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Abstract

Detection of a known target in an image has several different approaches. The complexity
and number of steps involved in the target detection process makes a comparison of the
different possible algorithm chains desirable. Of the different steps involved, some have a
more significant impact than others on the final result - the ability to find a target in an
image. These more important steps often include atmospheric compensation, noise and
dimensionality reduction, background characterization, and detection (matched filtering for
this research). A brief overview of the algorithms to be compared for each step will be
presented.

This research seeks to identify the most effective set of algorithms for detecting a known tar-
get. Several different algorithms for each step will be presented, to include ELM, FLLAASH,
ACORN, MNF, PPI, N-FINDR, MAXD, and two matched filters that employ a structured
background model - OSP and ASD. The chains generated by these algorithms will be com-
pared using the Forest Radiance l HYDICE data set. Finally, ROC curves and AFAR values
are calculated for each algorithm chain and a comparison of them is presented. Detection
rates at a CFAR are also compared. Since a relatively small number of algorithms were
used for each step, there were no definitive results generated. However, a comprehensive

comparison of the chains using the above mentioned algorithms is presented.
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Chapter 1

Introduction

Detection of known substances, or targets, is a very common problem in hyperspectral
imaging (HSI). Given a target with a known spectral signature, an algorithm that can
decide if and where that target is present in an image is needed. In order to accomplish
this, target detection algorithms such as matched filters have been developed to accentuate
pixels in an image that contain the target.

HSI can be thought of as taking an image of the same scene with numerous (normally
hundreds) different spectral bands. At each pixel, a spectrum measured represents the op-
tical energy versus wavelength. These spectra are pictorially displayed as a third dimension
in Figure 1.1. Each layer in the cube represents a spectral band: every band contains similar
spatial information.

There are several unique steps to any target detection algorithm chain. Each of these
steps plays a role in determining the overall performance of the target detector. Figure 1.2
is a flow chart detailing each of the more significant steps for a generic target detection
algorithm chain. For each individual step along the way, there are several algorithms that
will return an acceptable solution. Tt is desired to determine the best algorithm to accom-
plish each step. A particular combination of algorithms may work well for one image or

target but may also perform terribly for a different image or target. Finding an optimal

13



14 CHAPTER]1. INTRODUCTION

combination of algorithms - or recipe - becomes an intriguing dilemma. In order to best
accomplish this, commonly used algorithms for each step must be looked at and compared
to each other for many different types of targets in an image. Each of the steps in the chain
performs a distinct and important role in the overall target detection process. Known target
spectra are in units of reflectance, since that is what is able to be measured in a lab or in
the field. The data collected remotely by a sensor is in units of radiance. The difference
between these measurements is the atmosphere between the remote sensor and the target.
If the atmosphere was able to be effectively “removed”, the collected information would be
in the same units as the measured information. This is what the atmospheric compensation
step seeks to accomplish.

Hyperspectral sensors generally collect hundreds of bands worth of information. This
amount of data can be very computationally cumbersome or even impossible to work with.
The dimensionality reduction step seeks to decrease the amount of data on which to operate
without removing any pertinent information. Noise is a very common problem with any
sensor. Noise can be removed simultaneously with other unnecessary information. Because

of this, the noise and dimensionality reduction steps are often performed together.

One way to describe the background of an image is structured, or geometrically. That

Figure 1.1: Example of an HSI image



is to say that a set of basis vectors is used to describe the background. These basis vectors
are referred to as endmembers. The endmember selection step determines that set of basis
vectors. Finally, the matched filters are the mathematical operations that determine the
likelihood that a specific pixel contains a known target spectrum.

The following chapters discuss, in detail. the background and theoretical explanation
of the algorithms studied in this effort. Results arc presented in the form of ROC curves.
average false alarm rates (AFAR) (Bajorski et al., 2004), and detection rates at a constant

false alarm rate (CFAR). These metrics are used to compare several unique algorithm chains.
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Atmospheric Compensation

Dimensionality / Noise
Reduction

l Known Target
Preprocessed Reflectance
Image Vector

y

Background Characterization

Endmember Selection Covariance Calculation

A

Target Detection Algorithm

Structured Background Unstructured Background
Matched Filter Matched Filter
Target
Abundance
Map

Figure 1.2: Typical target detection algorithm chain flow chart



Chapter 2

Atmospheric Compensation

Atmospheric compensation is the process of “removing” the illumination and atmosphere
from the image. Often, the known spectral signature of a target consists of reflectance val-
ues measured in a lab. These measurements cannot take into account the effects of looking
through thousands of feet of atmosphere. The ultimate goal of the atmospheric compensa-
tion process is to retrieve surface reflectance values from the radiance values recorded by
the sensor. Equation 2.1 is one version of the sensor reaching radiance equation (ignoring

thermal radiance) presented by Schott (Schott, 1997):

r(A)

Td(A
+ FE ™Y L0 PLrein 4 L (21)

Ly = [E}, cosa’m ()

where E’, is the top of atmosphere solar irradiance, ¢’ is the solar declination angle from
the target centered z axis, 71 is the atmospheric transmission of the path from the sun to
the target, r is the reflectance, F' is the fraction of the hemisphere above the target that
is unobstructed (sky), FEys is the downwelled irradiance, ry4 is the diffuse reflectance, Ly, is
the reflected background radiance, 7 is the atmospheric transmission of the path from the
target to the sensor, L, is the upwelled radiance, and A denotes the wavelength dependency
of the associated terms. The terms in Equation 2.1 that the atmosphere directly contributes

to are the two path transmittance terms, 71 and 7. As can be seen, these two terms - ™

Lt



18 CHAPTER2. ATMOSPHERIC COMPENSATION

in particular - will have a significant effect on the overall sensor reaching radiance.

All of the factors that determine the atmosphere - water vapor, molecular constituents,
atmospheric density, etc. - can substantially alter the way the same target looks under
different conditions. As a result, the atmosphere through which an image was taken must
be determined and taken into account. The simplest form of atmospheric compensation is
the Empirical Line Method (ELM). There are several other algorithms that make use of
atmospheric inversion principles: the Fast Line-of-Sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) and Atmospheric CORrection Now (ACORN) are two of the more
widely used atmospheric inversion based algorithms. These three methods are used in this

work and will be discussed here.

2.1 Empirical Line Method (ELM)

ELM relies on ground truth inasmuch as at least two different regions in the image
(preferably one dark and one light across each wavelength) have a known reflectivity. These
regions must be at least one fully resolved pixel large. In order to ensurc that an uncontami-
nated, fully resolved pixel is available, these regions generally have to be several pixels large
in each direction. The regions must have corresponding ground truth reflectance spectra,
ideally taken at the same time as the image. If such regions are not present in the image,
an educated guess can be made by selection of regions for which an approximate reflectance
can be created. For example, a white cloud may have a reflectivity of about 90% across
all wavelengths. Obviously, there is a great opportunity for error introduction if estimates
have to be made, but that can be limited if they are made smartly.

Once the two (or more) regions have been sclected, a line is fit through the radiance (or
digital counts) vs reflectivity points in each band. ELM assumes a linear relationship be-
tween the radiance (or digital counts) and the reflectivity. Mathematically, this relationship

is expressed Equation 2.2,



2.2. Atmospheric Inversion 19

L(A) = m(A) % (A) + b(}) (2.2)

where L is the observed radiance (or digital count), m is the slope of the line through the
ground truth points, r is the reflectance, and b is the radiance (or digital count) value that
represents zero reflectance. All of the terms have a wavelength dependency, A. Equation
2.2 is a very simplified linear version of Equation 2.1. Figure 2.1 illustrates this linear

relationship graphically.

Radiance
Radiance

Vo
I [
: /'/
Reflectance Reflectance
Band X Band Y

Figure 2.1: Graphical representation of ELM for two bands. The marked points are the

“ground truth” points.

Now, the observed radiance in every pixel in the image can be converted into reflectance
using the linear regression coeflicients (m and b) obtained via Equation 2.2. Tt is important

to note that ELM can work with both radiance or digital counts without calibration.

2.2 Atmospheric Inversion

An alternative method to ELM for calculation of atmospheric effects on an image is
to characterize the atmosphere in an image to make “removal” possible. There are three
main factors that, once determined, can adequately characterize the atmosphere: optical
depth of the different aerosol and molecular constituents, surface pressure elevation, and

atmospheric water vapor (Green et al., 1993).
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Atmospheric inversion exploits the unique absorption features of the varying atmo-
spheric materials at different wavelengths in order to arrive at the optical depth for the
various aerosols present in the atmosphere. Figure 2.2 shows the absorption spectra for
some common atmospheric molecular constituents. The strength. or depth, of these unique

features is used to determine the quantity of the specific molecular constituent in the at-

mosphere.
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Figure 2.2: Absorption spectra of several common molecular constituents in the atmosphere
g E

(Schott, 1997).

The second factor that needs to be determined is the surface pressure elevation. This
allows for compensation of atmospheric absorption due to well mixed gases in the atmo-
sphere and the effects of molecular scattering (Green et al., 1993). The amount of oxygen

is a good indicator of pressure depth. Oxygen can be treated the same as any other atmo-
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spheric molecular constituent, and so the process for calculating the quantity of oxygen is
the same as for the other molecular constituents. The absorption feature of oxygen present

at /& 760nm is most commonly used in this process.

