

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

ARTIFICIAL BOUNDARY CONDITIONS IN
SENSITIVITY BASED FINITE ELEMENT MODEL

UPDATING AND STRUCTURAL DAMAGE
DETECTION

by

Constance R. S. Fernandez

December 2005

 Thesis Advisor: Joshua H. Gordis

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2005

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Artificial Boundary Conditions in Sensitivity Based Finite Element Model Updating
and Structural Damage Detection
6. AUTHOR(S)
Constance R S Fernandez

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

A finite element (FE) model is a computational representation of a given structure. In order for the FE
model to accurately predict structure response, the model is “updated” or improved. This thesis investigates the
use of artificial boundary conditions in sensitivity-based model updating and damage detection. A comparative
analysis was conducted on the accuracy of error identification and location with respect to the artificial boundary
conditions imposed and the number of modes retained. Results are demonstrated with actual test data from a
simple structure.

15. NUMBER OF
PAGES

165

14. SUBJECT TERMS Finite Element Model Sensitivity Artificial Boundary Conditions

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

ARTIFICIAL BOUNDARY CONDITIONS IN SENSITIVITY BASED FINITE
ELEMENT MODEL UPDATING AND STRUCTURAL DAMAGE DETECTION

Constance R. S. Fernandez

Lieutenant, United States Navy
B.S. Electrical Engineering, Illinois Institute of Technology, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2005

Author:

Constance R. S. Fernandez

Approved by:

Joshua H. Gordis
Thesis Advisor

Anthony J. Healey
Chairman, Department of Mechanical and Astronautical Engineering

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

A finite element (FE) model is a computational representation of a given

structure. In order for the FE model to accurately predict structure response, the

model is “updated” or improved. This thesis investigates the use of artificial

boundary conditions in sensitivity-based model updating and damage detection. A

comparative analysis was conducted on the accuracy of error identification and

location with respect to the artificial boundary conditions imposed and the number of

modes retained. Results are demonstrated with actual test data from a simple

structure.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. THEORY ..3
A. OMITTED COORDINATE SET ...3
B. EXACT DYNAMIC REDUCTION AND FRF MATRICES6
C. DRIVING POINT FREQUENCY RESPONSE FUNCTION8

III. NATURAL FREQUENCIES OF ABC CONFIGURED SYSTEMS....................13
A. THE IMPORTANCE OF ABC FREQUENCIES IN MODEL

UPDATING ..13
B. ABC FREQUENCIES OF A GIVEN ASET ARE DEFINED BY THE

CORRESPONDING DRIVING POINT ANTI-RESONANCES..............15
1. ABC Example using 2 DOF System ...16
2. ABC Example using Multi - DOF System, Single Coordinate

ASET. ..19
3. ABC Example using Multi - DOF System, Multiple Coordinate

ASET ...20
C. MULTIPLE ABC SYSTEMS AVAILABLE ..22
D. OBTAINING OSET FREQUENICES GRAPHICALLY..........................22

1. Theory of Curve Fitting...22
2. Amplitude Fitting...24

IV. SENSITIVITY–BASED UPDATING WITH ARTIFICAL BOUNDARY
CONDITIONS..27
A. SENSITIVITY MATRIX DEFINED ...27
B. SENSITIVITY MATRIX MATHEMATICALLY DERIVED..................27
C. SENSITIVITY MATRIX USED IN ERROR PREDICTIONS OF A

SIMPLE CANTILEVER...29
1. Error Prediction: Example 1 ...32
2. Error Prediction: Example 2 ...34
3. Error Prediction: Example 3 ...36
4. Error Prediction: Example 4 ...37

V. EXPERIMENTAL APPLICATION..39
A. CANTILEVER BEAM AND EQUIPMENT SETUP.................................39
B. DATA COLLECTION ..40
C. DATA ANAYLSIS...41

VI. CONCLUSIONS AND RECOMMENDATIONS...51
A. CONCLUSIONS ..51
B. RECOMMENDATIONS...52

APPENDIX A...53

APPENDIX B ...59
ABCrunTHRU_crs.m..59

viii

AddLumpMass.m...61
Assemble2Beams.m..63
AssembleSens_crs.m ..65
BeamA_Prompt.m ...67
BeamH4141.m ..70
BeamH4141q.m ..72
BeamProperties_crs.m...75
BeamSensitivity_crs.m...76
BeamSensitivityOSET_crs.m..82
BeamX_Prompt.m ...92
BoundaryConditions_crs.m ..95
Build2Beams_crs.m ...98
displacementPlot_crs.m...101
displacementPlot_OSET.m ...103
fbeamkm.m...106
fFRF.m ..108
fModes.m...110
fNormalize.m ..113
FOM_crs.m...114
fOset_from_Aset.m ..116
fSDOFCurveFit.m..117
fSpringMass2.m ...119
HresiduesL.m ...121
Hs.m 125
Htrial.m...127
peakmodeloop.m ..136
PlotBeamModes_crs.m ..137
plottingBARS_crs.m ..138
recorded_H_crs.m..143

LIST OF REFERENCES..147

INITIAL DISTRIBUTION LIST ...149

ix

LIST OF FIGURES

Figure 1. 2 DOF System..9
Figure 2. Plot of Driving Point [H11] and Transfer Function [H12] of 2 DOF System....11
Figure 3. Plot of a Driving Point FRF,[H11] and inv [H11] ...15
Figure 4. 2 DOF system ..16
Figure 5. Driving Point FRF, H11 ..17
Figure 6. ASET, DOF #1 constrained to ground...18
Figure 7. Plot A. Driving Point H11(Ω) of system 1 Plot B. [Haa(Ω)]-1 of system 218
Figure 8. 10 Element Cantilever beam..19
Figure 9. 10 Element Cantilever beam, DOF 3 Artificially pinned19
Figure 10. Plot A. Driving Point H33 (Ω) of cantilever beam Plot B. [H33 (Ω)]-1 of

ABC system, DOF 3 Artificially pinned..20
Figure 11. 10 Element cantilever beam, Accelerometers located at DOF #

1,7,11,15,19..20
Figure 12. [Haa (Ω)]-1 of 10 element cantilever beam with ASET = [1,7,11,15,19]21
Figure 13. FE model of cantilever beam with Accelerometers at DOF

[1,3,5,7,9,11,13,15,17,19]..29
Figure 14. Diagram of Cantilever beam 10% change in mass applied to element 2,

Node 11 pinned ..32
Figure 15. Plots of Error Prediction 10% change in mass applied to element 2, Node

11 pinned..33
Figure 16. Diagram of Cantilever beam 10% change in mass applied to element 8,

Node 11 pinned ..34
Figure 17. Error Prediction Plots for a 10% change in mass applied to element 8,

Node 11 pinned ..35
Figure 18. Diagram of Cantilever beam 10% change in EI applied to element 2, Node

11 pinned..36
Figure 19. Error Prediction Plots for a 10% change in EI applied to element 2, Node

11 pinned..36
Figure 20. Diagram of Cantilever beam 10% change in EI applied to element 8,

Node11 pinned ...37
Figure 21. Error Prediction Plots for a 10% change in EI applied to element 8,

Node11 pinned ...38
Figure 22. Diagram of Cantilever beam laboratory set-up..39
Figure 23. Driving Point Function (41Z:41Z)

Measured FRF = black, Curve Fit = red ...42
Figure 24. Driving Point Function (41Z:41Z) Measured FRF = black, Synthesized

FRF = green ...43
Figure 25. MATLAB Synthesized Driving Point Function (41Z:41Z).............................46
Figure 26. MATLAB Synthesized FRF (31Z:41Z)...47
Figure 27. MATLAB Synthesized FRF (21Z:41Z)...48
Figure 28. Comparison of OSET Frequencies using inv [Synthesized] and Actual

Natural frequencies of the system, pin at node 41. ..49

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF TABLES

Table 1. FOM of MASS Error Prediction using 10 modes of each system...................53
Table 2. FOM of EI Error Prediction using 10 modes of each system.53
Table 3. FOM of Mass Error Prediction using Base modes (1:5) and 5 modes from

ABC system, (1:5), (6:10), or (11:15)..54
Table 4. FOM of Mass Error Prediction using 5 modes from ABC system, (1:5),

(6:10), or (11:15)...55
Table 5. FOM of EI Error Prediction using Base modes (1:5) and 5 modes from

ABC system, (1:5), (6:10), or (11:15)..56
Table 6. FOM of EI Error Prediction 5 modes from ABC system, (1:5), (6:10), or

(11:15)..57

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

ACKNOWLEDGMENTS

I would to thank Professor Gordis for his unparalleled understanding and patience

throughout this project.

I would also like to thank Elias Fernandez for his overwhelming support in my

educational endeavors.

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A finite element (FE) model is a computational model of a structure based on

mathematical formulas and estimations. A FE model can be defined by a large number of

physical and material parameters. These parameters which include but limited to

dimensional properties of structural elements, moduli of elasticity, and densities are also

called adjustable parameters because these properties can be adjusted to improve the

accuracy of FE model’s behavior with respect to the structure of which it is a model. In

order to correctly predict structure response, it is necessary to have the most accurate FE

model. The accuracy of a FE model is improved by a method called “updating.” Updating

involves measuring structural response, comparing the measured data to the FE response

and making the appropriate adjustments to the FE model parameters.

As stated above, a FE model can be defined by a large number of parameters

however; only a small number of parameters can be measured from the structure in a

modal test. The measured parameters which define a structure are modal parameters, i.e.

mode shapes and the natural frequencies of system. The disparity in number of measured

modal parameters versus the number of adjustable parameters defines an undetermined

problem. In other words, there are too many unknowns for an accurate solution to be

found. Therefore, a procedure is needed to collect more data thus increase the amount of

known quantities. Given that modal parameters which are measured in the lab are based

on boundary conditions of the structure, one method of collecting more data is by

applying different boundary conditions to the same structure and measuring the modal

parameters. This procedure is effective but costly and time consuming.

A more efficient method is to identify additional and distinct modal parameters

from the same modal test without need for physical modification of the structure or for

more time in the lab. One method is that of applying Artificial Boundary Conditions

(ABC) to the measured data. The term “artificial” indicates that no physical change in

the boundary conditions has been made but the application results in additional modal

parameters that correspond exactly to the modal parameters found when combinations of

measured coordinates are constrained to ground. [Gordis 1999]

2

When performing a modal test, a choice is made either by ease of placement or

importance of location as to which set of coordinates are equipped with transducers. In

either case the resulting set of coordinates is the “analysis set” or “ASET.” ABC can

only be applied to ASET coordinates. In a set of spatially incomplete frequency response

function (FRF), the ABC are the boundary conditions that define an “omitted coordinate

system (OCS)”, or “OSET.” The ABC method can yield several sets of modal

parameters for a given experimental database due to the fact that a spatially incomplete

FRF matrix is identically equal to the FRF matrix that is calculated from the exact

dynamic reduction. [Gordis 1999]

 Each of the ABC system modal parameters can be used to generate a sensitivity

matrix, which is the link between the known modal parameters and unknown adjustable

parameters of the FE model which are needed in model updating. In addition to

providing a larger number of frequencies for a system using one measured database, the

ABC can reduce the ill conditioning in the solution of the sensitivity equations by

ensuring linear independence of equations. The application of ABC reduces the

difficulties in determining which FE parameters are dissimilar to that of the actual model

i.e. that are in error; therefore, improving error localization and FE model updating.

II. THEORY

The physical and material parameters, which define a finite element model, are

categorized into three types: mass, damping, or stiffness parameters. These parameters

are used in the equations of motion (EOM) (Eq 2.1), which define an n DOF system.

[]{ } []{ } []{ } { }ftxKtxCtxM =++)()()(&&& (2.1)

Expanded (Eq 2.1) is written as

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

nnnnn

n

nnnn

n

nnnn

n

f

f

tx

tx

KK

KK

tx

tx

CC

CC

tx

tx

MM

MM
M

L

MOM

L

&

&

L

MOM

L

&&

&&

L

MOM

L 11

1

1111

1

1111

1

111

)(

)(

)(

)(

)(

)(
(2.2)

where {x} is a vector of n coordinates needed to uniquely specify the configuration of

the system at all instants of time and {f} is a vector of excitation associated with each

coordinate x. [M], [C] and [K] are the mass, damping, and stiffness matrices,

respectively. All matrices are square and symmetric.

In a modal test only a limited number of coordinates or DOF can be measured.

This small group of DOF is considered the “ASET” or analytical set and accelerometers

are mounted on these coordinates. The remaining unmeasured DOF of the system are

considered the “OSET” or omitted coordinate set.

A. OMITTED COORDINATE SET

Rewriting Eq (2.2) in the frequency domain for steady state harmonic excitation

yields the steady state equation of dynamic equilibrium.

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
Ω+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
Ω−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

nnnnn

n

nnn

n

nnn

n

f

f

tx

tx

CC

CC
j

MM

MM

KK

KK
M

L

MOM

L

L

MOM

L

L

MOM

L 11

1

111

1

111
2

1

111

)(

)(
 (2.3)

where Ω (rad/sec) is the forcing frequency.

Since the total number of DOF, n, is the union of ASET and OSET, Eq (2.3) can

be rewritten in portioned form as

3

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
Ω+⎥

⎦

⎤
⎢
⎣

⎡
Ω−⎥

⎦

⎤
⎢
⎣

⎡

o

a

o

a

oooa

aoaa

oooa

aoaa

oooa

aoaa

f
f

x
x

CC
CC

j
MM
MM

KK
KK 2 (2.4)

where the subscript “a” refers to the ASET and “o” refers to the OSET.

For use with Artificial Boundary Conditions it is necessary to identify the

relationship between OSET and ASET coordinates. For simplification in the

development of required relationship, an undamped system where [C] = 0 is used and Eq

(2.4) is rewritten as

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
Ω−⎥

⎦

⎤
⎢
⎣

⎡

o

a

o

a

oooa

aoaa

oooa

aoaa

f
f

x
x

MM
MM

KK
KK 2 (2.5)

A relationship between OSET and ASET coordinates implies that a solution for

the OSET coordinates, {xo} must be developed in terms of ASET coordinates, {xa}. If

there is no excitation acting on the omitted coordinates then {fo} = {0} and Eq. (2.5) is

rewritten as

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
Ω−⎥

⎦

⎤
⎢
⎣

⎡
0

2 a

o

a

oooa

aoaa

oooa

aoaa f
x
x

MM
MM

KK
KK

 (2.6)

When Eq (2.6) is mathematically rearranged two equations evolve. However,

only one equation is needed to solve for OSET coordinates in terms of ASET coordinates

and it is

[]{ } []{ } []{ } []{ }[] 02 =+Ω−+ oooaoaoooaoa xMxMxKxK (2.7)

Grouping like terms and solving for xo, Eq. (2.7) becomes

{ } [] [{ }aoaoooaooooooo xMKKKMKIx 121112 −−−− Ω+−Ω−=] (2.8)

By definition, the bracketed inverse term is

[] [] []oooo
oooo

oooo MKIAdj
MKIDet

MKI 12
12

112 1 −
−

−− Ω−
Ω−

=Ω− (2.9)

4

where Det[…] indicates the determinant and Adj[…] indicates the adjoint matrix. From

Eq. (2.9), it is clear that the solution for {xo} in Eq. (2.8) does not exist at those

frequencies, which satisfy

[] 012 =Ω− −
oooo MKIDet (2.10)

Therefore, the relationship between the ASET and OSET does not exist at those

same frequencies. By definition the frequencies which satisfy Eq. (2.10) are the

eigenvalues of the system defined by [Koo] and [Moo]. Since both the stiffness and mass

matrices are composed solely of the OSET coordinates, the resulting system is the OSET

system and the resulting frequencies are the OSET frequencies.

Given the fact that the characteristics, i.e. eigenvalues and eigenvectors, of a

system are defined by the unrestrained DOF of said system, the OSET system is a system

where the OSET coordinates are unrestrained and the ASET coordinates are fully

constrained to ground.

Remembering that only a limited number of DOF responses are measured in a

modal test it is necessary to understand how the spatially incomplete test data can be used

in the identification of OSET frequencies. However, before OSET frequencies

identification can be discussed it is important to understand how spatially incomplete data

compares to spatially complete data and how it can be used in experiments.

Consider first the complete FRF matrix, which is n x n and then suppose that the

description of the system is limited to only certain coordinates, thus ignoring what

happens at the other coordinates. (Please note that ignoring coordinates is not the same

as supposing that the other coordinates do not exist.) The resulting reduced model is now

of the order N x N. It is clear that because the basic system has not been altered and that

it still has the same number of DOF even though it was decided not to describe all of

DOF, the elements which remain in the reduced FRF matrix are identical to the

corresponding elements in the full n x n matrix. (Ewins 1982) In other words the

reduced matrix is formed simply by extracting the elements of interest and leaving behind

those to be ignored and still contains all modal information of a fully decribed matrix.

5

 Given the before mentioned description of a reduced matrix and that the

experimentally measured FRF matrix is based on a limited number of accelerometers i.e.

a limited number of responses are measured and the rested are ignored, it is clear to see

that the measured FRF matrix retains all the modal content of the orginial. Also given

that fact that the measured FRF matrix implicity defines a dynamically reduced

impedence model the reduction of the FE model is pursued in the same manner. (Gordis

1996)

 The method of exact dynamic reduction and its use in the identification of OSET

frequencies is discussed in the following section.

B. EXACT DYNAMIC REDUCTION AND FRF MATRICES

The complete or “full-order” model of a structure has a FRF matrix of infinite

dimensions, which account for the infinite number of DOF, n, of the system.

[] ⎥
⎦

⎤
⎢
⎣

⎡
=

oooa

aoaa

HH
HH

H (2.11)

However, the measured FRF matrix is of finite dimension because only a limited

set of transducers or accelerometers, which correspond to the ASET are used to measure

the FRFs of the system. The resulting FRF matrix is a reduced order model of the

system.

[] [aa
x HH =] (2.12)

where the superscript x denotes an experimentally measured FRF and the overbar

notation indicates a reduced model. [Haa] which is defined by Eq. (2.12) represents a

structural dynamic model that has been reduced using exact dynamic reduction (Gordis

1996).

Given the identity [Z][H] = [I], [H] = [Z]-1, [Z] = [H]-1 where [Z] is the system

impedance matrix a relationship can be found between the measured ASET data and the

omitted OSET data of the system. In other words, [Haa] can be defined in terms of the

OSET frequencies.

Impedance and FRF matrices are shown as partitioned matrices.

6

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
10
01

ooao

oaaa

ooao

oaaa

HH
HH

ZZ
ZZ

 (2.13)

Four equations evolve from multiplying the impedance and FRF matrices.

However, only two equations are needed for the development of the required ASET-

OSET relationship.

0
1

=+
=+

oaooaaoa

oaaoaaaa

HZHZ
HZHZ

 (2.14 a-b)

After rearranging and shifting sides the relationship between ASET coordinates

and OSET coordinates is found to be

7

][] [11 −−−= oaooaoaaaa ZZZZH (2.15)

where the impedance of the reduced order model is linearly independent of the

impedance of the full order model (Gordis 1999).

Given that [] []CjMKZ Ω−Ω−= 2 or []MK 2Ω− when [C] = 0 and that the

eigenvalues or natural frequencies of a system are defined when []MK 2Ω− = 0 then it

is easy to see that the OSET system dynamics are present in Eq (2.15) in the term [Zoo]-1.

Using the applicable identity of [Z][H]=[I] and the fact that [Zoo]-1 is undefined

when []oooo MK 2Ω− = 0 or that every element in [Zoo]-1 is singular at the OSET

frequencies, it is easily seen that the elements of [Haa]-1 will also be singular at the OSET

natural frequencies (Gordis 1999). Graphically speaking a plot of [Haa]-1 versus

frequency shows that the function peaks correspond to the OSET frequencies of the given

system.

Given that a spatially incomplete FRF matrix implicitly defines a dynamically

reduced impedance model and that from such a model the OSET frequencies are defined,

it is concluded that a reduced model retains the modal content of the original model. This

conclusion states that a reduced model created by retaining only rows and columns

associated with the ASET coordinates from a full, n DOF, FE generated FRF matrix will

fully represent the structure being tested.

C. DRIVING POINT FREQUENCY RESPONSE FUNCTION

Following a mathematical derivation of the driving point formula an example is

presented to demonstrate a unique characteristic of driving point function leaving for the

chapter how this characteristic is used in ABC application.

A driving point function or as Ewins refers “point mobility” is a function where

the response coordinate and the excitation coordinate are identical. The transfer function

or Ewins’ “transfer mobility” is a function where the response and excitation coordinates

are different. (Ewins 1982) The resultant FRF curve of a system develops from modal

contribution of each function or simply stated a complete FRF curve of a system is a

summation of all the individual driving point and transfer functions of the system.

Recalling [] []CjMKZ Ω−Ω−= 2 and the identity [Z] = [H]-1 Eq. (2.3) is

rewritten as

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

nnnnn

n

f

f

tx

tx

ZZ

ZZ
MM

L

MOM

L 11

1

111

)(

)(
 or (2.16)

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

nnnn

n

n f

f

HH

HH

tx

tx
M

L

MOM

L

M
1

1

1111

)(

)(

Eq (2.16) is rewritten in modal coordinates by applying {x} = [Ф]{q} where Ф is the

mass normalized mode shape and q is the generalized coordinate

[][]{ } { }fqZ =Φ (2.17)

Premultipling by and expanding [Z] in terms of K,M,C yields []TΦ

[] [][] [] [][] [] [][][]{ } [] { }ℑΦ=ΦΦΩ+ΦΦΩ−ΦΦ TTTT qCjMK 2 (2.18)

Using orthogonality, [] and assuming proportional damping, [][] 1=ΦΦ MT
⎥
⎦

⎤
⎢
⎣

⎡
C

C
0

0

Eq (2.18) simplifies to

[]{ } [] { }ℑΦ=Ω+Ω− T
ii qj ωζω 222 (2.19)

where ωi is the natural frequency of the ith mode, ζ is the damping ratio and the modal

impedance matrix []ii j ωζω Ω+Ω− 222 is diagonal.

8

By premultipling by and using []Φ { } [] { }fTΦ=ℑ Eq (2.19) is transformed back

into physical coordinates resulting in

{ } [][][] { }f
j

x T

ii

Φ
Ω+Ω−

Φ=
ωζω 2

1
22 (2.20)

Recalling Eq (2.16),{ } []{ }fHx =

[] [][][]T
ii j

H Φ
Ω+Ω−

Φ=Ω
ωζω 2

1)(22 (2.21)

[H(Ω)] can also be written as

[] { }{ }∑
= Ω+Ω−

ΦΦ
=Ω

es

k kk

Tkk

j
H

mod

1
22 2

)(
ωζω

 (2.22)

or any element,

[] { }{ }
∑
= Ω+Ω−

ΦΦ
=Ω

es

k kk

Tk
j

k
i

ij j
H

mod

1
22 2

)(
ωζω

 (2.23)

To demonstrate the characteristics of both a driving point and transfer function on

the complete FRF an example of a 2 DOF system shown in Figure 1 is used.

M1 M2

Figure 1. 2 DOF System

The matrices of this 2 DOF system are

Stiffness matrix: [] ⎥
⎦

⎤
⎢
⎣

⎡
+−

−+
=

322

221

KKK
KKK

K

Mass Matrix: [] 1

2

0
0

M
M

M
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Setting M1 = M2 = 1.0 and K1 = K2 = K3 =0.4

9

Mode shapes: { }
⎭
⎬
⎫

⎩
⎨
⎧
−
−

=Φ
7071.0
7071.01 { }

⎭
⎬
⎫

⎩
⎨
⎧−

=Φ
7071.0

7071.02

Natural frequencies: { }
⎭
⎬
⎫

⎩
⎨
⎧

=
0954.1
6325.0

sec)/(radω

Using Eq (2.23) [] { }{ }
∑
= Ω+Ω−

ΦΦ
=Ω

es

k kk

Tk
j

k
i

ij j
H

mod

1
22 2

)(
ωζω

 and the above stated modal data for

this undamped 2 DOF

The driving point function is

[] { }{ } { }{ } { }{ } { }{ }
2222

2

2
1

2
1

22
1

1
1

1
1

11 2.1
7071.07071.0

4.0
7071.07071.0)(

Ω−
−−

+
Ω−
−−

=
Ω−
ΦΦ

+
Ω−
ΦΦ

=Ω
TTTT

H
ωω

and the transfer function [H12] is

[] { }{ } { }{ } { }{ } { }{ }
2222

2

2
2

2
1

22
1

1
2

1
1

12 2.1
7071.07071.0

4.0
7071.07071.0)(

Ω−
−

+
Ω−
−−

=
Ω−
ΦΦ

+
Ω−
ΦΦ

=Ω
TTTT

H
ωω

The obviously difference between the driving point and transfer function is the sign of the

modal constant or numerator of the second mode. The individual modal curves shown in

Figure 2 do not show this sign difference given that the curves are plotted on a

logarithmic scale. However, the driving point and transfer functions which are

summations of all modes and are also shown in Figure 2 and do show the sensitivity of

sign changes in the modal constant.

 Notice in the driving point function [H11] in the upper plot of Figure 2 at

frequencies below the first natural frequency, indicated by a shape peak or resonance,

that both terms have the same sign and are thus additive, making the total FRF curve

higher than either compoment. Due to the logarithmic scale the contribution of the

second mode at these low frequencies is relatively insignificant. This observation of

additive behavior can also be applied to higher frequencies, above the second natural

frequency, where the total plot is slightly higher than that of the second mode alone.

However, in the region between the natural frequencies where the model curves have
10

opposite signs, modal curves cross, the resultant is zero characteristized on a logarithmic

plot as an anti-resonance, very similar a system resonance. A similar conclusion can be

drawn between the additive and substractive characteristics of the individual modes in the

transfer function shown in the lower plot of Figure 2. At very low and very high

frequencies, the resultant FRF curve lies just below that of the nearest individual modal

curve while in the region between the resonances, the two modal curves have the same

signs and thus are additive making the magnitude of FRF curve at cross over is the sum

of both modal curves. (Edwins 1982).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-40

-20

0

20

40

60
Driving Point FRF, H11

lo
g1

0
of

rad/sec

Sum of both modes
Mode 1
Mode 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-40

-20

0

20

40

60
Transfer FRF, H12

lo
g1

0
of

rad/sec

Sum of both modes
Mode 1
Mode 2

Figure 2. Plot of Driving Point [H11] and Transfer Function [H12] of 2 DOF System

The principles illustrated in this example can be extended to any number of

degrees of freedom, thus demonstrating a fundamental rule that if two consecutive modes

have the same sign for the modal constants, then there will be an anti-resonance at some

frequency between the natural frequencies of those two modes, otherwise there will only

be a minimum. From Eq 2.23 it can be seen that in a driving point function the modal

11

12

constant for every mode must be positive, Φ2. Using this information and the

fundamental rule it is concluded that for every resonance of a driving point function there

must be anti-resonance without exception. The known existence of anti-resonance and

how anti-resonances become resonances when H is inverted makes the driving point

functions very important to the ABC application. The next chapter will illustrate how the

anti-resonances found in the driving point function relates to the natural frequency of the

structure with the same driving point DOF constrained to ground.

III. NATURAL FREQUENCIES OF ABC CONFIGURED
SYSTEMS

As discussed in Chapter II a spatially incomplete FRF matrix obtained in a modal

test contains the characteristics of the complete system and can be used to find the natural

frequencies of a system whose ASET coordinates are pinned to ground. The pinning of

the ASET is not a physical modification to the system but merely a mathematical

manipulation of the measured data; therefore, the boundary conditions imposed on the

ASET are artificial and as such are referred to as Artificial Boundary Conditions, ABC.

A. THE IMPORTANCE OF ABC FREQUENCIES IN MODEL UPDATING

It is essential to understand the importance ABC in model updating. Since the

goal in updating a FE model is to have the greatest correlation of the dynamic behavior of

the FE model and the actual structure, it is necessary to have an accurate comparison

method of the systems. The best measure of correlation of dynamic behavior is how

close the natural frequencies of the FE model are to the actual natural frequencies of the

structure. As mentioned in the introduction FE models can be defined by a large number

of adjustable parameters which can be referred to as design variables. Although an actual

structure is composed of infinite number of DOF and thus has infinite number of modal

parameters only a limited number of the structure’s actual modal parameters, i.e. FRF,

can be measured in the laboratory. The disparity in number of measured modal

parameters versus the number of adjustable parameters defines an undetermined problem.

