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ABSTRACT 
 
 
Nearly all armies of the Western Hemisphere use modeling and simulation tools 

as an essential part of performing analysis and training their leaders and war fighters. 

Tremendous resources have been applied to increase the level of fidelity and detail with 

which real combat units are represented in computer simulations. Current models digress 

from Lanchester equations used for modeling the big Cold War scenarios towards 

modeling of individual soldier capabilities and behavior in the post Cold War 

environment and increasingly important asymmetric warfare scenarios. Although 

improvements in computer technology support more and more detailed representations, 

human decision making is still far from being automated in a realistic way. Many 

“decisions” within a simulation are based on overly simple models and hardly at all on 

cognitive processes. One cognitive model in naturalistic decision making is the 

Recognition Primed Decision Model developed by Klein and Associates. It describes 

how the actual process humans use to come up with decisions in certain situations is 

radically different from the traditional model of rational decision making. Mental 

simulation is an essential part of this model in order to picture possible outcomes in the 

future for potential courses of actions. This research provides a computational model for 

mental simulation in a combat simulation environment. It generates the look into the near 

future with a finite Markov Chain as one instance of several possible predictive models. 

The results of the model are compared with preliminary human experimental data. The 

experiments show that the model developed performs in the human range with respect to 

prediction and decisions. This research shows that entities in a combat simulation 

environment having the capability of looking ahead into the near future based on 

statistical data perform more realistically than those that just use the information of the 

present, not even including the past. 
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I. INTRODUCTION  

A. THESIS STATEMENT  
This thesis shows that the methodologies of statistical event prediction can be 

used to effectively model mental simulation for improving human models in combat 

simulations. “Mental simulation” in this context means the ability of software agents to 

simulate future events in order to evaluate their own courses of actions in combat simula-

tions and to hypothesize events that might occur given the current and past situation.  

B. PROBLEM STATEMENT 
Running combat simulation models for training purposes is very time- and per-

sonnel-intensive, because the low degree of artificial intelligence possessed by the con-

structed units in the simulation requires both extensive manual input of initial orders and 

human monitoring during the simulation run. The capabilities of autonomously acting 

units are very limited. The range of modeling military decision making goes from sophis-

ticated methodologies, e.g., comparing scored values of possible actions and taking the 

highest or the lowest value depending on circumstances (Norling et al., 2000), to less so-

phisticated cases, in which units execute their initial orders according to an internal script 

– these are mainly “movement orders” – and react to opposing fire, properties of the ter-

rain, or movement data. Their perception of the environment is restricted to that which is 

directly relevant to the application domain: for example, a simulated tank commander 

knows only certain knowledge about tank combat, nothing else. By contrast, many hu-

man tank commanders have life experiences that may influence their decisions more 

strongly than domain knowledge (Forsythe, 2000). For many research prototypes of 

agents the learning capability has been addressed. However, in combat simulation models 

these issues have not been implemented in a satisfying scale. Therefore, the lack of a 

learning component of simulated commanders precludes them from making complex de-

cisions at a scale to humans; many decision making aspects of the simulation have to be 

resolved externally and then put into the system, requiring much skilled assistance.  

Increasing the degree of Artificial Intelligence (AI) increases the cost-

effectiveness of a simulation system during its use. Fewer staff are needed for scenario 
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input and system setup. During a run, the greater autonomy of the system leads to longer 

decision cycles before the units reach unreasonable or unacceptable conclusions. With 

enhanced AI, an assistant can control or monitor more units, a factor that is especially 

valuable for the analytical application domain of modeling and simulation, for which 

there is usually of a paucity of personnel as compared to a training environment. How-

ever, there is also a drawback. Decisions made within the system by simulated com-

manders are not normally as good or as high-quality as decisions made by human com-

manders, an observation valid not only in regard to the ingenious decisions made by great 

generals or admirals, but also to conventional and small-scale decisions as well. One of 

the differences between the performance of artificial commanders and human command-

ers lies in the ability of humans to mentally simulate a number of potential outcomes of 

their actions. The following example illustrates this capacity.  

A platoon is defending a position with tanks. Enemy tanks are expected to come 

around a forest corner within firing range. A human platoon commander, seeing one en-

emy tank, would expect more tanks and therefore would wait longer before opening sur-

prise fire than a simulated commander would. The human commander knows that, if he 

fires prematurely, he may destroy the lead tank, but the others will be warned and try to 

outflank him. So he projects, or simulates, forward in time the possible consequences of 

his actions. Since mental simulation is beyond the present capability of simulated com-

manders, they may choose a different tactic, leading to a different outcome, unless over-

ridden at particular decision points. 

Adding a mental-simulation capability to constructed units will contribute to the 

enhancement of AI and to overall economy and quality. Why can this be expected? Be-

cause, that is how humans think.  

During his nearly 20 years of empirical research, Gary Klein investigated the de-

cision making processes of firefighters, pilots, nurses, military leaders, nuclear-power-

plant operators, and experts in a range of other domains (Klein, 1999).  He developed a 

model that focuses on human strengths and capabilities that have not been modeled in 

classical decision theory. In his writing, Klein describes how commanders and leaders 

http://dict.leo.org/?p=2Ib6..&search=ingenious


 3

(and experts in general) are often required to make urgent decisions in moments of uncer-

tainty. In this regard, Peter Thunholm also concludes: 

The study of military tactical planning and decision-making has shown 
that experienced commanders, quite contrary to what is prescribed by tra-
ditional military prescriptive planning models, make intuitive decisions 
based on recognition and mental simulation (Thunholm, 2000). 

Susan Hutchins (1996) finds that, in those situations leaders use recognition-based 

reasoning instead of the classical rational approach. That does not necessarily mean they 

decide irrationally in the usual sense of the word; rather, they arrive at good decisions by 

a different path. All three researchers state that they are not discussing a prescriptive the-

ory, but a descriptive theory, of decision making: that is, a theory of actual human deci-

sion making processes.  

Recognition-primed decision making (RPD) is an established subfield in the do-

main of psychology. In the annual conferences since 1998 a large number of applications 

and advances in the field have been described (NDM, 2005). The attractiveness of the 

approach and degree of adaptation possible within the military is quite enormous. Klein 

conducted approximately fifteen studies, funded by the U.S. Army Research Institute, to 

investigate decision making in a military environment (Klein, 2003). The US Committee 

on Technology for Future Naval Forces stated in 1997 that the Navy should pursue an 

approach to joint-model development with a long-term view and an associated emphasis 

on flexibility. Especially with respect to the technical attributes needed in joint models, 

decision models should represent the reasoning and behavior of commanders at different 

levels, naturally reflecting the actions, plans, and adaptations that commanders make in 

the course of operations (Committee on Technology for Future Naval Forces, 1997). It is 

thus appropriate that the Naval Studies Board of the National Research Council, Wash-

ington D.C., foresaw the advantage of mental simulation, as recommended in 2000: 

The Department of the Navy may need to train commanders in recogniz-
ing patterns in typical cases and anomalies encountered in operations to 
improve their mental simulation skills and enable quicker and better deci-
sions (National Research Council, 2000).  
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This statement provides a long-term view of the need for modeling mental simula-

tion for future command-decision modeling. Huang (2003) also points out the need for 

commanders to predict and evaluate future situations. The emergence of huge informa-

tion resources, especially, requires crucial support of the commander by appropriate C2 

systems. In decision-making, the commander pursues information superiority, creates op-

portunity or risk foresight, and then realizes command superiority. To do so, the com-

mander requires a C2 support system to enhance his situational awareness by presenting 

him with an explanatory picture and supporting situational assessment, including predic-

tion and evaluation of the future status (Huang, 2003). The development of algorithms for 

C2 systems is not under review here; but to represent decision-making behavior appropri-

ately it is necessary to represent prediction and evaluation. This research applies the 

methodologies of event prediction to achieve the capabilities mentioned above. While it 

is impossible to create a crystal ball that looks into the future with a magic eye and pre-

dicts the next event with a probability of 1, there is hope that predictive techniques devel-

oped in various domains can be applied to prediction of future events in the simulation, 

given the observation of the past. The techniques examined in this research have been 

applied already in reliability analysis, speech recognition and control theory (Aven, 2002; 

Rabiner, 1989). 

In reliability analyses the number of events of type X that occur in a certain pe-

riod of time are monitored. These events normally represent failures of devices, whether  

component failures or malfunctioning. The occurrence of a sufficient number of moni-

tored events allows the determination of the parameters from uncertainty distributions, 

e.g., Poisson distributions. Applying these distributions yields a prediction of the next 

event with a certain probability (Aven, 2002). For more complicated systems, or where 

there is a lack of sufficient historical data, we use the Bayesian approach, e.g.,  Bayesian 

belief networks. They have a mathematical formalism that allows reasoning during condi-

tions of uncertainty and provides a robust probabilistic framework to evaluate the impact 

of evidence on uncertain outcomes (Ganesh, 2001).   

Hidden Markov models (HMM) are commonly recognized as a state-of-the-art 

technique in speech recognition. HMMs can be considered as finite-state machines with 
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known or estimated transition probabilities as well as probabilities for emitting observa-

tions from a state. The state of the system is hidden from the observer. Only the observa-

tions are “visible.” With sophisticated algorithms we can calculate the past transitions 

that created a certain observation sequence. All these techniques will be detailed in Chap-

ter II.  Here we demonstrate that, in many domains, events are predicted that are bases for 

decisions. In this research the need for a decision will require the system to estimate, that 

is to provide the probability of the next event. In this research also, prediction of the next 

event is a crucial part of mental simulation. 

Mental simulation in the sense of the Recognition Primed Decision model will 

contribute to enhanced decision making and make the results of a decision more stable 

and unsurprising. To illustrate, consider a chess computer. In chess, the number of figures 

and possible movements is finite—a huge number, but still finite. With current high-end 

computer power we are still not able to compute the whole search tree in a “reasonable” 

amount of time. Therefore, the chess computer looks a limited number of plies into the 

future. A ply in computer chess is a half-move, which is one turn of one of the players: in 

other words, it is the depth of the search tree the computer looks ahead (Russel & Norvig, 

2003). For instance, a player, looking only one ply ahead, cannot avert adversarial moves 

in time and loses the game. Therefore, it is reasonable to look more than one ply ahead,  

to decrease the probability of being surprised by a “killer move” of the opponent.  

This example shows not only that it is beneficial to mentally simulate, but also 

that mental simulation is independent of current technology. In a chess game, the player‘s 

move assessments are based on relatively simple scoring functions that are applied over 

and over again. Researchers are hopeful that simple scoring functions will also work for 

constructed units in the combat-simulation world. The more a system or simulated unit is 

able to look forward in time,  the better its chance of making a sound decision that repli-

cates the reasoning of human commanders.  

Mental simulation is still a new field. Though several approaches have been de-

veloped (Sokolowski, 2002; Warwick et al., 2001), they all focus on general issues of 

RPD, not explicitly on mental simulation. By contrast, this research will focus on the 

mental simulation component of RPD.  
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C. APPROACH 
Since computational approaches to mental simulation are fairly new, few ground-

breaking papers have been written. This research will compare various techniques, ap-

proaching via the Army simulation model, Combat XXI. This constructive model writes 

raw data in an externally accessible log-file, and, to apply the different approaches, the 

data must be preprocessed. In the main part of the analysis, the predicted events will be 

compared with the actual events.  

D. CONTRIBUTIONS 
Our representation of human cognition in a decision-making process has not pre-

viously been implemented in combat simulation systems. Providing agents the ability to 

assess possible consequences of their actions can result in proactive, instead of reactive, 

agents. The main goal here is not to make the agents better than experienced human 

commanders, but to provide new behavioral aspects that will significantly enhance the 

agents and to come close in range to human performance. This embellishment could be 

very valuable for the performance of closed-combat simulation systems, because it would 

allow us to follow the agents’ reasoning process and provide an explanatory component 

not available before. 

1. Contribution Goals 
This thesis has five goals:   

- it provides the first computational model for mental simulation in a com-

bat simulation environment, 

- it provides context and an improved situational awareness to the simulated 

entities, 

- it enables simulated entities to look into the near future and have, there-

fore, more realistic performance than those that include only knowledge of 

the present,  

- it provides an empirical terrain assessment tool, and  



 7

- it provides an explanatory component for the reasoning in terms of losses, 

time or probabilities. Therefore, the decisions can be explained in a natural 

human way. 

2. Scope 
It is beyond the scope of this research to implement and validate all five goals into 

a current combat simulation model in full detail. However, a partial implementation has 

been constructed to conduct proof-of-concept experiments.    

E. DISSERTATION OVERVIEW 
The remainder of this dissertation is organized as follows:  

• Chapter II, Related Work, describes current research about mental simu-

lation and event prediction in various fields. It describes the goals of de-

veloping and implementing mental simulation in the various fields and de-

picts prediction techniques to show their applicability to this research.  

• Chapter III, Design Considerations for the Model, describes a detailed 

view of mental simulation with respect to the specific environment of a 

combat simulation. It derives the general architecture of the model and 

generalizes our approach for similar research problems. 

• Chapter IV, Model Implementation, gives a detailed description of the 

model used. 

• Chapter V, Experiment and Results, describes the design of the experi-

ments and their results.  

• Chapter VI, Conclusion and Follow-on Work, summarizes the contribu-

tion made by the thesis  and addresses possible future expansions. 
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II. RELATED WORK 

This chapter provides a survey of current research relevant to this dissertation. It 

begins with a precise formulation of what mental simulation is and the nature of its rele-

vance to simulated decision-making. The chapter then discusses various prediction tech-

niques that could be used as a predictive component in our model. 

A. MENTAL SIMULATION 
In this particular context mental simulation is related to decision-making. But, be-

fore we define what we mean by mental simulation, it is useful to take a brief look at 

other interpretations of mental simulation that are related to our topic but not specifically 

addressed in this research.  

The term “mental simulation” is found in system dynamics and software devel-

opment and is one of four essential measures of program comprehension in software de-

velopment (Dunsmore, 2000), where it is used as a tool for evaluating pre-built models 

(with respect to trusting the results from a first simulation run and whether it can be as-

sumed that the modeler has adequately explored the system). In that context, mental 

simulation forces the modeler to thoroughly understand the reasons behind a model’s be-

havior and helps the developer find problems in computer models (Whelan, 2001). Le-

beck (1994) describes mental simulation as similar to asymptotic (e.g., worst-case behav-

ior) analysis of algorithms, which programmers use to study the number of operations 

executed as a function of input size. There, the program-reference pattern of the underly-

ing cache organization is mentally applied so that the program’s cache performance can 

be predicted. But the term occurs in the development of multi-agent architecture as well. 

Tambe and Rosenbloom (1996) state the need for multi agent architectures to provide 

support for flexible and efficient reasoning about other agents’ models and enabling men-

tal simulation of their behaviors. 

Mental simulation also has a connection to the research area of mental imagery. 

Mental imagery, often referred to as "seeing in the mind's eye" or "visualization," is a 

quasi-perceptual experience associated with cognitive functions such as memory, percep-
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tion, and thought (Nigel, 2003), but it occurs without the appropriate stimuli for the rele-

vant perception (Finke, 1989). For the interested reader, Finke classified five principles 

of mental imagery: 

1. Implicit stored experience becomes explicit information by mental imaging 

(implicit encoding). 

2. Imagery and perception use similar mechanisms of the cognitive system (per-

ceptual equivalence). 

3. Spatial relationships are in images similar to reality (spatial equivalence). 

4. The mental rotation of an image is similar to the rotation of real objects (trans-

formational equivalence). 

5. The structure of imaged objects is similar to the structure of real objects. Im-

ages are coherent and well organized and can be reinterpreted (structural 

equivalence). 

 Given the above principles, the recall of mentally stored images is similar to the actual 

experience of seeing it. The goal of mental imagery is to simulate attributes of an object 

that have not actually been stored in the memory and cannot just be put together. Kosslyn 

(1995) made observations about how people answered questions such as “which is big-

ger: a light bulb or a tennis ball?” People responded by retrieving mental images of the 

two objects and “looking at them.” The similarities between mental simulation and men-

tal imagery lie in the absence of direct stimuli to start the process and precipitate reason-

ing about what will happen next. In mental imagery, the reasoning uses mental images 

(Pylyshyn, 2002). Figure 1 shows a well-known example of the mental rotation of 3D-

objects in this domain for the purpose of reasoning whether they are identical except for 

orientation (Shepard & Metzler, 1971).  



 

Figure 1. Mental Imagery: To decide whether these objects are identical except for 
orientation, they are mentally rotated. (adapted from Shepard & Metzler 1971). 

 

Mental simulation in the psychological domain, however, includes areas that are 

not related specifically to decision-making. Sutton (2000) uses the term “mental simula-

tion” in the context of learning, considering it a tool for making new predictions from old 

and as the start of a computational theory of knowledge use. Although Sutton uses the 

term “mental simulation,” he focuses on reinforcement learning (which offers possible 

solutions to the problem of decision-making), but does not apply it to naturalistic deci-

sion-making. The simulation (or mental simulation) theory maintains that human beings 

can use the resources of their own minds to simulate the psychological causes of others’ 

behavior, typically by making decisions within a pretended context (Gordon, 2001). Ac-

cording to the psychologists Davies and Stone (2001), “mental simulation” is the simula-

tion, replication, or re-enacting of aspects of the mental life of another person. Aspects 

may include, for example, the other person’s thinking, decision-making, or emotional re-

sponses. So mental simulation seems to offer a methodology for predicting the mental 

states of other people; and the same methodology can also figure in the practice of attrib-

uting mental states on the basis of observed behavior and of explaining behavior in terms 

of mental states. Mental simulation is also the imitative mental representation of some 

event or series of events (Taylor and Schneider, 1989). It can be thought of as the cogni-

tive construction of hypothetical scenarios or as a reconstruction of real scenarios. This 

can include rehearsals of likely future events, fantasizing about less likely future events, 

realistically re-experiencing past events, or reconstructing past events, mixing in hypo-

thetical elements. Simulation can be used as a heuristic for estimating probabilities or as-

sessing causality (Kahneman and Tversky, 1982). Mental simulation is the process used 

to serially evaluate actions if course-of-action evaluation is necessary (Dodd et al., 2003).  
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Dodd brings us back to the present research. As mentioned in Chapter I, mental 

simulation is an essential part of naturalistic decision-making (NDM). NDM focuses on 

context and the decision-making process—not just the choice or decision per se.  

The study of NDM asks how experienced people, working as individuals 
or groups in dynamic, uncertain, and often fast-paced environments, iden-
tify and assess their situation, make decisions and take actions whose con-
sequences are meaningful to them and to the large organization in which 
they operate (Zsambok, 1997). 

Naturalistic decision-making is mainly explained as “the way people use their ex-

perience to make decisions in field settings” (Zsambok, 1997). We consider field settings 

that refer to real-time situations that can be described as dynamic, time-constrained and 

uncertain, in which wrong decisions have significant impact on both the individual and 

the organization (Klein, 1999). The point is that experienced decision makers (among 

whom we include military commanders) do not employ classical decision theory. The 

differences from classical decision theory are due mainly to a lack of competing alterna-

tives. In general, experienced decision makers evaluate only a single option but examine 

different aspects of that option through mental simulation. They make a decision when 

the option becomes feasible.  That does not imply that NDM is always optimal decision-

making: important influences are time pressure, high stakes, the contributions of other 

experienced decision makers, missing or ambiguous information, ill-defined goals, and 

poorly defined procedures (Klein, 1999). A well-known model within NDM is the Rec-

ognition-primed Decision-making Model developed by Klein.  
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Figure 2. Integrated version of the Recognition-primed Decision-making model. 
(Graphic from Sources of Power by Gary Klein) 

 
Figure 2 depicts the basic features of the integrated version of the RPD model. It 

focuses on two processes: first, on how a decision maker sizes up a situation to determine 

which course of action makes sense; second, on how an experienced decision maker 

evaluates a course of action. 

If the situation is recognized as “typical”, decision makers know what type of 

goals make sense, which cues are relevant and important, what should be expected next, 

and what are typical ways of responding. Single options for actions to be taken are evalu-

ated by mental simulation. In that context, that means picturing how the course of action 

will turn out (Klein, 1999).  

Our project creates a computational model for mental simulation applied in a 

combat simulation environment. There are several options for how many steps we can at 

present predict. The most common method is “iterated prediction”: build a single-step 

predictor and use it recursively. The estimates a model provides are put back into the sys-

tem as feedback until the desired number of prediction steps is reached. This method of 
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iterated prediction can be applied to both neural networks (Boné, 2002) and hidden 

Markov models (Liehr, 1999) (see the next section).  

