
Assumptions Management in

Software Development

Grace A. Lewis
Teeraphong Mahatham
Lutz Wrage

August 2004

Integration of Software-Intensive Systems Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2004-TN-021

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2004 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2004-TN021 i

Contents

Preface ...vii

Abstract .. ix

1 Assumptions Management..1
1.1 Motivation..1

1.2 Assumptions ...2

1.3 Assumptions Management..2

1.4 Assumption Types...3
1.4.1 Control Assumptions..4
1.4.2 Environment Assumptions ...4
1.4.3 Data Assumptions ...7
1.4.4 Usage Assumptions...9
1.4.5 Convention Assumptions ...10

2 Assumptions Management System .. 11
2.1 Use Cases .. 11

2.2 Architecture Description ..13
2.2.1 Module View..13
2.2.2 Deployment View...14

2.3 Assumption Repository ...16

2.4 System Details ..18
2.4.1 Assumption Extractor...18
2.4.2 Management System...18

3 Conclusions ...22

Appendix A: Table Description for the Assumption
Repository..25

References...27

ii CMU/SEI-2004-TN-021

CMU/SEI-2004-TN021 iii

List of Figures

Figure 1: Example of a Control Assumption ... 4

Figure 2: Examples of Environment Assumptions .. 5

Figure 3: Example of an Environment Assumption... 6

Figure 4: Example of a Data Assumption ... 7

Figure 5: Example of a Data Assumption ... 8

Figure 6: Example of a Data Assumption ... 8

Figure 7: Example of a Usage and a Data Assumption .. 9

Figure 8: Example of a Convention Assumption... 10

Figure 9: AMS Use Case Diagram... 12

Figure 10: AMS Architecture—Module View .. 13

Figure 11: AMS Architecture—Deployment View ... 15

Figure 12: Entity-Relationship Diagram for the Assumption Repository.................. 17

Figure 13: User-to-Project Assignment Screenshot.. 19

Figure 14: Assumption Management Screenshot .. 20

iv CMU/SEI-2004-TN-021

CMU/SEI-2004-TN021 v

List of Tables

Table 1: System Tables .. 25

Table 2: Assumption-Related Tables .. 26

Table 3: Project-Specific Tables.. 26

vi CMU/SEI-2004-TN-021

CMU/SEI-2004-TN021 vii

Preface

The idea of assumptions management came out of an Independent Research and
Development project sponsored by the Software Engineering Institute (SEI) in 2002-2003 in
the area of sustainment [Bachmann 03, Seacord 03]. This project was lead by Robert
Seacord, a Senior Member of the Technical Staff who currently works in the SEI Networked
Systems Survivability (NSS) Program.

A prototype was built that demonstrates the application of assumptions management,
including the recording and extraction of assumptions from Java source code into a
repository, and the Web-based management of these assumptions. In the course of developing
this tool, assumptions management was utilized, illustrating many of its benefits. This tool is
called the Assumptions Management System (AMS).

viii CMU/SEI-2004-TN-021

CMU/SEI-2004-TN021 ix

Abstract

Software developers constantly make assumptions about the interpretation of requirements,
design decisions, operational domain, environment, characteristics of input data, and other
factors during system implementation. These assumptions are seldom documented and less
frequently validated by the people who have the knowledge to verify their appropriateness.
Additionally, the business, legal, and operating environments are always changing, as well as
the software itself, rendering previously valid assumptions invalid.

This technical note explores assumptions management as a method for improving software
quality. This exploration covers assumptions management concepts, results of work on a
prototype Assumptions Management System, conclusions, lessons learned, and potential
work in this area.

x CMU/SEI-2004-TN-021

CMU/SEI-2004-TN-021 1

1 Assumptions Management

1.1 Motivation
Assumptions have a long history in software. Parnas characterized interfaces as the
assumptions that modules could make about each other, and most of his software engineering
contributions reflect that observation [Parnas 71]. Garlan coined the term architectural
mismatch as the consequence of inappropriate assumptions that components make about the
environment in which they are to operate and about other components [Garlan 95]. Lehman
states that the gap between a system and its operational domain is bridged by assumptions,
explicit and implicit [Lehman 00].

Some languages, although not explicitly, provide constructs for recording assumptions. An
assertion is a Boolean statement that is used to check whether the functional behavior of a
program corresponds with its intended behavior or whether a data value lies in a specified
range. An assertion is therefore a statement of the assumed behavior of a piece of code or
value of data. Languages such as Java, C, and C++ provide constructs to create assertions that
can be checked at runtime. An exception is a piece of code that handles generic error
conditions. An exception could therefore be seen as a way to state and manage behavior that
does not fall within what is assumed as expected behavior. Exceptions are used in many
modern programming languages, including C++, Java, and Eiffel. Pre-conditions and post-
conditions are also formal constructs used by developers as part of the documentation of
methods and procedures. A precondition states what must be true before the execution of a
method or procedure is called. A postcondition states what must be true after the execution of
a method or procedure. Preconditions and postconditions could then also be seen as assumed
pre- or post-execution states.