The third, and perhaps most important, contributor to atmospheric characterization is
water vapor. The absorption spectrum for water is given in Figure 2.3. The absorption
feature present at =~ 940nm is commonly used to determine the amount of water vapor
present in the atmosphere. There are also strong features at ~ 1120nm and = 1340nm that

could also be used.
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Figure 2.3: Absorption spectrum of water.

Simulation is used heavily in this process. MODTRAN (Berk et al., 2005) is commonly
utilized to model the absorption features for many different concentrations of the varying
aerosols in the atmosphere. These simulated absorption features are compared to the ob-
served feature and the closest match determines the concentration of the aerosols present
in the atmosphere of the given image. The non-linear least squared spectral fit (NLLSSF)
algorithm (Green et al., 1993) is the primary determining metric for matching the modeled

and observed spectra.
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2.2.1 Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH)

FLAASH is a commercially available atmospheric compensation algorithm developed
by the Air Force Research Laboratory, Space Vehicles Directorate (AFRL/VS) to support
the analysis of visible to shortwave infrared (0.4 pwm to 2.4um) hyperspectral and mul-
tispectral sensors (Berk et al., 2002). Using the atmospheric inversion method described
above, FLAASH is able to determine the aerosol and water vapor content of the atmo-
sphere in an image as well as the surface pressure. FLAASH was designed as a general
purpose code developed in parallel with upgrades to MODTRAN. Originally, FLAASH was
designed to work with MODTRAN4. Because of this “side-by-side” development and up-
grade, FLAASH is able to exploit the speed gains and accuracy improvements obtained
by ongoing improvements to MODTRAN. Another feature present in FLAASH, which will
not be discussed in detail, is the ability to effectively remove clouds from an image. This
is done by identifying cloud pixels in the immage and replacing them with average radiance
values of the pixels surrounding the cloud.

Equation 2.3 (Berk et al., 2002) is the sensor reaching radiance (L*) equation utilized
by FLLAASH that has a different form than Equation 2.1 but will return the same value:
Ap Bpe

+ So% (2.3)

I* =
1—pS 1 —peS

where p is the pixel surface reflectance (equivalent to r in Equation 2.1), p. is an average
surface reflectance for the area surrounding the pixel in question, S is the spherical albedo
of the atmosphere (accounting for the skylight photons), L is the upwelled radiance. A and
B are surface independent coefficients that vary based on the atmospheric and geometric
conditions. All of the variables are implicitly wavelength dependent. The p. is included to
allow FLAASH to take into account the adjacency effects of the surrounding pixels on the
pixel in question.

The per-pixel 4, B, S, and L}, variables are all determined empirically via MODTRAN.
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Once these values have been extracted, Equation 2.4 is used to solve for p, (Berk et al.,
2002):
(A+ B)pe
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where L? is a spatially averaged sensor reaching radiance value.

Once p. has been determined, Equation 2.3 can be solved for reflectance (p).

2.2.2 Atmospheric CORrection Now (ACORN)

Like FLAASH, ACORN is an atmospheric compensation algorithm that can model
aerosol absorption in the atmosphere based on look-up-tables that are produced using
MODTRAN4. However, this algorithm is capable of determining both molecular and aerosol
scattering effects as well. The equation utilized by ACORN to represent the sensor reaching
radiance is Equation 2.5 (IinSpec, 2004) :

Ta(M)p(A)Tu(A)

Fo(A) = 3 -
= pu(A)*“Tf_ s(A)p(A)) -

L/()\) =

where L; is the total sensor reaching radiance, Fy is the above atmosphere solar irradiance,
T, and T, are the downward and upward transmittance of the atmosphere, p, and s are the
upward and downward atmospheric reflectance, p is the surface spectral reflectance and A
denotes the wavelength dependency of the associated terms.

ACORN seeks to solve Equation 2.5 for the surface reflectance value of each pixel, p.
This solution is given in Equation 2.6 (ImSpec, 2004) :

Fo(NTa(NTu(N) =4

p(A) = ) = F"('\Zf”"\) +s(A)| . (2.6)

A key unique feature of the ACORN algorithm is full spectral fitting to solve for the
overlap of absorption due to water vapor and liquid water in surface vegetation (Kruse,
2004). The outputs of this software package are a water vapor image and a scaled surface

reflectance cube. ACORN is commercially available and is distributed by ImSpec LLC.
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2.3 Discussion

In this chapter, three different, valid atmospheric compensation techniques are pre-
sented. All three accomplish the same task, but there are inherent differences in the output
of each algorithm. There are some similarities between the way FLAASH accomplishes this
and the way ACORN does, but theyv are still quite different from cach other. The major
differences are the assumptions each algorithm makes and the complexity of its mathemat-
ical operations. ACORN is essentially a simpler version of FLAASH. FLAASH takes into
account the adjacency effects of neighboring pixels in its calculation of surface reflectance,
while ACORN does not have this feature. This alone will cause the outputs to be radically
different from each other. The governing equations for FLAASH (Equations 2.3 and 2.4)
and ACORN (Equations 2.5 and 2.6) are obviously not the same. Again, this introduces dif-
ferences in the outputs of the algorithms. Finally, both FLAASH and ACORN differ greatly
from ELM which assumes a linear relationship between the radiance values collected and
surface reflectance.

Of all the steps looked at in this research, the atmospheric compensation step should
have the greatest effect on the overall target detection performance. This is expected
because this step actually changes the values present in the image. Also, this is the first
step in the chain. so any errors introduced in this step will be amplified and can potentially

cause errors in each of the subsequent links in the algorithm chain.



Chapter 3

Dimensionality /Noise Reduction

The next steps in the target detection process are dimensionality reduction and noise
reduction. Since these two topics are closely related, the background for them both can be
discussed simultaneously. Many algorithms tackle both problems at the same time.

The need for noise reduction is fairly obvious; as with any image processing, noise
interferes with the actual signal. It is because of this interference that the noise should
be reduced (ideally eliminated) before any processing is done on an image. The need for
dimensionality reduction may not be as intuitive as noise reduction. As mentioned in
Chapter 1, HSI relies on up to hundreds of spectral bands of information. Using all of the
information contained in all of these bands can lead to dauntingly large data sets that may
be computationally difficult or impossible to manage. Images will contain varying amounts
of pertinent information in some bands while carrying little or no significant information
in others. Also, it is likely that there is some information that is redundant across several
bands and therefore can be reduced by discarding the repeated instances. This can be
exploited, and the bands containing little amounts of data can be discarded reducing the

amournt of information to be operated on to a manageable level.

[N]
(&4



26 CHAPTER3. DIMENSIONALITY /NOISE REDUCTION

3.1 Principal Components Analysis (PCA)

Perhaps the most common method of dimensionality reduction is Principal Components
Analysis (PCA). A common assumption associated with PCA is that variability equals
information. Because of this, bands with high variance will dominate the first few principal
components. Conversely, bands with low variance that may still contain useful information
will be mixed in with noise from the more varying bands.

As is implied by the name, PCA breaks down the data into its principal components.
In order to do this, the covariance matrix for the data must be constructed. The covariance
matrix describes the dependant variability of the bands with relation to each other. Once the
covariance matrix has been determined, its eigenvectors can be calculated. These orthogonal
eigenvectors are used to rotate the original data into a new space that exactly de-correlates
the data.

For the most part, the first few principal component bands contain the majority of the
variability in an image. Because of this, PCA can be used to greatly reduce the number of
dimensions on which to operate by disregarding the lower PCA bands. Figure 3.1 shows a
simple example of PCA performed on a six band scene of Rochester, NY where the six PCA
bands are displayed. There is no “right” way of determining the number of PCA bands
to keep for an image. The amount of variation maintained must be weighed against the
computational complexity of keeping a number of PCA bands. For the example in Figure
3.1, if only the first four bands were kept, 99.33% of the variability is maintained. This
is enough to effectively reduce the dimensionality without greatly altering the amount of

information on which to operate.

3.2 Maximum Noise Fraction (MNF')

A second algorithm that reduces dimensionality, the Maximum Noise Fraction (MNF)

(Green et al., 1988), also works to improve the interaction between the noise and the signal.
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008

Figure 3.1: Principal component images from a six band image of Rochester, NY. Percentage

of variance in each PC band in parentheses (Schott, 1997).
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Essentially, the MNFE algorithm is the same as the PCA process with some “pre-processing”
steps added. For the MNF transform, the covariance matrix of the noise present is needed.
One way to obtain this in-scene (if it is not known) is by locating a radiometrically flat
field. Once a flat field is identified within an image, the mean can be subtracted from the
observed values of that field. The result is a representation of the noise present in the image.
Once this “noise image” is found, its covariance matrix can be calculated.