We model mental simulation in the sense of the recognition-primed decision 

(RPD) developed by Klein, a process of predicting what event can be expected next. Our 

approach to modeling mental simulation is based on statistical estimation. To construct 

our model, we monitor events in a scenario, process them, and reach a point at which a 

prediction could be made.  

To date, researchers have made the following attempts to model recognition-

primed decision-making. 

The work closest to this project was done by Sokolowski (2002). He implemented 

a model for the recognition-primed decision - making of a Joint Task Force commander 

in an operational military scenario using a multi agent system approach. With this com-

putational system, Sokolowski could mimic the cognitive process. Figure 3 explicates 

how the process of deciding according to the RPD model works. The RPD model consists 

of several components (such as human experience, a recognition process with goals, cues, 

expectancies, and actions, as well as an action-evaluation and -selection process. To ac-

commodate these components and some engineering issues, the modeler used several 

agent types. A MainAgent is responsible for system management and the human-

computer interface and for establishing and maintaining the experience database. A Rec-

ognitionAgent attempts to match the decision request with stored experiences via a table 

look-up. If there is a match with the experience database, the data is retrieved and made 

available to other agents.  
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Figure 3. Sokolowski's RPD Model 

 
After retrieving the data, a SymbolicConstructorAgent creates an internal repre-

sentation of the decision environment. The SymbolicConstructorAgent instantiates a De-

cisionAgent who looks at the internal representation of the situation and experience. The 

DecisionAgent surveys the actions available for the current context and chooses the po-
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tential decisions that appear most favorable. The second task of the DecisionAgent is to 

instantiate one ReactiveAgent for each goal associated with the current decision context. 

A ReactiveAgent evaluates how well assigned goals are satisfied by a certain action. 

Sokolowski calls this evaluation “mental simulation.” To evaluate the degree to which 

goals are met, he first maps the variables describing the environment into cue values, us-

ing fuzzy logic. This yields a categorization of cue values into three categories: satisfac-

tory, marginal, and unsatisfactory. This mapping is essential for quantifying the model’s 

experience. After this, the cue-value category is mapped into a goal-value category. This 

goal-value category, also obtained by applying fuzzy logic, is an evaluation of a particu-

lar action’s potential to achieve a goal - a potential based on how well the cues associated 

with an action favor accomplishment of the goal (Sokolowski, 2003). If all goals are met 

by all ReactiveAgents, the DecisionAgent renders a decision, based on the action consid-

ered. If not all goals are met, a negotiation phase is added. Agent negotiation (Sprinkle et 

al., 2000) is the method use to resolve the goal-achieving conflict. Sokolowski (2002) 

also stated that agent negotiation best represents how a human decision maker uses men-

tal simulation to arrive at a compromise among multiple conflicting goals within his mind 

(Minsky, 1986). If this negotiation is successful, a decision can be rendered; otherwise, 

the next-best action is evaluated. This goes on until either a satisfactory action is found or 

all possibilities are exhausted. If the latter, a default decision is rendered. Sokolowski 

(2002) also stated “The mental-simulation process will most likely need to be enhanced 

to better replicate the role of mental simulation within RPD.” 

Warwick et al., (2001) approached their modeling of RPD by encoding the long-

term memory (LTM) of decision makers. They modeled LTM in a data structure by stor-

ing individual decision-making experiences as a two-dimensional array. When new situa-

tions occur, they are compared with experiences stored in the LTM. Computing a “simi-

larity value” yields a measure of comparability in order to recognize a usable experience 

and the appropriate course of action. Although it seems to show promise as a model of 

parts of RPD, the mental simulation part has yet to be designed (Warwick, 2002).  

B. PREDICTION TECHNIQUES 
Prediction in this context is far from a Nostradamus-like predictions about envi-

sioning future events based on intuition or “higher” insight. We focus on quantitative 



prediction: that is, statistical reasoning over time. A common task is to predict future 

events given a sequence of observations over a period of time. We also focus on discrete 

event prediction: that is, we consider discrete event prediction as the modeling of a sys-

tem as it evolves over time, where the system can change at only a countable number of 

points in time (Law & Kelton, 1991).  Our goal is to estimate the next event based on sta-

tistical methods.  

Figure 4 shows the world of dynamic systems divided into finite (i.e., discrete) 

and continuous state spaces. By Continuous Dynamics, we mean that if the update equa-

tion for the dynamic system is x(t+1) = f(x(t)), f is a continuous function. It is hard to 

imagine a linear dynamic system with a finite state space. In the discrete case, we only 

consider nonlinear models like Hidden Markov Models or Dynamic Bayesian Networks. 

In the nonlinear case of a continuous state space, there exist many Time-Series prediction 

models, for example, Neural Networks. Box-Jenkins models (ARMA in Figure 4) are 

commonly applied when the update function is linear (Box and Jenkins, 1994).  Kalman 

Filters can be extended to a part of the nonlinear dynamics with the Extended Kalman 

Filter.  
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Figure 4. Finite vs. Continuous State Space.  The white boxes show models that are 
applicable within the respective domain. 

 
The question is what kind of state space and what kind of dynamics can we expect 

in a combat simulation environment? We can expect a finite set of entities, for example, 

weapons, vehicles, platoons, and other units we have to deal with. In this case, we have 

discrete quantitative variables. We also expect variables like artillery impact, river cross-
 17
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ings, movement, positions, etc., where then we have categorical variables. The extent to 

which we are dealing with nominal (unordered) or ordinal (ordered) variables will be dis-

cussed in the next chapter.  

The greatest part of the system will behave nonlinear; however, a linear model 

might be applicable for some subset of data. The Box-Jenkins approach is basically a 

combination of an autoregressive (AR) model and a moving average (MA) model. The 

autoregressive model is a linear regression of the current value of the series against one 

or more prior values of the series, while the moving average model is a linear regression 

of the current value of the series against the white noise or random shocks of one or more 

prior values of the series (NIST/SEMATECH, 2004). While Box-Jenkins models forecast 

the future values of an observed time-series, we do not consider events as numerical val-

ues, even when they are sometimes coded as numbers. We expect many variables to be 

categorical. An engagement of a tank with anti-tank missiles cannot be added numeri-

cally to an observed river crossing of an artillery platoon. Therefore, we disregard linear 

continuous-valued time-series predictions like the Box-Jenkins Model. However, we will 

at least consider Kalman Filters, because they are well suited for motion tracking in a 

multidimensional space. 

First, we try to simplify the environment and use a Poisson Process to predict the 

next event. We are well aware that the “real world” is much more complicated. There-

fore, the Poisson Process serves as a strawman and will be replaced later by a more sub-

stantial solution. However, it is always possible that for some data category this might be 

a suitable method. The main focus in this chapter is on models that have the capability of 

learning through pattern or character recognition. Especially, we look at Kalman Filter-

ing, Neural Networks, Markov chains, Hidden Markov Models, and Dynamic Bayesian 

Networks.  

1. Poisson Process 
A Poisson process is an integer-valued non decreasing stochastic process, charac-

terized by its rate function λ(t), which describes the expected number of "events" or "ar-

rivals" that occur per unit time. There are homogeneous and nonhomogeneous Poisson 

processes.  



The homogeneous Poisson process has a constant arrival rate λ(t) = λ, and the 

marginal distribution N(a) is Poisson distributed with parameter λa, where a denotes the 

time interval 0 to a in which arrivals occur. To qualify as a Poisson process the following 

conditions have to be true (Ross, 1993): 

- No event at time t=0; 

- The process has independent increments, which means the number of events 

which occur in disjoint time intervals are independent; and 

- The process has stationary increments, meaning that the distribution of the 

number of events that occur in any interval of time depends only on the length 

of the interval. 

A very simple approach to prediction would be to consider events of a certain 

type as a Poisson process. Random single-type events occur at a certain rate. These 

events 1...n are observed and the time they occur is recorded, for example, T1,T2…Tn. 

The objective is to predict Tn+1, or better, to give a point estimate when the next event 

n+1 will occur.   

We assume for a first and simplified approach that the events occur according to a 

Poisson process with rate λ. This assumption implies that the interarrival times can be 

considered as independent, identically distributed, exponential random variables.  

After a certain number of events the parameter of the underlying distribution is 

estimated via the maximum likelihood method.  

The maximum likelihood estimator for λ is:  
∑

=
it

nλ̂  where 

n = number of events observed, 

ti = interarrival time between event i and i-1.  

An estimate for the next mean interarrival time Ê(Tn+1) will then be 1/ . λ̂

The expected number of arrivals in time interval t is t. λ̂

Furthermore, we can calculate the probability that at time t we have observed n 

events: 

!
)ˆ(})({ ˆ

n
tentNP

n
t λλ−== . 
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Time 
period  

arrival 
time 

interarrival 
time 

t1 0.3 0.3 

t2 0.8 0.5 

t3 1.2 0.4 

t4 1.5 0.3 

t5 2.2 0.7 

t6 2.6 0.4 

t7 3.1 0.5 

Table 1. Example for a Homogeneous Poisson Process 

 

Based on the data in Table 1, using MLE for λ yields: 258.2
1.3

7ˆ ===
∑ it

nλ  

Mean time to the event n+1:     E(Tn+1)  =  (n+1)/  = 0.44*8 = 3.54 λ̂

 

In a simplified algorithm, this would progress as follows: 

1. Monitor the arrival times. 

2. Determine the interarrival times. 

3. When sufficient arrivals have occurred, estimate lambda. 

4. Predict the next event.  

5. After event has occurred, update the lambda estimate. 

We can expand this model to encompass multiple event types. Now we consider 

that, at each given arrival of the Poisson process, an independent trial is performed that 

classifies the event as type 1 with probability p or as type 2 with probability 1-p.  Then: 

M (t) = number of type 1 events to occur in (0,t), and  

N (t)  = number of type 2 events to occur in (0,t) 

are independent Poisson processes with rate λp and λ(1-p), respectively. 

If we have observed twice as many type-1events, we can assume that the prob-

ability of an event type 1 is 2/3, given an arrival.   
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The expected number of type-1arrivals within a certain time interval 0..t will then 

be . If we now have k possible type of events i = 1, 2, …., k, then if an event occurs at 

time y, it will be classified as a type I event with probability p

ptλ̂

i, i = 1, 2, … , k where 

. The expected number of type-i events is calculated by , if the probability is 

independent of the arrival time.  

1
1

=∑
=

k

i
ip tpiλ̂

If, on the other hand, the probability depends on time of arrival y, the expected 

number of type-i events is calculated with 
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This approach requires that all possible events be “pre-categorized.” The event 

with the shortest expected arrival time is taken as the prediction. In a combat simulation 

environment, this would be a simplistic approach. It is obvious that a Poisson process 

with its assumptions can cover only a small portion of the entire complexity. 

2. Kalman Filtering 
Kalman filtering is a method for recursively estimating an unknown state of a dy-

namic system, in which the measurements have noise. In other words, it describes a 

method for updating an estimate of a system's state by processing measurements. The ba-

sic Kalman filter developed by R. Kalman in the early 1960s is a linear model. The fol-

lowing equations demonstrate how the state of the system can be estimated and corrected 

after the measurement has been processed. A discrete-time controlled process is governed 

by the linear difference equation 

xk = Axk-1 + wk-1 with a measurement zk = Hxk + vk, 

where  xk : the state to estimate at time step k. 

A:  transition matrix; relates the state at the time step k-1 to the state at 

the current time step k. 

wk-1: movement noise at time step k-1. 

H: measurement matrix; relates the state to the measurement zk. 

vk: measurement noise at time step k. 
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Assuming that the random variables w and v are independent and normal distrib-

uted with mean 0 and variance Q and R, respectively, then the equation will be for the 

time update of the state −
∧

x k = A
∧

x k-1 , where – means the a priori prediction of the state, 

with the error covariance . The measurement update with the meas-

urement z

QAAPP T
kk += −

−
1

k will yield for the state estimate 
∧

x k = −
∧

x k + Kk(zk - H −
∧

x k ). The error covari-

ance is update as well and computed with , where K is the Kalman 

gain: .  

−−= kkk PHKIP )(

1)( −− += RHHPHPK T
k

T
kk

There is also an extension to the Kalman filter when the measurement is a non 

linear function of the state variables. The measurement matrix H is then obtained by lin-

earization of the nonlinear function.  

 Kalman filters are ideally suited for tracking the motion of an object in a multi-

dimensional space.   

3. Neural Networks 
Neural networks – that is artificial neural networks - model the function of the 

human brain. They consist of many hundreds of artificial neurons, or nodes, which are 

simple processing connected by directed links. Each of these artificial units is a simpli-

fied model of a real cell in the brain (Figure 5). An artificial neuron sends off (“fires”) a 

new signal when it gets a sufficiently strong input signal from the nodes to which it is 

connected (Russel & Norvig, 2003). 

 

Figure 5.  A simple mathematical model for a neuron 
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The strength of the input signal and the specific firing threshold of the neuron re-

sult in the ability to perform different tasks, corresponding to different patterns of node-

firing activity. The strength of the connection between neurons is represented by connec-

tion weights. They serve as the collective memory of the neural network (Mitchell, 1997). 

For a unit to produce output, it first has to compute the weighted sum of inputs ini with 

the equation  

∑
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=
n

j
jiji aWin

0
, . 

By applying an activation function g, the output is derived by  
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Each unit in a neural network can have different activation functions. Typical ac-

tivation functions can be either threshold functions, or sigmoid functions, also called lo-

gistic functions. The input values for a unit (artificial neuron) can either be continuous 

between -1 and 1 or discrete with values -1, 0 or 1. For accurate Boolean functions, we 

need to use a hard-step activation function like sgn(x). For fuzzy versions of Boolean 

functions, we can use a logistic function like  ).1/(1)( xexf −+=

The network has to be trained after setup to yield proper output, usually by using  

training data consisting of input and associated output. Both the initial output and the er-

ror to the desired output are calculated. The error is propagated backward through the 

network and the weights of the connections are adjusted. This procedure is repeated until 

the error at the end is in an acceptable range (Mitchell, 1997).   

The advantage of neural networks is their ability to take incomplete or noisy data 

while producing an output similar to one obtained from perfect input data. In this manner, 

a neural network can provide satisfactory decisions, based on the uncertain and highly 

dynamic conditions that exist in a complex war scenario (Sokolowski, 2003). Neural 

networks are well suited for recognizing underlying patterns in data (Mitchell, 1997). 

However, a significant amount of training data would be required to properly prepare a 

network to recognize situations over the entire domain of joint warfare. In an attempt to 

model RPD with neural networks, twelve military experts and twelve scenarios were used 
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to define the goals and plans to learn from (Liang, 2001). Another disadvantage of neural 

networks is the difficulty of interpreting results.  

In addition to their application for robot control and handwriting recognition, a 

major application area for neural networks is the reliability domain. Reliability theory is a 

body of ideas, mathematical models, and methods directed at predicting, estimating, un-

derstanding, and optimizing the lifespan distribution of systems and their components 

(adapted from Barlow et al., 1965). In reliability theory a prediction capability is very 

important for estimating when a critical component will fail. But reliability theory is not 

limited to “hardware components”; it can be applied also to software. In critical applica-

tions, it is often important to be able to make accurate predictions about the mean-time-

to-failure (MTTF) of software, because a failure can be considered a lack of stability. 

Philips Research at India-Bangalore (Patra, 2003) applied a neural network approach to 

MTTF-prediction. With the neural network, the parameters of the formal model were es-

timated and the neural network itself learned the process to predict outcomes. Using a 

feed-forward network and back-error propagation yielded successful predictions that out-

performed parametric models, such as the nonhomogeneous Poisson process (Patra, 

2003).  

4. Markov Chains 
A Markov chain is a finite state machine with probabilities for each transition, i.e. 

the probability that the next state is si, given that the current state is sj (NIST, 2005). The 

state space can be either continuous or discrete. If the state space is continuous, the ran-

dom process may take on any value over a continuous interval or set of intervals. If it is 

discrete, there is a finite or countable number of states. Many publications refer to a dis-

crete-state random process as a “chain.” A Markov chain is indexed by time: the time in-

dicates the state change. In a discrete-time Markov chain, the state changes are preor-

dained to occur only at the integer points 0, 1, …, n, which map to the time points t0, t1, 

… , tn. In a continuous-time Markov chain state changes may occur anywhere in time. 

Therefore, it is possible to have a discrete-state space and a continuous time Markov 

chain. That corresponding process is referred as a continuous-time Markov chain (Bose,
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2001). It has the Markovian property that the conditional distribution  of the future X(t+s) 

given the present X(s) and the past X(u), 0 < u < s, depends only on the present and not 

on the past.  

5. Hidden Markov Models (HMM) 

In a hidden Markov model, or HMM, the sequence of observations {YT} is mod-

eled with the assumption that each observation depends on a discrete hidden state. Fur-

thermore, we assume that the sequences of the hidden states satisfy the Markov assump-

tion. The Markov assumption means that the transition to the next state depends only on 

the current state and not on previous ones. We want to consider a sequence of random 

variables that are not completely independent, but the value of each variable depends on 

the previous elements in the sequence. We have a simple Markov-process model when 

we can observe the states the system is in. For example, we have two urns with black and 

red balls. The first urn has twice as many red balls as black. The second urn has an equal 

number of each color. Both urns may have the same number of total balls. The system is 

said to be “in state one” when the balls are drawn from the first urn and in state two when 

the balls are drawn from the second urn. Hence, we can assign each event, or color of the 

drawn ball, to the state n, or urn 1 or 2. We can also assign a probability that a certain 

color ball was drawn from a certain urn.  

If we do not see the urn, that is, the state and are only told the event, a ball with 

color x has been drawn, then we have a hidden Markov model. The event “black ball” 

can happen now in either state one or two. An HMM is considered a statistical model for 

any system that can be represented as a succession of transitions between a finite set of 

discrete states, where the next event depends only on the previous event. An HMM is a 

probabilistic function of a Markov process, whereby we do not see the state sequence the 

model is going through but we know, or estimate, the probabilistic function of the state 

sequence. Therefore, HMMs can be described as stochastic finite-state automata with an 

underlying stochastic process that is not observable, that is hidden, but that can be ob-

served through another set of stochastic processes that produce the sequence of observed 

symbols (Rabiner & Juang, 1986).   

These observations 1..n yield an observation sequence O. Furthermore, we as-

sume that the observations occur due to transitions between internal hidden states, in con-



junction with the random emission of a sequence element, for example, observation sym-

bol v. Markov models are, in their original form, not very flexible in the prediction of 

dwell time in a state, although researchers have attempted to model the dwell time in a 

state. Ferguson (1980), extended an HMM to include a probability distribution for the 

duration of each state and therefore allowed a sequence of observations to be made while 

the system remained in a single state. The following introduction shows a basic case of 

the HMM; the modeling of the duration will be explained in Chapter III. 

Hidden Markov models are characterized by the following qualities: 

1. N is the number of states in the model; states are denoted as S1, S2, … SN, 

where the individual state at time t is qt.   

2. M is the number of distinct observation symbols per state j. The individual ob-

servation symbols are denoted V = {v1, v2, …vM}. 

3. There is a matrix A for the state transition probability distribution; aij is the 

transition probability from state i to state j where aij = P{qt+1= Sj|qt = Si}                    

and   Nji ≤≤ ,1 .

4. There is a probability distribution matrix B = {bj (k)} for the possible observa-

tions, where bj(k) = P{vk at t|qt=Sj},     Nj ≤≤1  and Mk ≤≤1 .  

5. The initial state distribution is πi = P{q1 = Si}, where Ni ≤≤1 . 

N and M are specified by B implicitly. Therefore, a hidden Markov Model can be 

described as a triple λ = (A, B, π). 
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Figure 6.  Example of HHM for the Urn Problem 

 
The transition diagrams in Figure 6 show possible models of the simple urn prob-

lem mentioned above. It is given that we are only told the event and do not know what 

the underlying model is, and there may exist more than one model.  

The HMM theory distinguishes now between three problems known as: 

1. Learning 

2. Decoding  

3. Evaluation   

We talk about “learning” of an HMM when we try to determine the model pa-

rameters λ. We know a coarse structure of the model that allows us to know the number 

of states; we do not know the transition probabilities between the states and the occur-

rence probabilities of the observations per state. In the urn problem above, we know there 

are two urns from which balls are drawn. The Baum-Welch algorithm was developed to 

solve the learning problem. 

The term “decoding” denotes a process to find the most likely sequence of state 

transitions that lead to the observed and known sequence (Viterbi-Algorithm). 

If we have a known model, we have a complete transition matrix and probabilities 

for the observations. What we are interested in is determining the probability that a cer-

tain sequence will occur: we call this process “Evaluation.” Another contributing factor is 

that we are also interested in the probability that a certain model created this sequence. 