The previous examples clearly illustrate that software developers during their day-to-day
work are constantly making assumptions about the interpretation of requirements, design
decisions, the operational domain, the environment, and the characteristics of input data,
among others. Usually these assumptions are not documented and often they are not validated
by the people with the knowledge to verify their appropriateness. Additionally, the real-world
domain and the software itself are always changing. While the initial assumption set was
valid, individual assumptions will, as time goes on, become invalid with unpredictable results
or, at best, lead to operation that is not totally satisfactory [Parnas 94].

2 CMU/SEI-2004-TN-021

1.2 Assumptions
An assumption, as defined in one of the entries in the Webster's Revised Unabridged
Dictionary, is “the act of taking for granted, or supposing a thing without proof; supposition;
unwarrantable claim” [MICRA 98]. Most developers would agree that assumptions are an
inherent part of software development. Every time a decision is made—about how to design
an interface, how to implement an algorithm, if and how to encapsulate an external
dependency—assumptions are made concerning how the software will be used, how it will
evolve, and what environments it will operate in. What differentiates assumptions from
assertions or pre-conditions is that they are not given to a developer as part of a specification.
They correspond to a decision made by a developer in the light of insufficient or unavailable
information, vague requirements, previous experience, lack of confidence or knowledge, or
any situation in which a decision must be made so that a certain piece of code will work or
progress can be made. As stated previously, the unfortunate aspect of software development
is that these decisions are seldom if ever recorded, communicated, or reviewed. As a result,
they may be incompatible with assumptions made elsewhere in the code, or with design- or
system-level assumptions. These incompatibilities may lead to the insertion of defects or
post-deployment failures. Furthermore, individual assumptions may become invalid as a
result of changes in the environment in which the system is deployed, over the life of the
system.

To address this problem, the following elements are necessary:

• an approach to record assumptions in “real-time” in a manner that is not disruptive for
the developer

• a mechanism to validate the assumptions by the people that possess the knowledge to
declare each assumption valid or invalid

• a tool to search for assumptions by other developers and people involved in the
development effort

This set of elements is what we call assumptions management.

1.3 Assumptions Management
Assumptions management entails a shift in software development culture in that the
assumptions that are part of the development process must also be recorded in source code
and other software artifacts. The potential benefit resulting from this practice may be
tremendous in the earlier identification and elimination of design- and requirement-level
defects, and in improved change analysis for more predictable and cost-effective software
evolution.

The failure of developers to keep design and other documentation consistent with evolving
source code is an established and well-known phenomenon. From an infrastructure
perspective, it is clear developers would be unlikely to manage assumptions independent of

CMU/SEI-2004-TN-021 3

source code. Sun Microsystems, for example, has developed a tool called JavaDoc that
allows a Java developer to embed documentation comments in the code, which are then used
to generate the API documentation in the form of completely linked HTML pages [Sun 04].
This is a user-friendly and non-disruptive mechanism for developers to create and update
documentation in the form of structured comments within their source code. The Fluid
project at the Carnegie Mellon University School of Computer Science is another example.
The project team has created an Eclipse-based tool that allows a developer to capture design
intent in concurrent programs as annotations that are validated against the code using static
analysis. The intent of the tool is to provide “early gratification” to the developer because the
inclusion of annotations in the code using familiar terminology is rewarded with increments
of assurance or warnings of model-code inconsistencies [Greenhouse 03].

Assumptions management as proposed in this technical note allows developers to record a
vast range of assumptions in structured English. These assumptions are easily recorded as
part of the implementation, and then extracted from the source code using a pre-processor.
Recording assumptions in source code alone might prove invaluable, but extracting them into
a searchable repository should allow system architects and lead designers to review more
easily the assumptions of individual developers to determine if they are consistent with
design and system assumptions. This repository can also later be used by configuration
control boards in change analysis to determine more accurately the impact of a proposed
change.

1.4 Assumption Types
Developers make many and varied assumptions as they are coding, involving the
interpretation of requirements, availability of resources, and types of data. We have
characterized assumptions into several types.

• control

• environment

• data

• usage

• convention

This list is by no means exhaustive and could easily be complemented by assumption types
that are particular to a domain, an organization, or to the use of a particular technology. The
Java examples in the following sub-sections are taken from the Assumptions Management
System (AMS) prototype itself. The assumptions are recorded using our proposed XML
structure:

 Carnegie Mellon University is registered in the U.S. patent and trademark office.

