',ypos, disp1a_plot(:,1),'-d', ypos, ... 
    disp1a_plot(:,2),'-s',ypos, disp1a_plot(:,3),'-x',ypos, disp1a_plot(:,4),'-+', ypos, ... 
    disp1a_plot(:,5),'-^'), grid on, hold on 
 
legend('Mode 1 X','Mode 2 X','Mode 3 X','Mode 4 X','Mode 5 X','Mode 1 A',... 
    'Mode 2 A','Mode 3 A','Mode 4 A','Mode 5 A', 4); 
 
% plot stem in position of mass change and/or EI change 
% mass change plotted in yellow, EI change plotted in cyan 
if EI_lbls ~=[] & mass_lbls ~=[]% used if mass and EI errors were added 
            stem(mass_lbls+.5, dv_mass,'y','filled'); hold on; stem(mass_lbls+.5, dv_mass,'k') 
            EIplot = EI_lbls+10;hold on % mass error is plotted first then EI 
            stem(EI_lbls+.5, dv_EI,'c','filled');hold on; stem(EI_lbls+.5, dv_EI,'k') 
            % plots the location of inputted EI error 
             
        elseif  mass_lbls ~=[] & EI_lbls ==[]% used with only mass error  
            stem(mass_lbls+.5, dv_mass,'y','filled');hold on; stem(mass_lbls+.5, dv_mass,'k') 
            
        else % used with only EI error 
            stem(EI_lbls+.5, dv_EI,'c','filled');hold on; stem(EI_lbls+.5, dv_EI,'k') 
            
end %"if EI_lbls ~=[] & mass_lbls ~=[]"  loop 
 
% ----Plotting------ 
 
xlabel('position on Beam') 
title('First five mode shape: Beam with error(X) vs Base Beam(A)') 
 
% The following lines are used to input actual amount of error in legend * 
% NOTE: problem with the display of digits 
 
% Legend commands - used to print actual change in legend 
% ----------------- 
% legend('First','Second','Third','Fourth','Fifth',sprintf('%dper - Mass ', dv_mass*100), 
sprintf('%dper - EI',dv_EI*100)); 
% dv = int2tr(dv_EI*100); 
% dvT = sprintf('%sper - EI', dv); 
% legend('First','Second','Third','Fourth','Fifth', dvT); 
 
 
% ********************  END displacementPlot_crs.m  *********************** 
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displacementPlot_OSET.m  
 
% Written by Constance Fernandez Spring 2004 
 
% This program plots the mode shapes (phi, lam) phi vs nodal position  
% of beam when ABC are applied.  
 
% Inputs 
% ------- 
% plotkx 
% kaO_base 
% num_modesO 
% phiXPLOT 
% phiAPLOT 
% pinned 
% num_elements  
 
% Outputs 
% -------- 
%disp1, displa 
%jj, g 
% ypos 
 
%------ 
disp1 = zeros(ceil(.5*size(plotkx,1)),num_modesO);  
%initilize disp vector and provides the first zero of the vector. 
disp1a = zeros(ceil(.5*size(kaO_base,1)),num_modesO);  
%initilize disp vector and provides the first zero of the vector. 
 
for jj = 1:ceil(.5*size(plotkx,1)); 
    disp1(jj+1,:) = phiXPLOT(2*jj-1,1:num_modesO);  
    % every other phi to give displacement at sequential nodes 
    disp1a(jj+1,:) = phiAPLOT(2*jj-1,1:num_modesO); 
end 
 
% This loop normalizes the modes shapes to the tip modal displacement. 
if pinned == 21 % tip pinned is a special case,  no new calculations are needed 
   disp1(:,:) = disp1(:,:); 
   disp1a(:,:) = disp1a(:,:); 
else  
for g = 1:num_modesO 
   disp1(:,g) = disp1(:,g)/disp1(num_elements+1,g); 
   disp1a(:,g) = disp1a(:,g)/disp1a(num_elements+1,g); 
end 
end 
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ypos = [1:1:num_elements+1]; % Location of nodes used in plotting 
 
% if mass_lbls ~= []; 
%      
%     for kk = 1:size(mass_lbls,1); 
%         ff =0; 
%         for JJ = 1:length(find(mass_lbls(kk,:)>0)); 
%             ff = ff+1; 
%             posm(kk, 2*JJ-1) = mass_lbls(kk, ff); 
%             posm(kk, 2*JJ) = mass_lbls(kk,ff)+1; 
%         end 
%     end 
%      
%     if kk == 1 
%         posM = posm; 
%          
%     else 
%          
%         for uu = 1:kk-1; 
%             posM = cat(2, posm(uu,:), posm(uu+1,:)); 
%         end 
%          
%     end 
%     posM = sort(posM(find(posM>0))); 
%     m = .5*ones(size(posM))+icnt_oset; 
% end 
%  
% if EI_lbls ~= []; 
%     for kk = 1:size(EI_lbls,1); 
%         ff =0; 
%         for JJ = 1:length(find(EI_lbls(kk,:)>0)); 
%             ff = ff+1; 
%             pose(kk, 2*JJ-1) = EI_lbls(kk, ff); 
%             pose(kk, 2*JJ) = EI_lbls(kk,ff)+1; 
%         end 
%     end 
%      
%     if kk == 1 
%         posE= pose; 
%          
%     else 
%          
%         for uu = 1:kk-1; 
%             posE = cat(2, pose(uu,:), pose(uu+1,:)); 
%         end 
%     end 
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%   posE = sort(posE(find(posE>0)));   
%   e = -.5*ones(size(posE))+icnt_oset; 
% end 
  
%pos = [mass_lbls, mass_lbls+1]; 
 
% figure(icnt_oset+10) 
% subplot(2,1,1) 
%  
% % for ii = 1:num_modesO 
% %     plot(ypos, disp1a(:,ii));  
% %     hold on 
% % end 
% % plot(posM, m,'x' );grid on %posE, e 
%  
%   
% plot(ypos, disp1(:,1),'-d', ypos, disp1(:,2),'-s',ypos, disp1(:,3),'-.x',... 
%     ypos, disp1(:,4),':+', ypos, disp1(:,5),'--^',ypos, ... 
%     disp1a(:,1),'-d', ypos, disp1a(:,2),'-s',ypos, disp1a(:,3),'-x',... 
%     ypos, disp1a(:,4),'-+', ypos, disp1a(:,5),'-^'), grid on 
%  
% hold on 
% plot(accel_plot, icnt_oset, 'kp',floor(pinned/2)+1,icnt_oset,'rs') 
% % hold on 
% % plot(posM, m,'-kV',posE, e,'-k>');grid on % posE, e 
% %  
%  
% %legend('accelerometer', 'pinned') 
% %plot(floor(pinned/2)+1,icnt_oset,'rs') 
% legend('First','Second','Third','Fourth','Fifth','First A','Second A',... 
%     'Third A','Fourth A','Fifth A','accel') 
% title(sprintf('pinned accel at Node # %d', floor(pinned/2)+1)); 
%  
%  
% ******************  END displacementPlot_OSET.m  *********************** 
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fbeamkm.m   
 
% function [kbeam,mbeam]=fbeamkm(l,ei,m) 
% Provided by Prof Gordis 
 
function [kbeam,mbeam]=fbeamkm(l,ei,m) 
%  
% 
% This function returns the stiffness and mass matrices for  
% a simple 2-node beam element. 
% 
% Note: m = rho * area * length = total element mass 
% 
% Reference: R.D. Cook, Concepts and Applications of F.E. Analysis 
 
% Outputs 
% ------ 
% kbeam, mbeam, i, j 
 
 
kbeam=zeros(4,4); 
mbeam=zeros(4,4); 
% 
kbeam(1,1)=12.0; 
kbeam(1,2)=6.0*l; 
kbeam(1,3)=-12.0; 
kbeam(1,4)=6.0*l; 
kbeam(2,2)=4.0*l^2; 
kbeam(2,3)=-6.0*l; 
kbeam(2,4)=2.0*l^2; 
kbeam(3,3)=12.0; 
kbeam(3,4)=-6.0*l; 
kbeam(4,4)=4.0*l^2; 
% 
mbeam(1,1)=156.0; 
mbeam(1,2)=22.0*l; 
mbeam(1,3)=54.0; 
mbeam(1,4)=-13.0*l; 
mbeam(2,2)=4.0*l^2; 
mbeam(2,3)=13.0*l; 
mbeam(2,4)=-3.0*l^2; 
mbeam(3,3)=156.0; 
mbeam(3,4)=-22.0*l; 
mbeam(4,4)=4.0*l^2; 
% 
for i=1:4; 
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    for j=i:4; 
        kbeam(j,i)=kbeam(i,j); 
        mbeam(j,i)=mbeam(i,j); 
    end 
end 
% 
kbeam=(ei/l^3)*kbeam; 
mbeam=(m/420.0)*mbeam; 
% 
% end function beamkm 
 
