

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

Approved for public release; distribution is unlimited

EVENT PREDICTION FOR MODELING MENTAL
SIMULATION

IN
NATURALISTIC DECISION MAKING

by

Dietmar Kunde

December 2005

 Dissertation Supervisor: Chris Darken

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2005

3. REPORT TYPE AND DATES COVERED
Dissertation

4. TITLE AND SUBTITLE:
 Event Prediction for Modeling Mental Simulation in Naturalistic Decision Making

6. AUTHOR(S) Dietmar Kunde

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
MOVES Institute Center for the Study of Potential Outcomes
Monterey, CA 93943-5000

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT
Nearly all armies of the Western Hemisphere use modeling and simulation tools as an essential part of performing analysis and
training their leaders and war fighters. Tremendous resources have been applied to increase the level of fidelity and detail with
which real combat units are represented in computer simulations. Current models digress from Lanchester equations used for
modeling the big Cold War scenarios towards modeling of individual soldier capabilities and behavior in the post Cold War
environment and increasingly important asymmetric warfare scenarios. Although improvements in computer technology sup-
port more and more detailed representations, human decision making is still far from being automated in a realistic way. Many
“decisions” within a simulation are based on overly simple models and hardly at all on cognitive processes. One cognitive
model in naturalistic decision making is the Recognition Primed Decision Model developed by Klein and Associates. It de-
scribes how the actual process humans use to come up with decisions in certain situations is radically different from the tradi-
tional model of rational decision making. Mental simulation is an essential part of this model in order to picture possible out-
comes in the future for potential courses of actions. This research provides a computational model for mental simulation in a
combat simulation environment. It generates the look into the near future with a finite Markov Chain as one instance of several
possible predictive models. The results of the model are compared with preliminary human experimental data. The experiments
show that the model developed performs in the human range with respect to prediction and decisions. This research shows that
entities in a combat simulation environment having the capability of looking ahead into the near future based on statistical data
perform more realistically than those that just use the information of the present, not even including the past.

15. NUMBER OF
PAGES 145

14. SUBJECT TERMS
Mental Simulation, Naturalistic Decision Making, Event Prediction, Combat simulation, Human
Behavior Representation, Agent-Based Simulation 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

EVENT PREDICTION FOR MODELING MENTAL SIMULATION IN
NATURALISTIC DECISION MAKING

Dietmar Kunde

Lieutenant Colonel, German Army
M.S. Surveying, German Armed Forces University Munich, 1985

M.S. Operations Research, Naval Postgraduate School, 1997

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN MODELING, VIRTUAL ENVIRONMENT AND

SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
December 2005

Author: __

Dietmar Kunde

Approved by:
______________________ ______________________
Chris Darken, Ph.D. Rudy Darken, Ph.D.
Professor of Computer Science Professor of Computer Science
Dissertation Supervisor and Director, MOVES Institute
Dissertation Committee Chair

______________________ _______________________
Thomas M. Cioppa, Ph.D. Thomas Otani, Ph.D.
Naval War College Professor of Computer Science

John Hiles
Professor of MOVES

Approved by: __

Dr. Rudy Darken, Chair, MOVES Academic Committee

Approved by: __
Julie Filizetti, Associate Provost for Academic Affairs

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Nearly all armies of the Western Hemisphere use modeling and simulation tools

as an essential part of performing analysis and training their leaders and war fighters.

Tremendous resources have been applied to increase the level of fidelity and detail with

which real combat units are represented in computer simulations. Current models digress

from Lanchester equations used for modeling the big Cold War scenarios towards

modeling of individual soldier capabilities and behavior in the post Cold War

environment and increasingly important asymmetric warfare scenarios. Although

improvements in computer technology support more and more detailed representations,

human decision making is still far from being automated in a realistic way. Many

“decisions” within a simulation are based on overly simple models and hardly at all on

cognitive processes. One cognitive model in naturalistic decision making is the

Recognition Primed Decision Model developed by Klein and Associates. It describes

how the actual process humans use to come up with decisions in certain situations is

radically different from the traditional model of rational decision making. Mental

simulation is an essential part of this model in order to picture possible outcomes in the

future for potential courses of actions. This research provides a computational model for

mental simulation in a combat simulation environment. It generates the look into the near

future with a finite Markov Chain as one instance of several possible predictive models.

The results of the model are compared with preliminary human experimental data. The

experiments show that the model developed performs in the human range with respect to

prediction and decisions. This research shows that entities in a combat simulation

environment having the capability of looking ahead into the near future based on

statistical data perform more realistically than those that just use the information of the

present, not even including the past.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THESIS STATEMENT...1
B. PROBLEM STATEMENT ...1
C. APPROACH...6
D. CONTRIBUTIONS..6

1. Contribution Goals ..6
2. Scope..7

E. DISSERTATION OVERVIEW..7

II. RELATED WORK ..9
A. MENTAL SIMULATION...9
B. PREDICTION TECHNIQUES ..16

1. Poisson Process...18
2. Kalman Filtering..21
3. Neural Networks ..22
4. Markov Chains...24
5. Hidden Markov Models (HMM) ..25
6. Dynamic Bayesian Networks ..30
7. Various other Approaches ..31
8. Predictive Control Theory ..32

III. THE MENTAL SIMULATION MODEL (ARCHITECTURE)...........................35
A. INTRODUCTION..35
B. MENTAL SIMULATION...35

1. Uses of Mental Simulation, in Detail ..35
2. Key Points of Mental Simulation..38
3. Application of Klein’s Model ..39
4. Mental Simulation for Projection into the Future40

C. COMBAT MODELING AND COMBAT SIMULATION MODELS......42
D. COMBAT XXI AS TEST BED...45

1. General Description...45
2. Behavior Representation ...46
3. Scenario Output ...48
4. Run Manager..48
5. Summary...48

E. GENERAL MODEL ARCHITECTURE..49
1. Simulation Environment Component ..49
2. Situational Awareness Component ..50
3. Mental Simulator Component ..52
4. Decision Component ..52

F. GENERALIZATION OF THE MODEL ..52

IV. MODEL IMPLEMENTATION AND RESULTS ..61
A. INTRODUCTION..61

viii

B. SPECIFIC IMPLEMENTATION OF THE GENERAL
ARCHITECTURE...61
1. Components ..62

a. Environment/ Combat XXI...62
b. Situational Awareness...65
c. Mental Simulator ..69
d. Decision ...73

2. Terrain ..76
a. ACQUIRE Algorithm..77
b. Terrain Attributes..78

C. EXPERIMENTS ..82
1. Scenario...83
2. Purpose and Scope of the Experiments..84

a. Experiment 1: Different Number of Markov Chains84
b. Experiment 2: Prediction Accuracy of the Model vs.

Humans ...86
c. Experiment 3: Prediction Accuracy Dependent on the

Tools Provided...90
d. Experiment 4: Firing Behavior ..93

D. RESULTS ...98
1. Experiment 2: Prediction Accuracy of the Model vs. Human

Participants...99
2. Experiment 3: Prediction Accuracy in Dependence of the Tools

Provided..99
3. Experiment 4: Firing Behavior...100

V. CONCLUSIONS AND FUTURE WORK...103
A. CONCLUSIONS ..103
B. FUTURE WORK...105

APPENDIX: SOFTWARE STRUCTURE..107
A. PLATOONCOMMANDER..107

1. Top Level Classes...108
2. Control Classes...109
3. GUI..109
4. File input/ Log file reading..111
5. Data Objects ...112
6. Batch Run Mode ..112
7. Analysis ...116
8. Result Display...117

B. THE GRIDCOMMANDER PROGRAMS..118

LIST OF REFERENCES..121

INITIAL DISTRIBUTION LIST ...129

ix

LIST OF FIGURES

Figure 1. Mental Imagery: To decide whether these objects are identical except
for orientation, they are mentally rotated. (adapted from Shepard &
Metzler 1971)...11

Figure 2. Integrated version of the Recognition-primed Decision-making model.
(Graphic from Sources of Power by Gary Klein) ..13

Figure 3. Sokolowski's RPD Model ..15
Figure 4. Finite vs. Continuous State Space. The white boxes show models that

are applicable within the respective domain..17
Figure 5. A simple mathematical model for a neuron...22
Figure 6. Example of HHM for the Urn Problem ...27
Figure 7. Example of a trellis in a Viterbi Decoder (Image taken from University

of Leeds, 2004) ..29
Figure 8. A Dynamic Bayesian Network ..30
Figure 9. Observation Sequence Y1 to YT in a DBN ..31
Figure 10. Example of a Model based predictive controller (adapted from Ordys)33
Figure 11. A generic model for mental simulation adapted from Klein, 1999.39
Figure 12. Using mental simulation to explain the past, adapted from Klein, 1999.........40
Figure 13. Left: Using mental simulation to project into the future, adapted from

Klein, 1999. Right: The Adaptation of Klein’s model in our research............41
Figure 14. Model and simulation hierarchy. Adapted from Modeling and

Simulation Information Analysis Center (MSIAC, 2005)...............................43
Figure 15. Basic structure for rules in Combat XXI ...46
Figure 16. The rule editor template in CXXI for creating behavioral rules that can

be assigned to entities. ...47
Figure 17. Example Rule to illustrate how a rule looks. Adapted from the Combat

XXI User’s Guide. ...48
Figure 18. The components used in the model developed ..49
Figure 19. The general architecture of the model implemented..51
Figure 20. A general sequence of the modeling and improving process.54
Figure 21. The role of Mental Simulation in the current work. ..62
Figure 22. The Combat XXI data-log configuration window...63
Figure 23. An example of the tuned output of Combat XXI...65
Figure 24. Assigning new observations to tank formations ..67
Figure 25. The context provided when a decision situation is invoked.68
Figure 26. The Mental Simulator in detail. ...70
Figure 27. Example of the state machines for a defending platoon that is currently

in state “1.” A state indicates how many entities are seen in a current
observation. The arcs are labeled with the transition probability to the
next state. The median dwell times are also stored but are not shown
here...71

Figure 28. Depth of a unit. ..73
Figure 29. The decision tree for rendering a decision. The numbers 1 to 9 below

the decision serve as references to the decision tree branches in the text........75

x

Figure 30. The relationship between Field of View and Field of Regard78
Figure 31. Total detections over time..79
Figure 32. Assessment of terrain attributes ...80
Figure 33. Variation in terrain attributes per repetition...80
Figure 34. Changes in number of tanks observed around a terrain cell attribute

change ..82
Figure 35. The scenario used for the experiments...84
Figure 36. The Markov Chain provided with the transition probabilities.........................86
Figure 37. The loss chart for the comparison of the prediction accuracy87
Figure 38. The GUI from the prediction comparison between the model and human

subjects...88
Figure 39. Results from Experiment 2 ..89
Figure 40. Results from Experiment 3 ..91
Figure 41. The comparison between human participants and the model with respect

to firing decision in the scenario final2.xml ..94
Figure 42. Firing behavior for scenario final2 ..95
Figure 43. The firing decisions from human participants and the model with

respect to tools provided (qualitative view)...96
Figure 44. Firing behavior for scenario final4 ..97
Figure 45. Histogram for the path through the decision tree in scenario final4................98
Figure 46. Firing Behavior for scenario “final2” ..101
Figure 47. Firing behavior for scenario “final4”...102
Figure 48. Top Level Classes ..108
Figure 49. Screenshot of the GUI before the analysis is started with a pre-loaded

state machine..109
Figure 50. GUI classes ..110
Figure 51. File I/O...111
Figure 52. The RunManagerDriver object and its associations113
Figure 53. The top level flow in the batch mode...114
Figure 54. The GUI from BatchDataDisplay ..115
Figure 55. AnalysisManager ...116
Figure 56. The class BatchDataDisplay and its associations ..118
Figure 57. Embedding of the new Grid classes...118
Figure 58. Top level flow in GridBatchCommander ..119

xi

LIST OF TABLES

Table 1. Example for a Homogeneous Poisson Process ..20
Table 2. The log-files required to create the situational awareness and situational

context for decision-making events ...64
Table 3. The number of detected tanks per run and replication.....................................81
Table 4. t-test for comparing the mean values. ..85
Table 5. The prediction results from the human participants ..90
Table 6. The prediction results from the Mental Simulator...90
Table 7. Prediction Accuracy with respect to tools considering only the first

prediction for the human participants and the mental simulator......................92
Table 8. Prediction Accuracy with respect to tools considering all predictions for

the human participants and the mental simulator. ...93
Table 9. The means and standard deviations for experiment 2......................................99
Table 10. Results from experiment 3 ...100

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

ACKNOWLEDGMENTS

The single author’s name of a dissertation doesn’t reflect that also many other

people have made direct or indirect contributions to the thesis beyond the ones listed in

the References. The space available in this thesis is too short to express my gratitude to

all those who have supported and encouraged me during the past three years, but there is

a handful I would like to mention here.

First of all, I would like to thank my supervisor Dr. Christian J. Darken for his en-

couraging way of guiding me through the Doctoral Program, for keeping me focused, for

his patience with my drafts from a nonnative English speaker, and for his invaluable

comments during the whole work with this dissertation.

I also want to thank my committee members, who always were demanding in a

supportive way and made scheduling of milestones an easy issue.

Special thanks belongs also to the development team of Combat XXI without

their support the pain would have been much greater.

I also want to thank Lee Rappold and Curtis Blais for reviewing the manuscript

and making it “English.”

Finally, I would like to thank my wife ‘Utemaus’ and my children Katharina,

Justus, and Rolf who always supported and motivated me. Because of their love and sup-

port, failing was not an option.

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. THESIS STATEMENT
This thesis shows that the methodologies of statistical event prediction can be

used to effectively model mental simulation for improving human models in combat

simulations. “Mental simulation” in this context means the ability of software agents to

simulate future events in order to evaluate their own courses of actions in combat simula-

tions and to hypothesize events that might occur given the current and past situation.

B. PROBLEM STATEMENT
Running combat simulation models for training purposes is very time- and per-

sonnel-intensive, because the low degree of artificial intelligence possessed by the con-

structed units in the simulation requires both extensive manual input of initial orders and

human monitoring during the simulation run. The capabilities of autonomously acting

units are very limited. The range of modeling military decision making goes from sophis-

ticated methodologies, e.g., comparing scored values of possible actions and taking the

highest or the lowest value depending on circumstances (Norling et al., 2000), to less so-

phisticated cases, in which units execute their initial orders according to an internal script

– these are mainly “movement orders” – and react to opposing fire, properties of the ter-

rain, or movement data. Their perception of the environment is restricted to that which is

directly relevant to the application domain: for example, a simulated tank commander

knows only certain knowledge about tank combat, nothing else. By contrast, many hu-

man tank commanders have life experiences that may influence their decisions more

strongly than domain knowledge (Forsythe, 2000). For many research prototypes of

agents the learning capability has been addressed. However, in combat simulation models

these issues have not been implemented in a satisfying scale. Therefore, the lack of a

learning component of simulated commanders precludes them from making complex de-

cisions at a scale to humans; many decision making aspects of the simulation have to be

resolved externally and then put into the system, requiring much skilled assistance.

Increasing the degree of Artificial Intelligence (AI) increases the cost-

effectiveness of a simulation system during its use. Fewer staff are needed for scenario

 2

input and system setup. During a run, the greater autonomy of the system leads to longer

decision cycles before the units reach unreasonable or unacceptable conclusions. With

enhanced AI, an assistant can control or monitor more units, a factor that is especially

valuable for the analytical application domain of modeling and simulation, for which

there is usually of a paucity of personnel as compared to a training environment. How-

ever, there is also a drawback. Decisions made within the system by simulated com-

manders are not normally as good or as high-quality as decisions made by human com-

manders, an observation valid not only in regard to the ingenious decisions made by great

generals or admirals, but also to conventional and small-scale decisions as well. One of

the differences between the performance of artificial commanders and human command-

ers lies in the ability of humans to mentally simulate a number of potential outcomes of

their actions. The following example illustrates this capacity.

A platoon is defending a position with tanks. Enemy tanks are expected to come

around a forest corner within firing range. A human platoon commander, seeing one en-

emy tank, would expect more tanks and therefore would wait longer before opening sur-

prise fire than a simulated commander would. The human commander knows that, if he

fires prematurely, he may destroy the lead tank, but the others will be warned and try to

outflank him. So he projects, or simulates, forward in time the possible consequences of

his actions. Since mental simulation is beyond the present capability of simulated com-

manders, they may choose a different tactic, leading to a different outcome, unless over-

ridden at particular decision points.

Adding a mental-simulation capability to constructed units will contribute to the

enhancement of AI and to overall economy and quality. Why can this be expected? Be-

cause, that is how humans think.

During his nearly 20 years of empirical research, Gary Klein investigated the de-

cision making processes of firefighters, pilots, nurses, military leaders, nuclear-power-

plant operators, and experts in a range of other domains (Klein, 1999). He developed a

model that focuses on human strengths and capabilities that have not been modeled in

classical decision theory. In his writing, Klein describes how commanders and leaders

http://dict.leo.org/?p=2Ib6..&search=ingenious

 3

(and experts in general) are often required to make urgent decisions in moments of uncer-

tainty. In this regard, Peter Thunholm also concludes:

The study of military tactical planning and decision-making has shown
that experienced commanders, quite contrary to what is prescribed by tra-
ditional military prescriptive planning models, make intuitive decisions
based on recognition and mental simulation (Thunholm, 2000).

Susan Hutchins (1996) finds that, in those situations leaders use recognition-based

reasoning instead of the classical rational approach. That does not necessarily mean they

decide irrationally in the usual sense of the word; rather, they arrive at good decisions by

a different path. All three researchers state that they are not discussing a prescriptive the-

ory, but a descriptive theory, of decision making: that is, a theory of actual human deci-

sion making processes.

Recognition-primed decision making (RPD) is an established subfield in the do-

main of psychology. In the annual conferences since 1998 a large number of applications

and advances in the field have been described (NDM, 2005). The attractiveness of the

approach and degree of adaptation possible within the military is quite enormous. Klein

conducted approximately fifteen studies, funded by the U.S. Army Research Institute, to

investigate decision making in a military environment (Klein, 2003). The US Committee

on Technology for Future Naval Forces stated in 1997 that the Navy should pursue an

approach to joint-model development with a long-term view and an associated emphasis

on flexibility. Especially with respect to the technical attributes needed in joint models,

decision models should represent the reasoning and behavior of commanders at different

levels, naturally reflecting the actions, plans, and adaptations that commanders make in

the course of operations (Committee on Technology for Future Naval Forces, 1997). It is

thus appropriate that the Naval Studies Board of the National Research Council, Wash-

ington D.C., foresaw the advantage of mental simulation, as recommended in 2000:

The Department of the Navy may need to train commanders in recogniz-
ing patterns in typical cases and anomalies encountered in operations to
improve their mental simulation skills and enable quicker and better deci-
sions (National Research Council, 2000).

 4

This statement provides a long-term view of the need for modeling mental simula-

tion for future command-decision modeling. Huang (2003) also points out the need for

commanders to predict and evaluate future situations. The emergence of huge informa-

tion resources, especially, requires crucial support of the commander by appropriate C2

systems. In decision-making, the commander pursues information superiority, creates op-

portunity or risk foresight, and then realizes command superiority. To do so, the com-

mander requires a C2 support system to enhance his situational awareness by presenting

him with an explanatory picture and supporting situational assessment, including predic-

tion and evaluation of the future status (Huang, 2003). The development of algorithms for

C2 systems is not under review here; but to represent decision-making behavior appropri-

ately it is necessary to represent prediction and evaluation. This research applies the

methodologies of event prediction to achieve the capabilities mentioned above. While it

is impossible to create a crystal ball that looks into the future with a magic eye and pre-

dicts the next event with a probability of 1, there is hope that predictive techniques devel-

oped in various domains can be applied to prediction of future events in the simulation,

given the observation of the past. The techniques examined in this research have been

applied already in reliability analysis, speech recognition and control theory (Aven, 2002;

Rabiner, 1989).

In reliability analyses the number of events of type X that occur in a certain pe-

riod of time are monitored. These events normally represent failures of devices, whether

component failures or malfunctioning. The occurrence of a sufficient number of moni-

tored events allows the determination of the parameters from uncertainty distributions,

e.g., Poisson distributions. Applying these distributions yields a prediction of the next

event with a certain probability (Aven, 2002). For more complicated systems, or where

there is a lack of sufficient historical data, we use the Bayesian approach, e.g., Bayesian

belief networks. They have a mathematical formalism that allows reasoning during condi-

tions of uncertainty and provides a robust probabilistic framework to evaluate the impact

of evidence on uncertain outcomes (Ganesh, 2001).

Hidden Markov models (HMM) are commonly recognized as a state-of-the-art

technique in speech recognition. HMMs can be considered as finite-state machines with

 5

known or estimated transition probabilities as well as probabilities for emitting observa-

tions from a state. The state of the system is hidden from the observer. Only the observa-

tions are “visible.” With sophisticated algorithms we can calculate the past transitions

that created a certain observation sequence. All these techniques will be detailed in Chap-

ter II. Here we demonstrate that, in many domains, events are predicted that are bases for

decisions. In this research the need for a decision will require the system to estimate, that

is to provide the probability of the next event. In this research also, prediction of the next

event is a crucial part of mental simulation.

Mental simulation in the sense of the Recognition Primed Decision model will

contribute to enhanced decision making and make the results of a decision more stable

and unsurprising. To illustrate, consider a chess computer. In chess, the number of figures

and possible movements is finite—a huge number, but still finite. With current high-end

computer power we are still not able to compute the whole search tree in a “reasonable”

amount of time. Therefore, the chess computer looks a limited number of plies into the

future. A ply in computer chess is a half-move, which is one turn of one of the players: in

other words, it is the depth of the search tree the computer looks ahead (Russel & Norvig,

2003). For instance, a player, looking only one ply ahead, cannot avert adversarial moves

in time and loses the game. Therefore, it is reasonable to look more than one ply ahead,

to decrease the probability of being surprised by a “killer move” of the opponent.

This example shows not only that it is beneficial to mentally simulate, but also

that mental simulation is independent of current technology. In a chess game, the player‘s

move assessments are based on relatively simple scoring functions that are applied over

and over again. Researchers are hopeful that simple scoring functions will also work for

constructed units in the combat-simulation world. The more a system or simulated unit is

able to look forward in time, the better its chance of making a sound decision that repli-

cates the reasoning of human commanders.

Mental simulation is still a new field. Though several approaches have been de-

veloped (Sokolowski, 2002; Warwick et al., 2001), they all focus on general issues of

RPD, not explicitly on mental simulation. By contrast, this research will focus on the

mental simulation component of RPD.

 6

C. APPROACH
Since computational approaches to mental simulation are fairly new, few ground-

breaking papers have been written. This research will compare various techniques, ap-

proaching via the Army simulation model, Combat XXI. This constructive model writes

raw data in an externally accessible log-file, and, to apply the different approaches, the

data must be preprocessed. In the main part of the analysis, the predicted events will be

compared with the actual events.

D. CONTRIBUTIONS
Our representation of human cognition in a decision-making process has not pre-

viously been implemented in combat simulation systems. Providing agents the ability to

assess possible consequences of their actions can result in proactive, instead of reactive,

agents. The main goal here is not to make the agents better than experienced human

commanders, but to provide new behavioral aspects that will significantly enhance the

agents and to come close in range to human performance. This embellishment could be

very valuable for the performance of closed-combat simulation systems, because it would

allow us to follow the agents’ reasoning process and provide an explanatory component

not available before.

1. Contribution Goals
This thesis has five goals:

- it provides the first computational model for mental simulation in a com-

bat simulation environment,

- it provides context and an improved situational awareness to the simulated

entities,

- it enables simulated entities to look into the near future and have, there-

fore, more realistic performance than those that include only knowledge of

the present,

- it provides an empirical terrain assessment tool, and

 7

- it provides an explanatory component for the reasoning in terms of losses,

time or probabilities. Therefore, the decisions can be explained in a natural

human way.

2. Scope
It is beyond the scope of this research to implement and validate all five goals into

a current combat simulation model in full detail. However, a partial implementation has

been constructed to conduct proof-of-concept experiments.

E. DISSERTATION OVERVIEW
The remainder of this dissertation is organized as follows:

• Chapter II, Related Work, describes current research about mental simu-

lation and event prediction in various fields. It describes the goals of de-

veloping and implementing mental simulation in the various fields and de-

picts prediction techniques to show their applicability to this research.

• Chapter III, Design Considerations for the Model, describes a detailed

view of mental simulation with respect to the specific environment of a

combat simulation. It derives the general architecture of the model and

generalizes our approach for similar research problems.

• Chapter IV, Model Implementation, gives a detailed description of the

model used.

• Chapter V, Experiment and Results, describes the design of the experi-

ments and their results.

• Chapter VI, Conclusion and Follow-on Work, summarizes the contribu-

tion made by the thesis and addresses possible future expansions.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. RELATED WORK

This chapter provides a survey of current research relevant to this dissertation. It

begins with a precise formulation of what mental simulation is and the nature of its rele-

vance to simulated decision-making. The chapter then discusses various prediction tech-

niques that could be used as a predictive component in our model.

A. MENTAL SIMULATION
In this particular context mental simulation is related to decision-making. But, be-

fore we define what we mean by mental simulation, it is useful to take a brief look at

other interpretations of mental simulation that are related to our topic but not specifically

addressed in this research.

The term “mental simulation” is found in system dynamics and software devel-

opment and is one of four essential measures of program comprehension in software de-

velopment (Dunsmore, 2000), where it is used as a tool for evaluating pre-built models

(with respect to trusting the results from a first simulation run and whether it can be as-

sumed that the modeler has adequately explored the system). In that context, mental

simulation forces the modeler to thoroughly understand the reasons behind a model’s be-

havior and helps the developer find problems in computer models (Whelan, 2001). Le-

beck (1994) describes mental simulation as similar to asymptotic (e.g., worst-case behav-

ior) analysis of algorithms, which programmers use to study the number of operations

executed as a function of input size. There, the program-reference pattern of the underly-

ing cache organization is mentally applied so that the program’s cache performance can

be predicted. But the term occurs in the development of multi-agent architecture as well.

Tambe and Rosenbloom (1996) state the need for multi agent architectures to provide

support for flexible and efficient reasoning about other agents’ models and enabling men-

tal simulation of their behaviors.

Mental simulation also has a connection to the research area of mental imagery.

Mental imagery, often referred to as "seeing in the mind's eye" or "visualization," is a

quasi-perceptual experience associated with cognitive functions such as memory, percep-

 10

tion, and thought (Nigel, 2003), but it occurs without the appropriate stimuli for the rele-

vant perception (Finke, 1989). For the interested reader, Finke classified five principles

of mental imagery:

1. Implicit stored experience becomes explicit information by mental imaging

(implicit encoding).

2. Imagery and perception use similar mechanisms of the cognitive system (per-

ceptual equivalence).

3. Spatial relationships are in images similar to reality (spatial equivalence).

4. The mental rotation of an image is similar to the rotation of real objects (trans-

formational equivalence).

5. The structure of imaged objects is similar to the structure of real objects. Im-

ages are coherent and well organized and can be reinterpreted (structural

equivalence).

 Given the above principles, the recall of mentally stored images is similar to the actual

experience of seeing it. The goal of mental imagery is to simulate attributes of an object

that have not actually been stored in the memory and cannot just be put together. Kosslyn

(1995) made observations about how people answered questions such as “which is big-

ger: a light bulb or a tennis ball?” People responded by retrieving mental images of the

two objects and “looking at them.” The similarities between mental simulation and men-

tal imagery lie in the absence of direct stimuli to start the process and precipitate reason-

ing about what will happen next. In mental imagery, the reasoning uses mental images

(Pylyshyn, 2002). Figure 1 shows a well-known example of the mental rotation of 3D-

objects in this domain for the purpose of reasoning whether they are identical except for

orientation (Shepard & Metzler, 1971).

Figure 1. Mental Imagery: To decide whether these objects are identical except for
orientation, they are mentally rotated. (adapted from Shepard & Metzler 1971).