4 CMU/SEI-2004-TN-021

/*-
 <assumption>
 <type>
 Assumption type.
 </type>
 <description>
 Assumption description.
 </description>
 </assumption>
*/

1.4.1 Control Assumptions

Control assumptions capture expected control flow. For example, developers often assume
the order in which various methods, often within a single class or subprogram, are invoked.

public String executeJob() {
 /*-
 <assumption>
 <type>
 CONTROL
 </type>
 <description>
 The initialization() method must be called
 before invoking this method.
 </description>
 </assumption>
 */
 ………
}

Figure 1: Example of a Control Assumption

A benefit of recording control assumptions such as the one in Figure 1 is that a software
designer or architect can evaluate control assumptions to make sure they are consistent with
the application flow. System maintainers can also review them before making changes so
they do not inadvertently violate these assumptions.

1.4.2 Environment Assumptions

Recording environment assumptions captures what is expected of the environment in which
the application will operate. For example, applications are often developed assuming a
particular database product and version for data storage, as in Figure 2. However, it is
possible that these applications will eventually migrate to later versions of the database or be
modified to support a different database product altogether.1

1 The assumptions in the example in Figure 2 do not need to be captured separately. It was the

developer’s choice to do so.

CMU/SEI-2004-TN-021 5

public class DBConnection {
 /*-
 <assumption>
 <type>
 ENVIRONMENT
 </type>
 <description>
 The database server is the PCAAR machine.
 </description>
 </assumption>
 */

 /*-
 <assumption>
 <type>
 ENVIRONMENT
 </type>
 <description>
 The database management system is Oracle 9i.
 </description>
 </assumption>
 */

 /*-
 <assumption>
 <type>
 ENVIRONMENT
 </type>
 <description>
 The database name is “seidb”.
 </description>
 </assumption>
 */

 /*-
 <assumption>
 <type>
 ENVIRONMENT
 </type>
 <description>
 The Oracle Thin JDBC driver is available.
 </description>
 </assumption>
 */

 private Connection conn;
 private Statement stmt;

 private static final String URL_PREFIX =
 "jdbc:oracle:thin:@";
 private static final String DEFAULT_DBSERVERNAME =
 "pcaar.sei.cmu.edu";
 private static final String DEFAULT_PORTNO = "1521";
 private static final String DEFAULT_SID = "seidb";

Figure 2: Examples of Environment Assumptions

Another example of the use of environment assumptions occurs when a developer must make
assumptions about the interface between the system and the user. In Figure 3, the toString()

6 CMU/SEI-2004-TN-021

method was intentionally developed for output in a text screen using fixed-width font.

public String toString() {
 /*-
 <assumption>
 <type>
 ENVIRONMENT
 </type>
 <description>
 Output of this function will be printed with
 fixed-width font.
 </description>
 </assumption>
 */

 String out = "";
 out = out + " [Method:name = " + name + "]\n";
 out = out + " Return Type = " + returnType + "\n";
 out = out + " Arguments = " + arguments + "\n";
 out = out + " Parsing Info = [Ln: " + parsingInfo.line
 + ", Col: " + parsingInfo.column +
 ", endLn: " + parsingInfo.endLine + ", endCol: " +
 parsingInfo.endColumn +
 ", Level: " + parsingInfo.level + "]\n";
 out = out + " Number of comments = " +
 commentList.size() + "\n";
 out = out + " Comments:" + "\n";
 for(int i=0; i<commentList.size(); i++) {
 out = out + ((CommentInfo)
 commentList.get(i)).toString();
 }
 return out;
}

Figure 3: Example of an Environment Assumption

Some benefits of documenting environment assumptions are below:

• A developer can capture the assumptions about the operational environment and
communicate them to end users.

• A change analyst can evaluate the extent to which an implementation is dependent on an
existing technology, product, or component version, and more accurately estimate the
cost of a modification request concerning that component.

• A system integrator and/or system tester can trace a problem related to a particular
component or try to understand why a certain method is throwing an exception or
producing an error.

• A maintainer can determine what kind of environment is needed and assumed before
looking at a piece of code in an application.

• A product manager can evaluate the effect of running this application in a different
environment.

CMU/SEI-2004-TN-021 7

1.4.3 Data Assumptions

Data assumptions capture what is expected of input or output data. These assumptions are
different from pre-conditions or post-conditions in that they do not correspond to
specifications to which a developer must code, but rather conditions created by the developer
under which a program will function correctly. Figure 4 illustrates a situation where even
though a specific input into this method can consist of many paragraphs, the output will
always be formatted to one paragraph so that it can be displayed properly on the screen.

private String trimDescription(String description){
 /*-
 <assumption>
 <type>
 DATA
 </type>

 <description>
 Even though the assumption description can
 have many paragraphs, it is OK to convert it
 to a single string of text with no line
 breaks.