% ********************  END fbeamkm.m  *********************** 
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fFRF.m 
 
function [FRF] = fFRF(Wn, Zeta, phi, freq); 
%  Provided by Prof Gordis 
% 
%  Usage: [FRF] = fFRF(Wn, Zeta, phi, freq); 
% 
% Creates matrix whose ROWS are the FRF constructed from  
% modal parameters passed into the function.  
% 
% Function uses all modes passed in, and will generate all FRF for unique  
% (symmetric) input-output pairs for all rows in [phi]. 
% FRF are stored in "symmetric column storage" (See fSymmetricStore.m) 
% 
% Wn:  Vector of natural frequencies (rad/sec) 
%   If Wn(i) < 0.1, rigid body mode is assumed. 
% 
% Zeta: Scalar, damping ratio applied to all modes 
% 
% phi: Mass normalized modal matrix.   
%  Num rows = number of coordinates 
%  Num cols = number of modes to be used. 
% 
% freq: Frequency (Hz). Row vector of sampling points for FRF evaluation. 
% 
% Inputs 
% ------- 
% wn 
% zeta 
% phi 
% freq 
 
% Outputs 
% -------- 
% ndof 
% nmodes 
% nsymcol 
% FRF 
% isymols 
% omega 
% j, irows, icols, imodes 
% modeFRF 
 
% _____________________________________________________________________ 
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ndof   = size(phi,1); 
nmodes  = size(phi,2); 
nsymcol  = ndof * (ndof + 1) / 2;  % Number of columns 
FRF    = zeros(nsymcol,length(freq));% Initialize matrix 
modeFRF   = zeros(1,length(freq)); 
isymcols  = 0; % Will end up being nsymcol 
 
omega = 2 * pi * freq;  
j = sqrt(-1); 
 
for irows = 1 : ndof; 
 for icols = irows : ndof; 
  isymcols = isymcols + 1; 
   

for imodes = 1 : nmodes; 
    
   if abs(Wn(imodes)) > 0.1;  % Then elastic mode 
         
    modeFRF = ((Wn(imodes)^2 - omega.^2) + 
2*j*Zeta*Wn(imodes)*omega).^(-1); 
         
   elseif abs(Wn(imodes)) <= 0.1; % Rigid body mode 
   
    modeFRF = -omega.^(-2); 
     
   end; % End if abs(wn)      
  
   FRF(isymcols,:) = FRF(isymcols,:) +... 
    phi(irows,imodes) * phi(icols,imodes) * modeFRF; 
   
  end;  % End icnt_modes 
   
 end;  % End icnt_col_dof 
 
end;  % End icnt_row_dof 
 
% ********************  END fFRF.m  *********************** 
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fModes.m  
 
function [lam,phi]=fmodes(k,m,num_to_print); 
% Provided by Prof Gordis 
% This program prints to the screen natural modes of system (phi). 
% 
%  Usage: [lam,phi]=fmodes(k,m,num_to_print) 
% 
%   This function can be used with 1 to 3 arguments, as follows: 
% 
% [lam,phi]=fmodes(a)  : Produces modes of [a] with no print of freqs in Hz. 
% [lam,phi]=fmodes(a,i)  : Produces modes of [a] with print of "i" freqs in 
Hz. 
% [lam,phi]=fmodes(k,m)  : Produces modes of [m\k] with no print of freqs in 
Hz. 
% 
%  
% 
% This function returns a vector containing eigenvalues (rad/sec)^2 
%  and a matrix containing the mass normalized mode shapes. 
%  The mode information is sorted by frequency in ascending order. 
%  If num_to_print > 0; tabular listing of num_to_print freqs in Hz is printed. 
%  If num_to_print <= 0, no print.  
 
% Inputs 
% ------ 
% v, index, m, k 
 
% Programs 
% -------- 
% fNormalize 
 
% Outputs 
% -------- 
% phi 
% num_to_print 
% error 
% e 
 
% ------------------------------------------------------------------------------- 
 
if nargin == 1;            %
 [A] w/ no print request for freqs in Hz. 
            
 %   v(1,:) = 1 normalization  
 [v,d]=eig(k); 
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 [temp,indices] = sort(abs(diag(d))); 
 lam = diag(d); 
 lam = lam(indices); 
 [phi]=fNormalize(v(:,indices), 'one'); 
 num_to_print = 0; 
 
elseif nargin == 2 & size(m,1) == 1;  % [A] w/ print request for freqs in Hz. 
            
 %   v(1,:) = 1 normalization  
 [v,d]=eig(k); 
 [temp,indices] = sort(abs(diag(d))); 
 lam = diag(d); 
 lam = lam(indices); 
 [phi]=fNormalize(v(:,indices), 'one'); 
 num_to_print = m; 
  
elseif nargin == 2 & size(m,1) > 1;  %  [k],[m] w/ no print request for freqs 
in Hz. 
            
 %   mass normalization 
 [v,d]=eig(m\k); 
 [lam,index]=sort(abs(diag(d))); 
 [phi]=fNormalize(v(:,index),'mass',m); 
 num_to_print = 0; 
  
elseif nargin == 3 & size(k,1) > 1 & size(m,1) > 1; % [k],[m] w/ print request for 
freqs in Hz. 
            
 %   mass normalization 
 [v,d]=eig(m\k); 
 [lam,index]=sort(abs(diag(d))); 
 [phi]=fNormalize(v(:,index),'mass',m); 
  
else 
 
 num_to_print = -1; 
 error('Error from fModes.m: Check input arguments.') 
 
end 
 
if num_to_print > length(k); 
 num_to_print = length(k); 
end 
 
if nargin < 3 & rem(length(k),2)==0 & k(1:length(k)/2,1:length(k)/2) == 
zeros(length(k)/2,length(k)/2); % Have [A] matrix 
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 e = 1;  % Eigenvalues are wn 
else 
 e = 0.5;    % Eigenvalues are wn^2 
end 
  
  
 
if num_to_print > 0; 
  
 disp('  '),disp('  ') 
 disp('~~~~~~~~~~~~~') 
 disp('Freqs in Hz.:') 
 disp((lam(1:num_to_print).^e)/2/pi) 
 disp('~~~~~~~~~~~~~') 
 
end 
 
% ********************  END fModes.m  *********************** 
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fNormalize.m 
 
function [phi] = fNormalize(phi,method,m); 
%  
% Usage: [phi] = fNormalize(phi,method,m); 
% 
% phi: matrix whose columns are to be (independently) normalized. 
% method: String variable. The following choices are available: 
% 
%   'mass'   Mass normalization 
%   'inf'   Infinity normalization 
%   'one'   First element = 1 
%   'length'  Length = 1 
% 
%  m: matrix used for normalization, i.e. phi'*m*phi = eye 
% 
% _________________________________________ 
% 
 switch method 
   
  case 'mass'   % Mass normalization 
    
%   disp('mass normalization') 
   phi = phi * diag(sqrt(diag((phi' * m * phi).^(-1)))); 
 
  case 'inf'   % Infinity normalization 
%   disp('inf normalization') 
   for icnt_cols = 1:size(phi,2); 
             phi(:,icnt_cols) = phi(:,icnt_cols)/norm(phi(:,icnt_cols),inf); 
   end 
  
  case 'one'   % First element = 1 
%   disp('one normalization') 
   phi = phi * diag((phi(1,:).^(-1))'); 
    
  case 'length'  % Length = 1 
%   disp('length normalization') 
   for icnt_cols = 1:size(phi,2); 
    phi(:,icnt_cols) = 
phi(:,icnt_cols)./norm(phi(:,icnt_cols),'fro'); 
   end 
   
 end 
 
% ********************  END fNormalize.m  *********************** 
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FOM_crs.m 
 
%  This program calculates the Figure of Merit for the error predictions  
%  calculated using the following sensitivity matrices 
%     1) Base system only 5 modes (underdetermined) 
%     2) ABC system 10 modes  
%     3) Base system 5 modes + 5 modes from ABC system 
% The last system is calculated 3 times.  Once for modes 1-5,  
% another for modes 6-10, and again for modes 11-15. 
 