The next step in this process is basically to perform PCA on the noise image to de-
correlate the noise. This is done by calculating the eigenvectors of the noise image. By
definition, the resulting eigenvectors are orthogonal to each other. The original image can
now be “passed through” this orthogonal transformation. After this is done, the orthog-
onally transformed image can be whitened, or normalized, by the eigenvalues of the noise
covariance matrix. The final result of all these steps is an image in which all of the noise
present is orthogonal and identical. Now, the PCA previously described can be performed.

The advantage of the MNF' transform is that the “pre-processing” steps force the as-
sumption used in PCA of variance representing information to be true. There is now equal
variance present due to noise in the image. The bands are rank ordered by the signal to noise
ratios and the highest PC bands arc retained. The result is a greatly reduced dimension

space with little noise to interfere with target detection.

3.3 Discussion

As described above, the process involved in both PCA and MNF is very similar, however,
the results will be dramatically different. This difference stems from the fact that MNF uses
the eigenvectors from a different matrix to perform the rotation in an effort to reduce noise.
Calculation of the eigenvectors and the actual rotations are rather trivial mathematical
operations. Neither PCA nor MNF change the amount of information present in the data.
However, in order to reduce dimensionality, some of the lower components have to be thrown

out. This will reduce the amount of information retained, by design. If the information
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removed is noise (as is the goal of MNF), the overall performance of the algorithm chain
can improve. Conversely, if the removed PC bands contain some pertinent data, the overall
performance of the algorithm chain can be greatly degraded.

If the "noise image” does not characterize the noise present in the image well, the
eigenvectors derived will not rotate the data into a space that is orthogonal to the true
noise in the image. What will end up happening is the data will be rotated into a space
that is orthogonal to some of the pertinent information causing poor information to be
passed on to the next step in the chain. Another situation that will hinder the ability of
MNF to improve the overall algorithm chain, is there being very little noise in an image to
begin with. Extremely low noise is very difficult to characterize well.

The algorithm for this step that is expected to most greatly improve the detection results
is the "none” case. This is due to the fact that no information is being removed from the
original image. By performing PCA or MNF, that sheer amount of data is reduced to a
point where it is much more manageable computationally. Clearly, there is a trade off here,
however this aspect will not be discussed in detail in this research. The focus is solely on

which algorithm will contribute to the best overall detection results.



Chapter 4

Endmember Selection

There are two overarching ways to characterize the background of an image: structured
or unstructured. A structured background is one that is defined by a set of basis vectors.
This set of basis vectors, or endimembers, completely defines every non-target pixel in an
image, in theory. An unstructured background is defined statistically, normally by a covari-
ance or correlation matrix. While a background independent matched filter, the Spectral
Angle Mapper (SAM), and an unstructured matched filter, the generalized likelihood ratio
test (GLRT), were used in determining the targets, this research focuses on matched filters
that employ a structured background.

All targets fall into two very broad categories: resolved and unresolved. A fully resolved
target is one that fills at least one entire pixel in an image. An unresolved target is one
that does not fully fill a pixel. For targets that are unresolved, it becomes necessary to
determine the constituents of each pixel when using a structured background model. [n
order to accomplish this, each pixel must be represented as a combination of its components
(or endmembers). A common representation, known as the linear mixing model (LM},

for a mixed pixel is shown in Equation 4.1:

L=EF (4.1)
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where L is the radiance vector of the pixel, E is the endineraber matrix, and F is the vector
of unknown endmember fractions. This representation is based on the assumption that each
pixel is a linear combination of the image endmembers. Every pixel in an image, whether
it contains target or not, can be represented using the LMM. However, the accuracy is

determined by how well the set of endmembers characterizes the scene.

In order to enable the matched filters to properly suppress the background in an im-
age, the background must first be well characterized. This is accomplished by deriving the
endmembers used to define the background pixels. In theory, the background is fully char-
acterized by a matrix consisting of all the endmembers that mix to define all non-target
signals present in the image. This would represent an ideal situation that would result in
endmember matrices that could be almost as large as the image itself and rendering the
matched filters nearly too computationally cumbersome to use. In practice, several end-
members are used to represent the entire background. There are several different methods
of eliciting these endmembers directly from an image, three will be discussed here: PPI,

MAXD, and N-FINDR.

4.1 Pixel Purity Index (PPI)

The first endmember selection algorithm is the Pixel Purity Index (PPI) method (Board-
man et al., 1995). Using PPI, all of the pixel values in an image are projected onto randomly
selected vectors. Each time a projection is accomplished, the extreme points are noted.
Spectrally pure pixels will consistently be extreme points of these random projections. A
major assumption of this method is that spectrally pure pixels (which are endmembers)
are present in the image. This is generally a good assumption. This method is also rather
susceptible to noise, so steps (e.g. thresholding) should be taken to help lessen the negative

effects of noisy pixels. Figure 4.1 is an example projection of data points.
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4.2 MAXD

The second endmember selection technique is MAXD (Lee, 2004). Similar to PPI.
MAXD also uses projection to help sort out the endmembers of an image. Given a set of
data points, MAXD begins by selecting the points that have the maximun and minimum
Euclidean distance from the origin. These two points are the first two endmembers. Once
these points are selected, all of the data points are projected onto a vector orthogonal to
the difference vector between the first two, and the pixel the maximum distance from the
common point projection of the first two is selected as the next endmember. This process is
repeated until the desired number of endmembers is found. Figure 4.2 pictorially explains

how this process works.

4.3 N-FINDR

Another method of determining endmembers in an image is N-FINDR (Winter, 1999).
This method again looks for extrema points in the data set. The set of data points for

an image in N-dimensional space can be thought of as a convex-hull, where one more
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Figure 4.1: Example PPI projection (Boardman et al., 1995).
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endmember than dimensions is needed to make a closed convex hull. For example, given an
image with two bands (dimensions), three endmembers form a triangle as a closed convex
hull (Figure 4.3). This algorithm was originally packaged for use in unmixing pixels in
an image as opposed to target detection. However, both processes require endmembers to
be elicited from the image first. Because of this overlap, N-FINDR is able to be used for

background characterization due to its ability to return the spectra of all the endiembers

it uses to unmix an image.

N-FINDR assumes that spectrally pure pixels can represent endmembers. Clusters of
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Figure 4.2: MAXD endmember selection algorithm (Lee, 2004).
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Figure 4.3: Convex hull for a two band image.
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pixels around the area of a “point™ on the convex hull, such as the clusters labeled 1. 2, and
3 in Figure 4.3, are indications of spectrally pure pixels. Spectrally mixed pixels generally
appear between the pure pixels, sometimes outside of the convex hull, and are recognized

as non-endmenbers by N-FINDR.

As a starting point, N-FINDR randomly selects a group of pixels (automatically deter-
mined by a statistical analysis of the image (Senna Consulting, 2004)) so that a convex
hull can be formed. Once these points have been chosen, the volume of the convex hull is
computed. This is repeated until every possible combination of points that could form a
convex hull has been used and has a volume associated with it. The set of points resulting
in the largest volume is then selected as the end members. Figure 4.4 graphically shows the

maximum volume convex hull selected for a two band image.
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Figure 4.4: Maximum volume convex hull for a two band image (Senna Consulting, 2004).

This algorithm is also very sensitive to noise. So, as with PPl and MAXD, steps need

to be taken to decrease the unwanted effects of noisy data.
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4.4 Discussion

The ultimate goal of this step in the algorithm chain is to characterize the background of
an image by determining a set a basis vectors representative of the background. All three of
the algorithms discussed in this chapter can satisfactorily accomplish this goal. However, all
three will return a different set of basis vectors. This is because all three of the algorithms
are very different from each other in their implementation. The two that are most similar
are MAXD and PPL. Both of these project the data set onto vectors and record the extrema
points. The major difference in theory is that MAXD will use pixels taken directly from the
image and PPI is actually an average of several pixels from the image. In practice, MAXD
is fully automated, but PPI requires a great amount of uscr input. Chapter 6 discusses this
reliance on the user by PPI in greater detail.

N-FINDR uses an entirely different technique to determine the basis vector set. This
difference alone would result in different vectors being elicited. As with PPI, N-FINDR
also averages several similar pixels to arrive at each basis vector. This option exists to
help mitigate the inherent susceptibility to noise of N-FINDR, but can be skipped causing
the vectors chosen by N-FINDR to be pulled directly from the image. All three of these
techniques are viable options for selecting endmembers. But, for some cases, one may (or

may not) be a better option.
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Matched Filters

One of the most common ways to go about searching an image for a known target is
by use of matched filters. Basically, a matched filter scans an image looking for a specified
spectral signature. It accentuates pixels that “look™ similar to the target. All matched
filter approaches rely on the same basic hypothesis test: Hy - target present, or Hy - target
absent. Each pixel in an image is interrogated and returns an answer proportional to the
likelihood of the target being present in that pixel. The responses to the matched filters are
then thresholded to return an answer to this binary hypothesis test. In order to accomplish
this test, the matched filter must attempt to reject the background (any signal present
that is not from the target) and amplify the target. The matched filter used in any given
circumstance is based on the type and amount of a priori knowledge of the target. the

background, the noise present and their mutual interaction.