 </description>
 </assumption>

 */

 String newDescription = "";

 //Tokenize the description using the line feed in the
 //description.

 StringTokenizer st = new StringTokenizer(description,"\n");

 while (st.hasMoreTokens()){
 newDescription =
 newDescription.concat(st.nextToken().trim() + " ");
 }

 … …
}

Figure 4: Example of a Data Assumption

Another use of a data assumption is to capture the way data is used in internal processing. In
Figure 5, the developer creates a hash code from the assumption type and description strings.
The developer assumes that the combination of the two strings will generate a unique hash
code. In this particular case, we rejected this assumption during assumption review with the
developers. Since it is common for developers to copy and paste pieces of code, two
assumptions in different parts of the code might be identical and therefore would generate the
same hash code.

8 CMU/SEI-2004-TN-021

// Generate a hash code to be used as a unique key.
/*-
 <assumption>
 <type>
 DATA
 </type>
 <description>
 The combination of the assumption type and the
 assumption description will create a unique string
 that is used as the assumption key.
 </description>
 </assumption>
*/

String hashString = assumptionInfo.type +
 assumptionInfo.description;
assumptionInfo.hashValue = StringHasher.hashString(hashString,
 hashString.length());

Figure 5: Example of a Data Assumption

Another way of using data assumptions involves assumptions about the nature of the data.
The following example illustrates the assumption that data will always fall within a particular
range. If developers assume data will always have certain characteristics, they can optimize
their algorithms and/or data handling code, resulting in improved performance. It is
necessary to record these assumptions and verify whether they are valid and consistent with
other modules.

public static double compareLocation(int line1, int col1,
 int line2, int col2) {
 double res = line1 - line2;
 if(res != 0) return res;
 double res2 = col1 - col2;
 if(res2 == 0) return 0;
 /*-
 <assumption>
 <type>
 DATA
 </type>
 <description>
 A line contains fewer than 1,000,000
 characters.
 </description>
 </assumption>
 */
 return (res2/1000000);
}

Figure 6: Example of a Data Assumption

Some benefits of documenting data assumptions are below:

• A data assumption can point out vagueness in a requirement.

CMU/SEI-2004-TN-021 9

• Test cases can be created to determine what happens if the condition stated in the
assumption is violated—the result might suggest a code modification to deal with the
situation.

• The developer can record assumptions that allow him/her to optimize the code and
reduce the complexity.

1.4.4 Usage Assumptions

Usage assumptions capture how an application is expected to be used. In the example in
Figure 7, the developer is assuming that the application will execute from the command line
with two required parameters.

public class Extractor {
 /*-
 <assumption>
 <type>
 USAGE
 </type>
 <description>
 Application will be run from the command line
 with two parameters: first parameter is a
 fully qualified folder name and the second
 parameter is a userid.
 </description>
 </assumption>
 */
 /*-
 <assumption>
 <type>
 DATA
 </type>
 <description>
 The existence of the folder name and userid
 entered from the command line are validated
 by the routine that uses them.
 </description>
 </assumption>
 */
 public static void main (String args[]) {
 FolderJob aFolderJob = new FolderJob();
 aFolderJob.initialize(args[1]);
 aFolderJob.executeAFolder(args[0]);
 }
}

Figure 7: Example of a Usage and a Data Assumption

Some benefits of documenting usage assumptions are below:

• A stakeholder or requirements analyst can verify whether the assumed usage is
appropriate or corresponds to user expectations.

• Document writers can leverage assumption information as they generate end-user
documentation.

10 CMU/SEI-2004-TN-021

1.4.5 Convention Assumptions

Convention assumptions capture the standards or conventions that the developer is following.
In the example in Figure 8, the developer is assuming that assumptions are always recorded
using XML W3C Recommendation, 2 May 2001 as the standard.

private int nextState (int curState, int curLevel,
 int curType, Node p) {
 … … …
 /*-
 <assumption>
 <type>
 CONVENTION
 </type>
 <description>
 Assumptions are described using XML Schema
 W3C Recommendation, 2 May 2001.
 </description>
 </assumption>
 */
 case 20: … … …

Figure 8: Example of a Convention Assumption

Some benefits of documenting convention assumptions are below:

• Change analysts can look at the impact of changes in a standard or any type of
convention.

• A reviewer can verify if the correct version of a standard or convention is being used.

Extensions for Other Types of Assumptions

As previously mentioned, the above list of assumption types is by no means exhaustive. This
list could easily be complemented by assumption types that are particular to a domain, an
organization, or to the use of a particular technology.