Mental simulation in the psychological domain, however, includes areas that are

not related specifically to decision-making. Sutton (2000) uses the term “mental simula-

tion” in the context of learning, considering it a tool for making new predictions from old

and as the start of a computational theory of knowledge use. Although Sutton uses the

term “mental simulation,” he focuses on reinforcement learning (which offers possible

solutions to the problem of decision-making), but does not apply it to naturalistic deci-

sion-making. The simulation (or mental simulation) theory maintains that human beings

can use the resources of their own minds to simulate the psychological causes of others’

behavior, typically by making decisions within a pretended context (Gordon, 2001). Ac-

cording to the psychologists Davies and Stone (2001), “mental simulation” is the simula-

tion, replication, or re-enacting of aspects of the mental life of another person. Aspects

may include, for example, the other person’s thinking, decision-making, or emotional re-

sponses. So mental simulation seems to offer a methodology for predicting the mental

states of other people; and the same methodology can also figure in the practice of attrib-

uting mental states on the basis of observed behavior and of explaining behavior in terms

of mental states. Mental simulation is also the imitative mental representation of some

event or series of events (Taylor and Schneider, 1989). It can be thought of as the cogni-

tive construction of hypothetical scenarios or as a reconstruction of real scenarios. This

can include rehearsals of likely future events, fantasizing about less likely future events,

realistically re-experiencing past events, or reconstructing past events, mixing in hypo-

thetical elements. Simulation can be used as a heuristic for estimating probabilities or as-

sessing causality (Kahneman and Tversky, 1982). Mental simulation is the process used

to serially evaluate actions if course-of-action evaluation is necessary (Dodd et al., 2003).

 11

 12

Dodd brings us back to the present research. As mentioned in Chapter I, mental

simulation is an essential part of naturalistic decision-making (NDM). NDM focuses on

context and the decision-making process—not just the choice or decision per se.

The study of NDM asks how experienced people, working as individuals
or groups in dynamic, uncertain, and often fast-paced environments, iden-
tify and assess their situation, make decisions and take actions whose con-
sequences are meaningful to them and to the large organization in which
they operate (Zsambok, 1997).

Naturalistic decision-making is mainly explained as “the way people use their ex-

perience to make decisions in field settings” (Zsambok, 1997). We consider field settings

that refer to real-time situations that can be described as dynamic, time-constrained and

uncertain, in which wrong decisions have significant impact on both the individual and

the organization (Klein, 1999). The point is that experienced decision makers (among

whom we include military commanders) do not employ classical decision theory. The

differences from classical decision theory are due mainly to a lack of competing alterna-

tives. In general, experienced decision makers evaluate only a single option but examine

different aspects of that option through mental simulation. They make a decision when

the option becomes feasible. That does not imply that NDM is always optimal decision-

making: important influences are time pressure, high stakes, the contributions of other

experienced decision makers, missing or ambiguous information, ill-defined goals, and

poorly defined procedures (Klein, 1999). A well-known model within NDM is the Rec-

ognition-primed Decision-making Model developed by Klein.

Experience the situation in a changing context

more
data

Expectancies

Plausible Goals

Relevant Cues

Action 1..n

Anomaly

clarify

Evaluate Action (n)
[Mental Simulation]

Modify

Will it work?

Implement
course of Action

Is Situation typical?

yes

yes, but

yes

Recognition has four by-products

Diagnose
Feature Matching

no

Inference

Experience the situation in a changing context

more
data

Expectancies

Plausible Goals

Relevant Cues

Action 1..n

Anomaly

clarify

Evaluate Action (n)
[]Mental Simulation

Modify

Will it work?

Implement
course of Action

Is Situation typical?

yes

yes, but

yes

Recognition has four by-products

Diagnose
Feature Matching

no

Inference

Figure 2. Integrated version of the Recognition-primed Decision-making model.
(Graphic from Sources of Power by Gary Klein)

Figure 2 depicts the basic features of the integrated version of the RPD model. It

focuses on two processes: first, on how a decision maker sizes up a situation to determine

which course of action makes sense; second, on how an experienced decision maker

evaluates a course of action.

If the situation is recognized as “typical”, decision makers know what type of

goals make sense, which cues are relevant and important, what should be expected next,

and what are typical ways of responding. Single options for actions to be taken are evalu-

ated by mental simulation. In that context, that means picturing how the course of action

will turn out (Klein, 1999).

Our project creates a computational model for mental simulation applied in a

combat simulation environment. There are several options for how many steps we can at

present predict. The most common method is “iterated prediction”: build a single-step

predictor and use it recursively. The estimates a model provides are put back into the sys-

tem as feedback until the desired number of prediction steps is reached. This method of

 13

 14

iterated prediction can be applied to both neural networks (Boné, 2002) and hidden

Markov models (Liehr, 1999) (see the next section).

We model mental simulation in the sense of the recognition-primed decision

(RPD) developed by Klein, a process of predicting what event can be expected next. Our

approach to modeling mental simulation is based on statistical estimation. To construct

our model, we monitor events in a scenario, process them, and reach a point at which a

prediction could be made.

To date, researchers have made the following attempts to model recognition-

primed decision-making.

The work closest to this project was done by Sokolowski (2002). He implemented

a model for the recognition-primed decision - making of a Joint Task Force commander

in an operational military scenario using a multi agent system approach. With this com-

putational system, Sokolowski could mimic the cognitive process. Figure 3 explicates

how the process of deciding according to the RPD model works. The RPD model consists

of several components (such as human experience, a recognition process with goals, cues,

expectancies, and actions, as well as an action-evaluation and -selection process. To ac-

commodate these components and some engineering issues, the modeler used several

agent types. A MainAgent is responsible for system management and the human-

computer interface and for establishing and maintaining the experience database. A Rec-

ognitionAgent attempts to match the decision request with stored experiences via a table

look-up. If there is a match with the experience database, the data is retrieved and made

available to other agents.

Decision
Request

ok?
Decision
Request

match
?

Recognition
Agent

Main
Agent

data
re-

trieval

Symbolic
Constructor

Agent

internal
rep

Decision
Agent

in
st

an
tia

te
s

in
st

an
tia

te
s

in
st

an
tia

te
s
….

…..

Reactive
Agents

……

Reactive
Agents

evaluates
how well a

potential decision
satisfies its assigned

goal.

Reactive
Agents

no goals met

reactive agents
negotiate a compromise
in order to achieve the goals

goals met

no comp.
rendering of
a default decision
appropriate to the
situation

Recognition
Agent

potential
decision

decision is
rendered

Decision
Request

ok?
Decision
Request

match
?

Recognition
Agent

Main
Agent

data
re-

trieval

Symbolic
Constructor

Agent

internal
rep

Decision
Agent

in
st

an
tia

te
s

in
st

an
tia

te
s

in
st

an
tia

te
s
….

in
st

an
tia

te
s

in
st

an
tia

te
s

in
st

an
tia

te
s
….

…..

Reactive
Agents

……

Reactive
Agents

evaluates
how well a

potential decision
satisfies its assigned

goal.

Reactive
Agents

…..

Reactive
Agents

……

Reactive
Agents

…..

Reactive
Agents

…..

Reactive
Agents

……

Reactive
Agents

……

Reactive
Agents

evaluates
how well a

potential decision
satisfies its assigned

goal.

Reactive
Agents

evaluates
how well a

potential decision
satisfies its assigned

goal.

Reactive
Agents

no goals met

reactive agents
negotiate a compromise
in order to achieve the goals

goals met

no comp.
rendering of
a default decision
appropriate to the
situation

Recognition
Agent

potential
decision

decision is
rendered

Figure 3. Sokolowski's RPD Model

After retrieving the data, a SymbolicConstructorAgent creates an internal repre-

sentation of the decision environment. The SymbolicConstructorAgent instantiates a De-

cisionAgent who looks at the internal representation of the situation and experience. The

DecisionAgent surveys the actions available for the current context and chooses the po-

 15

 16

tential decisions that appear most favorable. The second task of the DecisionAgent is to

instantiate one ReactiveAgent for each goal associated with the current decision context.

A ReactiveAgent evaluates how well assigned goals are satisfied by a certain action.

Sokolowski calls this evaluation “mental simulation.” To evaluate the degree to which

goals are met, he first maps the variables describing the environment into cue values, us-

ing fuzzy logic. This yields a categorization of cue values into three categories: satisfac-

tory, marginal, and unsatisfactory. This mapping is essential for quantifying the model’s

experience. After this, the cue-value category is mapped into a goal-value category. This

goal-value category, also obtained by applying fuzzy logic, is an evaluation of a particu-

lar action’s potential to achieve a goal - a potential based on how well the cues associated

with an action favor accomplishment of the goal (Sokolowski, 2003). If all goals are met

by all ReactiveAgents, the DecisionAgent renders a decision, based on the action consid-

ered. If not all goals are met, a negotiation phase is added. Agent negotiation (Sprinkle et

al., 2000) is the method use to resolve the goal-achieving conflict. Sokolowski (2002)

also stated that agent negotiation best represents how a human decision maker uses men-

tal simulation to arrive at a compromise among multiple conflicting goals within his mind

(Minsky, 1986). If this negotiation is successful, a decision can be rendered; otherwise,

the next-best action is evaluated. This goes on until either a satisfactory action is found or

all possibilities are exhausted. If the latter, a default decision is rendered. Sokolowski

(2002) also stated “The mental-simulation process will most likely need to be enhanced

to better replicate the role of mental simulation within RPD.”

Warwick et al., (2001) approached their modeling of RPD by encoding the long-

term memory (LTM) of decision makers. They modeled LTM in a data structure by stor-

ing individual decision-making experiences as a two-dimensional array. When new situa-

tions occur, they are compared with experiences stored in the LTM. Computing a “simi-

larity value” yields a measure of comparability in order to recognize a usable experience

and the appropriate course of action. Although it seems to show promise as a model of

parts of RPD, the mental simulation part has yet to be designed (Warwick, 2002).

B. PREDICTION TECHNIQUES
Prediction in this context is far from a Nostradamus-like predictions about envi-

sioning future events based on intuition or “higher” insight. We focus on quantitative

prediction: that is, statistical reasoning over time. A common task is to predict future

events given a sequence of observations over a period of time. We also focus on discrete

event prediction: that is, we consider discrete event prediction as the modeling of a sys-

tem as it evolves over time, where the system can change at only a countable number of

points in time (Law & Kelton, 1991). Our goal is to estimate the next event based on sta-

tistical methods.

Figure 4 shows the world of dynamic systems divided into finite (i.e., discrete)

and continuous state spaces. By Continuous Dynamics, we mean that if the update equa-

tion for the dynamic system is x(t+1) = f(x(t)), f is a continuous function. It is hard to

imagine a linear dynamic system with a finite state space. In the discrete case, we only

consider nonlinear models like Hidden Markov Models or Dynamic Bayesian Networks.

In the nonlinear case of a continuous state space, there exist many Time-Series prediction

models, for example, Neural Networks. Box-Jenkins models (ARMA in Figure 4) are

commonly applied when the update function is linear (Box and Jenkins, 1994). Kalman

Filters can be extended to a part of the nonlinear dynamics with the Extended Kalman

Filter.

Finite State Space Continuous State Space

Hidden
Markov
Models Dynamic

Bayesian
Networks

Continuous Dynamics

Linear Dynamics

Kalman
Filtering

ARMA

Time Series prediction
with nonlinear models,

e.g. neural networks

Finite State Space Continuous State Space

Hidden
Markov
Models Dynamic

Bayesian
Networks

Continuous Dynamics

Linear Dynamics

Kalman
Filtering

ARMA

Time Series prediction
with nonlinear models,

e.g. neural networks

Figure 4. Finite vs. Continuous State Space. The white boxes show models that are
applicable within the respective domain.

The question is what kind of state space and what kind of dynamics can we expect

in a combat simulation environment? We can expect a finite set of entities, for example,

weapons, vehicles, platoons, and other units we have to deal with. In this case, we have

discrete quantitative variables. We also expect variables like artillery impact, river cross-
 17

 18

ings, movement, positions, etc., where then we have categorical variables. The extent to

which we are dealing with nominal (unordered) or ordinal (ordered) variables will be dis-

cussed in the next chapter.

The greatest part of the system will behave nonlinear; however, a linear model

might be applicable for some subset of data. The Box-Jenkins approach is basically a

combination of an autoregressive (AR) model and a moving average (MA) model. The

autoregressive model is a linear regression of the current value of the series against one

or more prior values of the series, while the moving average model is a linear regression

of the current value of the series against the white noise or random shocks of one or more

prior values of the series (NIST/SEMATECH, 2004). While Box-Jenkins models forecast

the future values of an observed time-series, we do not consider events as numerical val-

ues, even when they are sometimes coded as numbers. We expect many variables to be

categorical. An engagement of a tank with anti-tank missiles cannot be added numeri-

cally to an observed river crossing of an artillery platoon. Therefore, we disregard linear

continuous-valued time-series predictions like the Box-Jenkins Model. However, we will

at least consider Kalman Filters, because they are well suited for motion tracking in a

multidimensional space.

First, we try to simplify the environment and use a Poisson Process to predict the

next event. We are well aware that the “real world” is much more complicated. There-

fore, the Poisson Process serves as a strawman and will be replaced later by a more sub-

stantial solution. However, it is always possible that for some data category this might be

a suitable method. The main focus in this chapter is on models that have the capability of

learning through pattern or character recognition. Especially, we look at Kalman Filter-

ing, Neural Networks, Markov chains, Hidden Markov Models, and Dynamic Bayesian

Networks.

1. Poisson Process
A Poisson process is an integer-valued non decreasing stochastic process, charac-

terized by its rate function λ(t), which describes the expected number of "events" or "ar-

rivals" that occur per unit time. There are homogeneous and nonhomogeneous Poisson

processes.

The homogeneous Poisson process has a constant arrival rate λ(t) = λ, and the

marginal distribution N(a) is Poisson distributed with parameter λa, where a denotes the

time interval 0 to a in which arrivals occur. To qualify as a Poisson process the following

conditions have to be true (Ross, 1993):

- No event at time t=0;

- The process has independent increments, which means the number of events

which occur in disjoint time intervals are independent; and

- The process has stationary increments, meaning that the distribution of the

number of events that occur in any interval of time depends only on the length

of the interval.

A very simple approach to prediction would be to consider events of a certain

type as a Poisson process. Random single-type events occur at a certain rate. These

events 1...n are observed and the time they occur is recorded, for example, T1,T2…Tn.

The objective is to predict Tn+1, or better, to give a point estimate when the next event

n+1 will occur.

We assume for a first and simplified approach that the events occur according to a

Poisson process with rate λ. This assumption implies that the interarrival times can be

considered as independent, identically distributed, exponential random variables.

After a certain number of events the parameter of the underlying distribution is

estimated via the maximum likelihood method.

The maximum likelihood estimator for λ is:
∑

=
it

nλ̂ where

n = number of events observed,

ti = interarrival time between event i and i-1.

An estimate for the next mean interarrival time Ê(Tn+1) will then be 1/ . λ̂

The expected number of arrivals in time interval t is t. λ̂

Furthermore, we can calculate the probability that at time t we have observed n

events:

!
)ˆ(})({ ˆ

n
tentNP

n
t λλ−== .

 19

Time
period

arrival
time

interarrival
time

t1 0.3 0.3

t2 0.8 0.5

t3 1.2 0.4

t4 1.5 0.3

t5 2.2 0.7

t6 2.6 0.4

t7 3.1 0.5

Table 1. Example for a Homogeneous Poisson Process

Based on the data in Table 1, using MLE for λ yields: 258.2
1.3

7ˆ ===
∑ it

nλ

Mean time to the event n+1: E(Tn+1) = (n+1)/ = 0.44*8 = 3.54 λ̂

In a simplified algorithm, this would progress as follows:

1. Monitor the arrival times.

2. Determine the interarrival times.

3. When sufficient arrivals have occurred, estimate lambda.

4. Predict the next event.

5. After event has occurred, update the lambda estimate.

We can expand this model to encompass multiple event types. Now we consider

that, at each given arrival of the Poisson process, an independent trial is performed that

classifies the event as type 1 with probability p or as type 2 with probability 1-p. Then:

M (t) = number of type 1 events to occur in (0,t), and

N (t) = number of type 2 events to occur in (0,t)

are independent Poisson processes with rate λp and λ(1-p), respectively.

If we have observed twice as many type-1events, we can assume that the prob-

ability of an event type 1 is 2/3, given an arrival.

 20

The expected number of type-1arrivals within a certain time interval 0..t will then

be . If we now have k possible type of events i = 1, 2, …., k, then if an event occurs at

time y, it will be classified as a type I event with probability p

ptλ̂

i, i = 1, 2, … , k where

. The expected number of type-i events is calculated by , if the probability is

independent of the arrival time.

1
1

=∑
=

k

i
ip tpiλ̂

If, on the other hand, the probability depends on time of arrival y, the expected

number of type-i events is calculated with

dssptNE
t

ii)()]([
0
∫= λ , where . 1)(

1

=∑
=

yp
k

i
i

This approach requires that all possible events be “pre-categorized.” The event

with the shortest expected arrival time is taken as the prediction. In a combat simulation

environment, this would be a simplistic approach. It is obvious that a Poisson process

with its assumptions can cover only a small portion of the entire complexity.

2. Kalman Filtering
Kalman filtering is a method for recursively estimating an unknown state of a dy-

namic system, in which the measurements have noise. In other words, it describes a

method for updating an estimate of a system's state by processing measurements. The ba-

sic Kalman filter developed by R. Kalman in the early 1960s is a linear model. The fol-

lowing equations demonstrate how the state of the system can be estimated and corrected

after the measurement has been processed. A discrete-time controlled process is governed

by the linear difference equation

xk = Axk-1 + wk-1 with a measurement zk = Hxk + vk,

where xk : the state to estimate at time step k.

A: transition matrix; relates the state at the time step k-1 to the state at

the current time step k.

wk-1: movement noise at time step k-1.

H: measurement matrix; relates the state to the measurement zk.

vk: measurement noise at time step k.

 21

Assuming that the random variables w and v are independent and normal distrib-

uted with mean 0 and variance Q and R, respectively, then the equation will be for the

time update of the state −
∧

x k = A
∧

x k-1 , where – means the a priori prediction of the state,

with the error covariance . The measurement update with the meas-

urement z

QAAPP T
kk += −

−
1

k will yield for the state estimate
∧

x k = −
∧

x k + Kk(zk - H −
∧

x k). The error covari-

ance is update as well and computed with , where K is the Kalman

gain: .

−−= kkk PHKIP)(

1)(−− += RHHPHPK T
k

T
kk

There is also an extension to the Kalman filter when the measurement is a non

linear function of the state variables. The measurement matrix H is then obtained by lin-

earization of the nonlinear function.

 Kalman filters are ideally suited for tracking the motion of an object in a multi-

dimensional space.

3. Neural Networks
Neural networks – that is artificial neural networks - model the function of the

human brain. They consist of many hundreds of artificial neurons, or nodes, which are

simple processing connected by directed links. Each of these artificial units is a simpli-

fied model of a real cell in the brain (Figure 5). An artificial neuron sends off (“fires”) a

new signal when it gets a sufficiently strong input signal from the nodes to which it is

connected (Russel & Norvig, 2003).

Figure 5. A simple mathematical model for a neuron

 22

The strength of the input signal and the specific firing threshold of the neuron re-

sult in the ability to perform different tasks, corresponding to different patterns of node-

firing activity. The strength of the connection between neurons is represented by connec-

tion weights. They serve as the collective memory of the neural network (Mitchell, 1997).

For a unit to produce output, it first has to compute the weighted sum of inputs ini with

the equation

∑
=

=
n

j
jiji aWin

0
, .

By applying an activation function g, the output is derived by

()∑
=

==
n

j
jijii aWginga

0
,)(.

Each unit in a neural network can have different activation functions. Typical ac-

tivation functions can be either threshold functions, or sigmoid functions, also called lo-

gistic functions. The input values for a unit (artificial neuron) can either be continuous

between -1 and 1 or discrete with values -1, 0 or 1. For accurate Boolean functions, we

need to use a hard-step activation function like sgn(x). For fuzzy versions of Boolean

functions, we can use a logistic function like).1/(1)(xexf −+=

The network has to be trained after setup to yield proper output, usually by using

training data consisting of input and associated output. Both the initial output and the er-

ror to the desired output are calculated. The error is propagated backward through the

network and the weights of the connections are adjusted. This procedure is repeated until

the error at the end is in an acceptable range (Mitchell, 1997).

The advantage of neural networks is their ability to take incomplete or noisy data

while producing an output similar to one obtained from perfect input data. In this manner,

a neural network can provide satisfactory decisions, based on the uncertain and highly

dynamic conditions that exist in a complex war scenario (Sokolowski, 2003). Neural

networks are well suited for recognizing underlying patterns in data (Mitchell, 1997).

However, a significant amount of training data would be required to properly prepare a

network to recognize situations over the entire domain of joint warfare. In an attempt to

model RPD with neural networks, twelve military experts and twelve scenarios were used

 23

 24

to define the goals and plans to learn from (Liang, 2001). Another disadvantage of neural

networks is the difficulty of interpreting results.

In addition to their application for robot control and handwriting recognition, a

major application area for neural networks is the reliability domain. Reliability theory is a

body of ideas, mathematical models, and methods directed at predicting, estimating, un-

derstanding, and optimizing the lifespan distribution of systems and their components

(adapted from Barlow et al., 1965). In reliability theory a prediction capability is very

important for estimating when a critical component will fail. But reliability theory is not

limited to “hardware components”; it can be applied also to software. In critical applica-

tions, it is often important to be able to make accurate predictions about the mean-time-

to-failure (MTTF) of software, because a failure can be considered a lack of stability.

Philips Research at India-Bangalore (Patra, 2003) applied a neural network approach to

MTTF-prediction. With the neural network, the parameters of the formal model were es-

timated and the neural network itself learned the process to predict outcomes. Using a

feed-forward network and back-error propagation yielded successful predictions that out-

performed parametric models, such as the nonhomogeneous Poisson process (Patra,

2003).

4. Markov Chains
A Markov chain is a finite state machine with probabilities for each transition, i.e.

the probability that the next state is si, given that the current state is sj (NIST, 2005). The

state space can be either continuous or discrete. If the state space is continuous, the ran-

dom process may take on any value over a continuous interval or set of intervals. If it is

discrete, there is a finite or countable number of states. Many publications refer to a dis-

crete-state random process as a “chain.” A Markov chain is indexed by time: the time in-

dicates the state change. In a discrete-time Markov chain, the state changes are preor-

dained to occur only at the integer points 0, 1, …, n, which map to the time points t0, t1,

… , tn. In a continuous-time Markov chain state changes may occur anywhere in time.

Therefore, it is possible to have a discrete-state space and a continuous time Markov

chain. That corresponding process is referred as a continuous-time Markov chain (Bose,

 25

2001). It has the Markovian property that the conditional distribution of the future X(t+s)

given the present X(s) and the past X(u), 0 < u < s, depends only on the present and not

on the past.

5. Hidden Markov Models (HMM)

In a hidden Markov model, or HMM, the sequence of observations {YT} is mod-

eled with the assumption that each observation depends on a discrete hidden state. Fur-

thermore, we assume that the sequences of the hidden states satisfy the Markov assump-

tion. The Markov assumption means that the transition to the next state depends only on

the current state and not on previous ones. We want to consider a sequence of random

variables that are not completely independent, but the value of each variable depends on

the previous elements in the sequence. We have a simple Markov-process model when

we can observe the states the system is in. For example, we have two urns with black and

red balls. The first urn has twice as many red balls as black. The second urn has an equal

number of each color. Both urns may have the same number of total balls. The system is

said to be “in state one” when the balls are drawn from the first urn and in state two when

the balls are drawn from the second urn. Hence, we can assign each event, or color of the

drawn ball, to the state n, or urn 1 or 2. We can also assign a probability that a certain

color ball was drawn from a certain urn.

If we do not see the urn, that is, the state and are only told the event, a ball with

color x has been drawn, then we have a hidden Markov model. The event “black ball”

can happen now in either state one or two. An HMM is considered a statistical model for

any system that can be represented as a succession of transitions between a finite set of

discrete states, where the next event depends only on the previous event. An HMM is a

probabilistic function of a Markov process, whereby we do not see the state sequence the

model is going through but we know, or estimate, the probabilistic function of the state

sequence. Therefore, HMMs can be described as stochastic finite-state automata with an

underlying stochastic process that is not observable, that is hidden, but that can be ob-

served through another set of stochastic processes that produce the sequence of observed

symbols (Rabiner & Juang, 1986).

These observations 1..n yield an observation sequence O. Furthermore, we as-

sume that the observations occur due to transitions between internal hidden states, in con-

junction with the random emission of a sequence element, for example, observation sym-

bol v. Markov models are, in their original form, not very flexible in the prediction of

dwell time in a state, although researchers have attempted to model the dwell time in a

state. Ferguson (1980), extended an HMM to include a probability distribution for the

duration of each state and therefore allowed a sequence of observations to be made while

the system remained in a single state. The following introduction shows a basic case of

the HMM; the modeling of the duration will be explained in Chapter III.

Hidden Markov models are characterized by the following qualities:

1. N is the number of states in the model; states are denoted as S1, S2, … SN,

where the individual state at time t is qt.

2. M is the number of distinct observation symbols per state j. The individual ob-

servation symbols are denoted V = {v1, v2, …vM}.

3. There is a matrix A for the state transition probability distribution; aij is the

transition probability from state i to state j where aij = P{qt+1= Sj|qt = Si}

and Nji ≤≤ ,1 .

4. There is a probability distribution matrix B = {bj (k)} for the possible observa-

tions, where bj(k) = P{vk at t|qt=Sj}, Nj ≤≤1 and Mk ≤≤1 .

5. The initial state distribution is πi = P{q1 = Si}, where Ni ≤≤1 .

N and M are specified by B implicitly. Therefore, a hidden Markov Model can be

described as a triple λ = (A, B, π).

 26

v2

v3

v2

v1

S1

S2b21

b22

b11

b12

v2

v3

v2

v1

S1

S2b21

b22

b11

b12

v2

v3

v2

v1

S1

S2b21

b22

b11

b12

v2

v3

v2

v1

S1

S2b21

b22

b11

b12

v2

v3

v2

v1

v1

v3

S1

S2b21

b22

b11

b12

b32

b31

v2

v3

v2

v1

v1

v3

 27

v3

b33

S3

S1

S2b21

b22

b11

b12

b32

b31

v2

v3

v2

v1

v1

v3

v3

b33

S3

S1

S2b21

b22

b11

b12

b32

b31

v2

v3

v2

v1

v1

v3 b33

S3

S1

S2b21

b22

b11

b12

b32

b31

b33

S3

v3v3

Figure 6. Example of HHM for the Urn Problem

The transition diagrams in Figure 6 show possible models of the simple urn prob-

lem mentioned above. It is given that we are only told the event and do not know what

the underlying model is, and there may exist more than one model.

The HMM theory distinguishes now between three problems known as:

1. Learning

2. Decoding

3. Evaluation

We talk about “learning” of an HMM when we try to determine the model pa-

rameters λ. We know a coarse structure of the model that allows us to know the number

of states; we do not know the transition probabilities between the states and the occur-

rence probabilities of the observations per state. In the urn problem above, we know there

are two urns from which balls are drawn. The Baum-Welch algorithm was developed to

solve the learning problem.

The term “decoding” denotes a process to find the most likely sequence of state

transitions that lead to the observed and known sequence (Viterbi-Algorithm).

If we have a known model, we have a complete transition matrix and probabilities

for the observations. What we are interested in is determining the probability that a cer-

tain sequence will occur: we call this process “Evaluation.” Another contributing factor is

that we are also interested in the probability that a certain model created this sequence.

This is especially interesting when several competing models exist, as in Figure 6, except

we do not know whether there are three urns or only two.

Computational aspects:

1. Baum - Welch Algorithm (BW)

To use BW we must have an observation sequence O and a coarse structure of the

model. We want to find the values of the model parameters lambda that best explain what

we have observed. We will use maximum-likelihood estimation, that is we want to find

the values that maximize P(O|lambda), which can be written:)|(maxarg λ
λ

trainingOP .

There is no analytical method to choose lambda to maximize P(O|lambda). However, the

BW algorithm, also known as the forward-backward algorithm, maximizes P(O|lambda)

by applying iterative hill-climbing algorithms. The first step is to use an initial model that

can be either pre selected according to rules or chosen by random. The observed se-

quence is then run through the initial model, which yields an expectation of each model

parameter. After updating the model parameter, the observed sequence is run again

through the model. Baum proved that the property P(O|λ) ≥ P(O|λ) holds, where λ is the

initial model and λ is the model after a learning step (Manning & Schütze, 1999). The

iteration is done when there is no longer any significant improvement. This solution does

not guarantee finding a global optimum, but in practice the re-estimation is usually effec-

tive (Manning & Schütze, 1999).