This is especially interesting when several competing models exist, as in Figure 6, except 

we do not know whether there are three urns or only two. 

Computational aspects: 

1. Baum - Welch Algorithm (BW) 

To use BW we must have an observation sequence O and a coarse structure of the 

model. We want to find the values of the model parameters lambda that best explain what 

we have observed. We will use maximum-likelihood estimation, that is we want to find 

the values that maximize P(O|lambda), which can be written: )|(maxarg λ
λ

trainingOP . 

There is no analytical method to choose lambda to maximize P(O|lambda). However, the 

BW algorithm, also known as the forward-backward algorithm, maximizes P(O|lambda) 

by applying iterative hill-climbing algorithms. The first step is to use an initial model that 

can be either pre selected according to rules or chosen by random. The observed se-

quence is then run through the initial model, which yields an expectation of each model 

parameter. After updating the model parameter, the observed sequence is run again 

through the model. Baum proved that the property P(O|λ ) ≥ P(O|λ) holds, where λ is the 

initial model and λ is the model after a learning step (Manning & Schütze, 1999). The 

iteration is done when there is no longer any significant improvement. This solution does 

not guarantee finding a global optimum, but in practice the re-estimation is usually effec-

tive (Manning & Schütze, 1999).  

2. Viterbi Algorithm 

The evaluation of a model can be solved exactly with the forward procedure. 

However, we are more interested in finding the most likely state sequence associated with 

the observation sequence Q. The Viterbi algorithm provides a computationally efficient 

way of analyzing observations of HMMs to recapture the most likely underlying state 

sequence. It exploits recursion to reduce the computational load and uses the context of 

the entire sequence to make judgments. 

The Viterbi algorithm computes the most likely complete path by maximiz-

ing ),|(maxarg λOXP
X

, where X is the vector of the most probable visited states. It is 
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sufficient for a fixed O to maximize )|,(maxarg λOXP
X

 (Manning & Schütze, 1999). A 

common representation of all the possible transition sequences that can be obtained is a 

trellis. A trellis is a layered graph whose vertices represent possible observations in the 

corresponding state (Figure 7). The vertices of the trellis can be embedded in a two-

dimensional matrix with the vertices in each layer assigned to elements in the corre-

sponding column of the matrix (Bouchaffra et al., 1996). 

 

Figure 7.  Example of a trellis in a Viterbi Decoder (Image taken from University of 
Leeds, 2004) 

 
The variable δj(t) stores, for each point in the trellis, the probability of the most 

probable path that leads to that node  )|,,(max)( 1111
11

λδ jXooXXPt tttXXj
t

== −−
−

LL
L

. 

The corresponding variable ψj(t) then records the node of the incoming arc 

that led to this most probable path. Using dynamic programming, we calculate the most 

probable path through the whole trellis as follows: 

1. Initialization: δj(t) = πj, where Nj ≤≤1  

2. Induction: δj(t+1) = ,)(max
1 ijijiNi

batδ
≤≤

 where Nj ≤≤1  

the back trace is then stored: Ψj(t+1) = ,)(maxarg
1

tijoiji
Ni

batδ
≤≤

 where Nj ≤≤1   

3. Termination and readout of the path are then done by backtracking.  

=+1
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=)ˆ( tXP )1(max
1

+
≤≤

TiNi
δ   

With  we know the probability of the best path so far producing the next 

observation at the next time step. This reflects the transition probability and allows us to 

predict what the next probable observation would be.  

)ˆ( tXP

6. Dynamic Bayesian Networks 

A dynamic Bayesian network (DBN) belongs to the group of “graphical models.” 

A graphical model is a graph that represents certain properties about sets of random vari-

ables. The nodes in the graph correspond to random variables; the edges encode a set of 

conditional independence properties (Bilmes & Zweig, 2002). DBNs are directed graphi-

cal models of stochastic processes and they allow the modeling of discrete-time processes 

as they evolve over time. DBNs are an extension of Bayesian networks that unfold over 

time or gets time-sliced. The term “dynamic, ” as in “dynamic Bayesian network,” means 

that a dynamic system is modeled; it does not mean that the graph structure changes over 

time.    

observation-generation model

observation sequence

state sequence (hidden)

state evolution model

observation-generation model

observation sequence

state sequence (hidden)

state evolution model

 

Figure 8.  A Dynamic Bayesian Network 

 

To represent causality in an approximate way, the graphs have directed edges, 

which means that a variable i connected to a variable j has a causal influence on it DBNs 

assume that the state variables are Markovian and stationary (Deviren, 2001). “Mark-

ovian” in this context means that the set of state variables in interval k depends only on 

the set of state variables in the interval k-1. This time dependence determines the parents 
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of the current node (Figure 8) and with the stationary property, the network structure is 

time-invariant, which means the network structure does not change over time. DBNs 

generalize hidden Markov models by representing the hidden (and observed) state in 

terms of state variables, which can have complex interdependencies. The graphical struc-

ture provides an easy way to specify these conditional independencies, and hence, to pro-

vide a compact parameterization of the model (Murphy, 2002). Figure 9 depicts a simple 

example of an observation sequence in a  DBN. 

Y1 Y2 Y3 YT
…Y1 Y2 Y3 YT
…

Q1 Q2 Q3 QT
…

1 2 3 T
…

Y1 Y2 Y3 YT
…Y1 Y2 Y3 YT
…

Q1 Q2 Q3 QT
…

1 2 3 T
…

 

Figure 9.  Observation Sequence Y1 to YT in a DBN 

 
We can calculate the probability of this particular observation sequence by 

P(Y1,Y2,…YT)=P(Y1)P(Y2|Y1)…P(YT|YT-1). Given that we know the model and have ob-

served YT, we can predict the value of YT+1. The temporal order of the graph is important, 

because it specifies the direction of causality (Gharamani, 1997).  

7. Various other Approaches 

Event prediction problems address issues similar as time-series prediction prob-

lems. An event sequence is a sequence of time-stamped observations that are described 

by a fixed set of features.  

AT&T Labs has been especially interested in predicting failures of telecommuni-

cation equipment based on logs of alarm messages (Weiss & Hirsh, 1998a). In that do-

main, they are interested in predicting a specific event within a window of time, a so-

called rare event, from the time-stamped observations. Since statistical methods require 

numerical features, classical time-series prediction techniques are not applicable (Brock-

well & Davis, 1996; Weiss, 1999). Weiss uses a genetic algorithm that searches directly 

for predictive patterns in the data. In his case, the event-prediction problem was formu-
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lated and solved as a machine-learning problem. The situation we are interested in, how-

ever, is different. We are interested in what the next event will be, not when a specific 

event will occur. 

System management is another domain in which event prediction in temporal se-

quences plays an important role. The ability to predict rare events that are harmful in a 

production network can be helpful in automatically detecting real-time problems 

(Domeniconi et al., 2002). For example, a computer network is assumed to be under con-

tinuous monitoring. The monitoring process produces event sequences in which each ob-

servation has a fixed set of categorical and numerical features. For Domeniconi, the event 

consisted of four components, one of which addressed the severity of the failure. The se-

verity was ranked in five steps: harmless, warning, minor, critical, and fatal. Prediction 

focused on events in which the severity was either critical or fatal, much like the tele-

communication case explained earlier. However, instead of a genetic algorithm approach, 

Domeniconi formulated the problem as a classification problem. Applying the means of 

singular-value decomposition — a powerful set of techniques dealing with sets of equa-

tions or matrices that are either singular or numerically very close to singular — provided 

numerical answers to the prediction problem.     

For content providers and consumers pre-fetching web pages has considerable 

value. The prediction of the user’s next request for a desired content improves download-

ing time. Many techniques have been considered for this purpose. Davison (2002) im-

plemented machine-learning techniques in order to predict the next user action on the 

Web.  

8. Predictive Control Theory  
The prediction techniques presented so far are methods for modeling dynamic 

systems. This brief section demonstrates that predicting possible next events and estimat-

ing how a system will behave in the near future, are not merely academic questions. In 

process industries, it is crucial to predict system dynamics. In chemical-processing indus-

tries, especially, model-based predictive control is currently the most popular advanced-

control theory. And in other industries as well — power plants, petroleum refineries, food 

processing, automotive, and aerospace — predictive control can be found. A common 

characteristic is that an explicitly formulated process model is used to predict and opti-



mize future behavior (Hovd, 2004). The main term used is “model predictive control” 

(MPC), one of the most popular control techniques in industry. Figure 10 shows a sche-

matic diagram of a model-based predictive controller. The basic principles are that the 

internal model, here the plant model, is known, and predicts the future output of the sys-

tem. The reference signal is predicted for a finite number of steps into the future and, de-

pending on this prediction, the control for “adjusting” the system is calculated, returning 

as feedback into the system (plant). 

Plant Model

Predict future values of system 
output

Obtain or predict current and 
future value of reference signal

Calculate 
the control 
to minimize 

the 
difference

Plant Model

Predict future values of system 
output

Obtain or predict current and 
future value of reference signal
Obtain or predict current and 
future value of reference signal

Calculate 
the control 
to minimize 

the 
difference

 

Figure 10.  Example of a Model based predictive controller (adapted from Ordys) 

 

This technique is not applicable to linear systems alone. Recently, due to more 

and more constraints, such as environmental and safety considerations, and to process-

immanent non linearities, the attention to nonlinear-model predictive control has in-

creased (Findeisen & Allgoewer, 2002). An overview can be found in  Qin (1996) and 

Hovd (2004). 
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III. THE MENTAL SIMULATION MODEL (ARCHITECTURE) 

A. INTRODUCTION 

This chapter begins with an overview of the major requirements that bound the 

architecture of the model. It covers in detail the requirements from the psychological the-

ory of naturalistic decision-making as the outer framework for mental simulation. We 

consider it important to develop the model in accordance with the current state of knowl-

edge of naturalistic decision-making. We also discuss the framework in which the test 

bed, Combat XXI, fits. In addition, we describe the main application domains for combat 

simulation models and their current critical deficiencies. Some of the deficiencies can be 

resolved by mental simulation as an essential part of naturalistic decision-making. The 

developed architecture is explained in detail. The chapter ends with an overview of how 

this work might be applied to domains other than the ones considered in this work.  

B. MENTAL SIMULATION 

1. Uses of Mental Simulation, in Detail 

A general overview of mental simulation has already been outlined in Chapter II. 

In the following sections mental simulation will be described in detail and relevance as it 

is used in NDM.  

Mental simulation is an essential part of RPD. In the recognitional decision-

making it is used in 

(a)  diagnosing to form situation awareness, 

(b)  generating expectancies to help verify situation awareness, and 

(c)  evaluating a course of action. 

These map well with Endsley’s definition of situation awareness: “the perception 

of the elements in the environment within a volume of time and space, the comprehen-

sion of their meaning, and the projection of their status in the near future” (Endsley, 

1995). He specifies three hierarchical phases or levels: perception, comprehension, and 

projection into the future.  
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Perception, as a phase or level of situation awareness, identifies the key elements 

that define a decision-making situation. In our context, that means the different forma-

tions of tanks and the corresponding number of tanks. Comprehension, as a phase or level 

of situation awareness, means understanding the current decision-making situation in tac-

tical terms, such as: attacking in direction x, at speed y, supported by z. The third phase 

or level of situation awareness, projection into the future, means anticipating the pre-

dicted or expected evolution of the current situation. In our context, this could mean, for 

example, foreseeing a necessity for reinforcements or adjustments in the resource alloca-

tions.   

How might now a predictive model be used to support these three levels of 

awareness? The answer lies in this concept: mental simulation enables us to explain ob-

served events, actions as described by Klein being one type of observable event. 

(a) Diagnosing to form situation awareness 

If we understand the inherent events, we can diagnose a decision-making situa-

tion: we have a picture in which things fit together. If we do not understand the events, 

we cannot explain the situation: our situational awareness is insufficient. In mental simu-

lation, according to Klein, we match features of the events to the perceived situation. The 

following example may clarify what we mean here. Assume a combat situation in which 

a tank is in a defensive position. Although, in reality, the tank’s defensive position could 

indicate any number of platoon situations, for the sake of clarification, we choose just 

two. In one situation, the tank’s position means the platoon is defending itself against an 

enemy’s main attack. In the other situation, it is not. For each situation there is a corre-

sponding predictive model, or data structure, that maintains the platoon’s knowledge of 

past experiences and the parameters of the current situation. Although the simulated pla-

toon may not be aware what kind of situation it’s in, it can make certain sequential obser-

vations. To form a diagnosis of the situation, we could run the observation sequence in 

different models, where the best match would give a reasonable estimate of the platoon’s 

situation. If we used an HMM as a predictive model, we would run the Viterbi algorithm. 

The results would show the state sequence that is most probable to explain the observa-

tion sequence. That could then be mapped to a corresponding model. Therefore, in sum, 
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we argue that a predictive model can be used to diagnose situation awareness. Chapter IV 

will show the results of our implementation.  

(b) Generating expectancies, to help verify situation awareness 

A predictive model can also support the generation of expectancies, to help verify 

situation awareness. Taking our example and using comprehension, Endsley’s second 

level of situation awareness, we reach the following conclusions. We know that a certain 

formation has x number of tanks and is moving in a particular direction at a certain speed. 

Predicting the next event, that is, seeing the number of tanks that we expected to see, 

would help confirm our picture of the situation as compared to the actual event. However, 

if we suddenly see twice as many tanks as expected, and we have no idea how this hap-

pened, it would cause us to reconsider our picture of the situation. So, we generate an ex-

pectancy, and then see whether or not that prediction confirms our assumption about 

situation awareness.  

(c) Evaluating a course of action 

This aspect of mental simulation, or situation awareness, is the most intuitive of 

the three. If you mention mental simulation to a layman that is what they will immedi-

ately think of. Chapter IV will demonstrate how the possible actions of our simulated pla-

toon can be projected into and evaluated in the future. 

Situation awareness is critical for making intelligent decisions. Without it there is 

no context for adapting one’s behavior to accommodate the current and future state of the 

world (Klein, 2000). According to Endsley, situation awareness is more than just knowl-

edge of numerous pieces of data. It also requires having an advanced understanding of a 

situation and some projection into the future, based on the user’s goals (Endsley, 1995). 

Understanding a situation requires the mental integration of many pieces of information. 

Mental, or intelligence, simulation is the means to achieve that in virtual worlds. This re-

quires knowing both that the information exists and how it interrelates with other pieces 

of information in the situational context. People usually know when something is occur 
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ring in which they are involved, or that a particular piece of information that they need 

exists. But they do not always understand how these relate in the overall larger context 

(Albers, 1999).  

2. Key Points of Mental Simulation   
Klein identified the following key points of mental simulation through many 

years of empirical research in the decision-making field (Klein, 1999): 

- “Mental simulation lets us explain how events have moved from the past into 

the present.” In this work we do not try to explain how events moved into the 

present, but we use the events in the past and present in order to predict events 

into the future. 

- “Mental simulation lets us project how the present will move into the future.” 

This is the key point we model in this research.  

- “Constructing a mental simulation involves forming an action sequence in 

which one state of affairs is transformed into another.”  

- “Because of memory limitations, people usually construct mental simulations 

using around three variables around six transitions.” The number of variables 

we use in this research matches this usual behavior. 

- “It takes a fair amount of experience to construct a useful mental simulation.” 

This is considered and applied in our research. 

- “Mental simulations can run into trouble when the situation becomes too 

complicated or when time pressure, noise, or other factors interfere.” This 

point is not addressed in this work. 

- “Mental simulation can be misleading when a person argues away evidence 

that challenges the interpretation.” In this research we do not consider this 

point. 

- “There are methods for improving mental simulation, such as using crystal 

ball and premortem strategies and decision scenarios.” This point is beyond 

the scope of this thesis. 



3. Application of Klein’s Model 
Klein has developed a generic conceptual model of mental simulation. He begins 

with two types of need: First, to explain the past, and second, to project the future. Figure 

11 depicts a generic model of mental simulation developed by Klein. The parameters for 

the mental simulation process depend on the type of need. To explain the past the initial 

state is considered; to project into the future, the terminal state is the relevant one. Klein 

derived empirically that people usually use three mental states and about six transitions. 

This result will be exploited later. In our research we start with mental simulation from 

the current state and evaluate possible actions to arrive at a terminal state. According to 

Klein the projection into the future has two purposes: The one purpose is to predict what 

is about to happen and to take the appropriate measure in order to be prepared. The other 

purpose is to observe a potential sequence of actions and to determine whether there exist 

flaws that lead to rejection of this action sequence.  

 

Figure 11.  A generic model for mental simulation adapted from Klein, 1999. 

 39



Having determined an action sequence, we can evaluate it internally for coher-

ence, applicability, and completeness. If the action sequence passes our internal evalua-

tion, the action sequence is run to generate a model of explanation or projection, which-

ever is needed. If the action sequence fails, we must start over and reconsider the parame-

ters. As Klein points out, mental simulation is not always successful, but when it works it 

is impressive.  

4.  Mental Simulation for Projection into the Future 

As mentioned above, there are two types of needs for mental simulation: to ex-

plain the past and to project the future. For details about the need to explain the past, the 

reader is referred to the literature. Only a graphical model is displayed, in Figure 12. 

 

  

Figure 12.  Using mental simulation to explain the past, adapted from Klein, 1999. 
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The main focus in this research is projection into the future. Figure 13 displays 

the details of the model graphically. The left side of Figure 13 shows the conceptual 

model using mental simulation to project into the future, adapted from Klein. This is an 

extension to Figure 11. In the application of projecting the future the outcome of the ac-



tion sequence is evaluated. The identification of problem areas with respect to plausibil-

ity, consistency, or pitfalls during the run and review of the action sequence can require a 

micro-simulation of the problem areas identified. The problem areas will also be evalu-

ated. The evaluation has three possible results. Firstly, the action sequence looks feasible 

and the implementation of the action selected starts. Secondly, the course of action is un-

der no circumstances feasible and is rejected. Thirdly, the action sequence still might 

work, but it has to be modified an re-evaluated.     
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Figure 13.  Left: Using mental simulation to project into the future, adapted from 

Klein, 1999. Right: The Adaptation of Klein’s model in our research. 

   

In our application of Klein’s model, we already determined the need for project-

ing into the future. We specify the parameters losses of our own and the opposing forces, 

the expectation of what to see next, and how the prediction is evaluated with respect to 

the environment in which it takes place, in our case, terrain. We also assemble an action 

sequence, which contains possible paths of outflanking or certain firing behavior. The 

simulation of the possible action is assessed. If the first action is promising then we 

choose it. In case of ambiguity we add other parameters into consideration. Details will 

follow in the next chapter.     
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C. COMBAT MODELING AND COMBAT SIMULATION MODELS 
Computer-based military simulations have been used since World War II (Haus-

rath, 1971). Today, nearly all armies of the Western Hemisphere use modeling and simu-

lation (M&S) as essential tools for analysis and for training their leaders and war fighters. 

The U.S. DoD Defense Modeling and Simulation Office (DMSO) characterizes M&S 

tools according to their class (i.e., live, virtual, or constructive), the functional area they 

support, and the level of detail or fidelity the simulation system contains (DMSO, 2005). 

Combat simulation models are most commonly classified as constructive simulations. 

They are analytical models, ranging from detailed engineering models to highly aggre-

gated theater/campaign simulations, in which the performance and/or behavior of com-

ponents, entities, systems, or collections of systems are represented as a function of time 

and environmental stimuli (DMSO, 2005). “Constructive” in this sense, means that the 

playing units and the environment are constructed or synthetic (NATO, 1998). Construc-

tive simulation systems may run slower than real time, at real time, or faster than real 

time, depending on the particular use or function of the simulation. In contrast, “virtual” 

simulations involve real weapon systems and operators in synthetic environments, that 

allow the operators to interface with real equipment and to train in realistic three-

dimensional battle spaces. Virtual simulations, in general run in real time in order to 

evaluate the operators’ or the systems’ responses to actions. “Live” simulations use real 

hardware/equipment and troops within a real or realistic environment. What is simulated 

is mainly the weapons effects. Constructive simulations are now being used more for af-

ter-action reviews or for forces that do not actually participate in a given exercise, i.e., 

adjacent units.  

In addition to the modeling and simulation classifications, models are character-

ized by their scope and level of detail. M&S resources are categorized as engineering, 

engagement, mission, or theater/campaign resources, as shown in the M&S hierarchy il-

lustrated in Figure 14.  



 

Figure 14.  Model and simulation hierarchy. Adapted from Modeling and Simulation 
Information Analysis Center (MSIAC, 2005). 

 

Models at the bottom of the hierarchy are more detailed but involve few 
components and/or systems, whereas models higher in the hierarchy in-
clude more players, more aspects of warfare, and simulate longer dura-
tions, but the players become more aggregated and the physics is repre-
sented more implicitly (DMSO, 2005).  