Quality attributes are a source of assumption types. For example, if security or performance
is important for a specific application, all assumptions regarding these attributes could be
labeled as SECURITY and PERFORMANCE respectively and validated by the experts in
these fields.

CMU/SEI-2004-TN-021 11

2 Assumptions Management System

Our prototype AMS allows for the recording and extraction of assumptions from Java source
code into a repository, and for the Web-based management of these assumptions.

Developers record assumptions as structured comments in Java source code using the XML
structure presented in the previous section. The developer then uses the Assumption Extractor
to find the assumptions in the code and record them in the Assumption Repository.

After the assumptions are stored in the Assumption Repository they are ready for validation
using the Assumptions Management System. Validation in this case consists of marking an
assumption as valid or invalid by a validator—a person who has been assigned to verify the
appropriateness of assumptions of a certain type.

Project staff can use the Management System to browse or search for assumptions that fulfill
given criteria. For example, a system architect can check consistency of all assumptions in a
certain project, a certain package, or of a certain type.

Finally, the Management System maintains system and project information such as users,
roles, projects, and assumption types. This information must be entered prior to using AMS
and at the start of every project where AMS will be used. A system administrator creates
users, roles, assumption types, and projects. A project manager assigns users and validators of
each assumption type to the projects for which he or she has been assigned as manager.

The following sections will present portions of the analysis and design of AMS.

2.1 Use Cases
The assumptions management process implemented by the AMS prototype assumes the
existence of four types of users, or roles:

• System Administrator: A system administrator can create, update, and delete projects,
users, roles, and assumption types.

• Project Manager: A project manager assigns users to a project, assigns users to roles, and
assigns roles for assumption creation2 and validation.

2 The current version of the AMS prototype focuses on assumptions embedded in the source code

and therefore assumes the developer is always the creator. We envision these concepts can be
applied to other phases of software development.

12 CMU/SEI-2004-TN-021

• Developer: A developer includes assumptions in the code at the time of writing and then
uses AMS to extract assumptions from the code. At any point, the developer can use
AMS to browse and search the assumptions extracted from any developer’s code.

• Validator: A validator is a system designer, system architect, tester, domain expert, or any
person that has the knowledge to determine whether an assumption made by a developer
(or creator) is valid or invalid. A validator can also search through the assumption set, as
part of the validation process, to look for inconsistencies.

A use case diagram for AMS is presented in Figure 9.

Developer

Validator

Extract Assumptions

Browse Assumptions

Validate
Assumptions

Search Assumptions

Manage Users

Manage Roles

Manage Assumption
Types

System
Administrator

Manage Projects

Project
Manager

Assign Users to
Project

Assign Roles for
Assumption Creator and

Validator

Assign Roles to
Users

Figure 9: AMS Use Case Diagram

CMU/SEI-2004-TN-021 13

2.2 Architecture Description

2.2.1 Module View

AMS has two major components, implemented as separate applications: the Assumption
Extractor and the Management System. A module view of the architecture is presented in
Figure 10.

Assumption Repository

Assumption
Extractor

Management System

Assumption Management
Module

Project Administration
Module

User-to-Project
Assignment

User-to-Role
Assignment

Role-to-Activity
Assignment

Assumption Browser

Java Source
Code

Assumption Advanced
Search

System Administration Module

User Maintenance
User Role

Maintenance

Assumption Type
Maintenance

Project
Maintenance

Database I/O

Legend

Module

File I/O

Database

Source File

Assumption Validation

Figure 10: AMS Architecture—Module View

2.2.1.1 Assumption Extractor

The Assumption Extractor is a Java command-line application that runs on the developer’s
machine. The extractor takes a folder as one of its parameters and searches for Java source
code (*.java) in that folder as well as in its sub-folders. It then parses each source file found

14 CMU/SEI-2004-TN-021

to obtain the location of each recorded assumption, determined by package, class, and
method; extract these assumptions; and store them into the Assumption Repository.

2.2.1.2 Management System

The Web-based Management System manages the assumptions stored in the Assumption
Repository. It makes the assumptions available for browsing, validating, and searching. This
application also includes administrative functions.

System Administration Module

Only the system administrator has access to this module that maintains system-level
information: user maintenance, assumption type maintenance, user role maintenance, and
project maintenance.

Project Administration Module

The project manager for each project has access to this module that maintains project-level
information: user-to-project assignment, user-to-role assignment, and role-to-activity
assignment. These assignments will affect the visibility, or permissions, that each user has
over the assumptions stored in the database.

Assumptions Management Module

This module presents the assumptions stored in the system for a user to browse and/or
validate, depending on his or her permissions. It also includes an advanced assumption
search capability to search by assumption type, project, class, free-text, and so on.

2.2.2 Deployment View

AMS was built using a series of Web technologies, primarily Java-based, as shown in Figure
11.