% Written by Constance R S Fernandez, Spring 2004 
 
% Inputs 
% ------- 
% dv_tot 
% dv_cal_ABC 
% num_elements 
% EI_lbls 
 
% Outputs 
% ------- 
% error 
% x, xx, ix, is 
% FOM2, FOM 
% ABC5_norm, ABCten_norm 
% ABCten_sq 
% FOM_ABCten, FOM_ABC5 
% ABC5_sq, PLUS_sq 
% ABC5_sumNorm, PLUS_sumNorm 
% FOM_PLUS,  
% FOM_ABC5per, FOM_ABC10per, FOM_ABC_PLUSper 
% ---------------------------------------------- 
 
error = sum(dv_tot); % total error added to beam(known quantity) 
x = abs (dv_cal_ABC); % converts all errors to positive errors not to  
% give false results of balancing out 
 
x = sum(x,1)'; % sum of all errors  
xx = x/error;% sum of errors divided by known error 
for ix = 1:33 
    FOM2 (ix) = abs((xx(ix)-1/xx(ix))); 
end 
FOM = (1-FOM2)*100; 
 
%---Base System only---(underdetermined) 
% ---ABC system only (only 5 modes)---- 
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ABC5_norm = (dv_cal_ABC)/error; % normalized predicted error 
 
% ---ABC system only using 10 modes instead of 5 modes ---- 
 
ABCten_norm = (dv_cal_ABCten)/error; % normalized predicted error 
 
for ix = 1:size(dv_cal_ABCten,2);% Number of ABC system repeat for each ABC 
system 
     
    for is = 1:num_elements % repeat for each element 
         
        ABCten_sq(is,1) = ABCten_norm(is, ix)^2; %square of each error in new vector 
    end 
     
    ABCten_sumNorm = sum(ABCten_sq); % sum of squared errors  
    FOM_ABCten(ix,1) = (ABCten_norm(EI_lbls, ix).^2)/ABCten_sumNorm; % FOM 
for each ABC system 
end 
 
% ---Base + 5 modes of ABC system ---- 
 
PLUS_norm = (dv_cal_BasePlus)/error; % normalized predicted error 
 
% loop for relative error  
for ix = 1:size(dv_cal_BasePlus,2); 
     
       for is = 1:num_elements 
           ABC5_sq(is,1) = ABC5_norm(is, ix)^2; 
                     
           PLUS_sq(is,1) = PLUS_norm(is, ix)^2; 
            
       end 
       ABC5_sumNorm = sum(ABC5_sq); 
       FOM_ABC5(ix,1) = (ABC5_norm(EI_lbls, ix).^2)/ABC5_sumNorm; 
       PLUS_sumNorm = sum(PLUS_sq); 
       FOM_PLUS(ix,1) = (PLUS_norm(EI_lbls, ix).^2)/PLUS_sumNorm; 
end 
 
% converts the relative error to scale 1-100, 100 being the best prediction. 
FOM_ABC5per = FOM_ABC5*100; % underdetermied 
FOM_ABC10per = FOM_ABCten*100;% ABC system only using 10 modes 
FOM_PLUSper = FOM_PLUS*100;% Base+5 modes of ABC system 
 
% ********************   END FOM_crs.m  *********************** 
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fOset_from_Aset.m 
 
function [oset] = fOset_from_Aset(ndof,aset); 
% 
%  Usage: [oset] = fOset_from_Aset(ndof,aset); 
% 
% This function determines the complementary subset "oset" 
% from a set [1:1:ndof] and the subset aset = [x x x ...]. 
% 
%  ndof: Total number of DOF. Set is labeled "nset". 
%  aset: Retained DOF (proper subset of [1:1:ndof]) 
%  oset: aset U oset = n 
%  
% Provided by Prof Gordis 
% ________________________________________________________ 
 
nset = [1:ndof]; 
 
for icnt = 1 : length(aset); 
     indices(icnt) = find(nset == aset(icnt)); 
end 
 
bool = ones(size(nset)); 
bool(indices) = zeros(size(indices)); 
oset = nset(find(bool>0)); 
 
% ********************  fOset_from_Aset.m  *********************** 
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fSDOFCurveFit.m 
 
function [Hfit,lam] = fSDOFCurveFit(fit_freqs, h_to_fit); 
 
% This function performs a least squares curve fit 
% of the magnitude of H(½). It identifies 
% natural frequency, damping ratio, and participation factor. 
% 
% Ref: "Improved amplitude fitting for frequency and damping" 
%  by A. M. Rinawi and R. W. Clough 
% Proceedings of the 10th IMAC,  Vol.1, p.25. 
% 
% Usage: 
%    Hamps is a vector of complex FRF values in form a + bj 
%    lofreq: lower frequency limit in Hz. 
%    hifreq: upper frequency limit in Hz. 
%    deltafreq: frequency step in Hz. 
% 
% Provided by Prof Gordis 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
% fit_freqs = freqPlot; % input fit_freqs as Hz in row vector form [a:b:c]; 
 
% h_to_fit = H11'; %input h_to_fit as column vector  
 
fit_freqs = fit_freqs * 2 * pi; 
 
% Assemble the linear system [T] {x} = {y} as per above Ref. 
 
T=zeros(3,3); 
T(1,1) =  sum(h_to_fit.^6); 
T(1,2) =  sum((h_to_fit.^6).*(fit_freqs.^2)); 
T(1,3) = -sum(h_to_fit.^4); 
T(2,2) =  sum((h_to_fit.^6).*(fit_freqs.^4)); 
T(2,3) = -sum((h_to_fit.^4).*(fit_freqs.^2)); 
T(3,3) =  sum(h_to_fit.^2); 
 
for ii = 1:3; 
    for jj = ii:3; 
        T(jj,ii) = T(ii,jj); 
    end 
end 
 
y = zeros(3,1); 
y(1) = -sum((h_to_fit.^6).*(fit_freqs.^4)); 
y(2) = -sum((h_to_fit.^6).*(fit_freqs.^6)); 
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y(3) =  sum((h_to_fit.^4).*(fit_freqs.^4)); 
 
 
x = T\y; 
  
wn =(x(1)^(1/4)); 
zeta = sqrt((x(2)/(4*sqrt(x(1))) + (1/2))); 
Pn = sqrt(x(3)); 
% 
wn_vec = ones(size(fit_freqs)) * wn; 
zeta_vec = ones(size(fit_freqs)) * zeta; 
 
Hfit=Pn* ((wn_vec.^2-fit_freqs.^2).^2+... 
    (2*wn_vec.*zeta_vec.*fit_freqs).^2).^(-1/2); 
 
lam=wn^2; 
 
sprintf('Identified Natural Frequency (Hz): %g', wn/2/pi) 
% sprintf('Identified Damping Ratio (Non-Dimens.): %g', zeta) 
% fit_freqs = fit_freqs/2/pi; 
 
%plot(fit_freqs,log10(abs(Hfit)),'-.o');grid on 
 
% ********************  fSDOFCurveFit.m  *********************** 
 



119

fSpringMass2.m  
 
function [k,m]=fSpringMass2(springs,mass,BC); 
% 
% Usage: function [k,m]=fSpringMass2(springs,mass,BC) 
% 
%  This function script assembles the stiffness [k] and mass 
%  [m] matrices for an assemblage of springs.   
% 
% 
% A linear chain of springs and masses is assumed. 
%  The number of springs is defined by the length of the vector 'springs' 
%  and their values by the elements of 'springs.' 
% 
%  The number of masses is defined by the length of the vector 'mass' 
%  and their values by the elements of 'mass'. 
%  NOTE: The number of masses must equal to the final number of active 
%    DOF (i.e. after BC's applied). 
% 
% Boundary conditions are specified by the vector 'BC.' This vector 
% contains the DOF numbers which are to be restrained. 
%  
% For example, to build the following system: 
% 
%                        .01        .02       .015 
%               |--////--[m]--////--[m]--////--[m] 
%                    5        6       3.4 
% 
% springs = [5 6 3.4]; 
% mass = [.01 .02 .015]; 
% BC  = [1] 
% 
%   
% _________________________________________________________ 
% 
%                          BEGIN SCRIPT 
%                          ~~~~~ ~~~~~~ 
% 
 
if length(mass) == (length(springs)+1) - length(BC); 
 
 k  = zeros(length(springs)+1,length(springs)+1); 
 m  = zeros(length(mass)); 
 
%  assemble stiffness matrix: 
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 rows = [0 1]; 
 for ispring = 1 : length(springs); 
  
  rows = rows + 1; 
  
  addthis = [springs(ispring) -springs(ispring);-springs(ispring) 
springs(ispring)]; 
  k(rows,rows) = k(rows,rows) + addthis; 
 end 
 
 if ~isempty(BC); 
  keep = fOset_from_Aset(length(springs)+1,BC); 
  k = k(keep,keep); 
 end 
  
%  assemble mass matrix:   
  
 m = diag(mass); 
  
else 
   
 disp('Error in fSpringmass2. Check # masses, springs, and BC"s.') 
 return 
  
end 
% ********************  END fSpringMass2.m  *********************** 
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HresiduesL.m   
 
% Building FRF (H matrix) from residues in Shape files saved in ME Scope 
% Preparing ME Scope file for Matlab: 
% 1) In ME Scope export Shape Table file in format "Spreadsheet Shape 
% Table(*.TXT). This file is tab delimited. 
% 2) Delete header information.  The Matlab command "dlmread" does not read 
% text.  
% Note on the command "dlmread":  
%     DLMREAD  reads numeric data from the ASCII delimited file.  
%     Use '\t' to specify a tab. 
 