However, there are additional models in the M&S tool box that do not fit the 

above characterization, for example, environmental representations, threat models, and 

logistics models. They are not further considered here. This research focuses on construc-

tive simulation models.  

The U.S. military uses constructive simulation in the following application do-

mains: advanced concepts and requirements; military operations; research, development, 

and acquisition; and training (DoD, 1995). The North Atlantic Treaty Organization 

(NATO) defines the following application domains: defense planning, training, exercises, 

support to operations, research, technology development and armaments acquisition. 

However, NATO also notes that individual nations may use different taxonomies to clas-

sify M&S application areas (NATO, 1998). The following considerations focus on two 

main areas of combat simulations. The one is the use in training including exercises; and 

the other major use is in analysis. The level to which these domains benefit from combat 

simulation models varies and is driven mainly by the amount of AI required and the 
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amount available for a specific use. Andrew Ilachinski (2004) discusses another categori-

zation: automation. He divides the combat-simulation-model world according to the types 

of forces used: semi automated forces and automated forces. In the semi automated cate-

gory, human agents make many of the tactical decisions, to ensure that the automated 

units’ behavior conforms to expectations and is realistic. Training and exercise applica-

tions, especially, use semi automated models. In contrast, the automated-forces category 

does not involve any use of human agents; instead, it is the simulation model itself that 

specifies the automated entities’ actions. Automated-forces models are referred to as 

“closed” simulations.     

Simulated, or constructed military entities mimic the behavior of real-world units 

mainly in terms of their physical actions, including troop movement, target detection, tar-

get selection, and engagements on a weapon’s firing level. Higher-level command func-

tions are either scripted or modeled with common AI-techniques such as case-based rea-

soning or expert systems (Ilachinsky, 2004). However, even in cutting-edge models, be-

havior in general is still not at a satisfactory level. In this respect, the following statement 

from the NATO Modeling and Simulation Master Plan (1995) is still largely valid. 

Constructive simulations are better at representing systems than represent-
ing human behavior. For example, a simulation may accurately represent 
the direct fire effects from weapon systems engaged in a simulated force-
on-force event but cannot represent the decision process of the operational 
commander employing that force.  

Some of the U.S.-Department of Defense (1995) requirements concerning hu-

man behavior modeling assert that 

the representation of humans in models and simulations is extremely lim-
ited, particularly in the representation of opposing forces and their doc-
trine and tactics. In view of the limited theoretical underpinnings in this 
area, this issue will require extensive research before human behavior can 
be modeled authoritatively. 

The Modeling and Simulation Resource Repository (MSRR) provides an excel-

lent overview of current simulation models. The MSRR is a DoD-wide system of model-

ing and simulation databases that allows a user to discover, access, and obtain M&S re-

sources that support military operations, training, and acquisition (MSRR, 2005). Inara 
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Kuck (2003) summarizes the capabilities and limitations of nearly all modeling and simu-

lation programs that are sponsored by the DoD. We give only a brief description of the 

model, Combined Arms and Support Task Force Evaluation Model (CASTFOREM), be-

cause this is currently the U.S. Army’s highest-resolution, combined-arms combat simu-

lation model. CASTFOREM is used for the evaluation of weapon systems and tactics in 

brigade - and - below combined arms conflicts. It uses closed-form mathematical expres-

sions, probability distributions, and an embedded expert system (Ilachinsky, 2004; 

MSRR, 2005). It will be replaced by the Combined Arms Analysis Tool for the XXIst 

Century (COMBAT XXI), which will be explained in detail in the next section. 

D. COMBAT XXI AS TEST BED 

1. General Description 

Combined Arms Analysis Tool for the 21st Century (COMBAT XXI) is a 
high-resolution, closed-form, stochastic, analytical combat simulation. 
COMBAT XXI is being developed by the TRADOC Analysis Center – 
White Sands Missile Range (TRAC-WSMR) and the Marine Corps Com-
bat Development Command (MCCDC). COMBAT XXI will be used for 
the analysis of land and amphibious warfare in the Research, Development 
and Acquisition (RDA) and Advanced Concepts and Requirements (ACR) 
Modeling and Simulation (M&S) domains. 

COMBAT XXI is a replacement for Combined Arms and Task Force 
Evaluation Model (CASTFOREM). The COMBAT XXI model capitalizes 
on many of the “time tested” algorithms of CASTFOREM, while provid-
ing enhanced capabilities. Many underlying algorithms in the COMBAT 
XXI model, such as acquisition and engagement algorithms, are derived 
from CASTFOREM. Enhanced capabilities include the capability to easily 
compose new combat platforms and tactical units, enhanced scenario 
building tools with a graphical user interface, and modular architecture for 
separation of physical modeling and behaviors.  

COMBAT XXI is intended to support analytical needs in the ACR do-
main, including force design, operational requirements, mission area 
analysis and war fighting experiments. COMBAT XXI is also designed to 
support force-on-force analysis related to the RDA domain that includes 
weapons system development, and test and evaluation.  COMBAT XXI 
represents joint combined-arms operations (including ground warfare, 
aviation operations and amphibious operations) on a tactical level. 

One Semi-Automated Forces (OneSAF) and COMBAT XXI are related in 
a manner similar to Janus and CASTFOREM. Janus is used in areas where 



human-in-the-loop war gaming is used to refine scenarios and define the 
range of major decisions OneSAF is being developed as a human-in-the-
loop simulation (with resolution from individual platforms to battalion 
level units) to support all M&S domains. COMBAT XXI will produce 
replication data sets (generated by numerous stochastic runs of various 
scenarios) for combat analysis at the brigade and below level for ACR and 
RDA M&S domains. COMBAT XXI models tactical (brigade and below) 
scenarios (CXXI-User’s Guide, 2005).  

2. Behavior Representation 
The degree to which a combat simulation model represents the real world situa-

tion depends not only on the resolution of the modeled forces but also on the behavior of 

the units when performing tactical tasks or missions. Behavior and decision-making go 

hand in hand. The behavior is normally the result of a certain decision made in relevant 

time to the action. It is not necessarily always important how the simulated units came up 

with the decision, it is more important to see the impact of the decision as appropriate and 

tactically correct behavior. In other words, we are not going to model how the brain 

works, but rather utilize the factors and parameters humans consider in their decision-

making process and then exploit the strength of a computer in order to come up with a 

decision. 

Behavior in CXXI can be distinguished in physical algorithms, primitive behav-

ior, such as movement, search and engagement, and tactical behavior, such as bounding 

over-watch, close-air support, etc. Basic tactical behavior and decision-making is repre-

sented in decision-making modules. Additional, situation and scenario dependent behav-

ior can be authored by assigning behavioral rules to entities. These behavioral rules have 

access to required data during the run and make use of the entity decision-making capa-

bilities. Figure 15 displays the basic structure of a rule. 

Trigger 
event(s)

true?
Condition(s)

true?

yes

Actions

… execute rule  <…>
…execute order <…>

:
:

yesTrigger 
event(s)

true?
Condition(s)

true?

yes

Actions

… execute rule  <…>
…execute order <…>

:
:

yes

 

Figure 15.  Basic structure for rules in Combat XXI 
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Trigger events start the entire process of considering a rule to be evaluated for 

execution. This can be the event that a certain control measure has been met, that certain 

modules are initialized that are effects on entities, or that…. The next step depends on the 

type and amount of conditions that are met. In order to actually execute an action all con-

ditions have to be met and the rules and the orders under the actions have to exist. Further 

options include the selection of an echelon that defines what sub-units will receive a par-

ticular rule. It is also possible to repeat the execution of rule. However, for all further 

executions the entire set of trigger events and conditions required have to be met again. 

 

Figure 16.  The rule editor template in CXXI for creating behavioral rules that can be 
assigned to entities. 

 

Figure 16 displays the rule template editor for creating, modifying or deletion of 

user defined rules. Figure 17 shows an example of a rule body in Combat XXI. The Rule 

Body defines what rule executes when the trigger event occurs. Rules can be composed. 

This means that the user can build more complex rules by using a set of simple rules. 

This feature is exploited in the use of Combat XXI in order to create behavior that is not 

initially available in the decision modules. However, the features created in this research 
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are not within the current rule capabilities and according to the development team it is not 

likely that the infrastructure will provide these features in the near future.  

 
Figure 17.  Example Rule to illustrate how a rule looks. Adapted from the Combat 

XXI User’s Guide. 

 
3. Scenario Output 
The output of the scenario is written to a set of log-files. Each default log file con-

tains data regarding the type of the log file. A movement log contains data lines for simu-

lation time, entity name, coordinates, speed, azimuth and pitch. An acquisition log con-

tains basically who saw whom where, with what sensor, and with what accuracy. The 

model developed uses acquisition, movement, and engagement log files as input. The 

output will be discussed in detail in chapter IV. The model is event driven. That means 

that only output is provided when events have happened. If a sensor does not detect a tar-

get then this is not an event and, therefore, no output is logged.  

4. Run Manager 

Other features of CXXI utilized in this research is the Run Manager. This tool al-

lows the user to execute multiple replications of a scenario run. The functionalities cover 

the number of replications, the duration of a single scenario run, the type of random 

number generator, which data loggers to create and given a network, what computers to 

use.    

5. Summary 

Aggregated, Combat XXI provides a capability to run a ground-force-based sce-

nario repeatably with full detection and engagement functionality where the units follow 
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scripted actions. Rules allow the user to invoke special behavior depending on trigger 

events and conditions met. The output is written in text-files.  

E. GENERAL MODEL ARCHITECTURE 

The most general application of the model developed is depicted in Figure 18. 

The entire system consists of four components: the environment, which covers mainly the 

simulation system, the situational awareness component, the mental simulator, which 

predicts and assesses, and the decision component which evaluates the influencing factors 

and actually renders the decision. Figure 19 gives a more detailed view of the compo-

nents of Figure 18. 

Mental Simulator

Situational Awareness
Component

Simulation Environment

Decision 
Component Mental Simulator

Situational Awareness
Component

Simulation Environment

Decision 
Component

 

Figure 18.  The components used in the model developed 

 
1. Simulation Environment Component 
The simulation environment is the driving component. It contains the simulation 

system that can run on the same computer or can be networked. For the general use it 

does not matter, as long as the output of the system contains the required data for the 

other components. That sounds totally obvious, however this is not always the case and 

the simulation system might need to be adjusted. One occurrence of that case could be 

related to the way detections are handled in a combat simulation system. The target ac-

quisition algorithms yield detections of entities, but in contrast to a human observer on 

the battlefield they normally do not provide the event when a spotted unit goes out of 

sight. This can only be deduced when in the next observation-sweep the specific entity 

does not show up on the “detection list” any more. But then it is still unknown at what 
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specific time and at what specific location this occurred. Another consideration could be 

the case in which aggregated units are used. The attrition of aggregated units is normally 

computed by Lanchester Equations. The target detection and acquisition does not provide 

information about individual tanks. There exist combat simulation models where the 

resolution is not on the entity level, like in Vector in Commander (VIC, 2005). That does 

not exclude aggregated models from being used in this research. However, the decision-

making process will not be more detailed than the model’s resolution level.  

2. Situational Awareness Component 
The situational awareness component represents the internal model of the external 

world. The external world in this context is the current situation in the combat simulation 

environment. Many mind theorists have used the term ”internal model of the world” with 

respect to intelligent adaptive behavior. This expression has not been used uniformly. 

Rich Sutton and Andrew Barto give an excellent summary in (Sutton and Barto, 1981). 

They state: 

For some, an internal model is a general knowledge store capable of an-
swering any sort of question about the world. For others, an internal model 
is much more limited in that it can answer only a single question: “What 
should be done next?” In the first case another part of the mind can ask the 
internal model many questions before taking action, whereas in the second 
the internal model generates a recommendation for action only in response 
to the immediate situation. 
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Figure 19.  The general architecture of the model implemented. 

 

We follow more the second case mentioned. However, we also consider this internal 

model in terms of situational awareness of a commander, in the sense of Endsley’s level 

1, discussed earlier in Chapter B 1. Therefore, the situational awareness component takes 

the output of the simulation and builds up its own internal perception of the world. It cre-

ates estimates about the enemy formations, speed and directions. In case the mental simu-

lator creates its predictive model parallel to the situation development the per-

cepts/observations are also send to the mental simulator. In case there is a predictive 

model pre-loaded an update might only occur. In this abstract view the situational aware-

ness component is not limited to ground combat situations alone. It is applicable to all 

cases, where a more sophisticated awareness is required than in the simulation system 

available. This might include appropriate knowledge in a 3D-environment about the 

value, benefit, or meaning that “people” seen in the VR have due to their spatial relation-

ship. This might mean to know that I can watch a certain portion of a building and others 

see a different portion, but overall I know what portion of the building in total can be sur-

veyed. The situational awareness component reads the output file from the simulation 
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model until a decision is required. A decision might be any action the mental simulator 

can be of assistance. In our case this might be the decision to fire the weapon or to hold 

the fire, even given the resources.   

3. Mental Simulator Component 

The mental simulator component is activated when a decision is required. It cre-

ates the appropriate context for the decision which is the basis for developing potential 

actions. The predictor module in the mental simulator has two possible inputs. One is the 

context of the decision, i.e., what is the current situation and based on that what can be 

expected next. The other is the set of potential actions which might be simulated in time 

within the predictor module or might be a table look-up in a representative data-base. The 

prediction of the next event is assessed with respect to the context of the decision and in 

our special case with respect to the terrain where it is supposed to happen. Both, the as-

sessment of the prediction and the estimated outcomes of the potential actions are input 

for the decision component. The central part of the mental simulator is the predictor 

module. It contains the predictive model(s) and a capability to either store previous simu-

lations and then look up the results or to create a simulation on the fly and evaluate po-

tential actions.  

4. Decision Component 
The decision component processes the assessed prediction of the next event most 

likely to happen and the results of the simulated courses of potential actions. It will also 

incorporate the terrain impact on the prediction. When the decision has been rendered, 

the result will fed back to the environment.  

F. GENERALIZATION OF THE MODEL  
In current simulation systems, even among those currently under development, 

decisions are based on mechanical behavior, similar to stimulus-response-theory. It is like 

a shooting gallery: a duck pops up and gets shot at. Entities do not anticipate future 

events. However, we can add new information into the simulation system with sensors, or 

equivalent methods, in combination with a predictive model. By doing this, we can cope 

with counterfactual events. Counterfactuals are events that have not happened yet, but 

may happen, on a probabilistic basis. This is equivalent to a human imagination what 

might happen - used in human decision making. This anticipation is generally called 
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imagination - Klein calls it mental simulation. Using a probabilistic approach, in our case 

this is a Markov Chain, but could be some other method. A Markov Chain can provide a 

probability for a transition into the next state and therefore, give an estimate about a fu-

ture event. This enables having a computational method for coping with imagination. 

This approach is not totally random; it is governed by line of sight and by experience in 

the past. We consider mental simulation as anticipation of counterfactual events in a way 

that allows them to influence behavior. Our implementation demonstrates how to open up 

a simulation and use probabilistic approaches to imitate human decision making that is 

based on concepts, counterfactuals and imagination.   

The approach to mental simulation may be extended to a wide range of simula-

tions and models.  An example shows how the methodology developed here might be ap-

plied to a different problem.  

This example relates the following numbers to the corresponding scheme in 

Figure 20. Imagine, for instance, that a need ( ) arises for improving the behavior of 

simulated humans in a virtual world, a need that might arise in a simple shooting trainer 

or in a more complex environment with multiple immersed players and avatars who must 

move appropriately in a threatening situation. The need might be based on requirements 

for more sophisticated behavior of avatars, because there inadequate behavior can distract 

trainees. Of course, similar circumstances also occur in constructive simulations. When 

instances of inappropriate behavior occur in a simulated environment, we ask: What has 

not been considered yet and why? Which leads to a second question: What decisions do 

humans make that simulated entities are not designed to make? Considering those ques-

tions is the first step when building a mental simulator for decision-making situations 

( ). In such simulations, the entities must recognize decision-making situations. Our first 

task then is to determine what relevant information is needed. In our research, both ques-

tions are relevant and they are:  

What event has to be predicted? ( )  

What decision-influencing factors should be made available? ( ) 



Granted, providing the availability of knowledge of influencing factors might be 

more complicated than a simple table-search. It might mean hard computational effort. 

For that, we turn to the field of computer science, which uses the term “instrumenting” 

for program testing. “Instrumenting a program” ( ) means augmenting it with program 

code that measures specific aspects of the program (Pedersen, 1999). The necessary addi-

tional information might already be generated somewhere in the code, although it is not 

yet displayed. That is an easy case: as in a debugger, the information just has to be re-

trieved. The harder case would require adding code that generates additional information, 

which may require several runs of variations of the current scenario in a parallel, or sepa-

rate simulator, or a feasibility consideration of alternatives that were not needed thus far.  
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Figure 20.  A general sequence of the modeling and improving process. 

 

When appropriate and feasible, a database can be built that provides fast, easy an-

swers in certain decision-making situations ( ). Consider this situation, for example: a 
 54
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simulated brother-in-arms in an urban-terrain environment sees a foe disappearing around 

a corner. With that awareness, his behavior in following and moving around the corner—

the speed, what body part goes first, his use of a mirror to peek around the corner before 

he exposes himself to potential enemy fire—is markedly different than if he were simply 

walking his dog. Such situations can be parameterized and pre-simulated so that the ava-

tar realizes that, in x out of y cases, the results are z. This information can then trigger 

more realistic behavior, for which this research may provide some guidance.  

The event to be predicted determines to some extent which predictive model is 

best to use ( ). Chapter II gives an overview of some statistical predictive models ( ). 

The purpose of a predictive model is to provide an estimate of what is possible. However, 

statistical models can provide probabilities of events based on prior observation of those 

events, or they can predict novel events that are composed of previously observed events. 

Both cases, distribution of observed events and distribution of unseen events that are 

composed of observed events, can be useful in different context. A predictive model has 

to be customized and implemented for a given purpose ( ). For a case in which a finite-

state machine is used, it is important to determine the states and to clarify what the states 

mean. If the states are chosen poorly, then the state space might explode and be computa-

tionally hard to handle. To give qualitatively sufficient predictions, the Markov Chain 

must be based on a representative data set. For instance, if you have ten states and only 

five arcs, there may be a prediction gap. For a decision-making situation requiring infor-

mation about the motion of a target in a multidimensional space, a Kalman filtering might 

be used. If something else is needed, another model may be a better fit. The final step be-

fore applying and using a model is to “train” it ( ). In this context, “training a model” 

means estimating its parameters to maximize the probability of a set of strings being gen-

erated by the model (Pedersen, 1999). 

To make this discussion more concrete we will guide the reader through an addi-

tional example which will show how the methodology developed in this research has a 

broader impact. When watching movies with bad and good guys there occur chasing 

scenes. When a character, being chased, disappears behind a corner, there is more than 

one option for the pursuer when they reach the corner. In some cases the pursuer goes 
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around the corner at full speed. In other cases caution is used and the pursuer carefully 

peeks around the corner in order to avoid being ambushed after the turn. If we were to 

simulate this chase in a training simulation, it would be important for us to give the pur-

suer believable behavior. Forsythe (2004) discusses this issue when talking about the use 

of simulation technology for Law Enforcement. He states:   

Many current simulations, as well as computer games, incorporate human 
entities and allow participants to interact with those entities. It might seem 
that the ability for trainees to gain experience in a law enforcement role al-
ready exists. Many people are concerned that the synthetic humans used to 
populate most current simulations do not provide a sufficient level of be-
havioral realism. For many years, within the simulation and computer-
gaming industry, researchers have placed a heavy emphasis on accurately 
modeling the characteristics of equipment and providing a high degree of 
realism in computer graphics, sound, and other sensory experiences. Sub-
stantially less emphasis has been placed on the behavioral realism of simu-
lated humans. In many cases, synthetic humans have been provided sim-
plistic and predictable behavioral routines that are highly susceptible to 
gaming (i.e., once the behavioral routine is recognized, players exploit this 
knowledge of the underlying software to their advantage). 

This is similar to the domain of constructive simulation. He also states the main 

effort that has to be pursued: 

The key development in simulation technology that benefits the law en-
forcement profession involves the ability to interact in a natural manner 
with highly realistic and diverse simulated humans. These capabilities are 
not yet available. 