Simply stated from an ordinary modal test there are far too many of the unknown

variables and too few of the known variables for the solution to be accurate.

13

⎪
⎬
⎪

n[]

1
2
1

2
k

k

n

dV

T dV

dV

ω

ω

⎧ ⎫
⎪ ⎪⎧ ⎫∆ ⎪ ⎪⎪ ⎪ ⎪=⎨ ⎬ ⎨

⎪ ⎪ ⎪∆⎩ ⎭ ⎪ ⎪
⎪ ⎪⎩ ⎭

M

M

M

 where k << , (3.1)

where 2 2
x

2
aω ω ω∆ = − , ω is the modal parameter, xω = undamped natural frequency of

the actual structure and aω = undamped natural frequency of the FE model, dV is the

adjustable parameters of the FE model and [T] is a matrix which relates the modal

parameters to the adjustable parameters, referred to as a sensitivity matrix, and is

discussed in great detail later (Gordis 1999).

As shown in Eq.(3.1) with k<<n more modal parameters are needed for an

accurate solution to be calculated. Since modal parameters are directly related to the

boundary conditions of the structure, one method of measuring more modal parameters

without introducing more adjustable parameters is to impose physical boundary

conditions on the structure and measure new modal parameters. This method is time

consuming, costly and frequently impossible. The method of Artificial Boundary

Conditions is easy and can generate multiple sets of Artificial Boundaries from one set of

measured data of a given structure reducing time and money. Therefore, the answer of

“why study ABC?” is simple; it can generate more equations which lead to increased

determinability of the system of equations and accuracy of error localization between the

FE model and actual structure. For n ABC systems Eq. (3.1) would be

14

⎪
⎬
⎪

[]

2

12
1

2

BASE

ABC

n

ABCn

dV
T

dV

ω

ω

ω

⎧ ⎫∆
⎧ ⎫⎪ ⎪

∆⎪ ⎪ ⎪=⎨ ⎬ ⎨
⎪ ⎪ ⎪

⎩ ⎭⎪ ⎪∆⎩ ⎭

M
M

where

2
1

2

2
BASE

k

ω
ω

ω

⎧ ⎫∆
⎪∆ = ⎨
⎪ ⎪∆⎩ ⎭

M
⎪
⎬ and

2
1

2
1

2
ABC

m

ω
ω

ω

⎧ ⎫∆
⎪ ⎪∆ = ⎨ ⎬
⎪ ⎪∆⎩ ⎭

M 1<m<n

Although the theory of ABC frequencies is mathematically sound only a few

computer simulations have been run to evaluate its improvement of error localization.

Since ABC could potentially play an important role in model updating a complete

understanding of the subject is necessary. Chapter II only hinted at how ABC are

imposed and how the additional OSET frequencies are found. The following examples

will explain in detail the easy process of gathering OSET frequencies via ABC.

 The first example shows the relationship between the driving point function and

the natural frequencies of the same system with an ABC imposed on the driving point

DOF.

B. ABC FREQUENCIES OF A GIVEN ASET ARE DEFINED BY THE
CORRESPONDING DRIVING POINT ANTI-RESONANCES

It was proven in the previous chapter that although anti- resonances can exist in

transfer function their existence is always guaranteed in driving point functions. In a

graphical plot of a FRF matrix versus frequency the anti-resonances will be represented

by negative peaks or valleys following each positive peak of the FRF as shown in a

sample plot in Figure 3.

50 100 150 200 250 300 350 400 450 500 550 600

-8

-6

-4

-2

0

Driving Point FRF, H11 in Hz

lo
g1

0
of

50 100 150 200 250 300 350 400 450 500 550 600

0

2

4

6

8

lo
g1

0
of

Inverse of Driving Point FRF, inv[H11] in Hz

Figure 3. Plot of a Driving Point FRF,[H11] and inv [H11]

The anti-resonances of the system are marked with red circles in the top plot of Figure 3.

It is easily seen in Figure 3 that the anti-resonance valleys of [H11] become the peaks of

[H11]-1 which is plotted in bottom plot again marked with red circles. Recalling that the

15

elements of [] 1
aaH − will be singular, at the frequencies which satisfy

and that singular elements are represented by peaks on a graphical plot of the function in

question, the peaks of [

2 0oo ooK M⎡ ⎤−Ω =⎣ ⎦

] 1
aaH − are always located at the natural frequencies of a system

whose ASET coordinates are pinned.

To assist in understanding this conclusion a few example follow.

 1. ABC Example using 2 DOF System

 A simple 2 DOF system, masses (M1, M2) and springs (K1, K2) is shown in

Figure 4 (Gordis 1999).

16

Figure 4. 2 DOF system

M2M1

From Eq. 2.23, the undamped driving point FRF of any structure is given by

2

21

()()
k

modes i
ii k

k

H
ω=

Φ
Ω =

−Ω∑ 2 (3.1)

where Фi is the mass normalized mode shape element, ωk is the kth natural frequency,

and Ω is the forcing frequency. The frequency of the anti-resonance of [H11 (Ω)] is given

by (Gordis 1999).

1 2 2 2
2 11 2 11 1

1 2
11 11

anti res
R R

R R
ω ω

−

+
Ω =

+ (3.2)

where the modal residue is Rij
k = {Φ(:, k)} {Φ(:, k)}.

The matrices of 2 DOF system are

Stiffness matrix: [] 1 1

1 1 2

K K
K

K K K
−⎡ ⎤

= ⎢ ⎥− +⎣ ⎦

Mass Matrix: [] 1

2

0
0

M
M

M
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Setting M1 = M2 = 1.0 and K1 = K2 = 1.0

Mode shapes: { } 1 -0.85065
-0.52573
⎧ ⎫

Φ = ⎨ ⎬
⎩ ⎭

{ }2 -0.52573
0.85065
⎧ ⎫

Φ ⎨ ⎬
⎩ ⎭

Natural frequencies: { }
0.618

(/ sec)
1.618

radω
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

Using the above modal parameters and Eq (3.2), the resulting in a single anti-

resonance is located at the frequency Ωanti-res = √2 rad/sec. The driving point FRF, [H11]

is shown in Figure 5. The single anti-resonance is noticeable at √2 rad/sec.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-40

-30

-20

-10

0

10

20

30

40

50
Driving Point FRF, H11

lo
g1

0
of

rad/sec

Figure 5. Driving Point FRF, H11

Given that for this system [Haa]= [H11], i.e. ASET = [1], calculations were done

for the natural frequency of system in Figure 6, which is the same system as the one in

Figure 4 but with ASET coordinate, DOF 1, pinned.

17

M1 M2

Figure 6. ASET, DOF #1 constrained to ground.

The single natural frequency of the system in Figure 6 is √2 rad/sec which is

identically equal to anti-resonance frequency calculated for 2 DOF system in Figure 4.

[Haa (Ω)]-1 = [H11 (Ω)]-1 corresponding to system 2 and ASET = [1] was

calculated using Eq (2.16) and plotted at each frequency. The impedance Z11 of system 2

is plotted the plot of driving point FRF of system 1 to show clearly that the anti-

resonance of system 1 (Plot A) is equal to the singular frequency of system 2 (Plot B).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-40

-20

0

20

40

60
Plot A. Driving Point FRF, H11

lo
g1

0
of

rad/sec

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-60

-40

-20

0

20

40
Plot B. Z =inv(H11) of the ABC System

lo
g1

0
of

rad/sec

Figure 7. Plot A. Driving Point H11(Ω) of system 1 Plot B. [Haa(Ω)]-1 of system 2

This example demonstrates nicely the relationship between the anti-resonance of the

driving point FRF and natural frequency of system with the driving point DOF. Since

confusion is possible with the use of only 2 DOF another example will be calculated

using a multi-DOF system.

18

 2. ABC Example using Multi - DOF System, Single Coordinate ASET.

 A simple cantilever beam shown in Figure 8 is simply supported at one end. The

beam has ten 2 node beam elements with a total of 20 DOF.

Figure 8. 10 Element Cantilever beam

The driving point function for the cantilever was calculated using Eq 2.23 in the

same fashion as example 1. The natural frequencies of this system under 800 Hz are

4.9186, 30.826, 86.332, 169.29, 280.29, 419.91, 589.15, 789.3 and the respective anti-

resonances calculated using Eq. (3.2) are 6.8697, 43.856, 124.28, 245.53, 406.42, 586.39,

704.69. The driving point FRF of DOF 3, i.e. [H33] was calculated using Eq (3.1) and

plotted versus frequency. With ASET = 3, an ABC was applied to DOF 3, shown in

Figure 9.

Figure 9. 10 Element Cantilever beam, DOF 3 Artificially pinned

and the natural frequencies were calculated using the reduced order [K], [M] and

compared with the graphical plot of [H33] -1 which was calculated using Eq (2.16). The

natural frequencies of the ABC system, DOF 3 pinned, under 800 Hz are 6.8697, 43.856,

124.28, 245.53, 406.42, 586.39, 704.69. There compare nicely with peaks of [H33] -1.

The same as example the plots of [H33] and [H33] -1 are combined on Figure 10 for easier

comparison of the location of peaks and anti-resonances.

19

0 100 200 300 400 500 600 700 800
-10

-8

-6

-4

-2

0
Plot A. Driving point FRF, H33 for Cantilever beam

lo
g1

0
of

Hz

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10
Plot B. OSET freq for ABC system, ASET= [3] pinned

Hz

lo
g1

0
of

Figure 10. Plot A. Driving Point H33 (Ω) of cantilever beam Plot B. [H33 (Ω)]-1 of

ABC system, DOF 3 Artificially pinned.

The relationship between the anti-resonance of the driving point FRF and the

natural frequencies of the ABC system is again visible in the plots of H33 (Ω) and [H33

(Ω)]-1. This example takes away any confusion about the frequency relationship and

gives way to an example of a multiple coordinates ASET.

3. ABC Example using Multi - DOF System, Multiple Coordinate ASET

 The same simply supported cantilever in Figure 8 is used for this example.

However, five accelerometers have been added to the beam at translational DOF #

1,7,11,15,19, therefore the ASET = [1,7,11,15,19].

Figure 11. 10 Element cantilever beam, Accelerometers located at DOF #

1,7,11,15,19
20

If this was an actual experiment and each accelerometer was excited the measured

FRF would be a spatially incomplete FRF matrix of 5x5 due to the length of ASET

vector. In a MATLAB simulation of such an experiment the spatially incomplete FRF is

calculated using the Eq (2.16) and by building a complete FRF matrix and retaining the

columns and rows corresponding to ASET coordinates. The results of both [H] are

identical and plotted versus frequency on arrange of 0-800Hz in Figure 12.

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6

7

8
OSET freq for ABC system, ASETpinned

Hz

lo
g1

0
of

inv(Haa) using Eq 2.23
inv(Haa) by retaining only ASET of H

Figure 12. [Haa (Ω)]-1 of 10 element cantilever beam with ASET = [1,7,11,15,19]

The peaks of [Haa] correspond to the natural frequencies of the system (249.17,

369.26, 497.32, 665.56 Hz) which were calculated from the reduced system [K] and [M].

The term “reduced” is used to indicate that the rows and columns corresponding to the

ASET were removed from the respective matrices prior to the calculation of natural

frequencies, since natural frequencies are calculated using only unrestrained DOF and the

ASET DOF are fully restrained.

21

22

Although two methods were used in calculating [Haa(Ω)]-1 Figure 12 only shows

one function thus confirming that both methods are correct. Since in modal testing only

FRF matrices are measured and the stiffness and mass matrices of the system are

unknown it is impractical to use an equation which requires the knowledge of [K] and

[M] to determine OSET frequencies. Therefore, the proof that retaining the ASET rows

and columns from a given FRF matrix provides the same accurate information as the Eq

(2.16) is very important information. In the next chapter, examples are presented to

demonstrate the use of ABC frequencies in locating errors between the FE model and

actual structure. The method for finding ABC frequencies will be that of retaining the

ASET coordinates from a base FRF matrix and not by Eq. (2.16).

C. MULTIPLE ABC SYSTEMS AVAILABLE

All examples demonstrated so far have applied ABC to the complete ASET thus

retaining all rows and columns of the measured FRF matrix implying that only one set of

ABC frequencies can be obtained from a spatially incomplete FRF matrix measured in

the laboratory. This is not true. In ABC application the term ASET evolves from just an

analysis set to a set of potentially bounded coordinates. From a measured 6 x 6 FRF

matrix there are over 36 different combinations of applicable artificial bounded

coordinate sets, i.e. only one coordinate pinned or sets of pairs and so forth. The only

limitation is the size of the original data set.

D. OBTAINING OSET FREQUENICES GRAPHICALLY

Since OSET frequencies are obtained from the graphical representation of

[Haa(Ω)]-1 a method of curve fitting is used to approximate the frequency of the peaks.

Curve fitting techniques are used to extract frequency data from FRF plots and are not

valid for impedance plots however because of the behavior of [Haa(Ω)]-1 near the peak is

similar to that of a FRF plot curving fitting techniques are valid for obtaining OSET

frequencies from [Haa(Ω)]-1 plots.

1. Theory of Curve Fitting

In order to understand the validity of the usage of curve fitting to find the OSET

frequencies the following theory is provided.

23

The goal of data or curve fitting is to find a mathematical model by which a set of

empirical data can be accurately described. These models depend on adjustable

parameters. With the correct model and corresponding equations, one can determine what

parameter values correspond to the data. In order to select an accurate curve fit model a

good understanding of the underlying physics or properties of the system to be curve fit is

needed. Once a model is picked, a rough assessment can be made by plotting it with the

data. At least some agreement is needed between the data and the model curve before

continuing.

To find the values of the model’s parameters that yield the curve closest to the

data points, a function that measures the closeness between the data and the model must

be defined. This function depends on the method used to do the fitting, and the function is

typically chosen as the sum of the squares of the vertical deviations from each data point

to the curve. (The deviations are first squared and then added up to avoid cancellations

between positive and negative values.) This approach is called the method of least

squares. This method assumes that the measurement errors are independent and normally

distributed with constant standard deviation. Once the correct function is found it is

minimized to the smallest possible value. The parameters valves that minimize the

function are the best-fitting parameters. In most engineering models the dependent

variable depends on the parameters in a nonlinear way.

Nonlinear fitting usually can not use the system equation to solve for the

minimizing parameters instead various iterative procedures are used. Nonlinear fitting

always starts with an initial guess of the parameters values. User usually looks at the

general shape of the model curve and compares it with the shapes of the data points. A

good understanding of the selected model is important because the initial guess of the

parameter values must make sense in the real world.

In the process of interpreting results the user must see whether the program can fit

the model to the data that is whether the iteration converged to a set of values for the

parameters. A look at the graphed data points and fitted curve can show of the curve is

close to the data. If it is not, then the fit has failed, perhaps because the iterative

procedure did not minimize the parameters or the wrong model was chosen. If the model

yields a physically meaningless result then the curve is wrong regardless if it seemingly

does fit the data well. (Ledvij 2003)

2. Amplitude Fitting

After understanding the basic theory behind curve fitting this section will describe

the specifics of the curve fitting performed in this experiment.

Rinawi and Clough developed a new non-iterative least squares method that

weighs all the data points of a transfer function more uniformly and is more reliable and

is easily programmed. Their method was applied successfully to identify the frequency

and damping of a test structure during seismic simulation tests.

The procedure for this method which was used to identify the OSET frequencies

from [Haa(Ω)]-1 plots. Since the peak of [Haa(Ω)]-1 was well separated it can be

approximated by a single mode response as (Rinawi & Clough):

ti
nnnn ePyyy Ω=++ 22 ωξω &&& (3.3)

In which nn ξω , are the structural frequencies for a particular mode. Pn is the

participation factor for the mode. It is for this reason that the MATLAB program written

for the identification of OSET frequencies evaluated only a small range of frequencies

near the resonance peak. When the range was too large the OSET frequencies calculated

had too great a variance to be considered accurate. Emphasis was placed on finding the

most best usable range.

 At a given input frequency Ωk, the steady state amplitude of the response y is

given by:
2222)2()(knnkn

n
k

P
A

Ω+Ω−
=

ξωω
 =

k

n

D
P

 (3.4)

The unknown parameters in the above equation are nn ξω , and Pn. It is importmant to

note that the above equation is valid for a transfer function relating the input force to the

output displacement otherwise the amplitude needs to be scaled by the appropriate power

of Ωk to transform the equation into the above form.

Eq (3.4) can be written as: (Notice the scale factor)

24

0223 =− nkkk PADA (3.5)

Substituting Dk of Eq (3.5) results in

2
3

222
2

4
1

43
32

23
1

3

24

n

nnn

n

kkkkkk

Px

x

x
where

AxAxAxA

=

−=

=

Ω−=−Ω+

ωωξ

ω (3.6)

When this equation is solved over a range of frequencies Ωk using least squares

solution resulting the following equations used to compute modal parameters of the data

set (Rinawi & Clough).

3

2
2

4
1

1

2
1

4

)(

xP

x

x

n

n
n

n

=

+=

=

ω
ξ

ω

 (3.7)

During programming it was noticed the correct frequency was identified without

identifying the correct damping ratio. Since frequencies were more important in this

experiment the issue of incorrect damping ratio was not explored.

25

26

THIS PAGE INTENTIONALLY LEFT BLANK

IV. SENSITIVITY–BASED UPDATING WITH ARTIFICAL
BOUNDARY CONDITIONS

A. SENSITIVITY MATRIX DEFINED

In addition to the problem of not being able to measure enough parameters to

have a determined system of equations needed to properly update a FE model, there

exists a problem with determining exactly what parameters are in error and in need of

adjustment. Sensitivity-based updating is used to localize those parameters that require

adjustment.

Simply stated the equation for sensitivity - based updating is

{ } []{ }2 T DVω∆ = ∆ (4.1)

where { }2ω∆ is a vector of eigenvalues λ, (λ = ω2) errors. The errors are the difference

between the experimental eigenvalues and the analytical eigenvalues{ }2 2
x aω ω− , “x”

represents the experimental data, “a” represents the analytical data. {DV} is the vector of

design parameters, which are adjustable for the FE model. The vector represents location

and quantity of change. [T] is the sensitivity matrix. The following section

mathematically derives the sensitivity matrix used in this thesis.

B. SENSITIVITY MATRIX MATHEMATICALLY DERIVED

The sensitivity analysis used in this thesis is based on parametrizing the

eigenvalue problem.

Consider a conservative n DOF system defined by

() () () ()M DV x t K DV x t+&& 0= (4.2)

and the related eigenvalue problem

[]{ } { }0i iK Mλ− Φ = (4.3)

The design parameter DV represents the change in mass matrix [M] and/or the

stiffness matrix [K]. It is shown that [M] and [K] are dependent on the parameter as are

the eigenvalue λi , modal frequency squares and eigenvalue Φi, mode shape.
27

The derivation of the sensitivity matrices began with the differentiation of

eigenvalue problem with respect to parameter DV,

{ } [] { }0i
i i i

ddK dM M K M
dDV dDV dDV dDV

λλ λ Φ⎡ ⎤ ⎧− − Φ + − =⎨ ⎬⎢ ⎥⎣ ⎦ ⎩
id ⎫
⎭

 (4.4)

Expand each term and premultiply by{ , for Eq (4.5) }T
iΦ

{ } { } { } { } { } []{ } { } [] { }0T T T Ti i
i i i i i i i i i

d ddK dM M K M
dDV dDV dDV dDV

λλ λ Φ⎧ ⎫⎡ ⎤ ⎡ ⎤Φ Φ − Φ Φ − Φ Φ + Φ − ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎩ ⎭
=

Using the property { } []{ } { } []{ }T Ta b c c b a= the last element of Eq (4.5) can be

written as

[]{ }
T

i
i

d K M
dDV

λΦ⎧ ⎫ − Φ⎨ ⎬
⎩ ⎭

i (4.6)

Since []{ } { }0i iK Mλ− Φ = , the overall equation is reduced

{ } { } { } { } { } []{ } { }0T T Ti
i i i i i i i

ddK dM M
dDV dDV dDV

λλ⎡ ⎤ ⎡ ⎤Φ Φ − Φ Φ − Φ Φ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
= (4.7)

Using orthogonality, [] [][]T MΦ Φ = 1, Eq (4.7) is reduced

{ } { } { } { } { }0T T i
i i i i i

ddK dM
dDV dDV dDV

λλ⎡ ⎤ ⎡ ⎤Φ Φ − Φ Φ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
= (4.8)

The terms of Eq(4.8) are recombined for the following,

{ } { }Ti
i i

d dK dM
dDV dDV dDV
λ λ⎡= Φ − Φ⎢⎣ ⎦

i
⎤
⎥ (4.9)

Rearranging Eq 4.9 to solve for dDV in terms of known parameters, [K], [M], and λ

{ } { }
i

T
i i

ddDV
dK dM

dDV dDV i

λ

λ
=

⎡ ⎤Φ −⎢ ⎥⎣ ⎦
Φ

 (4.10)

28

From Eq (4.10) it can be deduced that the associated sensitivities for [K] and [M] are as

follows:

Stiffness sensitivity { } { }T
i

dK
dDV
⎡ ⎤= Φ Φ⎢ ⎥⎣ ⎦

i (4.11)

where [] []x adK K K= − (4.11a)

and

Mass sensitivity { } { }T
i i

dM
dDV

λ⎡ ⎤= Φ − Φ⎢ ⎥⎣ ⎦
i (4.12)

where [] []xdM M M= − a (4.12a)

C. SENSITIVITY MATRIX USED IN ERROR PREDICTIONS OF A SIMPLE
CANTILEVER

A sensitivity matrix can be described in words as how one element is affected by

a small change in another element. As part of validating the usage of ABC configured

systems in FE model updating a MATLAB simulation was conducted using a cantilever

beam. The beam represented the physical and material properties of the actual beam used

in the experiment application which will be discussed in the following section. The beam

was 42 inches in length, 1.5 inches wide and 0.5 inches in thick, density of 0.11 lbf/in3

and elasticity modulus of 10 E6 lbf/sec2-in and only 10 elements, yielding a total of 20

DOF after original boundary conditions were applied. The quantity of 10 elements was

chosen for ease of comparison between an underdetermined system and a fully

determined system of equations.

Figure 13. FE model of cantilever beam with Accelerometers at DOF
[1,3,5,7,9,11,13,15,17,19]

29

A series of computer programs were written to perform the MATLAB simulation.

All programs are provided Appendix B. In the simulation, two beams are created: Beam

A (represents Analysis or FE Beam), Beam X (represents experimental beam). A known

mass or EI is applied to Beam X on a specific element. Although the quantity and

location of the “error” was known it was assumed not to be, thus a sensitivity matrix was

developed to account for any error location.

Recalling Eq (4.12, 4.12a), a small change or perturbation of 1% mass was

applied to each element one element at a time of the [M] without the error added. The

perturbated [M] was considered [Mx], while FE model [M] was considered baseline or

[Ma] for the purpose of calculating[] []x adM M M= − . Once [dM] was calculated the

corresponding column of sensitivity matrix, [T] was calculated using Eq. (4.12). Each

subsequent column of [T] was calculated using the same perturbation quantity but on a

new corresponding element. The stiffness sensitivity matrix was calculated using the

same procedure except for applying perturbation of 1% of EI to the stiffness matrix and

using Eq. (4.11). For full details on the development of sensitivity matrix refer to

BeamSensitivity_crs.m in Appendix B.

Once both of the sensitivity matrices [T(M)] & [T(K)] were developed of size m x

p , where m is the number of modes and p is the number of elements, a complete [T] was

assembled, size m x 2p, yielding changes in mass in the first 10 elements of {DV} and

changes in EI in the last 10 elements of {DV} for the baseline configuration.

For each ABC system a new set of rows are created in { }2ω∆ and [thus

obtaining more set of equations in

]T

2

12
11

2

BASE BASE

ABCABC

n
ABCnABCn

T
dV

T

dV
T

ω

ω

ω

⎧ ⎫∆ ⎛ ⎞
⎧ ⎫⎪ ⎪ ⎜ ⎟∆⎪ ⎪ ⎪⎜ ⎟=⎨ ⎬ ⎨⎜ ⎟⎪ ⎪ ⎪⎜ ⎟⎩ ⎭⎪ ⎪∆ ⎝ ⎠⎩ ⎭

M
MM

⎪
⎬
⎪

 (4.13)

It is desired to have a fully determined set of equations for the best prediction of

error quantity and location. In the MATLAB simulation, DOF [1,3,5,7,9,11,13,15,17,19]

were considered equipped with accelerometers and thus the only DOF available for

30

pinning. For a given error the simulation applies a pin at each accelerometer location, one

at a time, and calculates the new natural frequencies and respective [T], resulting in 10

ABC configured { }2
ABCω∆ and []ABCT for each type and location of error.

A comparative analysis was conducted on the accuracy of error prediction with

respect to error location and ABC used. The simulation compared mode shape

differences or relative frequency errors between Beam A and Beam X, Norm of the

columns and rows of the sensitivity matrix used in error prediction, the rank of [T] and

figure of merit based on relative sum error. However, only the figure of merit gave any

pseudo relationship between error location, ABC system used, and the accuracy of the

error prediction.

The formula used for figure of merit (FOM) is

{ }

2

2

1

n
cal

inumelem
cal

i

DV
error

FOM
DV
error=

⎛ ⎞
⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
 (4.14)

where error is the actual % error added to beam,
i

calDV
error

⎧ ⎫
⎨ ⎬
⎩ ⎭

 is the normalized predicted

design variable vector of whole beam,
n

calDV
error

⎛ ⎞
⎜
⎝ ⎠

⎟ is the normalized predicted design

variable at actual location of error. All elements are squared to compensate for leakage

defined as prediction of error on other elements and in order for the sum of all elemental

predictions to be equal to the actual error. It was noticed that if the elemental predictions

were simply summed the negative leakage canceld out the positive leakage yielding false

accurancy of the overall prediction. Although, this formula was not as accurate as

desired but it was sufficient in reducing the large quantity of calculations in order for the

most accurate predictions to be further studied.

31

Even though twenty plots, each with 6 distinct scenarios, were generated to

demonstrate the accuracy of error prediction with respect to error location and ABC

system used, only four are shown in the following examples. The results of all 120

scenarios are located in Appendix A in the form of 6 FOM tables. The tables show all

ABC configurations and the modes used in error prediction versus the type and location

of error added to Beam X. The best representations of trends are exhibited by applying

each type of change, mass or EI, to each end of the beam separately.

1. Error Prediction: Example 1

This example is of 10 % mass change applied to element 2 at the root end of the

beam, node 11 pinned, shown in Figure 14.

2

mass
10%

Figure 14. Diagram of Cantilever beam 10% change in mass applied to element 2,
Node 11 pinned

In order to correctly read the next two bar graphs the following information is

given. The yellow circle indicates the actual mass error in location and magnitude. The

blue bars indicate the magnitude of the error for each element predicted using only the

first 5 modes of the base system in development of the [T].

The graphs on the left represent the development of { }2
ABCω∆ and ABCT⎡⎣ ⎤⎦ using

only 5 modes of the ABC system, shown is ABC 10, node 11 pinned. Thus the system of

equations { } []{ }2 T DVω∆ = ∆ is underdetermined. The plots on the right represent the

development of { }2
ABCω∆ and ABCT⎡⎣ ⎤⎦ using the first 5 modes of the BASE system, in

addition to 5 modes of the ABC system. The top row of graphs represents the use of

modes [1:5] of the ABC system; middle row, modes [6:10] and bottom row, modes

[11:15]. For each subplot the condition number of [T] used and FOM of prediction are

labeled.