All matched filters can be separated into three basic categories defined by the way
the image background is modeled: 1) background independent, 2) structured or geometric
background models, and 3) unstructured or stochastic background models. As noted in
Chapter 1, SAM is a background independent matched filter and is the only onc of this
variety discussed. The GLRT is the only stochastic matched filter emploved in this research

as the focus is on structured background model matched filters.

37
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5.1 Matched Filters Using Structured or Geometric Back-

ground Models

Structured background models rely on the assumption that every pixel in the image can
be represented as a combination of the constituent materials in a scene. Commonly, this
mixture is thought to be linear as discussed in Chapter 4. There is a plethora of ways to
determine the endmembers mixing to create the scene pixels, several of which are described
in Chapter 4, and it is important to note the dependency these matched filters have on
that process. For structured background models, the two competing hypotheses can be

represented by Equations 5.1 and 5.2.
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where 7 is the (L-band x 1) pixel of interest, U is the (L x Q) matrix having Q background

vectors, @y is the (Q x 1) relative abundance of the background vectors U, w is the (L x

1) noise vector, d is the (L x 1) target vector and qy is the (scalar) target abundance.
There are four fundamental assumptions for target detection using the structured back-

ground model:
1. Every pixel can be represented by the linear mixing model
2. The modeling crror is uncorrelated with a multivariate normal distribution
3. The background spectra are known
4. The target spectra are known

All of the structured background algorithms attempt to accomplish the same end:
project the entire image into a space orthogonal to the background space. When the

background space is properly defined, the orthogonal projection effectively removes the
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background from the image and gives a measure of how “target-like” each pixel is. Figure
5.1 offers a graphical representation of the operations involved in the geometric background

model algorithms.
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Figure 5.1: Graphic representation of structured background model matched filter opera-

tions (Manolakis and Shaw, 2002).

The ultimate goal of the target detection algorithm chain is target detection. The means
to accomplish target detection in this case are matched filters. The two similar but differ-
ent structured background matched filters compared by this research are the Orthogonal

Subspace Projector (OSP) and the Adaptive Subspace Detector (ASD).

5.1.1 Orthogonal Subspace Projector (OSP)

The test statistic for the OSP detector is written as

d" Pyx
T ISP '.L‘ e e
where d is the desired target vector and P, = I — U(UTU)~UT with I being the (bands x
bands) identity matrix and U being the matrix of endmember vectors (Harsayni and Chang,.

1994). In words, Pyx is the projection of the pixel, x, onto the vector orthogonal to the

background subspace.
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OSP projects each pixel into a space orthogonal to the background of the image which is
represented by the background endmembers elicited from the iinage. This, in theory, forces
the target pixels to “stick out” from the background. The pixels that most closely match

the given target spectra receive a high Tpgp value.

5.1.2 Adaptive Subspace Detector (ASD)

A second implementation of a structured background model detector is ASD. The test

statistic for this detector is represented mathematically as

.’IYT(Pb A Ps)r
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where Pg = I — S(ST8)~1ST with S = [dU] the matrix formed by the concatenation of the
target spectra and the endmember spectra, and the other variables are the same as those
defined for Equation 5.3 (Manolakis et al., 2001).

Both OSP and ASD suppress the image background by projecting each interrogated
pixel onto a space orthogonal to the background via the P}, operation. The major difference
between OSP and ASD is the Pg term used in ASD. This is the projection of the pixcl onto
a space orthogonal to the background and the target. The difference between these two
projections, P, and Pg, is a measure of just how “target-like” the pixel is. This is the only
difference between these two matched filters, but it is cnough to cause the results from the

two to be drastically different.



Chapter 6

Methodology

The previous chapters discussed the theory behind all of the algorithms used for this
research. All of the implementations that were alluded to were general and did not go into
too much detail on exactly how to go about using the various algorithms. This chapter
will detail exactly how each algorithm was used, the inputs and outputs for each step, and
grant an understanding of how the results presented in the following chapter were generatel.

Whenever possible, all algorithms were performed within the ENVI environment.

6.1 Data Set

The data set used for this research was an image from the “Forest Radiance I" ex-
periment collected by the HYDICE (Rickard et al., 1993) sensor. The image dimensions
are 320x1280 with 210 spectral bands covering the spectrum from approximately 350nm to
2500nm. A “border” of non-image pixels is present on either side of this image. These two
“borders” were taken out of the image by removing ten columns of pixels from either side of
the image. Of the 210 spectral bands. some were excluded, particularly covering the water
and oxygen absorption bands, leaving 145 “good” bands. All calculations were performed
on the resulting image of dimensions 300x1230 with 145 spectral bands.

Eight targets of varying degrees of difficulty were used to compare the algorithin chains.

41
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There are many man-made targets placed into this scene including six calibration panels
varying from 2% gray scale to 64% gray scale reflectors. In order to determine the overall
difficultly of detection for each target, two basic matched filters were run for every target
in the scene: SAM, and GLRT.

SAM is a background independent target detection algorithm that relics on the spectral
angle between the target and pixel in question to determine if the target is present. The

test statistic is computed as

dlx
(de)l/z(mT'm)l/Q

Tsan(r) = (6.1)

where d is the target spectrum and x is the pixel spectrum in question. For the purposes
of this research, the SAM results were used in determining the targets to be compared and
the difficulty of their detection.

The GLRT relies on an unstructured, or stochastic, representation of the image back-
ground in the form of a covariance matrix and, for this implementation, a pre-defined target

spectrum. The GLRT is written as

(dT 5 12)?
dTE-1d)(1 + zTE1x)

Tarrr(x) = ( (6.2)

where d and x are the same as Equation 6.1 and ¥ is the covariance matrix used. The
GLRT results were generated using the covariance of a spatially selected region consisting
of “tree” pixels in the image. Both SAM and GLRT operated on an ELM corrected image.

By simply looking at the image (Figure 6.1), it can be seen that, barring the planted
targets, the scene is rather uncluttered with little man-made material. There are only about
six or seven different classes of pixels present in the image and several of those are rather
similar (i.e., light and dark grass are considered unique classes). Secondly, there are no
“concealed” target pixels, all of them are out in the open and completely uncovered. There

are both fully resolved and sub-pixel target pixels for all target types.
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6.2 Target Selection

Section 6.1 states that there are many planted man-made targets in the image. In ac-
tuality, there are 40 such unique materials deployed in the scene. To use all 40 targets for
comparison would be prohibitive. So, choosing a smaller subset of targets that is represen-
tative of the larger group becomes necessary. The targets can be lumped into three main
groups: panels and tarps, vehicles, and netting. So, at least one target from each of these
groups was selected. Secondly, targets of varying sizes are present, so both large and small
targets were chosen. The amount of pixels per selected target ranges from 9 to 347.

Lastly, some targets are easier to detect than others due in large part to the amount
of contrast that exists between the target and scene background (i.e.. it is easier to find a
needle in a haystack than a specific needle in a stack of needles). It is vitally important that
targets of differing detection difficulty were chosen for comparison. In order to determine
just how easy or difficult a particular target is to detect, some empirical method has to
be devised. The two general detectors discussed in Section 6.1 were used for this purpose.
SAM and GLRT were both used to detect each of the targets in the image with all of the
other planted targets masked out so as to not provide false alarms.

Based on the above mentioned criteria, eight targets were selected. Table 6.1 below

Figure 6.1: Three band RGB representation of the HYDICE sensor data set Run 05 from

the Forest Radiance I experiment.
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provides a list and description of the targets selected.

Name | # of Pixels | Target Contrast
Cbs 344 high
F3 35 high
F4 33 high
EF8 g low
F13 20 high
V1 67 low
VF1 50 low
VE6 44 low

Table 6.1: Table of selected targets.

6.3 Atmospheric Compensation

The Forest Radiance I data set came with an ELM and a FLAASH corrected image
included in the distribution. The ACORN compensation had to be performed on the original
image using the software package distributed by ImSpec LLC.

The ground truth points used for the ELM compensation were the calibration panels
placed in the image. The panels were measured at the time the overhead imagery was
taken and therefore are the best possible approximations for those particular panels. The
resulting compensated image is comprised of floating point precision values in unscaled
surface reflectance units.

FLAASH was run using an IDL interface with a combination of text menus and a
graphical user interface (GUI). The IDL code has since been incorporated into the ENVI
program and a FLAASH GUI is now available in ENVI. The output file from FLAASH is
the reflectance scaled into 2-byte signed integers (RSI, 2004). The scale factor used for this

data set is 10,000.
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ACORN requires rather simple input parameters, primarily information about when
and where the data were collected so as to decide which atmospheric parameters to use for
the inversion. In order to properly perform the necessary calculations, the values of the
input file must be in units of W/m?/um/sr (ImSpec LLC, 2004). A scale factor of Tl.; was
applied to the calibrated HYDICE file in order to achieve the necessary radiance units for
the ACORN program. Like, FLAASH, the values of the ACORN compensated output file

are 2-byte signed integers that are the reflectance scaled by 10,000.