2. Viterbi Algorithm

The evaluation of a model can be solved exactly with the forward procedure.

However, we are more interested in finding the most likely state sequence associated with

the observation sequence Q. The Viterbi algorithm provides a computationally efficient

way of analyzing observations of HMMs to recapture the most likely underlying state

sequence. It exploits recursion to reduce the computational load and uses the context of

the entire sequence to make judgments.

The Viterbi algorithm computes the most likely complete path by maximiz-

ing),|(maxarg λOXP
X

, where X is the vector of the most probable visited states. It is

 28

sufficient for a fixed O to maximize)|,(maxarg λOXP
X

 (Manning & Schütze, 1999). A

common representation of all the possible transition sequences that can be obtained is a

trellis. A trellis is a layered graph whose vertices represent possible observations in the

corresponding state (Figure 7). The vertices of the trellis can be embedded in a two-

dimensional matrix with the vertices in each layer assigned to elements in the corre-

sponding column of the matrix (Bouchaffra et al., 1996).

Figure 7. Example of a trellis in a Viterbi Decoder (Image taken from University of
Leeds, 2004)

The variable δj(t) stores, for each point in the trellis, the probability of the most

probable path that leads to that node)|,,(max)(1111
11

λδ jXooXXPt tttXXj
t

== −−
−

LL
L

.

The corresponding variable ψj(t) then records the node of the incoming arc

that led to this most probable path. Using dynamic programming, we calculate the most

probable path through the whole trellis as follows:

1. Initialization: δj(t) = πj, where Nj ≤≤1

2. Induction: δj(t+1) = ,)(max
1 ijijiNi

batδ
≤≤

 where Nj ≤≤1

the back trace is then stored: Ψj(t+1) = ,)(maxarg
1

tijoiji
Ni

batδ
≤≤

 where Nj ≤≤1

3. Termination and readout of the path are then done by backtracking.

=+1
ˆ

TX)1(maxarg
1

+
≤≤

Ti
Ni

δ

)1(ˆ
1

ˆ +Ψ=
+

tX
tXt

 29

=)ˆ(tXP)1(max
1

+
≤≤

TiNi
δ

With we know the probability of the best path so far producing the next

observation at the next time step. This reflects the transition probability and allows us to

predict what the next probable observation would be.

)ˆ(tXP

6. Dynamic Bayesian Networks

A dynamic Bayesian network (DBN) belongs to the group of “graphical models.”

A graphical model is a graph that represents certain properties about sets of random vari-

ables. The nodes in the graph correspond to random variables; the edges encode a set of

conditional independence properties (Bilmes & Zweig, 2002). DBNs are directed graphi-

cal models of stochastic processes and they allow the modeling of discrete-time processes

as they evolve over time. DBNs are an extension of Bayesian networks that unfold over

time or gets time-sliced. The term “dynamic, ” as in “dynamic Bayesian network,” means

that a dynamic system is modeled; it does not mean that the graph structure changes over

time.

observation-generation model

observation sequence

state sequence (hidden)

state evolution model

observation-generation model

observation sequence

state sequence (hidden)

state evolution model

Figure 8. A Dynamic Bayesian Network

To represent causality in an approximate way, the graphs have directed edges,

which means that a variable i connected to a variable j has a causal influence on it DBNs

assume that the state variables are Markovian and stationary (Deviren, 2001). “Mark-

ovian” in this context means that the set of state variables in interval k depends only on

the set of state variables in the interval k-1. This time dependence determines the parents

 30

of the current node (Figure 8) and with the stationary property, the network structure is

time-invariant, which means the network structure does not change over time. DBNs

generalize hidden Markov models by representing the hidden (and observed) state in

terms of state variables, which can have complex interdependencies. The graphical struc-

ture provides an easy way to specify these conditional independencies, and hence, to pro-

vide a compact parameterization of the model (Murphy, 2002). Figure 9 depicts a simple

example of an observation sequence in a DBN.

Y1 Y2 Y3 YT
…Y1 Y2 Y3 YT
…

Q1 Q2 Q3 QT
…

1 2 3 T
…

Y1 Y2 Y3 YT
…Y1 Y2 Y3 YT
…

Q1 Q2 Q3 QT
…

1 2 3 T
…

Figure 9. Observation Sequence Y1 to YT in a DBN

We can calculate the probability of this particular observation sequence by

P(Y1,Y2,…YT)=P(Y1)P(Y2|Y1)…P(YT|YT-1). Given that we know the model and have ob-

served YT, we can predict the value of YT+1. The temporal order of the graph is important,

because it specifies the direction of causality (Gharamani, 1997).

7. Various other Approaches

Event prediction problems address issues similar as time-series prediction prob-

lems. An event sequence is a sequence of time-stamped observations that are described

by a fixed set of features.

AT&T Labs has been especially interested in predicting failures of telecommuni-

cation equipment based on logs of alarm messages (Weiss & Hirsh, 1998a). In that do-

main, they are interested in predicting a specific event within a window of time, a so-

called rare event, from the time-stamped observations. Since statistical methods require

numerical features, classical time-series prediction techniques are not applicable (Brock-

well & Davis, 1996; Weiss, 1999). Weiss uses a genetic algorithm that searches directly

for predictive patterns in the data. In his case, the event-prediction problem was formu-

 31

 32

lated and solved as a machine-learning problem. The situation we are interested in, how-

ever, is different. We are interested in what the next event will be, not when a specific

event will occur.

System management is another domain in which event prediction in temporal se-

quences plays an important role. The ability to predict rare events that are harmful in a

production network can be helpful in automatically detecting real-time problems

(Domeniconi et al., 2002). For example, a computer network is assumed to be under con-

tinuous monitoring. The monitoring process produces event sequences in which each ob-

servation has a fixed set of categorical and numerical features. For Domeniconi, the event

consisted of four components, one of which addressed the severity of the failure. The se-

verity was ranked in five steps: harmless, warning, minor, critical, and fatal. Prediction

focused on events in which the severity was either critical or fatal, much like the tele-

communication case explained earlier. However, instead of a genetic algorithm approach,

Domeniconi formulated the problem as a classification problem. Applying the means of

singular-value decomposition — a powerful set of techniques dealing with sets of equa-

tions or matrices that are either singular or numerically very close to singular — provided

numerical answers to the prediction problem.

For content providers and consumers pre-fetching web pages has considerable

value. The prediction of the user’s next request for a desired content improves download-

ing time. Many techniques have been considered for this purpose. Davison (2002) im-

plemented machine-learning techniques in order to predict the next user action on the

Web.

8. Predictive Control Theory
The prediction techniques presented so far are methods for modeling dynamic

systems. This brief section demonstrates that predicting possible next events and estimat-

ing how a system will behave in the near future, are not merely academic questions. In

process industries, it is crucial to predict system dynamics. In chemical-processing indus-

tries, especially, model-based predictive control is currently the most popular advanced-

control theory. And in other industries as well — power plants, petroleum refineries, food

processing, automotive, and aerospace — predictive control can be found. A common

characteristic is that an explicitly formulated process model is used to predict and opti-

mize future behavior (Hovd, 2004). The main term used is “model predictive control”

(MPC), one of the most popular control techniques in industry. Figure 10 shows a sche-

matic diagram of a model-based predictive controller. The basic principles are that the

internal model, here the plant model, is known, and predicts the future output of the sys-

tem. The reference signal is predicted for a finite number of steps into the future and, de-

pending on this prediction, the control for “adjusting” the system is calculated, returning

as feedback into the system (plant).

Plant Model

Predict future values of system
output

Obtain or predict current and
future value of reference signal

Calculate
the control
to minimize

the
difference

Plant Model

Predict future values of system
output

Obtain or predict current and
future value of reference signal
Obtain or predict current and
future value of reference signal

Calculate
the control
to minimize

the
difference

Figure 10. Example of a Model based predictive controller (adapted from Ordys)

This technique is not applicable to linear systems alone. Recently, due to more

and more constraints, such as environmental and safety considerations, and to process-

immanent non linearities, the attention to nonlinear-model predictive control has in-

creased (Findeisen & Allgoewer, 2002). An overview can be found in Qin (1996) and

Hovd (2004).

 33

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

III. THE MENTAL SIMULATION MODEL (ARCHITECTURE)

A. INTRODUCTION

This chapter begins with an overview of the major requirements that bound the

architecture of the model. It covers in detail the requirements from the psychological the-

ory of naturalistic decision-making as the outer framework for mental simulation. We

consider it important to develop the model in accordance with the current state of knowl-

edge of naturalistic decision-making. We also discuss the framework in which the test

bed, Combat XXI, fits. In addition, we describe the main application domains for combat

simulation models and their current critical deficiencies. Some of the deficiencies can be

resolved by mental simulation as an essential part of naturalistic decision-making. The

developed architecture is explained in detail. The chapter ends with an overview of how

this work might be applied to domains other than the ones considered in this work.

B. MENTAL SIMULATION

1. Uses of Mental Simulation, in Detail

A general overview of mental simulation has already been outlined in Chapter II.

In the following sections mental simulation will be described in detail and relevance as it

is used in NDM.

Mental simulation is an essential part of RPD. In the recognitional decision-

making it is used in

(a) diagnosing to form situation awareness,

(b) generating expectancies to help verify situation awareness, and

(c) evaluating a course of action.

These map well with Endsley’s definition of situation awareness: “the perception

of the elements in the environment within a volume of time and space, the comprehen-

sion of their meaning, and the projection of their status in the near future” (Endsley,

1995). He specifies three hierarchical phases or levels: perception, comprehension, and

projection into the future.

 36

Perception, as a phase or level of situation awareness, identifies the key elements

that define a decision-making situation. In our context, that means the different forma-

tions of tanks and the corresponding number of tanks. Comprehension, as a phase or level

of situation awareness, means understanding the current decision-making situation in tac-

tical terms, such as: attacking in direction x, at speed y, supported by z. The third phase

or level of situation awareness, projection into the future, means anticipating the pre-

dicted or expected evolution of the current situation. In our context, this could mean, for

example, foreseeing a necessity for reinforcements or adjustments in the resource alloca-

tions.

How might now a predictive model be used to support these three levels of

awareness? The answer lies in this concept: mental simulation enables us to explain ob-

served events, actions as described by Klein being one type of observable event.

(a) Diagnosing to form situation awareness

If we understand the inherent events, we can diagnose a decision-making situa-

tion: we have a picture in which things fit together. If we do not understand the events,

we cannot explain the situation: our situational awareness is insufficient. In mental simu-

lation, according to Klein, we match features of the events to the perceived situation. The

following example may clarify what we mean here. Assume a combat situation in which

a tank is in a defensive position. Although, in reality, the tank’s defensive position could

indicate any number of platoon situations, for the sake of clarification, we choose just

two. In one situation, the tank’s position means the platoon is defending itself against an

enemy’s main attack. In the other situation, it is not. For each situation there is a corre-

sponding predictive model, or data structure, that maintains the platoon’s knowledge of

past experiences and the parameters of the current situation. Although the simulated pla-

toon may not be aware what kind of situation it’s in, it can make certain sequential obser-

vations. To form a diagnosis of the situation, we could run the observation sequence in

different models, where the best match would give a reasonable estimate of the platoon’s

situation. If we used an HMM as a predictive model, we would run the Viterbi algorithm.

The results would show the state sequence that is most probable to explain the observa-

tion sequence. That could then be mapped to a corresponding model. Therefore, in sum,

 37

we argue that a predictive model can be used to diagnose situation awareness. Chapter IV

will show the results of our implementation.

(b) Generating expectancies, to help verify situation awareness

A predictive model can also support the generation of expectancies, to help verify

situation awareness. Taking our example and using comprehension, Endsley’s second

level of situation awareness, we reach the following conclusions. We know that a certain

formation has x number of tanks and is moving in a particular direction at a certain speed.

Predicting the next event, that is, seeing the number of tanks that we expected to see,

would help confirm our picture of the situation as compared to the actual event. However,

if we suddenly see twice as many tanks as expected, and we have no idea how this hap-

pened, it would cause us to reconsider our picture of the situation. So, we generate an ex-

pectancy, and then see whether or not that prediction confirms our assumption about

situation awareness.

(c) Evaluating a course of action

This aspect of mental simulation, or situation awareness, is the most intuitive of

the three. If you mention mental simulation to a layman that is what they will immedi-

ately think of. Chapter IV will demonstrate how the possible actions of our simulated pla-

toon can be projected into and evaluated in the future.

Situation awareness is critical for making intelligent decisions. Without it there is

no context for adapting one’s behavior to accommodate the current and future state of the

world (Klein, 2000). According to Endsley, situation awareness is more than just knowl-

edge of numerous pieces of data. It also requires having an advanced understanding of a

situation and some projection into the future, based on the user’s goals (Endsley, 1995).

Understanding a situation requires the mental integration of many pieces of information.

Mental, or intelligence, simulation is the means to achieve that in virtual worlds. This re-

quires knowing both that the information exists and how it interrelates with other pieces

of information in the situational context. People usually know when something is occur

 38

ring in which they are involved, or that a particular piece of information that they need

exists. But they do not always understand how these relate in the overall larger context

(Albers, 1999).

2. Key Points of Mental Simulation
Klein identified the following key points of mental simulation through many

years of empirical research in the decision-making field (Klein, 1999):

- “Mental simulation lets us explain how events have moved from the past into

the present.” In this work we do not try to explain how events moved into the

present, but we use the events in the past and present in order to predict events

into the future.

- “Mental simulation lets us project how the present will move into the future.”

This is the key point we model in this research.

- “Constructing a mental simulation involves forming an action sequence in

which one state of affairs is transformed into another.”

- “Because of memory limitations, people usually construct mental simulations

using around three variables around six transitions.” The number of variables

we use in this research matches this usual behavior.

- “It takes a fair amount of experience to construct a useful mental simulation.”

This is considered and applied in our research.

- “Mental simulations can run into trouble when the situation becomes too

complicated or when time pressure, noise, or other factors interfere.” This

point is not addressed in this work.

- “Mental simulation can be misleading when a person argues away evidence

that challenges the interpretation.” In this research we do not consider this

point.

- “There are methods for improving mental simulation, such as using crystal

ball and premortem strategies and decision scenarios.” This point is beyond

the scope of this thesis.

3. Application of Klein’s Model
Klein has developed a generic conceptual model of mental simulation. He begins

with two types of need: First, to explain the past, and second, to project the future. Figure

11 depicts a generic model of mental simulation developed by Klein. The parameters for

the mental simulation process depend on the type of need. To explain the past the initial

state is considered; to project into the future, the terminal state is the relevant one. Klein

derived empirically that people usually use three mental states and about six transitions.

This result will be exploited later. In our research we start with mental simulation from

the current state and evaluate possible actions to arrive at a terminal state. According to

Klein the projection into the future has two purposes: The one purpose is to predict what

is about to happen and to take the appropriate measure in order to be prepared. The other

purpose is to observe a potential sequence of actions and to determine whether there exist

flaws that lead to rejection of this action sequence.

Figure 11. A generic model for mental simulation adapted from Klein, 1999.

 39

Having determined an action sequence, we can evaluate it internally for coher-

ence, applicability, and completeness. If the action sequence passes our internal evalua-

tion, the action sequence is run to generate a model of explanation or projection, which-

ever is needed. If the action sequence fails, we must start over and reconsider the parame-

ters. As Klein points out, mental simulation is not always successful, but when it works it

is impressive.

4. Mental Simulation for Projection into the Future

As mentioned above, there are two types of needs for mental simulation: to ex-

plain the past and to project the future. For details about the need to explain the past, the

reader is referred to the literature. Only a graphical model is displayed, in Figure 12.

Figure 12. Using mental simulation to explain the past, adapted from Klein, 1999.

 40

The main focus in this research is projection into the future. Figure 13 displays

the details of the model graphically. The left side of Figure 13 shows the conceptual

model using mental simulation to project into the future, adapted from Klein. This is an

extension to Figure 11. In the application of projecting the future the outcome of the ac-

tion sequence is evaluated. The identification of problem areas with respect to plausibil-

ity, consistency, or pitfalls during the run and review of the action sequence can require a

micro-simulation of the problem areas identified. The problem areas will also be evalu-

ated. The evaluation has three possible results. Firstly, the action sequence looks feasible

and the implementation of the action selected starts. Secondly, the course of action is un-

der no circumstances feasible and is rejected. Thirdly, the action sequence still might

work, but it has to be modified an re-evaluated.

Need Arises

Identify Need:
Project the Future

Specify Parameters:

Assemble the Action Sequence:

Run and review Action Sequence:

Evaluate the outcome

Failure to
Assemble

Internal
Evaluation

Identify Problem
Areas:

Plausibility
Consistency

Pitfalls

Microsimulation
Of Problem Areas Prepare for Implementation

Predict the Outcome
Estimate the data
Generate a course of Action
Evaluate and inspect risk

Modify course
of action

Reject
CoA

Unacceptable

Acceptable

Need Arises

Identify Need:
Project the Future

Specify Parameters:Specify Parameters:

Assemble the Action Sequence:Assemble the Action Sequence:

Run and review Action Sequence:Run and review Action Sequence:

Evaluate the outcome

Failure to
Assemble

Internal
Evaluation

Identify Problem
Areas:

Plausibility
Consistency

Pitfalls

Microsimulation
Of Problem Areas Prepare for Implementation

Predict the Outcome
Estimate the data
Generate a course of Action
Evaluate and inspect risk

Modify course
of action

Reject
CoA

Unacceptable

Acceptable

Need:
Project the Future

Specify Parameters
for evaluating actions:
losses; enemy units

to expect; terrain
impact;…

Assemble the Action Sequence:
create path and fire behavior of

the units

Run and review Action Sequence:
simulate the courses of action

Asses the simulation outcome
Predict the next event

choose action and implement

Need:
Project the Future

Specify Parameters
for evaluating actions:
losses; enemy units

to expect; terrain
impact;…

Assemble the Action Sequence:
create path and fire behavior of

the units

Run and review Action Sequence:
simulate the courses of action

Asses the simulation outcome
Predict the next event

choose action and implement

Need Arises

Identify Need:
Project the Future

Specify Parameters:

Assemble the Action Sequence:

Run and review Action Sequence:

Evaluate the outcome

Failure to
Assemble

Internal
Evaluation

Identify Problem
Areas:

Plausibility
Consistency

Pitfalls

Microsimulation
Of Problem Areas Prepare for Implementation

Predict the Outcome
Estimate the data
Generate a course of Action
Evaluate and inspect risk

Modify course
of action

Reject
CoA

Unacceptable

Acceptable

Need Arises

Identify Need:
Project the Future

Specify Parameters:Specify Parameters:

Assemble the Action Sequence:Assemble the Action Sequence:

Run and review Action Sequence:Run and review Action Sequence:

Evaluate the outcome

Failure to
Assemble

Internal
Evaluation

Identify Problem
Areas:

Plausibility
Consistency

Pitfalls

Microsimulation
Of Problem Areas Prepare for Implementation

Predict the Outcome
Estimate the data
Generate a course of Action
Evaluate and inspect risk

Modify course
of action

Reject
CoA

Unacceptable

Acceptable

Need:
Project the Future

Specify Parameters
for evaluating actions:
losses; enemy units

to expect; terrain
impact;…

Assemble the Action Sequence:
create path and fire behavior of

the units

Run and review Action Sequence:
simulate the courses of action

Asses the simulation outcome
Predict the next event

choose action and implement

Need:
Project the Future

Specify Parameters
for evaluating actions:
losses; enemy units

to expect; terrain
impact;…

Assemble the Action Sequence:
create path and fire behavior of

the units

Run and review Action Sequence:
simulate the courses of action

Asses the simulation outcome
Predict the next event

choose action and implement
Figure 13. Left: Using mental simulation to project into the future, adapted from

Klein, 1999. Right: The Adaptation of Klein’s model in our research.

In our application of Klein’s model, we already determined the need for project-

ing into the future. We specify the parameters losses of our own and the opposing forces,

the expectation of what to see next, and how the prediction is evaluated with respect to

the environment in which it takes place, in our case, terrain. We also assemble an action

sequence, which contains possible paths of outflanking or certain firing behavior. The

simulation of the possible action is assessed. If the first action is promising then we

choose it. In case of ambiguity we add other parameters into consideration. Details will

follow in the next chapter.

 41

 42

C. COMBAT MODELING AND COMBAT SIMULATION MODELS
Computer-based military simulations have been used since World War II (Haus-

rath, 1971). Today, nearly all armies of the Western Hemisphere use modeling and simu-

lation (M&S) as essential tools for analysis and for training their leaders and war fighters.

The U.S. DoD Defense Modeling and Simulation Office (DMSO) characterizes M&S

tools according to their class (i.e., live, virtual, or constructive), the functional area they

support, and the level of detail or fidelity the simulation system contains (DMSO, 2005).

Combat simulation models are most commonly classified as constructive simulations.

They are analytical models, ranging from detailed engineering models to highly aggre-

gated theater/campaign simulations, in which the performance and/or behavior of com-

ponents, entities, systems, or collections of systems are represented as a function of time

and environmental stimuli (DMSO, 2005). “Constructive” in this sense, means that the

playing units and the environment are constructed or synthetic (NATO, 1998). Construc-

tive simulation systems may run slower than real time, at real time, or faster than real

time, depending on the particular use or function of the simulation. In contrast, “virtual”

simulations involve real weapon systems and operators in synthetic environments, that

allow the operators to interface with real equipment and to train in realistic three-

dimensional battle spaces. Virtual simulations, in general run in real time in order to

evaluate the operators’ or the systems’ responses to actions. “Live” simulations use real

hardware/equipment and troops within a real or realistic environment. What is simulated

is mainly the weapons effects. Constructive simulations are now being used more for af-

ter-action reviews or for forces that do not actually participate in a given exercise, i.e.,

adjacent units.

In addition to the modeling and simulation classifications, models are character-

ized by their scope and level of detail. M&S resources are categorized as engineering,

engagement, mission, or theater/campaign resources, as shown in the M&S hierarchy il-

lustrated in Figure 14.

Figure 14. Model and simulation hierarchy. Adapted from Modeling and Simulation
Information Analysis Center (MSIAC, 2005).

Models at the bottom of the hierarchy are more detailed but involve few
components and/or systems, whereas models higher in the hierarchy in-
clude more players, more aspects of warfare, and simulate longer dura-
tions, but the players become more aggregated and the physics is repre-
sented more implicitly (DMSO, 2005).

However, there are additional models in the M&S tool box that do not fit the

above characterization, for example, environmental representations, threat models, and

logistics models. They are not further considered here. This research focuses on construc-

tive simulation models.

The U.S. military uses constructive simulation in the following application do-

mains: advanced concepts and requirements; military operations; research, development,

and acquisition; and training (DoD, 1995). The North Atlantic Treaty Organization

(NATO) defines the following application domains: defense planning, training, exercises,

support to operations, research, technology development and armaments acquisition.

However, NATO also notes that individual nations may use different taxonomies to clas-

sify M&S application areas (NATO, 1998). The following considerations focus on two

main areas of combat simulations. The one is the use in training including exercises; and

the other major use is in analysis. The level to which these domains benefit from combat

simulation models varies and is driven mainly by the amount of AI required and the
 43

 44

amount available for a specific use. Andrew Ilachinski (2004) discusses another categori-

zation: automation. He divides the combat-simulation-model world according to the types

of forces used: semi automated forces and automated forces. In the semi automated cate-

gory, human agents make many of the tactical decisions, to ensure that the automated

units’ behavior conforms to expectations and is realistic. Training and exercise applica-

tions, especially, use semi automated models. In contrast, the automated-forces category

does not involve any use of human agents; instead, it is the simulation model itself that

specifies the automated entities’ actions. Automated-forces models are referred to as

“closed” simulations.

Simulated, or constructed military entities mimic the behavior of real-world units

mainly in terms of their physical actions, including troop movement, target detection, tar-

get selection, and engagements on a weapon’s firing level. Higher-level command func-

tions are either scripted or modeled with common AI-techniques such as case-based rea-

soning or expert systems (Ilachinsky, 2004). However, even in cutting-edge models, be-

havior in general is still not at a satisfactory level. In this respect, the following statement

from the NATO Modeling and Simulation Master Plan (1995) is still largely valid.

Constructive simulations are better at representing systems than represent-
ing human behavior. For example, a simulation may accurately represent
the direct fire effects from weapon systems engaged in a simulated force-
on-force event but cannot represent the decision process of the operational
commander employing that force.

Some of the U.S.-Department of Defense (1995) requirements concerning hu-

man behavior modeling assert that

the representation of humans in models and simulations is extremely lim-
ited, particularly in the representation of opposing forces and their doc-
trine and tactics. In view of the limited theoretical underpinnings in this
area, this issue will require extensive research before human behavior can
be modeled authoritatively.

The Modeling and Simulation Resource Repository (MSRR) provides an excel-

lent overview of current simulation models. The MSRR is a DoD-wide system of model-

ing and simulation databases that allows a user to discover, access, and obtain M&S re-

sources that support military operations, training, and acquisition (MSRR, 2005). Inara

 45

Kuck (2003) summarizes the capabilities and limitations of nearly all modeling and simu-

lation programs that are sponsored by the DoD. We give only a brief description of the

model, Combined Arms and Support Task Force Evaluation Model (CASTFOREM), be-

cause this is currently the U.S. Army’s highest-resolution, combined-arms combat simu-

lation model. CASTFOREM is used for the evaluation of weapon systems and tactics in

brigade - and - below combined arms conflicts. It uses closed-form mathematical expres-

sions, probability distributions, and an embedded expert system (Ilachinsky, 2004;

MSRR, 2005). It will be replaced by the Combined Arms Analysis Tool for the XXIst

Century (COMBAT XXI), which will be explained in detail in the next section.

D. COMBAT XXI AS TEST BED

1. General Description

Combined Arms Analysis Tool for the 21st Century (COMBAT XXI) is a
high-resolution, closed-form, stochastic, analytical combat simulation.
COMBAT XXI is being developed by the TRADOC Analysis Center –
White Sands Missile Range (TRAC-WSMR) and the Marine Corps Com-
bat Development Command (MCCDC). COMBAT XXI will be used for
the analysis of land and amphibious warfare in the Research, Development
and Acquisition (RDA) and Advanced Concepts and Requirements (ACR)
Modeling and Simulation (M&S) domains.

COMBAT XXI is a replacement for Combined Arms and Task Force
Evaluation Model (CASTFOREM). The COMBAT XXI model capitalizes
on many of the “time tested” algorithms of CASTFOREM, while provid-
ing enhanced capabilities. Many underlying algorithms in the COMBAT
XXI model, such as acquisition and engagement algorithms, are derived
from CASTFOREM. Enhanced capabilities include the capability to easily
compose new combat platforms and tactical units, enhanced scenario
building tools with a graphical user interface, and modular architecture for
separation of physical modeling and behaviors.

COMBAT XXI is intended to support analytical needs in the ACR do-
main, including force design, operational requirements, mission area
analysis and war fighting experiments. COMBAT XXI is also designed to
support force-on-force analysis related to the RDA domain that includes
weapons system development, and test and evaluation. COMBAT XXI
represents joint combined-arms operations (including ground warfare,
aviation operations and amphibious operations) on a tactical level.

One Semi-Automated Forces (OneSAF) and COMBAT XXI are related in
a manner similar to Janus and CASTFOREM. Janus is used in areas where

human-in-the-loop war gaming is used to refine scenarios and define the
range of major decisions OneSAF is being developed as a human-in-the-
loop simulation (with resolution from individual platforms to battalion
level units) to support all M&S domains. COMBAT XXI will produce
replication data sets (generated by numerous stochastic runs of various
scenarios) for combat analysis at the brigade and below level for ACR and
RDA M&S domains. COMBAT XXI models tactical (brigade and below)
scenarios (CXXI-User’s Guide, 2005).

2. Behavior Representation
The degree to which a combat simulation model represents the real world situa-

tion depends not only on the resolution of the modeled forces but also on the behavior of

the units when performing tactical tasks or missions. Behavior and decision-making go

hand in hand. The behavior is normally the result of a certain decision made in relevant

time to the action. It is not necessarily always important how the simulated units came up

with the decision, it is more important to see the impact of the decision as appropriate and

tactically correct behavior. In other words, we are not going to model how the brain

works, but rather utilize the factors and parameters humans consider in their decision-

making process and then exploit the strength of a computer in order to come up with a

decision.