32

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
ABC only, [11 12 13 14 15]

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
ABC only, [1 2 3 4 5]

ABC Cond = 433
FOM = 100
Base Cond = 3370
FOM = 100

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
Base [1:5] + ABC [1 2 3 4 5]

Base+ABC Cond = 7333
FOM = 97
Base Cond = 3370
FOM = 100

1 2 3 4 5 6 7 8 9 10
-0.1

-0.05

0

0.05

0.1
ABC only, [6 7 8 9 10]

ABC Cond = 49
FOM = 0
Base Cond = 3370
FOM = 100

1 2 3 4 5 6 7 8 9 10
-0.2

-0.1

0

0.1

0.2
Base [1:5] + ABC [6 7 8 9 10]

Base+ABC Cond = 1.67e7
FOM = 16
Base Cond = 3370
FOM = 100

ABC Cond = 92
FOM = 98
Base Cond = 3370
FOM = 100

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
Base [1:5] + ABC [11 12 13 14 15]

Base+ABC Cond = 9.05e4
FOM = 94
Base Cond = 3370
FOM = 100

Figure 15. Plots of Error Prediction 10% change in mass applied to element 2, Node

11 pinned

In this case the error prediction using the first 5 modes of the baseline system

provided a highly accurate result, FOM 100 with a [T] condition of 3370. Another highly

accurate error prediction with a FOM of 100 was given by using the first 5 modes of the

ABC system, node 11 pinned. However, the condition of this ABC system [T] was 433,

suggesting nothing of a relationship between Cond (T) and accuracy of error prediction.

It was stated previously that the FOM formula was not completely accurate or

sufficient. It was merely a method of reducing a large collection of data to a better handle

collection for further study. This insufficiency is seen in a comparison between the error

predictions using only the second 5 modes of ABC system, modes: 6-10 where the size of

[T] is 5 by 10 and using the same 5 modes of the ABC system in combination with the
33

first 5 modes of the baseline system, where [T] is 10 by 10. The underdetermined of

ABC modes alone has a FOM of 0 due to the fact that there is no error prediction on the

correct element. The determined ABC + Base system has a FOM of 16 due to the fact

that there is a small error prediction on the correct element. The FOM of these two

system suggests that the ABC + Base system is the better error prediction even though

the error prediction for the rest of beam is far worst than the beam error prediction of the

underdetermined ABC only system. However, the FOMs a good job of precluding the

respective system set-ups from further study, seeing that neither system is accurate

enough to validiate further study.

2. Error Prediction: Example 2

This example is of 10 % mass change applied to element 8 at the free end of the

beam, node 11 pinned, shown in Figure 16.

8

mass 10%

Figure 16. Diagram of Cantilever beam 10% change in mass applied to element 8,
Node 11 pinned

The following error prediction graphs are displayed in the same fashion as those

in Figure 15. The disparities between the graphs are based solely on the location of the

error.

34

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
ABC only, [1 2 3 4 5]

ABC Cond = 433
FOM = 0
Base Cond = 3370
FOM = 0

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
Base [1:5] + ABC [1 2 3 4 5]

Base+ABC Cond = 7333
FOM = 100
Base Cond = 3370
FOM = 0

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
ABC only, [6 7 8 9 10]

ABC Cond = 49
FOM = 0
Base Cond = 3370
FOM = 0

1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4
Base [1:5] + ABC [6 7 8 9 10]

Base+ABC Cond = 1.67e
FOM = 28
Base Cond = 3370
FOM = 0

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
ABC only, [11 12 13 14 15]

ABC Cond = 92
FOM = 99
Base Cond = 3370
FOM = 0

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
Base [1:5] + ABC [11 12 13 14 15]

Base+ABC Cond = 9.05e
FOM = 99
Base Cond = 3370
FOM = 0

Figure 17. Error Prediction Plots for a 10% change in mass applied to element 8,
Node 11 pinned

In this case the error prediction using the first 5 modes of the baseline system

provided a highly inaccurate result, FOM 0 even though the condition [T] remained the

same at 3370. The most accurate prediction was the system of ABC modes (1:5) + Base

modes (1:5). This system had a FOM of 100 and a Cond ([T]) of 7333. The condition

numbers of ABC (11:15) system, Cond(T) of 92 and ABC(11:15) +Base (1:5) system,

Cond(T) = 9.05e5, suggest that a relationship between accuracy and condition of [T] does

not exist.

35

3. Error Prediction: Example 3

This example is of 10 % EI change applied to element 2 at the root end of the

beam, node 11 pinned, shown in Figure 18.

2

EI 10%

Figure 18. Diagram of Cantilever beam 10% change in EI applied to element 2, Node
11 pinned

1 2 3 4 5 6 7 8 9 10
-0.1

-0.05

0

0.05

0.1
ABC only, [1 2 3 4 5]

ABC Cond = 485
FOM = 0
Base Cond = 3370
FOM = 0

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
Base [1:5] + ABC [1 2 3 4 5]

Base+ABC Cond = 7279
FOM = 100
Base Cond = 3370
FOM = 0

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
ABC only, [6 7 8 9 10]

ABC Cond = 40
FOM = 0
Base Cond = 3370
FOM = 0

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
Base [1:5] + ABC [6 7 8 9 10]

Base+ABC Cond = 3.87e5
FOM = 99
Base Cond = 3370
FOM = 0

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
ABC only, [11 12 13 14 15]

ABC Cond = 62
FOM = 95
Base Cond = 3370
FOM = 0

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
Base [1:5] + ABC [11 12 13 14 15]

Base+ABC Cond = 1.09e6
FOM = 94
Base Cond = 3370
FOM = 0

Figure 19. Error Prediction Plots for a 10% change in EI applied to element 2, Node
11 pinned

36

Similar to Example 2, in which a 10 % mass change added to an element at the

free end of the beam, this situation yielded an highly inaccurate error prediction using the

first 5 modes of the baseline system, FOM 0 even though the condition [T] remained the

same at 3370. Also as in example 2, the most accurate prediction of this situation was the

system of ABC modes (1:5) + Base modes (1:5). This system had a FOM of 100 and a

Cond ([T]) of 7279. However, unlike the example 2, the current ABC (6:10) +Base (1:5)

system, has an accurate error prediction with a FOM of 99.

4. Error Prediction: Example 4

This example is of 10 % EI change applied to element 8 at the free end of the

beam, node 11 pinned, shown in Figure 20.

8

EI 10%

Figure 20. Diagram of Cantilever beam 10% change in EI applied to element 8,
Node11 pinned

In this last example a similar trend is visible. The Base (1:5) system yields an accurate

error prediction similar to that of example 1. However, ABC (1:5) + Base (1:5) and ABC

(11:15) + Base (1:5) and ABC (11:15) systems all have FOM of 100 and prove to predict

accurate error location and quantity without great leakage of error onto adjacent

elements. Even ABC (6:10) + Base (1:5) system has a FOM and has only small leakage

of error onto other beam elements.

37

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
ABC only, [1 2 3 4 5]

ABC Cond = 485
FOM = 0
Base Cond = 3370
FOM = 100

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
Base [1:5] + ABC [1 2 3 4 5]

Base+ABC Cond = 7279
FOM = 100
Base Cond = 3370
FOM = 100

1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

0.2

0.3
ABC only, [6 7 8 9 10]

ABC Cond = 40
FOM = 0
Base Cond = 3370
FOM = 100

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
Base [1:5] + ABC [6 7 8 9 10]

Base+ABC Cond = 3.87e
FOM = 91
Base Cond = 3370
FOM = 100

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
ABC only, [11 12 13 14 15]

ABC Cond = 62
FOM = 100
Base Cond = 3370
FOM = 100

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

0.1

0.15
Base [1:5] + ABC [11 12 13 14 15]

Base+ABC Cond = 1.09e
FOM = 100
Base Cond = 3370
FOM = 100

Figure 21. Error Prediction Plots for a 10% change in EI applied to element 8,
Node11 pinned

38

V. EXPERIMENTAL APPLICATION

Previous section discussed in length the role of ABCs in error prediction and

localization using a MATLAB simulation of a cantilever. This section explores the

accuracy of OSET frequencies when ABCs are applied to experimentally measured

spatially incomplete data. For comparison of data a FE model was created with the same

dimensional and material properties of the cantilever beam used in the experiment. The

FE model had 42 elements and 43 nodes for a total of 86 DOF before original boundary

conditions (BC) were applied and reduced the DOF to 84.

A. CANTILEVER BEAM AND EQUIPMENT SETUP

A block of steel 18 inches in length, 8 inches wide and 2 inches thick was placed

on a platform as a foundation. The cantilever beam made of T-6061 Aluminum, 48

inches in length, 1.5 inches wide and 0.5 inches thick, density of 0.11 lbf/in3 and

elasticity modulus of 10 E6 lbf/sec2-in was then placed on top of foundation steel with 42

inches of length extending over the edge of the foundation steel. Two shorter length steel

beams, each 6 inches long, 2 inches wide and 1 inch thick were used to access in the

elimination platform generated modes. One short steel beam was placed above the

Aluminum beam and another was placed beneath the platform. In order to represent a

simply supported cantilever, C-clamps were used to clamp the Aluminum beam and

associated steel pieces in place as shown in Figure 22.

 Steel

 Aluminum

 Platform

Figure 22. Diagram of Cantilever beam laboratory set-up

39

40

The beam consisted of 42 elements, each 1 inch in length; this corresponded to FE

model element quantity and length. A Series 336 FLEXCEL ICP accelerometer was

threaded into position at node 41 of the beam and wired into Channel 2 on a DACTRON

Focus front end digital signal processor (DSP). An excitation was applied by a load cell,

which was wired into Channel 1on the DSP. The accelerometer was calibrated and

sensitivity adjustment applied in the set-up of RT Pro Focus 5.57 software.

B. DATA COLLECTION

Using DACTRON RT Pro Focus 5.57 software, FRFs were collected when the

roving force was applied by the load cell at each node. Node 41 remained the reference

as the load cell roved from one node to next allowing for the measurement of the

response at each node. Due to this set-up only one column or row of the complete FRF

matrix [H] was actually measured. The feasibility of measuring such a small quantity of

data is explained in the next section.

1. A RT Pro Focus 5.57 software “Real-time” project was configured to measure

3200 spectral lines, 8192 points, with a delta T of 166.7µs over the frequency range 0-

2400Hz. The frequency range of 0-2400 Hz was chosen because it covered the first 10

modes of system and signal resolution was sufficient for data acquisition. The excitation

signal proved to be clean and thus no window was used for data measuring.

2. Channel set-up

 Channel 1 (Excitation) Channel 2(Response)

Max Volts (mV): 0.1 0.3

Quantity: Force Accel.

EU: lbf gn

mv/EU: 9.48 101.3

Coupling: ICP AC 7.0 Hz ICP AC 7.0 Hz

Sensitivity Adjustment: 0 -0.3710

41

3. Trigger set-up

Source: Analog input

Run Mode: Manual Arm every frame

Input: Channel 1

Slope: Bi-polar

Level (%): 1, Level (V): 0

Pre/Post Points (-/+): -10

Pre/Post Time (-/+): -1.67µs

4. Average set-up:

Type: Linear

Domain: Frequency

Frames: 5 (Each node was excited 5 times and an average taken and saved.)

Accept/Reject: Manual Accept/Reject every frame.

 (The user rejects double taps, under powered or overloaded signals.)

5. Modal Coordinate set-up:

Auto increment: ON

Rove: Excitation

Point increment: 1

Export: UFF text format, frequency response.

C. DATA ANAYLSIS

Since the procedure for picking OSET frequencies involved inverting the

complete FRF matrix after ABC are applied, smooth FRF signals were ideal. Since the

FRFs measured were only one column or row of the complete FRF matrix, the complete

FRF matrix was developed by synthesizing the measured FRFs. The smoothing of the

FRFs was achieved through curve fitting the measured FRF. ME’Scope’VES was used to

analyze, curve fit and synthesize FRFs.

Once all of the FRFs are imported collectively as a “Data Block” into

ME’Scope’VES ensure that each trace is labeled correctly in the DOF column. The label

should read Roving: Reference, i.e. excitation at node 1 with reference at 41 is 1Z:41Z, Z

indicates the axis of motion. In this experiment the Z-axis is the vertical axis.

Under “Modal Parameters” from the “Modes” drop down menu there are three

steps used to curve fit and synthesize the data block.

Step 1 - Count peaks. With all traces selected, “Count peaks.” Ensure the peak

count is the correct quantity of natural frequencies in the frequency range measured,

peaks = 10 in this experiment. Also ensure the correct location of peaks. To capture more

or less peaks move the horizontal bar accordingly and recount. Once the correct quantity

and location is counted proceed to step 2.

Step 2 – Frequencies and damping. The polynomial method was used globally to

curve fit the data block. This method uses four extra polynomial terms to compensate for

modes not measured. After clicking the “F&D” button a list of damped natural

frequencies and % damping ratios was displayed. Check for accuracy of curve fit by

selecting “Display, Fit Functions” from “Modes” drop down menu. The curve fit

functions for measured FRFs are displayed in Figure 23.

Figure 23. Driving Point Function (41Z:41Z)
Measured FRF = black, Curve Fit = red

42

Step 3 – Residues and Mode Shapes. With all traces still selected, create

“Resides” using polynomial method and save corresponding mode shapes as a Shape

Table file (*.shp), ensuring all residues are selected.

In order to save mode shapes in the proper format to be used with MATLAB

simulation, 1) display the Shape Table file in “Co-Quad” which displays real and

imaginary parts not magnitude and phase of the mode shapes and 2) “Save as ASCII,

ASCII text file (.txt).” Attached MATLAB code, Hresidues.m explains in detail the final

steps in the proper preparation of shape table file for use with MATLAB.

Once the mode shapes have been saved the synthesized FRFs can be displayed by

selecting “Synthesize FRFs…” from the Data Block’s “Modes” drop down menu or the

Shape Table’s “Tools” drop down. These synthesized FRFs are displayed in Figure 24.

Figure 24. Driving Point Function (41Z:41Z) Measured FRF = black, Synthesized
FRF = green

43

The disparity between the synthesized FRF and measured FRF in the locations of

the anti-resonances was an area of great concern because of the importance of the anti-

resonance with the inversion of FRF matrix when ABCs are applied. It was believed that

the synthesized FRF matrix would not yield accurate OSET and more data would be

required to complete the study of ABC in damage detection.

The discrepancy between the synthesized FRF and the curve fit FRF was due to

the extra polynomial terms used in curve fit equation but not in the synthesis equation.

Synthesized FRF are necessary due to the fact that only one column of the

complete FRF matrix was measured but a complete FRF matrix was needed. The

following formula shows why only one row or column of the FRFs needs to be measured

in order to completely represent the resonant vibration of a structure in terms of its

modes. This formula is utilized by ME’Scope’VES in calculating the synthesized FRF

Matrix whose driving point FRF is shown in Figure 24.

[] [] *

*1

()()
()

() ()
modes

k

R kR k
H

j p k j p k=

⎡ ⎤⎡ ⎤⎣ ⎦⎢Ω = +
Ω+ Ω+⎢ ⎥⎣ ⎦

∑ ⎥ (5.1)

[H(Ω)] = FRF matrix (nxn)

Ω = forcing frequency

p(k) = pole location for the kth mode = -σ(k) + jω(k)

σ(k) = modal damping for the kth mode = ω(k)ζ(k)/(1-ζ(k)2)½

ω(k) = damped natural frequency for the kth mode

ζ(k) = percent of critical damping for the kth mode

[R(k)] = Residue matrix for the kth mode (nxn) = A(k){Φ(:,k)}{Φ(:,k)}T

{Φ(:,k)} = mode shape for the kth mode (n-vector)

A(k) = scaling constant for the kth mode

n – number of DOFs of the FRF model

* = denotes complex conjugate

j = denotes imaginary axis in the complex plane

T = denotes transposed vector

44

Since mode shapes have unique internal relationships and not value, the scaling

constant A(k) can always be chosen so that A(k) =1. With A(k) = 1, the equation

simplifies so that,

[]
{ }{ } { }{ }* *

*1

(:,) (:,)(:,) (:,)
()

() ()

TT

modes

k

k kk k
H

j p k j p k=

⎡ ⎤⎡ ⎤⎡ ⎤ Φ ΦΦ Φ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣Ω = +⎢ ⎥Ω+ Ω+⎢ ⎥⎣ ⎦

∑ ⎦ (5.2)

A simulation was conducted using the natural frequencies, damping ratios and

residues generated by ME’Scope’VES. The plots generated from said simulation verified

proper use of the above equation and allowed for the comparison to be completed using

only MATLAB generated data.

A MATLAB simulation was used to find the effects of quantity of modes used in

the calculation of the synthesized FRF matrix and the accuracy of the OSET frequencies

when said synthesized FRF matrix was used in conjunction with ABC.

The FE model contained the given dimensions and material properties of the

laboratory beam. The FE model was composed of 42 elements with 43 nodes (2 DOF per

node for 86 DOF total before cantilever boundary conditions (BC) reduced the DOF to

84.) 42 elements corresponded to the locations of excitation on the beam and made for an

easier comparison.

There are a few differences between the formula ME’Scope’VES used and the

formula coded for MATLAB use.

1. Mode shapes {Φ(:,k)} is real, {Φ*(:,k)} = {Φ(:,k)}

2. σ(k) = 0, p(k) = jω(k) and p*(k) = - jω(k)

3. A (k) = 1. Scaling is wrong but the trend of the synthesized [H] remains
the same.

[]
{ }{ } { }{ }

1

(:,) (:,) (:,) (:,)
()

() ()

T T

Modes

k

k k k k
H

j j k j j kω ω=

⎡ ⎤⎡ ⎤ ⎡ ⎤Φ Φ Φ Φ⎣ ⎦ ⎣ ⎦⎢ ⎥Ω = +
⎢ ⎥Ω+ Ω−
⎣ ⎦

∑ (5.3)

45

The following three plots show the convergence of the anti-resonance with

respect to the quantity of modes used in the development of synthesized FRF matrix in

MATLAB.

Figure 25 is of the driving point function (41Z:41Z). Notice the shift of the anti-

resonance to the left. This shift would indicate at first glance that more modes make the

synthesized FRF less accurate since the anti-resonance of the measured FRF is to the

right. This quick analysis of the plot is inaccurate and will be proved as such later.

Before that discussion other FRF should be studies to see what, if any, difference exist in

the synthesized FRF with respect to location on beam.

0 100 200 300 400 500 600 700
-10

-5

0

5

Hz

lo
g

M
ag

Syn FRF for 41Z:41Z

Modes sum = 42
Modes sum = 30
Modes sum = 20
Modes sum = 10

Figure 25. MATLAB Synthesized Driving Point Function (41Z:41Z)

46

Figure 26 shows the MATLAB synthesized FRF of 31Z:41Z. Notice the quick

convergence of the anti-resonance locations. This FRFs only ten inches away from

Driving point and the effects of the quantity of modes used are considerable less visible.

0 100 200 300 400 500 600 700
-12

-10

-8

-6

-4

-2

0

2

4

6

Hz

lo
g

M
ag

Syn FRF for 31Z:41Z

Modes sum = 42
Modes sum = 30
Modes sum = 20
Modes sum = 10

Figure 26. MATLAB Synthesized FRF (31Z:41Z)

47

In the last plot, Figure 27 which is the MATLAB synthesized FRF of 21Z:41Z,

the plots of corresponding quantities of modes used in synthesis nearly lie top each other.

This absence of convergence suggests that the effects of the quantity of modes used in

synthesis become considerably less important as the distance from the driving point

increases.

0 100 200 300 400 500 600 700
-10

-5

0

5

Hz

lo
g

M
ag

Syn FRF for 21Z:41Z

Modes sum = 42
Modes sum = 30
Modes sum = 20
Modes sum = 10

Figure 27. MATLAB Synthesized FRF (21Z:41Z)

48

An evaluation of the accuracy of the OSET frequencies when ABCs were applied

was conducted using a MATLAB simulation. The simulation obtained OSET

frequencies of the cantilever beam system:

1) The actual application of the boundary condition, a pin at node 41, to

the [K] and [M] and solving for natural frequencies.

2) Synthesis of [H], keeping the pinned DOF, inverting [Haa] and plotting

the coordinating impedance matrix, [Z] over the range of 1-600Hz.

The smaller range was used for great definition of plots.

Figure 28. shows the overlaying plots of inv [Haa], each plot represents a different

quantity of modes used in the synthesis of [H]. The vertical red lines capped with circles

represent the actual frequencies of the system with node 41 pinned.

0 100 200 300 400 500 600 700
-5

0

5

10

Hz

lo
g

M
ag

OSET Freq using inv(Habc) using mode shape

Modes sum = 20
Modes sum = 15
Modes sum = 10
Modes sum = 5

Figure 28. Comparison of OSET Frequencies using inv [Synthesized] and Actual
Natural frequencies of the system, pin at node 41.

49

50

The convergence of the plots increases as the number of modes used in synthesis

is increased thus the improving the accuracy of OSET frequencies. As seen in Figure 28

the higher natural frequencies require a higher quantity of modes to be used in the

synthesis of [H]. This conclusion is expected; however, Figure 28 also verifies the use of

synthesized FRFs in combination with ABCs which is contrary to the expected result

from Figure 24, the comparison plot of the synthesized driving point FRF and the

measured driving point FRF. However, synthesizing the complete FRF matrix in

ME’Scope’VES was difficult due to a unit problem. If time would have permitted a

complete FRF matrix using ME’Scope’VES residues would have been synthesized by a

MATLAB program, Hresidues.m and an error localization would have been performed

between the most accurate FE model and the measured data.

Since this comparison was not completed and it is recommended that such a

comparison be run to validate ABC usage in combination with sensitivity based model

updating with actual measured data.

51

VI. CONCLUSIONS AND RECOMMENDATIONS

Previous works had verified the use of artificial boundary conditions as a method

of obtaining additional system frequencies from a single experimental database for

improved error localization. The main objective of this thesis was to find a relationship

between the accuracy of error location and the artificial boundary conditions used in

frequency acquisition.

A. CONCLUSIONS

The following conclusions can be drawn from the analyses presented of ABC

configured systems in combination with sensitivity updating:

1. The improvement of error prediction with respect to ABC is relative to the

actual location of discrepancy between the model and actual structure.

a. The underdetermined baseline system utilizing only the first 5 modes

predicted with high accuracy if the error was a Mass error near the root

end or an EI error near the free end.

b. In general, the addition of ABC system frequencies improved the error

prediction when error was a Mass error near the free end or an EI error

near the root end.

2. An accurate method of evaluating accuracy of error prediction with respect to

ABC configuration was not satisfactorily found.

a. The relationship between the mode shapes of the Beam A and Beam X

with ABC applied did not provide a good avenue of comparison of the

accuracy of error prediction.

b. A relationship between the condition of the sensitivity matrix and

accuracy of error prediction was not found in this study.

c. The FOM formula used to evaluate the 600 cases run in MATLAB

simulation accounted for accuracy of location of error in spite of

magnitude of the error.

52

The following conclusions can be drawn from the experimental data collection:

1. Synthesized data from Me’Scope’VES has an accuracy high enough to

yield accurate OSET frequencies if enough modes are measured.

However, synthesizing complete FRF matrix was difficult due to unit

problem.

B. RECOMMENDATIONS

The following are areas of recommended improvement to continue with this field

of study. The first three are recommendations for improving sensitivity-based error

localization.

1. Apply two or more changes in varying locations and evaluate error

localization with respect to ABC systems.

2. Build a sensitivity matrix by applying a perturbation to every other

element and evaluate error localization.

3. Research more accurate methods of evaluating error localization.

4. Before data measuring conduct a MATLAB analysis to find the quantity

of modes needed for convergence of anti-resonances. This would improve

OSET frequency calculations and reduce time in laboratory.

5. Explore how to synthesis a complete FRF matrix using ME’Scope’VES.

6. Since a comparison between real data and FE data was not completed and

it is recommended that such a comparison be run to validate ABC usage in

combination with sensitivity based model updating with actual measured

data.

APPENDIX A

The following tables for Figure of Merit (FOM) Charts for 10% change either in

Mass or EI applied to elements 1:10, but only one change and element at a time. Each

columns represents the elements the change is located. Each row represents system used

to predict the error. The FOM formula is located in Chapter IV. FOMs of 100 are

highlighted.

 Element where the MASS Error is located

 1 2 3 4 5 6 7 8 9 10
BASE 69 28 65 0 6 74 21 29 40 72
ABC 1 100 89 94 92 93 94 96 96 98 97
ABC 2 97 90 92 79 80 89 92 95 94 99
ABC 3 46 29 30 18 34 16 14 3 33 19
ABC 4 33 19 85 82 53 71 52 27 93 49
ABC 5 37 13 0 7 5 58 75 11 29 34
ABC 6 98 98 95 98 99 99 98 98 97 97
ABC 7 98 97 99 98 98 99 98 87 98 89
ABC 8 36 50 70 3 59 61 18 51 44 55
ABC 9 75 90 92 74 72 97 46 43 25 14

ABC 10 92 95 99 90 90 99 89 72 82 99
Table 1. FOM of MASS Error Prediction using 10 modes of each system.

 Element where the EI Error is located

 1 2 3 4 5 6 7 8 9 10
BASE 77 27 38 12 52 23 3 6 9 74
ABC 1 100 96 92 95 73 50 53 81 95 85
ABC 2 93 99 48 36 29 4 1 0 69 1
ABC 3 53 0 96 4 6 3 1 4 8 2
ABC 4 64 56 63 64 27 43 15 14 77 39
ABC 5 0 2 0 8 68 0 5 1 1 0
ABC 6 99 99 97 97 98 96 99 99 91 97
ABC 7 97 98 97 96 95 90 93 99 95 90
ABC 8 99 99 95 93 93 98 99 99 98 96
ABC 9 98 99 98 93 94 96 99 97 98 100

ABC 10 99 99 99 98 98 99 99 98 96 95

Table 2. FOM of EI Error Prediction using 10 modes of each system.