6.4 Dimensionality / Noise Reduction

Both of the algorithms used for this step of the algorithm chain were implemented
via ENVL. PCA was performed directly on the atmospherically corrected images using the
option available in ENVI. The goal of PCA is to reduce the dimensionality of the image
to be operated on and keep as much variability as possible. Well over 99% of the overall
variability of each image was preserved. Table 6.2 details the number of PCA bands retained
for each image and the variability associated with those bands. The option to use the scene

covariance matrix in the transform was selected.

Atmospheric Compensation Method | PCA Bands Retained | % of Variability

ELM 20 99.82
FLAASH 20 99.85
ACORN 20 99.96

Table 6.2: Number of bands and total percentage of variability retained after PCA was

performed on the atmospherically compensated Forest Radiance I images

The similarities between PCA and MNF were outlined in Chapter 3. The major differ-
ence is the need for the statistics to characterize the noise in the image. ENVI can calculate
the noise statistics of an image automatically by selecting the “Estimate Noise Statistics

from Data” option in the MNF Transform menu. ENVI was not able to calculate noise
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statistics from the ACORN compensated image. Due to the inherent similarities between
FLAASH and ACORN, the noise statistics computed for the FLAASH compensated image
were used to perform the MNF transform on the ACORN compensated image. Table 6.3
contains the number of MNF bands retained for each image and the variability associated

with those bands.

Atmospheric Compensation Method | MNF Bands Retained | % of Variability

ELM 136 98.14
FLAASH 137 98.22
ACORN 50 99.86

Table 6.3: Number of bands and total percentage of variability retained after MNF was

performed on the atmospherically compensated Forest Radiance I images

The case where no dimensionality /noise reduction was performed is also explored in this
research. The statistic files generated by ENVI used to accomplish the forward PCA and

MNF transforms were retained for use later to perform a reverse transform.

6.5 Background Endmember Selection

Of the three different endmember selection algorithms, only one, PPI, is able to be
run in ENVI. The other two methods required other software in order to be run. The
following sections will detail exactly what software was used and all of the image processing

accomplished before running the different endmember selection algorithms.

6.5.1 PPI

The ENVT PPI implementation is not a single, stand-alone option and requires some user
intervention. The first step is to input the number of iterations (random vector projections)
that ENVT will perform. ENVI uses a threshold factor to help mitigate noise interference.

The threshold factor determines the number of pixels other than strictly the extreme pixels
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considered - pixels within the threshold factor of the extreme pixels are considered extrema
as well. This must be input at the same time as the number of iterations. In this case,
30.000 iterations were run for all three images. For the ELM image, a threshold of 0.02 was
used and for FLAASH and ACORN, a threshold of 2 was used. The difference in thresholds
is due to the scaling of the FLAASH and ACORN images mentioned in Section 6.3. ENVI
also allows for the use of a pixel mask. Masked pixels are effectively removed from the
image prior to PPI being run. All of the targets planted in the image were masked out.

The next step is for the user to decide how many times a pixel must be detected to he
considered a possible endmember. This is a judgement call on the part of the user. The
number of apparent background classes was discussed in Section 6.1. So, the number of
pixels looked at as endmembers was selected so as to allow for 6 to 10 ditferent clusters.

Once the number of pixels to be considered is determined, they must be clustered. This
is done using the n-dimension visualizer in ENVI. The significant pixels are clustered by
the user. The mean of each cluster of pixels is then used as an endmember; the number of
clusters found is equal to the number of endmembers elicited from the image.

Table 6.4 contains the least number of times a pixel was identified as extreme to be
considered a possible endmember, the total number of pixels at or above that threshold,

and the resulting number of endmembers for each image used.

6.5.2 MAXD

There is no implementation of MAXD in ENVI. Since MAXD was originally developed
at Rochester Institute of Technology, an in-house IDL program that was written by Dr.
Harvey Rhody was used. This IDL code is not currently commercially available. T'nlike
PPI, the MAXD code is a fully automated process where the ouly user input is the number
of endmembers to be found. Past research has shown that there is an optimal number of
endmembers that can be found via MAXD for a scene. Selection of either too many or

too few has a negative impact on detection results using the background characterized by



48 CHAPTER6. METHODOLOGY

MAXD (Bajorski and Ientilucci, 2004). When using MAXD on the Forest Radiance I data
set, between 8 and 14 endmembers works well to characterize the scene. So, the user defined
maximumn number of endmembers to be found by MAXD was set at 10 for all images. As
with PPI, all of the planted targets in the scene were masked out prior to running the

MAXD routine.

6.5.3 N-FINDR

The software to run N-FINDR is available commercially and is distributed by ImSpecc
LLC. The version used for this research is N-FINDR, 3.0 provided by Michael Winter. Like
the other two endmember selection methods, the planted targets in the scene were removed
prior to the application of the N-FINDR routine. However, unlike the others, this presented
a bit of a dilemmma. The dimensions of the image do not matter when running PPT or MAXD.

Such is not the case with N-FINDR. The image must “look” like an image in order for the

Atmospheric Compensation / Pixel Detect | # of Pixels | # of Endmembers
Endmember Selection Combination | Threshold Selected Elicited

ELM / None 15 546 7
MiELI\I / PCA 200 1646 7

ELM / MNF 10 269 6
FLAASH / None 10 344 6
FLAASH / PCA 10 24| 8
FLAASH / MNF 25 969 7
ACORN / None 10 405 6
ACORN / PCA 10 340 7
ACORN / MINF 200 1801 T

Table 6.4: The number of pixels considered and the number of endmembers selected using

PPI for each image.
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N-FINDR program to properly run. That is to say that the image must be in the format
(X x Y x bands). The removal of the planted targets changes the dimensions of the image
to be (pixels x bands) and removes several pixels from the image. The result is an image
that is (pixels x bands) but cannot be returned to its original dimensions. Luckily. the
resulting number of pixels in the image after the targets have been removed was such that
they could be reoriented into (X x Y x bands) form. However, all spatial information is
lost, but spectral integrity is retained and that is all that is important for this step. The

size of the images fed to the N-FINDR program was (393 x 959 x 145).

The second difficulty with N-FINDR was encountered when running it on a PCA or
MNF image. Unlike the other two methods, N-FINDR returns only the spectra of the
selected endmembers, not location. So, when being run on a PCA or MNF image, the PCA
or MNF spectra is returned. In order to combat this, the returned spectra are run through
the reverse PCA or MNF transform using the saved statistics files mentionec in Section
6.4. The result is equivalent to the spectra of the selected pixels in their respective original

atmospherically compensated image.

N-FINDR is able to statistically determine the “correct” number of endmembers to
retrieve for a scene. It also allows the user to enter a maximum number of endmembers
to find. For each N-FINDR run, the maximum number of endmembers was set sufliciently
high to allow the program to determine the number on its own. Table 6.5 lists the number

of endmembers the N-FINDR program chose to find for each image.

The second user input is the approximate signal to noise ratio (SNR) of the sensor. The
SNR used for the HYDICE sensor was 150. Finally, in order to help alleviate the inherent
susceptibility to noise of the algorithm, an option to “average endmembers to reduce noise™
is offered and was selected. This option groups pixels found as endmembers that are spec-
trally similar and uses the mean of these groups as the representative endmember for those

pixels.
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6.6 Detection and Metrics

Neither of the two matched filters are available for use in ENVI. However, they are
rather simple mathematical operations. A simple IDL code was written for each matched

filter and was used to implement them.

6.6.1 ROC Curve and AFAR Generation

The actual detection statistics were calculated for every pixel in the image, including
all of the planted targets. However, when the false alarm rates and detection rates were
calculated, the results for the pixels that were planted materials and not the target in
question were not considered. As a result, detection of these pixels was not treated as a
false alarm.

ROC curves generally plot the probability of false alarm against the probability of
detection. Since the exact location of each target pixel in the image was known, it was

possible to estimate these probabilities as sample rates. The ROC curves generated are

Atmospheric Compensation / # of Endmembers
Endmember Selection Combination Elicited
ELM / None 6
ELM / PCA 6
ELM / MNF 30
FLAASH / None t; -
FLAASH / PCA g
FLAASH / MNF a7
ACORN / None 8
ACORN / PCA 10
ACORN / MNF 15

Table 6.5: The number of endmembers automatically selected by N-FINDR for each image.
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false alarm rate (the actual fraction of false alarms encountered) versus detection rate (the
actual fraction of target pixels encountered). The AFAR was computed by simply averaging
each false alarm rate at each detection rate. AFAR can be used as a general guideline as to
performance (lower is better), but for detailed comparison, the ROC curves provide better

insight.



Chapter 7

Results

7.1 Atmospheric Compensation

Of the three atmospheric compensation algorithms discussed in Chapter 2, it is expected
that ELAM will produce the best results for this particular data set. This is due to the high
level of ground truth with this data set. The accuracy of the line fit between ground truth
points is increased greatly with a higher level of ground truth (i.e. calibration panels)
This assertion is supported by Figures 7.1 and 7.2 which show the ELM compensated pixels
fitting much closer to the measured reflectance values than either the FLAASH or ACORN
compensated pixels. It should be noted that data sets very rarely contain a high enough

level of ground truth to cffectively use ELM.