Deriving from the above we state that there is room for enhancing human behav-

ior in virtual environments for Law Enforcement. Models for law enforcement personnel 

training must provide an ability to interact in a natural way with diverse and highly realis-

tic simulated humans (Forsythe, 2004). The synthetic entities must process cues and in-

terpret them through a humanlike decision-making process that is consistent with human 

reasoning. Such capabilities are not yet available to a satisfactory degree. However, if the 

simulations are provided with the ability to create their own awareness of the situations 

encountered, the “reasoning” behavior of the synthetic entities will be much improved. 

For instance: If the entities have knowledge, say, about policemen’s location, they can 

anticipate the danger and will behave differently when rounding a corner or entering a 
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building. The entities will become more situation-dependent and act more realistically, 

which will enhance the training simulation.  We will now reconsider the chasing example 

in a comprehensive way and explain it in reference to Figure 20. 

A simulated brother-in-arms in an urban-terrain environment pursues a foe disap-

pearing around a corner. He is always racing around the corner. This is not always situ-

ational depending appropriate behavior. So, there exist a need for improving behavior (1). 

The next step (2) would be to identify, what has to be improved. In the particular case it 

would be the behavior when going around the corner. In order to determine what addi-

tional information is required, it might be that additional cues or knowledge elements are 

incorporated (3). This could be to record how long they have been running versus a mean 

value adults can run at high speed without taking breathing time. It is also possible to 

categorize the environment in terms of favoring the one or the other behavior. The in-

strumenting of the simulation (6) would cover making the required information available. 

This might be relatively easy or hard. This cannot be assessed in this general discussion. 

However, these types of situations can be parameterized and pre-simulated so that the 

avatar realizes that, in x out of y cases, the results are z. This knowledge can be stored in 

a data base (9).  

So far it should be known that an essential part of improving behavior is by add-

ing expectations to the simulation. For this purpose we included a predictive model to 

mimic human imagination. Since we do not know the exact parameters and data available 

of this particular simulation under discussion, we cannot point out immediately a specific 

predictive model. However, in the case with the bad guy running around the corner we 

have to predict a discrete event. That would rule out for example a Kalman Filter. We 

would use data like: 

- How long was he running? The longer the hunt is the more likely might be the 

need for a breathing time and the more likely will it be that he waits behind 

the corner in order to fire. 

- What can be said about the possibility of finding cover behind the corner? 

There might be cues available, to what extent cover could be available. 
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- How dense is the venue populated with people? If this happens on a crowded 

side walk there might be an assessment possible about the likelihood that he 

keeps running or not. 

- How large is the lead of the bad guy? 

The answer in a specific application could then lead to a selection of a particular 

predictive model or a combination of prediction techniques (4)(5). Once the model is 

known in detail then the prediction component gets customized (7). Applying pattern 

matching can lead to a ‘key – behavior’ representation. The key does not have to be a 

single condition. In fact the more conditions are used the more precise the behavior 

should be. When the key matches the current situation, like exhaustion is true, high prob-

ability of cover behind the corner, and no other people around, etc, then the anticipated 

behavior could be ‘bad guy will try to ambush’ and then the appropriate behavior can be 

retrieved from a data base. Training the model would be to adjust the parameters used 

such that the results from test runs are consistent with the model. 

The result of this research is neither a crystal-ball-like capability to project into 

the future nor a “plug and play” component for all types of simulations or decision-

making support tools. It is a framework for a computational model of mental simulation  

in a simulated combat environment. However, there is a degree of usefulness for a series 

of similar problems and simulation applications that involve uncertainty and time consid-

erations.  

“Uncertainty” in this context means relying on assumptions about, or estimates of, 

behavior and the size or type of the decision-influencing factors. The range in complexity 

can go from simply assessing the trend of a certain stock commodity to a life-and-death 

judgment whether or not an old wooden bridge in the jungle or Hindu Kush can carry 

someone’s weight when crossing. As outlined in Chapter II, there are many ways to as-

sess or estimate decision-making parameters, but a model of mental simulation considers 

only the parameters and the weights. It does not care about their derivation. One impor-

tant family of decision-making may be based on probabilities that were deliberately fab-

rication by a devious opponent. Therefore, the model is relatively generic in its parameter 
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estimation and the respective models used. With respect to time considerations, this re-

search focuses on decision-making situations in which the decision does not require tak-

ing action immediately. The system may suggest an immediate need for action, but not in 

all cases. The system can cover the gamut from making decisions about the right time to 

trade stock shares to determining the right time for an ambush.  

Our research can be used to receive guidance, gain experience, and recognize pit-

falls when modeling a mental simulation computationally, not merely conceptually. The 

main features of the architecture described above are three-fold. A decision must be made 

with a certain timeframe; the parameters used are: 

• How did I perform last time, when I was in a similar situation? 

• What can I expect to happen in the near future? 

• What do I know/ assess when the expectation comes true? 

Combining these parameters in a mental simulation model can make the behavior more 

human-like.  

To illustrate, what we mean, consider this situation in baseball. In a pitcher-

versus-batter “duel” situation, the batter has certain expectations about what the next 

pitch will be. Overall, he knows that there can be four “balls,” three “strikes,” and, at 

most, six possible pitches and strikes excluding foul balls. If there are four balls, the bat-

ter will walk to first base, and it is the next batter’s turn. If there are three strikes, the bat-

ter is “out.” When the batter has had three balls and no strikes, he can be reasonably con-

fident that the next pitch will be an attempted strike. Otherwise, a fourth ball will result in 

a “walk.” Conversely, when the batter has had two strikes and no balls, the pitcher has 

greater freedom in his pitch selection. He can choose to try to strike the batter out or to 

pitch balls, in the hope that the batter will swing on a bad pitch. But what about other 

situation in which the batter has had less balls or strikes? The batter estimates what the 

pitcher will do. He can vary the speed, “break,” and location of the ball, but his choice is 

limited. The batter has an array of expectations. If he has observed the pitcher’s behavior 

from batter to batter, or knows his history from videos of former games, he may have a 

mental model of what the next pitch is likely to be, given his own particular situation. 



 60

Within the mechanics of the game (balls and strikes, …) there is also mental simulation 

included. In case of modeling this, we could use the techniques explained in this disserta-

tion to provide that human behavior based on mental simulation. And as Forsythe pointed 

out, this extra realism could make all the difference in the world in a training simulation.  
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IV. MODEL IMPLEMENTATION AND RESULTS 

A. INTRODUCTION 

This chapter describes the implementation of the model, based on the general ar-

chitecture described in Chapter III, and discusses in detail the four components: simula-

tion environment, situational awareness, mental simulator, and decision component. It 

also explains the treatment of the terrain assessment. We then introduce the experiments, 

which compare the model’s predictions and firing behavior to those of human agents. The 

chapter concludes with the results of the experiments. 

B. SPECIFIC IMPLEMENTATION OF THE GENERAL ARCHITECTURE 

To enhance the cognitive capability of certain entities, the intelligent software 

agent, used in combat simulation models, we built a decision-making model, using Com-

bat XXI (see Chapter III). The agents are enabled to 

use statistical estimates to predict next events, 

be sensitive to decision-making contexts, 

have an improved situational awareness, 

determine potential actions, and  

provide an explanatory component for the reasoning. 

Figure 21 shows the application of mental simulation in a simulated combat envi-

ronment in between the situational awareness and the making of that decision. At left, 

when resources are available, the entity fires; unless told otherwise, it always fires. At 

right, the entity considers the context, predicts the next event, and fires accordingly. 
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Figure 21. The role of Mental Simulation in the current work. 
On the left side:    Decision-making Situation Given the resources, the agent always fires. 
On the right side:  Decision-making Situation Given the situational context, the agent can 
decide not to fire, even though given resources. 

 
 
1. Components 
The following explanation of the four components refer to Figure 18. 

a. Environment/ Combat XXI 
It was a conscious decision to couple to an existing simulation system. We 

wanted to use one of the latest systems in order to have the highest likelihood that the 

model developed could be applied in a real system. With this approach, we only use the 

information that is provided by the combat simulation system in the format that it is  pro-

vided, and generate new information based on this. Thus, we are able to reduce the actual 

adaptation effort that would be required to incorporate our work inside a combat simula-

tion model like Combat XXI. In order to avoid dealing with version changes of the com-

bat simulation model which is under active development, we chose to construct our 

model externally and not embed it directly into the combat simulation model. 

Here we discuss those features of Combat XXI that are relevant to our im-

plementation. Combat XXI has a set of default loggers, shown in Figure 22. 
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Figure 22.  The Combat XXI data-log configuration window 

 
In addition to the default loggers, customized log files can also be created. 

However, all the information required for our model is covered by the default log-file set-

tings. The following standard log-files yield the input for the model as implemented: 

KILL-Logger, PHYSICAL_ACQUISITION-Logger, and MOVEMENT-Logger. The 

BEHAVIOR_RULE-Logger was used for verification purposes only. The standard 

KILL-Logger captures data on fire, detonation, and damage events, which go together, 

because events are cross-referenced and logged with the key “event_id.” Table 2 gives an 

overview of the data contained. 
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Logger Description Data provided Input for model
PYSICAL_ACQUISITION simulation time x

observer_id x
observer_easting x
observer_northing x
observer_msl
observer_agl
observer_speed
sensor_name
range
detection_level x
target_id x
target_easting x
target_northing x
target_msl
target_agl
target_speed

KILL:   Fire events eventType x
simulation time x
entityID x
munitionEventID
munitionName
range
targetID x
x x
y x
z

KILL: Detonation events eventType x
simTime x
entityID x
munitionEventID
munitionName
x
y
z

KILL:   Damage events eventType x
simTime x
entityID x
munitionEventID
damageType x  

Table 2. The log-files required to create the situational awareness and situational 
context for decision-making events 

 
The PHYSICAL_ACQUISITION-Logger holds the detections that occur 

on the blue side and the red side. This log-file has no aggregated observations, which 

means that each data line covers only one observer and one target plus associated data, as 

shown in Table 2. To determine whether an observer detects multiple tanks in one obser-

vation, the data file must be processed separately, outside the simulation model. If two 

data lines have the same simulation time, it is inferred that this is a multiple observation 

at a given time. The simulation engine in Combat XXI ensures that no other logger, such 

as DAMAGE or FIRE or DETONATION, uses the same simulation time. Therefore, no 

mixing of data from differing event types, such as, for example, a detection event and a 

fire event, can occur. It might not be obvious, but the PHYSICAL_ACQUISITION-

Logger provides only information when a target has been detected. There are no events 

when a target is going out of sight. This is in the following referred to as missing “unde-

tections.”   
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The MOVEMENT-Logger contains data of the path each entity takes. If 

an entity does not change its position, no event is logged. This data is not required for 

running the model. However, the logger’s data provides a smooth display of the unit 

movements and prevents large jumps from observation to observation. This eases the op-

tical assessment. The movement data is not gathered by any type of sensor used in the 

scenario: it is taken from ground-truth.  Figure 23 gives an example of the logged data 

used in our model. The first column depicts the simulation time; the second column the 

observer/shooter; the third column indicates the log-file from which the data is taken. The 

remaining columns are either the coordinates or the type of damage invoked. The units in 

Combat XXI are tagged with id-numbers. 

sim-time observer log type East  (UTM) North
shooter target damage level

sim-time observer log type East  (UTM) North
shooter target damage level  

Figure 23.  An example of the tuned output of Combat XXI.  

 
b. Situational Awareness 

Situational awareness is a critical component in a decision-making envi-

ronment. The better the awareness the more accurately all the parameters that influence a 

decision-making situation can be assessed. Good situational awareness is a prerequisite 

for making a “good” and successful decision. The situational awareness component com-

prises the entity commander’s growing knowledge. It is comparable to a human com-

mander’s cognitive picture of a battlefield situation. There is no data retrieval from 

ground-truth. The Combat XXI output files yield data about detections and engagements 

on a battlefield, plus associated data like time, location, shooter, targets, etc., all of which 

are ordered chronologically. In our implementation, there are sensors that are entities, 
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type “infantryman,” “scattered” over the battlefield, that detect red entities. The sensors 

are stationary and have no operational impact, which means they do not engage and they 

do not get engaged. The red movement is also not influenced by the sensors. The sensors 

yield an operational picture for a platoon commander that would actually be given him 

via various enemy situation reports.  

With respect to its knowledge about enemy formations, the model starts 

from scratch. In other words, the model has no presumptions about the enemy’s behavior 

or formation. This receptive status allows the model to be flexible, since the commander 

cannot count on meeting with strict formations, such as those once aligned according to 

the old Warsaw Pact rules. The model can in principle be supplemented with a “knowl-

edge or experience database,” which will enable it to be feasible, that is, operable even 

when few observations have occurred so far. The formations that are detected and catego-

rized carry information as to their size, type, direction, and speed. Currently, the modeled 

formations are homogeneous, which means a forward artillery observer accompanying a 

combat unit is a distinct formation, even if they operate together. In the current model, 

the size of a formation is taken to be the sum number of distinct entities per formation 

that have been detected. Possible enemy objectives with respect to terrain, such as seizing 

key terrain, are not yet represented. 



250 m

7272

7373

 67

7171

gravitation center (new)

gravitation center (old)
previous
observation

current
observation

conclusion:
tank 71 belongs to the same formation
tank 72 and 73 belong to

250 m

7272

7373

7171

gravitation center (new)

gravitation center (old)
previous
observation

current
observation

conclusion:
tank 71 belongs to the same formation
tank 72 and 73 belong to

 

Figure 24.  Assigning new observations to tank formations 

 
Figure 24 shows how newly observed tanks are assigned to formations. 

Each formation “carries” a gravity center, the geometric center of the entities’ coordi-

nates. The distance of the newly observed unit(s) to this gravity center determines primar-

ily whether a new tank could be part of that formation. If the distance is less than a 

threshold value, then it is a candidate for the formation. If the tank is being observed for 

the fist time, it is assigned either to the closest formation or, when the distance value is 

beyond the threshold, to a new formation that is then set up. In the current implementa-

tion, the threshold is set at 250 meters.  The Field Manual for a U.S. tank platoon states 

Formations are not intended to be rigid, with vehicles remaining a specific 
distance apart at every moment. The position of each tank in the formation 
depends on the terrain and the ability of the wingman driver to maintain 
situational awareness in relation to the lead tank. At the same time, indi-
vidual tanks should always occupy the same relative position within a 
formation. This will ensure that the members of each crew know who is 
beside them, understand when and where to move, and are aware of when 
and where they will be expected to observe and direct fires. Weapons ori-
entation for all tanks should be adjusted to ensure optimum security based 
on the position of the platoon in the company formation (Field Manual 17-
15, 1996). 



Although there is no doctrinal number for the distance between tanks, 

since that always depends on the mission, situation, time of day, etc., according to our 

experiences and talks with military experts, a distance of 250 meters seems reasonable. 

In addition to the formation membership information described above, 

situation awareness comprises the following: a commander’s knowledge of how many 

formations are in front, how many distinct tanks are assigned in total to particular forma-

tions, and the estimated speed and direction of the formation. Since we avoid access to 

ground-truth, the speed and direction are known only as estimates. If he sees a “known” 

tank, he also knows the formation to which it belongs and where that formation’s remain-

ing tanks were reported last. Figure 25 displays an example of an agent’s information 

about the tanks he sees.   
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Figure 25.   The context provided when a decision situation is invoked. 

 
The situational awareness component also updates or creates the predic-

tive model, whose input, independent of the model type used, consists of observations of 

spotted enemy tanks. The model yields an option to create either a predictive model for 

each formation or one model for all incoming formations. For now the number of tanks 
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seen in one observation represents the state of the predictive model. In section IV.B.2 we 

discuss the terrain assessment and incorporate it also into the state, then a state of the 

predictive model will be two-dimensional. In the next section, the states are covered in 

detail. 

The need for a decision occurs when a blue tank sees an enemy only. At 

that point, the situational awareness component yields context data to the mental simula-

tor component. 

c. Mental Simulator  
The mental simulator, the most central component of the architecture, 

makes the difference between our simulation system and all other combat simulation sys-

tems. A detailed view of the mental simulator is depicted in Figure 26. The circled num-

bers in the figure depict the three assigned tasks of this component: 

1. to retrieve a context from the situational awareness component, and to es-

timate the next probable observation and the average (typically we use the 

median) time when this event will occur;  

2. to predict the terrain quality in the near future, and  

3. to create potential actions and estimate their outcomes.  

 

task 1: retrieve context 

The context binds the variables of the maximum number of tanks per for-

mation and determines whether, for the upcoming decisions, several formations are cur-

rently observed. In the case of an observation of tanks from multiple formations, the one 

that is the greatest threat is selected to engage first. In the current implementation, the 

threat is proportional to the distance, which is part of the provided context. If the distance 

becomes less than 800 m, the blue tank always fires, because the risk is too high that the 

red tank will fire first. The current value 800 was selected on a personal-judgment basis: 

it seemed reasonable given the scenario and the three-dimensional perspective of the bat-

tle space.  
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Figure 26.  The Mental Simulator in detail. 

 
There is also a need to assess whether the red tanks can detect the blue 

tanks. This assessment exploits a given artifact: that the tanks do not look around a full 

360 degrees. The decision component later on decides on the threat evaluation done in 

the mental simulator. 

task 1: predict the next observation 

The system, that is, the tank platoon, is in state “i” when in the current ob-

servation, “i” tanks are observed. In other words, a “state” is defined as the number of 

entities detected at an observation time “i.” Each agent tracks the observations according 

to the state diagram in Figure 27. The current state is colored yellow. (When we intro-

duce the terrain features, we will make this state machine two-dimensional). The ex-

pected median time for a transition is also determined in parallel to the expected next 

event. However, this time can be used to estimate only when we can expect the next 

event, not how long a certain observed tank will be visible, because Combat XXI yields 

only detection, and no undetection.  

The prediction of the next event(s) is currently accomplished by using a 

Markov Chain. This stochastic state machine assigns probabilities to state transitions 
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from state “i” to state “j.” The probabilities reflect the frequency of state transitions in the 

observations that were analyzed prior to the current observation and that were normalized 

so that all the probabilities of emitting arcs in a particular state add up to 1. Although 

there are other possible models for this data, considering the current status of the combat 

model used here, a finite-state machine was best suited for the available data. 

 

 
 

Figure 27.  Example of the state machines for a defending platoon that is currently in 
state “1.” A state indicates how many entities are seen in a current observation. The arcs 
are labeled with the transition probability to the next state. The median dwell times are 

also stored but are not shown here. 

 
State “1” means that the agent currently sees one entity: he will stay in this 

state until he makes another observation. If he now sees two tanks, then he moves into 

state “2,” and the transition probabilities and mean dwell times (duration he stays in a 

state) are updated. Since the combat model does not currently provide data as to when an 

entity goes out of sight, the state “0” never reoccurs. If the model made available ‘going 

out of sight events’, the mean or median dwell times would be more realistic. The second 

section of the chapter will show our attempt to incorporate such undetections and to esti-

mate when an observed unit ultimately goes “out of sight.” Although, initially, the model 

was trained by having various sensors along the main approaches, we eventually used 

comparable scenarios and then initialized the state machine with probability and dwell-

time values.      

An easy prediction criterion for the next transition could be to choose the 

arc with the highest probability. However, using this approach would not exercise transi-

tions to states of lower likelihood. This would also be a very simple model of mental 

simulation that has the flavor of RPD. The degree to which humans take less likely out-
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comes into account when mentally simulating is, we believe, still a research question. In 

order to ensure that events with a lower probability will also sometimes be predicted the 

author uses a Monte Carlo simulation for sampling the values from the probability distri-

bution as estimates. With Monte Carlo Simulation all kinds of questions can be ad-

dressed. This method is widely used when an analytically computation is very hard, even 

though the mathematical model is completely determined (Axtell, 2000). The mathemati-

cal and statistical literature refers to one class of problems of this type as “boundary 

crossing” (Giraudo, Sacerdote, and Zucca, 2001). Many simulation runs can be con-

ducted and then the frequency of occurrence, in the case of boundary crossing when the 

curve hit the line, can be taken as an estimate. Considering the current decision context 

there are mainly two questions that seem promising for the model. The first is related to 

the estimated time to expect a transition and the second addresses the multiple state se-

quences. The precise questions are: 
 

• What is the most likely state sequence with the next x observations?  
• When will a state (or set of states) of interest next be entered? 

 
These mathematical formulations correspond to the human questions “What will happen 

next?” and “How long until (some anticipated event) occurs?” 

  

task 2: predict the terrain quality in the near future 

Predictor element 2 in Figure 26 accomplishes this task. This task is dis-

cussed in a separate section (IV.B.2) in detail.  

 

task 3: create and evaluate potential actions 

The mental simulator is also tasked to create potential actions. The current 

implementation is coded to create two potential actions: 1) to fire immediately when a 

target pops up on the battlefield, and 2) to hold fire.  