%     RESULT= DLMREAD(FILENAME,DELIMITER,RANGE) reads the range 
specified 
%     by RANGE = [R1 C1 R2 C2] where (R1,C1) is the upper-left corner of 
%     the data to be read and (R2,C2) is the lower-right corner. R and C are 
%     zero-based so that R=0 and C=0 specifies the first value in the file. 
 
% 3) Keep Damped Natural Frequencies in the first row. 
% 4) Keep Damping Ratios in second row. 
% 5) Delete the following or its equivalent for each row:  
%    "GPO:PO" "1Z:41Z[1]"   "(m/s^2)/N-sec",  
% keeping only the numberic data in the remaining rows and columns. 
 
% Written by Constance R S Fernandez, Spring 2004 
%  
% Inputs 
% ------- 
% Hloop 
% Raset 
% lamABCtot 
 
% Program called 
% -------------- 
% fOset_from_Aset 
% fSDOFCurveFit 
 
% Outputs 
% -------- 
% Rndof, RASET, HRoset 
% m_inct, modes 
% hh, dd 
% HZ, DR 
% sigma, pole, poleS 
% u, uu, uj, uuj, U, UJ, U_vect, U_vectS 
% iR, W, H, k, wp, kp 
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% HHABC, ZABC, ZOSET, HH 
% FRFpeak, PP 
% peakstart, peakdata, peakend, peakPlot 
% Hfit_lamOSET, vect_LAMOSET 
 
% -------- 
% The following code is written for ten modes and can be easily editted to 
% handle more or less modes. 
modes = 10; % number of modes to be used 
 
Rndof = 42; %number of DOF recorded 
RASET = Raset(Hloop, :); %location of new pinned BC 
HRoset = fOset_from_Aset(Rndof,Raset); %unrestrained DOF 
 
% "for" loop to read .txt file and build required vectors 
for m_inct = 1:modes;  
    % range to be used in reading .txt file, cooresponds to Natural Freq in Hz 
    hh = [0 0 0 (modes-1)];  
    % range to be used in reading .txt file, cooresponds to Damping Ratio 
    dd = [1 0 1 (modes-1)];  
    Hz = dlmread('shapeall.txt','\t',hh); % freq in Hz (vector) 
    DR = dlmread('shapeall.txt','\t',dd); % damping ratio (vector) 
    DR = DR/100; % Converts Damping Ratio from percent 
     
    sigma(m_inct)= (Hz(m_inct)* DR(m_inct))/(sqrt(1-(DR(m_inct))^2)); % damping 
coefficient (scaler) 
    pole(m_inct) = -sigma(m_inct) + i*Hz(m_inct); %pole location (scaler) 
    poleS(m_inct) = -sigma(m_inct) - i*Hz(m_inct);% pole conjugate (scaler) 
     
    u = 2*m_inct-2; % corresponds to real part of respective mode shape  
    uu = [2 u 43 u]; % range to be used in reading .txt file, real part 
    uj= 2*m_inct-1;% % corresponds to imag part of respective mode shape  
    uuj = [2 uj 43 uj]; % range to be used in reading .txt file, imag part 
     
    U = dlmread('shapeall.txt','\t',uu); % real part of u-vector 
    UJ = dlmread('shapeall.txt','\t',uuj); % imag part of u-vector 
     
    U_vect(:,m_inct) = U + UJ*i; % mode shape vector, saved WRT to mode 
    U_vectS(:,m_inct) = U - UJ*i;% complex conjugate of mode shape vector 
     
end % "for" loop, m_inct = 1:modes 
 
iR = 0; 
for w = 0:1.831050e-001:6.589949e+002 % freq used in data collection 
    iR = iR +1; % counter 
    H = 0; % initalizes H for each freq 
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    for k = 1:modes; % summation for all modes used 
         
        H = (U_vect(:,k)*(U_vect(:,k))')/(j*w-pole(k))+... 
            (U_vectS(:,k)*(U_vectS(:,k))')/(j*w-poleS(k))+ H; 
    end %"for k = 1:modes" loop 
    % ------ABC applied     -------- 
     
    HHABC = H (Raset,Raset); 
    % inverting to get Z, used in plotting peaks 
    ZABC = inv(HHABC); 
    % saves Z for each increment of frequency 
    ZOSET(iR) = ZABC(1,1);  
     
    HH(iR) = H(41,41); % driving point function NOTE: specific to this experiment 
end % w = ... " loop 
 
% plotting  
 
w =  [0:1.831050e-001:6.589949e+002]; 
plot(w, log(abs(ZOSET))), grid on 
axis tight 
title ('OSET Freq inv(H) using mode shapes from MeScopeVES') 
xlabel ('Hz') 
ylabel ('log Magnitude') 
figure(2) 
plot(w,log(abs(HH))), grid on 
 
%---------------     
%---Peak gathering loop, curve fit program----       
%--------------- 
 
% ----INITIALIZATION--- 
for FRFpeak = 1:modes; 
     
    pp = pp+1; % index in natural frequency vector 
    iRpeak=0; % initizes the index used in loop 
     
    %sprintf('Mode %d',FRFpeak)% displays which mode the following is requested 
    peakstart = lamABCtot(FRFpeak)-10; % input('Enter starting omega (Hz) : '); 
    peakdelta = .5; %Hz input('Enter delta omega for this peak (Hz): '); 
    peakend = lamABCtot(FRFpeak)+10; %input ('Enter ending omega (Hz): '); 
    peakPlot = [peakstart : peakdelta : peakend]; % for plotting in Hz 
     
    %---------------     
    %-"for" loop to calculate the driving point and FRF of the remaining DOF 
    %  of reduced range of peak, same as previous calculation except range  
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    %  is smaller which is needed for the curve fit program to be called. 
    %--------------- 
     
    for wp = peakPlot % freq used in data collection 
        iRpeak = iRpeak +1; % counter 
        Hpeak = 0; % initalizes H for each freq 
        for kp = 1:modes; % summation for all modes used 
             
            Hpeak = (U_vect(:,kp)*(U_vect(:,kp))')/(j*wp-pole(kp))+... 
                (U_vectS(:,kp)*(U_vectS(:,kp))')/(j*wp-poleS(kp))+ H; 
        end % "kp = 1:modes" loop 
         
        % ------ABC applied     -------- 
         
        HABCpeak = Hpeak(Raset,Raset); 
        % inverting to get Z, used in plotting peaks 
        ZABCpeak = inv(HABCpeak); 
        % saves Z for each increment of frequency 
        ZOSETpeak(iR) = ZABCpeak(1,1);  
         
    end %  "for wp=peakPlot" loop 
     
    [Hfit,lamOSET]= fSDOFCurveFit(peakPlot,ZOSETpeak); 
     
    vect_LAMOSET(pp,1) = lamOSET; % saves nat freq found in fSDOFCurveFit  
    % in vector form 
     
    clear ZOSETpeak Hpeak HABCpeak ZABCpeak iRpeak 
     
end % "FRFpeak for loop" 
%vect_lamx_oset = vect_LAMOSET; % use with curve fit program 
 
% vector of natural frequencies of ABC systems  
% ********************  END HresiduesL.m  *********************** 
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Hs.m 

 

 
% This program plot Syn FRF for 41Z:41Z. Uses the following 
% formula:  H = (res/(2*j*(s-peak)))+(res/(2*j*(s-peakS)))+H;   
% This program is has aset and oset hard coded. 
 
% Written by Constance R S Fernandez, Spring 2004 
 
%load testBEAM 
%load HsynMEscope 
 
% Inputs 
% -------- 
% kx_beamBC 
% mx_beamBC 
 
% Programs called 
% --------------- 
% fmodes 
 
% Outputs 
% -------- 
% k, m 
% ndof, aset, oset 
% lam, phi 
% freq 
% mm, iR 
% SUM 
% omega 
% H, Haa, Zaa, Zaa11 
% i, res, peak, S, peakS 
 
k = kx_beamBC; % stiffness matrix with BC 
m = mx_beamBC;% mass matrix with BC 
 
% zeta = .02; 
ndof = [1:1:84]; 
aset = [81]; % contrained set 
oset = [1:1:80,82,83,84]; % uncontrained set 
 
k = k(oset,oset); 
m= m(oset,oset); 
 
[lam,phi]=fModes(k,m); 
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freq = sqrt(lam)/2/pi; 
 
for mm = 1:4; 
     
    iR = 0; 
    SUM = [20, 15, 10, 5]; 
     
    for omega = [0:1:2240]; % in Hz 
         
        iR = iR + 1;  
        H=0; 
        for i = 1:SUM(mm) 
            res = phi(:,i)*phi(:,i)'; 
            peak = j*freq(i); 
            s = j*omega; 
            peakS = -peak; 
            H = (res/(2*j*(s-peak)))+(res/(2*j*(s-peakS)))+H;       
        end % "for i=1:SUM (mm)" loop 
 Haa = H(aset,aset);  
 Zaa = inv(Haa); 
  