The difference in performance is most noticeable for the lower gray scale panel (darker)
shown in Figure 7.1. For the brighter panel, Figure 7.2, all of the algorithms share a similar
shape with the measured spectrum but differing magnitudes. Tt should be noted that the
shown measured spectrum is an average of all the measured values for the entire calibration
panel. The atmospherically compensated spectra reported are for a single pixel on the

panel.
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Atmospheric Compensation of a 2% Gray Scale Panel
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Figure 7.1: Reflectance values, measured and derived by atmospheric compensation for a

2% gray scale panel in the Forest Radiance I scene.

Atmospheric Compensation of a 32% Gray Scale Panel
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Figure 7.2: Reflectance values, measured and derived by atmospheric compensation for a

32% gray scale panel in the Forest Radiance I scene.
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7.2 Algorithm Chain Evaluation

The primary means for evaluating each of the various algorithm chains is via ROC curves
and AFAR calculations. Both of these metrics are based on 100% detection. That is to say
that every target pixel in the scene - whether it is fully resolved, sub-pixel, glare or shadow
- is counted in the detection rate. The ROC curve and AFAR values for every algorithm
chain experimented with can be seen in Appendix A.

Figures 7.3 through 7.6 show the algorithm chains that performed the best and worst
for the four high contrast targets. The figures are displayed in order of target detection
difficulty as determined by the median values (shown in yellow in each figure). The median
values are used to determine difficulty because they are directly tied to how easy or difficult
the target is to detect. For example, if the median (1 - AFAR) value is high, then more
algorithm chains had higher overall (1-AFAR) values. If the median value is low, that means
that the algorithm chains had a more difficult time detecting the target pixels.

5 Best, 5 Worst, 2 Median (1 - AFAR) Values
mELM_MAXD_OSP

1 " s« ELM_PCA MAXD OSP
- ' + ELM_MNF_MAXD_OSP
s ELM_MNF_MAXD_ASD
& 05 ) - ELM_MAXD_ASD
& : ELM_PPI_OSP
=’ 04 : ACORN_MAXD_OSP
@ - FLAASH_MAXD_ASD
02 » ACORN_PCA_NFINDR_ASD
4 FLAASH_MNF_MAXD_ASD
R d—— E— e » ACORN_MNF NFINDR_ASD
F3 mACORN_PCA_MAXD_ASD

Figure 7.3: 1 - AFAR values for the F3 target.

Figures 7.7 through 7.10 show the algorithm chainsg that performed the best and worst
for the four low contrast targets.

The top five and bottom five performers for each target are listed. One observation that
immediately presents itself in the above figures is the very wide performance spread that

exists between the various algorithm chains for each target. This shows that the choice of
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Figure 7.4: 1 - AFAR values for the F4 target.
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Figure 7.5: 1 - AFAR values for the F13 target.
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Figure 7.6: 1 - AFAR values for the C5 target.
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Figure 7.7: 1 - AFAR values for the F8 target.
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algorithm used to accomplish each step does have a profound effect on the ability to detect

a target in the scene.

There are some chains that consistently appear among either the top or the bot-
tom 5 performers. If all eight targets are treated as one large set, there are three dif-
ferent algorithm chains that are among the best 5 performers for 50% of the targets:
ELM-MNF-MAXD-ASD, ELM-PCA-NFINDR-ASD, and ELM-PPI-ASD. Of these three
chains, the only common links are the atmospheric compensation method (ELM) and the
matched filter used (ASD). Similarly, there are two algorithm chains that performed among
the worst 5 for 50% of the targets: ACORN-MNF-NFINDR-ASD and ACORN-PCA-MAXD
-ASD. Again, the atmospheric compensation algorithm (ACORN) and the matched filter

(ASD) are the common links.

The discussion in the previous paragraph was focused on treating all eight targets as
one large group. If the targets are broken up into two smaller groups (high and low con-
trast), the results are perhaps a little more telling. Of the high contrast targets, there
were no algorithm chains that performed among the top 5 for all four targets. One chain,
ELM-PCA-MAXD-OSP, was in the top 5 for 3 out of the 4 targets. There were, how-
ever, 2 algorithm chains in the bottom 5 performers for all four of the high contrast targets:

ACORN-MNF-NFINDR-ASD and ACORN-PCA-MAXD-ASD. The ACORN-PCA NFINDR
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Figure 7.10: 1 - AFAR values for the VF6 target.
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-OSP chain is among the bottom 5 performers for 3 of the 4 high contrast targets.

The low contrast targets exhibit similar phenomenons to the high contrast targets. One
algorithm chain, ELM-PPI-ASD, was in the top 5 performers for all of the low contrast
targets, and the ELM-PCA-NFINDR-ASD chain was in the top 5 for 3 of the 4 targets.
There were no algorithm chains among the bottom 5 for all of the low contrast targets, but 3
chains were in the bottom 5 for 3 of the targets: ACORN-PPI-ASD, ELMN-PCA-PPI-OSP,
and FLAASH-MAXD-OSP.

Another way to evaluate the performance of the various algorithm chains is to look at the
detection rates at a constant false alarm rate (CFAR). This statistic shows how “quickly”
an algorithm chain is able to detect the target pixels. A high detection rate means that
more target pixels were found prior to a set number of false alarms than an algorithm with
a low detection rate. Figures 7.11 through 7.18 below show the 5 highest, 5 lowest, and 2
median detection rates for all of the targets at a constant false alarmn rate of 10~*. The
targets are displayed in the same order as the (1- AFAR) figures presented earlier.
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Figure 7.11: Detection rates at a CFAR of 107! for the F3 target.

Figures 7.15 through 7.18 show the algorithm chains that performed the best and worst
for the four low contrast targets based on the (1 - AFAR) values.
It is immediately obvious that the targets that had high (1 - AFAR) values do not

necessarily have the best CFAR detection rates. This shows that the “best” algorithm
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Figure 7.12: Detection rates at a CFAR of 10~ for the F4 target.
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Figure 7.13: Detection rates at a CFAR of 10™* for the F13 target.
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Figure 7.14: Detection rates at a CFAR of 10~ for the C5 target.
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Figure 7.15: Detection rates at a CFAR of 10~ for the F8 target.
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Figure 7.16: Detection rates at a CFAR of 107" for the VF1 target.
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Figure 7.17: Detection rates at a CFAR of 10~ for the V1 target.
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chain depends on the application. If detection of all target pixels is desired, then the
algorithm chain with the highest (1 - AFAR) rate would be the “best”. If detection of a
high number of (but not all) target pixels and a low number of false alarms is desired, then
the algorithm chain with the highest detection rate at a low false alarm rate would be the

“best”.

7.2.1 Average (1 - AFAR) Values

The previous discussion focuses on the (1 - AFAR) value and the CFAR detection rate
for each individual algorithm chain in order to help describe algorithm chain performance.
It is also important to look at the overall performance of each algorithm to help establish
a good baseline to use when first attempting target detection on a new data set. In order
to accomplish this, the algorithm chains were grouped by the atmospheric compensation
algorithm that began each chain, and the average (1 - AFAR) value was calculated for each
group over all of the targets. The result was that the chains incorporating ELM drastically
outperformed the chains using FLAASH or ACORN. The results of this grouping can be
seen in Table 7.1.

Once the top performing atmospheric compensation algorithm was determined, then

each algorithm chain using the top atmospheric compensation algorithm was then grouped
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Figure 7.18: Detection rates at a CFAR of 107 for the VF6 target.
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by its dimensionality /noise reduction algorithm. The average (1 - AFAR) value was again
calculated. As can be seen in Table 7.2, PCA only slightly outperformed MNF, but both
were considerably better than doing no dimensionality/noise reduction at all.

Next, the top performing chains, the ones containing ELM and PCA as the first two
steps, were grouped by the next link in the algorithm chain: endmember selection. Table
7.3 shows the results of this next level of grouping.

Again, there were two algorithms that resulted in very similar average (1 - AFAR) values,
MAXD and N-FINDR. Both of these algorithms had significantly higher values than PPIL
Since N-FINDR was the top performer, the next step was to look at the average (1 - AFAR)
values of the chains using ELM, PCA, and N-FINDR grouped by the matched filter used.
Table 7.4 shows the results of this grouping.

As Table 7.4 shows, the chain using ASD greatly outperformed the chain using OSP.

Atmospheric | Average (1 - AFAR)
Compensation Value
ACORN 0.505990635
ELM 0.805887969
FLAASH 0.71301075

Table 7.1: Average (1 - AFAR) values based on atmospheric compensation algorithm.

Algorithm | Average (1 - AFAR)
Chain Value

ELM / NONE 0.777652139

ELM / MNF 0.819258106

ELM / PCA 0.820753661

Table 7.2: Average (1 - AFAR) values based on dimensionality /noise reduction algorithm

for chains using ELM.,
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The overriding conclusion that can be drawn from this analysis is that the algorithm chain
ELM-PCA-NFINDR-ASD is the best performing chain on average.