53

 Element where Mass Error is located.
 1 2 3 4 5 6 7 8 9 10
 Modes

1:5 100 77 60 52 47 34 53 64 48 8
6:10 100 94 86 37 25 1 9 19 98 33

ABC 1+Base (1:5) 11:15 4 3 1 8 12 14 36 1 19 0
1:5 100 98 97 67 81 71 69 92 67 27

6:10 16 5 85 80 85 83 43 84 82 84
ABC 2 +Base (1:5) 11:15 29 42 73 81 97 90 96 63 87 96

1:5 100 0 4 7 5 11 4 18 7 1
6:10 56 76 15 93 65 73 78 58 88 78

ABC 3 +Base (1:5) 11:15 87 78 91 98 95 99 94 100 98 99
1:5 100 97 100 99 100 92 94 100 93 78

6:10 7 69 85 53 43 23 43 2 65 9
ABC 4+Base (1:5) 11:15 92 71 54 66 93 89 98 83 86 97

1:5 1 2 9 19 17 18 18 1 2 0
6:10 34 39 12 66 0 52 1 5 52 24

ABC 5+Base (1:5) 11:15 92 66 23 14 88 95 12 0 15 96
1:5 100 98 100 100 100 98 97 98 99 87

6:10 72 90 53 98 72 82 72 84 49 80
ABC 6+Base (1:5) 11:15 93 96 61 93 97 99 93 83 59 99

1:5 100 10 19 3 96 95 100 11 6 2
6:10 48 90 89 88 19 56 72 23 7 23

ABC 7+Base (1:5) 11:15 87 72 72 72 99 51 63 81 47 64
1:5 100 96 99 97 84 62 40 97 75 3

6:10 64 66 28 1 59 37 97 94 5 6
ABC 8+Base (1:5) 11:15 97 99 99 100 95 92 98 99 11 64

1:5 100 46 48 100 39 97 100 3 3 0
6:10 83 97 92 78 64 92 98 89 93 92

ABC 9+Base (1:5) 11:15 100 99 60 90 84 88 99 75 83 10
1:5 100 97 100 98 100 100 99 100 92 66

6:10 4 16 32 5 19 11 78 28 1 17
ABC 10+Base (1:5) 11:15 97 94 97 98 100 98 98 99 95 81

Table 3. FOM of Mass Error Prediction using Base modes (1:5) and 5 modes from

ABC system, (1:5), (6:10), or (11:15)

54

 Element where Mass Error is located.
 1 2 3 4 5 6 7 8 9 10
 Modes

1:5 0 0 100 100 0 100 100 0 0 100
6:10 0 97 0 98 97 93 0 0 0 99

ABC 1 11:15 96 0 98 99 99 99 0 0 0 0
1:5 0 0 0 100 100 100 100 0 0 100
6:10 0 76 99 97 0 0 0 0 98 99

ABC 2 11:15 80 71 97 0 0 0 0 97 91 0
1:5 0 96 0 0 100 0 100 100 100 0
6:10 0 0 85 97 99 96 0 0 0 97

ABC 3 11:15 0 83 91 0 0 0 99 100 99 0
1:5 0 0 100 0 0 100 100 0 100 100
6:10 0 97 0 96 99 99 0 0 0 97

ABC 4 11:15 0 0 81 83 97 0 0 0 98 99
1:5 0 95 97 95 0 100 0 0 0 100
6:10 57 0 87 0 0 76 92 0 0 94

ABC 5 11:15 0 0 96 97 98 0 0 98 98 0
1:5 0 100 0 100 100 0 0 100 0 100
6:10 98 0 0 0 99 99 98 99 0 0

ABC 6 11:15 0 0 0 100 100 0 0 98 95 100
1:5 0 0 100 100 0 100 0 0 99 100
6:10 97 0 0 0 96 99 97 85 0 0

ABC 7 11:15 0 0 100 99 0 100 0 0 97 99
1:5 0 99 100 0 100 100 0 0 0 99
6:10 99 99 0 0 0 0 96 99 0 83

ABC 8 11:15 99 100 99 0 0 94 0 0 0 31
1:5 0 0 100 100 0 100 0 100 0 96
6:10 97 0 0 0 94 0 97 0 96 98

ABC 9 11:15 0 100 98 99 0 0 100 0 0 74
1:5 0 100 100 100 0 100 100 0 0 0
6:10 98 0 0 0 96 0 99 0 98 100

ABC 10 11:15 99 98 0 0 100 96 0 99 0 0

Table 4. FOM of Mass Error Prediction using 5 modes from ABC system, (1:5),
(6:10), or (11:15)

55

 Element where EI Error is located.
 1 2 3 4 5 6 7 8 9 10
 Modes

1:5 5 98 100 100 97 96 93 100 88 100
6:10 100 98 95 97 88 81 82 93 98 95

ABC 1 +BASE(1:5) 11:15 97 88 56 97 78 66 97 74 82 78
1:5 91 100 98 99 100 100 99 100 96 100
6:10 22 96 64 87 70 77 83 85 47 95

ABC 2+BASE(1:5) 11:15 37 94 97 74 86 81 91 91 81 91
1:5 15 41 97 48 88 97 98 98 75 100
6:10 8 13 49 97 24 1 2 64 38 5

ABC 3+BASE(1:5) 11:15 13 2 11 21 0 19 10 5 2 7
1:5 94 99 99 100 100 100 100 100 99 100
6:10 5 15 2 0 28 14 37 5 86 23

ABC 4+BASE(1:5) 11:15 70 0 11 92 99 76 98 29 86 96
1:5 1 2 41 17 50 2 26 3 2 42
6:10 6 82 0 34 63 48 7 1 11 43

ABC 5+BASE(1:5) 11:15 84 63 25 50 100 94 37 34 58 94
1:5 99 99 99 100 100 96 98 87 89 100
6:10 32 40 26 6 18 16 75 59 7 22

ABC 6+BASE(1:5) 11:15 100 94 95 99 98 99 100 68 81 99
1:5 98 100 100 100 100 98 96 97 85 100
6:10 76 87 59 17 24 70 81 99 78 35

ABC 7+BASE(1:5) 11:15 97 96 94 98 99 87 99 100 95 88
1:5 100 93 100 94 97 98 90 100 90 100
6:10 95 98 18 40 22 56 61 97 78 63

ABC 8+BASE(1:5) 11:15 92 97 86 99 92 72 95 89 98 9
1:5 97 100 99 100 99 99 100 100 69 100
6:10 98 99 96 90 84 90 91 96 98 100

ABC 9+BASE(1:5) 11:15 99 87 93 94 97 91 99 90 97 95
1:5 100 100 100 100 100 100 100 100 100 100
6:10 99 99 97 97 97 98 92 91 75 95

ABC 10+BASE(1:5) 11:15 98 94 94 96 100 95 95 100 98 97

Table 5. FOM of EI Error Prediction using Base modes (1:5) and 5 modes from
ABC system, (1:5), (6:10), or (11:15)

56

 Element where EI Error is located.
 1 2 3 4 5 6 7 8 9 10
 Modes

1:5 0 100 0 0 0 100 100 100 100 0
6:10 0 99 97 0 97 0 0 0 98 98

ABC 1 11:15 0 94 96 99 0 0 99 0 0 100
1:5 0 0 0 100 100 100 0 100 100 0
6:10 90 0 0 98 0 96 0 0 98 98

ABC 2 11:15 85 0 0 0 98 0 0 98 82 97
1:5 0 100 0 100 0 0 100 100 100 0
6:10 83 0 0 0 99 94 0 93 0 98

ABC 3 11:15 98 88 0 0 99 0 99 100 0 0
1:5 0 0 100 0 100 0 100 100 100 0
6:10 83 93 0 0 0 97 0 89 0 98

ABC 4 11:15 0 0 71 100 0 0 0 96 99 100
1:5 0 0 0 0 0 100 57 100 16 100
6:10 70 84 0 97 0 0 0 68 0 56

ABC 5 11:15 0 0 92 92 0 0 0 92 95 99
1:5 0 100 0 100 100 100 0 100 0 0
6:10 99 0 98 0 99 0 0 0 99 96

ABC 6 11:15 0 99 0 100 100 0 0 97 0 100
1:5 0 0 100 100 0 100 100 0 98 0
6:10 98 0 97 0 98 99 0 0 0 81

ABC 7 11:15 0 0 100 99 0 99 0 0 96 100
1:5 0 0 0 100 100 100 0 100 100 0
6:10 99 99 0 0 92 98 0 0 90 0

ABC 8 11:15 0 99 97 0 95 90 0 0 0 40
1:5 0 0 0 0 0 100 100 100 99 100
6:10 98 0 97 0 88 97 0 0 0 100

ABC 9 11:15 100 99 0 0 0 0 100 97 0 100
1:5 100 0 0 100 0 100 100 0 100 0
6:10 99 0 0 0 95 0 99 0 98 100

ABC 10 11:15 0 95 0 0 100 93 0 100 98 0

Table 6. FOM of EI Error Prediction 5 modes from ABC system, (1:5), (6:10), or

(11:15)

57

58

THIS PAGE INTENTIONALLY LEFT BLANK

59

APPENDIX B

ABCrunTHRU_crs.m

% This program calculates the condition number of the following
% sensitivity matrices used to calculate the DV (error prediction).
% 1) Base system only 5 modes (underdetermined)
% 2) ABC system 10 modes
% 3) Base system 5 modes + 5 modes from ABC system
% The last system is calculated 3 times. Once for modes 1-5,
% another for modes 6-10, and again for modes 11-15.
%
% This program is called from Build2Beams.m.
%
% Written by Constance R S Fernandez, Spring 2004
% INPUTS
% --------
% icnt_oset
% T_sens_tot
% vect_lam_tot

% OUTPUTS
% -------
% aa
% dv_a, dv_b, dv_c
% intervel
% mode
% startmode
% ten
% dv_cal_ABC - matrix
% dv_calABCten - matrix
% dv_cal_BasePlus - matrix
% cond_ABC - matrix
% cond_ABCten - matrix
% cond_basePlus - matrix

% ----INITIALIZATION-------

abc = 0;
ten = 1;
intervel = 1;
int_abc = 1;
for aa = 1:icnt_oset +1 % number of conditions (base + ABC)
 a_c = 1; % reinitialize for each ABC system

60

 for mode = 1:3 % 3 sets of modes per ABC system (10 element beam)
 % (modes 1:5, 6:10, 11:15)
 startmode = abc + a_c;

 dv_a = [startmode: startmode+4]; % modes
 dv_c = [ten:ten+9]; % the first 10 modes of each ABC system
 % (modes 1-10 only)

 if dv_a == [1:.25*size(T_sens_tot,2)]; % if sensitivity matrix
 %has only 5 rows than the modes used are all 5, else modes
 %used are first five (base) and a set of selected 5 modes
 %of ABC system for a total of 10 modes.
 dv_b = [dv_a];
 else
 dv_b = [1:.25*size(T_sens_tot,2), dv_a];
 end
 %---Base System only---(underdetermined)

 % save DV calculates of as matrix for plotting
 dv_cal_ABC(:,intervel) = T_sens_tot(dv_a,:)\vect_lam_tot(dv_a);
 % condition number of Sensitivity matrix used in DV cal.
 cond_ABC(intervel,1) = cond(T_sens_tot(dv_a,:));

 % ---Base + 5 modes of ABC system ----
 dv_cal_BasePlus(:,intervel) = T_sens_tot(dv_b,:)\vect_lam_tot(dv_b);
 cond_basePlus(intervel, 1) = cond(T_sens_tot(dv_b,:));

 intervel = intervel + 1;
 a_c = a_c + 5; % five modes used at a time

 end % "mode" loop

 % ---ABC system only ----
 dv_cal_ABCten(:,int_abc) = T_sens_tot(dv_c,:)\vect_lam_tot(dv_c);
 cond_ABCten(int_abc,1) = cond(T_sens_tot(dv_c,:));

 int_abc = int_abc + 1;
 abc = abc + 19; % advances to next ABC system, must change number "19"
 % to reflect the number of DOF in beam. This beam had 10 elements thus
 % 19 DOF.
 ten = ten + 19; % advances to next ABC system
end % "aa" loop
% ******************** END ABCrunTHRU_crs.m ***********************

61

AddLumpMass.m

% This script constructs a vector of lumped masses
% which is added to the diagonal of the BeamX mass matrix.
% Mass added to [mx] in Assemble2Beams.m
%
% Written by Prof J.H. Gordis

% Inputs needed
% -----------------
% num_elements
% mx

% Outputs
% -----------------
% mass_diag
% mass_node
% mass_coord
% mass_DOF
% mx - updated

disp(' ');disp(' ');
disp(' **')
disp(' **** Lumped mass addition to beams ****')
disp(' **** Lumpmass DOFs defined for UNRESTRAINED beams ****')
disp(' **')

% initalize
if exist('mass_diag') == 0; % define and apply lumped mass vector.

add_mass = 'n';
add_mass = input(' Add lumped masses to BeamX ? (y/n) ','s');

% Initialize vector to add to [mx] diagonal.

mass_diag = zeros(2*(num_elements+1),1);

 while add_mass == 'y';

 mass_node = input(' Node number for lumped mass ? ');

 mass_coord = input(' Translation or Rotation for lumped mass ? (t/r) ','s');

 if mass_coord == 't'; % Translational lumped mass
 mass_DOF = 2 * mass_node - 1;
 elseif mass_coord == 'r'; % rotational lumped mass

62

 mass_DOF = 2 * mass_node;
 end

 mass_diag(mass_DOF) = input(' Enter value of mass/inertia (in "lbf-sec^2/in" ');
 % puts lumped mass on correct DOF
 add_mass = input(' Add another lumped mass ? (y/n) ','s');
 % can continue adding mass until 'n' is entered

 end; % End while loop

end; % End exist('mass_diag')

mx = mx + diag(mass_diag); % Add lumped masses to [mx]:

% ******************** END ADDLUMPMASS.M ***********************

63

Assemble2Beams.m

% This program assembles the [K] and [M] matrices of 2 beams
% Written by Prof Gordis
% ~~~~~~~ ~~~~~~~~~~~~~~~~

% Inputs needed
% -----------------
% ndof
% num_elements
% element_length
% element_EI
% element_mass

% Programs needed:
% -----------------
% fbeamkm

% Outputs
% -----------------
% ka ma kx mx
% (all others cleared)

% Loop over the two beams:
% ~~~~ ~~~~ ~~~ ~~~ ~~~~~~
for icnt_beams = 1:2;

 k=zeros(ndof,ndof);
 m=zeros(ndof,ndof);

% Loop over the number of elements in the structure:
% ~~~~ ~~~~ ~~~ ~~~~~~ ~~ ~~~~~~~~ ~~ ~~~ ~~~~~~~~~~

 for elnum = 1:num_elements;

 dof1=2*connect(elnum,1)-1;
 dof2=dof1+1;
 dof3=2*connect(elnum,2)-1;
 dof4=dof3+1;

% ... set up beamel function call:

 l_temp = element_length; % Using fixed element lengths
 ei_temp = element_EI(elnum,icnt_beams);
 m_temp = element_mass(elnum,icnt_beams);

64

 [kbeam,mbeam]=fbeamkm(l_temp,ei_temp,m_temp);

 k(dof1:dof2,dof1:dof2)=k(dof1:dof2,dof1:dof2)+kbeam(1:2,1:2);
 k(dof1:dof2,dof3:dof4)=k(dof1:dof2,dof3:dof4)+kbeam(1:2,3:4);
 k(dof3:dof4,dof1:dof2)=k(dof3:dof4,dof1:dof2)+kbeam(3:4,1:2);
 k(dof3:dof4,dof3:dof4)=k(dof3:dof4,dof3:dof4)+kbeam(3:4,3:4);

 m(dof1:dof2,dof1:dof2)=m(dof1:dof2,dof1:dof2)+mbeam(1:2,1:2);
 m(dof1:dof2,dof3:dof4)=m(dof1:dof2,dof3:dof4)+mbeam(1:2,3:4);
 m(dof3:dof4,dof1:dof2)=m(dof3:dof4,dof1:dof2)+mbeam(3:4,1:2);
 m(dof3:dof4,dof3:dof4)=m(dof3:dof4,dof3:dof4)+mbeam(3:4,3:4);

% end loop over the number of elements:
 end

% Reassign k and m to new variables and add lumped masses
% ~~~~~~~~ ~ ~~~ ~ ~~ ~~~ ~~~~~~~~~ ~~~ ~~~ ~~~~~~ ~~~~~~

 if icnt_beams == 1;
 ka = k;ma = m;
 elseif icnt_beams == 2;
 kx = k;mx = m;
 end

% End icnt_beams loop:
end

clear dof1 dof2 dof3 dof4 l_temp ei_temp m_temp icnt_beams
clear k m kbeam mbeam elnum
% ******************** END Assemble2Beams.m ***********************

65

AssembleSens_crs.m
%
% This program assembles the total sensitivity matrix, T_sens_tot and
% total lam vector, vect_lam_tot and assembles the relative frequency
% error between the natural frequencies of Beam A and Beam X
% Written By Constance R S Fernandez, Spring 2004

% INPUTS
% -------
% vect_lamx_oset
% vect_lam_oset
% vect_lam
% T_sens_oset
% T_sens
%
% OUTPUTS
% -------
% vect_OSET
% vect_lam_tot
% T_sens_tot
% freq_OSET
% freq_OSETx
% rel_freqERROR

vect_OSET = vect_lamx_oset - vect_lam_oset;
% lamx from actual beam with error oset, lam from FE model oset
% Creating a vector of lam differences calculated (Lx-La)

if vect_OSET == 0;
 % when vector is empty at first, the total vector is equal to the
 % lam vector of Beam A, i.e. the first 19 values of vect_lam_tot are
 % the natural freq squared (rad^2/sec^2) of Beam A

 vect_lam_tot = vect_lam;
else
 vect_lam_tot = cat(1, vect_lam, vect_OSET);
end

if T_sens_oset == 0;

 T_sens_tot = T_sens;
else
 T_sens_tot = cat(1, T_sens, T_sens_oset);
end

66

freq_OSET = sqrt(abs(vect_OSET))/2/pi;
% Natural frequency vector of Beam A in Hz
freq_OSETx = sqrt(abs(vect_lamx_oset))/2/pi;
% Natural frequency vector of Beam X in Hz
rel_freqERROR = freq_OSET./freq_OSETx*100;
% Relative error between Beam A OSET natural freq and Beam X OSET natural Freq.

% ******************** END AssembleSens_crs.m ***********************

67

BeamA_Prompt.m
% Written by Prof. Gordis

% Programs needed:
% -----------------
% BeamProperties_crs

% Outputs
% -----------------
% total_length
% num_elements
% nominal_EI
% nominal_area
% nominal_density
% ndof
% element_length
% element_EI
% element_area
% element_density
% element_mass

% ___
%
% Prompt User for BeamA Data
% ___

 disp(' ');disp(' ');
 disp(' Enter nominal physical properties for first beam')
 disp(' ~~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~~~ ~~~ ~~~~~ ~~~~')

props_file = 'n';
props_file = input(' Run "BeamProperties.m" script to define nominal properties ? (y/n)
>> ','s');

if props_file == 'y';

 BeamProperties_crs;

else;

 total_length = input(' Enter the total beam length in inches: ');
 num_elements = input(' Enter the number of elements: ');
 nominal_EI = input(' Enter the nominal EI value (lbf/in^2): ');
 nominal_area = input(' Enter the nominal cross section area (in^2): ');

68

 nominal_density = input(' Enter the nominal weight density (lbf/in^3): ');

end;

 for icnt_elements = 1:num_elements;
 connect(icnt_elements,1:2) = [icnt_elements,icnt_elements+1];
 end

 %ndof=length(connect)*2+2; % this is unrestrained beam DOF
 ndof=num_elements*2+2; % CRS addition

 element_length = total_length/num_elements;
 element_EI(:,1) = nominal_EI * ones(num_elements,1);
 element_area(:,1) = nominal_area * ones(num_elements,1);
 element_density(:,1) = nominal_density * ones(num_elements,1);
 element_mass(:,1) = (element_density .* element_area * element_length)/386.4;

% Prompt to randomize the beam EI properties:
% ~~~

% randomize = input(' Randomize the beam EI properties? (y/n) >> ','s');
% if randomize == 'y';
%
% load_rand_vec = 'b';
% disp(' ');
% disp(' To build a new random vector - type "b" ');
% disp(' To load an existing random_vector - type "l" ');
% load_rand_vec = input(' Enter choice >> ','s');
%
% if load_rand_vec == 'b'; % Build rand_vec
% RandomizeProps;
% else; % Load existing rand_vec from file
% load rand_vec
% end;
%
%
% element_EI(:,1) = element_EI(:,1) .* (1 + rand_vec);
%
%
% end;

 % End Data input for 1st beam: Copy data for 2nd beam:
 % ~~~ ~~~~ ~~~~~ ~~~ ~~~ ~~~~ ~~~~ ~~~~ ~~~ ~~~ ~~~~~
 element_EI(:,2) = element_EI(:,1);

69

 element_area(:,2) = element_area(:,1);
 element_density(:,2) = element_density(:,1);
 element_mass(:,2) = element_mass(:,1);

clear props_file
 % ******************** END BeamA_Prompt.m ***********************

70

BeamH4141.m

% This program plots the peak of driving point of Beam X using impedence
% formula Z = [K] - omega^2*[M] +j*c*omega and omegas near driving point.
% Used for comparison of formula and natural frequencies calculations.

% Inputs
% -------
% kx_beamBC
% mx_beamBC

% Needed Programs
% ---------------
% fModes

% Outputs
% --------
% lam
% phi
% W
% iR
% f
% freq
% Zx_beam
% omega
% C
% hx_beam
% H4141

% ----Start Program ----
load testBEAM % saved test data file from Build2Beams_crs.m

c = 0.02; % damping ratio
iR = 0; % initialize loop counter
[lam,phi]=fModes(kx_beamBC,mx_beamBC);
freq = sqrt(lam)/2/pi;
disp('Natural freq in HZ')
f = freq(1:5)
for omega = [0:1.831050e-001:6.589949e+002]; % in Hz
 omega = omega*2*pi; % rad/sec
 iR = iR + 1;
 % loop counter% system impedence of multi DOF system
 Zx_beam= kx_beamBC - omega.^2 * mx_beamBC + j*c*omega;

 hx_beam = inv(Zx_beam);
 H4141(iR) = hx_beam(82,82);

71

 end
 w = [0:1.831050e-001:6.589949e+002];
plot(w, log(abs(H4141))), grid on
axis tight
title ('Driving point H(41,41), FE model')
xlabel ('Hz')
ylabel ('log Magnitude')
% ******************** End BeamH4141.m ***********************

72

BeamH4141q.m

% Written by Constance Fernandez, Spring 2004
% This program creates and plots mode summation for H4141, H4131, H4121,
% H4111.

% Inputs
% -------
% kx_beamBC
% mx_beamBC

% Programs
% ---------
% fOset_from_Aset

% Outputs
% --------
% aset, oset
% k,m
% zeta
% lam, phi
% freq
% mm
% iR, i
% SUM
% omega
% H4141, H4131, H4121, H4111
% H41, H31, H21, H11
% w, ww

% ---Start Program -----

load testBEAM % FE generated data file
load HsynMEscope % measured data file

aset = [1:2:83];
oset = fOset_from_Aset(84, aset);
k = kx_beamBC;
m = mx_beamBC;

zeta = .02;

[lam,phi]=fModes(k,m);
freq = sqrt(lam)/2/pi;
for mm = 1:9;

73

 iR = 0;
 SUM = [42, 40, 35, 30, 25, 20, 15, 10, 5];

 for omega = [0:.5:2240]; % in Hz
 omega = omega;
 iR = iR + 1;
 H4141 = 0;
 H4131 = 0;
 H4121 = 0;
 H4111 = 0;

 for i = 1:SUM(mm)
 H4141 = ((phi(82,i)).*(phi(82,i)))/((freq(i)).^2 - omega^2) + H4141;
 H4131 = ((phi(82,i)).*(phi(62,i)))/((freq(i)).^2 - omega^2) + H4131;
 H4121 = ((phi(82,i)).*(phi(42,i)))/((freq(i)).^2 - omega^2) + H4121;
 H4111 = ((phi(82,i)).*(phi(22,i)))/((freq(i)).^2 - omega^2) + H4111;
 % eq from ABC examples

 end
 H41(iR,mm) = H4141 ;
 H31(iR,mm) = H4131 ;
 H21(iR,mm) = H4121 ;
 H11(iR,mm) = H4111 ;

 end
end
w = [0:.5:2240];
ww = [0:1.831050e-001:6.589949e+002];

figure(1) % Mode summation for H4141
plot(w, log(abs(H41(:,1))),w, log(abs(H41(:,2))),w, log(abs(H41(:,3))),...
 w, log(abs(H41(:,4))), w, log(abs(H41(:,5))),w, log(abs(H41(:,6))),...
 w, log(abs(H41(:,7))),w, log(abs(H41(:,8))), w, log(abs(H41(:,9)))), grid on...
% ww, (log (abs(HH))),'r')
axis tight
xlabel ('Hz')
ylabel ('log Mag')
title('Syn FRF for 41Z:41Z')
legend ('Modes sum = 42', 'Modes sum = 40', 'Modes sum = 35', 'Modes sum = 30', ...
 'Modes sum = 25', 'Modes sum = 20', 'Modes sum = 15', 'Modes sum = 10', ...
 'Modes sum = 5')%'MeScope Syn')

figure(2)% Mode summation for H4131
plot(w, log(abs(H31(:,1))),w, log(abs(H31(:,2))),w, log(abs(H31(:,3))),...
 w, log(abs(H31(:,4))), w, log(abs(H31(:,5))),w, log(abs(H31(:,6))),...
 w, log(abs(H31(:,7))),w, log(abs(H31(:,8))), w, log(abs(H31(:,9)))), grid on

74

axis tight
xlabel ('Hz')
ylabel ('log Mag')
title('Syn FRF for 31Z:41Z')
legend ('Modes sum = 42', 'Modes sum = 40', 'Modes sum = 35', 'Modes sum = 30', ...
 'Modes sum = 25', 'Modes sum = 20', 'Modes sum = 15', 'Modes sum = 10', ...
 'Modes sum = 5')

figure(3)% Mode summation for H4121
plot(w, log(abs(H21(:,1))),w, log(abs(H21(:,2))),w, log(abs(H21(:,3))),...
 w, log(abs(H21(:,4))), w, log(abs(H21(:,5))),w, log(abs(H21(:,6))),...
 w, log(abs(H21(:,7))),w, log(abs(H21(:,8))), w, log(abs(H21(:,9)))), grid on
axis tight
xlabel ('Hz')
ylabel ('log Mag')
title('Syn FRF for 21Z:41Z')
legend ('Modes sum = 42', 'Modes sum = 40', 'Modes sum = 35', 'Modes sum = 30', ...
 'Modes sum = 25', 'Modes sum = 20', 'Modes sum = 15', 'Modes sum = 10', ...
 'Modes sum = 5')

figure(4)% Mode summation for H4111
plot(w, log(abs(H11(:,1))),w, log(abs(H11(:,2))),w, log(abs(H11(:,3))),...
 w, log(abs(H11(:,4))), w, log(abs(H11(:,5))),w, log(abs(H11(:,6))),...
 w, log(abs(H11(:,7))),w, log(abs(H11(:,8))), w, log(abs(H11(:,9)))), grid on
axis tight
xlabel ('Hz')
ylabel ('log Mag')
title('Syn FRF for 11Z:41Z')
legend ('Modes sum = 42', 'Modes sum = 40', 'Modes sum = 35', 'Modes sum = 30', ...
 'Modes sum = 25', 'Modes sum = 20', 'Modes sum = 15', 'Modes sum = 10', ...
 'Modes sum = 5')

% ******************** END BeamH4141q.m ***********************

75

BeamProperties_crs.m

% This is the "props_file" to load nominal beam data.
% This program is called by BeamA_Prompt_crs to provide beam properties
% in order to build Beam A.

% Outputs
% -------
% depth
% width
% E
% rho
% total_length
% num_elements
% nominal_EI
% nominal_area
% nominal_density

% Following are actual measurements from experimental set-up cantilever
% beam.
 depth = .504;% in z-dir (inches)
 width = 1.506; % in y-dir (inches)
 E = 10e6;
 %E = 1.65e6; % lbf/sec^2-in (10e6-ksi)
 %(1bf/in^2 = 6894.76Pa)-> E(lbf/in^2) = ()Pa/6894.76
 rho =0.110460934; %0.098;% lbf/in^3

 % T6 temper alloys require a 35-ksi tensile strength, 30-ksi yield
 % strength and a 10e6-ksi elastic modulus. Alloy 6061-T6 has 1.0
 % pct magnesium, 0.6 pct silicon, 0.3 pct copper and 0.2 pct chromium.
 % It has a 45-ksi tensile strength and 35-ksi yield strength.1 The
 % machinability of aluminum alloys are high (300) compared to titanium
 % (40). Aluminum alloys can easily be bent and provide easy loading and
 % unloading of parts. Also, aluminum is a highly conductive metal
 % compared to titanium.