        Zaa11(iR,mm) = Zaa(1,1); 
         
    end %"for omega= [0:1:2240]" loop 
end% for "mm  = 1:4" loop 
 
% plotting 
 
w = [0:1:2240]; 
figure(1) 
plot(w, log(abs(Zaa11(:,1))),w, log(abs(Zaa11(:,2))),w, log(abs(Zaa11(:,3))),... 
   w, log(abs(Zaa11(:,4)))); 
 
% , w, log(abs(Hs(:,5))),w, log(abs(Hs(:,6))),... 
%    w, log(abs(Hs(:,7))),w, log(abs(Hs(:,8))), w, log(abs(Hs(:,9)))), grid on... 
 
axis tight 
xlabel ('Hz') 
ylabel ('log Mag')    
title( 'Syn FRF for 41Z:41Z') 
legend ('Modes sum = 20', 'Modes sum = 15', 'Modes sum = 10', ... 
    'Modes sum = 5') 
hold on, grid on 
x = ones(8,1)*8; 
stem(freq(1:8),x,'b') 
% ********************  END Hs.m  *********************** 
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Htrial.m 
 
%This  program was written orginially to run as a loop to find the modes of 
%H with respect to each ABC system.  Since the program fSDOFCurveFit works 
%when only one peak is used, this program plotted the H using the formula 
%      Z = kx_beam - omega.^2 * mx_beam + j*c*omega;  
%      h = inv(Z); 
%      H = h(ASET, ASET); % reducing H is only ASET rows and columns 
%      habc = H(HOSET, HOSET); % reducing H according to ABC  
%      zabc= inv(habc); % inverse as defined as driving point 
 
% Then the driving is plotted for visual to user.  The user is then asked 
% to enter peak omega values and fSDOFCurveFit program is called to pick 
% peak frequency value and build a vector of natural frequencies of system. 
%  This loop is repeated for all ABC systems.  However, when the loop is 
%  run there was a problem that the programmer could not correct.  Instead new 
%  lines were written: 
 
    % kxOSET = kx_beam(Hoset, Hoset); 
    % mxOSET = mx_beam(Hoset, Hoset); 
    % [LAMOSET,PHIOSET]=fmodes(kxOSET,mxOSET); 
% Since the program saw direct correlation between the FE calculated i.e. 
% lam and phi calculated from program "fmodes" and those calculated slowly  
% and outside of complex programming loop by fSDOFCurveFit, programmer decided  
% to use lam and phi calculated by fModes as FE values for experiment. Old 
% code line are still shown in program as foundation for future versions of 
% this program.  
% Written by Constance R S Fernandez, Spring 2004 
 
% Inputs 
% ------- 
% icnt_oset 
% OSETtot 
% oset 
% kx_beam, mx_beam 
 
% Program called 
% --------- 
% fModes 
 
% Outputs 
% ------- 
% lamOSET 
% vect_lamx_oset 
% Hloop 
% H_inct 
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% Hoset 
% kxOSET 
% mxOSET 
% LAMOSET 
% PHIOSET 
 
% Initalization 
lamOSET = []; 
vect_lamx_oset = []; 
 
for Hloop = 1:icnt_oset;% loop repeats for number os ABC system defined 
     
    H_inct = size(find(OSETtot(Hloop, :)>0),2);  
    % counts how many places in a given row of OSETtot are not zero 
    Hoset = OSETtot(Hloop, 1:H_inct); 
    % creates a new vector with just non-zero values  
     
    OSETtot(icnt_oset, 1:length(oset)) = oset; 
    
    %     H_inct = size(find(OMITset(Hloop, :)>0),2); 
    %     Hoset = OMITset(Hloop, 1:H_inct); 
    %     ASET = [1 3 5 7 9 11 13 15 17 19]; 
    %     HOSET = fOset_from_Aset(10,Hoset); 
    %     StartOmega =1; 
    %     DeltaOmega = 2; 
    %     EndOmega = 2000; 
    %     freqPlot = [StartOmega : DeltaOmega : EndOmega]; % used for plotting  
    %      
    %     Zabc11 = zeros(length(freqPlot), 1); 
     
    %     iR=0; % initizes the index used in loop 
    %     c = 0; 
     
    kxOSET = kx_beam(Hoset, Hoset);% stiffness matrix with only unrestained DOF wrt 
ABC system 
    mxOSET = mx_beam(Hoset, Hoset);% mass matrix ... 
     
    [LAMOSET,PHIOSET]=fmodes(kxOSET,mxOSET); 
     
    %"for" loop to calculate the driving point and FRF of the remaining set of DOF 
    %     for omega = freqPlot  %rad/sec 
    %         omega = omega*2*pi; 
    %         iR = iR + 1; % loop counter 
    %                  
    %         Z = kx_beam - omega.^2 * mx_beam + j*c*omega;  
    %          
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    %         h = inv(Z); 
    %         H = h(ASET, ASET); 
    %         habc = H(HOSET, HOSET); 
    %         zabc= inv(habc); 
    %         Zabc11(iR) = zabc(1,1); 
    %     end 
    %      
    %     absmax = max(Zabc11); 
    %     absmin = min(Zabc11); 
    %     avg = (absmax+absmin)/2; 
    %     counter = 0; 
    %     for i = 1:length(freqPlot)  
    %         if Zabc11(i) >= avg 
    %             counter = counter+1; 
    %             modepeaks(counter) = freqPlot(i); % in Hz 
    %         else  
    %         end 
    %     end 
     
    %     figure (Hloop+3) 
    %      
    %     plot(freqPlot,log10(abs(Zabc11)),'g');grid on  
    %     hold on 
    %      
    %     title('inv(H) complete spectrum') 
    % %     for peak = 1:num_modesO; 
    % %          
    % %         sprintf('Mode %d',peak) 
    % %         peaklam(peak,Hloop)= input('Enter peak lamda: '); 
    % %     end 
    % % %      
    %     pp = 0; 
    % %      
    %     for peak = 1:num_modesO; 
    %         pp = pp+1; 
    %         sprintf('Mode %d',peak) 
    %         peakstart = input('Enter starting omega  : '); 
    %         peakdelta = input('Enter delta omega for this peak : '); 
    %         peakend = input ('Enter ending omega : '); 
    %         peakPlot = [peakstart : peakdelta : peakend]; 
    %          
    %         iRpeak=0; % initizes the index used in loop 
    %         c = 0; 
    %         clear Zpeak hpeak habcpeak zabcpeak Zabc11peak  
    %          
    %         %"for" loop to calculate the driving point and FRF of the remaining set of DOF 
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    %         for omega = peakPlot  % in Hz 
    %             omega = omega*2*pi; 
    %             iRpeak = iRpeak + 1; % loop counter 
    %             Zpeak = kx_beam - omega.^2 * mx_beam + j*c*omega;  
    %              
    %             hpeak = inv(Zpeak); 
    %             habcpeak = hpeak(Hoset, Hoset); 
    %             zabcpeak= inv(habcpeak); 
    %             Zabc11peak(iRpeak) = zabcpeak(1,1); 
    %         end 
    %         figure (2) 
    %          
    %         plot(peakPlot,log10(abs(Zabc11peak)),'g');grid on  
    %         hold on 
    %          
    %         title('inv(H) one peak') 
    %         [Hfit,lamOSET]= fSDOFCurveFit(peakPlot,Zabc11peak);%555 
     
    %         vect_LAMOSET(pp) = lamOSET; 
    %clear Zpeak hpeak habcpeak zabcpeak Zabc11peak iRpeak 
     
    %     end 
    %if lamOSET == []; 
     
    if vect_lamx_oset == []; 
         
        vect_lamx_oset = LAMOSET(1:5); 
         
    else  
        vect_lamx_oset  = cat(1,vect_lamx_oset,LAMOSET(1:5)); 
    end % "if vect_lamx_oset == []" 
end % "for Hloop=1:icnt_oset" loop 
%end 
% ********************  END Htrial.m  *********************** 
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normRUNthru_crs.m 
 
% This program finds the NORM of the columns of sensitivity matrix and the 
% NORM of the rows of the inverse of the sensitivity matrix.  This was used 
% to find a correlation of the good prediction to the ABC system used.  It  
% also plots the information in helpful graphes. 
% 
% This program was written for a system of 19 natural freq. Set of 5 modes 
% were used in each ABC system, i.e., modes 1-5, modes 6-10,or modes 11-15. 
% This accounts for the 3 sets of modes per condition as listed below in 
% the "for" loop modeN = 1:3. This program compares the use of the first 5 
% modes of the base system and one set of five modes of the ABC  to that of 
% of just 10 modes of the ABC.  Notice that the sensitivity is a 10x10 
% square matrix indicating that only mass or EI changes, not both were 
% made. 
 
% This program is not part of Build2Beams_crs.m program.  It is run 
% separately. 
 