In case 1) the risk of outflanking arises and the likelihood the likelihood of 

not seeing all tanks increases. In case 2) when all or most of the red tanks are visible, the 

likelihood that they will try to outflank the blue tanks is relatively small. In a real-world 

situation, they would most probably move in ways to avoid cross-movements relative to 



the enemy, and try to engage as fast as possible. In Combat XXI, these two actions were 

simulated with the Run Manager, and the output was determined with respect to blue 

losses, red losses, and the “starting state,” which is the number of red tanks seen in the 

first observation. This generally varied between one and three tanks. The loss values are 

stored in a database. The predictor element 3 in Figure 26 would retrieve this informa-

tion, in the following referred to as loss chart.  

Besides to fire immediately or to hold fire indefinitely, there exist a possi-

bility of waiting a certain amount of time. However, this option has not been imple-

mented in the current work due to Combat XXI issues. Conceptually, the length of time 

the tanks wait before firing would depend on various parameters of the targets, such as 

direction, speed, and distance. We could assume that a tank platoon has a certain “depth” 

on the battlefield. A unit’s depth is the distance between the first tank and the last, as 

mapped in a line showing their direction. According to the field manual, a depth of 100 

meters for a platoon in an attack seems reasonable. If the first tank seen has a speed of 15 

m/s, then, in seven seconds, the last tank will generally appear. Thus, one potential action 

would be to wait seven seconds before firing. Figure 28 shows how a unit’s depth is de-

fined. 

Depth
Depth

 

Figure 28.  Depth of a unit. 
 

d. Decision 
In the current implementation, the decision component requires three in-

puts:  

- a prediction of the next event likely to occur,  
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- an assessment of the prediction with respect to expected terrain influence, and 

- an assessment of possible actions.  

In other words, the decision component takes the predicted number of 

tanks to see in the next observation, retrieves a median time for this event to occur, and 

estimates the expected location of the tanks to be seen. The new location estimate is cal-

culated geometrically based on the estimated speed and direction. For this estimated loca-

tion there exists a terrain cell attribute that indicates how likely an observation will occur 

in this location. The terrain cell attribute is defined in terms of the number of detections 

in a preliminary run. The terrain attribute will be used to assess the prediction. The as-

sessment of possible actions is retrieved from the database. In preliminary runs in similar 

scenarios, the dependence of red and blue losses on whether the platoon fired immedi-

ately or delayed the firing and also on the number of tanks seen in the initial observation 

was determined. 

In our basic initial example of an agent, a tank platoon commander, the 

tank decides to fire according to the decision tree in Figure 29. Once a tank is in view, 

this decision tree gets activated because the need for a decision occurs. The decision 

component proceeds downwards through the tree until it hits a node that says “fire” or 

“hold fire.” At each node a condition is checked and based on the outcome of this condi-

tion the respective path is chosen.  

The top node evaluates the threat level of the tanks observed to the blue 

(friendly) tank platoon where leader’s decision process is being modeled. Determination 

of threat level is based on range in the current implementation. Other potential factors 

could include the heading of the tank or whether the enemy gun points towards the blue 

position. Our handling of threat assumes that the blue tanks are in a turret-down or hull-

down position, in which the probability of detection is relatively small. The threat level 

might also be influenced by the mission, not only by the risk of being shot at. A good  

example would be a mission of suppression of enemy reconnaissance. Even if the enemy 

tank does not detect the blue position it can still be a severe threat, because of the capabil-

ity of reporting reconnaissance results that might endanger blue’s own operation. The 

heading of the enemy tank’s gun cannot currently be retrieved in Combat XXI. There-



fore, it is not modeled. However, clearly determination of a threat can be based on vari-

ous parameters. If an immediate threat is assessed, that is the enemy comes within a cer-

tain threshold distance, then the tank immediately starts the engagement process to pre-

vent being shot themselves (path  in Figure 29). Otherwise a hierarchical approach in 

the decision tree is further pursued.  
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Figure 29.  The decision tree for rendering a decision. The numbers 1 to 9 below the 
decision serve as references to the decision tree branches in the text. 

 
In the next two layers of the tree, the prediction of how many tanks will 

most likely be seen in the next observations is used. If the prediction will be at most the 

same number of tanks  as currently seen and this value exceeds 50% of the estimated pla-

toon size then the engagement process is also initiated. This rule captures the case where 

currently three or four out of four tanks possible are observed and it is unlikely to see 

more in the next observation. Therefore, firing at the ones observed would be a reason-

able thing to do. For the case that currently only two tanks out of four are observed, the 
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terrain is additionally assessed, and in case of a good detectability of the future terrain 

cell the casualty evaluation is conducted, otherwise the engagement starts. If the casualty 

evaluation is promising then fire is on hold, otherwise also the engagement process starts 

immediately (cases  -  in Figure 29).   

If the prediction indicates a higher number of tanks than currently ob-

served, then the expected percentage of the estimated current platoon size the tank com-

mander will see is determined. This captures the situation when, for example, a platoon 

has five tanks and four tanks are seen and the system actually starts firing at them (case 

 in Figure 29).  

If the number of enemy tanks currently observed is less than the maximum 

number possible, for example two in our example, then the terrain evaluation triggers the 

engagement process. If good detectability is anticipated, the model holds fire (case  in 

Figure 29). If poor detectability is anticipated, the model assesses the casualties evalua-

tion from preliminary runs. If the casualty evaluation indicates fewer losses when waiting 

to fire then the model holds fire, otherwise it fires (cases  and  in Figure 29). 

These factors enable the simulated platoon commander to make better de-

cisions. The decision tree and the conditions were discussed with officers from the armor 

branch of several countries represented at the Naval Postgraduate School. In existing 

models, inappropriate immediate firing remains unpunished because the attacker also be-

haves inappropriately, ignoring the first shot or even a resulting kill and continuing to 

follow the scripted path. 

The decision component also creates the explanatory component of the 

system. This means it provides a text string from which the user can see why decisions 

made by the model turned out the way they did; making the rationale transparent to the 

user. There are no anonymous numbers that lead to a decision. All numbers used have a 

meaning in terms of losses, time or probabilities. Therefore, the decisions can be ex-

plained in a natural human way. 

2. Terrain 
This section describes how we incorporated terrain into the mental simulation 

process. In a real combat environment, a commander observing a tank can continue to 

look at the tank as long as the same line of sight also continues. In the simulation envi-
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ronment, there are events at a particular point in time that determine that certain detec-

tions have been made. But, in general, there is not information available as to how long 

the observed entities will be visible. Although the system developers accepted that there 

is a need also for undetection information, no such implementation has yet been accom-

plished. Therefore, we had to work around that lack to get information as to when a tank 

would probably go out of sight.  

a. ACQUIRE Algorithm 

The U.S. Army’s current standard algorithm for target acquisition is the 

AQUIRE model. The ACQUIRE algorithm is a common search-and-target-acquisition 

algorithm used in many army force-on-force models (Cioppa et al., 2003). The 

ACQUIRE algorithm predicts target acquisition performance for imaging systems that 

operate in the visible, near-infrared, and infrared spectral bands. Therefore, it covers all 

sensors that occur in our currently implemented scenarios. According to the user’s guide, 

the ACQUIRE algorithm 

predicts the expected proportion of an ensemble of trained military ob-
servers who can discriminate a target of a given size and temperature dif-
ference with the background, under specified atmospheric conditions 
(ACQUIRE Range Performance Model for Target Acquisition Systems, 
1995). 

The ACQUIRE algorithm was developed for retinal image sizes that are 

generally smaller than the fovea, which means they are more than 200 meters away 

(ACQUIRE Range Performance Model for Target Acquisition Systems, 1995), which, in 

our case, makes the algorithm applicable for tank detections beyond 200 meters. 

The ACQUIRE algorithm uses four categories of input parameters to de-

termine the level of acquisition: target characteristics, environmental effects, sensor char-

acteristics, and task description inputs. The scenario-independent data that is required for 

running the algorithm is stored in an unclassified data base that was provided to the 

Combat XXI developers and used “as is.” In our context, the main task for ACQUIRE is 

the prediction of the performance of: target spot detection, target discrimination, and 

time-dependent target detection. Target spot detection means the target is viewed against 

a uniform background. Target discrimination is used to determine the level at which a 



target is detected. The levels of detection are currently categorized according to an in-

creasing order of detail into detections, classification, recognition, and identification. In 

our experiment we ran the model at different levels of target detection. The objective of 

the time-dependent target detection is to determine the probability of detection as a func-

tion of the amount of time allocated to the task. This is exploited in the terrain attribute 

determination with respect to the time the simulation runs. The ACQUIRE algorithm uses 

a Field of View (FoV) and a Field of Regard (FoR) nomenclature. Field of View is the 

horizontal and vertical angle that the sensor looks at, plus a scaling factor that is not of 

further interest to our simulation. The ACQUIRE algorithm is applied independently for 

each FoV. Before a FoV can be revisited, the entire Field of Regard must have been 

scanned: thus, the bigger the number of FoVs per FoR, the longer it is before any one 

FoV can be revisited. Figure 30 depicts the relationship between Field of View and Field 

of Regard in the ACQUIRE algorithm.   

FoR

FoV

FoR: Field of Regard
FoV: Field of ViewFoR

FoV

FoR

FoV

FoR: Field of Regard
FoV: Field of View

 

Figure 30.  The relationship between Field of View and Field of Regard 

 
The calculated probability of detection is compared to a random draw to 

determine whether a detection of a particular target has occurred. Therefore, the 

ACQUIRE algorithm is stochastic. If a FoV is revisited, the result can be different than 

that of the first visit, even if no entity has moved.  

b. Terrain Attributes 
A terrain attribute is an index that determines whether a particular terrain 

cell can be categorized as having either a “good” or a “bad” rate of detectability. Our ter-

rain of interest, that is, the site where we expect decisions to occur, is divided into 100 x 
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100 m cells. In each cell, approximately four to six tanks were randomly distributed. No 

entity (i.e., tank) was moving, but the target acquisition algorithm was made active. Then 

the simulation is turned on and the detections, which occur over time, are recorded. The 

graph in Figure 31 shows how the detections in a particular repetition occurred over time. 

To determine the cell attribute, we conducted 50 runs of the combat simulation model. 

Figure 31 shows the detection rate. In our scenario we had scan times per FoV that were 

normal distributed over a mean of 3.5 seconds. 
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Figure 31.  Total detections over time. 

 
Figure 32 depicts one example of the terrain assessment: the cell with the 

coordinates (59200, 23100), which contains six tanks. Their numbers are listed at the 

right. The ACQUIRE algorithm detected only one tank. A cell was attributed as “good,” 

in terms of its detectability, when more than 50 percent of its tanks were detected. In this 

case, the cell was attributed as “bad.” 
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Figure 32.  Assessment of terrain attributes 

 

 

Figure 33.  Variation in terrain attributes per repetition 
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Since the detection is stochastic, the attributes for the terrain cells are ag-

gregated. A terrain attribute also depends on the location of both the observer and the tar-

get. In our example, none of the tanks, including the observer’s is moving over the course 

of a single run. Therefore, we also conducted several runs in which the target tanks ran-

domly changed position within their 100 x 100 m cells. The number of tanks per cell, 

however, was kept constant. The mean of the six runs conducted was forty-seven de-

tected tanks, plus or minus seven tanks, in a 1.4 x 1.4 km square. The number of cells 



containing tanks and having line of sight to the observer tanks is 121. Thus, the variation 

per cell is in average less than half a tank. Table 3 shows the results of the comparisons.  

A terrain cell earned the attribute “good,” indicated by green in Figure 33 , 

when in 90% of the cases half or more of the tanks were detected. In all other cases the 

terrain cells were attributed as “bad.” When there was no detection at all, the cell was 

colored dark gray; in the remaining cases, light gray.  

Run 1 Run 2 Run 3 Run 4 Run 5
Mean S-Dev

Replication  1 35 35 40 36 38 36.80 2.17
Replication  2 47 47 51 49 50 48.80 1.79
Replication  3 39 40 44 41 42 41.20 1.92
Replication  4 49 49 55 46 53 50.40 3.58
Replication  5 50 49 56 52 53 52.00 2.74
Replication  6 40 40 44 42 44 42.00 2.00
Replication  7 37 37 41 36 39 38.00 2.00
Replication  8 46 45 49 47 48 47.00 1.58
Replication  9 55 55 59 56 59 56.80 2.05
Replication 10 56 55 61 58 61 58.20 2.77

Mean 45.4 45.2 50 46.3 48.7 46.73 2.24
S-Dev 7.38 7.07 7.59 7.67 7.97

total number of cells containing tanks: 121  

Table 3.  The number of detected tanks per run and replication 

 
We also evaluated how well this approach performs. In order to do so, we 

looked at 10 replications of a single scenario involving a group of moving hostile tanks. 

This scenario is one of two generic scenarios we used in the experiments. This one, with 

the name “final4”, is explained later. We examined all consecutive observations that had 

a change of terrain cell attributes associated with them. That means, when an observation 

i occurred in a “good” terrain cell and the observation i+1 occurred in a “bad” terrain cell 

then the number of tanks in each observation are recorded. This was done in the same 

way when the terrain cell attribute change occurred from “bad” to “good.” When no 

change occurred, nothing was recorded. At the end of the scenario replications the mean 

values for changes from “good” to “bad” and from “bad” to “good“ were determined and 

put into Figure 34. This figure displays on the left side the mean values of differences in 

number of tanks observed vertically. The x-axis displays the replications.   
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Figure 34. Changes in number of tanks observed around a terrain cell attribute 

change 

 
Above the zero line are the values for changes from “bad” to “good” and 

below vice versa. It is apparent that all means are either above or below the zero line in-

dicating that it can be assumed when going, for example, from a “good” to a “bad” terrain 

cell in average less tanks can be expected in the next observations. We consider this as an 

extremely valuable new feature in combat simulation environment. The right chart dis-

plays a truncated version of the data. Truncation was done when the first damage oc-

curred. The right chart shows more clearly the difference between good and bad terrain 

cells because the maximum number of tanks observable decreases after damage occured.  

C. EXPERIMENTS 
We conducted four experiments. They all used the same (general Combat XXI) 

scenario. The first experiment responded to the question whether there would be a differ-

ence in prediction accuracy as a function of the number of state machines. This is a more 

technical experiment and was used to make design decisions. The next experiment, which 

involved human subjects, compared the prediction accuracy of the model to that of hu-

mans. This and the next experiment address the model’s validity by comparing its per-
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formance to human performance. The third experiment examined how the tools, provided 

to the participants and mandatory for the model to work, impact the human predictions. 

The fourth experiment compared the firing behavior from humans and the model based 

on experiment 3. 

1. Scenario 
The general scenario in Figure 35 was used in all three experiments: it features an 

area in the so-called Fulda Gap, close to the former Inner-German Border. This area was 

chosen because Combat XXI has digital terrain data available there. Also, the terrain data 

is very detailed and thus allowed a good visual assessment of the behavior presented by 

Combat XXI. Furthermore, the German Armed Forces have map tools for this area, so 

the terrain features in Combat XXI can be verified. 

This scenario has two variants named final2 and final4. Both are xml-files so that 

their name may also appear on charts as final2.xml and final4.xml. The difference be-

tween them is the state transition variation. The sensors had slightly different locations so 

that the detections occurred differently. In the first one there occur mainly observations 

with few tanks, and the latter one has a higher percentage of observations with three or 

four tanks.  

The forces depicted in the simulation were a blue platoon and a red platoon. The 

blue platoon consisted of four M1 tanks, which defended against a red armored company 

of thirteen T-72 tanks in total. Choosing these two tank types ensured that the database in 

Combat XXI, which is unclassified, would provide full support. No error occurred due to 

a lack of data. 



 

Figure 35.  The scenario used for the experiments. 

 
The red platoon attacked in three formations, one platoon each. The route of at-

tack was a scripted path. The red tanks’ behavior was constructed using Combat XXI’s 

built-in infrastructure, with the single exception of the outflanking behavior. The tanks 

marched in line and changed to a column formation at a given phase line. If flanking fire 

killed the first red tank, the remaining, undetected three tanks outflanked the blue platoon 

along an alternate scripted path. However, if the blue tanks began delayed firing after 

more than one red tank was spotted, it was too late to outflank the blue tanks, and the en-

suing “duel” situation had to be resolved immediately.  

2. Purpose and Scope of the Experiments 

a. Experiment 1: Different Number of Markov Chains 

This experiment answered the system design question of how many 

Markov Chains to use. This experiment was intended to determine whether or not the 
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number of models/Markov Chains used had a significant impact on the blue tanks’ pre-

diction capability. The choices were either one model for all enemy platoons or separate 

models for each individual platoon. 

In our scenario, the sensors were allocated equally to each approach route. 

Three red platoons approached southward. We ran the simulation ten times with five rep-

lications each with one Markov Chain in total (M1) and the same number of runs with  

separate Markov Chains per individual formation (M3). After that we compared the mean 

values for the percentage of correct predictions and conducted a t-test with the data ob-

tained.  

The Null-Hypothesis was that the mean for using separate Markov Chains 

for each formation is no better than the mean using one Markov Chain in total, which 

leads to H0 = M3 ≤ M1. The alternative Hypothesis was that using separate Markov 

Chains for each formation would increase the ratio of correct predictions, which leads to 

H1 = M3 > M1.  

Table 4 shows the results from the t-test for the percentage of correct pre-

dictions involving one Markov Chain for all formations (entitled: M1) and with an indi-

vidual Markov Chain for each formation, that is, for each platoon (entitled: M3). 

 
M3 M1

Mean 62.1 60.7
Variance 28.32222 58.9
Observations 10 10
Pearson Correlation 0.977447
Hypothesized Mean Difference 0
df 9
t Stat 1.629916
P(T<=t) one-tail 0.068779
t Critical one-tail 1.833113

 

Table 4. t-test for comparing the mean values. 
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At a significance level of α = 0.1, we can reject the Null Hypothesis and 

accept the alternative. At the .05-significance level we cannot reject the Null Hypothesis. 

In order to reject the Null Hypothesis at the 0.05 level the sample size has to be in-

creased. For example, to detect a 1% difference in mean prediction capability 90% of the 



time (assuming σD ~ sD = 2.71) the sample size would need to be 80 runs. In order to de-

tect a 1.5% difference 90% of the time the sample size would need to be 36 runs. How-

ever, given the terrain influence on the detections, the higher mean M3, and the intuitive 

belief, that using separate Markov Chains for each platoon would be more accurate than 

one Markov Chain for all platoons, we choose for the rest of the thesis to use separate 

Markov Chains for each platoon.   

b. Experiment 2: Prediction Accuracy of the Model vs. Humans  

This experiment allowed us to compare the prediction accuracy of the 

state machine used in the model to a real-world scenario involving human subjects. The 

experiment was set up as follows. 

 Each participant received three tools when conducting the experiment: 

- A Markov Chain with the corresponding transition probabilities, 

- A loss chart, and  

- Terrain assessment of 100 m by 100 m cells. 

The scenario was run twenty times in Combat XXI. Each run is called a 

replication which varied only in the observation sequence. These runs yield an aggre-

gated Markov Chain over all runs. This was the first tool and was provided as a table that 

listed the transitions with the respective probabilities. Figure 36 displays the state ma-

chine provided. 

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

...

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

...

State: the number of tanks seeing 
in one observation | type of terrain cell 

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

...

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

...

State: the number of tanks seeing 
in one observation | type of terrain cell 

from to prob from to prob

x=0,y=6 = 1.0 x=6,y=1 = 0.2
x=6,y=2 = 0.0

x=1,y=1 = 0.2 x=6,y=3 = 0.1
x=1,y=2 = 0.2 x=6,y=4 = 0.1
x=1,y=3 = 0.1 x=6,y=6 = 0.3
x=1,y=4 = 0.0 x=6,y=7 = 0.2
x=1,y=6 = 0.3 x=6,y=8 = 0.1
x=1,y=7 = 0.1 x=6,y=9 = 0.0
x=1,y=8 = 0.1

x=7,y=1 = 0.1
x=2,y=1 = 0.4 x=7,y=2 = 0.0
x=2,y=2 = 0.1 x=7,y=3 = 0.1
x=2,y=3 = 0.2 x=7,y=4 = 0.1
x=2,y=4 = 0.1 x=7,y=6 = 0.3
x=2,y=6 = 0.1 x=7,y=7 = 0.3
x=2,y=7 = 0.1 x=7,y=8 = 0.1
x=2,y=8 = 0.0 x=7,y=9 = 0.0

x=3,y=1 = 0.2 x=8,y=1 = 0.1
x=3,y=2 = 0.1 x=8,y=2 = 0.1
x=3,y=3 = 0.2 x=8,y=3 = 0.1
x=3,y=4 = 0.1 x=8,y=4 = 0.1
x=3,y=6 = 0.3 x=8,y=6 = 0.2
x=3,y=7 = 0.1 x=8,y=7 = 0.2
x=3,y=8 = 0.1 x=8,y=8 = 0.2

x=4,y=1 = 0.0 x=9,y=1 = 0.2
x=4,y=2 = 0.1 x=9,y=3 = 0.4
x=4,y=3 = 0.1 x=9,y=4 = 0.4
x=4,y=4 = 0.3 x=9,y=7 = 0.1
x=4,y=6 = 0.3
x=4,y=7 = 0.1  

Figure 36. The Markov Chain provided with the transition probabilities 
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The second tool, the loss chart, displayed the blue and red losses in terms 

of initial state and firing times. Figure 37 displays this loss chart. The first horizontal axis 

depicts the state in which the system started with the first observation.  