% all measurement of distance are in inches
 total_length = 42;
 num_elements = 10;
 nominal_EI = (width * depth^3 / 12) * E;
 nominal_area = depth * width;% in^2
 nominal_density = rho;% lbf/in^3

% ******************** END BeamProperties_crs.m ***********************

76

BeamSensitivity_crs.m

% Revision history:
% ~~~~~~~~ ~~~~~~~~
%
% Ver. 1.0: 4/4/95 Basic frequency sensitivities
% Updated: Spring 2004 Constance R S Fernandez

% ***
%
% Program Description:
% ~~~~~~~ ~~~~~~~~~~~~
%
% This program calculates mode frequency sensitivities as given by the
% equation,
%
% ¶w^2 ¶[k] ¶[m]
% -- = {P}' * [---- - w^2 ---] * {P}
% ¶DV ¶DV ¶DV
%
% where: w = natural frequency
% {P} = associated mode shape
% DV = design variable
%
% The right side of the above equation is considered the addition of
% the sensitivity matrix wrt EI and the sensitivity matrix wrt mass.
%
% The program calculates the stiffness and mass matrix partials by finite
% differences. That is, for example, the [k] matrix is assembled twice,
% once in for the nominal beam parameters, and a second matrix is
% assembled based on a small perturbation of element mass and/or EI.
%
% This program makes use of the beam data created by the program
% "Build2Beams.m."
% 1) Resets BeamX mass and EI data to be the same as BeamA data.
% 2) Enters a loop to create a sensitivity matrix (T)
% In loop
% a) A small perturbation of mass is added to BeamX on ele.1.
% b) The mass matrix is assembled for this mass-perturbed beam,
% and the mass matrix partial derivative is calculated as
%
% ¶[m] [m_perturb] - [m_baseline]
% --- = -------------------------
% ¶DV ¶DV
%
% c) The first column of Sensitivity matrix is calculated using:

77

%
% sens_mass = [phi_base]'*(-lam_base)*m_delta*[phi_base]
%
% (Note: A column of T corresponds to the respective element on beam.)
%
% d) T loop starts again but with the small change on element 2.
% e) Difference calculated and second column of T is calculated.
%
% 3) loop continues until all columns of T are calculated, corresponding
% to a small change added to the respective element.
%
% 4) The procedure is identical for stiffness sensitivity.
% Except:
% sens_EI = [phi_base]'*k_delta*[phi_base]
%
% 5)Combine the two T's into one complete sensitivity matrix :
% T_sens = [sens_mass,sens_EI].
% In words, the first set of columns (equal to number of elements)of
% the combined matrix is the sensitivity mass wrt mass changes and
% the last half is wrt EI changes.
%
% **

% Inputs Needed:
% --------------
% mass_lbls
% EI_lbls
% element_mass
% element_EI
% num_rbm
% num_elements
% lamx (experimently measured nat freq of beam)

% Programs called
% --------------
% Assemble2Beams_crs;
% BoundaryConditions_crs;
% fmodes
% fOset_from_Aset

% Outputs:
% --------------
% num_modes
% lam_base
% phi_base
% sens_mass

78

% sens_EI
% T_sens
% dv_cal
% freq_base
% vect_lam

% Start code:
% ~~~~~ ~~~~~
format long;

% **
% ************************* INITIALIZATION ***************************
% **

mass_change = 1; % Percent mass change for sensitivity calculation.
EI_change = 1; % Percent EI change for sensitivity calculation.

element_mass_orig = element_mass; % Copy properties to retain them.
element_EI_orig = element_EI;

% Prompt for number of mode frequencies to generate sensitivities for:
%
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
%num_modes = input(' Enter number of modes for sensitivity calculations>> '); 
num_modes = 19; % 19 is maximum number of modes in a 10 element cantilever 
                % beam.  This is hard coded for quicker run of simulation. 
 
start_mode = num_rbm + 1;   % Skip the rigid body modes. 
 
% ******************************************************************** 
% ************** MASS SENSITIVITY CALCULATION LOOP ************** 
% ******************************************************************** 
 
sens_mass = 0; % initialize Mass based sensitivity matrix 
 
if mass_lbls ~= 0; % From Beam_XPrompt as user inputs 
     
    for icnt_dv =  1:num_elements; % loop to create sensitivity matrix  
         
        %   Resetting BeamX properties to BeamA properties 
        element_mass(:,2)  =  element_mass(:,1); 
         
        %   each element, one at a time will have a change in mass            
        element_mass(icnt_dv,2) = element_mass(icnt_dv,2) * ... 



79

            (1 + mass_change/100); 
         
        Assemble2Beams_crs;   % Run script to assemble beams. 
         
        BoundaryConditions_crs;  % Apply boundary conditions. 
         
        [lam_base, phi_base] = fModes(ka,ma); 
         
        % ma is the basebeam without changes,  
        % mx is beam with small change in mass added (mass_change) 
         
        %    Form mass derivative matrices: 
        m_delta = (mx - ma)/(mass_change/100);    
        % converts precent change into decimal amount 
         
         
        %    Mode freq sens loop: 
        end_mode = start_mode + (num_modes - 1);  
        row_num = 0; % initialize loop 
        for icnt_modes = start_mode:end_mode; 
            row_num = row_num +1; 
            sens_mass(row_num,icnt_dv) = phi_base(:,icnt_modes)' *... 
                (-lam_base(icnt_modes) * m_delta ) *... 
                phi_base(:,icnt_modes); 
            % definition of mass sensitivity matrix 
        end; % for "icnt_modes" inner loop 
         
    end;  % End "for icnt_dv" outer loop for sensitivity calculations 
     
end;    % End "if mass_lbls ~= 0" 
 
 
% ******************************************************************** 
% ************** EI SENSITIVITY CALCULATION LOOP ****************** 
% ******************************************************************** 
 
sens_EI = 0;  % initialize EI based sensitivity matrix 
if EI_lbls ~= 0; % From Beam_XPrompt as user inputs 
     
    for icnt_dv =  1:num_elements; % loop to create sensitivity matrix  
         
        %   Resetting BeamX properties to BeamA properties 
        element_EI(:,2)  =  element_EI(:,1); 
         
        %   each element, one at a time will have a change in EI   
        element_EI(icnt_dv,2) = element_EI(icnt_dv,2) * ... 



80

            (1 + (EI_change/100) ); 
         
        Assemble2Beams_crs;   % Run script to assemble beams. 
         
        BoundaryConditions_crs;  % Apply boundary conditions. 
         
        [lam_base, phi_base] = fModes(ka,ma); 
         
         
        % ka is the basebeam without changes,  
        % kx is beam with small sensitivity added 
         
        %    Form EI derivative matrices: 
        k_delta = (kx - ka)/(EI_change/100);    
        % converts precent change to decimal value 
         
        %    Mode freq sens loop: 
        end_mode = start_mode + (num_modes - 1);   
        row_num = 0; 
         
        for icnt_modes = start_mode:end_mode; 
            row_num = row_num +1; 
            sens_EI(row_num,icnt_dv) = phi_base(:,icnt_modes)' *... 
                k_delta * phi_base(:,icnt_modes);  
            %definition of EI sensitivity matrix 
        end; % for "icnt_modes" inner loop 
         
    end; % End "for icnt_dv" outer loop for sensitivity calculations 
     
end;    % if EI_lbls = 0;  
 
 
% Copy element EI and mass properties back into arrays: 
element_EI   = element_EI_orig; 
element_mass = element_mass_orig; 
 
% cleans up workspace by clears all unimportant parameters 
clear element_EI_orig element_mass_orig end_mode start_mode  
clear row_num icnt_modes EI_change k_delta mass_change m_delta 
clear ka kx ma mx icnt_dv 
 
% Assembles complete sensitivity matrix 
if sens_mass == 0& sens_EI ~=0; 
     
    T_sens = sens_EI; % resultant sensitivity matrix is equal 
    % to EI sensitivity matrix with only EI changes if no inputs  



81

    % are given for mass changes 
     
elseif sens_mass ~= 0 & sens_EI == 0; 
    T_sens = sens_mass; % resultant sensitivity matrix is equal 
    % to Mass sensitivity matrix with only mass changes if no inputs  
    % are given for EI changes 
     
else  
    T_sens = cat(2, sens_mass,sens_EI);% else the resultant sensitivity 
    %matrix is teh combination of mass sensitivity matrix in first set  
    %of columns and EI sensitivity matrix in the last set of columns 
     
end 
 
freqx = sqrt(lamx)/2/pi; 
freq_base = sqrt(lam_base)/2/pi; 
% NOTE: % lamx = experiment measured natural freq of beam 
vect_lam = (lamx(1:num_modes)-lam_base(1:num_modes)); 
 
% ********************  END BeamSensitivity_crs.m  *********************** 
 



82

BeamSensitivityOSET_crs.m  
 
% Revision history: 
% ~~~~~~~~ ~~~~~~~~ 
% 
%  Ver. 1.0: 4/4/95  Basic frequency sensitivities 
%  Updated: Spring 2004  Constance R S Fernandez to create resulting 
%  sensitivity matrix using lam vector of multiple ABC systems 
 
% ********************************************************************* 
% 
% Program Description: 
% ~~~~~~~ ~~~~~~~~~~~~ 
% 
%  This program calculates mode frequency sensitivities as given by the  
%  equation, 
% 
%          ¶w^2               ¶[k]       ¶[m] 
%          --    =  {P}' * [  ---- - w^2 --- ] * {P} 
%          ¶DV                ¶DV         ¶DV 
% 
%     where:  w  = natural frequency  
%            {P} = associated mode shape 
%             DV = design variable 
%  
%  The right side of the above equation is considered the addition of  
%  the sensitivity matrix wrt mass and/or EI. 
% 
%  The program calculates the stiffness and mass matrix partials by finite 
%  differences. That is, for example, the [k] matrix is assembled twice,  
%  once in for the nominal beam parameters, and a second matrix is  
%  assembled based on a small perturbation of element mass and/or EI. 
% 
%  This program makes use of the beam data created by the program  
%  "Build2Beams.m." 
%  1) Resets BeamX mass and EI data to be the same as BeamA data. 
%  2) Enters a loop to create a sensitivity matrix (T) 
%     In loop  
%     a)  A small perturbation of mass is added to BeamX on ele.1.  
%     b)  The mass matrix is assembled for this mass-perturbed beam, 
%         and the mass matrix partial derivative is calculated as  
%    
%                  ¶[m]        [m_perturb] - [m_baseline] 
%                  ---    =    -------------------------  
%                  ¶DV                    ¶DV 
%    



83

%     c)  The first column of Sensitivity matrix is calculated using: 
% 
%            sens_mass = [phi_base]'*(-lam_base)*m_delta*[phi_base] 
% 
%     (Note: A column of T corresponds to the respective element on beam.) 
%       
%     d) T loop starts again but with the small change on element 2. 
%     e) Difference calculated and second column of T is calculated. 
% 
%   3) loop continues until all columns of T are calculated, corresponding  
%     to a small change added to the respective element.  
% 
%   4) The procedure is identical for stiffness sensitivity. 
%      Except: 
%      sens_EI = [phi_base]'*k_delta*[phi_base] 
%   
%   5)Combine the two T's into one complete sensitivity matrix : 
%          T_sens = [sens_mass,sens_EI].  
%     In other words, the first set of columns (equal to number of elements)of  
%     the combined matrix is the sensitivity with respect to (wrt) mass  
%     changes and the last half is wrt EI changes. 
% 
% 
% ********************************************************************* 
 
% Inputs Needed: 
% -------------- 
% mass_lbls 
% EI_lbls 
% element_mass 
% element_EI 
% num_rbm  
% mx_beam 
% kx_beam 
 
% Programs called 
% -------------- 
% Assemble2Beams_crs;  
% BoundaryConditions_crs; 
% fmodes 
% fOset_from_Aset 
% displacmentPlot_OSET 
 
% Outputs: 
% -------------- 
% num_modesO 



84

% sens_massO, sens_EIO 
% num_rbmOSET 
% T_sens_oset 
% dispX_tot, dispA_tot 
% accel_plot 
% oset_choice 
% accelometer 
% BC, BCose, BCOSET 
% remaindof 
% ASETtot, OSET, OSETtot 
% inct_sens 
% mass_change, EI_change 
% phiXPLOT, phiAPLOT 
% maO_base, ka0_base 
% mxO, kxO 
% plotmx, plotkx 
% lamaOSET, phiaOSET 
% lamxOSET, phizOSET 
% lamxplot, phixplot 
% faO 
% m_deltaO, k_deltaO 
 
%  Start code: 
%  ~~~~~ ~~~~~ 
 
% ******************************************************************** 
% ************************* INITIALIZATION *************************** 
% ******************************************************************** 
T_sens_oset = []; 
vect_lam_oset = []; 
dispX_tot  = []; 
dispA_tot  = []; 
inct_sens = 0; 
icnt_oset = 0; 
BCOSET = zeros(ndof, ndof); 
OSETtot = zeros(ndof, ndof); 
ASETtot = zeros(ndof, ndof); 
 
oset_choice = 'n'; 
ndof % prints ndof to screen for user's reference 
accelometer = [3 5 7 9 11 13 15 17 19 21]; % use this line for convenience 
% in quicker calculation loops or use the next 2 lines. 
%accelometer = input('On what nodes are the accel. located','s'); %requests  
% user to input locations of accelometers 
%accelometer = eval(['[',accelometer,']']); % converts string to vector of 
% labels 



85

 
% saved for plotting accelometers in correct position. 
accel_plot = floor(accelometer/2)+1;  
% graphical representation of accelometer locations 
 
oset_choice = input('  Do you want to use ASET and OSET (y/n)? ','s');  
% user can choose to use ASET and OSET calculations 
while oset_choice ~= 'n';   
    icnt_oset = icnt_oset +1; 
    disp(' locations of Accel.') % displays "location of Accel" on screen 
    accelometer % displays the vector of location of Accel for user's  
    % reference in choosing which DOF are to be pinned 
    disp(' ') 
    disp('   Enter pinned DOF label(s)') 
    disp('   Use MATLAB vector format> 1 3 5:7 9  ') 
    pinned = input('   >> ','s'); 
    pinned = eval(['[',pinned,']']); % Converts string to vector of labels 
    BC(icnt_oset,:) = [1,2,pinned]; % Boundry conditions for cantilever beam,  
    % change line if different beam is used 
     
    BCoset = fOset_from_Aset(ndof, BC(icnt_oset,:)); % gets OSET from ASET 
     
    BCOSET(icnt_oset, 1:length(BCoset)) = BCoset; % copies OSET into another  
    % vector to be used 
     
    % loop to find remaining accelometers. 
    for icnt = 1 : length(pinned); 
        remain(icnt,:) = find(pinned(icnt) == accelometer); 
    end 
     
    remaindof = fOset_from_Aset((length(accelometer)), remain); 
    % remaining unpinned DOF 
     
    % remaining accelometers 
    aset = accelometer(remaindof); 
    ASETtot(icnt_oset, 1:length(aset)) = aset; 
     
    % omitted oset, i.e. pinned accelometers 
    OSET = fOset_from_Aset(ndof, aset); 
    OSETtot(icnt_oset, 1:length(OSET)) = OSET; % copies OSET into another  
    % vector to be used in====== 
     
    inct_sens = inct_sens+1; 
     
    mass_change = 1;  % Percentage mass change for sensitivity calculation. 
    EI_change = 1;    % Percentage EI change for sensitivity calculation. 



86

     
    element_mass_orig =  element_mass;  % Copy properties over to retain them. 
    element_EI_orig   =  element_EI;    % 
     
     
    % Prompt for number of mode frequencies for which to generate sensitivities  
    % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    % use the following three lines for user's input for number of modal 
    % frequencies for which to generate sensitivity or use the fourth line 
    % which uses the maximum number of modes for the defined system  
     
    %disp ('max number of modes  ') 
    %length(oset) 
    %num_modesO = input('  Enter number of elastic modes for sensitivity calculations>> 
'); 
    num_modesO = ndof - length(BC(icnt_oset,:));%max number of modes in system 
    start_mode = num_rbm + 1;   % Skip the rigid body modes. 
     
    % Initializes two vectors to be used in ploting program.  
    phiXPLOT = zeros(ndof,num_modesO); %cantilever beam 
    phiAPLOT = zeros(ndof,num_modesO); %cantilever beam 
     
     
    % ******************************************************************* 
    % ************** MASS SENSITIVITY CALCULATION LOOP ************** 
    % ******************************************************************* 
     
    sens_massO = 0; 
    if mass_lbls ~= 0; % from Beam_XPrompt as user inputs 
         
        for icnt_dv =  1:num_elements;  % loop to create sensitivity matrix  
             
            %   Resetting BeamX properties to BeamA properties. 
            element_mass(:,2)  =  element_mass(:,1); 
             
            %   each element, one at a time will have a change in mass            
            element_mass(icnt_dv,2) = element_mass(icnt_dv,2) * ... 
                (1 + mass_change/100); 
             
            Assemble2Beams_crs;   % Run script to assemble beams. 
             
            % Articial Boundry Conditions   
            maO_base = ma(BCoset, BCoset);  
            % new mass matrix of the system defined by OSET 
            mxO = mx(BCoset, BCoset); 
             



87

            plotmx = mx_beam(BCoset, BCoset);  
            % resulting mass matrix with ABC used in plotting  
            plotkx = kx_beam(BCoset, BCoset); 
            % resulting stiffness matrix with ABC used in plotting  
             
            kaO_base = ka(BCoset, BCoset); 
            kxO = kx(BCoset, BCoset); 
             
            % lam (natural freq^2, rad^2/sec^2), phi (mode shapes) 
            [lamaOSET,phiaOSET] = fModes(kaO_base,maO_base);  
            % natural freq of new artifically bounded base system 
            [lamxOSET,phixOSET] = fModes(kxO,mxO);  
            % natural freq/ modes of new artifically bounded system with  
            % either EI or mass changes added similiar to orginial calculations 
            [lamxplot,phixplot] = fModes(plotkx,plotmx);  
            %resulting lam & phi of ABC system used in plotting  
             
            % Mode shapes              
            if pinned == 3 % the next DOF acts a little different  
                % because of the location on beam thus it was easier  
                % to program it seperately 
                phiAPLOT(2:ndof-2, :) = phiaOSET(1:ndof-3, :); 
                phiXPLOT(2:ndof-2, :) = phixplot(1:ndof-3, :); 
            else 
                phiAPLOT(1:pinned-3, :) = phiaOSET(1:pinned-3, :); 
                phiAPLOT(pinned-1:ndof-2,:) = phiaOSET(pinned-2:ndof-3,:); 
                phiXPLOT(1:pinned-3, :) = phixplot(1:pinned-3, :); 
                phiXPLOT(pinned-1:ndof-2,:) = phixplot(pinned-2:ndof-3,:); 
            end % "if pinned ==3" 
             
            num_rbmOSET = length(find(lamaOSET < 1));  
            % find number of rigid bodies in new ABC system 
            start_mode = num_rbmOSET + 1;   % Skip the rigid body modes. 
             
            faO = sqrt(lamaOSET)/(2*pi); %natural freq of the ABC in Hz             
             
            %    Form mass derivative matrices: 
            m_deltaO = (mxO - maO_base)/(mass_change/100);    
            % converts percent change to decimal value 
            % NOTE: mass_change needs to be the same change used in 
            % orginial mass sensitivity matrix calculation 
             
            %    Mode freq sens loop: 
            end_mode = start_mode + (num_modesO - 1);   
            row_num = 0; 
             



88

            for icnt_modes = start_mode:end_mode; 
                row_num = row_num +1; 
                sens_massO(row_num,icnt_dv) = phiaOSET(:,icnt_modes)' *... 
                    (-lamaOSET(icnt_modes) * m_deltaO) *... 
                    phiaOSET(:,icnt_modes); 
            end; % end "for icnt_modes" inner loop 
             
        end;  % End "for icnt_dv" outer loop for sensitivity calculations 
         
        displacmentPlot_OSET % calls a program 
         
        % This program assembles the beam displacement vector for  
        % sens_beam(dispX) and base beam(dispA) under ABC  
         
        if  dispX_tot  == 0; % when the vector is empty 
            dispX_tot = disp1; % displacement vector used in plotting 
            dispA_tot = disp1a; 
        else  
            dispX_tot = cat(1,dispX_tot,disp1); 
            dispA_tot = cat(1, dispA_tot,disp1a); 
        end % end "if dispX_tot  == 0" 
         
    end;    % end "if mass_lbls = 0" 
     
     
    % ******************************************************************* 
    % ************** EI SENSITIVITY CALCULATION LOOP ***************** 
    % ******************************************************************* 
    sens_EIO = 0; 
    if EI_lbls ~= 0; 
        
        for icnt_dv =  1:num_elements; % loop to create sensitivity matrix  
             
            %   Resetting BeamX properties to BeamA properties 
            element_EI(:,2)  =  element_EI(:,1); 
             
            %   each element, one at a time will have a change in EI   
            element_EI(icnt_dv,2) = element_EI(icnt_dv,2) * ... 
                (1 + (EI_change/100) ); 
             
            Assemble2Beams_crs;   % Run script to assemble beams. 
 
            % Artifical Boundary Conditions 
            maO_base = ma(BCoset, BCoset); 
            mxO = mx(BCoset, BCoset); 
             



89

            plotmx = mx_beam(BCoset, BCoset); 
            plotkx = kx_beam(BCoset, BCoset); 
             
            kaO_base = ka(BCoset, BCoset); 
            kxO = kx(BCoset, BCoset); 
             
            % lam (natural freq^2, rad^2/sec^2), phi (mode shapes) 
            [lamaOSET,phiaOSET] = fModes(kaO_base,maO_base);  
            [lamxOSET,phixOSET] = fModes(kxO,mxO); %sens info 
            [lamxplot,phixplot] = fModes(plotkx,plotmx); %plot info 
             
             
            if pinned == 3 
                phiAPLOT(2:ndof-2, :) = phiaOSET(1:ndof-3, :); 
                phiXPLOT(2:ndof-2, :) = phixplot(1:ndof-3, :); 
            else 
                phiAPLOT(1:pinned-3, :) = phiaOSET(1:pinned-3, :); 
                phiAPLOT(pinned-1:ndof-2,:) = phiaOSET(pinned-2:ndof-3,:); 
                phiXPLOT(1:pinned-3, :) = phixplot(1:pinned-3, :); 
                phiXPLOT(pinned-1:ndof-2,:) = phixplot(pinned-2:ndof-3,:); 
            end 
             
            num_rbmOSET = length(find(lamaOSET < 1)); 
            start_mode = num_rbmOSET + 1;   % Skip the rigid body modes. 
             
            faO = sqrt(lamaOSET)/(2*pi); %natural freq of the ABC, Hz        
            %    Form EI derivative matrices: 
            k_deltaO = (kxO - kaO_base)/(EI_change/100);   % in %/100  
             
            %    Mode freq sens loop: 
            end_mode = start_mode + (num_modesO - 1);   
            row_num = 0; 
             
            for icnt_modes = start_mode:end_mode; 
                row_num = row_num +1; 
                sens_EIO(row_num,icnt_dv) = phiaOSET(:,icnt_modes)' *... 
                    k_deltaO * phiaOSET(:,icnt_modes); 
            end; %end "for icnt_modes" 
             
             
        end; % End "for icnt_dv" outer loop for sensitivity calculations 
         
         
        displacmentPlot_OSET % calls a program 
         
        % This program assembles the beam displacement vector for  



90

        % sens_beam(dispX) and base beam(dispA) under ABC  
         
        if  dispX_tot  == 0; 
            dispX_tot = disp1; 
            dispA_tot = disp1a; 
        else  
            dispX_tot = cat(1,dispX_tot,disp1); 
            dispA_tot = cat(1, dispA_tot,disp1a); 
        end % end "if dispX_tot  == []" 
         
    end;    % end "if EI_lbls = []" 
     
     
    % Copy element EI and mass properties back into arrays: 
    element_EI   = element_EI_orig; 
    element_mass = element_mass_orig; 
     
    clear element_EI_orig element_mass_orig end_mode start_mode  
    clear row_num icnt_dv icnt_modes lbls num_EI_dv num_mass_dv 
     
    % assemble of total sensitivity matrix for ABC System 
    if sens_massO == 0 & sens_EIO ~=0; 
         
        T_sensO = sens_EIO; % no changes in mass 
         
    elseif sens_massO ~= 0 & sens_EIO == 0; 
        T_sensO = sens_massO; % no changes in EI 
         
    else  
        T_sensO = cat(2, sens_massO,sens_EIO); 
        % changes in both mass and EI 
         
    end %end "if sens_massO == 0 & sens_EIO ~=0" 
     
    % Builds complete sens matrix of all ABC systems 
    if  T_sens_oset == 0;% when matrix is originally empty 
         
        T_sens_oset = T_sensO; 
         
    else % after the matrix has some values 
        T_sens_oset = cat(1,T_sens_oset, T_sensO); 
    end %end "if  T_sens_oset == []" 
     
    lamaOSET = lamaOSET(find(lamaOSET > 1)); %skips Rigid body modes   
    vect_lamO = lamaOSET(1:num_modesO); % nat freq of base beam under ABC 
     



91

    %builds a vector of natural freq of ABC systems 
    if vect_lam_oset == 0;% when matrix is originally empty 
 
         
        vect_lam_oset = vect_lamO; 
    else% after the matrix has some values 
        vect_lam_oset = cat(1, vect_lam_oset, vect_lamO);  
         
    end %end "if vect_lam_oset == 0" 
    disp(' ') 
    oset_choice = input('  Another cycle of ASET and OSET (y/n)? ','s');  
    % loop runs until "n" is inputed creating sens matrix & lam vector  
    % for all ABC systems 
    disp(' ') 
     
end; % end "while oset_choice ~='n'" 
 
% ********************  BeamSensitivityOSET_crs.m  *********************** 



92

BeamX_Prompt.m  
 
% Written By Prof Gordis 
 
% Inputs needed 
% ----------------- 
% element_EI 
% element_mass 
 
% Outputs 
% ----------------- 
% i_lbls 
% change_mass, change_EI  
% new_lbls 
% updated element_mass in column 2 
% updated element_EI in column 2 
% mass_lbls - index for sensitivy matrix 
% EI_lbls - index for sensitity matrix 
% dv_EI 
% dv_mass 
% dv_tot 
 
% _____________________________________________________________________ 
% 
%                     Prompt User for BeamX Modification Data  
% _____________________________________________________________________ 
 
 
disp(' ');disp(' '); 
disp(' Modify nominal physical properties for second beam') 
disp(' ~~~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~~~ ~~~ ~~~~~~ ~~~~') 
 
% Adjust mass values for second beam: 
i_lbls = 0; 
 
dv_mass =[]; 
mass_lbls = []; 
change_mass = 'n'; 
change_mass = input('  Modify single/range element mass values (y/n)? ','s'); 
% user input 
while change_mass ~= 'n';   
     
    disp('   Enter element label(s) for mass modification') 
    disp('   Use MATLAB vector format> 1 3 5:7 9  ') 
    new_lbls = input('   >> ','s'); 
    new_lbls = eval(['[',new_lbls,']']); % Converts string to vector of labels 



93

     
    i_lbls = i_lbls + 1; 
     
    % CRS addition 
     
    mass_lbls(i_lbls,1:length(new_lbls))= new_lbls; % index for sensitivity matrix 
         
    disp('  Enter mass change for element range') 
    mass_change = input('  Enter percentage mass change (+/- %) '); 
     
    dv_mass(i_lbls,1) = mass_change/100; % vector of mass changes to second beam 
(BeamX) 
         
    element_mass(new_lbls,2) = element_mass(new_lbls,2)+... 
        (mass_change/100) * element_mass(new_lbls,2); 
     
    disp(' ') 
    change_mass = input('  Modify another element mass value (y/n)? ','s'); 
    disp(' ') 
     
end; % end while 
 
% Adjust EI values for second beam: 
i_lbls = 0; 
 
change_EI = 'n'; 
dv_EI =[]; 
EI_lbls = []; 
 
disp(' ') 
change_EI = input('  Modify single/range element EI values (y/n)? ','s'); 
while change_EI ~= 'n';   
     
    disp('   Enter element label(s) for EI modification') 
    disp('   Use MATLAB vector format> 1 3 5:7 9  ') 
    new_lbls = input('   >> ','s'); 
    new_lbls = eval(['[',new_lbls,']']); % Converts string to vector of labels 
     
    i_lbls = i_lbls + 1; 
     
    EI_lbls(i_lbls,1:length(new_lbls)) = new_lbls; % index for sensitivity matrix 
     
    disp('  Enter EI change for element range') 
    EI_change = input('  Enter percentage EI change (+/- %) '); 
     
    dv_EI(i_lbls,1) = EI_change/100; % vector of EI changes on second Beam 



94

     
    element_EI(new_lbls,2) = element_EI(new_lbls,2)+... 
        (EI_change/100) * element_EI(new_lbls,2); 
     
    disp(' ') 
    change_EI = input('  Modify another element EI value (y/n)? ','s'); 
    disp(' ') 
end; % end while 
 
dv_tot = [dv_mass;dv_EI];  
% vector of total changes to second beam (BeamX) but not location. 
 
% End BeamX_Prompt.m 
clear EI_change mass_change 
 
% ********************  END BeamX_Prompt.m  *********************** 



95

BoundaryConditions_crs.m 
 
% Written by Prof Gordis 
 
% This script prompts the user boundary condition information 
% The script creates a vector of DOF (with respect to the unrestrained 
% structure) and then extracts the rows and columns of the complementary  
% DOF. 
 
%  Script defines vector "free_dof_set" containing  
%  list of unrestrained dof.  
 
% The boundary conditions are applied in this script. 
 