Behavior in CXXI can be distinguished in physical algorithms, primitive behav-

ior, such as movement, search and engagement, and tactical behavior, such as bounding

over-watch, close-air support, etc. Basic tactical behavior and decision-making is repre-

sented in decision-making modules. Additional, situation and scenario dependent behav-

ior can be authored by assigning behavioral rules to entities. These behavioral rules have

access to required data during the run and make use of the entity decision-making capa-

bilities. Figure 15 displays the basic structure of a rule.

Trigger
event(s)

true?
Condition(s)

true?

yes

Actions

… execute rule <…>
…execute order <…>

:
:

yesTrigger
event(s)

true?
Condition(s)

true?

yes

Actions

… execute rule <…>
…execute order <…>

:
:

yes

Figure 15. Basic structure for rules in Combat XXI

 46

Trigger events start the entire process of considering a rule to be evaluated for

execution. This can be the event that a certain control measure has been met, that certain

modules are initialized that are effects on entities, or that…. The next step depends on the

type and amount of conditions that are met. In order to actually execute an action all con-

ditions have to be met and the rules and the orders under the actions have to exist. Further

options include the selection of an echelon that defines what sub-units will receive a par-

ticular rule. It is also possible to repeat the execution of rule. However, for all further

executions the entire set of trigger events and conditions required have to be met again.

Figure 16. The rule editor template in CXXI for creating behavioral rules that can be
assigned to entities.

Figure 16 displays the rule template editor for creating, modifying or deletion of

user defined rules. Figure 17 shows an example of a rule body in Combat XXI. The Rule

Body defines what rule executes when the trigger event occurs. Rules can be composed.

This means that the user can build more complex rules by using a set of simple rules.

This feature is exploited in the use of Combat XXI in order to create behavior that is not

initially available in the decision modules. However, the features created in this research
 47

are not within the current rule capabilities and according to the development team it is not

likely that the infrastructure will provide these features in the near future.

Figure 17. Example Rule to illustrate how a rule looks. Adapted from the Combat

XXI User’s Guide.

3. Scenario Output
The output of the scenario is written to a set of log-files. Each default log file con-

tains data regarding the type of the log file. A movement log contains data lines for simu-

lation time, entity name, coordinates, speed, azimuth and pitch. An acquisition log con-

tains basically who saw whom where, with what sensor, and with what accuracy. The

model developed uses acquisition, movement, and engagement log files as input. The

output will be discussed in detail in chapter IV. The model is event driven. That means

that only output is provided when events have happened. If a sensor does not detect a tar-

get then this is not an event and, therefore, no output is logged.

4. Run Manager

Other features of CXXI utilized in this research is the Run Manager. This tool al-

lows the user to execute multiple replications of a scenario run. The functionalities cover

the number of replications, the duration of a single scenario run, the type of random

number generator, which data loggers to create and given a network, what computers to

use.

5. Summary

Aggregated, Combat XXI provides a capability to run a ground-force-based sce-

nario repeatably with full detection and engagement functionality where the units follow

 48

scripted actions. Rules allow the user to invoke special behavior depending on trigger

events and conditions met. The output is written in text-files.

E. GENERAL MODEL ARCHITECTURE

The most general application of the model developed is depicted in Figure 18.

The entire system consists of four components: the environment, which covers mainly the

simulation system, the situational awareness component, the mental simulator, which

predicts and assesses, and the decision component which evaluates the influencing factors

and actually renders the decision. Figure 19 gives a more detailed view of the compo-

nents of Figure 18.

Mental Simulator

Situational Awareness
Component

Simulation Environment

Decision
Component Mental Simulator

Situational Awareness
Component

Simulation Environment

Decision
Component

Figure 18. The components used in the model developed

1. Simulation Environment Component
The simulation environment is the driving component. It contains the simulation

system that can run on the same computer or can be networked. For the general use it

does not matter, as long as the output of the system contains the required data for the

other components. That sounds totally obvious, however this is not always the case and

the simulation system might need to be adjusted. One occurrence of that case could be

related to the way detections are handled in a combat simulation system. The target ac-

quisition algorithms yield detections of entities, but in contrast to a human observer on

the battlefield they normally do not provide the event when a spotted unit goes out of

sight. This can only be deduced when in the next observation-sweep the specific entity

does not show up on the “detection list” any more. But then it is still unknown at what

 49

 50

specific time and at what specific location this occurred. Another consideration could be

the case in which aggregated units are used. The attrition of aggregated units is normally

computed by Lanchester Equations. The target detection and acquisition does not provide

information about individual tanks. There exist combat simulation models where the

resolution is not on the entity level, like in Vector in Commander (VIC, 2005). That does

not exclude aggregated models from being used in this research. However, the decision-

making process will not be more detailed than the model’s resolution level.

2. Situational Awareness Component
The situational awareness component represents the internal model of the external

world. The external world in this context is the current situation in the combat simulation

environment. Many mind theorists have used the term ”internal model of the world” with

respect to intelligent adaptive behavior. This expression has not been used uniformly.

Rich Sutton and Andrew Barto give an excellent summary in (Sutton and Barto, 1981).

They state:

For some, an internal model is a general knowledge store capable of an-
swering any sort of question about the world. For others, an internal model
is much more limited in that it can answer only a single question: “What
should be done next?” In the first case another part of the mind can ask the
internal model many questions before taking action, whereas in the second
the internal model generates a recommendation for action only in response
to the immediate situation.

prediction
of next
event

n

create
potential
actions

yes

get new
observation

decision
necessary?

no

create/update
situational
awareness

create
context

de
ci

de

1

create/update
predictive

model

estimated outcomes
of potential actions M

en
ta

l S
im

ul
at

or
Si

tu
at

io
na

l A
w

ar
en

es
s

C
om

po
ne

nt

Pr
ed

ic
to

r

Environment

D
ec

is
io

n
C

om
po

ne
nt

Simulation model

assess-
ment of

prediction

prediction
of next
event

nn

create
potential
actions

yes

get new
observation

decision
necessary?

no

create/update
situational
awareness

create
context

de
ci

de

11

create/update
predictive

model

estimated outcomes
of potential actions M

en
ta

l S
im

ul
at

or
Si

tu
at

io
na

l A
w

ar
en

es
s

C
om

po
ne

nt

Pr
ed

ic
to

r

Environment

D
ec

is
io

n
C

om
po

ne
nt

Simulation model

assess-
ment of

prediction

Figure 19. The general architecture of the model implemented.

We follow more the second case mentioned. However, we also consider this internal

model in terms of situational awareness of a commander, in the sense of Endsley’s level

1, discussed earlier in Chapter B 1. Therefore, the situational awareness component takes

the output of the simulation and builds up its own internal perception of the world. It cre-

ates estimates about the enemy formations, speed and directions. In case the mental simu-

lator creates its predictive model parallel to the situation development the per-

cepts/observations are also send to the mental simulator. In case there is a predictive

model pre-loaded an update might only occur. In this abstract view the situational aware-

ness component is not limited to ground combat situations alone. It is applicable to all

cases, where a more sophisticated awareness is required than in the simulation system

available. This might include appropriate knowledge in a 3D-environment about the

value, benefit, or meaning that “people” seen in the VR have due to their spatial relation-

ship. This might mean to know that I can watch a certain portion of a building and others

see a different portion, but overall I know what portion of the building in total can be sur-

veyed. The situational awareness component reads the output file from the simulation

 51

 52

model until a decision is required. A decision might be any action the mental simulator

can be of assistance. In our case this might be the decision to fire the weapon or to hold

the fire, even given the resources.

3. Mental Simulator Component

The mental simulator component is activated when a decision is required. It cre-

ates the appropriate context for the decision which is the basis for developing potential

actions. The predictor module in the mental simulator has two possible inputs. One is the

context of the decision, i.e., what is the current situation and based on that what can be

expected next. The other is the set of potential actions which might be simulated in time

within the predictor module or might be a table look-up in a representative data-base. The

prediction of the next event is assessed with respect to the context of the decision and in

our special case with respect to the terrain where it is supposed to happen. Both, the as-

sessment of the prediction and the estimated outcomes of the potential actions are input

for the decision component. The central part of the mental simulator is the predictor

module. It contains the predictive model(s) and a capability to either store previous simu-

lations and then look up the results or to create a simulation on the fly and evaluate po-

tential actions.

4. Decision Component
The decision component processes the assessed prediction of the next event most

likely to happen and the results of the simulated courses of potential actions. It will also

incorporate the terrain impact on the prediction. When the decision has been rendered,

the result will fed back to the environment.

F. GENERALIZATION OF THE MODEL
In current simulation systems, even among those currently under development,

decisions are based on mechanical behavior, similar to stimulus-response-theory. It is like

a shooting gallery: a duck pops up and gets shot at. Entities do not anticipate future

events. However, we can add new information into the simulation system with sensors, or

equivalent methods, in combination with a predictive model. By doing this, we can cope

with counterfactual events. Counterfactuals are events that have not happened yet, but

may happen, on a probabilistic basis. This is equivalent to a human imagination what

might happen - used in human decision making. This anticipation is generally called

 53

imagination - Klein calls it mental simulation. Using a probabilistic approach, in our case

this is a Markov Chain, but could be some other method. A Markov Chain can provide a

probability for a transition into the next state and therefore, give an estimate about a fu-

ture event. This enables having a computational method for coping with imagination.

This approach is not totally random; it is governed by line of sight and by experience in

the past. We consider mental simulation as anticipation of counterfactual events in a way

that allows them to influence behavior. Our implementation demonstrates how to open up

a simulation and use probabilistic approaches to imitate human decision making that is

based on concepts, counterfactuals and imagination.

The approach to mental simulation may be extended to a wide range of simula-

tions and models. An example shows how the methodology developed here might be ap-

plied to a different problem.

This example relates the following numbers to the corresponding scheme in

Figure 20. Imagine, for instance, that a need () arises for improving the behavior of

simulated humans in a virtual world, a need that might arise in a simple shooting trainer

or in a more complex environment with multiple immersed players and avatars who must

move appropriately in a threatening situation. The need might be based on requirements

for more sophisticated behavior of avatars, because there inadequate behavior can distract

trainees. Of course, similar circumstances also occur in constructive simulations. When

instances of inappropriate behavior occur in a simulated environment, we ask: What has

not been considered yet and why? Which leads to a second question: What decisions do

humans make that simulated entities are not designed to make? Considering those ques-

tions is the first step when building a mental simulator for decision-making situations

(). In such simulations, the entities must recognize decision-making situations. Our first

task then is to determine what relevant information is needed. In our research, both ques-

tions are relevant and they are:

What event has to be predicted? ()

What decision-influencing factors should be made available? ()

Granted, providing the availability of knowledge of influencing factors might be

more complicated than a simple table-search. It might mean hard computational effort.

For that, we turn to the field of computer science, which uses the term “instrumenting”

for program testing. “Instrumenting a program” () means augmenting it with program

code that measures specific aspects of the program (Pedersen, 1999). The necessary addi-

tional information might already be generated somewhere in the code, although it is not

yet displayed. That is an easy case: as in a debugger, the information just has to be re-

trieved. The harder case would require adding code that generates additional information,

which may require several runs of variations of the current scenario in a parallel, or sepa-

rate simulator, or a feasibility consideration of alternatives that were not needed thus far.

Need for
improving
behavior

Identify the decision
situation that has to be

improved

What has to
be

predicted?

What additional
information is

required for the
decision?

DBN

PP HMM

KFFSA

?
Select generic

model type
Instrument the

simulation

Customize model
for application

train model with the data base

use it

build data base

1

Need for
improving
behavior

Identify the decision
situation that has to be

improved

What has to
be

predicted?

What additional
information is

required for the
decision?

DBN

PP HMM

KFFSA

?DBN

PP HMM

KFFSA

?
Select generic

model type
Instrument the

simulation

Customize model
for application

train model with the data base

use it

build data basebuild data base

1

Figure 20. A general sequence of the modeling and improving process.

When appropriate and feasible, a database can be built that provides fast, easy an-

swers in certain decision-making situations (). Consider this situation, for example: a
 54

 55

simulated brother-in-arms in an urban-terrain environment sees a foe disappearing around

a corner. With that awareness, his behavior in following and moving around the corner—

the speed, what body part goes first, his use of a mirror to peek around the corner before

he exposes himself to potential enemy fire—is markedly different than if he were simply

walking his dog. Such situations can be parameterized and pre-simulated so that the ava-

tar realizes that, in x out of y cases, the results are z. This information can then trigger

more realistic behavior, for which this research may provide some guidance.

The event to be predicted determines to some extent which predictive model is

best to use (). Chapter II gives an overview of some statistical predictive models ().

The purpose of a predictive model is to provide an estimate of what is possible. However,

statistical models can provide probabilities of events based on prior observation of those

events, or they can predict novel events that are composed of previously observed events.

Both cases, distribution of observed events and distribution of unseen events that are

composed of observed events, can be useful in different context. A predictive model has

to be customized and implemented for a given purpose (). For a case in which a finite-

state machine is used, it is important to determine the states and to clarify what the states

mean. If the states are chosen poorly, then the state space might explode and be computa-

tionally hard to handle. To give qualitatively sufficient predictions, the Markov Chain

must be based on a representative data set. For instance, if you have ten states and only

five arcs, there may be a prediction gap. For a decision-making situation requiring infor-

mation about the motion of a target in a multidimensional space, a Kalman filtering might

be used. If something else is needed, another model may be a better fit. The final step be-

fore applying and using a model is to “train” it (). In this context, “training a model”

means estimating its parameters to maximize the probability of a set of strings being gen-

erated by the model (Pedersen, 1999).

To make this discussion more concrete we will guide the reader through an addi-

tional example which will show how the methodology developed in this research has a

broader impact. When watching movies with bad and good guys there occur chasing

scenes. When a character, being chased, disappears behind a corner, there is more than

one option for the pursuer when they reach the corner. In some cases the pursuer goes

 56

around the corner at full speed. In other cases caution is used and the pursuer carefully

peeks around the corner in order to avoid being ambushed after the turn. If we were to

simulate this chase in a training simulation, it would be important for us to give the pur-

suer believable behavior. Forsythe (2004) discusses this issue when talking about the use

of simulation technology for Law Enforcement. He states:

Many current simulations, as well as computer games, incorporate human
entities and allow participants to interact with those entities. It might seem
that the ability for trainees to gain experience in a law enforcement role al-
ready exists. Many people are concerned that the synthetic humans used to
populate most current simulations do not provide a sufficient level of be-
havioral realism. For many years, within the simulation and computer-
gaming industry, researchers have placed a heavy emphasis on accurately
modeling the characteristics of equipment and providing a high degree of
realism in computer graphics, sound, and other sensory experiences. Sub-
stantially less emphasis has been placed on the behavioral realism of simu-
lated humans. In many cases, synthetic humans have been provided sim-
plistic and predictable behavioral routines that are highly susceptible to
gaming (i.e., once the behavioral routine is recognized, players exploit this
knowledge of the underlying software to their advantage).

This is similar to the domain of constructive simulation. He also states the main

effort that has to be pursued:

The key development in simulation technology that benefits the law en-
forcement profession involves the ability to interact in a natural manner
with highly realistic and diverse simulated humans. These capabilities are
not yet available.

Deriving from the above we state that there is room for enhancing human behav-

ior in virtual environments for Law Enforcement. Models for law enforcement personnel

training must provide an ability to interact in a natural way with diverse and highly realis-

tic simulated humans (Forsythe, 2004). The synthetic entities must process cues and in-

terpret them through a humanlike decision-making process that is consistent with human

reasoning. Such capabilities are not yet available to a satisfactory degree. However, if the

simulations are provided with the ability to create their own awareness of the situations

encountered, the “reasoning” behavior of the synthetic entities will be much improved.

For instance: If the entities have knowledge, say, about policemen’s location, they can

anticipate the danger and will behave differently when rounding a corner or entering a

 57

building. The entities will become more situation-dependent and act more realistically,

which will enhance the training simulation. We will now reconsider the chasing example

in a comprehensive way and explain it in reference to Figure 20.

A simulated brother-in-arms in an urban-terrain environment pursues a foe disap-

pearing around a corner. He is always racing around the corner. This is not always situ-

ational depending appropriate behavior. So, there exist a need for improving behavior (1).

The next step (2) would be to identify, what has to be improved. In the particular case it

would be the behavior when going around the corner. In order to determine what addi-

tional information is required, it might be that additional cues or knowledge elements are

incorporated (3). This could be to record how long they have been running versus a mean

value adults can run at high speed without taking breathing time. It is also possible to

categorize the environment in terms of favoring the one or the other behavior. The in-

strumenting of the simulation (6) would cover making the required information available.

This might be relatively easy or hard. This cannot be assessed in this general discussion.

However, these types of situations can be parameterized and pre-simulated so that the

avatar realizes that, in x out of y cases, the results are z. This knowledge can be stored in

a data base (9).

So far it should be known that an essential part of improving behavior is by add-

ing expectations to the simulation. For this purpose we included a predictive model to

mimic human imagination. Since we do not know the exact parameters and data available

of this particular simulation under discussion, we cannot point out immediately a specific

predictive model. However, in the case with the bad guy running around the corner we

have to predict a discrete event. That would rule out for example a Kalman Filter. We

would use data like:

- How long was he running? The longer the hunt is the more likely might be the

need for a breathing time and the more likely will it be that he waits behind

the corner in order to fire.

- What can be said about the possibility of finding cover behind the corner?

There might be cues available, to what extent cover could be available.

 58

- How dense is the venue populated with people? If this happens on a crowded

side walk there might be an assessment possible about the likelihood that he

keeps running or not.

- How large is the lead of the bad guy?

The answer in a specific application could then lead to a selection of a particular

predictive model or a combination of prediction techniques (4)(5). Once the model is

known in detail then the prediction component gets customized (7). Applying pattern

matching can lead to a ‘key – behavior’ representation. The key does not have to be a

single condition. In fact the more conditions are used the more precise the behavior

should be. When the key matches the current situation, like exhaustion is true, high prob-

ability of cover behind the corner, and no other people around, etc, then the anticipated

behavior could be ‘bad guy will try to ambush’ and then the appropriate behavior can be

retrieved from a data base. Training the model would be to adjust the parameters used

such that the results from test runs are consistent with the model.

The result of this research is neither a crystal-ball-like capability to project into

the future nor a “plug and play” component for all types of simulations or decision-

making support tools. It is a framework for a computational model of mental simulation

in a simulated combat environment. However, there is a degree of usefulness for a series

of similar problems and simulation applications that involve uncertainty and time consid-

erations.

“Uncertainty” in this context means relying on assumptions about, or estimates of,

behavior and the size or type of the decision-influencing factors. The range in complexity

can go from simply assessing the trend of a certain stock commodity to a life-and-death

judgment whether or not an old wooden bridge in the jungle or Hindu Kush can carry

someone’s weight when crossing. As outlined in Chapter II, there are many ways to as-

sess or estimate decision-making parameters, but a model of mental simulation considers

only the parameters and the weights. It does not care about their derivation. One impor-

tant family of decision-making may be based on probabilities that were deliberately fab-

rication by a devious opponent. Therefore, the model is relatively generic in its parameter

 59

estimation and the respective models used. With respect to time considerations, this re-

search focuses on decision-making situations in which the decision does not require tak-

ing action immediately. The system may suggest an immediate need for action, but not in

all cases. The system can cover the gamut from making decisions about the right time to

trade stock shares to determining the right time for an ambush.

Our research can be used to receive guidance, gain experience, and recognize pit-

falls when modeling a mental simulation computationally, not merely conceptually. The

main features of the architecture described above are three-fold. A decision must be made

with a certain timeframe; the parameters used are:

• How did I perform last time, when I was in a similar situation?

• What can I expect to happen in the near future?

• What do I know/ assess when the expectation comes true?

Combining these parameters in a mental simulation model can make the behavior more

human-like.

To illustrate, what we mean, consider this situation in baseball. In a pitcher-

versus-batter “duel” situation, the batter has certain expectations about what the next

pitch will be. Overall, he knows that there can be four “balls,” three “strikes,” and, at

most, six possible pitches and strikes excluding foul balls. If there are four balls, the bat-

ter will walk to first base, and it is the next batter’s turn. If there are three strikes, the bat-

ter is “out.” When the batter has had three balls and no strikes, he can be reasonably con-

fident that the next pitch will be an attempted strike. Otherwise, a fourth ball will result in

a “walk.” Conversely, when the batter has had two strikes and no balls, the pitcher has

greater freedom in his pitch selection. He can choose to try to strike the batter out or to

pitch balls, in the hope that the batter will swing on a bad pitch. But what about other

situation in which the batter has had less balls or strikes? The batter estimates what the

pitcher will do. He can vary the speed, “break,” and location of the ball, but his choice is

limited. The batter has an array of expectations. If he has observed the pitcher’s behavior

from batter to batter, or knows his history from videos of former games, he may have a

mental model of what the next pitch is likely to be, given his own particular situation.

 60

Within the mechanics of the game (balls and strikes, …) there is also mental simulation

included. In case of modeling this, we could use the techniques explained in this disserta-

tion to provide that human behavior based on mental simulation. And as Forsythe pointed

out, this extra realism could make all the difference in the world in a training simulation.

 61

IV. MODEL IMPLEMENTATION AND RESULTS

A. INTRODUCTION

This chapter describes the implementation of the model, based on the general ar-

chitecture described in Chapter III, and discusses in detail the four components: simula-

tion environment, situational awareness, mental simulator, and decision component. It

also explains the treatment of the terrain assessment. We then introduce the experiments,

which compare the model’s predictions and firing behavior to those of human agents. The

chapter concludes with the results of the experiments.

B. SPECIFIC IMPLEMENTATION OF THE GENERAL ARCHITECTURE

To enhance the cognitive capability of certain entities, the intelligent software

agent, used in combat simulation models, we built a decision-making model, using Com-

bat XXI (see Chapter III). The agents are enabled to

use statistical estimates to predict next events,

be sensitive to decision-making contexts,

have an improved situational awareness,

determine potential actions, and

provide an explanatory component for the reasoning.

Figure 21 shows the application of mental simulation in a simulated combat envi-

ronment in between the situational awareness and the making of that decision. At left,

when resources are available, the entity fires; unless told otherwise, it always fires. At

right, the entity considers the context, predicts the next event, and fires accordingly.

Mental Simulation
Component

Decision Situation

Entity fires always,
given resources

Decision Situation

Decides upon con-
text and can hold
fire even given re-
sources

Mental Simulation
Component

Decision Situation

Entity fires always,
given resources

Decision Situation

Decides upon con-
text and can hold
fire even given re-
sources

Figure 21. The role of Mental Simulation in the current work.
On the left side: Decision-making Situation Given the resources, the agent always fires.
On the right side: Decision-making Situation Given the situational context, the agent can
decide not to fire, even though given resources.

1. Components
The following explanation of the four components refer to Figure 18.

a. Environment/ Combat XXI
It was a conscious decision to couple to an existing simulation system. We

wanted to use one of the latest systems in order to have the highest likelihood that the

model developed could be applied in a real system. With this approach, we only use the

information that is provided by the combat simulation system in the format that it is pro-

vided, and generate new information based on this. Thus, we are able to reduce the actual

adaptation effort that would be required to incorporate our work inside a combat simula-

tion model like Combat XXI. In order to avoid dealing with version changes of the com-

bat simulation model which is under active development, we chose to construct our

model externally and not embed it directly into the combat simulation model.

Here we discuss those features of Combat XXI that are relevant to our im-

plementation. Combat XXI has a set of default loggers, shown in Figure 22.

 62

Figure 22. The Combat XXI data-log configuration window

In addition to the default loggers, customized log files can also be created.

However, all the information required for our model is covered by the default log-file set-

tings. The following standard log-files yield the input for the model as implemented:

KILL-Logger, PHYSICAL_ACQUISITION-Logger, and MOVEMENT-Logger. The

BEHAVIOR_RULE-Logger was used for verification purposes only. The standard

KILL-Logger captures data on fire, detonation, and damage events, which go together,

because events are cross-referenced and logged with the key “event_id.” Table 2 gives an

overview of the data contained.

 63

Logger Description Data provided Input for model
PYSICAL_ACQUISITION simulation time x

observer_id x
observer_easting x
observer_northing x
observer_msl
observer_agl
observer_speed
sensor_name
range
detection_level x
target_id x
target_easting x
target_northing x
target_msl
target_agl
target_speed

KILL: Fire events eventType x
simulation time x
entityID x
munitionEventID
munitionName
range
targetID x
x x
y x
z

KILL: Detonation events eventType x
simTime x
entityID x
munitionEventID
munitionName
x
y
z

KILL: Damage events eventType x
simTime x
entityID x
munitionEventID
damageType x

Table 2. The log-files required to create the situational awareness and situational
context for decision-making events

The PHYSICAL_ACQUISITION-Logger holds the detections that occur

on the blue side and the red side. This log-file has no aggregated observations, which

means that each data line covers only one observer and one target plus associated data, as

shown in Table 2. To determine whether an observer detects multiple tanks in one obser-

vation, the data file must be processed separately, outside the simulation model. If two

data lines have the same simulation time, it is inferred that this is a multiple observation

at a given time. The simulation engine in Combat XXI ensures that no other logger, such

as DAMAGE or FIRE or DETONATION, uses the same simulation time. Therefore, no

mixing of data from differing event types, such as, for example, a detection event and a

fire event, can occur. It might not be obvious, but the PHYSICAL_ACQUISITION-

Logger provides only information when a target has been detected. There are no events

when a target is going out of sight. This is in the following referred to as missing “unde-

tections.”

 64

The MOVEMENT-Logger contains data of the path each entity takes. If

an entity does not change its position, no event is logged. This data is not required for

running the model. However, the logger’s data provides a smooth display of the unit

movements and prevents large jumps from observation to observation. This eases the op-

tical assessment. The movement data is not gathered by any type of sensor used in the

scenario: it is taken from ground-truth. Figure 23 gives an example of the logged data

used in our model. The first column depicts the simulation time; the second column the

observer/shooter; the third column indicates the log-file from which the data is taken. The

remaining columns are either the coordinates or the type of damage invoked. The units in

Combat XXI are tagged with id-numbers.

sim-time observer log type East (UTM) North
shooter target damage level

sim-time observer log type East (UTM) North
shooter target damage level

Figure 23. An example of the tuned output of Combat XXI.

b. Situational Awareness

Situational awareness is a critical component in a decision-making envi-

ronment. The better the awareness the more accurately all the parameters that influence a

decision-making situation can be assessed. Good situational awareness is a prerequisite

for making a “good” and successful decision. The situational awareness component com-

prises the entity commander’s growing knowledge. It is comparable to a human com-

mander’s cognitive picture of a battlefield situation. There is no data retrieval from

ground-truth. The Combat XXI output files yield data about detections and engagements

on a battlefield, plus associated data like time, location, shooter, targets, etc., all of which

are ordered chronologically. In our implementation, there are sensors that are entities,

 65

 66

type “infantryman,” “scattered” over the battlefield, that detect red entities. The sensors

are stationary and have no operational impact, which means they do not engage and they

do not get engaged. The red movement is also not influenced by the sensors. The sensors

yield an operational picture for a platoon commander that would actually be given him

via various enemy situation reports.

With respect to its knowledge about enemy formations, the model starts

from scratch. In other words, the model has no presumptions about the enemy’s behavior

or formation. This receptive status allows the model to be flexible, since the commander

cannot count on meeting with strict formations, such as those once aligned according to

the old Warsaw Pact rules. The model can in principle be supplemented with a “knowl-

edge or experience database,” which will enable it to be feasible, that is, operable even

when few observations have occurred so far. The formations that are detected and catego-

rized carry information as to their size, type, direction, and speed. Currently, the modeled

formations are homogeneous, which means a forward artillery observer accompanying a

combat unit is a distinct formation, even if they operate together. In the current model,

the size of a formation is taken to be the sum number of distinct entities per formation

that have been detected. Possible enemy objectives with respect to terrain, such as seizing

key terrain, are not yet represented.