 

state 1 
state 2
state 3

state 6
state 7

state 8

losses red (immediate fire)

loss blue (immediate fire)

loss blue (delayed fire)

loss red  (delayed fire)

0
0.5
1
1.5
2
2.5
3
3.5
4

number of tanks 
killed

number of tanks in 
first observation

firing time: 
immediate

-  
delayed

Loss Chart

losses red (immediate fire)
loss blue (immediate fire)
loss blue (delayed fire)
loss red  (delayed fire)

losses red (immediate
fire)

2.6 3 2 2.2 2 3

loss blue (immediate fire) 0.7 0 2 1.7 1 1
loss blue (delayed fire) 0.29 0 0 0.29 1 0
loss red  (delayed fire) 3.9 4 4 3.9 4 4

state 1 state 2 state 3 state 6 state 7 state 8

 

Figure 37.  The loss chart for the comparison of the prediction accuracy 

 
This covered the states ‘1’ to ‘3’ in good terrain cells and  ‘6’ to ‘8’ for 

bad terrain cells. The number of tanks observed was at most three tanks. That is why no 

state ‘4’ or ‘9’ is displayed in the chart. The second horizontal axis displays the firing 

times. The firing times chosen were “immediate” firing, which is the default option in 

Combat XXI, and a “delay” firing of between three and five seconds. The vertical axis 

depicts the blue and red losses dependent on the parameters. The loss chart demonstrates 

that in most cases a delay in firing was very beneficial with respect to a platoon’s own 

losses. The third tool that participants could use was the terrain attribute, which was dis-

played directly on the screen as seen in Figure 38. The horizontal lines around the “tanks” 

in the gray box indicate “bad” terrain-cell attributes, and the vertical lines, “good” ter-

rain-cell attributes. The screenshot displays the positions of the blue platoon, indicates 

which one is currently observing, and displays the current targets in red and former ob-

servations in gray (not visible on the hard copy).   
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red
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blue
platoon

 

Figure 38. The GUI from the prediction comparison between the model and human 
subjects. 

 
The participants, therefore, had as available tools the state machine with 

the transition probabilities, the loss chart from fifty runs, and the terrain attributes. With 

all that information provided, the participants had to predict the number of tanks in the 

next observation and determine when they would fire. After their predictions were en-

tered, the next observation from the replication used was displayed. So the participants 

saw immediately whether or not their predictions were correct. No feedback in regard to 

firing times was provided. It was also of no concern whether the firing was a hit or not. 

The data was automatically stored and analyzed. Our method of assessing prediction ac-

curacy is described below. Figure 39 consists of an abstract depiction of the Experiment 2 

results. Its purpose is to display visually the accuracy of a human prediction. The left two 

columns display the prediction of the model with the two predictors (one random number 

draw from the Monte Carlo simulation (entitled ‘1x’) and the mode of a hundred-times-

replicated Monte Carlo simulation of the next three observations (entitled ‘sequence’)). 
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The next column denotes the scenario name with the replication and the right columns 

display the predictions from the participants.  

  
P'pant 

1
P'pant 

2
P'pant 

3
P'pant 

4
P'pant 

5
P'pant 

6
P'pant 

7
P'pant 

8
P'pant 

9
P'pant 

10
P'pant 

11
1x sequence Patty CharlesBrian Jason1 Kent1 Jasur Pat S. RommePatrick Duane Travis

final2.xml_REP1 Fire

final2.xml_REP2 Fire

final2.xml_REP3 Fire

final2.xml_REP4 Fire

final2.xml_REP5 Fire

Mental Simulator

 

Figure 39.  Results from Experiment 2 

 
The horizontal bars indicate the prediction for the next event. “Green 

(gray)” means the prediction was correct while “blue (black)” indicates a wrong predic-

tion. A prediction is said to be correct when the next state has more tanks than the current 

one and the predicted number is also higher than the current one. A prediction is also cor-

rect when the predicted state has an equal or fewer number of tanks and the predicted 

number is equal to or less than the current one. A prediction is wrong otherwise. The file 

names indicate which repetition of the scenario was used. The colored fields to the right 

of that show the predictions of the participants. The number of predictions a participant 

chose to make also indicates how long he waited before he started firing. Note that par-

ticipant 2 always fired on first observation, and therefore made no recorded predictions. 

Table 5 and Table 6 quantify these results.  
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ratio ratio
Scenario
final2.xml_REP1 6 4 0.60 23 18 0.56
final2.xml_REP2 8 2 0.80 29 16 0.64
final2.xml_REP3 10 0 1.00 26 9 0.74
final2.xml_REP4 6 1 0.86 20 18 0.53
final2.xml_REP5 6 0 1.00 18 8 0.69

mean 0.85 mean 0.63
SDev 0.17 SDev 0.09

first prediction human all predictions human
predicted 
wrongly

predicted 
correctly

predicted 
wrongly

predicted 
correctly

 

Table 5.  The prediction results from the human participants 

 
Overall, the human participants’ rate of correct predictions was 63 percent. 

The model yielded a success rate of 67 percent overall. However, when only the first pre-

diction is considered, the humans scored in 85 percent of the cases, while the model 

achieved 80 percent.  

ratio ratio
Scenario
final2.xml_REP1 2 0 1.00 9 3 0.75
final2.xml_REP2 2 0 1.00 7 5 0.58
final2.xml_REP3 0 2 0.00 3 5 0.38
final2.xml_REP4 2 0 1.00 10 0 1.00
final2.xml_REP5 2 0 1.00 5 3 0.63

Avrg 0.80 Avrg 0.67
SDev 0.45 SDev 0.23

first prediction Model all predictions Model
predicted 
correctly

predicted 
wrongly

predicted 
correctly

predicted 
wrongly

 

Table 6.  The prediction results from the Mental Simulator 

 
The data does not allow hard statistical derivations because the sample 

size is relatively small. But overall the data allow the conclusion that the model is accept-

able and can be subject to further research.  

c. Experiment 3: Prediction Accuracy Dependent on the Tools Pro-
vided  
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The third experiment was conducted to test the impact that the “tools” 

provided to the participants had on the prediction accuracy. The simulation was run again 

twenty times. The participants are largely disjoint from the ones of experiment 2. The 

GUI for the participants was still the same as in the previous experiment. In the first four 

replications, they started predicting without any detailed information such as terrain, the 

loss chart, or transition probabilities. Although the terrain features were already visible in 



that run, they did not know the meaning of the lines and were told to ignore them. In the 

second four replications, they were provided with the three tools as in experiment 2. All 

participants did the replications in the same order from top to bottom.  

 
Scenario Name P'pant 

1
P'pant 

2
P'pant 

3
P'pant 

4
P'pant 

5
P'pant 

6

1 x seq
final4.xml_REP6

final4.xml_REP7

final4.xml_REP8

final4.xml_REP9

final4.xml_REP6MOD

final4.xml_REP7MOD

final4.xml_REP8MOD

final4.xml_REP9MOD

Mental Simulator

 

Figure 40.  Results from Experiment 3 

 
Figure 40 displays the results of this experiment qualitatively. The figure 

shows that in the first run the participants predicted continuously right or wrong, at least 

until the sixth observation. In this run the first six observations contained only one tank 

each. It was not always the same tank, but always only one. In the comments during the 

experiment the participants explained that they were waiting for more than one tank. 

Since the risk was assessed as relatively low, they were very likely to wait and predicted 

in most cases two or three tanks. Since they had no information about transition prob-

abilities or terrain attributes, they held on to their judgment. The model, however, is able 

to completely employ the available transition probabilities, terrain attributes and results 

from the loss chart. Certainly, the graphical user interface conveying this information to 
 91



the human subject was in no way optimized through human factors engineering to trans-

fer such understanding to the human.  Moreover, whereas the model is only able to deal 

with information provided by the simulation processing, the human subjects brought 

other knowledge and experience to the experiment, such as ability to read and infer in-

formation from the tactical map background that was not represented in the simulation. In 

particular, the army officers examined the terrain and created expectations the model 

could not provide. An example for this would be the covering of other tanks while pro-

ceeding. They saw one tank and expected, depending on the terrain map, other tanks in a 

certain location to cover their movement. These tanks were expected in the next observa-

tion, which in most cases did not happen. Such differences between what the model based 

its simulation on and what the human subjects based their decisions on are open questions 

for further study. 

Table 7 quantifies the prediction results above and displays the compari-

son between the participants and the mental simulator only for the first prediction. 

  
Scenario

ratio ratio

final4.xml_REP6 2 4 0.33 2 0 1.00
final4.xml_REP7 3 3 0.50 2 0 1.00
final4.xml_REP8 4 2 0.67 1 1 0.50
final4.xml_REP9 5 1 0.83 1 1 0.50

mean 0.58 mean 0.75
final4.xml_REP6MOD 4 2 0.67 2 0 1.00
final4.xml_REP7MOD 4 2 0.67 1 1 0.50
final4.xml_REP8MOD 5 0 1.00 2 0 1.00
final4.xml_REP9MOD 5 1 0.83 1 1 0.50

mean 0.79 mean 0.75
Sdev above 0.22 Sdev above 0.29
Sdev below 0.16 Sdev below 0.29

no
 to

ol
s

w
ith

 to
ol

s

predicted 
wrongly

only first prediction Human only first prediction Mental Simulator
predicted 
correctly

predicted 
wrongly

predicted 
correctly

 

Table 7.  Prediction Accuracy with respect to tools considering only the first predic-
tion for the human participants and the mental simulator 

 
Table 8 displays the prediction results from Figure 40 using all predic-

tions.  
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Scenario
ratio ratio

final4.xml_REP6 9 16 0.36 6 4 0.60
final4.xml_REP7 3 3 0.50 2 0 1.00
final4.xml_REP8 4 2 0.67 1 1 0.50
final4.xml_REP9 5 1 0.83 1 1 0.50

mean 0.59 mean 0.65
final4.xml_REP6MOD 10 7 0.59 5 1 0.83
final4.xml_REP7MOD 7 4 0.64 1 3 0.25
final4.xml_REP8MOD 6 0 1.00 2 0 1.00
final4.xml_REP9MOD 5 1 0.83 1 1 0.50

mean 0.76 mean 0.65
Sdev above 0.21 Sdev above 0.24
Sdev below 0.19 Sdev below 0.34

all first prediction Mental Simulatorall predictions Human
predicted 
wrongly

w
ith

 to
ol

s
no

 to
ol

s

predicted 
correctly

predicted 
wrongly

predicted 
correctly

 
Table 8.  Prediction Accuracy with respect to tools considering all predictions for 

the human participants and the mental simulator. 

 
The data shows that the participants’ prediction accuracy improved by 36 

percent in the first prediction case and by 15 percent in the all prediction case. The quan-

titative data analysis is preliminary. The data may reflect a learning effect that was not 

controlled for due to the fact that all participants did the runs in the same order. Perform-

ing this experiment with random ordering of the runs for each participant would mini-

mize this effect. The data is also censored since after a firing decision was made no more 

predictions were done. The sample size was small due to time and resource constraints. 

d. Experiment 4: Firing Behavior 
The fourth experiment was conducted to compare the firing behavior of 

the Mental Simulator to the human participants. This experiment uses the data collected 

in experiments 2 and 3. There, the participants predicted the next observation and decided 

to fire when an observation sequence met their individual criteria for a firing decision. In 

experiments 2 and 3 the model did not make any firing decisions. The participants were 

not influenced by the Mental Simulator’s behavior. In experiment 4 now, the model de-

cided to fire according to a particular path through the implemented decision tree (see 

details on page 78 ff). The decision criteria in the tree are threat, prediction, terrain, and 

casualties expectation.  

Figure 41 and following display the results from the firing comparison in a 

graphical way for both scenarios final2 and final4. The underlying predictions are the 

same as in experiment 2 and 3.  
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Fire Fire

Fire Fire
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final2.xml_REP5 Fire
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Fire Fire Fire

Fire
Fire Fire Fire

grey cells: hold fire Fire: firing at the i th observation

Mental 
Simulator

 

Figure 41.  The comparison between human participants and the model with respect to 
firing decision in the scenario final2.xml 

 
The left column indicates when the model fired, the next column denotes 

the run name and the remaining columns indicate when each participant fired. The word 

“Fire” indicates the start of the engagement process at the current observation. In other 

words, the last colored cell was a hold fire. A run was ended when a firing decision was 

made. There was no assessment whether the firing resulted in a hit or not. As already de-

scribed in experiment 2, participant 2 fired always immediately. Figure 42 shows the re-

sults quantitatively. The x-axis denotes the various replications of the scenario “final2.” 

The difference in the replications lies in the detections the Combat XXI model provides, 

based on the stochastic element, which is the AQUIRE algorithm. In other words, the 

number of tanks seen in the single observations vary. All the other parameters like mis-

sion, location, and routes remain the same. The order of the replications also represents 

the chronological order of the experiment. The y-axis denotes the number of observations 

during which the model or the human participants waited, before finally firing. The red 

and the blue curves, the model’s behavior and the average of the human participants’ be-

havior, respectively approach one another from replication three to five. The dashed lines 

above and below indicate the error range of one standard deviation per decision point. 
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Not depicted in the chart is the firing time chosen by the built-in (default) logic of Com-

bat XXI, which would have always fired at the first observation. 
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Figure 42.  Firing behavior for scenario final2 

 

The data points for replication 3 to 5 also show, when the standard devia-

tion of the human behavior is higher, then the coupling distance also spreads. The data 

points for replications 1 and 2 are further apart. One could be inclined to say the model is 

learning from replication to replication and adjusting to the human behavior. However, it 

is not the case. In that respect, the model has no learning ability. The model’s learning 

ability is incorporated in the Markov Chain and is not adjusted anymore at this stage of a 

scenario run. The sample size is the same as in experiment 2, but from this behavior we 

claim, based on preliminary data, the firing behavior is within the human range. We 

achieved a better result than the one for the scenario final2 for the scenario final4. Figure 

43  shows the qualitative analysis for scenario final4.  
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Figure 43.  The firing decisions from human participants and the model with respect 
to tools provided (qualitative view) 

 

Figure 44 shows the results quantitatively. The x-axis denotes the various 

replications of the scenario “final4.” The left four replications denote the runs without 

tools for the participants and the right four replications with the tools provided. The y-

axis indicates at what observation the human participants fired on average and in addition 

when the model fired. In the right four replications one can argue that the humans with 

the tools basically mimic the model’s algorithm. However, then the left data points, 

REP_7 to REP_9, are hard to explain since the tools were not available to the human par-

ticipants at that time. The first data point, REP_6 is explainable similarly to the prediction 

experiment. Having no information about transition probabilities and terrain cell attrib-
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utes makes it hard to estimate. Furthermore, some participants applied their knowledge of 

a map this scale to their decision making process without considering that this knowledge 

is not incorporated in the combat simulation system.  Except for the first data point, all 

decisions of the model to fire are within one standard deviation of the human partici-

pants’ mean displayed as a yellow hyphened line.    
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Figure 44.  Firing behavior for scenario final4 

 

The results show that not only the predictions but also the firing decisions 

perform in the human range. It is obvious that in none of the cases above the model im-

mediately fired. Neither did the human participants. When in a replication the humans 

fired later or early then the model decided similar. The results from the experiment were 

not used to calibrate the model. The decision tree was developed independent of the re-

sults from the human participants. However, human tank experts were considered prior to 

the development of the decision tree. We consider this a favorable result for our model. 
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Figure 45. Histogram for the path through the decision tree in scenario final4 

 
As a sanity check we created a histogram for the decision tree and looked 

how often were the various paths chosen. The left chart of Figure 45 shows the frequency 

of the paths that were chosen until the first firing decision was to “fire.” The right chart 

shows all paths that were chosen until the entire replication was finished. It can be ob-

served that eventually all paths are chosen except path 4. This is not an error. This path 

gets chosen when the number of tanks detected is greater than four. Path 9, when an im-

mediate threat is determined, was eventually chosen in the later time of the replication, 

because the red tanks came closer and crossed the threat threshold which lead to immedi-

ate fire.   
D. RESULTS 

This section displays in an aggregated form the results of the preliminary predic-

tion experiments that were conducted and shows the firing decisions made by the deci-

sion tree implementation. The results from the terrain and design experiments are in sec-

tion IV.B.2.b. Terrain Attributes and in IV.C.2.a. Experiment 1. They did not involve 

human participation. 
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1. Experiment 2: Prediction Accuracy of the Model vs. Human Partici-
pants 

This experiment utilized 5 different replications of the scenario final2 with eleven 

human participants. The task for each participant was to estimate the next observation in 

each replication and eventually to determine, according to one’s own judgment, when to 

fire. The participants were equipped with the state machine and the probability distribu-

tion of the state transitions, the assessment in terms of red and blue losses of previous 

situations depending on whether it was fired immediately or delayed, and the terrain in-

formation. The analysis of the data collected was done in terms of how often the predic-

tion was correct. The aggregated results are shown in Table 9.  

 

first prediction

mean 0.80
sdev 0.45

mean 0.85
sdev 0.17

Model

Human 0.63
0.09

0.67
0.23

all predictions
scenario final2

 

Table 9.  The means and standard deviations for experiment 2 

 
The differences between the model and the human participants is in both cases 

within 10%. The participants’ firing decisions are analyzed in experiment 4. 

 
2. Experiment 3: Prediction Accuracy in Dependence of the Tools Pro-

vided 

This experiment utilized 8 different replications of a modified scenario. The dif-

ference from the former scenario lies in the greater variation in the number of observed 

tanks. That means that observations with a high number of tanks occurred more often. Six 

participants conducted this experiment. The task was similar to experiment 2 with the 

twist that in the first four replications, no tools were provided. In the second four replica-

tions all tools were provided. The participants from experiment 3 are disjoint with those 

from experiment 1. The analysis of the data collected was done in terms of how often the  
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prediction was correct. This was assessed again only for the first prediction of each repli-

cation and for all common number of predictions. The mental simulator of course got the 

tools in both cases.  

 

first prediction first prediction
mean 0.58 0.59 0.75
sdev 0.22 0.29

mean 0.79 0.76 0.75
sdev 0.16 0.29

no tools 
provided

tools 
provided 0.19

all predictions all predictions

0.24

0.65
0.34

0.21

Scenario final4 Human Model

0.65

 

Table 10.  Results from experiment 3 

 

Providing the tools to the participants increased their percentage of correct predic-

tions. The participants’ firing decisions are analyzed in experiment 4.  

3. Experiment 4: Firing Behavior  
This experiment post-processed the human firing decisions with the model’s deci-

sion to fire. The model decided to fire according to a particular path through the imple-

mented decision tree (see. page 73). The decision criteria in the tree are threat, prediction, 

terrain, and casualties expectation.  
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Figure 46. Firing Behavior for scenario “final2” 

 
Figure 46 and Figure 47 show the firing behavior of the human participants in av-

erage and when the model fired in the two scenarios “final2” and “final4.” Although the 

sample size is small, the data is censored, and the probable underlying learning effect has 

not been captured, with one exception each the model performs within 1 standard devia-

tion around the mean of the human participants. 
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Figure 47. Firing behavior for scenario “final4” 

 

The results show that not only the predictions but also the firing decisions per-

form in the human range.  
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V. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

For some combat models a simplistic model of human behavior seems to be suffi-

cient. Sometimes errors in behavior seem to cancel one another out. One example we dis-

cussed in Chapter I was when a blue tank fires too early but the red tanks do not react ac-

cordingly and follow their original path and do not to this new situation. A real red pla-

toon might, for example, have called in indirect fire. In simplistic behavior representa-

tions that means that the stock of artillery ammunition in the model as compared to real-

ity is incorrect. This is bad. In order to represent more sophisticated combat situations, it 

is mandatory to base the decisions in the system on more accurate entity representations. 