% Inputs needed: 
% ------------- 
% ndof 
% ka, ma, kx, mx 
 
% Outputs: 
% ------------- 
% free_dof_set 
% updated ka, ma, kx, mx 
% icnt_dof 
% add_dof 
% bc_node 
% bc_coord 
% bc_DOF 
% bc_boolean 
% all_dofs 
% restraint_switch 
% *************************************************** 
% Start code: 
 
 
if exist('free_dof_set')==0;    %  Build free_dof_set vector 
     
    disp(' Select a boundary condition set:') 
    disp('    (1) Clamped-free') 
    disp('    (2) Clamped-Clamped') 
    disp('    (3) Pinned-Pinned') 
    disp('    (4) User-Defined') 
    disp('    (5) Free-Free') 
     
    BC_Choice = input(' >> Enter choice: '); 
     



96

    if BC_Choice == 1;      % Clamped-free _____________________________ 
        free_dof_set = [3:ndof]; 
        restraint_switch = 'y'; 
         
    elseif BC_Choice == 2;  % Clamped-Clamped __________________________ 
         
        free_dof_set = [3:ndof-2]; 
        restraint_switch = 'y'; 
         
    elseif BC_Choice == 3;  % Pinned-Pinned ____________________________ 
         
        free_dof_set = [2:ndof-2  ndof]; 
        restraint_switch = 'y'; 
         
    elseif BC_Choice == 4;  % User-Defined _____________________________ 
         
        icnt_dof = 0; 
        add_dof = 'y'; 
        while add_dof == 'y'; 
             
            bc_node = input(' Node number for restraint ? "0" to end: '); 
             
            if bc_node == 0; 
                break 
            end; 
            bc_coord = input(' Translation or Rotation ? (t/r) ','s'); 
             
            icnt_dof = icnt_dof + 1; 
            if bc_coord == 't'; 
                bc_DOF(icnt_dof) = 2 * bc_node - 1; 
            elseif bc_coord == 'r'; 
                bc_DOF(icnt_dof) = 2 * bc_node; 
            end;   % End if-else block 
             
        end;  % End while add_dof 
         
        bc_boolean = ones(ndof,1);                   % [1 1 1 ... icnt_dof] 
        bc_boolean(bc_DOF) = zeros(length(bc_DOF),1);% Put zeros in restrained dof 
        all_dofs = [1:ndof];                         % List of all dof 
        free_dof_set = all_dofs(logical(bc_boolean));% Extract free dof 
        restraint_switch = 'y'; 
         
    elseif BC_Choice == 5; % Free-free beam _______________________________ 
         
        free_dof_set = [1:ndof]; 
        restraint_switch = 'n'; 



97

         
    end;                    % End if-elseif choice block __________________ 
     
end;   % End exist block                      
 
ka = ka(free_dof_set,free_dof_set); 
ma = ma(free_dof_set,free_dof_set); 
kx = kx(free_dof_set,free_dof_set); 
mx = mx(free_dof_set,free_dof_set); 
 
% ****************END BoundaryConditions_crs.m  *********************** 



98

Build2Beams_crs.m 
 
clear 
clc 
% Revision history: 
% ~~~~~~~~ ~~~~~~~~ 
% 
%  Ver. 1.0: 9/22/94  Basic two beam assembly 
%       2.0:          Added multi-element changes 
%       2.1  3/28/95  Added read/write to file, rebuild capability 
%       2.2  3/29/95  Added lumped mass additions 
%            3/10/04  Added Sensitivity matrices, error prediction, plots 
                         
%********************************************************************** 
% 
% Program Description: 
% ~~~~~~~ ~~~~~~~~~~~~ 
% 
%  This program assembles the mass and stiffness matrices for 2 free-free  
%  beams, referred to as "BeamA" (analysis) and "BeamX" (experimental). The  
%  program can be run in several modes: 
% 
%  "Build" mode:  
%   ~~~~~  ~~~~~ 
%  The user provides baseline data for BeamA, assumed to be a  
%  homogeneous, uniform beam. Data provided: 
% 
%     (1) Beam length 
%     (2) Number of elements 
%     (3) Nominal EI 
%     (4) Nominal cross-sectional area 
%     (5) Nominal weight density 
% 
%  The program then prompts the user for instructions on how to modify  
%  "BeamA" data to arrive at "BeamX" data. The user can modify element  
%  masses, and/or element EI values. The modification can be applied to  
%  either a single element, or range of elements, e.g. 
% 
%      Modify single/range element mass values (y/n)?  y 
% 
%  If "y" is entered, the user enters the number of the element for mass  
%  adjustment: 
% 
%       Enter element label(s) for mass modification:  1 
%       Use MATLAB vector format> 1 3 5:7 9  
% 



99

%               Enter percentage mass change (+/- %)  
% 
% The user is prompted to modify another element or range of elements: 
% 
%       Modify another element mass value (y/n)?  y 
% 
%  This process continues until the user enters an "n" for no change. 
%  This entire process can then be repeated for EI adjustment.  
% 
%  The program saves the beam definition data in a binary (.mat) file  
%  "beamdata" at the end of execution. 
% 
%  The program can also be run in "Read" mode by entering an "r" at  
%  the initial prompt. 
% 
% 
% Script Execution Path: 
% ~~~~~~ ~~~~~~~~~ ~~~~~ 
% 
% 
% 
%     Build2Beams_crs.m         -- User executes this program. 
%     BeamA_Prompt_crs.m        -- Prompts User for BeamA nominal beam data 
%     BeamX_Prompt_crs.m        -- Prompts User for BeamX modification beam data 
%     Assemble2Beams_crs.m      -- Called by Build2Beams, builds [ka] [ma] [kx]  
%                             [mx], plots freqs. 
%     Lumpmass_crs.m            -- Prompts User for BeamX lumped mass addition 
%     BoundaryConditions_crs.m  -- Prompts user for B.C.'s and applies them. 
%     PlotBeamModes_crs.m       -- Calculate beam modes and plot frequencies 
%                    
%     BeamSensitivity_crs.m     -- Calculate sensitivity matrix T-sens 
%     BeamSensitivityOSET_crs.m -- Calculate sensitivity matrix using ABC  
%     recorded_H_crs.m          -- Calculates the nat. freq of BeamX with ABC applied 
%     AssembleSens_crs.m        -- Assembles the sens matrices and calculates errors. 
%     ABCrunTHRU.m              -- Calculates the DV and cond number of matrix used 
%     Saves data to "beamdata.mat" 
 
%         
%  Start code: 
%  ~~~~~ ~~~~~ 
% ********************************************************************* 
 
   
disp('   Building 2 beams from scratch...') 
 
BeamA_Prompt_crs;       %  Prompt for BeamA Data: run prompt script 



100

BeamX_Prompt_crs;       %  Prompt for BeamX Modification Data:  
Assemble2Beams_crs;     %   Run script to assemble mass and stiffness matrices 
AddLumpmass_crs;        %   BeamX lumped mass vector construction and  
%                             application 
 
kx_beam = kx;  % saves the Beam X matrices without BC to be used later 
mx_beam = mx;   
 
BoundaryConditions_crs; %   Prompt for, and apply boundary conditions 
 
kx_beamBC = kx;  % saves the Beam X matrices with BC to be used later 
mx_beamBC = mx;   
ka_beamBC = ka;  % saves the Beam A matrices with BC to be used later 
ma_beamBC = ma;   
 
PlotBeamModes_crs       %  Calculate beam modes and plot frequencies 
 
BeamSensitivity_crs;    %  Calculate sensitivity matrix T-sens 
BeamSensitivityOSET_crs;%  Calculate sensitivity matrix using ABC  
 
 
recorded_H_crs;    % Calulates the nat. freq of BeamX with ABC applied 
AssembleSens_crs;  % Assembles the sens matrices and calculates errors. 
ABCrunTHRU_crs;    % Calculates the DV and cond number of matrix used 
FOM_crs;            %Calculates the Figure of Merit for each prediction 
plottingBARS_crs;      % Bar plots of predicted DV vs. true error  
 
 
 
%  Save Defining Parameters for Beams and plots 
disp(' ...saving beam data to file') 
save beamdata.mat 
 
 
disp(' Build2Beams end.') 
% ______________________ 
 
% ********************  END Build2Beams_crs.m  *********************** 
 



101

displacementPlot_crs.m 
 
% Written By Constance Fernandez Spring 2004 
% Program plots mode shapes (phi, lam) phi vs nodal position of beam. This 
% program plots the displacement of BeamX and BeamA with actual location 
% of errors used for visual comparison.  
 
% Inputs 
% -------- 
% kx_beamBC, ka_beamBC 
% num_elements 
% phix_plot, phia_plot 
% EI_lbls, mass_lbls 
% dv_mass, dv_EI 
 
% Outputs 
% --------- 
% displ_plot 
% displa_plot 
% ypos 
% jj, g 
 
disp1_plot = zeros(.5*size(kx_beamBC,1),2*num_elements);  
%initialize disp vector and provides the first zero of the vector. 
disp1a_plot = zeros(.5*size(ka_beamBC,1),2*num_elements);  
%initialize disp vector and provides the first zero of the vector. 
 
for jj = 1:.5*size(ka_beamBC,1); 
    disp1_plot(jj+1,:) = phix_plot(2*jj-1,:); % every other phi to give displacement at 
sequential nodes 
    disp1a_plot(jj+1,:) = phia_plot(2*jj-1,:); 
end 
 
% This loop normalizes the modes shapes to the tip modal displacement. 
for g = 1:2*num_elements-1 
    disp1_plot(:,g) = disp1_plot(:,g)/disp1_plot(num_elements+1,g); 
    disp1a_plot(:,g) = disp1a_plot(:,g)/disp1a_plot(num_elements+1,g); 
end 
 
ypos = [1:1:num_elements+1]; % position in y direction along beam used  
% to plot displacements at locations 
 
% -----PLOTTING ------- 
 
figure(1) % plot displacements along BeamA and BeamX used in comparison  
 



102

plot(ypos, disp1_plot(:,1),'-d', ypos, disp1_plot(:,2),'-s',ypos, disp1_plot(:,3),'-.x',ypos, ... 
    disp1_plot(:,4),':+', ypos, disp1_plot(:,5),'--^',ypos, disp1a_plot(:,1),'-d', ypos, ... 
    disp1a_plot(:,2),'-s',ypos, disp1a_plot(:,3),'-x',ypos, disp1a_plot(:,4),'-+', ypos, ... 
    disp1a_plot(:,5),'-^'), grid on, hold on 
 
legend('Mode 1 X','Mode 2 X','Mode 3 X','Mode 4 X','Mode 5 X','Mode 1 A',... 
    'Mode 2 A','Mode 3 A','Mode 4 A','Mode 5 A', 4); 
 
% plot stem in position of mass change and/or EI change 
% mass change plotted in yellow, EI change plotted in cyan 
if EI_lbls ~=[] & mass_lbls ~=[]% used if mass and EI errors were added 
            stem(mass_lbls+.5, dv_mass,'y','filled'); hold on; stem(mass_lbls+.5, dv_mass,'k') 
            EIplot = EI_lbls+10;hold on % mass error is plotted first then EI 
            stem(EI_lbls+.5, dv_EI,'c','filled');hold on; stem(EI_lbls+.5, dv_EI,'k') 
            % plots the location of inputted EI error 
             
        elseif  mass_lbls ~=[] & EI_lbls ==[]% used with only mass error  
            stem(mass_lbls+.5, dv_mass,'y','filled');hold on; stem(mass_lbls+.5, dv_mass,'k') 
            
        else % used with only EI error 
            stem(EI_lbls+.5, dv_EI,'c','filled');hold on; stem(EI_lbls+.5, dv_EI,'k') 
            
end %"if EI_lbls ~=[] & mass_lbls ~=[]"  loop 
 
% ----Plotting------ 
 
xlabel('position on Beam') 
title('First five mode shape: Beam with error(X) vs Base Beam(A)') 
 
% The following lines are used to input actual amount of error in legend * 
% NOTE: problem with the display of digits 
 
% Legend commands - used to print actual change in legend 
% ----------------- 
% legend('First','Second','Third','Fourth','Fifth',sprintf('%dper - Mass ', dv_mass*100), 
sprintf('%dper - EI',dv_EI*100)); 
% dv = int2tr(dv_EI*100); 
% dvT = sprintf('%sper - EI', dv); 
% legend('First','Second','Third','Fourth','Fifth', dvT); 
 
 
% ********************  END displacementPlot_crs.m  *********************** 



103

displacementPlot_OSET.m  
 
% Written by Constance Fernandez Spring 2004 
 
% This program plots the mode shapes (phi, lam) phi vs nodal position  
% of beam when ABC are applied.  
 
% Inputs 
% ------- 
% plotkx 
% kaO_base 
% num_modesO 
% phiXPLOT 
% phiAPLOT 
% pinned 
% num_elements  
 
% Outputs 
% -------- 
%disp1, displa 
%jj, g 
% ypos 
 
%------ 
disp1 = zeros(ceil(.5*size(plotkx,1)),num_modesO);  
%initilize disp vector and provides the first zero of the vector. 
disp1a = zeros(ceil(.5*size(kaO_base,1)),num_modesO);  
%initilize disp vector and provides the first zero of the vector. 
 
for jj = 1:ceil(.5*size(plotkx,1)); 
    disp1(jj+1,:) = phiXPLOT(2*jj-1,1:num_modesO);  
    % every other phi to give displacement at sequential nodes 
    disp1a(jj+1,:) = phiAPLOT(2*jj-1,1:num_modesO); 
end 
 
% This loop normalizes the modes shapes to the tip modal displacement. 
if pinned == 21 % tip pinned is a special case,  no new calculations are needed 
   disp1(:,:) = disp1(:,:); 
   disp1a(:,:) = disp1a(:,:); 
else  
for g = 1:num_modesO 
   disp1(:,g) = disp1(:,g)/disp1(num_elements+1,g); 
   disp1a(:,g) = disp1a(:,g)/disp1a(num_elements+1,g); 
end 
end 
 



104

ypos = [1:1:num_elements+1]; % Location of nodes used in plotting 
 
% if mass_lbls ~= []; 
%      
%     for kk = 1:size(mass_lbls,1); 
%         ff =0; 
%         for JJ = 1:length(find(mass_lbls(kk,:)>0)); 
%             ff = ff+1; 
%             posm(kk, 2*JJ-1) = mass_lbls(kk, ff); 
%             posm(kk, 2*JJ) = mass_lbls(kk,ff)+1; 
%         end 
%     end 
%      
%     if kk == 1 
%         posM = posm; 
%          
%     else 
%          
%         for uu = 1:kk-1; 
%             posM = cat(2, posm(uu,:), posm(uu+1,:)); 
%         end 
%          
%     end 
%     posM = sort(posM(find(posM>0))); 
%     m = .5*ones(size(posM))+icnt_oset; 
% end 
%  
% if EI_lbls ~= []; 
%     for kk = 1:size(EI_lbls,1); 
%         ff =0; 
%         for JJ = 1:length(find(EI_lbls(kk,:)>0)); 
%             ff = ff+1; 
%             pose(kk, 2*JJ-1) = EI_lbls(kk, ff); 
%             pose(kk, 2*JJ) = EI_lbls(kk,ff)+1; 
%         end 
%     end 
%      
%     if kk == 1 
%         posE= pose; 
%          
%     else 
%          
%         for uu = 1:kk-1; 
%             posE = cat(2, pose(uu,:), pose(uu+1,:)); 
%         end 
%     end 



105

%   posE = sort(posE(find(posE>0)));   
%   e = -.5*ones(size(posE))+icnt_oset; 
% end 
  
%pos = [mass_lbls, mass_lbls+1]; 
 
% figure(icnt_oset+10) 
% subplot(2,1,1) 
%  
% % for ii = 1:num_modesO 
% %     plot(ypos, disp1a(:,ii));  
% %     hold on 
% % end 
% % plot(posM, m,'x' );grid on %posE, e 
%  
%   
% plot(ypos, disp1(:,1),'-d', ypos, disp1(:,2),'-s',ypos, disp1(:,3),'-.x',... 
%     ypos, disp1(:,4),':+', ypos, disp1(:,5),'--^',ypos, ... 
%     disp1a(:,1),'-d', ypos, disp1a(:,2),'-s',ypos, disp1a(:,3),'-x',... 
%     ypos, disp1a(:,4),'-+', ypos, disp1a(:,5),'-^'), grid on 
%  
% hold on 
% plot(accel_plot, icnt_oset, 'kp',floor(pinned/2)+1,icnt_oset,'rs') 
% % hold on 
% % plot(posM, m,'-kV',posE, e,'-k>');grid on % posE, e 
% %  
%  
% %legend('accelerometer', 'pinned') 
% %plot(floor(pinned/2)+1,icnt_oset,'rs') 
% legend('First','Second','Third','Fourth','Fifth','First A','Second A',... 
%     'Third A','Fourth A','Fifth A','accel') 
% title(sprintf('pinned accel at Node # %d', floor(pinned/2)+1)); 
%  
%  
% ******************  END displacementPlot_OSET.m  *********************** 



106

fbeamkm.m   
 
% function [kbeam,mbeam]=fbeamkm(l,ei,m) 
% Provided by Prof Gordis 
 
function [kbeam,mbeam]=fbeamkm(l,ei,m) 
%  
% 
% This function returns the stiffness and mass matrices for  
% a simple 2-node beam element. 
% 
% Note: m = rho * area * length = total element mass 
% 
% Reference: R.D. Cook, Concepts and Applications of F.E. Analysis 
 
% Outputs 
% ------ 
% kbeam, mbeam, i, j 
 
 
kbeam=zeros(4,4); 
mbeam=zeros(4,4); 
% 
kbeam(1,1)=12.0; 
kbeam(1,2)=6.0*l; 
kbeam(1,3)=-12.0; 
kbeam(1,4)=6.0*l; 
kbeam(2,2)=4.0*l^2; 
kbeam(2,3)=-6.0*l; 
kbeam(2,4)=2.0*l^2; 
kbeam(3,3)=12.0; 
kbeam(3,4)=-6.0*l; 
kbeam(4,4)=4.0*l^2; 
% 
mbeam(1,1)=156.0; 
mbeam(1,2)=22.0*l; 
mbeam(1,3)=54.0; 
mbeam(1,4)=-13.0*l; 
mbeam(2,2)=4.0*l^2; 
mbeam(2,3)=13.0*l; 
mbeam(2,4)=-3.0*l^2; 
mbeam(3,3)=156.0; 
mbeam(3,4)=-22.0*l; 
mbeam(4,4)=4.0*l^2; 
% 
for i=1:4; 



107

    for j=i:4; 
        kbeam(j,i)=kbeam(i,j); 
        mbeam(j,i)=mbeam(i,j); 
    end 
end 
% 
kbeam=(ei/l^3)*kbeam; 
mbeam=(m/420.0)*mbeam; 
% 
% end function beamkm 
 
% ********************  END fbeamkm.m  *********************** 



108

fFRF.m 
 
function [FRF] = fFRF(Wn, Zeta, phi, freq); 
%  Provided by Prof Gordis 
% 
%  Usage: [FRF] = fFRF(Wn, Zeta, phi, freq); 
% 
% Creates matrix whose ROWS are the FRF constructed from  
% modal parameters passed into the function.  
% 
% Function uses all modes passed in, and will generate all FRF for unique  
% (symmetric) input-output pairs for all rows in [phi]. 
% FRF are stored in "symmetric column storage" (See fSymmetricStore.m) 
% 
% Wn:  Vector of natural frequencies (rad/sec) 
%   If Wn(i) < 0.1, rigid body mode is assumed. 
% 
% Zeta: Scalar, damping ratio applied to all modes 
% 
% phi: Mass normalized modal matrix.   
%  Num rows = number of coordinates 
%  Num cols = number of modes to be used. 
% 
% freq: Frequency (Hz). Row vector of sampling points for FRF evaluation. 
% 
% Inputs 
% ------- 
% wn 
% zeta 
% phi 
% freq 
 
% Outputs 
% -------- 
% ndof 
% nmodes 
% nsymcol 
% FRF 
% isymols 
% omega 
% j, irows, icols, imodes 
% modeFRF 
 
% _____________________________________________________________________ 
 
 



109

ndof   = size(phi,1); 
nmodes  = size(phi,2); 
nsymcol  = ndof * (ndof + 1) / 2;  % Number of columns 
FRF    = zeros(nsymcol,length(freq));% Initialize matrix 
modeFRF   = zeros(1,length(freq)); 
isymcols  = 0; % Will end up being nsymcol 
 
omega = 2 * pi * freq;  
j = sqrt(-1); 
 
for irows = 1 : ndof; 
 for icols = irows : ndof; 
  isymcols = isymcols + 1; 
   

for imodes = 1 : nmodes; 
    
   if abs(Wn(imodes)) > 0.1;  % Then elastic mode 
         
    modeFRF = ((Wn(imodes)^2 - omega.^2) + 
2*j*Zeta*Wn(imodes)*omega).^(-1); 
         
   elseif abs(Wn(imodes)) <= 0.1; % Rigid body mode 
   
    modeFRF = -omega.^(-2); 
     
   end; % End if abs(wn)      
  
   FRF(isymcols,:) = FRF(isymcols,:) +... 
    phi(irows,imodes) * phi(icols,imodes) * modeFRF; 
   
  end;  % End icnt_modes 
   
 end;  % End icnt_col_dof 
 
end;  % End icnt_row_dof 
 
% ********************  END fFRF.m  *********************** 



110

fModes.m  
 
function [lam,phi]=fmodes(k,m,num_to_print); 
% Provided by Prof Gordis 
% This program prints to the screen natural modes of system (phi). 
% 
%  Usage: [lam,phi]=fmodes(k,m,num_to_print) 
% 
%   This function can be used with 1 to 3 arguments, as follows: 
% 
% [lam,phi]=fmodes(a)  : Produces modes of [a] with no print of freqs in Hz. 
% [lam,phi]=fmodes(a,i)  : Produces modes of [a] with print of "i" freqs in 
Hz. 
% [lam,phi]=fmodes(k,m)  : Produces modes of [m\k] with no print of freqs in 
Hz. 
% 
%  
% 
% This function returns a vector containing eigenvalues (rad/sec)^2 
%  and a matrix containing the mass normalized mode shapes. 
%  The mode information is sorted by frequency in ascending order. 
%  If num_to_print > 0; tabular listing of num_to_print freqs in Hz is printed. 
%  If num_to_print <= 0, no print.  
 
% Inputs 
% ------ 
% v, index, m, k 
 
% Programs 
% -------- 
% fNormalize 
 
% Outputs 
% -------- 
% phi 
% num_to_print 
% error 
% e 
 
% ------------------------------------------------------------------------------- 
 
if nargin == 1;            %
 [A] w/ no print request for freqs in Hz. 
            
 %   v(1,:) = 1 normalization  
 [v,d]=eig(k); 



111

 [temp,indices] = sort(abs(diag(d))); 
 lam = diag(d); 
 lam = lam(indices); 
 [phi]=fNormalize(v(:,indices), 'one'); 
 num_to_print = 0; 
 
elseif nargin == 2 & size(m,1) == 1;  % [A] w/ print request for freqs in Hz. 
            
 %   v(1,:) = 1 normalization  
 [v,d]=eig(k); 
 [temp,indices] = sort(abs(diag(d))); 
 lam = diag(d); 
 lam = lam(indices); 
 [phi]=fNormalize(v(:,indices), 'one'); 
 num_to_print = m; 
  
elseif nargin == 2 & size(m,1) > 1;  %  [k],[m] w/ no print request for freqs 
in Hz. 
            
 %   mass normalization 
 [v,d]=eig(m\k); 
 [lam,index]=sort(abs(diag(d))); 
 [phi]=fNormalize(v(:,index),'mass',m); 
 num_to_print = 0; 
  
elseif nargin == 3 & size(k,1) > 1 & size(m,1) > 1; % [k],[m] w/ print request for 
freqs in Hz. 
            
 %   mass normalization 
 [v,d]=eig(m\k); 
 [lam,index]=sort(abs(diag(d))); 
 [phi]=fNormalize(v(:,index),'mass',m); 
  
else 
 
 num_to_print = -1; 
 error('Error from fModes.m: Check input arguments.') 
 
end 
 
if num_to_print > length(k); 
 num_to_print = length(k); 
end 
 
if nargin < 3 & rem(length(k),2)==0 & k(1:length(k)/2,1:length(k)/2) == 
zeros(length(k)/2,length(k)/2); % Have [A] matrix 



112

 e = 1;  % Eigenvalues are wn 
else 
 e = 0.5;    % Eigenvalues are wn^2 
end 
  
  
 
if num_to_print > 0; 
  
 disp('  '),disp('  ') 
 disp('~~~~~~~~~~~~~') 
 disp('Freqs in Hz.:') 
 disp((lam(1:num_to_print).^e)/2/pi) 
 disp('~~~~~~~~~~~~~') 
 
end 
 
% ********************  END fModes.m  *********************** 



113

fNormalize.m 
 
function [phi] = fNormalize(phi,method,m); 
%  
% Usage: [phi] = fNormalize(phi,method,m); 
% 
% phi: matrix whose columns are to be (independently) normalized. 
% method: String variable. The following choices are available: 
% 
%   'mass'   Mass normalization 
%   'inf'   Infinity normalization 
%   'one'   First element = 1 
%   'length'  Length = 1 
% 
%  m: matrix used for normalization, i.e. phi'*m*phi = eye 
% 
% _________________________________________ 
% 
 switch method 
   
  case 'mass'   % Mass normalization 
    
%   disp('mass normalization') 
   phi = phi * diag(sqrt(diag((phi' * m * phi).^(-1)))); 
 
  case 'inf'   % Infinity normalization 
%   disp('inf normalization') 
   for icnt_cols = 1:size(phi,2); 
             phi(:,icnt_cols) = phi(:,icnt_cols)/norm(phi(:,icnt_cols),inf); 
   end 
  
  case 'one'   % First element = 1 
%   disp('one normalization') 
   phi = phi * diag((phi(1,:).^(-1))'); 
    
  case 'length'  % Length = 1 
%   disp('length normalization') 
   for icnt_cols = 1:size(phi,2); 
    phi(:,icnt_cols) = 
phi(:,icnt_cols)./norm(phi(:,icnt_cols),'fro'); 
   end 
   
 end 
 
% ********************  END fNormalize.m  *********************** 



114

FOM_crs.m 
 
%  This program calculates the Figure of Merit for the error predictions  
%  calculated using the following sensitivity matrices 
%     1) Base system only 5 modes (underdetermined) 
%     2) ABC system 10 modes  
%     3) Base system 5 modes + 5 modes from ABC system 
% The last system is calculated 3 times.  Once for modes 1-5,  
% another for modes 6-10, and again for modes 11-15. 
 