250 m

7272

7373

 67

7171

gravitation center (new)

gravitation center (old)
previous
observation

current
observation

conclusion:
tank 71 belongs to the same formation
tank 72 and 73 belong to

250 m

7272

7373

7171

gravitation center (new)

gravitation center (old)
previous
observation

current
observation

conclusion:
tank 71 belongs to the same formation
tank 72 and 73 belong to

Figure 24. Assigning new observations to tank formations

Figure 24 shows how newly observed tanks are assigned to formations.

Each formation “carries” a gravity center, the geometric center of the entities’ coordi-

nates. The distance of the newly observed unit(s) to this gravity center determines primar-

ily whether a new tank could be part of that formation. If the distance is less than a

threshold value, then it is a candidate for the formation. If the tank is being observed for

the fist time, it is assigned either to the closest formation or, when the distance value is

beyond the threshold, to a new formation that is then set up. In the current implementa-

tion, the threshold is set at 250 meters. The Field Manual for a U.S. tank platoon states

Formations are not intended to be rigid, with vehicles remaining a specific
distance apart at every moment. The position of each tank in the formation
depends on the terrain and the ability of the wingman driver to maintain
situational awareness in relation to the lead tank. At the same time, indi-
vidual tanks should always occupy the same relative position within a
formation. This will ensure that the members of each crew know who is
beside them, understand when and where to move, and are aware of when
and where they will be expected to observe and direct fires. Weapons ori-
entation for all tanks should be adjusted to ensure optimum security based
on the position of the platoon in the company formation (Field Manual 17-
15, 1996).

Although there is no doctrinal number for the distance between tanks,

since that always depends on the mission, situation, time of day, etc., according to our

experiences and talks with military experts, a distance of 250 meters seems reasonable.

In addition to the formation membership information described above,

situation awareness comprises the following: a commander’s knowledge of how many

formations are in front, how many distinct tanks are assigned in total to particular forma-

tions, and the estimated speed and direction of the formation. Since we avoid access to

ground-truth, the speed and direction are known only as estimates. If he sees a “known”

tank, he also knows the formation to which it belongs and where that formation’s remain-

ing tanks were reported last. Figure 25 displays an example of an agent’s information

about the tanks he sees.

8 min ago !

now !

decision required
at 6469.145 sec:

blue tank 349
sees red tank 63

maximum tanks
seen so far: 4
tank 63 belongs to
formation 0,
speed:
direction:
distance : 1091m

50
0

m

indicates the
observer (blue) and
the target (red).
indicates the
positions of the
other blue tanks in
the platoon, and
indicates where the
other red tanks
belonging to the
target platoon were
last seen.

The 500 m circle is not
an operational
feature: it is used
only to show scale

now !

decision required
at 6469.145 sec:

blue tank 349
sees red tank 63

maximum tanks
seen so far: 4
tank 63 belongs to
formation 0,
speed:
direction:
distance : 1091m

50
0

m

now !

decision required
at 6469.145 sec:

blue tank 349
sees red tank 63

maximum tanks
seen so far: 4
tank 63 belongs to
formation 0,
speed:
direction:
distance : 1091m

50
0

m

now !

decision required

blue tank 349
sees red tank 63

maximum tanks
seen so far: 4
tank 63 belongs to
formation 0,
speed:
direction:

now !

blue tank 349
sees red tank 63

maximum tanks
seen so far: 4
tank 63 belongs to
formation 0,
speed: 5,

50
0

m

indicates the
positions of the

at 6469.145 sec:

distance : 1091m
direction 130

8 min ago !

now !

decision required
at 6469.145 sec:

blue tank 349
sees red tank 63

maximum tanks
seen so far: 4
tank 63 belongs to
formation 0,
speed:
direction:
distance : 1091m

50
0

m

indicates the
observer (blue) and
the target (red).
indicates the
positions of the
other blue tanks in
the platoon, and
indicates where the
other red tanks
belonging to the
target platoon were
last seen.

The 500 m circle is not
an operational
feature: it is used
only to show scale

now !

decision required
at 6469.145 sec:

blue tank 349
sees red tank 63

maximum tanks
seen so far: 4
tank 63 belongs to
formation 0,
speed:
direction:
distance : 1091m

50
0

m

now !

decision required
at 6469.145 sec:

blue tank 349
sees red tank 63

maximum tanks
seen so far: 4
tank 63 belongs to
formation 0,
speed:
direction:
distance : 1091m

50
0

m

now !

decision required

blue tank 349
sees red tank 63

maximum tanks
seen so far: 4
tank 63 belongs to
formation 0,
speed:
direction:

now !

blue tank 349
sees red tank 63

maximum tanks
seen so far: 4
tank 63 belongs to
formation 0,
speed: 5,

50
0

m

indicates the
positions of the

at 6469.145 sec:

distance : 1091m
direction 130

Figure 25. The context provided when a decision situation is invoked.

The situational awareness component also updates or creates the predic-

tive model, whose input, independent of the model type used, consists of observations of

spotted enemy tanks. The model yields an option to create either a predictive model for

each formation or one model for all incoming formations. For now the number of tanks

 68

 69

seen in one observation represents the state of the predictive model. In section IV.B.2 we

discuss the terrain assessment and incorporate it also into the state, then a state of the

predictive model will be two-dimensional. In the next section, the states are covered in

detail.

The need for a decision occurs when a blue tank sees an enemy only. At

that point, the situational awareness component yields context data to the mental simula-

tor component.

c. Mental Simulator
The mental simulator, the most central component of the architecture,

makes the difference between our simulation system and all other combat simulation sys-

tems. A detailed view of the mental simulator is depicted in Figure 26. The circled num-

bers in the figure depict the three assigned tasks of this component:

1. to retrieve a context from the situational awareness component, and to es-

timate the next probable observation and the average (typically we use the

median) time when this event will occur;

2. to predict the terrain quality in the near future, and

3. to create potential actions and estimate their outcomes.

task 1: retrieve context

The context binds the variables of the maximum number of tanks per for-

mation and determines whether, for the upcoming decisions, several formations are cur-

rently observed. In the case of an observation of tanks from multiple formations, the one

that is the greatest threat is selected to engage first. In the current implementation, the

threat is proportional to the distance, which is part of the provided context. If the distance

becomes less than 800 m, the blue tank always fires, because the risk is too high that the

red tank will fire first. The current value 800 was selected on a personal-judgment basis:

it seemed reasonable given the scenario and the three-dimensional perspective of the bat-

tle space.

prediction
of action
outcome

Terrain
assessment create

potential
actions

yes

create
contextprediction

of next
event

prediction of
next event

assessment
of prediction

estimate of
action outcome M

en
ta

l S
im

ul
at

or

P
re

di
ct

or
el

em
en

ts

D
ec

is
io

n
C

om
po

ne
nt

yes
decision

pointInput

Situational Awareness
Component

Note: , , reference the tasks of the mental simulator

prediction
of action
outcome

Terrain
assessment create

potential
actions

yes

create
contextprediction

of next
event

prediction of
next event

assessment
of prediction

estimate of
action outcome M

en
ta

l S
im

ul
at

or

P
re

di
ct

or
el

em
en

ts

D
ec

is
io

n
C

om
po

ne
nt

yes
decision

pointInput

Situational Awareness
Component

prediction
of action
outcome

Terrain
assessment create

potential
actions

yes

create
contextprediction

of next
event

prediction of
next event

assessment
of prediction

estimate of
action outcome M

en
ta

l S
im

ul
at

or

P
re

di
ct

or
el

em
en

ts

D
ec

is
io

n
C

om
po

ne
nt

yes
decision

pointInput

Situational Awareness
Component

prediction
of action
outcome

prediction
of action
outcome

Terrain
assessment

Terrain
assessment create

potential
actions

yes

create
contextprediction

of next
event

prediction
of next
event

prediction of
next event

assessment
of prediction

estimate of
action outcome M

en
ta

l S
im

ul
at

or

P
re

di
ct

or
el

em
en

ts

D
ec

is
io

n
C

om
po

ne
nt

yes
decision

pointInput

Situational Awareness
Component

Note: , , reference the tasks of the mental simulator
Figure 26. The Mental Simulator in detail.

There is also a need to assess whether the red tanks can detect the blue

tanks. This assessment exploits a given artifact: that the tanks do not look around a full

360 degrees. The decision component later on decides on the threat evaluation done in

the mental simulator.

task 1: predict the next observation

The system, that is, the tank platoon, is in state “i” when in the current ob-

servation, “i” tanks are observed. In other words, a “state” is defined as the number of

entities detected at an observation time “i.” Each agent tracks the observations according

to the state diagram in Figure 27. The current state is colored yellow. (When we intro-

duce the terrain features, we will make this state machine two-dimensional). The ex-

pected median time for a transition is also determined in parallel to the expected next

event. However, this time can be used to estimate only when we can expect the next

event, not how long a certain observed tank will be visible, because Combat XXI yields

only detection, and no undetection.

The prediction of the next event(s) is currently accomplished by using a

Markov Chain. This stochastic state machine assigns probabilities to state transitions

 70

from state “i” to state “j.” The probabilities reflect the frequency of state transitions in the

observations that were analyzed prior to the current observation and that were normalized

so that all the probabilities of emitting arcs in a particular state add up to 1. Although

there are other possible models for this data, considering the current status of the combat

model used here, a finite-state machine was best suited for the available data.

Figure 27. Example of the state machines for a defending platoon that is currently in
state “1.” A state indicates how many entities are seen in a current observation. The arcs
are labeled with the transition probability to the next state. The median dwell times are

also stored but are not shown here.

State “1” means that the agent currently sees one entity: he will stay in this

state until he makes another observation. If he now sees two tanks, then he moves into

state “2,” and the transition probabilities and mean dwell times (duration he stays in a

state) are updated. Since the combat model does not currently provide data as to when an

entity goes out of sight, the state “0” never reoccurs. If the model made available ‘going

out of sight events’, the mean or median dwell times would be more realistic. The second

section of the chapter will show our attempt to incorporate such undetections and to esti-

mate when an observed unit ultimately goes “out of sight.” Although, initially, the model

was trained by having various sensors along the main approaches, we eventually used

comparable scenarios and then initialized the state machine with probability and dwell-

time values.

An easy prediction criterion for the next transition could be to choose the

arc with the highest probability. However, using this approach would not exercise transi-

tions to states of lower likelihood. This would also be a very simple model of mental

simulation that has the flavor of RPD. The degree to which humans take less likely out-

 71

 72

comes into account when mentally simulating is, we believe, still a research question. In

order to ensure that events with a lower probability will also sometimes be predicted the

author uses a Monte Carlo simulation for sampling the values from the probability distri-

bution as estimates. With Monte Carlo Simulation all kinds of questions can be ad-

dressed. This method is widely used when an analytically computation is very hard, even

though the mathematical model is completely determined (Axtell, 2000). The mathemati-

cal and statistical literature refers to one class of problems of this type as “boundary

crossing” (Giraudo, Sacerdote, and Zucca, 2001). Many simulation runs can be con-

ducted and then the frequency of occurrence, in the case of boundary crossing when the

curve hit the line, can be taken as an estimate. Considering the current decision context

there are mainly two questions that seem promising for the model. The first is related to

the estimated time to expect a transition and the second addresses the multiple state se-

quences. The precise questions are:

• What is the most likely state sequence with the next x observations?
• When will a state (or set of states) of interest next be entered?

These mathematical formulations correspond to the human questions “What will happen

next?” and “How long until (some anticipated event) occurs?”

task 2: predict the terrain quality in the near future

Predictor element 2 in Figure 26 accomplishes this task. This task is dis-

cussed in a separate section (IV.B.2) in detail.

task 3: create and evaluate potential actions

The mental simulator is also tasked to create potential actions. The current

implementation is coded to create two potential actions: 1) to fire immediately when a

target pops up on the battlefield, and 2) to hold fire.

In case 1) the risk of outflanking arises and the likelihood the likelihood of

not seeing all tanks increases. In case 2) when all or most of the red tanks are visible, the

likelihood that they will try to outflank the blue tanks is relatively small. In a real-world

situation, they would most probably move in ways to avoid cross-movements relative to

the enemy, and try to engage as fast as possible. In Combat XXI, these two actions were

simulated with the Run Manager, and the output was determined with respect to blue

losses, red losses, and the “starting state,” which is the number of red tanks seen in the

first observation. This generally varied between one and three tanks. The loss values are

stored in a database. The predictor element 3 in Figure 26 would retrieve this informa-

tion, in the following referred to as loss chart.

Besides to fire immediately or to hold fire indefinitely, there exist a possi-

bility of waiting a certain amount of time. However, this option has not been imple-

mented in the current work due to Combat XXI issues. Conceptually, the length of time

the tanks wait before firing would depend on various parameters of the targets, such as

direction, speed, and distance. We could assume that a tank platoon has a certain “depth”

on the battlefield. A unit’s depth is the distance between the first tank and the last, as

mapped in a line showing their direction. According to the field manual, a depth of 100

meters for a platoon in an attack seems reasonable. If the first tank seen has a speed of 15

m/s, then, in seven seconds, the last tank will generally appear. Thus, one potential action

would be to wait seven seconds before firing. Figure 28 shows how a unit’s depth is de-

fined.

Depth
Depth

Figure 28. Depth of a unit.

d. Decision
In the current implementation, the decision component requires three in-

puts:

- a prediction of the next event likely to occur,

 73

 74

- an assessment of the prediction with respect to expected terrain influence, and

- an assessment of possible actions.

In other words, the decision component takes the predicted number of

tanks to see in the next observation, retrieves a median time for this event to occur, and

estimates the expected location of the tanks to be seen. The new location estimate is cal-

culated geometrically based on the estimated speed and direction. For this estimated loca-

tion there exists a terrain cell attribute that indicates how likely an observation will occur

in this location. The terrain cell attribute is defined in terms of the number of detections

in a preliminary run. The terrain attribute will be used to assess the prediction. The as-

sessment of possible actions is retrieved from the database. In preliminary runs in similar

scenarios, the dependence of red and blue losses on whether the platoon fired immedi-

ately or delayed the firing and also on the number of tanks seen in the initial observation

was determined.

In our basic initial example of an agent, a tank platoon commander, the

tank decides to fire according to the decision tree in Figure 29. Once a tank is in view,

this decision tree gets activated because the need for a decision occurs. The decision

component proceeds downwards through the tree until it hits a node that says “fire” or

“hold fire.” At each node a condition is checked and based on the outcome of this condi-

tion the respective path is chosen.

The top node evaluates the threat level of the tanks observed to the blue

(friendly) tank platoon where leader’s decision process is being modeled. Determination

of threat level is based on range in the current implementation. Other potential factors

could include the heading of the tank or whether the enemy gun points towards the blue

position. Our handling of threat assumes that the blue tanks are in a turret-down or hull-

down position, in which the probability of detection is relatively small. The threat level

might also be influenced by the mission, not only by the risk of being shot at. A good

example would be a mission of suppression of enemy reconnaissance. Even if the enemy

tank does not detect the blue position it can still be a severe threat, because of the capabil-

ity of reporting reconnaissance results that might endanger blue’s own operation. The

heading of the enemy tank’s gun cannot currently be retrieved in Combat XXI. There-

fore, it is not modeled. However, clearly determination of a threat can be based on vari-

ous parameters. If an immediate threat is assessed, that is the enemy comes within a cer-

tain threshold distance, then the tank immediately starts the engagement process to pre-

vent being shot themselves (path in Figure 29). Otherwise a hierarchical approach in

the decision tree is further pursued.

go
od

FH

casualties
eval.

bad

H

expect more expect same
or less

go
od

bad

go
od

H

FH

≤
50

%

need for a
decision occurs

> 50%
pre-

diction

Terrain
eval.

how
many
now?

Threat
eval.

no immediate

threat
immediatethreat

F fire

hold fire

Terrain
eval.

Evaluation of the
detectability of the
next terrain cells

Threat
eval.

Evaluation of the
threat level the
current tanks
impose on me

F

F

how
many
now?

Number of tanks
currently observed
in terms of platoon
size estimate

go
od

bad

Terrain
eval.

≤
75

%

> 75%

how
many
now?

F

casualties
eval.

F

bad
casualties

eval.
Red and blue losses
in past simulations
when firing or not in
a similar situation

go
od

FH

casualties
eval.

badgo
od

FH

casualties
eval.

bad

HH

expect more expect same
or less

go
od

bad

go
od

H

FH

≤
50

%

need for a
decision occurs

> 50%
pre-

diction

Terrain
eval.

how
many
now?

Threat
eval.

no immediate

threat
immediatethreat

F fire

hold fire

Terrain
eval.

Evaluation of the
detectability of the
next terrain cells

Threat
eval.

Evaluation of the
threat level the
current tanks
impose on me

FF

FF

how
many
now?

Number of tanks
currently observed
in terms of platoon
size estimate

go
od

bad

Terrain
eval.

≤
75

%

> 75%

how
many
now?

FF

casualties
eval.

FF

bad
casualties

eval.
Red and blue losses
in past simulations
when firing or not in
a similar situation

Figure 29. The decision tree for rendering a decision. The numbers 1 to 9 below the
decision serve as references to the decision tree branches in the text.

In the next two layers of the tree, the prediction of how many tanks will

most likely be seen in the next observations is used. If the prediction will be at most the

same number of tanks as currently seen and this value exceeds 50% of the estimated pla-

toon size then the engagement process is also initiated. This rule captures the case where

currently three or four out of four tanks possible are observed and it is unlikely to see

more in the next observation. Therefore, firing at the ones observed would be a reason-

able thing to do. For the case that currently only two tanks out of four are observed, the

 75

 76

terrain is additionally assessed, and in case of a good detectability of the future terrain

cell the casualty evaluation is conducted, otherwise the engagement starts. If the casualty

evaluation is promising then fire is on hold, otherwise also the engagement process starts

immediately (cases - in Figure 29).

If the prediction indicates a higher number of tanks than currently ob-

served, then the expected percentage of the estimated current platoon size the tank com-

mander will see is determined. This captures the situation when, for example, a platoon

has five tanks and four tanks are seen and the system actually starts firing at them (case

 in Figure 29).

If the number of enemy tanks currently observed is less than the maximum

number possible, for example two in our example, then the terrain evaluation triggers the

engagement process. If good detectability is anticipated, the model holds fire (case in

Figure 29). If poor detectability is anticipated, the model assesses the casualties evalua-

tion from preliminary runs. If the casualty evaluation indicates fewer losses when waiting

to fire then the model holds fire, otherwise it fires (cases and in Figure 29).

These factors enable the simulated platoon commander to make better de-

cisions. The decision tree and the conditions were discussed with officers from the armor

branch of several countries represented at the Naval Postgraduate School. In existing

models, inappropriate immediate firing remains unpunished because the attacker also be-

haves inappropriately, ignoring the first shot or even a resulting kill and continuing to

follow the scripted path.

The decision component also creates the explanatory component of the

system. This means it provides a text string from which the user can see why decisions

made by the model turned out the way they did; making the rationale transparent to the

user. There are no anonymous numbers that lead to a decision. All numbers used have a

meaning in terms of losses, time or probabilities. Therefore, the decisions can be ex-

plained in a natural human way.

2. Terrain
This section describes how we incorporated terrain into the mental simulation

process. In a real combat environment, a commander observing a tank can continue to

look at the tank as long as the same line of sight also continues. In the simulation envi-

 77

ronment, there are events at a particular point in time that determine that certain detec-

tions have been made. But, in general, there is not information available as to how long

the observed entities will be visible. Although the system developers accepted that there

is a need also for undetection information, no such implementation has yet been accom-

plished. Therefore, we had to work around that lack to get information as to when a tank

would probably go out of sight.

a. ACQUIRE Algorithm

The U.S. Army’s current standard algorithm for target acquisition is the

AQUIRE model. The ACQUIRE algorithm is a common search-and-target-acquisition

algorithm used in many army force-on-force models (Cioppa et al., 2003). The

ACQUIRE algorithm predicts target acquisition performance for imaging systems that

operate in the visible, near-infrared, and infrared spectral bands. Therefore, it covers all

sensors that occur in our currently implemented scenarios. According to the user’s guide,

the ACQUIRE algorithm

predicts the expected proportion of an ensemble of trained military ob-
servers who can discriminate a target of a given size and temperature dif-
ference with the background, under specified atmospheric conditions
(ACQUIRE Range Performance Model for Target Acquisition Systems,
1995).

The ACQUIRE algorithm was developed for retinal image sizes that are

generally smaller than the fovea, which means they are more than 200 meters away

(ACQUIRE Range Performance Model for Target Acquisition Systems, 1995), which, in

our case, makes the algorithm applicable for tank detections beyond 200 meters.

The ACQUIRE algorithm uses four categories of input parameters to de-

termine the level of acquisition: target characteristics, environmental effects, sensor char-

acteristics, and task description inputs. The scenario-independent data that is required for

running the algorithm is stored in an unclassified data base that was provided to the

Combat XXI developers and used “as is.” In our context, the main task for ACQUIRE is

the prediction of the performance of: target spot detection, target discrimination, and

time-dependent target detection. Target spot detection means the target is viewed against

a uniform background. Target discrimination is used to determine the level at which a

target is detected. The levels of detection are currently categorized according to an in-

creasing order of detail into detections, classification, recognition, and identification. In

our experiment we ran the model at different levels of target detection. The objective of

the time-dependent target detection is to determine the probability of detection as a func-

tion of the amount of time allocated to the task. This is exploited in the terrain attribute

determination with respect to the time the simulation runs. The ACQUIRE algorithm uses

a Field of View (FoV) and a Field of Regard (FoR) nomenclature. Field of View is the

horizontal and vertical angle that the sensor looks at, plus a scaling factor that is not of

further interest to our simulation. The ACQUIRE algorithm is applied independently for

each FoV. Before a FoV can be revisited, the entire Field of Regard must have been

scanned: thus, the bigger the number of FoVs per FoR, the longer it is before any one

FoV can be revisited. Figure 30 depicts the relationship between Field of View and Field

of Regard in the ACQUIRE algorithm.

FoR

FoV

FoR: Field of Regard
FoV: Field of ViewFoR

FoV

FoR

FoV

FoR: Field of Regard
FoV: Field of View

Figure 30. The relationship between Field of View and Field of Regard

The calculated probability of detection is compared to a random draw to

determine whether a detection of a particular target has occurred. Therefore, the

ACQUIRE algorithm is stochastic. If a FoV is revisited, the result can be different than

that of the first visit, even if no entity has moved.

b. Terrain Attributes
A terrain attribute is an index that determines whether a particular terrain

cell can be categorized as having either a “good” or a “bad” rate of detectability. Our ter-

rain of interest, that is, the site where we expect decisions to occur, is divided into 100 x

 78

100 m cells. In each cell, approximately four to six tanks were randomly distributed. No

entity (i.e., tank) was moving, but the target acquisition algorithm was made active. Then

the simulation is turned on and the detections, which occur over time, are recorded. The

graph in Figure 31 shows how the detections in a particular repetition occurred over time.

To determine the cell attribute, we conducted 50 runs of the combat simulation model.

Figure 31 shows the detection rate. In our scenario we had scan times per FoV that were

normal distributed over a mean of 3.5 seconds.

total number of tanks detected

0

10

20

30

40

50

60

1 12 23 34 45 56 67 78 89 100 111

number of observations

of

 ta
nk

s

20 453025 35

Time observation occurred after start

Max number of tanks remains at 56

Mean interarrival time
of observations: GRID 4.3.sec

Mean interarrival time
of observations: REP9MOD 10.0 sec

29.2

23.2

12.4

10.4

7.0

4.1

2.4

0.9

0.3

29.2

23.2

12.4

10.4

7.0

4.1

2.4

0.9

0.3

Total number of red tanks 181

total number of tanks detected

0

10

20

30

40

50

60

1 12 23 34 45 56 67 78 89 100 111

number of observations

of

 ta
nk

s

20 453025 3520 45302520 453020 45302525 3535

Time observation occurred after start

Max number of tanks remains at 56

Mean interarrival time
of observations: GRID 4.3.sec

Mean interarrival time
of observations: REP9MOD 10.0 sec

29.2

23.2

12.4

10.4

7.0

4.1

2.4

0.9

0.3

29.2

23.2

12.4

10.4

7.0

4.1

2.4

0.9

0.3

Total number of red tanks 181

Figure 31. Total detections over time.

Figure 32 depicts one example of the terrain assessment: the cell with the

coordinates (59200, 23100), which contains six tanks. Their numbers are listed at the

right. The ACQUIRE algorithm detected only one tank. A cell was attributed as “good,”

in terms of its detectability, when more than 50 percent of its tanks were detected. In this

case, the cell was attributed as “bad.”

 79

000000000010100

000000000000000

000000000110100

000000001010100

000000111110100

000001011111100

000000111111000

000111111111000

111111111110010

101001011100010

000100111100000

000011010100000

000000000100000

000000000000000

000000000000111

000000000010100

000000000000000

000000000110100

000000001010100

000000111110100

000001011111100

000000111111000

000111111111000

111111111110010

101001011100010

000100111100000

000011010100000

000000000100000

000000000000000

000000000000111

000000000010100

000000000000000

000000000110100

000000001010100

000000111110100

000001011111100

000000111111000

000111111111000

111111111110010

101001011100010

000100111100000

000011010100000

000000000100000

000000000000000

000000000000111

000000000010100

000000000000000

000000000110100

000000001010100

000000111110100

000001011111100

000000111111000

000111111111000

111111111110010

101001011100010

000100111100000

000011010100000

000000000100000

000000000000000

000000000000111

Good detectability

Bad detectability

No tanks positioned

Tank

Good detectability

Bad detectability

No tanks positioned

Tank

Good detectability

Bad detectability

No tanks positioned

Tank

Good detectability

Bad detectability

No tanks positioned

Tank

Good detectability

Bad detectability

No tanks positioned

Tank

Good detectability

Bad detectability

No tanks positioned

Tank

000000000010100

000000000000000

000000000110100

000000001010100

000000111110100

000001011111100

000000111111000

000111111111000

111111111110010

101001011100010

000100111100000

000011010100000

000000000100000

000000000000000

000000000000111

000000000010100

000000000000000

000000000110100

000000001010100

000000111110100

000001011111100

000000111111000

000111111111000

111111111110010

101001011100010

000100111100000

000011010100000

000000000100000

000000000000000

000000000000111

000000000010100

000000000000000

000000000110100

000000001010100

000000111110100

000001011111100

000000111111000

000111111111000

111111111110010

101001011100010

000100111100000

000011010100000

000000000100000

000000000000000

000000000000111

000000000010100

000000000000000

000000000110100

000000001010100

000000111110100

000001011111100

000000111111000

000111111111000

111111111110010

101001011100010

000100111100000

000011010100000

000000000100000

000000000000000

000000000000111

Good detectability

Bad detectability

No tanks positioned

Tank

Good detectability

Bad detectability

No tanks positioned

Tank

Good detectability

Bad detectability

No tanks positioned

Tank

Good detectability

Bad detectability

No tanks positioned

Tank

Good detectability

Bad detectability

No tanks positioned

Tank

Good detectability

Bad detectability

No tanks positioned

Tank

Figure 32. Assessment of terrain attributes

Figure 33. Variation in terrain attributes per repetition

 80

Since the detection is stochastic, the attributes for the terrain cells are ag-

gregated. A terrain attribute also depends on the location of both the observer and the tar-

get. In our example, none of the tanks, including the observer’s is moving over the course

of a single run. Therefore, we also conducted several runs in which the target tanks ran-

domly changed position within their 100 x 100 m cells. The number of tanks per cell,

however, was kept constant. The mean of the six runs conducted was forty-seven de-

tected tanks, plus or minus seven tanks, in a 1.4 x 1.4 km square. The number of cells

containing tanks and having line of sight to the observer tanks is 121. Thus, the variation

per cell is in average less than half a tank. Table 3 shows the results of the comparisons.

A terrain cell earned the attribute “good,” indicated by green in Figure 33 ,

when in 90% of the cases half or more of the tanks were detected. In all other cases the

terrain cells were attributed as “bad.” When there was no detection at all, the cell was

colored dark gray; in the remaining cases, light gray.