• The Assumption Extractor is a Java program that runs on a client computer with a Java
runtime environment.

• The Management System is implemented as a set of Java Server Pages (JSPs) executed
by a Tomcat servlet engine and JavaBeans that are called by the JSPs.

• The Assumption Repository is implemented in an Oracle 9i database.

CMU/SEI-2004-TN-021 15

Client with Java Runtime Environment

Assumption Extractor

JDBC Library (JAR) Xerces XML Parser (JAR)

Java Source Code Parser (JAR)

Tomcat Web Server

Data Server running Oracle 9i
Database

Management System (JSP)

JDBC Library (JAR) COOLjsTree (JavaScript)

JDBC JDBC

Client running Web
Browser

HTTP

Assumption Repository

Figure 11: AMS Architecture—Deployment View

In addition to the major technology components, the system also makes use of a set of Java
libraries:

• Oracle’s Java Database Connectivity (JDBC) library (classes12.jar): the Assumption
Extractor and Management System communicate with the repository using the JDBC
library.

• Xerces XML library (xerces.jar): the Xerces library is used to parse the assumption
content, which is recorded using XML.

• Java source code parser (query.jar): this Java package parses Java source programs
into an internal tree structure that is then used to determine the location of each
assumption. Location is determined by package, class, and method. The library is
developed by Glen McCluskey & Associates LLC and can be downloaded at
http://www.glenmccl.com/.

16 CMU/SEI-2004-TN-021

• Tree Display Utility (COOLjsTree): this Java Script library provides tree-like
navigation menus. It is available free for evaluation, personal use, and non-profit at
http://javascript.cooldev.com/scripts/cooltree/.

2.3 Assumption Repository
The database stores assumption information, project information, and system information.
The database schema is shown in the entity-relationship diagram in Figure 12. Details of the
tables can be found in Appendix A.

CMU/SEI-2004-TN-021 17

USERPROJECT

FK2 USERID
FK1 PROJECTID

PACKAGE

PK PACKAGEID

FK1 PROJECTID
PACKAGENAME
FULLPACKAGENAME
PARENTPACKAGEID

USER

PK USERID

PASSWORD
FULLNAME
DESCRIPTION

PROJECTROLEASSUMPTIONTYPE

FK1 ASSUMPTIONTYPEID

FK3 PROJECTID
FK2 CREATORROLEID
FK4 VALIDATORROLEID

VALIDATIONACTIVITY

PK VALIDATIONACTIVITYID

FK1 ASSUMPTIONID
VALIDATIONRESULT
LASTVALIDATION
VALIDATIONCOMMENT
VALIDATORUSERID

PROJECT

PK PROJECTID

PROJECTNAME
DESCRIPTION
PMUSERID

ROLE

PK ROLEID

ROLENAME
DESCRIPTION

ASSUMPTION

PK ASSUMPTIONID

FK1 PROJECTID
FK2 SOURCEFILEID

ASSUMPTIONTYPEID
METHODNAME
AUTHOR
DESCRIPTION
LINENO
HASHVALUE

SOURCEFILE

PK SOURCEFILEID

FK2 PROJECTID
FK1 PACKAGEID

CLASSNAME
FILELOCATION
LINENO
LASTEXTRACTIONDATE
AUTHOR

USERPROJECTROLE

FK3 USERID
FK1 PROJECTID
FK2 ROLEID

ASSUMPTIONTYPE

PK ASSUMPTIONTYPEID

ABBREVIATION
DESCRIPTION

1 - M

1 - M

1 - M

1 - M

1 - M

1 - M

1 - M

1 - M

1 - M

1 - M

1 - M

1 - M

1 - M1 - M

M - 1

1 - M

Figure 12: Entity-Relationship Diagram for the Assumption Repository

18 CMU/SEI-2004-TN-021

2.4 System Details

2.4.1 Assumption Extractor

The Assumption Extractor is a Java command-line application that traverses a specified
folder and extracts assumptions from every Java source file. Package, class, and method
information are also extracted to determine the location of each assumption. During the
extraction process, progress and error messages are reported on screen and also sent to files
named extractor.log and extractor_error.log.

The Assumption Extractor performs the following checks:

• Assumption types are valid (previously created in the system).

• User running the application has been registered in the system.

• For each assumption type, user running the application is allowed to create assumptions
of that type.

• Every anomaly is recorded in the error log file.

The application takes three parameters as follows:

• Username: User name of the developer who is considered the assumption creator of the
extracted assumptions.

• Project name: Project name to which the source code files belong.

• Root folder: Folder containing source files—the extractor looks through all its subfolders
as well.

2.4.2 Management System

The Management System is a Web-based application that manages the assumptions that are
stored in the repository. Its functionality is separated into three main modules.