% Written by Constance R S Fernandez, Spring 2004 
 
% Inputs 
% ------ 
% cond_basePlus 
% icnt_oset 
% T_sens_tot 
% EI_lbls, mass_lbls 
% dv_mass, dv_EI, dv_cal_ABCten 
 
% Outputs 
% -------- 
% BASE  
% BASET 
% abcN, countN, a_cN 
% modeN, startmodeN, startmodeNT 
% bb, t, tINV, cc, T, TINV, vv, tt 
% modelabelNORM 
% norm_vectT, norm_vecTABC, norm_vecTinvABC 
% normC 
% baseN, baseABCN, abc_conN, abc_conTN 
% baseABCNten, abc_conNten, abc_conTNten 
 
% ----Start program---- 
 
BASE = int2str(cond_basePlus(1)); % cond no. of the base line system 
BASET = sprintf('Base[1:5] Cond = %s', BASE); % used for plotting 
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% ======Initialization=====% 
 
abcN = 0; 
countN =0; 
 
% =======Calculations of NORM vectors======% 
for count = 1:icnt_oset +1 % number of conditions (base + ABC) 
    a_cN = 1; 
     
    for modeN = 1:3 % 3 sets of modes per boundry condition 
        startmodeN = abcN + a_cN; % the beginning mode number of each set 
         
        % indicates the use of the first 5 modes of base system + 5 modes  
        % of ABC system  
        bb = [1:5, startmodeN: startmodeN+4];  
         
        % labeling of modes for plotting 
        modelabelNORM = int2str(a_cN:a_cN+4);  
         
        a_cN = a_cN+5;    %advances to the next set of modes   
         
        % base system plus 5 modes of ABC         
        t = T_sens_tot(bb,:); % 10x10 matrix 
        tINV = inv(T_sens_tot(bb,:));% 10x10 matrix 
         
        % first 10 modes of ABC solo 
        startmodeNT = abcN+1; % the beginning mode number of each set 
        cc = [startmodeNT: startmodeNT+9];  
         
        T = T_sens_tot(cc,:);% 10x10 matrix 
        TINV = inv(T_sens_tot(cc,:));% 10x10 matrix 
         
        % for loop for NORM of columns and rows of inv(sens matrix) 
        for vv = 1:10 % 10 rows, 10 columns 
            % base + ABC system 
            norm_vecT(vv,countN+modeN) = norm(t(:,vv)); % columns 
            norm_vecTinv(vv,countN+modeN) = norm(tINV(vv,:)); % rows 
            % for 10 modes ABC solo 
            norm_vecTABC(vv,countN+modeN) = norm(T(:,vv)); % columns 
            norm_vecTinvABC(vv,countN+modeN) = norm(TINV(vv,:)); % rows 
             
        end % vv loop 
    end % ModeN loop  
    abcN = abcN+19; % advances to the next ABC system   
    countN = countN+3; % counts up each set of ABC  
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end % count loop 
normC=4; % initialize for plots 
 
%==========PLOTTING==========% 
 
for tt=1:10 % figures (30-40) plots 6 graphes per figure 
    figure(tt+30) 
    subplot(3,2,1) 
    bar(norm_vecT(:,normC)) 
    title ('Norm col Tsens, ABC Modes [1:5]'); 
     
    subplot(3,2,3) 
    bar(norm_vecTinv(:,normC)) 
     
    title ('Norm row TsensINV, ABC Modes [1:5]'); 
     
    subplot(3,2,2) 
    bar(norm_vecTABC(:,normC)) 
    title ('Norm col Tsens, ABC Modes [1:10]') 
    subplot(3,2,4) 
    bar(norm_vecTinvABC(:,normC)) 
    title ('Norm row TsensINV, ABC Modes [1:10]') 
     
    subplot(3,2,5) 
    % plotting error prediction  
    % using [1:5] modes of ABC system + [1:5] modes of Base system; 
    baseABCN = bar(dv_cal_BasePlus(:,normC),.5,'r');hold on 
     
    % plotting error prediction using [1:5] modes of Base system; 
    baseN = bar(dv_cal_ABC(:,1),.25,'b'); 
     
     
    abc_conN = int2str(cond_basePlus(normC)); % cond no. for legend 
    abc_conTN = sprintf('Base[1:5]+ABC[1:5] Cond = %s', abc_conN); 
     
    grid on 
    legend([baseABCN,baseN],BASET,abc_conTN), hold on 
     
     
    % plotting actual error 
    if EI_lbls ~=[] & mass_lbls ~=[] 
        stem(mass_lbls, dv_mass,'y','filled'); hold on;  
        stem(mass_lbls, dv_mass,'k') 
         
        EIplot = EI_lbls+10;hold on 
        stem(EI_lbls, dv_EI,'c','filled');hold on;  
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        stem(EI_lbls, dv_EI,'k') 
         
    elseif  mass_lbls ~=[] & EI_lbls ==[] 
        stem(mass_lbls, dv_mass,'y','filled');hold on;  
        stem(mass_lbls, dv_mass,'k') 
         
    else 
        stem(EI_lbls, dv_EI,'c','filled');hold on;  
        stem(EI_lbls, dv_EI,'k') 
         
    end % if EI_lbls ~=[] & mass_lbls ~=[] 
     
    title (sprintf('Error, Base [1:5] + ABC [1:5], pinned NODE # %d', (tt+1))) 
     
    subplot(3,2,6) 
    % plotting error prediction using [1:10] modes of ABC system; 
    baseABCNten = bar(dv_cal_ABCten(:,normC));hold on 
     
    abc_conNten = int2str(cond_ABCten(normC)); 
    abc_conTNten = sprintf('ABC[1:10] Cond = %s', abc_conNten); 
     
    grid on 
    legend([baseABCNten],abc_conTNten), hold on 
     
    % plotting actual error 
    if EI_lbls ~=[] & mass_lbls ~=[] 
        stem(mass_lbls, dv_mass,'y','filled'); hold on;  
        stem(mass_lbls, dv_mass,'k') 
         
        EIplot = EI_lbls+10;hold on 
        stem(EI_lbls, dv_EI,'c','filled');hold on;  
        stem(EI_lbls, dv_EI,'k') 
         
    elseif  mass_lbls ~=[] & EI_lbls ==[] 
        stem(mass_lbls, dv_mass,'y','filled');hold on;  
        stem(mass_lbls, dv_mass,'k') 
         
    else 
        stem(EI_lbls, dv_EI,'c','filled');hold on;  
        stem(EI_lbls, dv_EI,'k') 
         
    end % EI_lbls ~=[] & mass_lbls ~=[] 
       
    title (sprintf('Error, ABC Modes [1:10], pinned NODE # %d', (tt+1))) 
    
     normC = normC+3; % advances to the next ABC system 
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end % tt = 1:10 for plotting graphes 
 
% ********************  END normRUNthru_crs.m  *********************** 
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peakmodeloop.m 
 
% This program was written to find graphically the peak of FRF of ABC 
% system.  It calls the FSDOFCurveFit program to find peak of FRF.  
% Written by Constance R S Fernandez, Spring 2004 
 
for peak = 1:3; 
         
        sprintf('Mode %d',peak) 
        peakstart = input('Enter starting omega  : '); 
        peakdelta = input('Enter delta omega for this peak : '); 
        peakend = input ('Enter ending omega : '); 
        peakPlot = [peakstart : peakdelta : peakend]; 
         
        iRpeak=0; % initizes the index used in loop 
        c = 0; 
        clear Zpeak hpeak habcpeak zabcpeak Zabc11peak  
         
        %"for" loop to calculate the driving point and FRF of the remaining set of DOF 
        for omega = peakPlot  % in Hz 
            omega = omega*2*pi; 
            iRpeak = iRpeak + 1; % loop counter 
            Zpeak = kx_beam - omega.^2 * mx_beam + j*c*omega;  
             
            hpeak = inv(Zpeak); 
            habcpeak = hpeak(Hoset, Hoset); 
            zabcpeak= inv(habcpeak); 
            Zabc11peak(iRpeak) = zabcpeak(1,1); 
        end 
        figure (2) 
         
        plot(peakPlot,log10(abs(Zabc11peak)),'g');grid on  
        hold on 
         
        title('inv(H) one peak') 
        [Hfit,lamOSET]= fSDOFCurveFit(peakPlot,Zabc11peak);%555 
         
        %clear Zpeak hpeak habcpeak zabcpeak Zabc11peak iRpeak 
         
    end 
     
% ********************  END peakmodeloop.m  *********************** 
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PlotBeamModes_crs.m 
 
% Calculates natural frequencies 
 
% Provided by Prof Gordis 
 
% Inputs needed: 
% ----------------- 
% ka, ma, mx, kx 
 
% Programs needed: 
% ----------------- 
% fModes 
 
% Outputs: 
% ----------------- 
% lama, phia, lamx, phix (without rigid body modes) 
% num_rbm 
% phia_plot, phix_plot 
 
 
disp('  '); 
disp(' Calculating modes for each beam...plot frequency comparison') 
 
 
% Get modes of each beam: 
 