Run 1 Run 2 Run 3 Run 4 Run 5
Mean S-Dev

Replication 1 35 35 40 36 38 36.80 2.17
Replication 2 47 47 51 49 50 48.80 1.79
Replication 3 39 40 44 41 42 41.20 1.92
Replication 4 49 49 55 46 53 50.40 3.58
Replication 5 50 49 56 52 53 52.00 2.74
Replication 6 40 40 44 42 44 42.00 2.00
Replication 7 37 37 41 36 39 38.00 2.00
Replication 8 46 45 49 47 48 47.00 1.58
Replication 9 55 55 59 56 59 56.80 2.05
Replication 10 56 55 61 58 61 58.20 2.77

Mean 45.4 45.2 50 46.3 48.7 46.73 2.24
S-Dev 7.38 7.07 7.59 7.67 7.97

total number of cells containing tanks: 121

Table 3. The number of detected tanks per run and replication

We also evaluated how well this approach performs. In order to do so, we

looked at 10 replications of a single scenario involving a group of moving hostile tanks.

This scenario is one of two generic scenarios we used in the experiments. This one, with

the name “final4”, is explained later. We examined all consecutive observations that had

a change of terrain cell attributes associated with them. That means, when an observation

i occurred in a “good” terrain cell and the observation i+1 occurred in a “bad” terrain cell

then the number of tanks in each observation are recorded. This was done in the same

way when the terrain cell attribute change occurred from “bad” to “good.” When no

change occurred, nothing was recorded. At the end of the scenario replications the mean

values for changes from “good” to “bad” and from “bad” to “good“ were determined and

put into Figure 34. This figure displays on the left side the mean values of differences in

number of tanks observed vertically. The x-axis displays the replications.

 81

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

fin
al4

.xm
l_R

EP1
fin

al4
.xm

l_R
EP10

fin
al4

.xm
l_R

EP6
fin

al4
.xm

l_R
EP7

fin
al4

.xm
l_R

EP8
fin

al4
.xm

l_R
EP9

fin
al4

.xm
l_R

EP6M
OD

fin
al4

.xm
l_R

EP7M
OD

fin
al4

.xm
l_R

EP8M
OD

fin
al4

.xm
l_R

EP9M
OD

replication

cutoff after the first loss on red side

from Good to Bad from Bad to Good

until first damage on red side

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

nu
m

be
r

of
 ta

nk
s

pe
r

ob
se

rv
at

io
n

(m
ea

n)

fin
al4

.xm
l_R

EP1
fin

al4
.xm

l_R
EP10

fin
al4

.xm
l_R

EP6
fin

al4
.xm

l_R
EP7

fin
al4

.xm
l_R

EP8
fin

al4
.xm

l_R
EP9

fin
al4

.xm
l_R

EP6M
OD

fin
al4

.xm
l_R

EP7M
OD

fin
al4

.xm
l_R

EP8M
OD

fin
al4

.xm
l_R

EP9M
OD

replication

changes in number of tanks per observation
at a terrain attribute change

from Good to Bad from Bad to Goodfrom Good to Bad from Bad to Good

all observations

nu
m

be
r o

f t
an

ks

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

fin
al4

.xm
l_R

EP1
fin

al4
.xm

l_R
EP10

fin
al4

.xm
l_R

EP6
fin

al4
.xm

l_R
EP7

fin
al4

.xm
l_R

EP8
fin

al4
.xm

l_R
EP9

fin
al4

.xm
l_R

EP6M
OD

fin
al4

.xm
l_R

EP7M
OD

fin
al4

.xm
l_R

EP8M
OD

fin
al4

.xm
l_R

EP9M
OD

replication

cutoff after the first loss on red side

from Good to Bad from Bad to Good

until first damage on red side

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

nu
m

be
r

of
 ta

nk
s

pe
r

ob
se

rv
at

io
n

(m
ea

n)

fin
al4

.xm
l_R

EP1
fin

al4
.xm

l_R
EP10

fin
al4

.xm
l_R

EP6
fin

al4
.xm

l_R
EP7

fin
al4

.xm
l_R

EP8
fin

al4
.xm

l_R
EP9

fin
al4

.xm
l_R

EP6M
OD

fin
al4

.xm
l_R

EP7M
OD

fin
al4

.xm
l_R

EP8M
OD

fin
al4

.xm
l_R

EP9M
OD

replication

changes in number of tanks per observation
at a terrain attribute change

from Good to Bad from Bad to Goodfrom Good to Bad from Bad to Good

all observations

nu
m

be
r o

f t
an

ks

Figure 34. Changes in number of tanks observed around a terrain cell attribute

change

Above the zero line are the values for changes from “bad” to “good” and

below vice versa. It is apparent that all means are either above or below the zero line in-

dicating that it can be assumed when going, for example, from a “good” to a “bad” terrain

cell in average less tanks can be expected in the next observations. We consider this as an

extremely valuable new feature in combat simulation environment. The right chart dis-

plays a truncated version of the data. Truncation was done when the first damage oc-

curred. The right chart shows more clearly the difference between good and bad terrain

cells because the maximum number of tanks observable decreases after damage occured.

C. EXPERIMENTS
We conducted four experiments. They all used the same (general Combat XXI)

scenario. The first experiment responded to the question whether there would be a differ-

ence in prediction accuracy as a function of the number of state machines. This is a more

technical experiment and was used to make design decisions. The next experiment, which

involved human subjects, compared the prediction accuracy of the model to that of hu-

mans. This and the next experiment address the model’s validity by comparing its per-

 82

 83

formance to human performance. The third experiment examined how the tools, provided

to the participants and mandatory for the model to work, impact the human predictions.

The fourth experiment compared the firing behavior from humans and the model based

on experiment 3.

1. Scenario
The general scenario in Figure 35 was used in all three experiments: it features an

area in the so-called Fulda Gap, close to the former Inner-German Border. This area was

chosen because Combat XXI has digital terrain data available there. Also, the terrain data

is very detailed and thus allowed a good visual assessment of the behavior presented by

Combat XXI. Furthermore, the German Armed Forces have map tools for this area, so

the terrain features in Combat XXI can be verified.

This scenario has two variants named final2 and final4. Both are xml-files so that

their name may also appear on charts as final2.xml and final4.xml. The difference be-

tween them is the state transition variation. The sensors had slightly different locations so

that the detections occurred differently. In the first one there occur mainly observations

with few tanks, and the latter one has a higher percentage of observations with three or

four tanks.

The forces depicted in the simulation were a blue platoon and a red platoon. The

blue platoon consisted of four M1 tanks, which defended against a red armored company

of thirteen T-72 tanks in total. Choosing these two tank types ensured that the database in

Combat XXI, which is unclassified, would provide full support. No error occurred due to

a lack of data.

Figure 35. The scenario used for the experiments.

The red platoon attacked in three formations, one platoon each. The route of at-

tack was a scripted path. The red tanks’ behavior was constructed using Combat XXI’s

built-in infrastructure, with the single exception of the outflanking behavior. The tanks

marched in line and changed to a column formation at a given phase line. If flanking fire

killed the first red tank, the remaining, undetected three tanks outflanked the blue platoon

along an alternate scripted path. However, if the blue tanks began delayed firing after

more than one red tank was spotted, it was too late to outflank the blue tanks, and the en-

suing “duel” situation had to be resolved immediately.

2. Purpose and Scope of the Experiments

a. Experiment 1: Different Number of Markov Chains

This experiment answered the system design question of how many

Markov Chains to use. This experiment was intended to determine whether or not the

 84

number of models/Markov Chains used had a significant impact on the blue tanks’ pre-

diction capability. The choices were either one model for all enemy platoons or separate

models for each individual platoon.

In our scenario, the sensors were allocated equally to each approach route.

Three red platoons approached southward. We ran the simulation ten times with five rep-

lications each with one Markov Chain in total (M1) and the same number of runs with

separate Markov Chains per individual formation (M3). After that we compared the mean

values for the percentage of correct predictions and conducted a t-test with the data ob-

tained.

The Null-Hypothesis was that the mean for using separate Markov Chains

for each formation is no better than the mean using one Markov Chain in total, which

leads to H0 = M3 ≤ M1. The alternative Hypothesis was that using separate Markov

Chains for each formation would increase the ratio of correct predictions, which leads to

H1 = M3 > M1.

Table 4 shows the results from the t-test for the percentage of correct pre-

dictions involving one Markov Chain for all formations (entitled: M1) and with an indi-

vidual Markov Chain for each formation, that is, for each platoon (entitled: M3).

M3 M1

Mean 62.1 60.7
Variance 28.32222 58.9
Observations 10 10
Pearson Correlation 0.977447
Hypothesized Mean Difference 0
df 9
t Stat 1.629916
P(T<=t) one-tail 0.068779
t Critical one-tail 1.833113

Table 4. t-test for comparing the mean values.

 85

At a significance level of α = 0.1, we can reject the Null Hypothesis and

accept the alternative. At the .05-significance level we cannot reject the Null Hypothesis.

In order to reject the Null Hypothesis at the 0.05 level the sample size has to be in-

creased. For example, to detect a 1% difference in mean prediction capability 90% of the

time (assuming σD ~ sD = 2.71) the sample size would need to be 80 runs. In order to de-

tect a 1.5% difference 90% of the time the sample size would need to be 36 runs. How-

ever, given the terrain influence on the detections, the higher mean M3, and the intuitive

belief, that using separate Markov Chains for each platoon would be more accurate than

one Markov Chain for all platoons, we choose for the rest of the thesis to use separate

Markov Chains for each platoon.

b. Experiment 2: Prediction Accuracy of the Model vs. Humans

This experiment allowed us to compare the prediction accuracy of the

state machine used in the model to a real-world scenario involving human subjects. The

experiment was set up as follows.

 Each participant received three tools when conducting the experiment:

- A Markov Chain with the corresponding transition probabilities,

- A loss chart, and

- Terrain assessment of 100 m by 100 m cells.

The scenario was run twenty times in Combat XXI. Each run is called a

replication which varied only in the observation sequence. These runs yield an aggre-

gated Markov Chain over all runs. This was the first tool and was provided as a table that

listed the transitions with the respective probabilities. Figure 36 displays the state ma-

chine provided.

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

...

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

...

State: the number of tanks seeing
in one observation | type of terrain cell

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

...

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

Good
detectability

Not so good
detectability

1 tank 2 tanks 3 tanks 4 tanks

...

State: the number of tanks seeing
in one observation | type of terrain cell

from to prob from to prob

x=0,y=6 = 1.0 x=6,y=1 = 0.2
x=6,y=2 = 0.0

x=1,y=1 = 0.2 x=6,y=3 = 0.1
x=1,y=2 = 0.2 x=6,y=4 = 0.1
x=1,y=3 = 0.1 x=6,y=6 = 0.3
x=1,y=4 = 0.0 x=6,y=7 = 0.2
x=1,y=6 = 0.3 x=6,y=8 = 0.1
x=1,y=7 = 0.1 x=6,y=9 = 0.0
x=1,y=8 = 0.1

x=7,y=1 = 0.1
x=2,y=1 = 0.4 x=7,y=2 = 0.0
x=2,y=2 = 0.1 x=7,y=3 = 0.1
x=2,y=3 = 0.2 x=7,y=4 = 0.1
x=2,y=4 = 0.1 x=7,y=6 = 0.3
x=2,y=6 = 0.1 x=7,y=7 = 0.3
x=2,y=7 = 0.1 x=7,y=8 = 0.1
x=2,y=8 = 0.0 x=7,y=9 = 0.0

x=3,y=1 = 0.2 x=8,y=1 = 0.1
x=3,y=2 = 0.1 x=8,y=2 = 0.1
x=3,y=3 = 0.2 x=8,y=3 = 0.1
x=3,y=4 = 0.1 x=8,y=4 = 0.1
x=3,y=6 = 0.3 x=8,y=6 = 0.2
x=3,y=7 = 0.1 x=8,y=7 = 0.2
x=3,y=8 = 0.1 x=8,y=8 = 0.2

x=4,y=1 = 0.0 x=9,y=1 = 0.2
x=4,y=2 = 0.1 x=9,y=3 = 0.4
x=4,y=3 = 0.1 x=9,y=4 = 0.4
x=4,y=4 = 0.3 x=9,y=7 = 0.1
x=4,y=6 = 0.3
x=4,y=7 = 0.1

Figure 36. The Markov Chain provided with the transition probabilities

 86

The second tool, the loss chart, displayed the blue and red losses in terms

of initial state and firing times. Figure 37 displays this loss chart. The first horizontal axis

depicts the state in which the system started with the first observation.

state 1
state 2
state 3

state 6
state 7

state 8

losses red (immediate fire)

loss blue (immediate fire)

loss blue (delayed fire)

loss red (delayed fire)

0
0.5
1
1.5
2
2.5
3
3.5
4

number of tanks
killed

number of tanks in
first observation

firing time:
immediate

-
delayed

Loss Chart

losses red (immediate fire)
loss blue (immediate fire)
loss blue (delayed fire)
loss red (delayed fire)

losses red (immediate
fire)

2.6 3 2 2.2 2 3

loss blue (immediate fire) 0.7 0 2 1.7 1 1
loss blue (delayed fire) 0.29 0 0 0.29 1 0
loss red (delayed fire) 3.9 4 4 3.9 4 4

state 1 state 2 state 3 state 6 state 7 state 8

Figure 37. The loss chart for the comparison of the prediction accuracy

This covered the states ‘1’ to ‘3’ in good terrain cells and ‘6’ to ‘8’ for

bad terrain cells. The number of tanks observed was at most three tanks. That is why no

state ‘4’ or ‘9’ is displayed in the chart. The second horizontal axis displays the firing

times. The firing times chosen were “immediate” firing, which is the default option in

Combat XXI, and a “delay” firing of between three and five seconds. The vertical axis

depicts the blue and red losses dependent on the parameters. The loss chart demonstrates

that in most cases a delay in firing was very beneficial with respect to a platoon’s own

losses. The third tool that participants could use was the terrain attribute, which was dis-

played directly on the screen as seen in Figure 38. The horizontal lines around the “tanks”

in the gray box indicate “bad” terrain-cell attributes, and the vertical lines, “good” ter-

rain-cell attributes. The screenshot displays the positions of the blue platoon, indicates

which one is currently observing, and displays the current targets in red and former ob-

servations in gray (not visible on the hard copy).

 87

red
tanks

blue
platoon

red
tanks

blue
platoon

Figure 38. The GUI from the prediction comparison between the model and human
subjects.

The participants, therefore, had as available tools the state machine with

the transition probabilities, the loss chart from fifty runs, and the terrain attributes. With

all that information provided, the participants had to predict the number of tanks in the

next observation and determine when they would fire. After their predictions were en-

tered, the next observation from the replication used was displayed. So the participants

saw immediately whether or not their predictions were correct. No feedback in regard to

firing times was provided. It was also of no concern whether the firing was a hit or not.

The data was automatically stored and analyzed. Our method of assessing prediction ac-

curacy is described below. Figure 39 consists of an abstract depiction of the Experiment 2

results. Its purpose is to display visually the accuracy of a human prediction. The left two

columns display the prediction of the model with the two predictors (one random number

draw from the Monte Carlo simulation (entitled ‘1x’) and the mode of a hundred-times-

replicated Monte Carlo simulation of the next three observations (entitled ‘sequence’)).

 88

The next column denotes the scenario name with the replication and the right columns

display the predictions from the participants.

P'pant

1
P'pant

2
P'pant

3
P'pant

4
P'pant

5
P'pant

6
P'pant

7
P'pant

8
P'pant

9
P'pant

10
P'pant

11
1x sequence Patty CharlesBrian Jason1 Kent1 Jasur Pat S. RommePatrick Duane Travis

final2.xml_REP1 Fire

final2.xml_REP2 Fire

final2.xml_REP3 Fire

final2.xml_REP4 Fire

final2.xml_REP5 Fire

Mental Simulator

Figure 39. Results from Experiment 2

The horizontal bars indicate the prediction for the next event. “Green

(gray)” means the prediction was correct while “blue (black)” indicates a wrong predic-

tion. A prediction is said to be correct when the next state has more tanks than the current

one and the predicted number is also higher than the current one. A prediction is also cor-

rect when the predicted state has an equal or fewer number of tanks and the predicted

number is equal to or less than the current one. A prediction is wrong otherwise. The file

names indicate which repetition of the scenario was used. The colored fields to the right

of that show the predictions of the participants. The number of predictions a participant

chose to make also indicates how long he waited before he started firing. Note that par-

ticipant 2 always fired on first observation, and therefore made no recorded predictions.

Table 5 and Table 6 quantify these results.

 89

ratio ratio
Scenario
final2.xml_REP1 6 4 0.60 23 18 0.56
final2.xml_REP2 8 2 0.80 29 16 0.64
final2.xml_REP3 10 0 1.00 26 9 0.74
final2.xml_REP4 6 1 0.86 20 18 0.53
final2.xml_REP5 6 0 1.00 18 8 0.69

mean 0.85 mean 0.63
SDev 0.17 SDev 0.09

first prediction human all predictions human
predicted
wrongly

predicted
correctly

predicted
wrongly

predicted
correctly

Table 5. The prediction results from the human participants

Overall, the human participants’ rate of correct predictions was 63 percent.

The model yielded a success rate of 67 percent overall. However, when only the first pre-

diction is considered, the humans scored in 85 percent of the cases, while the model

achieved 80 percent.

ratio ratio
Scenario
final2.xml_REP1 2 0 1.00 9 3 0.75
final2.xml_REP2 2 0 1.00 7 5 0.58
final2.xml_REP3 0 2 0.00 3 5 0.38
final2.xml_REP4 2 0 1.00 10 0 1.00
final2.xml_REP5 2 0 1.00 5 3 0.63

Avrg 0.80 Avrg 0.67
SDev 0.45 SDev 0.23

first prediction Model all predictions Model
predicted
correctly

predicted
wrongly

predicted
correctly

predicted
wrongly

Table 6. The prediction results from the Mental Simulator

The data does not allow hard statistical derivations because the sample

size is relatively small. But overall the data allow the conclusion that the model is accept-

able and can be subject to further research.

c. Experiment 3: Prediction Accuracy Dependent on the Tools Pro-
vided

 90

The third experiment was conducted to test the impact that the “tools”

provided to the participants had on the prediction accuracy. The simulation was run again

twenty times. The participants are largely disjoint from the ones of experiment 2. The

GUI for the participants was still the same as in the previous experiment. In the first four

replications, they started predicting without any detailed information such as terrain, the

loss chart, or transition probabilities. Although the terrain features were already visible in

that run, they did not know the meaning of the lines and were told to ignore them. In the

second four replications, they were provided with the three tools as in experiment 2. All

participants did the replications in the same order from top to bottom.

Scenario Name P'pant

1
P'pant

2
P'pant

3
P'pant

4
P'pant

5
P'pant

6

1 x seq
final4.xml_REP6

final4.xml_REP7

final4.xml_REP8

final4.xml_REP9

final4.xml_REP6MOD

final4.xml_REP7MOD

final4.xml_REP8MOD

final4.xml_REP9MOD

Mental Simulator

Figure 40. Results from Experiment 3

Figure 40 displays the results of this experiment qualitatively. The figure

shows that in the first run the participants predicted continuously right or wrong, at least

until the sixth observation. In this run the first six observations contained only one tank

each. It was not always the same tank, but always only one. In the comments during the

experiment the participants explained that they were waiting for more than one tank.

Since the risk was assessed as relatively low, they were very likely to wait and predicted

in most cases two or three tanks. Since they had no information about transition prob-

abilities or terrain attributes, they held on to their judgment. The model, however, is able

to completely employ the available transition probabilities, terrain attributes and results

from the loss chart. Certainly, the graphical user interface conveying this information to
 91

the human subject was in no way optimized through human factors engineering to trans-

fer such understanding to the human. Moreover, whereas the model is only able to deal

with information provided by the simulation processing, the human subjects brought

other knowledge and experience to the experiment, such as ability to read and infer in-

formation from the tactical map background that was not represented in the simulation. In

particular, the army officers examined the terrain and created expectations the model

could not provide. An example for this would be the covering of other tanks while pro-

ceeding. They saw one tank and expected, depending on the terrain map, other tanks in a

certain location to cover their movement. These tanks were expected in the next observa-

tion, which in most cases did not happen. Such differences between what the model based

its simulation on and what the human subjects based their decisions on are open questions

for further study.

Table 7 quantifies the prediction results above and displays the compari-

son between the participants and the mental simulator only for the first prediction.

Scenario

ratio ratio

final4.xml_REP6 2 4 0.33 2 0 1.00
final4.xml_REP7 3 3 0.50 2 0 1.00
final4.xml_REP8 4 2 0.67 1 1 0.50
final4.xml_REP9 5 1 0.83 1 1 0.50

mean 0.58 mean 0.75
final4.xml_REP6MOD 4 2 0.67 2 0 1.00
final4.xml_REP7MOD 4 2 0.67 1 1 0.50
final4.xml_REP8MOD 5 0 1.00 2 0 1.00
final4.xml_REP9MOD 5 1 0.83 1 1 0.50

mean 0.79 mean 0.75
Sdev above 0.22 Sdev above 0.29
Sdev below 0.16 Sdev below 0.29

no
 to

ol
s

w
ith

 to
ol

s

predicted
wrongly

only first prediction Human only first prediction Mental Simulator
predicted
correctly

predicted
wrongly

predicted
correctly

Table 7. Prediction Accuracy with respect to tools considering only the first predic-
tion for the human participants and the mental simulator

Table 8 displays the prediction results from Figure 40 using all predic-

tions.

 92

Scenario
ratio ratio

final4.xml_REP6 9 16 0.36 6 4 0.60
final4.xml_REP7 3 3 0.50 2 0 1.00
final4.xml_REP8 4 2 0.67 1 1 0.50
final4.xml_REP9 5 1 0.83 1 1 0.50

mean 0.59 mean 0.65
final4.xml_REP6MOD 10 7 0.59 5 1 0.83
final4.xml_REP7MOD 7 4 0.64 1 3 0.25
final4.xml_REP8MOD 6 0 1.00 2 0 1.00
final4.xml_REP9MOD 5 1 0.83 1 1 0.50

mean 0.76 mean 0.65
Sdev above 0.21 Sdev above 0.24
Sdev below 0.19 Sdev below 0.34

all first prediction Mental Simulatorall predictions Human
predicted
wrongly

w
ith

 to
ol

s
no

 to
ol

s

predicted
correctly

predicted
wrongly

predicted
correctly

Table 8. Prediction Accuracy with respect to tools considering all predictions for

the human participants and the mental simulator.

The data shows that the participants’ prediction accuracy improved by 36

percent in the first prediction case and by 15 percent in the all prediction case. The quan-

titative data analysis is preliminary. The data may reflect a learning effect that was not

controlled for due to the fact that all participants did the runs in the same order. Perform-

ing this experiment with random ordering of the runs for each participant would mini-

mize this effect. The data is also censored since after a firing decision was made no more

predictions were done. The sample size was small due to time and resource constraints.

d. Experiment 4: Firing Behavior
The fourth experiment was conducted to compare the firing behavior of

the Mental Simulator to the human participants. This experiment uses the data collected

in experiments 2 and 3. There, the participants predicted the next observation and decided

to fire when an observation sequence met their individual criteria for a firing decision. In

experiments 2 and 3 the model did not make any firing decisions. The participants were

not influenced by the Mental Simulator’s behavior. In experiment 4 now, the model de-

cided to fire according to a particular path through the implemented decision tree (see

details on page 78 ff). The decision criteria in the tree are threat, prediction, terrain, and

casualties expectation.

Figure 41 and following display the results from the firing comparison in a

graphical way for both scenarios final2 and final4. The underlying predictions are the

same as in experiment 2 and 3.

 93

P'pant 1 P'pant 2 P'pant 3 P'pant 4 P'pant 5 P'pant 6 P'pant 7 P'pant 8 P'pant 9 P'pant 10 P'pant 11

final2.xml_REP1 Fire
Fire

Fire Fire

Fire Fire Fire Fire
Fire Fire Fire

Fire

final2.xml_REP2 Fire

Fire Fire Fire
Fire Fire Fire Fire

Fire
Fire

Fire Fire

final2.xml_REP3 Fire

Fire
Fire Fire Fire

Fire Fire Fire Fire Fire Fire Fire

final2.xml_REP4 Fire

Fire Fire
Fire Fire

Fire Fire

Fire Fire

Fire

final2.xml_REP5 Fire

Fire
Fire Fire Fire

Fire
Fire Fire Fire

grey cells: hold fire Fire: firing at the i th observation

Mental
Simulator

Figure 41. The comparison between human participants and the model with respect to
firing decision in the scenario final2.xml

The left column indicates when the model fired, the next column denotes

the run name and the remaining columns indicate when each participant fired. The word

“Fire” indicates the start of the engagement process at the current observation. In other

words, the last colored cell was a hold fire. A run was ended when a firing decision was

made. There was no assessment whether the firing resulted in a hit or not. As already de-

scribed in experiment 2, participant 2 fired always immediately. Figure 42 shows the re-

sults quantitatively. The x-axis denotes the various replications of the scenario “final2.”

The difference in the replications lies in the detections the Combat XXI model provides,

based on the stochastic element, which is the AQUIRE algorithm. In other words, the

number of tanks seen in the single observations vary. All the other parameters like mis-

sion, location, and routes remain the same. The order of the replications also represents

the chronological order of the experiment. The y-axis denotes the number of observations

during which the model or the human participants waited, before finally firing. The red

and the blue curves, the model’s behavior and the average of the human participants’ be-

havior, respectively approach one another from replication three to five. The dashed lines

above and below indicate the error range of one standard deviation per decision point.

 94

Not depicted in the chart is the firing time chosen by the built-in (default) logic of Com-

bat XXI, which would have always fired at the first observation.

Firing behavior: Model vs. Humans

0
1
2
3
4
5
6
7
8

fin
al2

.xm
l_R

EP1

fin
al2

.xm
l_R

EP
2

fin
al2

.xm
l_R

EP3

fin
al2

.xm
l_R

EP4

fin
al2

.xm
l_R

EP5

replications of scenario final2

i t
h

ob
se

rv
at

io
n

mean human
- sdev
+ sdev
model

Firing behavior: Model vs. Humans

0
1
2
3
4
5
6
7
8

fin
al2

.xm
l_R

EP1

fin
al2

.xm
l_R

EP
2

fin
al2

.xm
l_R

EP3

fin
al2

.xm
l_R

EP4

fin
al2

.xm
l_R

EP5

replications of scenario final2

i t
h

ob
se

rv
at

io
n

mean human
- sdev
+ sdev
model

Figure 42. Firing behavior for scenario final2

The data points for replication 3 to 5 also show, when the standard devia-

tion of the human behavior is higher, then the coupling distance also spreads. The data

points for replications 1 and 2 are further apart. One could be inclined to say the model is

learning from replication to replication and adjusting to the human behavior. However, it

is not the case. In that respect, the model has no learning ability. The model’s learning

ability is incorporated in the Markov Chain and is not adjusted anymore at this stage of a

scenario run. The sample size is the same as in experiment 2, but from this behavior we

claim, based on preliminary data, the firing behavior is within the human range. We

achieved a better result than the one for the scenario final2 for the scenario final4. Figure

43 shows the qualitative analysis for scenario final4.

 95

final4.xml_REP6

Fire

Fire

Fire Fire Fire Fire

Fire

final4.xml_REP7
Fire Fire Fire

Fire Fire Fire
Fire

final4.xml_REP8
Fire Fire Fire Fire Fire Fire Fire

final4.xml_REP9
Fire Fire Fire Fire Fire Fire Fire

final4.xml_REP6MOD

Fire
Fire Fire Fire Fire Fire

Fire

final4.xml_REP7MOD
Fire

Fire Fire Fire Fire Fire Fire

final4.xml_REP8MOD
Fire Fire Fire Fire Fire Fire Fire

final4.xml_REP9MOD
Fire Fire Fire Fire Fire Fire

Fire
grey cells: hold fire Fire: firing at the i th observation

P'pant 4 P'pant 5 P'pant 6Mental
Simulator

P'pant 1 P'pant 2 P'pant 3

Figure 43. The firing decisions from human participants and the model with respect
to tools provided (qualitative view)

Figure 44 shows the results quantitatively. The x-axis denotes the various

replications of the scenario “final4.” The left four replications denote the runs without

tools for the participants and the right four replications with the tools provided. The y-

axis indicates at what observation the human participants fired on average and in addition

when the model fired. In the right four replications one can argue that the humans with

the tools basically mimic the model’s algorithm. However, then the left data points,

REP_7 to REP_9, are hard to explain since the tools were not available to the human par-

ticipants at that time. The first data point, REP_6 is explainable similarly to the prediction

experiment. Having no information about transition probabilities and terrain cell attrib-

 96

utes makes it hard to estimate. Furthermore, some participants applied their knowledge of

a map this scale to their decision making process without considering that this knowledge

is not incorporated in the combat simulation system. Except for the first data point, all

decisions of the model to fire are within one standard deviation of the human partici-

pants’ mean displayed as a yellow hyphened line.