This first approach to the computational modeling of mental simulation is far from being 

perfect or comprehensive. However, it contributes in the following way: 

- Our research resulted in an implementation of the first computation model of 

mental simulation as described in the psychological theory of naturalistic de-

cision making applied to entities in a simulated combat environment. We im-

plemented a subset of mental simulation, namely projecting the past into the 

future, used three variables like people usually do, and provided the simulated 

entities with experience in order to perform mental simulation. 

- Our research, based on statistical data, shows that simulated entities that are 

capable of “looking ahead” into the near future perform more realistically than 

those that do not include even knowledge of the past, but only use information 

of the present. Simulated behavior is considered “more realistic” when entities 

reason about a larger number of relevant factors (e.g. expectations), are able to 

adjust to sudden changes in the environment (e.g. react to an enemy that is 

currently not visible), and are able to use information or knowledge gained 

during a considered period, that is, a simulation run. Knowledge gain, also 

called learning, improves the overall performance of the software agent. 

Unlike strictly rule-based systems in which everything is predefined, predic-

tion of the near future in our model is based on information and knowledge 
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that the software “learns,” or derives, during the runs. This learning, or adap-

tive, capability, which is uncommon in combat simulation models, affords the 

system with greater flexibility and fine-tunes the agent for more reason-based 

actions. Adding a learning capability also reduces the amount of predefined 

data required for a run, and thus the amount of manpower effort. 

- The model can be implemented as a module in the actual simulation engine. 

Because our mental simulation model is executed in a post processing mode, 

that is, after the simulation run, it uses the logged data from the simulation run 

as input. Since all the data required to run the model is available within the 

simulation model itself, it is left to the software developers to integrate it. 

However, it should be easy to insert into a combat model with a modular ar-

chitecture. The computational cost of an add-on like this should be relatively 

low. Depending on the specific orientation of the mental simulation, that is, 

the type of events to be predicted and the nature of the behavior to be affected, 

it could be integrated within the interactions of certain modules. As in our 

scenario, where we enable the agent to predict the next tank observations, 

which, in turn, influences his firing behavior, the mental simulator could be 

inserted between the detection module and the engagement module. 

- The model is applicable to a specific human decision-making moment, in our 

case, whether to fire or not in a given situation. Though this is a narrowly de-

fined application in the current implementation, it is also a new and useful de-

velopment in constructive simulations. The various experiments that we con-

ducted show that the model performs within a decision-making range common 

to humans.  

- The terrain is examined empirically in a preprocess which extends beyond 

merely having a line-of-sight feature. The ACQUIRE algorithm uses various 

parameters to determine whether a specific sensor detects a specific target. In 

our model, the terrain assessment, given the presence of a line-of-sight, en-

ables entities to assess how likely it will be to detect a target in a certain ter-

rain before the target actually arrives. To a certain degree, that ability to pre-
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dict likelihood, or probability, mimics the anticipation of “undetection.” This 

capability is important when modeling, for example, the behavior of human 

tank gunners in a “duel” situation, in which they monitor targets before shoot-

ing them. In known constructive combat simulation environments to date, do-

ing this has not been possible, since the observations occur in a manner simi-

lar to a radar sweep of a certain sector. But with the terrain assessment per-

formed in our model, an agent can address the idea that targets will go out of 

sight in a predictable, and thus anticipated, amount of time, rather than the 

agent simply recognizing eventually that the targets are gone.  

B. FUTURE WORK 

We consider the modeling of mental simulation in various application areas as 

still subject to further research. Our research is not comprehensive and the model devel-

oped is not perfect by far. However, we took the initial step of specifically addressing the 

mental simulation in a combat simulation environment and made room in a simulation 

environment for adding expectations and imagination to better imitate human behavior. 

We showed some possible paths for extending this approach to other application do-

mains. We left enough room for further investigation in that direction. The results we 

provide are of a preliminary nature, we believe they are a useful basis for extensive and 

thoroughly designed experiments which were beyond the available time in this research.  

Having laid out the foundation in this research, we see potential topics for follow-

on work generally in any simulation that represents human behavior and in particular 

within combat simulation models.  

One direction is to extend the experiments with a complete design of experiment  

approach in order to capture underlying effects and other variables. This could cover as 

an example the likely learning effect of participants with increasing number of replica-

tions. The experiments can also be extended to an armor school in order to increase the 

sample size and to include more specific armor considerations that were not addressed so 

far. We used among other model design elements the Monte Carlo Markov Chain simula-

tion. There exist other predictive techniques that can be evaluated in case the state space 
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gets bigger and the scaling problem state machines can have, arises. We used two predic-

tors within the mental simulator. There are other possible predictors than one random 

draw or taking the mode of N simulations. How the model can self-select the adequate 

predictor depending on the current situation could be subject to more experimentation.  

During experiment 3 when no tools were provided to the human participants, it 

appeared that especially Army soldiers overestimated the combat simulation’s ability to 

incorporate the terrain information. Differences between what the combat simulation 

model based the entities’ behavior on and what the human subjects based their decisions 

on are open questions for further study and would improve the scope of the simulation.  

There is also room for extension within the application domain of this model. So 

far the breadth of the model was self-limited to the capabilities of Combat XXI in order 

to conduct the proof-of-principle. With the continuing development of Combat XXI this 

research can be extended to additional functional areas and to more complex decisions. 

Especially, close coupling of this model with Combat XXI will allow decisions to feed 

back to the simulation system before the simulation continues.  

We outlined already at the end of Chapter III some general applications where we 

can see this research beneficial. Especially, in training simulation systems where the use 

of avatars is on the rise, the necessity of realistic human behavior is becoming more and 

more important. A mental simulation component is a valuable enrichment to this.  
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APPENDIX: SOFTWARE STRUCTURE 

All programs are written in Java (JDK 1.5). The entire model consists of three in-

dividual programs:  

A. PlatoonCommander 

B. GridCommander 

C. GridBatchCommander 

These programs run individually and independently. However, the results from 

the GridCommander and GridBatchCommander programs yield the empirical terrain as-

sessment data for the PlatoonCommander. The difference between the GridCommander 

and GridBatchCommander program lies in the batch run mode. GridCommander is a sin-

gle run solution to check intermediate results and was also the pre-version for terrain as-

sessment. GridBatchCommander is the final version which uses the RunManager func-

tionality from Combat XXI. The final output from the GridCommander and GridBatch-

Commander programs is a serialized object that is automatically read in by PlatoonCom-

mander. 

The entire PlatoonCommander program consists of 73 Java classes. This program 

needs an installed version of Combat XXI in order to perform all functionalities.  

A. PLATOONCOMMANDER 

This section gives an overview of the functionality groups and depicts how the 

program is used in a single run mode and in batch run mode. The complete code is not 

provided here. It can be requested from the MOVES-Institute at the U.S. Naval Post-

graduate School in Monterey, CA. 

The program can be categorized into the seven functionality groups: 

1. Control (yellow) 

2. GUI (green) 

3. File input/ Log file reading (blue) 



4. Data objects (none) 

5. Batch Run Mode (purple) 

6. Analysis (orange) 

7. Result Display (purple-green) 

 

1. Top Level Classes 
The main class is called ReadControl. It is mutually referenced by the other top 

level classes that control the analysis (AnalysisManager), collect the overall transitions 

(StateManager), construct the main GUI including several components (ReadDisplay), 

read in all log files and create the objects that hold this information (DataReadManager), 

display the force structure (DrawReadData), display the results from the batch run mode 

and provide additional functionalities via GUI (BatchDataDisplay), control the batch run 

mode (RunManagerDriver) and read in the force structure as initial input to the system 

(ReadForceStructure). These classes also control the subsequent classes in the respective 

functionality groups. Figure 48 displays the top level classes. 

 

AnalysisManager
ReadControl

StateManager

ReadDisplay

DataReadManager

BatchDataDisplay

RunManagerDriver

ReadForceStructure

AnalysisManagerAnalysisManager
ReadControlReadControl

StateManagerStateManager

ReadDisplayReadDisplay

DataReadManagerDataReadManager

BatchDataDisplayBatchDataDisplay

RunManagerDriverRunManagerDriver

ReadForceStructureReadForceStructure

 

Figure 48. Top Level Classes 

 

Spread over all functionality groups control or coordinating classes like Cubby-

Hole or implemented interfaces coordinate the various threads used in this program.  
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2. Control Classes 
This group contains the main class and the classes that synchronize and control 

the threads and receive the output from the combat simulation model. 

CubbyHole.java 

FileConstants.java 

ReadControl.java (Main class) 

StreamGobbler.java 

The class CubbyHole is a modified class from SUN MicroSystems to coordinate 

and synchronize some of the threads.  The class StreamGobbler is taken from available 

sources on the Internet. Implemented interfaces or listeners are also assigned to this func-

tionality group. 

3. GUI 
This group constructs the initial front end to the user. This group includes classes 

that inherit from the JPanel class and classes that are needed in the display in Figure 49.  

 

Figure 49. Screenshot of the GUI before the analysis is started with a pre-loaded state 
machine. 
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Figure 50 displays the classes (green) required to create the GUI in Figure 49. 
  

ReadControl

<<interface>>
::<<Unknown>>::ActionListener

<<interface>>
::<<Unknown>>::ListSelectionListener

::<<Unknown>>::Canvas

AnalysisManager

DetailArena

<<interface>>
::<<Unknown>>::Runnable

StateMachineShape

ReadDisplay

DrawableShape

DataReadManagerDrawReadData

CombatCanvas

StateMachine<<interface>>
::<<Unknown>>::MouseListener

<<interface>>
::<<Unknown>>::MouseMotionListener

DetailShape

MouseAreaCovered

ReadControl

<<interface>>
::<<Unknown>>::ActionListener

<<interface>>
::<<Unknown>>::ListSelectionListener

::<<Unknown>>::Canvas

AnalysisManager

DetailArena

<<interface>>
::<<Unknown>>::Runnable

StateMachineShape

ReadDisplay

DrawableShape

DataReadManagerDrawReadData

CombatCanvas

StateMachine<<interface>>
::<<Unknown>>::MouseListener

<<interface>>
::<<Unknown>>::MouseMotionListener

DetailShape

MouseAreaCovered

 

Figure 50. GUI classes 

 

The top level class is ReadDisplay which inherits from the JPanel class and im-

plements the ActionListener, ListSelectionListener and the FileConstants interface. The 

latter one holds all constants and file paths for running the program on several machines 

without the necessity of manually changing paths for the input and output. The classes 

with the ending ‘Shape’ are the objects that draw themselves on the canvas. This are the 

units, the labels, the states, and also the arcs and text fields from the state machine. The 

GUI is mouse supported and therefore, it implements various mouse listeners. The 

JPanel-class CombatCanvas displays the map and all entities with the identification tags. 

It also displays the gravitation centers used in the situational awareness component. The 
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Canvas class StateMachine displays the Markov Chain with the transition probabilities 

provided by the analysis group. The class DetailArena in Figure 50 displays the context 

for a decision. This panel, when desired, pops up at every decision point and displays the 

appropriate information, that is used within the mental simulator (see also Figure 25). 

4. File input/ Log file reading 
The I/O from Combat XXI to our model can work in several ways. These are 

‘normal mode’, ‘Read in B-Log’, and ‘Batch mode’. The Batch mode is explained later 

separately. Combat XXI outputs the log files differently when using the option ‘Run 

Model’ versus the RunManager version. These first two options enable the program to 

deal with the appropriate output-files. In both cases only the file ‘spawned.log” has to be 

selected and the other output files are read in automatically via the DataReadManager 

class. The file spawned.log contains the force structure. 

<<interface>>
ActionListener

ReadControl

ReadDisplay

<<interface>>
FileConstants

DataReadManager

PAUnit <<interface>>
Serializable

ReadForceStructure

Unit

CombatCanvas

DUnit

FUnit

MUnit

<<interface>>
ActionListener

ReadControl

ReadDisplay

<<interface>>
FileConstants

DataReadManager

PAUnit <<interface>>
Serializable

ReadForceStructure

Unit

CombatCanvas

DUnitDUnitDUnit

FUnitFUnitFUnit

MUnitMUnitMUnit

 

Figure 51. File I/O 

 

The classes PAUnit, DUnit, FUnit and MUnit store the content of the various log 

files in objects, searchable by the simulation time. PA, D, F, and M are the abbreviations 

for physical acquisition (observations), damage, fire and movement logs. The class 

ReadForceStructure also converts and scales the UTM coordinates for the display in the  
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GUI. The class Unit stores the elements from the force structure log (spawned). The out-

put from our model for permanent storage is done in ReadControl and explained in the 

next section.  

5. Data Objects 

The results from the various modes can be saved as serialized objects in Java. It is 

possible, for example, after a batch run of N replications, to store all relevant data neces-

sary to replay the analysis in one data file. All objects to be stored implement the Seri-

alizable interface and can be read in via ReadControl. 

The class that holds all data dynamically is LossRecordSummary. This class holds 

the following objects/data:  

1. blue and red losses from the simulation of the various course of actions, 

for each run 

2. decisions of the tanks over time 

3. aggregated observations 

4. first blue firing time 

5. run name 

6. remarks from the runs 

7. scenario name 

8. I/O path information 

9. complete log files 

The firing decisions are not contained in the data object. They are recreated 

through the BatchDataDisplay class.  

6. Batch Run Mode 

The program has the ability to operate in a batch mode. The top level class for 

running batches is RunManagerDriver. Figure 52 displays the RunManagerDriver object 

and its associations. The UI classes are from the Combat XXI model and modified for the 

specific needs.  



RunMgrRepsUI

RunMgrResourceUI

RunMgrAltsUI

RunMgrLogUI

AnalysisManager

ReadControl

RunMgr

RunMgrUI

LoggedInfoPerRun RunMgrRand
NumbUI

RunManagerDriver

LossRecordSummary
RunMgrRepsUIRunMgrRepsUI

RunMgrResourceUIRunMgrResourceUI

RunMgrAltsUIRunMgrAltsUI

RunMgrLogUIRunMgrLogUI

AnalysisManagerAnalysisManager

ReadControlReadControl

RunMgrRunMgr

RunMgrUI

LoggedInfoPerRun RunMgrRand
NumbUI

RunMgrRand
NumbUI

RunManagerDriverRunManagerDriver

LossRecordSummaryLossRecordSummary

 

Figure 52. The RunManagerDriver object and its associations 

 

The batch mode requires the remote call of the Combat XXI simulation model. In 

the non-batch mode case Combat XXI is run and then the output is read in manually. In 

batch mode the entire process has to be automated. What does this mean in detail? Each 

run in Combat XXI varies with respect to the observation sequence and the respective 

firing times. Therefore, a single hardwiring of the firing time or outflanking time will not 

work. Either they outflank too early or too late in most cases. It is necessary to adjust the 

firing delay time and the outflank time to each run. With this requirement, the following 

automated procedure, as displayed in Figure 53, has been developed.  

Starting from the GUI (ReadDisplay class) the batch mode is selected 1 . This 

event activates the runBatchMode method in ReadControl which creates a new RunMan-

agerDriver object in a thread 2 .  The RunManagerDriver-object creates the GUI for the 
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user to enter the settings for Combat XXI. These settings include the scenario, the num-

ber of replications, the duration of the simulation run, the choice of random numbers, the 

desired log-files,  and the location of the simulation model 3 . When the user has finished 

the input of the settings the RunManagerDriver starts the individual replications 4 . Dur-

ing the loop the simulation model is called twice. The first run does not apply the mental 

simulator 5 , it is a regular run of the original scenario file. 
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Figure 53. The top level flow in the batch mode 

  

When Combat XXI has finished that simulation run the log files are stored in a 

particular folder and the information is passed to ReadControl 6 . The RunManager-

Driver-thread waits now until the analysis of this run has been processed. ReadControl 

activates the DataReadManager which reads in the appropriate log-files and creates the 

event list for the AnalysisManager 7 . After this an object of the AnalysisManager is cre-
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ated in a separate thread 8 . The analysis of the log files starts with the creation of the 

situational awareness 9 , the processing of the firing and damage events and prepares eve-

rything for the decision later on 10 .  The analysis provides also the first firing time of a 

blue tank which is stored and passed back to the RunManagerDriver thread 11 . This thread 

continues and modifies the firing behavior rule of the scenario file 12  and uses it for the 

next run, which is the second call of Combat XXI per loop iteration 13 . When Combat 

XXI has finished the run with the modified scenario, it gets also analyzed and stored 14 . 

After this the next replication starts. When all runs are finished 15 , this thread ends. 

ReadControl activates the class BatchDataDisplay which displays all results and provides 

the firing behavior to each replication. Figure 54 displays a screenshot of the BatchData-

Display user interface. 

 

Figure 54.  The GUI from BatchDataDisplay 
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7. Analysis 
The central class of the analysis is the AnalysisManager class. The task is to cre-

ate the situational awareness, provide data for the predictive model and activate the men-

tal simulation component when a decision point occurs. It also stores the analyzed data 

into the data object and sends it to ReadControl. Figure 55 displays the associations with 

the AnalysisManager. The StateManager gathers the observations for the predictive 

model. In the subsequent subclasses of this object the occurred transitions are adminis-

tered with respect to availability, probability, and retrieval. The objects that are displayed 

in the front end GUI are created and stored in a data structure to be drawn when the can-

vas gets refreshed. The object decision holds all predictors and creates the context for the 

decision later on. The object TankListStore enables the AnalysisManager to distinguish 

own sensors from tanks. The LoggedInfoPerRun and LossRecordSummary hold all rele-

vant data of the analysis. The PredictionLogHandler administrates the PredictionLog-

Storage and retrieves past predictions and actual observations over time. The Formation-

Bin object manages the data fusion of the observations before they are processed to the 

StateManager.  

 ReadControl
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Figure 55. AnalysisManager 
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In all modes, either in the individual run or batch run mode, the AnalysisManager is a 

separate thread.  

8. Result Display 

The results are displayed after all the runs have been completed. Then ReadCon-

trol activates the class BatchDataDisplay. This happens also when a data set from previ-

ous runs is read in. The task of the BatchDataDisplay object is to  

- enable the selection of particular runs, 

- display the overall prediction behavior,  

- display the firing behavior, 

- provide statistical data about the predictions, 

- display the observations graphically, 

- provide the infrastructure for experiments,  

- verify the data fusion, 

- display important time points, and 

- display the loses on blue and red side. 

Figure 56 displays the BatchDataDisplay – object with its associations. The class 

FiringDecision holds the decision tree. At each decision point the log contains the time, 

the current observation, the prediction and whether the decision was to fire or to hold fire. 

The FiringDecision object also accesses the outcomes from previous simulations with the 

parameters decision, initial state and terrain cell attribute.  

ReplayFrame is the top level class for the replay of replications and for conduct-

ing experiments. The results from the participants predictions and firing decisions are 

stored in ReplayExpRun and of all participants in ReplayExpRunSummary. The results 

are not exportable into a serialized object. They have to be copied into an editor and 

saved separately. The experiments are reproducible for each participant.  
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Figure 56.  The class BatchDataDisplay and its associations 

 
B. THE GRIDCOMMANDER PROGRAMS 

The GridBatch- and the GridCommader programs differ only by the batch run 

functionality. We describe in this section the GridBatchCommander and rely on the 

reader’s ability to transfer this also to the GridCommander program. Both programs use 

the basic infrastructure from the PlatoonCommander program. 
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Figure 57. Embedding of the new Grid classes 



Most of the Java class names are the same as in PlatoonCommander, however the 

classes as displayed in Figure 57 are not identical, and therefore, not interchangeable.  

The top level flow as depicted in Figure 58 is similar to the PlatoonCommander. It differs 

slightly within the RunManagerDriver, because Combat XXI is called only once per 

repetition, and it differs major at the end of the analysis in the AnalysisManager.  

 

GridFrame

RunManagerDriverAnalysisManager

ReadControl

thread waits until 
analysis is done

analysis is done

GridView

BatchDataDisplay

DisplayAllTables

 
Figure 58. Top level flow in GridBatchCommander 

 

When the analysis of the observations is finished then the data structure with the 

processed detections is sent via ReadControl to GridFrame. In GridFrame the coordinates 

are transformed for the display, the detected tanks are assigned to the 100m x 100m ter-

rain cells, the colors of the cells are determined, and the grid model is populated. The grid 

model keeps all information about the cells, like real coordinates, canvas coordinates, the 

maximum number of tanks per cell, the number of detected cells, and the cell attribute 

(color). Before the AnalysisManager thread reports its termination to the RunManager-

Driver, the complete data set is sent to ReadControl. When all replications the user re-
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quested are done, then ReadControl activates BatchDataDisplay to list the individual de-

tection maps. The gridData object is finally saved to the C:\ drive and can be read in 

automatically by ReadControl from PlatoonCommander. 
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