[lama,phia]=fModes(ka,ma); 
[lamx,phix]=fModes(kx,mx); 
 
%used to plot the mode shapes org BC before ABC 
phia_plot = phia; 
phix_plot = phix; 
 
% Set any rigid body mode freqs to zero: 
 
  num_rbm = length(find(lama < 1)); 
 
  sprintf('Number of Rigid Body Modes Found: %2i', num_rbm) 
 
    disp( ' Removing rigid body mode frequencies from vectors...') 
    lama = lama(find(lama > 1)); 
    lamx = lamx(find(lamx > 1)); 
 
% ********************  END PlotBeamModes_crs.m  *********************** 
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plottingBARS_crs.m 
 
% To be used with Build2Beams.m and  
%  
% This program plots 9 graphes per figure.  The first columns of 3 graphes  
% are the mode shapes of the ABC system used in error prediction.  The next 
% column of 3 graphes are the error prediction using only 5 modes of ABC  
% system. The last column of 3 graphes are the error predictions using the  
% first 5 modes of base system plus 5 modes of the ABC system.  The row 
% represent modes 1-5, middle row: modes 6-10, last row : modes 11-15. Each 
% of the error prediction graphes also have the base only prediction  and 
% the actual error plotted for easy reference.  
% 
% Written by Constance R S Fernandez, Spring 2004 
 
% Inputs 
% -------- 
% cond_basePlus 
% FOM_ABC5per, FOM_PLUSper 
% icnt_oset 
% modeshape 
% rel_freqERROR 
% ypos 
% EI_lbls, mass_lbls 
% dv_mass, dv_EI 
 
% Outputs 
% -------- 
% BASE, BASET 
% FOMBASE, FOMABC, FOMPLUS 
% intervelp 
% ER, barp, shape, error, a_cp, modep, ap,  
% modelabelp, FOMABClabelp, FOMPLUSlabelp 
% abc_con, abc_conT 
% ABC, base 
% plus_con, plus_conT 
% base, plus, EI_plot 
 
 
BASE = int2str(cond_basePlus(1)); 
FOMBASE = int2str(FOM_ABC5per(1)); 
BASET = sprintf('Base Cond = %s, FOM = %s', BASE, FOMBASE); 
 
         
intervelp = 3; 
modeshape = 1; 
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ER = 1; 
for barp = 1:icnt_oset 
     
    figure(barp+10) % figures 11-20 
    format bank 
    shape = [modeshape:modeshape+10]; 
    error = round(rel_freqERROR(ER:ER+15)*100)/100; 
    a_cp = 1; 
    for modep = 1:3 %3 sets of modes per boundry condition 
         
        ap = [a_cp: a_cp+4]; %modes  
%         REL_error1 = int2str(error(a_cp)); 
%         Errorlabelp = sprintf('Rel error = %s', REL_error1); 
%         REL_error2 = int2str(error(a_cp+1)); 
%          Errorlabelp = sprintf('Rel error = %s', REL_error2); 
%         REL_error3 = int2str(error(a_cp+2)); 
%          Errorlabelp = sprintf('Rel error = %s', REL_error3); 
%         REL_error4 = int2str(error(a_cp+3)); 
%          Errorlabelp = sprintf('Rel error = %s', REL_error4); 
%         REL_error5 = int2str(error(a_cp+4)); 
%          Errorlabelp = sprintf('Rel error = %s', REL_error5); 
         
        modelabelp = int2str(a_cp:a_cp+4); 
        FOMABC = int2str(FOM_ABC5per(intervelp+modep)); 
        FOMABClabelp = sprintf('System FOM = %s', FOMABC); 
         
        FOMPLUS = int2str(FOM_PLUSper(intervelp+modep)); 
        FOMPLUSlabelp = sprintf('System FOM = %s', FOMPLUS); 
          
        
        % =======================================================%  
        % =====mode shape or beam X and beam A with ABC==================% 
        % =======================================================% 
 
        figure(barp+50) 
        subplot(3,1,modep)  
        plot(ypos, dispA_tot(shape,a_cp),'k-o', ypos, ... 
            dispA_tot(shape,a_cp+1),'g-s', ypos, ... 
            dispA_tot(shape,a_cp+2),'b-d', ypos, ... 
            dispA_tot(shape,a_cp+3),'r-x', ypos, ... 
            dispA_tot(shape,a_cp+4),'m-*', ypos, ... 
            dispX_tot(shape,a_cp),  'r--o', ypos, ... 
            dispX_tot(shape,a_cp+1),'b--s', ypos, ... 
            dispX_tot(shape,a_cp+2),'m--d', ypos, ... 
            dispX_tot(shape,a_cp+3),'c--x', ypos, ... 
            dispX_tot(shape,a_cp+4),'k--*'), grid on...  
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        legend(sprintf('Rel Freq Error = %d', error(a_cp)),... 
            sprintf('Rel Freq Error = %d', error(a_cp+1)),... 
            sprintf('Rel Freq Error = %d', error(a_cp+2)),... 
            sprintf('Rel Freq Error = %d', error(a_cp+3)),... 
            sprintf('Rel Freq Error = %d', error(a_cp+4))); 
         
%         legend(sprintf('Bm X, Md %d', a_cp'), sprintf('Bm X, Md %d', a_cp+1),... 
%             sprintf('Bm X, Md %d', a_cp+2), sprintf('Bm X, Md %d',a_cp+3),... 
%             sprintf('Bm X, Md %d', a_cp+4), sprintf('Base, Md %d', a_cp), ... 
%             sprintf('Base, Md %d', a_cp+1), sprintf('Base, Md %d', a_cp+2), ... 
%             sprintf('Base, Md %d', a_cp+3), sprintf('Base, Md %d', a_cp+4)) 
         
         
        title(sprintf('Modes [ %s]',modelabelp)) 
        axis tight 
 
        %=========================================================% 
        % ===== bar graphes of error solution using only ABC=============% 
        %=========================================================% 
 
        figure(barp+10) % figures 11-20 
        subplot(3,2,2*modep-1)  
         
        abc_con = int2str(cond_ABC(intervelp+modep)); 
        abc_conT = sprintf('ABC Cond = %s, FOM = %s', abc_con, FOMABC); 
                
        ABC = bar(dv_cal_ABC(:,intervelp+modep),.5,'r'); hold on 
        base = bar(dv_cal_ABC(:,1),.25,'b');hold off%on % base first 5 modes 
        %FOMabc = bar(1,0); hold off  
        grid on 
        %legend([ABC,base,FOMabc],plus_conT,BASET,FOMABClabelp), hold on  
       % grid on 
        legend([ABC,base],abc_conT,BASET), hold on 
    
        title(sprintf('ABC only, [ %s]', modelabelp));        
       
        
              
        if EI_lbls ~=0 & mass_lbls ~=0 
            % plots actual error 
            stem(mass_lbls, dv_mass,'y','filled'); hold on;  
            stem(mass_lbls, dv_mass,'k'), hold on; 
             
            EIplot = EI_lbls+10; hold on % last half of plot 
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            stem(EIplot, dv_EI,'c','filled');hold on;  
            stem(EIplot, dv_EI,'k'); hold on 
            % plots the green triangle which indicates pinned node 
            plot(barp+1,0,'g^',barp+1,0,'gh',barp+1,0,'g*',... 
                barp+11,0,'g^',barp+11,0,'gh',barp+11,0,'g*'  ) 
             
        elseif  mass_lbls ~=0 %&EI_lbls =0  
            % plots actual error 
            stem(mass_lbls, dv_mass,'y','filled'); hold on  
            stem(mass_lbls, dv_mass,'k'); hold on 
            % plots the green triangle which indicates pinned node 
            plot(barp+1,0,'g^',barp+1,0,'gh',barp+1,0,'g*') 
             
        else 
            % plots actual error 
            stem(EI_lbls, dv_EI,'c','filled');hold on;  
            stem(EI_lbls, dv_EI,'k'); hold on 
            % plots the green triangle which indicates pinned node 
            plot(barp+1,0,'g^',barp+1,0,'gh',barp+1,0,'g*') 
             
        end % EI_lbls ... 
         