As mentioned in Section 7.1, ELM is not very likely to be used in a practical application
because of its reliance on accurate ground truth data. For the purposes of this research,
ELM was treated as being equally likely to be used as both FLAASH and ACORN. So, the
question of which algorithm chain would perform the best if ELM was not a viable option
for atmospheric compensation can be raised. According to the results shown in Table 7.1,
one would expect that FLAASH would always be a better option than ACORN because of
the disparity in their average (1 - AFAR) values. By and large, this statement holds true.
Naturally, there are a few data points contradictory to this assertion. For example, the
second best performing algorithm chain for the F4 target (Figure 7.4) based on (1 - AFAR)
value uses ACORN as its atmospheric compensation routine. However, it can be concluded

that chains using FLAASH outperform chains using ACORN the vast majority of the time.

Algorithm Average (1 - AFAR)
Chain Value
ELM / PCA / MAXD 0.87428808
ELM / PCA / N-FINDR 0.876219555
‘ ELM / PCA / PPI 0.711753348

Table 7.3: Average (1 - AFAR) values based on endmember selection algorithm for chains

using ELM and PCA.

Algorithm Average (1 - AFAR)
Chain Value |
ELM / PCA / N-FINDR / ASD 0.923335609
ELM / PCA / N-FINDR / OSP 0.829103502

Table 7.4: Average (1 - AFAR) values based on matched filter algorithm for chains using

ELM, PCA, and N-FINDR.
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7.3 Conclusions and Future Work

It is difficult to make any broad conclusions based on the results of this research. First
of all, only a very small piece of what could be a much larger project was looked at. There
are a significant number of algorithms for each step in the target detection chain that were
not addressed and new algorithms are being developed all the time.

One of the main points that can be made is concerning the effect of the different algo-
rithms for each step. It was expected that different results would be seen for the different
chains being used. What was seen was that there is a very large range of performance from
very good to very poor for different combinations of algorithms.

It would be very beneficial to continue this research by expanding the number of algo-
rithms tested for each step in the target detection chain. Also, repeating this research on
differing scenes, i.e. a cluttered urban scene, would be a step toward being abld to make
much more broad generalizations about the effectiveness of specific algorithm chains in a

given situation.



Appendix A

ROC Curves and AFAR Data

The following figures are all of the graphs generated in conjunction with this research.
All of the discussion associated with these figures is in Section 7. The graphs are sorted by
target and each ROC curve and AFAR data set is labeled using the names of the algorithms
in the chain used to generate them. The colors used are associated with the endmember

selection algorithms: red - MAXD, blue - NFINDR, cyan - PPL

67



58 CHAPTERT. RESULTS

algorithm used to accomplish each step does have a profound effect on the ability to detect

a target in the scene.

There are some chains that consistently appear among either the top or the bot-
tom 5 performers. If all eight targets are treated as one large set, there are three dif-
ferent algorithm chains that are among the best 5 performers for 50% of the targets:
ELM-MNF-MAXD-ASD, ELM-PCA-NFINDR-ASD, and ELM-PPI-ASD. Of these three
chains, the only common links are the atmospheric compensation method (ELM) and the
matched filter used (ASD). Similarly, there are two algorithm chains that performed among
the worst 5 for 50% of the targets: ACORN-MNF-NFINDR-ASD and ACORN-PCA-MAXD
-ASD. Again, the atmospheric compensation algorithm (ACORN) and the matched filter

(ASD) are the common links.

The discussion in the previous paragraph was focused on treating all eight targets as
one large group. If the targets are broken up into two smaller groups (high and low con-
trast), the results are perhaps a little more telling. Of the high contrast targets, there
were no algorithm chains that performed among the top 5 for all four targets. One chain,
ELN PCA MAXD-OSP, was in the top 5 for 3 out of the 4 targets. There were, how-
ever, 2 algorithm chains in the bottom 5 performers for all four of the high contrast targets:

ACORN-MNF-NFINDR-ASD and ACORN PCA-MAXD ASD. The ACORN -PCA-NFINDR
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Figure 7.10: 1 - AFAR values for the VF6 target.
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-OSP chain is among the bottom 5 performers for 3 of the 4 high contrast targets.

The low contrast targets exhibit similar phenomenons to the high contrast targets. One
algorithm chain, ELM-PPI-ASD, was in the top 5 performers for all of the low contrast
targets, and the ELM-PCA -NFINDR-ASD chain was in the top 5 for 3 of the 4 targets.
There were no algorithm chains among the bottom 5 for all of the low contrast targets, but 3
chains were in the bottom 5 for 3 of the targets: ACORN-PPI-ASD, ELM PCA PPI-OSP,
and FLAASH-MAXD-OSP.

Another way to evaluate the performance of the various algorithm chains is to look at the
detection rates at a constant false alarm rate (CFAR). This statistic shows how “quickly”
an algorithm chain is able to detect the target pixels. A high detection rate means that
more target pixels were found prior to a set number of false alarms than an algorithm with
a low detection rate. Figures 7.11 through 7.18 below show the 5 highest, 5 lowest, and 2
median detection rates for all of the targets at a constant false alarm rate of 107%. The
targets are displayed in the same order as the (1- AFAR) figures presented earlier.

5 Best, 5 Worst, 2 Median (pD at pFA = 1e-4) Values
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Figure 7.11: Detection rates at a CFAR of 10~ for the F3 target.

Figures 7.15 through 7.18 show the algorithm chains that performed the best and worst
for the four low contrast targets based on the (1 - AFAR) values.
It is immediately obvious that the targets that had high (1 - AFAR) values do not

necessarily have the best CFAR detection rates. This shows that the *best” algorithm
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5 Best, 5 Worst, 2 Median (pD at pFA = 1e-4) Values
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Figure 7.12: Detection rates at a CFAR of 10~ for the F4 target.
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Figure 7.13: Detection rates at a CFAR of 1074 for the F13 target.
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Figure 7.14: Detection rates at a CFAR of 10~ for the C5 target.
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Figure 7.15: Detection rates at a CFAR of 10~ for the F8 target.
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Figure 7.16: Detection rates at a CFAR of 10! for the VF1 target.
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Figure 7.17: Detection rates at a CFAR of 107 for the V1 target.
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chain depends on the application. If detection of all target pixels is desired, then the
algorithm chain with the highest (1 - AFAR) rate would be the “best”. If detection of a
high number of (but not all) target pixels and a low number of false alarms is desired, then
the algorithm chain with the highest detection rate at a low false alarm rate would be the

“best”.

7.2.1 Average (1 - AFAR) Values

The previous discussion focuses on the (1 - AFAR) value and the CFAR detection rate
for each individual algorithm chain in order to help describe algorithm chain performance.
It is also important to look at the overall performance of each algorithm to help establish
a good baseline to use when first attempting target detection on a new data set. In order
to accomplish this, the algorithm chains were grouped by the atmospheric compensation
algorithm that began each chain, and the average (1 - AFAR) value was calculated for each
group over all of the targets. The result was that the chains incorporating ELM drastically
outperformed the chains using FLAASH or ACORN. The results of this grouping can be
seen in Table 7.1.

Once the top performing atmospheric compensation algorithm was determined, then

each algorithm chain using the top atmospheric compensation algorithm was then grouped
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Figure 7.18: Detection rates at a CFAR of 1074 for the VF6 target.
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by its dimensionality/noise reduction algorithm. The average (1 - AFAR) value was again
calculated. As can be seen in Table 7.2, PCA only slightly outperformed MNF, but both
were considerably better than doing no dimensionality/noise reduction at all.

Next, the top performing chains. the ones containing ELM and PCA as the first two
steps, were grouped by the next link in the algorithm chain: endmember selection. Table
7.3 shows the results of this next level of grouping.

Again, there were two algorithms that resulted in very similar average (1 - AFAR) values,
MAXD and N-FINDR. Both of these algorithms had significantly higher values than PPI.
Since N-FINDR was the top performer, the next step was to look at the average (1 - AFAR)
values of the chains using ELM, PCA, and N-FINDR grouped by the matched filter used.
Table 7.4 shows the results of this grouping.

As Table 7.4 shows, the chain using ASD greatly outperformed the chain using OSP.

Atmospheric | Average (1 - AFAR)
Compensation Value
ACORN 0.505990635
ELM 0.805887969
FLAASH 0.71301075

Table 7.1: Average (1 - AFAR) values based on atmospheric compensation algorithin.

Algorithm | Average (1 - AFAR) A
Chain Value
ELM / NONE 0.777652139 o
ELM / MNF 0.819258106
ELM / PCA 0.820753661

Table 7.2: Average (1 - AFAR) values based on dimensionality/noise reduction algorithm

for chains using ELM.
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The overriding conclusion that can be drawn from this analysis is that the algorithm chain
ELM-PCA-NFINDR-ASD is the best performing chain on everage.

As mentioned in Section 7.1, ELMI is not very likely to be used in a practical application
because of its reliance on accurate ground truth data. For the purposes of this research,
ELM was treated as being equally likely to be used as both FLAASH and ACORN. So, the
question of which algorithm chain would perform the best if ELM was not a viable option
for atmospheric compensation can be raised. According to the results shown in Table 7.1,
one would expect that FLAASH would always be a better option than ACORN because of
the disparity in their average (1 - AFAR) values. By and large, this statement holds true.
Naturally, there are a few data points contradictory to this assertion. For example, the
second best performing algorithm chain for the F4 target (Figure 7.4) based on (1 - AFAR)
value uses ACORN as its atmospheric compensation routine. However, it can be concluded

that chains using FLAASH outperform chains using ACORN the vast majority of the time.