2.4.2.1 System Administration Module

This module maintains system-level information, that is, information used by all projects in
the organization. Only the system administrator (username: admin) has access to this module
that contains the following functionality:

• User maintenance: adds, updates, and deletes system users and their associated
information.

• User role maintenance: adds, updates, and deletes user roles. Roles group types of users,
such as system architect, designer, developer, and tester. These roles later determine
which users are allowed to create and validate assumptions for a specific project.

CMU/SEI-2004-TN-021 19

• Assumption type maintenance: adds, updates, and deletes assumption types that will be
used by the organization using the system.

• Project maintenance: adds, updates, and deletes projects. The user who acts as project
manager is also recorded. This allows the system to display only those projects assigned
to the project manager.

2.4.2.2 Project Administration Module

This module maintains project-specific information. Only users who have been assigned as
project manager of a project will be able to use this module. The left pane of Figure 13 shows
the list of projects that are assigned to the user. The project manager can then perform the
following tasks for each project:

• User-to-Project Assignment: This sub-module, shown in Figure 13, adds or removes
users from the selected project.

• User-to-Role Assignment: This sub-module assigns one or more roles to each user in the
selected project.

• Role-to-Activity Assignment: This sub-module assigns the roles that will be creators and
validators of each assumption type in the project.

Figure 13: User-to-Project Assignment Screenshot

20 CMU/SEI-2004-TN-021

2.4.2.3 Assumption Management Module

This module retrieves the assumptions stored in the system for browsing, validating, and
searching. The module will only present to the user the assumptions to which he or she has
authorized access. Sets of assumptions can also be printed as a report.

Figure 14: Assumption Management Screenshot

The screen is divided into two areas, as shown in Figure 14.

• Class list pane: The left side pane shows a list of classes grouped by project and package.

• Information pane: The right side pane displays the information for the element selected
from the left pane.

CMU/SEI-2004-TN-021 21

- Package information: Lists the classes and sub-packages that are contained in the
selected package. From this screen a user can select a class or sub-package and view
more detailed information.

- Class information: Lists the assumptions in the selected class. From this screen a user
can select an assumption to view more detailed information.

- Assumption Information: Shows the detailed assumption information along with any
validation activity. When extracted, assumptions are labeled as Not Validated. Users
designated as validators can validate the assumption by marking the assumption as
Valid or Invalid and optionally include comments. The history of the validation
process is maintained in the Assumption Repository.

22 CMU/SEI-2004-TN-021

3 Conclusions

Assumptions management is at the core of quality software engineering. Managing
assumptions proved beneficial in the creation of AMS itself. Weekly meetings with the
developers included the discussion of the assumptions they included in their code. We
discovered that most assumptions that we marked as invalid corresponded to the
interpretation of requirements. Because we were not available all the time to answer their
questions, they would go ahead and make assumptions about what a specific requirement
meant so they could continue their work. This is a situation not uncommon in software
projects. In this case, documenting assumptions prevented the delivery of a system that
would not satisfy its stakeholders.

Other assumptions were marked as invalid because of their potential for producing errors in
the system—they were making invalid assumptions about the environment, control flow,
data, and user interaction. In this case, documenting assumptions provided a way to detect
defects before deployment.

The developers did not feel they were doing a lot of extra work by documenting these
assumptions—“It’s just like writing comments.” The benefit that they found is that it is an
easy way to get early feedback:—“It’s good to know if you’re on the right track and that you
don’t have to waste time fixing errors that have propagated all over the code because of
wrong assumptions.”

The prototype is fully functional and was very useful in strengthening our understanding of
assumptions and their potential impact. Our experience indicates there are several
enhancements that would increase its robustness and usability:

• The capability for extracting assumptions from programming languages other than Java

• A pop-up window or a template associated with a “hot-key” that would make it easier for
the developer to record assumptions without worrying about formatting and XML

• An e-mail notification when assumptions are loaded into the repository, informing the
validator that a set of assumptions is awaiting validation

• A graphical user interface for the Assumption Extractor instead of the current command
line interface

• Implementation as a plug-in for an integrated development environment (IDE)

Even though assumptions management proved very useful in the coding phase of a project,
we feel that from an interoperability perspective this is too late a stage for uncovering
inconsistencies. To address interoperability requirements, the use of assumptions

CMU/SEI-2004-TN-021 23

management would have to be moved to other activities and artifacts of software
development, such as requirements analysis, architecture, and design. One of the many
challenges we envision with this move is the recording of assumptions in view of the
variability with which organizations gather requirements and design their systems. For this
reason, the Integration of Software-Intensive Systems Initiative will unfortunately not pursue
this topic further. However, we do strongly encourage the agile development and the
maintenance and sustainment communities to pursue this topic further. In an agile
development environment where you have short development iterations, assumptions
management as described in this report has the greatest benefit because the timely feedback
from the validation step of the process will influence subsequent iterations. For the
maintenance and sustainment community, the Assumption Repository can provide valuable
data for change impact analysis.