Firing Behavior: Model vs. Humans

0

2

4

6

8

10

12

fin
al4

.xm
l_R

EP6

fin
al4

.xm
l_R

EP7

fin
al4

.xm
l_R

EP8

fin
al4

.xm
l_R

EP9

fin
al4

.xm
l_R

EP6M
OD

fin
al4

.xm
l_R

EP7M
OD

fin
al4

.xm
l_R

EP8M
OD

fin
al4

.xm
l_R

EP9M
OD

replication

i-t
h

ob
se

rv
at

io
n mean human

model
- sdev
+ sdev
max
min

Figure 44. Firing behavior for scenario final4

The results show that not only the predictions but also the firing decisions

perform in the human range. It is obvious that in none of the cases above the model im-

mediately fired. Neither did the human participants. When in a replication the humans

fired later or early then the model decided similar. The results from the experiment were

not used to calibrate the model. The decision tree was developed independent of the re-

sults from the human participants. However, human tank experts were considered prior to

the development of the decision tree. We consider this a favorable result for our model.

 97

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9

Path through decision Tree
until first FIRE

Fr
eq

ue
nc

y

0%

20%

40%

60%

80%

100%

120%

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9

Path through decision Tree
for all decisions

Fr
eq

ue
nc

y

0%

20%

40%

60%

80%

100%

120%

Histogram for final4

Frequency
Cumulative %

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9

Path through decision Tree
until first FIRE

Fr
eq

ue
nc

y

0%

20%

40%

60%

80%

100%

120%

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9

Path through decision Tree
for all decisions

Fr
eq

ue
nc

y

0%

20%

40%

60%

80%

100%

120%

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9

Path through decision Tree
until first FIRE

Fr
eq

ue
nc

y

0%

20%

40%

60%

80%

100%

120%

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9

Path through decision Tree
for all decisions

Fr
eq

ue
nc

y

0%

20%

40%

60%

80%

100%

120%

Histogram for final4

Frequency
Cumulative %

Figure 45. Histogram for the path through the decision tree in scenario final4

As a sanity check we created a histogram for the decision tree and looked

how often were the various paths chosen. The left chart of Figure 45 shows the frequency

of the paths that were chosen until the first firing decision was to “fire.” The right chart

shows all paths that were chosen until the entire replication was finished. It can be ob-

served that eventually all paths are chosen except path 4. This is not an error. This path

gets chosen when the number of tanks detected is greater than four. Path 9, when an im-

mediate threat is determined, was eventually chosen in the later time of the replication,

because the red tanks came closer and crossed the threat threshold which lead to immedi-

ate fire.
D. RESULTS

This section displays in an aggregated form the results of the preliminary predic-

tion experiments that were conducted and shows the firing decisions made by the deci-

sion tree implementation. The results from the terrain and design experiments are in sec-

tion IV.B.2.b. Terrain Attributes and in IV.C.2.a. Experiment 1. They did not involve

human participation.

 98

1. Experiment 2: Prediction Accuracy of the Model vs. Human Partici-
pants

This experiment utilized 5 different replications of the scenario final2 with eleven

human participants. The task for each participant was to estimate the next observation in

each replication and eventually to determine, according to one’s own judgment, when to

fire. The participants were equipped with the state machine and the probability distribu-

tion of the state transitions, the assessment in terms of red and blue losses of previous

situations depending on whether it was fired immediately or delayed, and the terrain in-

formation. The analysis of the data collected was done in terms of how often the predic-

tion was correct. The aggregated results are shown in Table 9.

first prediction

mean 0.80
sdev 0.45

mean 0.85
sdev 0.17

Model

Human 0.63
0.09

0.67
0.23

all predictions
scenario final2

Table 9. The means and standard deviations for experiment 2

The differences between the model and the human participants is in both cases

within 10%. The participants’ firing decisions are analyzed in experiment 4.

2. Experiment 3: Prediction Accuracy in Dependence of the Tools Pro-

vided

This experiment utilized 8 different replications of a modified scenario. The dif-

ference from the former scenario lies in the greater variation in the number of observed

tanks. That means that observations with a high number of tanks occurred more often. Six

participants conducted this experiment. The task was similar to experiment 2 with the

twist that in the first four replications, no tools were provided. In the second four replica-

tions all tools were provided. The participants from experiment 3 are disjoint with those

from experiment 1. The analysis of the data collected was done in terms of how often the

 99

prediction was correct. This was assessed again only for the first prediction of each repli-

cation and for all common number of predictions. The mental simulator of course got the

tools in both cases.

first prediction first prediction
mean 0.58 0.59 0.75
sdev 0.22 0.29

mean 0.79 0.76 0.75
sdev 0.16 0.29

no tools
provided

tools
provided 0.19

all predictions all predictions

0.24

0.65
0.34

0.21

Scenario final4 Human Model

0.65

Table 10. Results from experiment 3

Providing the tools to the participants increased their percentage of correct predic-

tions. The participants’ firing decisions are analyzed in experiment 4.

3. Experiment 4: Firing Behavior
This experiment post-processed the human firing decisions with the model’s deci-

sion to fire. The model decided to fire according to a particular path through the imple-

mented decision tree (see. page 73). The decision criteria in the tree are threat, prediction,

terrain, and casualties expectation.

 100

Firing behavior: Model vs. Humans

0
1
2
3
4
5
6
7
8

fin
al2

.xm
l_R

EP1

fin
al2

.xm
l_R

EP
2

fin
al2

.xm
l_R

EP3

fin
al2

.xm
l_R

EP4

fin
al2

.xm
l_R

EP5

replications of scenario final2

i t
h

ob
se

rv
at

io
n

mean human
- sdev
+ sdev
model

Firing behavior: Model vs. Humans

0
1
2
3
4
5
6
7
8

fin
al2

.xm
l_R

EP1

fin
al2

.xm
l_R

EP
2

fin
al2

.xm
l_R

EP3

fin
al2

.xm
l_R

EP4

fin
al2

.xm
l_R

EP5

replications of scenario final2

i t
h

ob
se

rv
at

io
n

mean human
- sdev
+ sdev
model

Figure 46. Firing Behavior for scenario “final2”

Figure 46 and Figure 47 show the firing behavior of the human participants in av-

erage and when the model fired in the two scenarios “final2” and “final4.” Although the

sample size is small, the data is censored, and the probable underlying learning effect has

not been captured, with one exception each the model performs within 1 standard devia-

tion around the mean of the human participants.

 101

Firing behavior Model vs. Humans

0

2

4

6

8

10

12

fin
al4

.xm
l_R

EP6

fin
al4

.xm
l_R

EP7

fin
al4

.xm
l_R

EP8

fin
al4

.xm
l_R

EP9

fin
al4

.xm
l_R

EP6M
OD

fin
al4

.xm
l_R

EP7M
OD

fin
al4

.xm
l_R

EP8M
OD

fin
al4

.xm
l_R

EP9M
OD

replication

i t
h

ob
se

rv
at

io
n

mean human
- sdev
+sdev
model

Firing behavior Model vs. Humans

0

2

4

6

8

10

12

fin
al4

.xm
l_R

EP6

fin
al4

.xm
l_R

EP7

fin
al4

.xm
l_R

EP8

fin
al4

.xm
l_R

EP9

fin
al4

.xm
l_R

EP6M
OD

fin
al4

.xm
l_R

EP7M
OD

fin
al4

.xm
l_R

EP8M
OD

fin
al4

.xm
l_R

EP9M
OD

replication

i t
h

ob
se

rv
at

io
n

mean human
- sdev
+sdev
model

Figure 47. Firing behavior for scenario “final4”

The results show that not only the predictions but also the firing decisions per-

form in the human range.

 102

 103

V. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

For some combat models a simplistic model of human behavior seems to be suffi-

cient. Sometimes errors in behavior seem to cancel one another out. One example we dis-

cussed in Chapter I was when a blue tank fires too early but the red tanks do not react ac-

cordingly and follow their original path and do not to this new situation. A real red pla-

toon might, for example, have called in indirect fire. In simplistic behavior representa-

tions that means that the stock of artillery ammunition in the model as compared to real-

ity is incorrect. This is bad. In order to represent more sophisticated combat situations, it

is mandatory to base the decisions in the system on more accurate entity representations.

This first approach to the computational modeling of mental simulation is far from being

perfect or comprehensive. However, it contributes in the following way:

- Our research resulted in an implementation of the first computation model of

mental simulation as described in the psychological theory of naturalistic de-

cision making applied to entities in a simulated combat environment. We im-

plemented a subset of mental simulation, namely projecting the past into the

future, used three variables like people usually do, and provided the simulated

entities with experience in order to perform mental simulation.

- Our research, based on statistical data, shows that simulated entities that are

capable of “looking ahead” into the near future perform more realistically than

those that do not include even knowledge of the past, but only use information

of the present. Simulated behavior is considered “more realistic” when entities

reason about a larger number of relevant factors (e.g. expectations), are able to

adjust to sudden changes in the environment (e.g. react to an enemy that is

currently not visible), and are able to use information or knowledge gained

during a considered period, that is, a simulation run. Knowledge gain, also

called learning, improves the overall performance of the software agent.

Unlike strictly rule-based systems in which everything is predefined, predic-

tion of the near future in our model is based on information and knowledge

 104

that the software “learns,” or derives, during the runs. This learning, or adap-

tive, capability, which is uncommon in combat simulation models, affords the

system with greater flexibility and fine-tunes the agent for more reason-based

actions. Adding a learning capability also reduces the amount of predefined

data required for a run, and thus the amount of manpower effort.

- The model can be implemented as a module in the actual simulation engine.

Because our mental simulation model is executed in a post processing mode,

that is, after the simulation run, it uses the logged data from the simulation run

as input. Since all the data required to run the model is available within the

simulation model itself, it is left to the software developers to integrate it.

However, it should be easy to insert into a combat model with a modular ar-

chitecture. The computational cost of an add-on like this should be relatively

low. Depending on the specific orientation of the mental simulation, that is,

the type of events to be predicted and the nature of the behavior to be affected,

it could be integrated within the interactions of certain modules. As in our

scenario, where we enable the agent to predict the next tank observations,

which, in turn, influences his firing behavior, the mental simulator could be

inserted between the detection module and the engagement module.

- The model is applicable to a specific human decision-making moment, in our

case, whether to fire or not in a given situation. Though this is a narrowly de-

fined application in the current implementation, it is also a new and useful de-

velopment in constructive simulations. The various experiments that we con-

ducted show that the model performs within a decision-making range common

to humans.

- The terrain is examined empirically in a preprocess which extends beyond

merely having a line-of-sight feature. The ACQUIRE algorithm uses various

parameters to determine whether a specific sensor detects a specific target. In

our model, the terrain assessment, given the presence of a line-of-sight, en-

ables entities to assess how likely it will be to detect a target in a certain ter-

rain before the target actually arrives. To a certain degree, that ability to pre-

 105

dict likelihood, or probability, mimics the anticipation of “undetection.” This

capability is important when modeling, for example, the behavior of human

tank gunners in a “duel” situation, in which they monitor targets before shoot-

ing them. In known constructive combat simulation environments to date, do-

ing this has not been possible, since the observations occur in a manner simi-

lar to a radar sweep of a certain sector. But with the terrain assessment per-

formed in our model, an agent can address the idea that targets will go out of

sight in a predictable, and thus anticipated, amount of time, rather than the

agent simply recognizing eventually that the targets are gone.

B. FUTURE WORK

We consider the modeling of mental simulation in various application areas as

still subject to further research. Our research is not comprehensive and the model devel-

oped is not perfect by far. However, we took the initial step of specifically addressing the

mental simulation in a combat simulation environment and made room in a simulation

environment for adding expectations and imagination to better imitate human behavior.

We showed some possible paths for extending this approach to other application do-

mains. We left enough room for further investigation in that direction. The results we

provide are of a preliminary nature, we believe they are a useful basis for extensive and

thoroughly designed experiments which were beyond the available time in this research.

Having laid out the foundation in this research, we see potential topics for follow-

on work generally in any simulation that represents human behavior and in particular

within combat simulation models.

One direction is to extend the experiments with a complete design of experiment

approach in order to capture underlying effects and other variables. This could cover as

an example the likely learning effect of participants with increasing number of replica-

tions. The experiments can also be extended to an armor school in order to increase the

sample size and to include more specific armor considerations that were not addressed so

far. We used among other model design elements the Monte Carlo Markov Chain simula-

tion. There exist other predictive techniques that can be evaluated in case the state space

 106

gets bigger and the scaling problem state machines can have, arises. We used two predic-

tors within the mental simulator. There are other possible predictors than one random

draw or taking the mode of N simulations. How the model can self-select the adequate

predictor depending on the current situation could be subject to more experimentation.

During experiment 3 when no tools were provided to the human participants, it

appeared that especially Army soldiers overestimated the combat simulation’s ability to

incorporate the terrain information. Differences between what the combat simulation

model based the entities’ behavior on and what the human subjects based their decisions

on are open questions for further study and would improve the scope of the simulation.

There is also room for extension within the application domain of this model. So

far the breadth of the model was self-limited to the capabilities of Combat XXI in order

to conduct the proof-of-principle. With the continuing development of Combat XXI this

research can be extended to additional functional areas and to more complex decisions.

Especially, close coupling of this model with Combat XXI will allow decisions to feed

back to the simulation system before the simulation continues.

We outlined already at the end of Chapter III some general applications where we

can see this research beneficial. Especially, in training simulation systems where the use

of avatars is on the rise, the necessity of realistic human behavior is becoming more and

more important. A mental simulation component is a valuable enrichment to this.

 107

APPENDIX: SOFTWARE STRUCTURE

All programs are written in Java (JDK 1.5). The entire model consists of three in-

dividual programs:

A. PlatoonCommander

B. GridCommander

C. GridBatchCommander

These programs run individually and independently. However, the results from

the GridCommander and GridBatchCommander programs yield the empirical terrain as-

sessment data for the PlatoonCommander. The difference between the GridCommander

and GridBatchCommander program lies in the batch run mode. GridCommander is a sin-

gle run solution to check intermediate results and was also the pre-version for terrain as-

sessment. GridBatchCommander is the final version which uses the RunManager func-

tionality from Combat XXI. The final output from the GridCommander and GridBatch-

Commander programs is a serialized object that is automatically read in by PlatoonCom-

mander.

The entire PlatoonCommander program consists of 73 Java classes. This program

needs an installed version of Combat XXI in order to perform all functionalities.

A. PLATOONCOMMANDER

This section gives an overview of the functionality groups and depicts how the

program is used in a single run mode and in batch run mode. The complete code is not

provided here. It can be requested from the MOVES-Institute at the U.S. Naval Post-

graduate School in Monterey, CA.

The program can be categorized into the seven functionality groups:

1. Control (yellow)

2. GUI (green)

3. File input/ Log file reading (blue)

4. Data objects (none)

5. Batch Run Mode (purple)

6. Analysis (orange)

7. Result Display (purple-green)

1. Top Level Classes
The main class is called ReadControl. It is mutually referenced by the other top

level classes that control the analysis (AnalysisManager), collect the overall transitions

(StateManager), construct the main GUI including several components (ReadDisplay),

read in all log files and create the objects that hold this information (DataReadManager),

display the force structure (DrawReadData), display the results from the batch run mode

and provide additional functionalities via GUI (BatchDataDisplay), control the batch run

mode (RunManagerDriver) and read in the force structure as initial input to the system

(ReadForceStructure). These classes also control the subsequent classes in the respective

functionality groups. Figure 48 displays the top level classes.

AnalysisManager
ReadControl

StateManager

ReadDisplay

DataReadManager

BatchDataDisplay

RunManagerDriver

ReadForceStructure

AnalysisManagerAnalysisManager
ReadControlReadControl

StateManagerStateManager

ReadDisplayReadDisplay

DataReadManagerDataReadManager

BatchDataDisplayBatchDataDisplay

RunManagerDriverRunManagerDriver

ReadForceStructureReadForceStructure

Figure 48. Top Level Classes

Spread over all functionality groups control or coordinating classes like Cubby-

Hole or implemented interfaces coordinate the various threads used in this program.

 108

2. Control Classes
This group contains the main class and the classes that synchronize and control

the threads and receive the output from the combat simulation model.

CubbyHole.java

FileConstants.java

ReadControl.java (Main class)

StreamGobbler.java

The class CubbyHole is a modified class from SUN MicroSystems to coordinate

and synchronize some of the threads. The class StreamGobbler is taken from available

sources on the Internet. Implemented interfaces or listeners are also assigned to this func-

tionality group.

3. GUI
This group constructs the initial front end to the user. This group includes classes

that inherit from the JPanel class and classes that are needed in the display in Figure 49.

Figure 49. Screenshot of the GUI before the analysis is started with a pre-loaded state
machine.

 109

Figure 50 displays the classes (green) required to create the GUI in Figure 49.

ReadControl

<<interface>>
::<<Unknown>>::ActionListener

<<interface>>
::<<Unknown>>::ListSelectionListener

::<<Unknown>>::Canvas

AnalysisManager

DetailArena

<<interface>>
::<<Unknown>>::Runnable

StateMachineShape

ReadDisplay

DrawableShape

DataReadManagerDrawReadData

CombatCanvas

StateMachine<<interface>>
::<<Unknown>>::MouseListener

<<interface>>
::<<Unknown>>::MouseMotionListener

DetailShape

MouseAreaCovered

ReadControl

<<interface>>
::<<Unknown>>::ActionListener

<<interface>>
::<<Unknown>>::ListSelectionListener

::<<Unknown>>::Canvas

AnalysisManager

DetailArena

<<interface>>
::<<Unknown>>::Runnable

StateMachineShape

ReadDisplay

DrawableShape

DataReadManagerDrawReadData

CombatCanvas

StateMachine<<interface>>
::<<Unknown>>::MouseListener

<<interface>>
::<<Unknown>>::MouseMotionListener

DetailShape

MouseAreaCovered

Figure 50. GUI classes

The top level class is ReadDisplay which inherits from the JPanel class and im-

plements the ActionListener, ListSelectionListener and the FileConstants interface. The

latter one holds all constants and file paths for running the program on several machines

without the necessity of manually changing paths for the input and output. The classes

with the ending ‘Shape’ are the objects that draw themselves on the canvas. This are the

units, the labels, the states, and also the arcs and text fields from the state machine. The

GUI is mouse supported and therefore, it implements various mouse listeners. The

JPanel-class CombatCanvas displays the map and all entities with the identification tags.

It also displays the gravitation centers used in the situational awareness component. The

 110

Canvas class StateMachine displays the Markov Chain with the transition probabilities

provided by the analysis group. The class DetailArena in Figure 50 displays the context

for a decision. This panel, when desired, pops up at every decision point and displays the

appropriate information, that is used within the mental simulator (see also Figure 25).

4. File input/ Log file reading
The I/O from Combat XXI to our model can work in several ways. These are

‘normal mode’, ‘Read in B-Log’, and ‘Batch mode’. The Batch mode is explained later

separately. Combat XXI outputs the log files differently when using the option ‘Run

Model’ versus the RunManager version. These first two options enable the program to

deal with the appropriate output-files. In both cases only the file ‘spawned.log” has to be

selected and the other output files are read in automatically via the DataReadManager

class. The file spawned.log contains the force structure.

<<interface>>
ActionListener

ReadControl

ReadDisplay

<<interface>>
FileConstants

DataReadManager

PAUnit <<interface>>
Serializable

ReadForceStructure

Unit

CombatCanvas

DUnit

FUnit

MUnit

<<interface>>
ActionListener

ReadControl

ReadDisplay

<<interface>>
FileConstants

DataReadManager

PAUnit <<interface>>
Serializable

ReadForceStructure

Unit

CombatCanvas

DUnitDUnitDUnit

FUnitFUnitFUnit

MUnitMUnitMUnit

Figure 51. File I/O

The classes PAUnit, DUnit, FUnit and MUnit store the content of the various log

files in objects, searchable by the simulation time. PA, D, F, and M are the abbreviations

for physical acquisition (observations), damage, fire and movement logs. The class

ReadForceStructure also converts and scales the UTM coordinates for the display in the

 111

 112

GUI. The class Unit stores the elements from the force structure log (spawned). The out-

put from our model for permanent storage is done in ReadControl and explained in the

next section.

5. Data Objects

The results from the various modes can be saved as serialized objects in Java. It is

possible, for example, after a batch run of N replications, to store all relevant data neces-

sary to replay the analysis in one data file. All objects to be stored implement the Seri-

alizable interface and can be read in via ReadControl.

The class that holds all data dynamically is LossRecordSummary. This class holds

the following objects/data:

1. blue and red losses from the simulation of the various course of actions,

for each run

2. decisions of the tanks over time

3. aggregated observations

4. first blue firing time

5. run name

6. remarks from the runs

7. scenario name

8. I/O path information

9. complete log files

The firing decisions are not contained in the data object. They are recreated

through the BatchDataDisplay class.

6. Batch Run Mode

The program has the ability to operate in a batch mode. The top level class for

running batches is RunManagerDriver. Figure 52 displays the RunManagerDriver object

and its associations. The UI classes are from the Combat XXI model and modified for the

specific needs.

RunMgrRepsUI

RunMgrResourceUI

RunMgrAltsUI

RunMgrLogUI

AnalysisManager

ReadControl

RunMgr

RunMgrUI

LoggedInfoPerRun RunMgrRand
NumbUI

RunManagerDriver

LossRecordSummary
RunMgrRepsUIRunMgrRepsUI

RunMgrResourceUIRunMgrResourceUI

RunMgrAltsUIRunMgrAltsUI

RunMgrLogUIRunMgrLogUI

AnalysisManagerAnalysisManager

ReadControlReadControl

RunMgrRunMgr

RunMgrUI

LoggedInfoPerRun RunMgrRand
NumbUI

RunMgrRand
NumbUI

RunManagerDriverRunManagerDriver

LossRecordSummaryLossRecordSummary

Figure 52. The RunManagerDriver object and its associations

The batch mode requires the remote call of the Combat XXI simulation model. In

the non-batch mode case Combat XXI is run and then the output is read in manually. In

batch mode the entire process has to be automated. What does this mean in detail? Each

run in Combat XXI varies with respect to the observation sequence and the respective

firing times. Therefore, a single hardwiring of the firing time or outflanking time will not

work. Either they outflank too early or too late in most cases. It is necessary to adjust the

firing delay time and the outflank time to each run. With this requirement, the following

automated procedure, as displayed in Figure 53, has been developed.

Starting from the GUI (ReadDisplay class) the batch mode is selected 1 . This

event activates the runBatchMode method in ReadControl which creates a new RunMan-

agerDriver object in a thread 2 . The RunManagerDriver-object creates the GUI for the

 113

user to enter the settings for Combat XXI. These settings include the scenario, the num-

ber of replications, the duration of the simulation run, the choice of random numbers, the

desired log-files, and the location of the simulation model 3 . When the user has finished

the input of the settings the RunManagerDriver starts the individual replications 4 . Dur-

ing the loop the simulation model is called twice. The first run does not apply the mental

simulator 5 , it is a regular run of the original scenario file.

mod

eventually

RunManagerDriver
AnalysisManager

ReadControl

thread waits until
analysis is done

analysis is done

1

2
3

4

5

7

8

9

10

11

12

6

13

14

15

ReadDisplay

mod

eventuallyeventually

RunManagerDriver
AnalysisManager

ReadControl

thread waits until
analysis is done

analysis is done

1

2
3

4

5

7

8

9

10

11

12

6

13

14

15

ReadDisplay

Figure 53. The top level flow in the batch mode

When Combat XXI has finished that simulation run the log files are stored in a

particular folder and the information is passed to ReadControl 6 . The RunManager-

Driver-thread waits now until the analysis of this run has been processed. ReadControl

activates the DataReadManager which reads in the appropriate log-files and creates the

event list for the AnalysisManager 7 . After this an object of the AnalysisManager is cre-

 114

ated in a separate thread 8 . The analysis of the log files starts with the creation of the

situational awareness 9 , the processing of the firing and damage events and prepares eve-

rything for the decision later on 10 . The analysis provides also the first firing time of a

blue tank which is stored and passed back to the RunManagerDriver thread 11 . This thread

continues and modifies the firing behavior rule of the scenario file 12 and uses it for the

next run, which is the second call of Combat XXI per loop iteration 13 . When Combat

XXI has finished the run with the modified scenario, it gets also analyzed and stored 14 .

After this the next replication starts. When all runs are finished 15 , this thread ends.

ReadControl activates the class BatchDataDisplay which displays all results and provides

the firing behavior to each replication. Figure 54 displays a screenshot of the BatchData-

Display user interface.

Figure 54. The GUI from BatchDataDisplay

 115

7. Analysis
The central class of the analysis is the AnalysisManager class. The task is to cre-

ate the situational awareness, provide data for the predictive model and activate the men-

tal simulation component when a decision point occurs. It also stores the analyzed data

into the data object and sends it to ReadControl. Figure 55 displays the associations with

the AnalysisManager. The StateManager gathers the observations for the predictive

model. In the subsequent subclasses of this object the occurred transitions are adminis-

tered with respect to availability, probability, and retrieval. The objects that are displayed

in the front end GUI are created and stored in a data structure to be drawn when the can-

vas gets refreshed. The object decision holds all predictors and creates the context for the

decision later on. The object TankListStore enables the AnalysisManager to distinguish

own sensors from tanks. The LoggedInfoPerRun and LossRecordSummary hold all rele-

vant data of the analysis. The PredictionLogHandler administrates the PredictionLog-

Storage and retrieves past predictions and actual observations over time. The Formation-

Bin object manages the data fusion of the observations before they are processed to the

StateManager.

 ReadControl

DrawableShape

CubbyHole::<<Unknown>>::Thread

<<interface>>
::<<Unknown>>::Runnable

FormationBin

PredictionLogHandler

PredictionLogStorage

LoggedInfoPerRun

LossRecordSummary

<<interface>>
::<<Unknown>>::Serializable

Decision

TankListStore

ReadDisplay

<<interface>>
FileConstantsStateManager

AnalysisManager

ReadControl

DrawableShape

CubbyHole::<<Unknown>>::Thread

<<interface>>
::<<Unknown>>::Runnable

FormationBin

PredictionLogHandler

PredictionLogStorage

LoggedInfoPerRun

LossRecordSummary

<<interface>>
::<<Unknown>>::Serializable

Decision

TankListStore

ReadDisplay

<<interface>>
FileConstantsStateManager

AnalysisManager

Figure 55. AnalysisManager
 116

 117

In all modes, either in the individual run or batch run mode, the AnalysisManager is a

separate thread.

8. Result Display

The results are displayed after all the runs have been completed. Then ReadCon-

trol activates the class BatchDataDisplay. This happens also when a data set from previ-

ous runs is read in. The task of the BatchDataDisplay object is to

- enable the selection of particular runs,

- display the overall prediction behavior,

- display the firing behavior,

- provide statistical data about the predictions,

- display the observations graphically,

- provide the infrastructure for experiments,

- verify the data fusion,

- display important time points, and

- display the loses on blue and red side.

Figure 56 displays the BatchDataDisplay – object with its associations. The class

FiringDecision holds the decision tree. At each decision point the log contains the time,

the current observation, the prediction and whether the decision was to fire or to hold fire.

The FiringDecision object also accesses the outcomes from previous simulations with the

parameters decision, initial state and terrain cell attribute.

ReplayFrame is the top level class for the replay of replications and for conduct-

ing experiments. The results from the participants predictions and firing decisions are

stored in ReplayExpRun and of all participants in ReplayExpRunSummary. The results

are not exportable into a serialized object. They have to be copied into an editor and

saved separately. The experiments are reproducible for each participant.