% Written by Constance R S Fernandez, Spring 2004 
 
% Inputs 
% ------- 
% dv_tot 
% dv_cal_ABC 
% num_elements 
% EI_lbls 
 
% Outputs 
% ------- 
% error 
% x, xx, ix, is 
% FOM2, FOM 
% ABC5_norm, ABCten_norm 
% ABCten_sq 
% FOM_ABCten, FOM_ABC5 
% ABC5_sq, PLUS_sq 
% ABC5_sumNorm, PLUS_sumNorm 
% FOM_PLUS,  
% FOM_ABC5per, FOM_ABC10per, FOM_ABC_PLUSper 
% ---------------------------------------------- 
 
error = sum(dv_tot); % total error added to beam(known quantity) 
x = abs (dv_cal_ABC); % converts all errors to positive errors not to  
% give false results of balancing out 
 
x = sum(x,1)'; % sum of all errors  
xx = x/error;% sum of errors divided by known error 
for ix = 1:33 
    FOM2 (ix) = abs((xx(ix)-1/xx(ix))); 
end 
FOM = (1-FOM2)*100; 
 
%---Base System only---(underdetermined) 
% ---ABC system only (only 5 modes)---- 



115

 
ABC5_norm = (dv_cal_ABC)/error; % normalized predicted error 
 
% ---ABC system only using 10 modes instead of 5 modes ---- 
 
ABCten_norm = (dv_cal_ABCten)/error; % normalized predicted error 
 
for ix = 1:size(dv_cal_ABCten,2);% Number of ABC system repeat for each ABC 
system 
     
    for is = 1:num_elements % repeat for each element 
         
        ABCten_sq(is,1) = ABCten_norm(is, ix)^2; %square of each error in new vector 
    end 
     
    ABCten_sumNorm = sum(ABCten_sq); % sum of squared errors  
    FOM_ABCten(ix,1) = (ABCten_norm(EI_lbls, ix).^2)/ABCten_sumNorm; % FOM 
for each ABC system 
end 
 
% ---Base + 5 modes of ABC system ---- 
 
PLUS_norm = (dv_cal_BasePlus)/error; % normalized predicted error 
 
% loop for relative error  
for ix = 1:size(dv_cal_BasePlus,2); 
     
       for is = 1:num_elements 
           ABC5_sq(is,1) = ABC5_norm(is, ix)^2; 
                     
           PLUS_sq(is,1) = PLUS_norm(is, ix)^2; 
            
       end 
       ABC5_sumNorm = sum(ABC5_sq); 
       FOM_ABC5(ix,1) = (ABC5_norm(EI_lbls, ix).^2)/ABC5_sumNorm; 
       PLUS_sumNorm = sum(PLUS_sq); 
       FOM_PLUS(ix,1) = (PLUS_norm(EI_lbls, ix).^2)/PLUS_sumNorm; 
end 
 
% converts the relative error to scale 1-100, 100 being the best prediction. 
FOM_ABC5per = FOM_ABC5*100; % underdetermied 
FOM_ABC10per = FOM_ABCten*100;% ABC system only using 10 modes 
FOM_PLUSper = FOM_PLUS*100;% Base+5 modes of ABC system 
 
% ********************   END FOM_crs.m  *********************** 



116

fOset_from_Aset.m 
 
function [oset] = fOset_from_Aset(ndof,aset); 
% 
%  Usage: [oset] = fOset_from_Aset(ndof,aset); 
% 
% This function determines the complementary subset "oset" 
% from a set [1:1:ndof] and the subset aset = [x x x ...]. 
% 
%  ndof: Total number of DOF. Set is labeled "nset". 
%  aset: Retained DOF (proper subset of [1:1:ndof]) 
%  oset: aset U oset = n 
%  
% Provided by Prof Gordis 
% ________________________________________________________ 
 
nset = [1:ndof]; 
 
for icnt = 1 : length(aset); 
     indices(icnt) = find(nset == aset(icnt)); 
end 
 
bool = ones(size(nset)); 
bool(indices) = zeros(size(indices)); 
oset = nset(find(bool>0)); 
 
% ********************  fOset_from_Aset.m  *********************** 



117

fSDOFCurveFit.m 
 
function [Hfit,lam] = fSDOFCurveFit(fit_freqs, h_to_fit); 
 
% This function performs a least squares curve fit 
% of the magnitude of H(½). It identifies 
% natural frequency, damping ratio, and participation factor. 
% 
% Ref: "Improved amplitude fitting for frequency and damping" 
%  by A. M. Rinawi and R. W. Clough 
% Proceedings of the 10th IMAC,  Vol.1, p.25. 
% 
% Usage: 
%    Hamps is a vector of complex FRF values in form a + bj 
%    lofreq: lower frequency limit in Hz. 
%    hifreq: upper frequency limit in Hz. 
%    deltafreq: frequency step in Hz. 
% 
% Provided by Prof Gordis 
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
% fit_freqs = freqPlot; % input fit_freqs as Hz in row vector form [a:b:c]; 
 
% h_to_fit = H11'; %input h_to_fit as column vector  
 
fit_freqs = fit_freqs * 2 * pi; 
 
% Assemble the linear system [T] {x} = {y} as per above Ref. 
 
T=zeros(3,3); 
T(1,1) =  sum(h_to_fit.^6); 
T(1,2) =  sum((h_to_fit.^6).*(fit_freqs.^2)); 
T(1,3) = -sum(h_to_fit.^4); 
T(2,2) =  sum((h_to_fit.^6).*(fit_freqs.^4)); 
T(2,3) = -sum((h_to_fit.^4).*(fit_freqs.^2)); 
T(3,3) =  sum(h_to_fit.^2); 
 
for ii = 1:3; 
    for jj = ii:3; 
        T(jj,ii) = T(ii,jj); 
    end 
end 
 
y = zeros(3,1); 
y(1) = -sum((h_to_fit.^6).*(fit_freqs.^4)); 
y(2) = -sum((h_to_fit.^6).*(fit_freqs.^6)); 



118

y(3) =  sum((h_to_fit.^4).*(fit_freqs.^4)); 
 
 
x = T\y; 
  
wn =(x(1)^(1/4)); 
zeta = sqrt((x(2)/(4*sqrt(x(1))) + (1/2))); 
Pn = sqrt(x(3)); 
% 
wn_vec = ones(size(fit_freqs)) * wn; 
zeta_vec = ones(size(fit_freqs)) * zeta; 
 
Hfit=Pn* ((wn_vec.^2-fit_freqs.^2).^2+... 
    (2*wn_vec.*zeta_vec.*fit_freqs).^2).^(-1/2); 
 
lam=wn^2; 
 
sprintf('Identified Natural Frequency (Hz): %g', wn/2/pi) 
% sprintf('Identified Damping Ratio (Non-Dimens.): %g', zeta) 
% fit_freqs = fit_freqs/2/pi; 
 
%plot(fit_freqs,log10(abs(Hfit)),'-.o');grid on 
 
% ********************  fSDOFCurveFit.m  *********************** 
 



119

fSpringMass2.m  
 
function [k,m]=fSpringMass2(springs,mass,BC); 
% 
% Usage: function [k,m]=fSpringMass2(springs,mass,BC) 
% 
%  This function script assembles the stiffness [k] and mass 
%  [m] matrices for an assemblage of springs.   
% 
% 
% A linear chain of springs and masses is assumed. 
%  The number of springs is defined by the length of the vector 'springs' 
%  and their values by the elements of 'springs.' 
% 
%  The number of masses is defined by the length of the vector 'mass' 
%  and their values by the elements of 'mass'. 
%  NOTE: The number of masses must equal to the final number of active 
%    DOF (i.e. after BC's applied). 
% 
% Boundary conditions are specified by the vector 'BC.' This vector 
% contains the DOF numbers which are to be restrained. 
%  
% For example, to build the following system: 
% 
%                        .01        .02       .015 
%               |--////--[m]--////--[m]--////--[m] 
%                    5        6       3.4 
% 
% springs = [5 6 3.4]; 
% mass = [.01 .02 .015]; 
% BC  = [1] 
% 
%   
% _________________________________________________________ 
% 
%                          BEGIN SCRIPT 
%                          ~~~~~ ~~~~~~ 
% 
 
if length(mass) == (length(springs)+1) - length(BC); 
 
 k  = zeros(length(springs)+1,length(springs)+1); 
 m  = zeros(length(mass)); 
 
%  assemble stiffness matrix: 
 



120

 rows = [0 1]; 
 for ispring = 1 : length(springs); 
  
  rows = rows + 1; 
  
  addthis = [springs(ispring) -springs(ispring);-springs(ispring) 
springs(ispring)]; 
  k(rows,rows) = k(rows,rows) + addthis; 
 end 
 
 if ~isempty(BC); 
  keep = fOset_from_Aset(length(springs)+1,BC); 
  k = k(keep,keep); 
 end 
  
%  assemble mass matrix:   
  
 m = diag(mass); 
  
else 
   
 disp('Error in fSpringmass2. Check # masses, springs, and BC"s.') 
 return 
  
end 
% ********************  END fSpringMass2.m  *********************** 
  
 
 
 
 



121

HresiduesL.m   
 
% Building FRF (H matrix) from residues in Shape files saved in ME Scope 
% Preparing ME Scope file for Matlab: 
% 1) In ME Scope export Shape Table file in format "Spreadsheet Shape 
% Table(*.TXT). This file is tab delimited. 
% 2) Delete header information.  The Matlab command "dlmread" does not read 
% text.  
% Note on the command "dlmread":  
%     DLMREAD  reads numeric data from the ASCII delimited file.  
%     Use '\t' to specify a tab. 
 
%     RESULT= DLMREAD(FILENAME,DELIMITER,RANGE) reads the range 
specified 
%     by RANGE = [R1 C1 R2 C2] where (R1,C1) is the upper-left corner of 
%     the data to be read and (R2,C2) is the lower-right corner. R and C are 
%     zero-based so that R=0 and C=0 specifies the first value in the file. 
 
% 3) Keep Damped Natural Frequencies in the first row. 
% 4) Keep Damping Ratios in second row. 
% 5) Delete the following or its equivalent for each row:  
%    "GPO:PO" "1Z:41Z[1]"   "(m/s^2)/N-sec",  
% keeping only the numberic data in the remaining rows and columns. 
 
% Written by Constance R S Fernandez, Spring 2004 
%  
% Inputs 
% ------- 
% Hloop 
% Raset 
% lamABCtot 
 
% Program called 
% -------------- 
% fOset_from_Aset 
% fSDOFCurveFit 
 
% Outputs 
% -------- 
% Rndof, RASET, HRoset 
% m_inct, modes 
% hh, dd 
% HZ, DR 
% sigma, pole, poleS 
% u, uu, uj, uuj, U, UJ, U_vect, U_vectS 
% iR, W, H, k, wp, kp 



122

% HHABC, ZABC, ZOSET, HH 
% FRFpeak, PP 
% peakstart, peakdata, peakend, peakPlot 
% Hfit_lamOSET, vect_LAMOSET 
 
% -------- 
% The following code is written for ten modes and can be easily editted to 
% handle more or less modes. 
modes = 10; % number of modes to be used 
 
Rndof = 42; %number of DOF recorded 
RASET = Raset(Hloop, :); %location of new pinned BC 
HRoset = fOset_from_Aset(Rndof,Raset); %unrestrained DOF 
 
% "for" loop to read .txt file and build required vectors 
for m_inct = 1:modes;  
    % range to be used in reading .txt file, cooresponds to Natural Freq in Hz 
    hh = [0 0 0 (modes-1)];  
    % range to be used in reading .txt file, cooresponds to Damping Ratio 
    dd = [1 0 1 (modes-1)];  
    Hz = dlmread('shapeall.txt','\t',hh); % freq in Hz (vector) 
    DR = dlmread('shapeall.txt','\t',dd); % damping ratio (vector) 
    DR = DR/100; % Converts Damping Ratio from percent 
     
    sigma(m_inct)= (Hz(m_inct)* DR(m_inct))/(sqrt(1-(DR(m_inct))^2)); % damping 
coefficient (scaler) 
    pole(m_inct) = -sigma(m_inct) + i*Hz(m_inct); %pole location (scaler) 
    poleS(m_inct) = -sigma(m_inct) - i*Hz(m_inct);% pole conjugate (scaler) 
     
    u = 2*m_inct-2; % corresponds to real part of respective mode shape  
    uu = [2 u 43 u]; % range to be used in reading .txt file, real part 
    uj= 2*m_inct-1;% % corresponds to imag part of respective mode shape  
    uuj = [2 uj 43 uj]; % range to be used in reading .txt file, imag part 
     
    U = dlmread('shapeall.txt','\t',uu); % real part of u-vector 
    UJ = dlmread('shapeall.txt','\t',uuj); % imag part of u-vector 
     
    U_vect(:,m_inct) = U + UJ*i; % mode shape vector, saved WRT to mode 
    U_vectS(:,m_inct) = U - UJ*i;% complex conjugate of mode shape vector 
     
end % "for" loop, m_inct = 1:modes 
 
iR = 0; 
for w = 0:1.831050e-001:6.589949e+002 % freq used in data collection 
    iR = iR +1; % counter 
    H = 0; % initalizes H for each freq 



123

    for k = 1:modes; % summation for all modes used 
         
        H = (U_vect(:,k)*(U_vect(:,k))')/(j*w-pole(k))+... 
            (U_vectS(:,k)*(U_vectS(:,k))')/(j*w-poleS(k))+ H; 
    end %"for k = 1:modes" loop 
    % ------ABC applied     -------- 
     
    HHABC = H (Raset,Raset); 
    % inverting to get Z, used in plotting peaks 
    ZABC = inv(HHABC); 
    % saves Z for each increment of frequency 
    ZOSET(iR) = ZABC(1,1);  
     
    HH(iR) = H(41,41); % driving point function NOTE: specific to this experiment 
end % w = ... " loop 
 
% plotting  
 
w =  [0:1.831050e-001:6.589949e+002]; 
plot(w, log(abs(ZOSET))), grid on 
axis tight 
title ('OSET Freq inv(H) using mode shapes from MeScopeVES') 
xlabel ('Hz') 
ylabel ('log Magnitude') 
figure(2) 
plot(w,log(abs(HH))), grid on 
 
%---------------     
%---Peak gathering loop, curve fit program----       
%--------------- 
 
% ----INITIALIZATION--- 
for FRFpeak = 1:modes; 
     
    pp = pp+1; % index in natural frequency vector 
    iRpeak=0; % initizes the index used in loop 
     
    %sprintf('Mode %d',FRFpeak)% displays which mode the following is requested 
    peakstart = lamABCtot(FRFpeak)-10; % input('Enter starting omega (Hz) : '); 
    peakdelta = .5; %Hz input('Enter delta omega for this peak (Hz): '); 
    peakend = lamABCtot(FRFpeak)+10; %input ('Enter ending omega (Hz): '); 
    peakPlot = [peakstart : peakdelta : peakend]; % for plotting in Hz 
     
    %---------------     
    %-"for" loop to calculate the driving point and FRF of the remaining DOF 
    %  of reduced range of peak, same as previous calculation except range  



124

    %  is smaller which is needed for the curve fit program to be called. 
    %--------------- 
     
    for wp = peakPlot % freq used in data collection 
        iRpeak = iRpeak +1; % counter 
        Hpeak = 0; % initalizes H for each freq 
        for kp = 1:modes; % summation for all modes used 
             
            Hpeak = (U_vect(:,kp)*(U_vect(:,kp))')/(j*wp-pole(kp))+... 
                (U_vectS(:,kp)*(U_vectS(:,kp))')/(j*wp-poleS(kp))+ H; 
        end % "kp = 1:modes" loop 
         
        % ------ABC applied     -------- 
         
        HABCpeak = Hpeak(Raset,Raset); 
        % inverting to get Z, used in plotting peaks 
        ZABCpeak = inv(HABCpeak); 
        % saves Z for each increment of frequency 
        ZOSETpeak(iR) = ZABCpeak(1,1);  
         
    end %  "for wp=peakPlot" loop 
     
    [Hfit,lamOSET]= fSDOFCurveFit(peakPlot,ZOSETpeak); 
     
    vect_LAMOSET(pp,1) = lamOSET; % saves nat freq found in fSDOFCurveFit  
    % in vector form 
     
    clear ZOSETpeak Hpeak HABCpeak ZABCpeak iRpeak 
     
end % "FRFpeak for loop" 
%vect_lamx_oset = vect_LAMOSET; % use with curve fit program 
 
% vector of natural frequencies of ABC systems  
% ********************  END HresiduesL.m  *********************** 



125

Hs.m 

 

 
% This program plot Syn FRF for 41Z:41Z. Uses the following 
% formula:  H = (res/(2*j*(s-peak)))+(res/(2*j*(s-peakS)))+H;   
% This program is has aset and oset hard coded. 
 
% Written by Constance R S Fernandez, Spring 2004 
 
%load testBEAM 
%load HsynMEscope 
 
% Inputs 
% -------- 
% kx_beamBC 
% mx_beamBC 
 
% Programs called 
% --------------- 
% fmodes 
 
% Outputs 
% -------- 
% k, m 
% ndof, aset, oset 
% lam, phi 
% freq 
% mm, iR 
% SUM 
% omega 
% H, Haa, Zaa, Zaa11 
% i, res, peak, S, peakS 
 
k = kx_beamBC; % stiffness matrix with BC 
m = mx_beamBC;% mass matrix with BC 
 
% zeta = .02; 
ndof = [1:1:84]; 
aset = [81]; % contrained set 
oset = [1:1:80,82,83,84]; % uncontrained set 
 
k = k(oset,oset); 
m= m(oset,oset); 
 
[lam,phi]=fModes(k,m); 



126

freq = sqrt(lam)/2/pi; 
 
for mm = 1:4; 
     
    iR = 0; 
    SUM = [20, 15, 10, 5]; 
     
    for omega = [0:1:2240]; % in Hz 
         
        iR = iR + 1;  
        H=0; 
        for i = 1:SUM(mm) 
            res = phi(:,i)*phi(:,i)'; 
            peak = j*freq(i); 
            s = j*omega; 
            peakS = -peak; 
            H = (res/(2*j*(s-peak)))+(res/(2*j*(s-peakS)))+H;       
        end % "for i=1:SUM (mm)" loop 
 Haa = H(aset,aset);  
 Zaa = inv(Haa); 
  
        Zaa11(iR,mm) = Zaa(1,1); 
         
    end %"for omega= [0:1:2240]" loop 
end% for "mm  = 1:4" loop 
 
% plotting 
 
w = [0:1:2240]; 
figure(1) 
plot(w, log(abs(Zaa11(:,1))),w, log(abs(Zaa11(:,2))),w, log(abs(Zaa11(:,3))),... 
   w, log(abs(Zaa11(:,4)))); 
 
% , w, log(abs(Hs(:,5))),w, log(abs(Hs(:,6))),... 
%    w, log(abs(Hs(:,7))),w, log(abs(Hs(:,8))), w, log(abs(Hs(:,9)))), grid on... 
 
axis tight 
xlabel ('Hz') 
ylabel ('log Mag')    
title( 'Syn FRF for 41Z:41Z') 
legend ('Modes sum = 20', 'Modes sum = 15', 'Modes sum = 10', ... 
    'Modes sum = 5') 
hold on, grid on 
x = ones(8,1)*8; 
stem(freq(1:8),x,'b') 
% ********************  END Hs.m  *********************** 



127

Htrial.m 
 
%This  program was written orginially to run as a loop to find the modes of 
%H with respect to each ABC system.  Since the program fSDOFCurveFit works 
%when only one peak is used, this program plotted the H using the formula 
%      Z = kx_beam - omega.^2 * mx_beam + j*c*omega;  
%      h = inv(Z); 
%      H = h(ASET, ASET); % reducing H is only ASET rows and columns 
%      habc = H(HOSET, HOSET); % reducing H according to ABC  
%      zabc= inv(habc); % inverse as defined as driving point 
 
% Then the driving is plotted for visual to user.  The user is then asked 
% to enter peak omega values and fSDOFCurveFit program is called to pick 
% peak frequency value and build a vector of natural frequencies of system. 
%  This loop is repeated for all ABC systems.  However, when the loop is 
%  run there was a problem that the programmer could not correct.  Instead new 
%  lines were written: 
 
    % kxOSET = kx_beam(Hoset, Hoset); 
    % mxOSET = mx_beam(Hoset, Hoset); 
    % [LAMOSET,PHIOSET]=fmodes(kxOSET,mxOSET); 
% Since the program saw direct correlation between the FE calculated i.e. 
% lam and phi calculated from program "fmodes" and those calculated slowly  
% and outside of complex programming loop by fSDOFCurveFit, programmer decided  
% to use lam and phi calculated by fModes as FE values for experiment. Old 
% code line are still shown in program as foundation for future versions of 
% this program.  
% Written by Constance R S Fernandez, Spring 2004 
 
% Inputs 
% ------- 
% icnt_oset 
% OSETtot 
% oset 
% kx_beam, mx_beam 
 
% Program called 
% --------- 
% fModes 
 
% Outputs 
% ------- 
% lamOSET 
% vect_lamx_oset 
% Hloop 
% H_inct 



128

% Hoset 
% kxOSET 
% mxOSET 
% LAMOSET 
% PHIOSET 
 
% Initalization 
lamOSET = []; 
vect_lamx_oset = []; 
 
for Hloop = 1:icnt_oset;% loop repeats for number os ABC system defined 
     
    H_inct = size(find(OSETtot(Hloop, :)>0),2);  
    % counts how many places in a given row of OSETtot are not zero 
    Hoset = OSETtot(Hloop, 1:H_inct); 
    % creates a new vector with just non-zero values  
     
    OSETtot(icnt_oset, 1:length(oset)) = oset; 
    
    %     H_inct = size(find(OMITset(Hloop, :)>0),2); 
    %     Hoset = OMITset(Hloop, 1:H_inct); 
    %     ASET = [1 3 5 7 9 11 13 15 17 19]; 
    %     HOSET = fOset_from_Aset(10,Hoset); 
    %     StartOmega =1; 
    %     DeltaOmega = 2; 
    %     EndOmega = 2000; 
    %     freqPlot = [StartOmega : DeltaOmega : EndOmega]; % used for plotting  
    %      
    %     Zabc11 = zeros(length(freqPlot), 1); 
     
    %     iR=0; % initizes the index used in loop 
    %     c = 0; 
     
    kxOSET = kx_beam(Hoset, Hoset);% stiffness matrix with only unrestained DOF wrt 
ABC system 
    mxOSET = mx_beam(Hoset, Hoset);% mass matrix ... 
     
    [LAMOSET,PHIOSET]=fmodes(kxOSET,mxOSET); 
     
    %"for" loop to calculate the driving point and FRF of the remaining set of DOF 
    %     for omega = freqPlot  %rad/sec 
    %         omega = omega*2*pi; 
    %         iR = iR + 1; % loop counter 
    %                  
    %         Z = kx_beam - omega.^2 * mx_beam + j*c*omega;  
    %          



129

    %         h = inv(Z); 
    %         H = h(ASET, ASET); 
    %         habc = H(HOSET, HOSET); 
    %         zabc= inv(habc); 
    %         Zabc11(iR) = zabc(1,1); 
    %     end 
    %      
    %     absmax = max(Zabc11); 
    %     absmin = min(Zabc11); 
    %     avg = (absmax+absmin)/2; 
    %     counter = 0; 
    %     for i = 1:length(freqPlot)  
    %         if Zabc11(i) >= avg 
    %             counter = counter+1; 
    %             modepeaks(counter) = freqPlot(i); % in Hz 
    %         else  
    %         end 
    %     end 
     
    %     figure (Hloop+3) 
    %      
    %     plot(freqPlot,log10(abs(Zabc11)),'g');grid on  
    %     hold on 
    %      
    %     title('inv(H) complete spectrum') 
    % %     for peak = 1:num_modesO; 
    % %          
    % %         sprintf('Mode %d',peak) 
    % %         peaklam(peak,Hloop)= input('Enter peak lamda: '); 
    % %     end 
    % % %      
    %     pp = 0; 
    % %      
    %     for peak = 1:num_modesO; 
    %         pp = pp+1; 
    %         sprintf('Mode %d',peak) 
    %         peakstart = input('Enter starting omega  : '); 
    %         peakdelta = input('Enter delta omega for this peak : '); 
    %         peakend = input ('Enter ending omega : '); 
    %         peakPlot = [peakstart : peakdelta : peakend]; 
    %          
    %         iRpeak=0; % initizes the index used in loop 
    %         c = 0; 
    %         clear Zpeak hpeak habcpeak zabcpeak Zabc11peak  
    %          
    %         %"for" loop to calculate the driving point and FRF of the remaining set of DOF 



130

    %         for omega = peakPlot  % in Hz 
    %             omega = omega*2*pi; 
    %             iRpeak = iRpeak + 1; % loop counter 
    %             Zpeak = kx_beam - omega.^2 * mx_beam + j*c*omega;  
    %              
    %             hpeak = inv(Zpeak); 
    %             habcpeak = hpeak(Hoset, Hoset); 
    %             zabcpeak= inv(habcpeak); 
    %             Zabc11peak(iRpeak) = zabcpeak(1,1); 
    %         end 
    %         figure (2) 
    %          
    %         plot(peakPlot,log10(abs(Zabc11peak)),'g');grid on  
    %         hold on 
    %          
    %         title('inv(H) one peak') 
    %         [Hfit,lamOSET]= fSDOFCurveFit(peakPlot,Zabc11peak);%555 
     
    %         vect_LAMOSET(pp) = lamOSET; 
    %clear Zpeak hpeak habcpeak zabcpeak Zabc11peak iRpeak 
     
    %     end 
    %if lamOSET == []; 
     
    if vect_lamx_oset == []; 
         
        vect_lamx_oset = LAMOSET(1:5); 
         
    else  
        vect_lamx_oset  = cat(1,vect_lamx_oset,LAMOSET(1:5)); 
    end % "if vect_lamx_oset == []" 
end % "for Hloop=1:icnt_oset" loop 
%end 
% ********************  END Htrial.m  *********************** 



131

normRUNthru_crs.m 
 
% This program finds the NORM of the columns of sensitivity matrix and the 
% NORM of the rows of the inverse of the sensitivity matrix.  This was used 
% to find a correlation of the good prediction to the ABC system used.  It  
% also plots the information in helpful graphes. 
% 
% This program was written for a system of 19 natural freq. Set of 5 modes 
% were used in each ABC system, i.e., modes 1-5, modes 6-10,or modes 11-15. 
% This accounts for the 3 sets of modes per condition as listed below in 
% the "for" loop modeN = 1:3. This program compares the use of the first 5 
% modes of the base system and one set of five modes of the ABC  to that of 
% of just 10 modes of the ABC.  Notice that the sensitivity is a 10x10 
% square matrix indicating that only mass or EI changes, not both were 
% made. 
 
% This program is not part of Build2Beams_crs.m program.  It is run 
% separately. 
 