24 CMU/SEI-2004-TN-021

CMU/SEI-2004-TN-021 25

Appendix A: Table Description for the Assumption

 Repository

The Assumption Repository stores system information, assumption-related information, and
project-related information. What follows is a list and short description of the tables that form
the Assumption Repository.

System Tables
These tables store system information used by both the Assumption Extractor and the
Management System.

Table 1: System Tables

Table Name Description

AssumptionType Assumption types available for all projects

Project Projects

Role User roles—a user can have several roles in a project

User AMS users

Assumption-Related Tables
These tables store the information related to assumptions. Assumptions are grouped by class
(or source file) and source files are grouped by packages. Validation results are also stored in
a table.

26 CMU/SEI-2004-TN-021

Table 2: Assumption-Related Tables

Table Name Description

Assumption Assumption information extracted from Java source code files

Package Java packages that group classes from which assumptions have
been extracted

SourceFile Java source code files (or classes) from which assumptions have
been extracted

ValidationActivity Validation results for each assumption

Project-Specific Tables
These tables store information related to each project. This information is used to determine
which users in which roles can perform which activity in each project.

Table 3: Project-Specific Tables

Table Name Description

UserProject Users working on a project

UserProjectRole Roles that each user is performing on a project

ProjectRoleAssumptionType Roles that can create assumptions and roles that can
validate assumptions on a project, per assumption
type

CMU/SEI-2004-TN-021 27

References

[Bachmann 03] Bachmann, F. et. al. SEI Independent Research and Development
Projects(CMU/SEI-2003-TR-019 ADA418398). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2003.
<http://www.sei.cmu.edu/publications/documents/03.reports/0
3tr019.html>.

[Garlan 95] Garlan, D.; Allen, R.; & Ockerbloom, J. “Architectural Mismatch:
or Why It's Hard to Build Systems Out of Existing Parts.”
Proceedings of the International Conference on Software
Engineering. Seattle, April 23-24, 1995. New York, NY: ACM
Press, 1995.

[Greenhouse 03] Greenhouse, A.; Halloran, T.J.; & Scherlis, W. L. “Using Eclipse to
Demonstrate Positive Static Assurance of Java Program
Concurrency Design Intent.” 99-103. Proceedings of the 2003
OOPSLA Workshop on Eclipse Technology Exchange. Anaheim,
California, Oct. 26-30. New York, NY: ACM Press, 2003.

[Lehman 00] Lehman, M. & Ramil, J. “Software Evolution in the Age of
Component Based Software Engineering.” IEEE Software 147, 6
(December 2000) 249-255.

[MICRA 98] Webster’s Revised Unabridged Dictionary. MICRA, Inc. 1998.

[Parnas 71] Parnas, D. “Information Distribution Aspects of Design
Methodology.” Proceedings 1971 IFIP Congress. New York, NY:
North Holland Publishing Company, 1971.

[Seacord 03] Seacord, R. “Assumption Management.” news@sei interactive 6, 1,
First Quarter 2003. <http://interactive.sei.cmu.edu/news@sei.
/columns/the_cots_spot/2003/1q03/cots-spot-1q03.htm>.

[Sun 04] Sun Microsystems. JavaDoc Tool.
<http://java.sun.com/j2se/javadoc> (1994).

28 CMU/SEI-2004-TN-021

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

August 2004

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Assumptions Management in Software Development

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Grace Lewis, Teeraphong Mahatham, Lutz Wrage
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2004-TN-021

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Software developers constantly make assumptions about the interpretation of requirements, design decisions,
operational domain, environment, characteristics of input data, and other factors during system
implementation. These assumptions are seldom documented and less frequently validated by the people who
have the knowledge to verify their appropriateness. Additionally, the business, legal, and operating
environments are always changing, as well as the software itself, rendering previously valid assumptions
invalid.

This technical note explores assumptions management as a method for improving software quality. This
exploration covers assumptions management concepts, results of work on a prototype Assumptions
Management System, conclusions, lessons learned, and potential work in this area.

14. SUBJECT TERMS

Assumptions Management System, AMS, Assumption Extractor,
Assumption Repository

15. NUMBER OF PAGES

36

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Assumptions Management in Software Development
	Contents
	List of Figures
	List of Tables
	Preface
	Abstract
	1 Assumptions Management
	2 Assumptions Management System
	3 Conclusions
	Appendix A: Table Description for the Assumption Repository
	References