BatchDataDisplay

LossChartDataPerState

FiringDecLog LossRecordSummary

ReplayPanel

CubbyHole

ReplayFrame

LoggedInfoPerRun

ReplayObjectMap

ReplayTankShape

ReplayExpRun

ReplayExpRunSummary

FiringDecision

ReadControl

BatchDataDisplay

LossChartDataPerStateLossChartDataPerState

FiringDecLogFiringDecLog LossRecordSummaryLossRecordSummary

ReplayPanelReplayPanel

CubbyHole

ReplayFrame

LoggedInfoPerRun

ReplayObjectMap

ReplayTankShape

LoggedInfoPerRunLoggedInfoPerRun

ReplayObjectMapReplayObjectMap

ReplayTankShapeReplayTankShape

ReplayExpRun

ReplayExpRunSummary

ReplayExpRun

ReplayExpRunSummary

FiringDecision

ReadControlReadControl

Figure 56. The class BatchDataDisplay and its associations

B. THE GRIDCOMMANDER PROGRAMS

The GridBatch- and the GridCommader programs differ only by the batch run

functionality. We describe in this section the GridBatchCommander and rely on the

reader’s ability to transfer this also to the GridCommander program. Both programs use

the basic infrastructure from the PlatoonCommander program.

AnalysisManager

ReadControl

GridFrame

GridView

GridCell

ReadDisplay

DataReadManager

ReadForceStructure

RunManagerDriver

BatchDataDisplay

DisplayAllTables

AnalysisManagerAnalysisManager

ReadControlReadControl

GridFrameGridFrame

GridViewGridView

GridCellGridCell

ReadDisplayReadDisplay

DataReadManagerDataReadManager

ReadForceStructureReadForceStructure

RunManagerDriverRunManagerDriver

BatchDataDisplayBatchDataDisplay

DisplayAllTablesDisplayAllTables

 118
Figure 57. Embedding of the new Grid classes

Most of the Java class names are the same as in PlatoonCommander, however the

classes as displayed in Figure 57 are not identical, and therefore, not interchangeable.

The top level flow as depicted in Figure 58 is similar to the PlatoonCommander. It differs

slightly within the RunManagerDriver, because Combat XXI is called only once per

repetition, and it differs major at the end of the analysis in the AnalysisManager.

GridFrame

RunManagerDriverAnalysisManager

ReadControl

thread waits until
analysis is done

analysis is done

GridView

BatchDataDisplay

DisplayAllTables

Figure 58. Top level flow in GridBatchCommander

When the analysis of the observations is finished then the data structure with the

processed detections is sent via ReadControl to GridFrame. In GridFrame the coordinates

are transformed for the display, the detected tanks are assigned to the 100m x 100m ter-

rain cells, the colors of the cells are determined, and the grid model is populated. The grid

model keeps all information about the cells, like real coordinates, canvas coordinates, the

maximum number of tanks per cell, the number of detected cells, and the cell attribute

(color). Before the AnalysisManager thread reports its termination to the RunManager-

Driver, the complete data set is sent to ReadControl. When all replications the user re-

 119

 120

quested are done, then ReadControl activates BatchDataDisplay to list the individual de-

tection maps. The gridData object is finally saved to the C:\ drive and can be read in

automatically by ReadControl from PlatoonCommander.

 121

LIST OF REFERENCES

ACQUIRE Range Performance Model for Target Acquisition Systems. (1995). Version 1
User’s Guide, U.S. Army CECOM Night Vision and Electronic Sensors Director-
ate Report, Ft. Belvoir, VA.

Albers, M.J. (1999). Information design considerations for improving situation awareness
in complex problem-solving. Proceedings of the 17th annual international confer-
ence on computer documentation, 1999, New Orleans, Louisiana.

Aumann, Yonatan., Etzioni,Oren., Feldman, Ronen., Perkowitz, Mike and Shmiel,
Tomer. (1998). Predicting event sequences: Data mining for prefetching web-
pages. In submitted to KDD'98, March 1998.

Aven, T. (2002), On the Implementation of the Bayesian Approach in reliability and Risk
Analyses, Third International Conference On Mathematical Methods In Reliabil-
ity, June 17-20, 2002, Trondheim, Norway

Barlow, R. E., Proschan, F. & Hunter, L. C. (1965). Mathematical Theory of Reliability.
New York: John Wiley & Sons, Inc.

Bilmes, J. & Zweig, G. (2002). The Graphical Models Toolkit: An Open Source Software
System for Speech and Time-Series Processing. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, June 2002. Orlando, Florida.

Boné, R., Crucianu,M. (2002). Multi-step-ahead prediction with neural networks: a re-
view. Publication de l'équipe RFAI, 9èmes rencontres internationales « Appro-
ches Connexionnistes en Sciences Économiques et en Gestion ». 21-22 Novembre
2002, Boulogne sur Mer, France. pp. 97-106.

Bose, S.K., (2001). Introduction to Queuing Systems. Kluwer/Plenum Publishers

Bouchaffra, D., Koontz, Krpasundar, E. V and ' Srihari, R.K. (1996). Incorporating di-
verse information sources in handwriting recognition postprocessing, in Interna-
tional Journal of Imaging Systems and Technology, special issue, John Wiley,
Vol. 7, Issue 4, Winter 1996.

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994). Time Series Analysis, Forecast-
ing and Control, 3rd ed. Prentice Hall, Englewood Clifs, NJ.

Box, G.E.P, Jenkins, G.M. (1976). Time Series Analysis : Forecasting and Control. Re-
vised Edition. San Francisco, California: Holden-Day.

Brezovic, C. P., Klein, G. A., & Thordsen, M. (1987). Decision making in armored pla-
toon command (Contract MDA903-85-C-0327 for U.S. Army Research Institute,
Alexandria, VA). Fairborn, Ohio: Klein Associates Inc.

Brockwell, P. J., and Davis, R. 1996. Introduction to Time-Series and Forecasting.
Springer-Verlag.

 122

Cioppa, T.M., Willis, J.B., Goerger, N.D., Brown, L.P. (2003). Research Plan Develop-
ment For Modeling And Simulation Of Military Operations In Urban Terrain.
Proceedings of the 2003 Winter Simulation Conference WSC 2003, December 7-
10, 2003, New Orleans, LA.

Cohen, M. S., Freeman, J., Wolf, S., & Militello, L. G. (1995). Training metacognitive
skills in Naval combat decision making (Technical Report under contract
N61339-92-C-0092 for the Naval Air Warfare Center, Training Systems Division,
Orlando, FL.). Arlington, VA: Cognitive Technologies, Inc.

Committee on Technology for Future Naval Forces, National Research Council Tech-
nology for the United States Navy and Marine Corps, 2000-2035 Becoming a
21st-Century Force: Volume 9: Modeling and Simulation. National Academy
Press Washington, D.C. 1997

Davies, M & Stone, T. (Eds) (2001). Mental Simulation, Tacit Theory, and the Threat of
Collapse. Final version (March 2001) of a paper to appear in a special issue of
Philosophical Topics in honor of Alvin Goldman. URL =
<http://www.lsbu.ac.uk/psycho/teaching/pdf/Mental-Simulation.pdf>.

Davison, B. D. (2002). The Design and Evaluation of Web Prefetching and Caching
Techniques Ph.D. dissertation. Department of Computer Science, Rutgers Univer-
sity, New Brunswick, NJ. October 2002.

Deviren, M. & Daoudi, K. (2001).Structural Learning of Dynamic Bayesian Networks in
Speech Recognition. In Eurospeech.

DMSO. (2005). Defense Modeling and Simulation Office, Online M&S Glossary (DoD
5000.59-M). URL =
https://www.dmso.mil/public/resources/glossary/results?do=get&def=297 (last
accessed November/2005).

DoD. (1995). Department of Defense, Modeling and Simulation Master Plan. URL =
http://www.dmso.mil/briefs/msdocs/policy/msmp.pdf (last accessed Novem-
ber/2005).

Dodd, Lorraine., Moffat, J,. Smith J,. Mathieson, G., From simple prescriptive to com-
plex descriptive models: an example from a recent command decision experiment:
Proceedings from the 8th International Command and Control Research & Tech-
nology Symposium National Defense University, Washington. 17-19 June 2003.

Domeniconi C., Perng C., Vilalta R., Ma S. (2002). A Classification Approach for Pre-
diction of Target Events in Temporal Sequences. Proceedings of the 6th Euro-
pean Conference on Principles and Practice of Knowledge Discovery in Data-
bases (PKDD'02), Helsinki, Finland.

Dunsmore, A., & Roper, M. A., (2000). Comparative Evaluation of Program Comprehen-
sion Measures, Technical Report EFoCS-35-2000, University of Strathclyde, UK.

Ehrlich, W. K., Emerson, T. J., (1987). Modeling software failures and reliability growth
during system testing, Proceedings of the 9th international conference on Soft-
ware Engineering, p.72-82, March 1987, Monterey, California, United States

https://www.dmso.mil/public/resources/glossary/results?do=get&def=297
http://www.dmso.mil/briefs/msdocs/policy/msmp.pdf

 123

Ehrlich, W. K., Stampfel, J. P., Wu, J. R., (1990). Application of software reliability
modelling to product quality and test process, Proceedings of the 12th interna-
tional conference on Software engineering, p.108-116, March 26-30, 1990, Nice,
France.

Endsley, Mica. (1995). Toward a theory of situation awareness in dynamic systems. Hu-
man Factors. 37.1 32 -64.

Ferguson, J. D. (1980). Variable duration models for speech. In Proc. Symposium on the
Application of Hidden Markov Models to Text and Speech, pages 143-179.

Field Manual 17-15. (1996). Field Manual 17-15. TANK PLATOON. Headquarters, De-
partment of the Army Washington, DC, April 3, 1996

Findeisen, R. & Allgoewer, Frank. (2002). An Introduction to Nonlinear Model Predic-
tive Control. Proceedings of the 21st Benelux Meeting on Systems and Control
Veldhoven, The Netherlands, March 19-21, 2002.

Finke, R.A. (1989). Principles of Mental Imagery. Cambridge, MA: MIT Press.

Forsythe, C. & Xavier, P. (2002). Human emulation: Progress toward realistic synthetic
human agents. Proceedings of the 11th Conference on Computer-Generated
Forces and Behavior Representation, Orlando, FL. 257-266.

Forsythe, C. (2004). The Future of Simulation Technology for Law Enforcement. FBI
Law Enforcement Bulletin: Volume 73, Number 1. Federal Bureau of Investiga-
tion, Washington, D.C. January 2004.

Ganesh J Pai., Joanne Bechta Dugan. (2001). Enhancing Software Reliability Estimation
Using Bayesian Networks and Fault Trees. 12th International Symposium on
Software Reliability Engineering, Hong Kong, November 27-30,2001.

Gharamani, Z. (1997). Learning Dynamic Bayesian Networks. to appear in Giles and
Mori: Adaptive Processing of Temporal Information. Lecture Notes in Artificial
Intelligence. Springer Verlag.

Gibbs, Gary P. & Cabell, Randolph H. (2000). Experimental Evaluation of Controller
Complexity in the Active Control of Turbulent Boundary Layer Induced Sound
Radiation from Panels. 6th AIAA/CEAS Aeronautics Conference, June 12-14,
2000, Westin Maui, Maui, Hawaii.

Gordon, Robert M., (2001). Folk Psychology as Mental Simulation. The Stanford Ency-
clopedia of Philosophy (Spring 2001 Edition). Edward N. Zalta (ed.), URL =
<http://plato.stanford.edu/archives/spr2001/entries/folkpsych-simulation/>.

Hausrath, A. H. (1971). Venture Simulation in War, Business and Politics. McGraw-Hill,
New York, 1971.

Hovd, M. (2004). A brief introduction to Model Predictive Control. URL =
 http://www.itk.ntnu.no/fag/TTK4135/viktig/MPCkompendium%20HOvd.pdf

Huang, Q., (2003) Hållmats, J., Wallenius, K., Brynielsson, J., Simulation-Based Deci-
sion Support for Command and Control in Joint Operations.

 124

Hutchins, S. G. (1996). “Principles for Intelligent Decision Aiding.” Naval Command,
Control, and Ocean Surveillance Center, RDT&E Division. Technical Report
1718. San Diego, CA.

Ilachinsky, A. (2004). ARTIFICIAL WAR: Multiagent-Based Simulation of Combat.
World Scientific Publishing, Singapore.

Kaempf, G. L., Wolf, S., Thordsen, M. L., & Klein, G. (1992). Decision making in the
AEGIS combat information center (Contract N66001-90-C-6023 for the Naval
Command, Control and Ocean Surveillance Center, San Diego, CA). Fairborn, H:
Klein Associates Inc.

Kahneman, D. & Tversky, A.. (1982). Judgment Under Uncertainty: Heuristics and Bi-
ases. Cambridge University Press. Cambridge, NY

Klein Associates Inc. (2003). KA PUBS 2003. URL=
 http://www.decisionmaking.com/approach/publications.html (last accessed No-
vember/2005).

Klein, G. (1999). Sources of Power: How People Make Decisions. Cambridge MA, MIT
Press.

Klein, G. A. (1997). The recognition-primed decision (RPD) model: Looking back, look-
ing forward. In C. Zsambok & G. Klein (Eds.), Naturalistic Decision Making.
Mahwah, NJ: Erlbaum.

Klein, G., & Crandall, B. W. (1995). The role of mental simulation in problem solving
and decision making. In P. Hancock (Ed.), Local applications of the ecological
approach to human-machine systems, Volume 2: Resources for ecological psy-
chology (Vol. 2, pp. 324-358). Mahwah, NJ: Lawrence Erlbaum Associates.

Kosslyn, S. M.: Mental Imagery. In: Visual Cognition - An Invitation to Cognitive Sci-
ence Volume 2. Publ..: S. M. Kosslyn, D. N. Osherson. 2nd Edition., Massachu-
setts 1995, S. 267-296.

Kuck, I. (2003). Warfare Simulation: Status and Issues for Space, Parts 1-5. Air Force
Research Laboratory, Directed Energy Directorate, U.S. Air Force Materiel
Command, Kirtland AFB, N.M., Report AFRL-DE-TR-2003-1037.

Lebeck A. R., & Wood D. A., (1994). Cache Profiling and the SPEC Benchmarks: A
Case Study. IEEE Computer, 27(10):15-26, October 1994.

Liang, Y., F. Robichaud, B. J. Fugere, and K. N. Ackles. (2001). Implementing a Natural-
istic Command Agent Design. In Proceedings of the Tenth Conference on Com-
puter Generated Forces, May 15-17, Norfolk, VA, pp 379-386.

Liehr, S., Pawelzik, K., (1999). Hidden Markov gating for prediction of change points in
switching dynamical systems. In Proceedings of the Seventh European Sympo-
sium on Artificial Neural Networks, 21-22-23 April, Bruges, Belgium, pp 405-
410.

Manning, Christopher D. & Schütze, Hinrich. (1999). Foundations of Statistical Natural
Language Processing. Cambridge, MA: MIT Press.

http://www.spawar.navy.mil/sti/publications/pubs/tr/1718/tr1718.pdf
http://www.decisionmaking.com/approach/publications.html
http://nlp.stanford.edu/fsnlp/promo/
http://nlp.stanford.edu/fsnlp/promo/

 125

Maybeck, P.S. (1979). Stochastic Models, Estimation, and Control. Volume 1. Academic
Press, New York.

Minsky, M. L. 1986. The Society of Mind. Simon and Schuster, New York.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, Boston, MA.

Modeling and Simulation: Linking Entertainment and Defense, Committee on Modeling
and Simulation: Commission on Physical Sciences, Mathematics, and Applica-
tions. (1997). National Research Council. National Academy Press, Washington,
D.C.

MSIAC. (2005) Modeling and Simulation Information Analysis Center. URL =
http://www.msiac.dmso.mil/ (last accessed November/2005).

MSRR. (2005). Modeling and Simulation Resource Repository. URL =
http://www.msrr.dmso.mil/ (last accessed November/2005).

Murphy, K. (2002). Dynamic Bayesian Networks: Representation, Inference and Learn-
ing. PhD thesis, Dept. Computer Science, UC Berkeley.

National Research Council Washington Dc Naval Studies Board (2000). Network-Centric
Naval Forces: A Transition Strategy for Enhancing Operational Capabilities.
Commission on Physical Sciences, Mathematics, and Applications (CPSMA):p.
56.

NATO. (1998). NATO Modeling and Simulation Master Plan. URL =
 ftp://ftp.rta.nato.int/Documents/MSG/NMSMasterPlan/NMSMasterPlan.pdf (last

accessed November/2005).

NDM. (2005). Proceedings of the Seventh International NDM Conference (Ed. J.M.C
Schraagen), Amsterdam, The Netherlands, June 2005.

Nigel, Thomas. Mental Imagery, The Stanford Encyclopedia of Philosophy (Winter 2001
Edition), Edward N. Zalta (ed.), URL =
<http://plato.stanford.edu/archives/win2001/entries/mental-imagery/>.

Nigel, J.T. Thomas. (2003). Mental Imagery, Philosophical Issues About, in the Encyclo-
pedia of Cognitive Science. Volume 2, pp. 1147-1153 - Editor in Chief, Lynn
Nadel. London: Nature Publishing/Macmillan.

NIST/SEMATECH (2004). e-Handbook of Statistical Methods, URL =
http://www.itl.nist.gov/div898/handbook/ (last accessed November/2005).

Norling, E., L. Sonenberg, and R. RÄonnquist. 2000. Enhancing Multi-Agent Based
Simulation with Human-Like Decision Making Strategies. In Multi-Agent Based
Simulation: Proceedings of the Second International Workshop, MABS 2000,
Boston, MA, Springer, pp 214 - 228.

Patchett, C., Venkat. V.S.Sastry., Michael Bathe. (2003). The Performance of an Intelli-
gent Agent in a Simulated Air Combat Environment. BRIMS 2003.

Patra, Susantra. (2003). A Neural Network Approach For Long-Term Software MTTF
Prediction. FastAbstract ISSRE 2003. URL =

http://www.msiac.dmso.mil/
http://www.msrr.dmso.mil/
http://www7.nationalacademies.org/deps/
ftp://ftp.rta.nato.int/Documents/MSG/NMSMasterPlan/NMSMasterPlan.pdf
http://www.itl.nist.gov/div898/handbook/

 126

http://www.chillarege.com/fastabstracts/issre2003/129-FA-2003.pdf (last ac-
cessed November/2005).

Pedersen, M.N. (1999). A study of the practical significance of word RAM algorithms for
internal integer sorting. Department of Computer Science University of Copenha-
gen, Denmark URL = http://www.diku.dk/forskning/performance-
engineering/Publications/pedersen99.ps (last accessed November/2005).

Pew, R. W. and A. S. Mavor. (1998). Modeling Human and Organizational Behavior:
Application to Military Simulations. National Academy Press, Washington D. C.

Pylyshyn, Zenon W. (2002). Mental Imagery: In search of a theory. Behavioral and Brain
Sciences, 2002, 25(2), 157-237.

Qin, S.J. and Badgwell, T.A. (1996). An overview of industrial model predictive control
technology. In J.C. Kantor, C.E. Garcia, and B. Carnahan, editors, Fifth Interna-
tional Conference on Chemical Process Control – CPC V, pages 232–256. Ameri-
can Institute of Chemical Engineers, 1996.

Rabiner, L. (1989). A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE, Vol. 77, No. 02, February 1989.

Rabiner, L.R., Juang B.H., (1986). An Introduction to Hidden Markov Models. IEEE
ASSP Magazine, January 1986.

Ross, S.M., (1993). Introduction to Probability Models. 5th Edition, Academic Press Inc.,
San Diego.

Russell S, Norvig P. (2003) Artificial Intelligence: A Modern Approach. 2nd Edition,
Prentice Hall, Upper Saddle River, New Jersey.

Sanna, L. J. (2000). Mental simulation, affect, and personality: A conceptual framework.
Current Directions in Psychological Science, 9, 168–173.

Sanna, Lawrence J., & Meier, S. (2000). Looking for Clouds in a Silver Lining: Self-
Esteem, Mental Simulations, and Temporal Confidence Changes. Journal of Re-
search in Personality, 34 (2): 236.

Shepard, R. N., & Metzler, J. (1971). Mental rotation of three dimensional objects. Sci-
ence, 171, 701-703.

Shooman, M. L., (1987).Yes, software reliability can be measured and predicted, Pro-
ceedings of the 1987 Fall Joint Computer Conference on Exploring technology:
today and tomorrow, p.121-122, December 1987, Dallas, Texas, United States

Sokolowski, J. A. (2003). Modeling the Decision Process of a Joint Task Force Com-
mander. Ph.D. Dissertation, Old Dominion University, Norfolk, VA. May 2003.

Sokolowski, J.A. (2002). "Can a Composite Agent be Used to Implement a Recognition-
Primed Decision Model?," In Proceedings of the Eleventh Conference on Com-
puter Generated Forces and Behavioral Representation, Orlando, FL, May 7-9
2002. pp. 473-478.

http://www.chillarege.com/fastabstracts/issre2003/129-FA-2003.pdf
http://www.diku.dk/forskning/performance-engineering/Publications/pedersen99.ps
http://www.diku.dk/forskning/performance-engineering/Publications/pedersen99.ps
http://www.vmasc.odu.edu/publications/publications/jsdissertation3.pdf
http://www.vmasc.odu.edu/publications/publications/jsdissertation3.pdf

 127

Sprinkle, J., C. vanBuskirk, and G. Karsai. (2000). Modeling Agent Negotiation. In IEEE
International Conference on Systems, Man, and Cybernetics, October 8, 2000.
Nashville, TN, pp 454-459.

Sutton, R. (2000). Toward Grounding Knowledge in Prediction or Toward a Computa-
tional Theory of Artificial Intelligence.
URL = www.anw.cs.umass.edu/~rich/Talks/CEC2000/CEC2000.ppt (last ac-
cessed November/2005).

Tambe, M., and Rosenbloom P. S., (1996). Architectures for agents that track other
agents in multi-agent worlds. In M. Wooldridge, J. P. Muller, and M. Tambe, edi-
tors, Intelligent Agents Volume II, Lecture Notes in Artificial Intelligence, pages
156-170. Springer-Verlag.

Tani, J., Model-Based learning for mobile robot navigation from the dynamical systems
perspective. IEEE Transactions on Systems, Man, and Cybernetics, 26:421-436,
1996.

Taylor, Shelley E. and Sherry K. Schneider (1989), Coping and the Simulation of Events.
Social Cognition, v. 7, n. 2, pp. 174-194.

Taylor, Shelley E., Lien B. Pham, Inna D. Rivkin, and David A. Armor (1998). Harness-
ing the Imagination: Mental Simulation, Self-Regulation, and Coping. American
Psychologist, v. 53, n. 4, pp. 429-439.

Thunholm, P., (2000). ETT STEG MOT EN FÖRESKRIVANDE MODELL FÖR
MILITÄRT - TAKTISKT BESLUTSFATTANDE. 5th Conference on Naturalistic
Decision - Making, Tammsvik, Sweden May 26 - 28, 2000.

VIC. (2005). Vector in Commander. URL =
http://www.msrr.army.mil/index.cfm?top_level=ORG_A_1000094&taxonomy=O
RG (last accessed November/2005).

Vilalta R. and Ma Sheng. (2002). Predicting Rare Events in Temporal Domains. Proceed-
ings of the 2002 IEEE International Conference on Data Mining (ICDM’02),
Maebashi Japan.

Warwick, W., S. McIlwaine, R. Hutton, and P. McDermott. (2001). Developing Compu-
tational Models of Recognition-Primed Decision Making. In Proceedings of the
Tenth Conference on Computer Generated Forces, May 15-17, Norfolk, VA, pp
323-331.

Warwick, W., S. McIlwaine, R. Hutton, and P. McDermott. (2002). Developing Compu-
tational Models of Recognition-Primed Decisions: Progress and Lessons Learned.
In Proceedings of the Eleventh Conference on Computer Generated Forces, May
7-9, 2002, Orlando, FL.

Weiss, Gary M., (1999). "Timeweaver: a Genetic Algorithm for Identifying Predictive
Patterns in Sequences of Events". Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-99), Morgan Kaufmann, San Francisco, CA,
718-725.

http://www.anw.cs.umass.edu/~rich/Talks/CEC2000/CEC2000.ppt
http://www.msrr.army.mil/index.cfm?top_level=ORG_A_1000094&taxonomy=ORG
http://www.msrr.army.mil/index.cfm?top_level=ORG_A_1000094&taxonomy=ORG

 128

Weiss, Gary M. & Hirsh, Haym. (1998a). "Learning to Predict Rare Events in Event Se-
quences", Proceedings of the Fourth International Conference on Knowledge Dis-
covery and Data Mining (KDD-98), AAAI Press, Menlo Park, CA, 359-363.

Weiss, Gary M. & Haym Hirsh (1998b). "Event Prediction: Learning from Ambiguous
Examples". Presented at the 1998 Neural Information Processing Systems (NIPS)
Workshop on Learning from Ambiguous and Complex Examples.

Whelan, Joseph G. (2001). MIT System Dynamics in Education Project.

Zsambok, Caroline E.. (1997). Naturalistic decision making: Where are we now? In
Caroline E. Zsambok and Gary Klein, editors, Naturalistic Decision Making,
pages 3–16. Lawrence Erlbaum Associates.

 129

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library

Naval Postgraduate School
Monterey, CA

3. Dr. Christian J. Darken

Department of Computer Science
Naval Postgraduate School
Monterey, CA

4. Dr. Rudolph P. Darken

Director, MOVES Institute
Naval Postgraduate School,
Monterey, CA

5. LTC Dr. Tom Cioppa

Naval War College
Newport, RI

6. Dr. Thomas Otani
Department of Computer Science
Naval Postgraduate School,
Monterey, CA

7. Professor John Hiles
MOVES Institute
Naval Postgraduate School,
Monterey, CA

8. Oberstleutnant Dietmar Kunde
MOVES Institute
Naval Postgraduate School,
Monterey, CA

	I. INTRODUCTION
	A. THESIS STATEMENT
	B. PROBLEM STATEMENT
	C. APPROACH
	D. CONTRIBUTIONS
	Contribution Goals
	Scope

	E. DISSERTATION OVERVIEW

	II. RELATED WORK
	A. MENTAL SIMULATION
	B. PREDICTION TECHNIQUES
	Poisson Process
	Kalman Filtering
	Neural Networks
	Markov Chains
	Hidden Markov Models (HMM)
	Dynamic Bayesian Networks
	Various other Approaches
	Predictive Control Theory

	III. THE MENTAL SIMULATION MODEL (ARCHITECTURE)
	INTRODUCTION
	MENTAL SIMULATION
	Uses of Mental Simulation, in Detail
	Key Points of Mental Simulation
	Application of Klein’s Model
	4. Mental Simulation for Projection into the Future

	COMBAT MODELING AND COMBAT SIMULATION MODELS
	D. COMBAT XXI AS TEST BED
	1. General Description
	2. Behavior Representation
	3. Scenario Output
	4. Run Manager
	5. Summary

	E. GENERAL MODEL ARCHITECTURE
	Simulation Environment Component
	Situational Awareness Component
	Mental Simulator Component
	Decision Component

	F. GENERALIZATION OF THE MODEL

	IV. MODEL IMPLEMENTATION AND RESULTS
	INTRODUCTION
	SPECIFIC IMPLEMENTATION OF THE GENERAL ARCHITECTURE
	1. Components
	a. Environment/ Combat XXI
	b. Situational Awareness
	c. Mental Simulator
	d. Decision

	2. Terrain
	a. ACQUIRE Algorithm
	b. Terrain Attributes

	C. EXPERIMENTS
	1. Scenario
	2. Purpose and Scope of the Experiments
	a. Experiment 1: Different Number of Markov Chains
	b. Experiment 2: Prediction Accuracy of the Model vs. Humans
	c. Experiment 3: Prediction Accuracy Dependent on the Tools
	d. Experiment 4: Firing Behavior

	D. RESULTS
	Experiment 2: Prediction Accuracy of the Model vs. Human Par
	Experiment 3: Prediction Accuracy in Dependence of the Tools
	Experiment 4: Firing Behavior

	V. CONCLUSIONS AND FUTURE WORK
	A. CONCLUSIONS
	B. FUTURE WORK

	APPENDIX: SOFTWARE STRUCTURE
	A. PLATOONCOMMANDER
	Top Level Classes
	Control Classes
	GUI
	File input/ Log file reading
	Data Objects
	Batch Run Mode
	Analysis
	Result Display

	B. THE GRIDCOMMANDER PROGRAMS

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