% Written by Constance R S Fernandez, Spring 2004 
 
% Inputs 
% ------ 
% cond_basePlus 
% icnt_oset 
% T_sens_tot 
% EI_lbls, mass_lbls 
% dv_mass, dv_EI, dv_cal_ABCten 
 
% Outputs 
% -------- 
% BASE  
% BASET 
% abcN, countN, a_cN 
% modeN, startmodeN, startmodeNT 
% bb, t, tINV, cc, T, TINV, vv, tt 
% modelabelNORM 
% norm_vectT, norm_vecTABC, norm_vecTinvABC 
% normC 
% baseN, baseABCN, abc_conN, abc_conTN 
% baseABCNten, abc_conNten, abc_conTNten 
 
% ----Start program---- 
 
BASE = int2str(cond_basePlus(1)); % cond no. of the base line system 
BASET = sprintf('Base[1:5] Cond = %s', BASE); % used for plotting 



132

 
% ======Initialization=====% 
 
abcN = 0; 
countN =0; 
 
% =======Calculations of NORM vectors======% 
for count = 1:icnt_oset +1 % number of conditions (base + ABC) 
    a_cN = 1; 
     
    for modeN = 1:3 % 3 sets of modes per boundry condition 
        startmodeN = abcN + a_cN; % the beginning mode number of each set 
         
        % indicates the use of the first 5 modes of base system + 5 modes  
        % of ABC system  
        bb = [1:5, startmodeN: startmodeN+4];  
         
        % labeling of modes for plotting 
        modelabelNORM = int2str(a_cN:a_cN+4);  
         
        a_cN = a_cN+5;    %advances to the next set of modes   
         
        % base system plus 5 modes of ABC         
        t = T_sens_tot(bb,:); % 10x10 matrix 
        tINV = inv(T_sens_tot(bb,:));% 10x10 matrix 
         
        % first 10 modes of ABC solo 
        startmodeNT = abcN+1; % the beginning mode number of each set 
        cc = [startmodeNT: startmodeNT+9];  
         
        T = T_sens_tot(cc,:);% 10x10 matrix 
        TINV = inv(T_sens_tot(cc,:));% 10x10 matrix 
         
        % for loop for NORM of columns and rows of inv(sens matrix) 
        for vv = 1:10 % 10 rows, 10 columns 
            % base + ABC system 
            norm_vecT(vv,countN+modeN) = norm(t(:,vv)); % columns 
            norm_vecTinv(vv,countN+modeN) = norm(tINV(vv,:)); % rows 
            % for 10 modes ABC solo 
            norm_vecTABC(vv,countN+modeN) = norm(T(:,vv)); % columns 
            norm_vecTinvABC(vv,countN+modeN) = norm(TINV(vv,:)); % rows 
             
        end % vv loop 
    end % ModeN loop  
    abcN = abcN+19; % advances to the next ABC system   
    countN = countN+3; % counts up each set of ABC  



133

end % count loop 
normC=4; % initialize for plots 
 
%==========PLOTTING==========% 
 
for tt=1:10 % figures (30-40) plots 6 graphes per figure 
    figure(tt+30) 
    subplot(3,2,1) 
    bar(norm_vecT(:,normC)) 
    title ('Norm col Tsens, ABC Modes [1:5]'); 
     
    subplot(3,2,3) 
    bar(norm_vecTinv(:,normC)) 
     
    title ('Norm row TsensINV, ABC Modes [1:5]'); 
     
    subplot(3,2,2) 
    bar(norm_vecTABC(:,normC)) 
    title ('Norm col Tsens, ABC Modes [1:10]') 
    subplot(3,2,4) 
    bar(norm_vecTinvABC(:,normC)) 
    title ('Norm row TsensINV, ABC Modes [1:10]') 
     
    subplot(3,2,5) 
    % plotting error prediction  
    % using [1:5] modes of ABC system + [1:5] modes of Base system; 
    baseABCN = bar(dv_cal_BasePlus(:,normC),.5,'r');hold on 
     
    % plotting error prediction using [1:5] modes of Base system; 
    baseN = bar(dv_cal_ABC(:,1),.25,'b'); 
     
     
    abc_conN = int2str(cond_basePlus(normC)); % cond no. for legend 
    abc_conTN = sprintf('Base[1:5]+ABC[1:5] Cond = %s', abc_conN); 
     
    grid on 
    legend([baseABCN,baseN],BASET,abc_conTN), hold on 
     
     
    % plotting actual error 
    if EI_lbls ~=[] & mass_lbls ~=[] 
        stem(mass_lbls, dv_mass,'y','filled'); hold on;  
        stem(mass_lbls, dv_mass,'k') 
         
        EIplot = EI_lbls+10;hold on 
        stem(EI_lbls, dv_EI,'c','filled');hold on;  



134

        stem(EI_lbls, dv_EI,'k') 
         
    elseif  mass_lbls ~=[] & EI_lbls ==[] 
        stem(mass_lbls, dv_mass,'y','filled');hold on;  
        stem(mass_lbls, dv_mass,'k') 
         
    else 
        stem(EI_lbls, dv_EI,'c','filled');hold on;  
        stem(EI_lbls, dv_EI,'k') 
         
    end % if EI_lbls ~=[] & mass_lbls ~=[] 
     
    title (sprintf('Error, Base [1:5] + ABC [1:5], pinned NODE # %d', (tt+1))) 
     
    subplot(3,2,6) 
    % plotting error prediction using [1:10] modes of ABC system; 
    baseABCNten = bar(dv_cal_ABCten(:,normC));hold on 
     
    abc_conNten = int2str(cond_ABCten(normC)); 
    abc_conTNten = sprintf('ABC[1:10] Cond = %s', abc_conNten); 
     
    grid on 
    legend([baseABCNten],abc_conTNten), hold on 
     
    % plotting actual error 
    if EI_lbls ~=[] & mass_lbls ~=[] 
        stem(mass_lbls, dv_mass,'y','filled'); hold on;  
        stem(mass_lbls, dv_mass,'k') 
         
        EIplot = EI_lbls+10;hold on 
        stem(EI_lbls, dv_EI,'c','filled');hold on;  
        stem(EI_lbls, dv_EI,'k') 
         
    elseif  mass_lbls ~=[] & EI_lbls ==[] 
        stem(mass_lbls, dv_mass,'y','filled');hold on;  
        stem(mass_lbls, dv_mass,'k') 
         
    else 
        stem(EI_lbls, dv_EI,'c','filled');hold on;  
        stem(EI_lbls, dv_EI,'k') 
         
    end % EI_lbls ~=[] & mass_lbls ~=[] 
       
    title (sprintf('Error, ABC Modes [1:10], pinned NODE # %d', (tt+1))) 
    
     normC = normC+3; % advances to the next ABC system 



135

end % tt = 1:10 for plotting graphes 
 
% ********************  END normRUNthru_crs.m  *********************** 



136

peakmodeloop.m 
 
% This program was written to find graphically the peak of FRF of ABC 
% system.  It calls the FSDOFCurveFit program to find peak of FRF.  
% Written by Constance R S Fernandez, Spring 2004 
 
for peak = 1:3; 
         
        sprintf('Mode %d',peak) 
        peakstart = input('Enter starting omega  : '); 
        peakdelta = input('Enter delta omega for this peak : '); 
        peakend = input ('Enter ending omega : '); 
        peakPlot = [peakstart : peakdelta : peakend]; 
         
        iRpeak=0; % initizes the index used in loop 
        c = 0; 
        clear Zpeak hpeak habcpeak zabcpeak Zabc11peak  
         
        %"for" loop to calculate the driving point and FRF of the remaining set of DOF 
        for omega = peakPlot  % in Hz 
            omega = omega*2*pi; 
            iRpeak = iRpeak + 1; % loop counter 
            Zpeak = kx_beam - omega.^2 * mx_beam + j*c*omega;  
             
            hpeak = inv(Zpeak); 
            habcpeak = hpeak(Hoset, Hoset); 
            zabcpeak= inv(habcpeak); 
            Zabc11peak(iRpeak) = zabcpeak(1,1); 
        end 
        figure (2) 
         
        plot(peakPlot,log10(abs(Zabc11peak)),'g');grid on  
        hold on 
         
        title('inv(H) one peak') 
        [Hfit,lamOSET]= fSDOFCurveFit(peakPlot,Zabc11peak);%555 
         
        %clear Zpeak hpeak habcpeak zabcpeak Zabc11peak iRpeak 
         
    end 
     
% ********************  END peakmodeloop.m  *********************** 
     
 



137

PlotBeamModes_crs.m 
 
% Calculates natural frequencies 
 
% Provided by Prof Gordis 
 
% Inputs needed: 
% ----------------- 
% ka, ma, mx, kx 
 
% Programs needed: 
% ----------------- 
% fModes 
 
% Outputs: 
% ----------------- 
% lama, phia, lamx, phix (without rigid body modes) 
% num_rbm 
% phia_plot, phix_plot 
 
 
disp('  '); 
disp(' Calculating modes for each beam...plot frequency comparison') 
 
 
% Get modes of each beam: 
 
[lama,phia]=fModes(ka,ma); 
[lamx,phix]=fModes(kx,mx); 
 
%used to plot the mode shapes org BC before ABC 
phia_plot = phia; 
phix_plot = phix; 
 
% Set any rigid body mode freqs to zero: 
 
  num_rbm = length(find(lama < 1)); 
 
  sprintf('Number of Rigid Body Modes Found: %2i', num_rbm) 
 
    disp( ' Removing rigid body mode frequencies from vectors...') 
    lama = lama(find(lama > 1)); 
    lamx = lamx(find(lamx > 1)); 
 
% ********************  END PlotBeamModes_crs.m  *********************** 



138

plottingBARS_crs.m 
 
% To be used with Build2Beams.m and  
%  
% This program plots 9 graphes per figure.  The first columns of 3 graphes  
% are the mode shapes of the ABC system used in error prediction.  The next 
% column of 3 graphes are the error prediction using only 5 modes of ABC  
% system. The last column of 3 graphes are the error predictions using the  
% first 5 modes of base system plus 5 modes of the ABC system.  The row 
% represent modes 1-5, middle row: modes 6-10, last row : modes 11-15. Each 
% of the error prediction graphes also have the base only prediction  and 
% the actual error plotted for easy reference.  
% 
% Written by Constance R S Fernandez, Spring 2004 
 
% Inputs 
% -------- 
% cond_basePlus 
% FOM_ABC5per, FOM_PLUSper 
% icnt_oset 
% modeshape 
% rel_freqERROR 
% ypos 
% EI_lbls, mass_lbls 
% dv_mass, dv_EI 
 
% Outputs 
% -------- 
% BASE, BASET 
% FOMBASE, FOMABC, FOMPLUS 
% intervelp 
% ER, barp, shape, error, a_cp, modep, ap,  
% modelabelp, FOMABClabelp, FOMPLUSlabelp 
% abc_con, abc_conT 
% ABC, base 
% plus_con, plus_conT 
% base, plus, EI_plot 
 
 
BASE = int2str(cond_basePlus(1)); 
FOMBASE = int2str(FOM_ABC5per(1)); 
BASET = sprintf('Base Cond = %s, FOM = %s', BASE, FOMBASE); 
 
         
intervelp = 3; 
modeshape = 1; 



139

ER = 1; 
for barp = 1:icnt_oset 
     
    figure(barp+10) % figures 11-20 
    format bank 
    shape = [modeshape:modeshape+10]; 
    error = round(rel_freqERROR(ER:ER+15)*100)/100; 
    a_cp = 1; 
    for modep = 1:3 %3 sets of modes per boundry condition 
         
        ap = [a_cp: a_cp+4]; %modes  
%         REL_error1 = int2str(error(a_cp)); 
%         Errorlabelp = sprintf('Rel error = %s', REL_error1); 
%         REL_error2 = int2str(error(a_cp+1)); 
%          Errorlabelp = sprintf('Rel error = %s', REL_error2); 
%         REL_error3 = int2str(error(a_cp+2)); 
%          Errorlabelp = sprintf('Rel error = %s', REL_error3); 
%         REL_error4 = int2str(error(a_cp+3)); 
%          Errorlabelp = sprintf('Rel error = %s', REL_error4); 
%         REL_error5 = int2str(error(a_cp+4)); 
%          Errorlabelp = sprintf('Rel error = %s', REL_error5); 
         
        modelabelp = int2str(a_cp:a_cp+4); 
        FOMABC = int2str(FOM_ABC5per(intervelp+modep)); 
        FOMABClabelp = sprintf('System FOM = %s', FOMABC); 
         
        FOMPLUS = int2str(FOM_PLUSper(intervelp+modep)); 
        FOMPLUSlabelp = sprintf('System FOM = %s', FOMPLUS); 
          
        
        % =======================================================%  
        % =====mode shape or beam X and beam A with ABC==================% 
        % =======================================================% 
 
        figure(barp+50) 
        subplot(3,1,modep)  
        plot(ypos, dispA_tot(shape,a_cp),'k-o', ypos, ... 
            dispA_tot(shape,a_cp+1),'g-s', ypos, ... 
            dispA_tot(shape,a_cp+2),'b-d', ypos, ... 
            dispA_tot(shape,a_cp+3),'r-x', ypos, ... 
            dispA_tot(shape,a_cp+4),'m-*', ypos, ... 
            dispX_tot(shape,a_cp),  'r--o', ypos, ... 
            dispX_tot(shape,a_cp+1),'b--s', ypos, ... 
            dispX_tot(shape,a_cp+2),'m--d', ypos, ... 
            dispX_tot(shape,a_cp+3),'c--x', ypos, ... 
            dispX_tot(shape,a_cp+4),'k--*'), grid on...  



140

             
         
        legend(sprintf('Rel Freq Error = %d', error(a_cp)),... 
            sprintf('Rel Freq Error = %d', error(a_cp+1)),... 
            sprintf('Rel Freq Error = %d', error(a_cp+2)),... 
            sprintf('Rel Freq Error = %d', error(a_cp+3)),... 
            sprintf('Rel Freq Error = %d', error(a_cp+4))); 
         
%         legend(sprintf('Bm X, Md %d', a_cp'), sprintf('Bm X, Md %d', a_cp+1),... 
%             sprintf('Bm X, Md %d', a_cp+2), sprintf('Bm X, Md %d',a_cp+3),... 
%             sprintf('Bm X, Md %d', a_cp+4), sprintf('Base, Md %d', a_cp), ... 
%             sprintf('Base, Md %d', a_cp+1), sprintf('Base, Md %d', a_cp+2), ... 
%             sprintf('Base, Md %d', a_cp+3), sprintf('Base, Md %d', a_cp+4)) 
         
         
        title(sprintf('Modes [ %s]',modelabelp)) 
        axis tight 
 
        %=========================================================% 
        % ===== bar graphes of error solution using only ABC=============% 
        %=========================================================% 
 
        figure(barp+10) % figures 11-20 
        subplot(3,2,2*modep-1)  
         
        abc_con = int2str(cond_ABC(intervelp+modep)); 
        abc_conT = sprintf('ABC Cond = %s, FOM = %s', abc_con, FOMABC); 
                
        ABC = bar(dv_cal_ABC(:,intervelp+modep),.5,'r'); hold on 
        base = bar(dv_cal_ABC(:,1),.25,'b');hold off%on % base first 5 modes 
        %FOMabc = bar(1,0); hold off  
        grid on 
        %legend([ABC,base,FOMabc],plus_conT,BASET,FOMABClabelp), hold on  
       % grid on 
        legend([ABC,base],abc_conT,BASET), hold on 
    
        title(sprintf('ABC only, [ %s]', modelabelp));        
       
        
              
        if EI_lbls ~=0 & mass_lbls ~=0 
            % plots actual error 
            stem(mass_lbls, dv_mass,'y','filled'); hold on;  
            stem(mass_lbls, dv_mass,'k'), hold on; 
             
            EIplot = EI_lbls+10; hold on % last half of plot 



141

            stem(EIplot, dv_EI,'c','filled');hold on;  
            stem(EIplot, dv_EI,'k'); hold on 
            % plots the green triangle which indicates pinned node 
            plot(barp+1,0,'g^',barp+1,0,'gh',barp+1,0,'g*',... 
                barp+11,0,'g^',barp+11,0,'gh',barp+11,0,'g*'  ) 
             
        elseif  mass_lbls ~=0 %&EI_lbls =0  
            % plots actual error 
            stem(mass_lbls, dv_mass,'y','filled'); hold on  
            stem(mass_lbls, dv_mass,'k'); hold on 
            % plots the green triangle which indicates pinned node 
            plot(barp+1,0,'g^',barp+1,0,'gh',barp+1,0,'g*') 
             
        else 
            % plots actual error 
            stem(EI_lbls, dv_EI,'c','filled');hold on;  
            stem(EI_lbls, dv_EI,'k'); hold on 
            % plots the green triangle which indicates pinned node 
            plot(barp+1,0,'g^',barp+1,0,'gh',barp+1,0,'g*') 
             
        end % EI_lbls ... 
         
        % =======================================================% 
        % =========bar graphes of error solution using ABC + base========% 
        % =======================================================% 
 
        subplot(3,2,2*modep)  
         
         
        plus_con = int2str(cond_basePlus(intervelp+modep));% for legend 
        plus_conT = sprintf('Base+ABC Cond = %s FOM = %s', plus_con, FOMPLUS); 
        % for legend 
         
        plus = bar(dv_cal_BasePlus(:,intervelp+modep),.5,'r'); hold on 
        base = bar(dv_cal_ABC(:,1),.25,'b'); hold on % base first 5 modes 
        %FOMplus = bar(1,0); hold off  
        grid on 
        legend([plus,base],plus_conT,BASET), hold on  
%        legend([plus,base,FOMplus],plus_conT,BASET,FOMPLUSlabelp), hold on        
 
        if EI_lbls ~=0 & mass_lbls ~=0 
            % plots actual error 
            stem(mass_lbls, dv_mass,'y','filled'); hold on;  
            stem(mass_lbls, dv_mass,'k'); hold on 
            EIplot = EI_lbls+10; hold on % last half of plot 
            stem(EIplot, dv_EI,'c','filled');hold on;  



142

            stem(EIplot, dv_EI,'k');hold on 
            % plots the green triangle which indicates pinned node 
            plot(barp+1,0,'g^',barp+1,0,'gh',barp+1,0,'g*',... 
                barp+11,0,'g^',barp+11,0,'gh',barp+11,0,'g*'  ) 
           
         elseif  mass_lbls ~=0 %&EI_lbls =0  
            % plots actual error 
            stem(mass_lbls, dv_mass,'y','filled');hold on;  
            stem(mass_lbls, dv_mass,'k');hold on 
            % plots the green triangle which indicates pinned node 
            plot(barp+1,0,'g^',barp+1,0,'gh',barp+1,0,'g*') 
        else 
            % plots actual error 
            stem(EI_lbls, dv_EI,'c','filled');hold on;  
            stem(EI_lbls, dv_EI,'k'), hold on 
            % plots the green triangle which indicates pinned node 
            plot(barp+1,0,'g^',barp+1,0,'gh',barp+1,0,'g*') 
             
        end % if EI_lbls ... 
         
        title(sprintf('Base [1:5] + ABC [ %s]', modelabelp)); 
        %       title(sprintf('Base + ABC, pinned at NODE# %d',barp +1)) 
        a_cp= a_cp +5;     
    end  % modep loop 
     
    modeshape = modeshape + 11; % advances  
    intervelp = intervelp +3; % advances to the next ABC system 
    ER = ER+19; 
end % barp loop 
 
% ********************  END plottingBARS_crs.m  *********************** 



143

recorded_H_crs.m 
% Written by Constance R S Fernandez, Spring 2004 
 
% This program is used to find the natural frequencies of the ABC Systems 
%  
% The natural frequencies of each ABC system were calculated by keeping  
% the unrestrained DOF from the stiffness and mass matrices of Beam X  
% because natural freq of system coorespond to the unrestained DOF of the  
% system, oset.   
% This method was used for ease of use in multiple computer runs.  
%  
% Another method of getting ABC system:  
%  
% 1) Build the impedence matrix Z 
%    a) using a range of frequencies  
%    b) stiffness and mass matrices of the experimental Beam X saved  
%       in the program Build2Beams.m 
% 2) H = inv(Z) 
% 3) Only the pinned rows and columns of H are kept to yield  
%    natural frequenices of the ABC systems  
% 4) Z = inv(H reduced) 
% 5) Plot the new Z,  
%    (peaks coorespond to ABC system natural frequencies) 
% 6) Use curve fitting program to estimate the freq of peak 
%  
% Method of getting ABC with recorded data.  
% 1) H recorded is saved as spreadsheets   
% 2) Only the pinned rows and columns of H are kept. 
% 3) Plot the remaining H,  
%    (peaks coorespond to ABC system natural frequencies) 
% 4) Invert H to get Z 
% 5) Use curve fitting program to estimate the freq of peak 
 
% Inputs 
% ------- 
% icnt_oset 
% BCOSET 
% BC 
% kx_beam, mx_beam 
 
% Programs Called 
% --------------- 
% fModes 
 
% Outputs 
% ------- 



144

% Hloop 
% Ho_inct 
% Hoset 
% kABC,mABC 
 
% ----INITIALIZATION--- 
 
lamOSET = []; 
vect_lamx_oset = []; 
 
%============================================================== 
% loop for ABC natural frequencies (Method one) 
 
for Hloop = 1:icnt_oset; % for all ABC systems 
     
    Ho_inct = size(find(BCOSET(Hloop, :)>0),2);  
    Hoset = BCOSET(Hloop, 1:Ho_inct); % free DOF 
     
    HAset = BC(Hloop,:); % pinned DOF 
     
    kABC = kx_beam(Hoset, Hoset); %stiffness matrix of (no BC) 
    mABC = mx_beam(Hoset, Hoset); %mass matrix of unrestained DOF (no BC) 
     
    % lam (natural freq^2, rad^2/sec^2), phi (mode shapes) 
    [lamABC,phiABC]=fModes(kABC,mABC);  
     
    lamABCtot = lamABC; % renames natural freq of ABC system 
     
    %     
%============================================================== 
    %     %-----------------------METHOD 2----------------------------------- 
    %     
%============================================================== 
    %      
    %     % ----INITIALIZATION--- 
    %      
    %     StartOmega = 1; % in Hz 
    %     DeltaOmega = .5; % in Hz 
    %     EndOmega = 1000; % in Hz 
    %      
    %     freqPlot = [StartOmega : DeltaOmega : EndOmega]; % plotting in Hz 
    %     iR=0; % loop index  
    %     c = 0.02; % damping ratio 
    %     Zabc11 = zeros(length(freqPlot), 1); 
    %     %---------------     
    %     %-"for" loop to calculate the driving point and FRF of the remaining DOF       



145

    %     %--------------- 
    %     for omega = StartOmega : DeltaOmega : EndOmega; % in Hz 
    %         omega = omega*2*pi; % rad/sec 
    %         iR = iR + 1;  
    %         % loop counter% system impedence of multi DOF system 
    %         Zx_beam= kx_beam - omega.^2 * mx_beam + j*c*omega;  
    %          
    %         hx_beam = inv(Zx_beam); 
    %         % dynamically reduced, spatically incomplete FRF  
    %         habc = hx_beam(HAset, HAset); 
    %         % inverting to get Z, used in plotting peaks 
    %         zhabc = inv(habc); 
    %         % saves Z for each increment of frequency 
    %         zhabc11(iR) = zhabc(1,1);  
    %          
    %     end % omega loop 
    %      
    %     %---------------     
    %     %---PLOTTING----       
    %     %--------------- 
    %      
    %     figure(Hloop + 300) % plots the complete impedence matrix Z so user can  
    %     %see peaks and be able to keep peak range when prompted 
    %      
    %     plot(freqPlot,log10(abs(zhabc11)),'b'); 
    %     xlabel('inv(Hx_beam11) of the ABC System using inv Zx_beam, (in HZ)') 
    %     ylabel('log10 of') 
    %     hold on 
    %      
    %     %---------------     
    %     %---Peak gathering loop, curve fit program----       
    %     %--------------- 
    %      
    %     % ----INITIALIZATION--- 
    %     pp = pp+1; % index in natural frequency vector 
    %     iRpeak=0; % initizes the index used in loop 
    %      
    %     sprintf('Mode %d',peak)% displays which mode the following is requested 
    %     peakstart = input('Enter starting omega (Hz) : '); 
    %     peakdelta = input('Enter delta omega for this peak (Hz): '); 
    %     peakend = input ('Enter ending omega (Hz): '); 
    %     peakPlot = [peakstart : peakdelta : peakend]; % for plotting in Hz 
    %      
    %     %---------------     
    %     %-"for" loop to calculate the driving point and FRF of the remaining DOF 
    %     %  of reduced range of peak, same as previous calculation except range  



146

    %     %  is smaller which is needed for the curve fit program to be called. 
    %     %--------------- 
    %    
    %     for omega = peakPlot  % in Hz 
    %         omega = omega*2*pi; % in rad/sec 
    %         iRpeak = iRpeak + 1; % loop counter 
    %         Zpeak = kx_beam - omega.^2 * mx_beam + j*c*omega;  
    %          
    %         hpeak = inv(Zpeak); 
    %         habcpeak = hpeak(HAset, HAset);  
    %         zabcpeak= inv(habcpeak); 
    %         Zabc11peak(iRpeak) = zabcpeak(1,1); 
    %     end %  "for omega loop" 
    %     
    %     [Hfit,lamOSET]= fSDOFCurveFit(peakPlot,Zabc11peak); 
    %      
    %     vect_LAMOSET(pp,1) = lamOSET; % saves nat freq found in fSDOFCurveFit  
    %     % in vector form 
    %      
    %     clear Zpeak hpeak habcpeak zabcpeak Zabc11peak iRpeak 
     
     
     
    %vect_lamx_oset = vect_LAMOSET; % use with curve fit program 
     
    % vector of natural frequencies of ABC systems  
    if vect_lamx_oset == 0; 
         
        vect_lamx_oset = lamABCtot; 
    else  
        vect_lamx_oset  = cat(1,vect_lamx_oset,lamABCtot); 
    end % "if" 
     
end % Hloop "for" 
 
clear peakPlot peakstart  peakdelta  peakend pp 
clear freqPlot StartOmega DeltaOmega EndOmega] 
clear Hloop Ho_inct Hoset HAset 
clear Zx_beam hx_beam habc zhabc zhabc11 iR 

 
% ********************  END recorded_H_crs.m  *********************** 



147

LIST OF REFERENCES 

Berman, A. & Flannelly, W. G. (1971, August)  Theory of Incomplete Models of  

Dynamic Structures. AIAA Journal. 9 (8), 1481 -1486 

Brillhart R.D., Chism, T.L,  Freed, A.M., & Hunt, D. (1990 Jan 29-Feb 1) Modal Test  

and Correlation of Commercial Titan Dual Payload Carrier, For presentation at 

the 8th International Modal Analysis Conference in Kissimmee, FL 

Craig, R. R. (1981, August 5) Structural Dynamics: An Introduction to Computer  

Methods.  New York: John Wiley and Sons.  

Dascotte, E. Applications of Finite Element Model Tuning Using Experimental Modal  

Data. (June 1991) Sound and Vibration 

Ewins, D. J. (1984). Modal Testing: Theory and Practice. England: Research Studies  

Press LTD. 

Flanigan, C. C. Correlation of Finite Element Models Using Mode Shape Design  

Sensitivity. 

Gordis, J. H. (1993) Spatial Frequency Domain Updating of Linear, Structural Dynamic  

Models 

Gordis, J. H. (1993, April) A Frequency Domain Theory for Structural Identification.  

Journal of American Helicopter Society. 25-3 

Gordis, J. H. (1994, February 21). Structural Synthesis in the Frequency Domain: 

A General Formulation.  Shock and Vibration. 1(5) 461-471 

Gordis, J. H. (1996, July). Omitted Coordinate Systems and Artificial Constraints in  

Spatially Incomplete Identification. Modal Analysis: the International Journal of 

Analytical and Experimental Modal Analysis. 11(1), 83-95 

 



148

Gordis, J. H. (1999) Artificial Boundary Conditions for Model Updating and Damage 

Detention. Mechanical Systems and Signal Processing, 13 (3), 437-448 

Ledvij, M. (2003, April/May) Curve Fitting Made Easy. The Industrial Physicist. 9(2),  

24-27 

Nelson, R. B. (1976, September). Simplified Calculation of Eigenvector Derivatives.  

AIAA Journal, 14 (9), 1201- 1205 

Rinawi, A. M. & Clough R.W. (1992) Improved Amplitude Fitting for Frequency and  

Damping Estimation. Proceedings of the 10th International Modal Analysis 

Conference. Vol 1, 25-29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



149

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 


	I. INTRODUCTION
	II. THEORY
	OMITTED COORDINATE SET
	EXACT DYNAMIC REDUCTION AND FRF MATRICES
	DRIVING POINT FREQUENCY RESPONSE FUNCTION

	III. NATURAL FREQUENCIES OF ABC CONFIGURED SYSTEMS
	A. THE IMPORTANCE OF ABC FREQUENCIES IN MODEL UPDATING
	B. ABC FREQUENCIES OF A GIVEN ASET ARE DEFINED BY THE CORRES
	3. ABC Example using Multi - DOF System, Multiple Coordinate

	C. MULTIPLE ABC SYSTEMS AVAILABLE
	D. OBTAINING OSET FREQUENICES GRAPHICALLY
	1. Theory of Curve Fitting
	2. Amplitude Fitting


	IV. SENSITIVITY–BASED UPDATING WITH ARTIFICAL BOUNDARY CONDI
	SENSITIVITY MATRIX DEFINED
	SENSITIVITY MATRIX MATHEMATICALLY DERIVED
	SENSITIVITY MATRIX USED IN ERROR PREDICTIONS OF A SIMPLE CAN
	1.  Error Prediction:  Example 1
	2.  Error Prediction:  Example 2
	3.  Error Prediction:  Example 3
	4.  Error Prediction:  Example 4


	V. EXPERIMENTAL APPLICATION
	A. CANTILEVER BEAM AND EQUIPMENT SETUP
	B. DATA COLLECTION
	C. DATA ANAYLSIS

	VI. CONCLUSIONS AND RECOMMENDATIONS
	CONCLUSIONS
	RECOMMENDATIONS

	APPENDIX A
	APPENDIX B
	ABCrunTHRU_crs.m
	AddLumpMass.m
	Assemble2Beams.m
	AssembleSens_crs.m
	BeamA_Prompt.m
	BeamH4141.m
	BeamH4141q.m
	BeamProperties_crs.m
	BeamSensitivity_crs.m
	BeamSensitivityOSET_crs.m
	BeamX_Prompt.m
	BoundaryConditions_crs.m
	Build2Beams_crs.m
	displacementPlot_crs.m
	displacementPlot_OSET.m
	fbeamkm.m
	fFRF.m
	fModes.m
	fNormalize.m
	FOM_crs.m
	fOset_from_Aset.m
	fSDOFCurveFit.m
	fSpringMass2.m
	HresiduesL.m
	Hs.m
	Htrial.m
	peakmodeloop.m
	PlotBeamModes_crs.m
	plottingBARS_crs.m
	recorded_H_crs.m


	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