        % =======================================================% 
        % =========bar graphes of error solution using ABC + base========% 
        % =======================================================% 
 
        subplot(3,2,2*modep)  
         
         
        plus_con = int2str(cond_basePlus(intervelp+modep));% for legend 
        plus_conT = sprintf('Base+ABC Cond = %s FOM = %s', plus_con, FOMPLUS); 
        % for legend 
         
        plus = bar(dv_cal_BasePlus(:,intervelp+modep),.5,'r'); hold on 
        base = bar(dv_cal_ABC(:,1),.25,'b'); hold on % base first 5 modes 
        %FOMplus = bar(1,0); hold off  
        grid on 
        legend([plus,base],plus_conT,BASET), hold on  
%        legend([plus,base,FOMplus],plus_conT,BASET,FOMPLUSlabelp), hold on        
 
        if EI_lbls ~=0 & mass_lbls ~=0 
            % plots actual error 
            stem(mass_lbls, dv_mass,'y','filled'); hold on;  
            stem(mass_lbls, dv_mass,'k'); hold on 
            EIplot = EI_lbls+10; hold on % last half of plot 
            stem(EIplot, dv_EI,'c','filled');hold on;  
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            stem(EIplot, dv_EI,'k');hold on 
            % plots the green triangle which indicates pinned node 
            plot(barp+1,0,'g^',barp+1,0,'gh',barp+1,0,'g*',... 
                barp+11,0,'g^',barp+11,0,'gh',barp+11,0,'g*'  ) 
           
         elseif  mass_lbls ~=0 %&EI_lbls =0  
            % plots actual error 
            stem(mass_lbls, dv_mass,'y','filled');hold on;  
            stem(mass_lbls, dv_mass,'k');hold on 
            % plots the green triangle which indicates pinned node 
            plot(barp+1,0,'g^',barp+1,0,'gh',barp+1,0,'g*') 
        else 
            % plots actual error 
            stem(EI_lbls, dv_EI,'c','filled');hold on;  
            stem(EI_lbls, dv_EI,'k'), hold on 
            % plots the green triangle which indicates pinned node 
            plot(barp+1,0,'g^',barp+1,0,'gh',barp+1,0,'g*') 
             
        end % if EI_lbls ... 
         
        title(sprintf('Base [1:5] + ABC [ %s]', modelabelp)); 
        %       title(sprintf('Base + ABC, pinned at NODE# %d',barp +1)) 
        a_cp= a_cp +5;     
    end  % modep loop 
     
    modeshape = modeshape + 11; % advances  
    intervelp = intervelp +3; % advances to the next ABC system 
    ER = ER+19; 
end % barp loop 
 
% ********************  END plottingBARS_crs.m  *********************** 
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recorded_H_crs.m 
% Written by Constance R S Fernandez, Spring 2004 
 
% This program is used to find the natural frequencies of the ABC Systems 
%  
% The natural frequencies of each ABC system were calculated by keeping  
% the unrestrained DOF from the stiffness and mass matrices of Beam X  
% because natural freq of system coorespond to the unrestained DOF of the  
% system, oset.   
% This method was used for ease of use in multiple computer runs.  
%  
% Another method of getting ABC system:  
%  
% 1) Build the impedence matrix Z 
%    a) using a range of frequencies  
%    b) stiffness and mass matrices of the experimental Beam X saved  
%       in the program Build2Beams.m 
% 2) H = inv(Z) 
% 3) Only the pinned rows and columns of H are kept to yield  
%    natural frequenices of the ABC systems  
% 4) Z = inv(H reduced) 
% 5) Plot the new Z,  
%    (peaks coorespond to ABC system natural frequencies) 
% 6) Use curve fitting program to estimate the freq of peak 
%  
% Method of getting ABC with recorded data.  
% 1) H recorded is saved as spreadsheets   
% 2) Only the pinned rows and columns of H are kept. 
% 3) Plot the remaining H,  
%    (peaks coorespond to ABC system natural frequencies) 
% 4) Invert H to get Z 
% 5) Use curve fitting program to estimate the freq of peak 
 
% Inputs 
% ------- 
% icnt_oset 
% BCOSET 
% BC 
% kx_beam, mx_beam 
 
% Programs Called 
% --------------- 
% fModes 
 
% Outputs 
% ------- 
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% Hloop 
% Ho_inct 
% Hoset 
% kABC,mABC 
 
% ----INITIALIZATION--- 
 
lamOSET = []; 
vect_lamx_oset = []; 
 
%============================================================== 
% loop for ABC natural frequencies (Method one) 
 
for Hloop = 1:icnt_oset; % for all ABC systems 
     
    Ho_inct = size(find(BCOSET(Hloop, :)>0),2);  
    Hoset = BCOSET(Hloop, 1:Ho_inct); % free DOF 
     
    HAset = BC(Hloop,:); % pinned DOF 
     
    kABC = kx_beam(Hoset, Hoset); %stiffness matrix of (no BC) 
    mABC = mx_beam(Hoset, Hoset); %mass matrix of unrestained DOF (no BC) 
     
    % lam (natural freq^2, rad^2/sec^2), phi (mode shapes) 
    [lamABC,phiABC]=fModes(kABC,mABC);  
     
    lamABCtot = lamABC; % renames natural freq of ABC system 
     
    %     
%============================================================== 
    %     %-----------------------METHOD 2----------------------------------- 
    %     
%============================================================== 
    %      
    %     % ----INITIALIZATION--- 
    %      
    %     StartOmega = 1; % in Hz 
    %     DeltaOmega = .5; % in Hz 
    %     EndOmega = 1000; % in Hz 
    %      
    %     freqPlot = [StartOmega : DeltaOmega : EndOmega]; % plotting in Hz 
    %     iR=0; % loop index  
    %     c = 0.02; % damping ratio 
    %     Zabc11 = zeros(length(freqPlot), 1); 
    %     %---------------     
    %     %-"for" loop to calculate the driving point and FRF of the remaining DOF       
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    %     %--------------- 
    %     for omega = StartOmega : DeltaOmega : EndOmega; % in Hz 
    %         omega = omega*2*pi; % rad/sec 
    %         iR = iR + 1;  
    %         % loop counter% system impedence of multi DOF system 
    %         Zx_beam= kx_beam - omega.^2 * mx_beam + j*c*omega;  
    %          
    %         hx_beam = inv(Zx_beam); 
    %         % dynamically reduced, spatically incomplete FRF  
    %         habc = hx_beam(HAset, HAset); 
    %         % inverting to get Z, used in plotting peaks 
    %         zhabc = inv(habc); 
    %         % saves Z for each increment of frequency 
    %         zhabc11(iR) = zhabc(1,1);  
    %          
    %     end % omega loop 
    %      
    %     %---------------     
    %     %---PLOTTING----       
    %     %--------------- 
    %      
    %     figure(Hloop + 300) % plots the complete impedence matrix Z so user can  
    %     %see peaks and be able to keep peak range when prompted 
    %      
    %     plot(freqPlot,log10(abs(zhabc11)),'b'); 
    %     xlabel('inv(Hx_beam11) of the ABC System using inv Zx_beam, (in HZ)') 
    %     ylabel('log10 of') 
    %     hold on 
    %      
    %     %---------------     
    %     %---Peak gathering loop, curve fit program----       
    %     %--------------- 
    %      
    %     % ----INITIALIZATION--- 
    %     pp = pp+1; % index in natural frequency vector 
    %     iRpeak=0; % initizes the index used in loop 
    %      
    %     sprintf('Mode %d',peak)% displays which mode the following is requested 
    %     peakstart = input('Enter starting omega (Hz) : '); 
    %     peakdelta = input('Enter delta omega for this peak (Hz): '); 
    %     peakend = input ('Enter ending omega (Hz): '); 
    %     peakPlot = [peakstart : peakdelta : peakend]; % for plotting in Hz 
    %      
    %     %---------------     
    %     %-"for" loop to calculate the driving point and FRF of the remaining DOF 
    %     %  of reduced range of peak, same as previous calculation except range  
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    %     %  is smaller which is needed for the curve fit program to be called. 
    %     %--------------- 
    %    
    %     for omega = peakPlot  % in Hz 
    %         omega = omega*2*pi; % in rad/sec 
    %         iRpeak = iRpeak + 1; % loop counter 
    %         Zpeak = kx_beam - omega.^2 * mx_beam + j*c*omega;  
    %          
    %         hpeak = inv(Zpeak); 
    %         habcpeak = hpeak(HAset, HAset);  
    %         zabcpeak= inv(habcpeak); 
    %         Zabc11peak(iRpeak) = zabcpeak(1,1); 
    %     end %  "for omega loop" 
    %     
    %     [Hfit,lamOSET]= fSDOFCurveFit(peakPlot,Zabc11peak); 
    %      
    %     vect_LAMOSET(pp,1) = lamOSET; % saves nat freq found in fSDOFCurveFit  
    %     % in vector form 
    %      
    %     clear Zpeak hpeak habcpeak zabcpeak Zabc11peak iRpeak 
     
     
     
    %vect_lamx_oset = vect_LAMOSET; % use with curve fit program 
     
    % vector of natural frequencies of ABC systems  
    if vect_lamx_oset == 0; 
         
        vect_lamx_oset = lamABCtot; 
    else  
        vect_lamx_oset  = cat(1,vect_lamx_oset,lamABCtot); 
    end % "if" 
     
end % Hloop "for" 
 
clear peakPlot peakstart  peakdelta  peakend pp 
clear freqPlot StartOmega DeltaOmega EndOmega] 
clear Hloop Ho_inct Hoset HAset 
clear Zx_beam hx_beam habc zhabc zhabc11 iR 

 
% ********************  END recorded_H_crs.m  *********************** 
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