Algorithm Average (1 - AFAR)
Chain Value
ELM / PCA / MAXD 0.87428808
ELM / PCA / N-FINDR 0.876219555
ELM / PCA / PPIL 0.711753348

Table 7.3: Average (1 - AFAR) values based on endmember selection algorithm for chains

using ELM and PCA.

E—

Algorithm Average (1 - AFAR)
Chain Value
ELM / PCA / N-FINDR / ASD 0.923335609
ELM / PCA / N-FINDR / OSP 0.829103502

Table 7.4: Average (1 - AFAR) values based on matched filter algorithm for chains using

ELM, PCA, and N-FINDR.
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7.3 Conclusions and Future Work

It is difficult to make any broad conclusions based on the results of this research. First
of all, only a very small piece of what could be a much larger project was looked at. There
arc a significant number of algorithms for each step in the target detection chain that were
not addressed and new algorithmus are being developed all the time.

One of the main points that can be made is concerning the effect of the different algo-
rithms for each step. It was expected that different results would be seen for the different
chains being used. What was seen was that there is a very large range of performance from
very good to very poor for different combinations of algorithms.

It would be very beneficial to continue this research by expanding the number of algo-
rithms tested for each step in the target detection chain. Also, repeating this research on
differing scenes, i.e. a cluttered urban scene, would be a step toward being able to make
much more broad generalizations about the effectiveness of specific algorithm chains in a

given situation.
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ROC Curves and AFAR Data

The following figures are all of the graphs generated in conjunction with this research.
All of the discussion associated with these figures is in Section 7. The graphs are sorted by
target and each ROC curve and AFAR data set is labeled using the names of the algorithms
in the chain used to generate them. The colors used are associated with the endmember

selection algorithms: red - MAXD, blue - NFINDR, cyan - PPL
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Figure A.1: ROC and (1 — AFAR) graphs for the ('5 target that employed the ACORN

atmospheric compensation algorithm and the ASD matched filter.
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C5 Detection Results
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Figure A.2: ROC and (1 — AFAR) graphs for the ('5 target that employed the ACORN

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.3: ROC and (1 — AFAR) graphs for the C5 target that employed the ELM

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.4: ROC and (1 — AFAR) graphs for the C5 target that employed the ELM

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.5: ROC and (1 — AFAR) graphs for the C5 target that employed the FLAASH

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.6: ROC and (1 — AFAR) graphs for the C5 target that employed the FLAASH

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.7: ROC and (1 — AFAR) graphs for the F3 target that employed the ACORN

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.8: ROC and (1 — AFAR) graphs for the F3 target that employed the ACORN

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.9: ROC and (1 — AFAR) graphs for the F3 target that employed the ELM

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.10: ROC and (1 — AFAR) graphs for the F3 target that employed the ELM

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.11: ROC and (1 — AFAR) graphs for the F3 target that employed the FLAASH

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.12: ROC and (1 — AFAR) graphs for the '3 target that employed the FLAASH

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.13: ROC and (1 — AFAR) graphs for the F'4 target that employed the ACORN

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.14: ROC and (1 — AFAR) graphs for the F4 target that employed the ACORN

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.15: ROC and (1 — AFAR) graphs for the F4 target that employed the ELM

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.16: ROC and (1 — AFAR) graphs for the F4 target that employed the LM

atmospheric compensation algorithm and the OSP matched filter.
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IFigure A.17: ROC and (1 — AFAR) graphs for the F'4 target that employed the FLAASH

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.18: ROC and (1 — AFAR) graphs for the F4 target that employed the FLAASH

atmospheric compensation algorithm and the OSP matched filter.



36

APPENDIXA. ROC CuURVES AND AFAR DaTA

F8 Detection Results
1
' )/ J ———ACORN_MAXD_ASD
g 08 — "1 |——ACORNNFNDR ASD
€ 04 FE E . |——ACORN_PPIASD
J f
§ // / | ACORN_MNF_MAXD_ASD |
| §%4 7 T )| | ACORLMNE NNDR 4D
| 82 — // e a ACORN_MNF_PP| ASD
ACORN_PCA_MAXD_ASD
. ‘ ACORN _PCA_ NFINDR_ASD
100602 1.00E01 1.00E+00 e
ACORN_PCA_PP| ASD
False Alam Rate
Average False AlarmRates for F8 (
1 |
|
< s 1
<o 4 ]
Y , I
0 B = m_ N 0 m |
0 & 9 < ) 0 ] <
ofg &y Q\f) Q7 § QQ\Y Q}é OQ": Q\/‘o
3 § & g ¢ $ ) v &
& Oqu 3 \*‘X \“e Q§ & & ng ‘
¥ KO & & ¢ & & ¢ 1
¢ ¢ & ¥ |
v v v ¥

Figure A.19: ROC and (1 — AFAR) graphs for the F8 target that employed the ACORN

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.20: ROC and (1 — AFAR) graphs for the F8 target that employed the ACORN

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.21: ROC and (1 — AFAR) graphs for the F8 target that employed the FELM

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.22: ROC and (1 — AFAR) graphs for the F8 target that employed the ELM

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.23: ROC and (1 — AFAR) graphs for the F8 target that employed the FLAASH

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.24: ROC and (1 — AFAR) graphs for the F8 target that employed the FI.LAASH

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.25: ROC and (1 — AFAR) graphs for the F13 target that employed the ACORN

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.26: ROC and (1 — AFAR) graphs for the F13 target that employed the ACORN

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.27: ROC and (1 — AFAR) graphs for the F13 target that employed the ELM

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.28: ROC and (1 — AFAR) graphs for the F13 target that employed the ELM

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.27: ROC and (1 — AFAR) graphs for the F13 target that employed the ELM

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.28: ROC and (1 — AFAR) graphs for the F13 target that employed the ELM

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.29: ROC and (1 — AFAR) graphs for the F13 target that employed the FLAASH

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.30: ROC and (1 — AFAR) graphs for the F13 target that employed the 'LAASH

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.31: ROC and (1 — AFAR) graphs for the V1 target that employed the ACORN

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.32: ROC and (1 — AFAR) graphs for the V1 target that employed the ACORN

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.33: ROC and (1 — AFAR) graphs for the V1 target that employed the ELM

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.34: ROC and (1 — AFAR) graphs for the V1 target that employed the ELM

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.35: ROC and (1 — AFAR) graphs for the V1 target that employed the FLAASH

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.36: ROC and (1 — AFAR) graphs for the V1 target that employed the FLAASH

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.37: ROC and (1 — AFAR) graphs for the VF1 target that employed the ACORN

atmospheric compensation algorithm and the ASD matched filter.



105

VF1 Detection Results
1
- ACORN MAYD_OSP
g 08 = | ——ACORN NFINDR 08P
€ og . ¥4 | |———ACORN_PPI OSP
g 's 4
8 g - ! ACORN_MNF_MAYD_OSP
g T | ACORN MNF_NFINDR_0SP
82 r{/‘ffj_/h ACORN_MNF_PP| 0P
—— -;_,——/’) ACORN_PCA MAXD_OSP
1%0m e ey | ACORLPCANENDR 05P
' ' ' ACORN_PCA_PPI OSP
False Alarm Rate ==
Average False Alarm Rates for VF1
1
. 08 —
< 0
<l 0‘4 I - | l —
i
0 N = BN § N . i i
Q Q < <
0%9 § & & & \99 Oog e \94
s § / QQV Y<*S)/ ¥ \9 QQ @_ / \eo QQ
& ¢ D N S & 3 $ 3
oY) ® & & &7 N\ & Q
3 > g 3 § X q ¢ &
& & Y X & Y V &
v & s ¥ & & v
s v ¥ v

Figure A.38: ROC and (1 — AFAR) graphs for the VF1 target that employed the ACORN

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.39: ROC and (1 — AFAR) graphs for the VF1 target that employed the ELM

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.40: ROC and (1 — AFAR) graphs for the VF1 target that employed the ELM

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.41: ROC and (1 — AFAR) graphs for the VF1 target that employed the FLAASH

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.42: ROC and (1 — AFAR) graphs for the VF1 target that employed the FLAASH

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.43: ROC and (1 — AFAR) graphs for the VF6 target that employed the ACORN

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.44: ROC and (1 — AFAR) graphs for the VF6 target that employed the ACORN

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.45: ROC and (1 — AFAR) graphs for the VF6 target that employed the ELM

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.46: ROC and (1 — AFAR) graphs for the VF6 target that employed the ELM

atmospheric compensation algorithm and the OSP matched filter.
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Figure A.47: ROC and (1 — AFAR) graphs for the VF6 target that employed the FLAASH

atmospheric compensation algorithm and the ASD matched filter.
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Figure A.48: ROC and (1 — AFAR) graphs for the VF6 target that employed the FLAASH

atmospheric compensation algorithm and the OSP matched filter.
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