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Project Goal:

The goal of this project was to construct a compact and high power THz source based on
antimonide-based semiconductors. Although we were unable to demonstrate such a device, our
experimental and theoretical studies of intersubband resonances in InAs/AlSb quantum wells have
significantly advanced understanding in this field. In particular, we expect our results to be applied
in the rapidly-growing area of intersubband-based mid- and far-infrared emitters and detectors.

The achievements outlined in this report include:

v Observed intersubband absorption in wells as narrow as 2.1 nm at energies as high as
670 meV (=1.85 ýtm).

o'e Observed THz splitting in intersubband transitions (ISBTs) in coupled wells.

o Developed a microscopic theory of ISBT line broadening.

*. Developed a theory of intersubband collective effects and plasmon coupling.

Project Motivation:

The goal of this project was to construct a compact and high power THz source based on
antimonide-based compound semiconductors (ABCS). Our designs take advantage of the large
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conduction band offsets in ABCS to plan all-interband devices. This scheme could monolithically

integrate a near-infrared (NIR) diode laser with the THz emitter.

The advantages of our optical approach for THz generation over electrical approaches are the
absence of heavily doped layers for contacts and injectors which would increase absorption. Also,
we can create carriers only in the wells contributing to THz generation, and we can utilize resonant
nonlinearities to enhance the THz generation. This approach requires a sophisticated architecture of
multi-level systems with tailored transition energies and matrix elements.

ABCS are ideal for the quantum engineering of energy levels wave functions. Their
extremely deep conduction band wells lead to flexibility in subband level design. Figure 1 (a) shows
the band line-up of the ABCS. Figure l(b) shows two proposed schemes for THz generation based
on NIR interband pumping, both of which were demonstrated with CO 2 laser pumping in GaAs-
based quantum well (QW) structures to produce coherent mid-infrared radiation.
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Figure 1: (a) Band gaps and offsets for ABCS heterostructures. (b) Two different schemes for intersubband
THz generation with NIR pumping.

Sample Growth:

The samples were grown by molecular beam epitaxy at the Osaka Institute of Technology.
Figure 2 shows the sample structure for GaAs and GaSb substrates. We have studied well widths
from 1.8 to 10.5 nm, both with Si doping in the well and with unintentional doping. Hall
measurements show that a high mobility 2DEG is present with the following parameters:

* RT mobility < 1.7 x 104 cm 2Ns

•. 77 K mobility < 8.0 x 104 cm 2/Vs

4. RT density: 4.0 x 1011 - 2.8 x 1014 cm"2 (unintentionally doped); 1.3 x 101 - 2.7 x 1015 cm"2

(Si doped)

4' 77 K density: 3.0 x 10 10 - 4.5 x 1014 cm 2 (unintentionally doped); 8.7 x 1012_ 2.7 x 1015 cm
2 (Si doped)
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Figure 2: Two types of sample structure used in this work. The left structure has complicated buffer layers since the
ABCS are grown on a lattice-mismatched GaAs substrate. The right structure is lattice matched but the GaSb substrate
contains free carriers and is thus not ideal for THz applications.

We have studied the effects of a GaSb vs. a GaAs substrate, Si doping in the well, and InSb-like vs.
AlAs-like interfaces. We have made high-resolution TEM measurements, which show high-quality,
abrupt QW interfaces (Fig. 3).

Figure 3: TEM image of InSb-like interface in InAs/ASb QW.

Intersubband Transitions:
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We have measured the intersubband absorption in all of the QWs. We detect the absorption
via its polarization selection rule: E in the growth direction. We use the parallelogram measurement
geometry, as shown in Figure 4. The sample is placed in a He flow cryostat.

Figure 5 shows the temperature dependence of the intersubband absorption we observed in 5
to 10 nm QWs. The absorption has a narrow linewidth and remains strong and sharp up to room
temperature. These features make intersubband resonances a promising medium for room
temperature THz generation.
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Figure 5: Temperature dependence of intersubband transition (a) peak energy and (b) full-width at half maximum.
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We observed ISBTs in heavily doped 7 and 10 nm QWs grown on GaSb
substrates. ABCS on GaSb substrates is suited to fill a spectral niche, -35-39 meV (32-
35 jim), which is currently inaccessible to GaAs-based systems due to phonon
absorption.

The most convenient pumping source for our THz generator would be a NIR
diode, so we pursued high energy ISBTs. The key to observing high-energy resonances
is heavily doping the QWs. We have observed intersubband absorption in wells as
narrow as 2.1 nm with an electron density of 1 X 1013 cm2 , as shown in Figure 6. Despite
the increased defects in the doped wells, their intersubband absorption is as strong and
almost as narrow as the absorption of wider, undoped wells.

2.2E+04 A........ A

7 0.6
E S >

U) 2.OE+04 - A1).. , >,,0.4 A

"LA
U.)A A. 1.8E+04 - 0.2 ISBT

III PL
_ 2.1lnm I

1.6E+04 0

400 600 800 0 5 10

Energy (meV) Well width (nm)
670 meV = 1.85 jim

Figure 6: Left: Highest energy intersubband transition absorption spectrum. (P
polarization: intersubband-active; S polarization: intersubband-inactive.) Right:
Intersubband absorption and photoluminescence energies as a function of well width.

Designed and Grew Double Quantum Wells for Difference Frequency Generation:

We designed an asymmetric double quantum well structure for use as a difference
frequency generator with mid-infrared pumps. The well widths and wavefunctions are
shown in Figure 7(a). We chose to start with mid-infrared pumping energies rather than
near-infrared because of the narrower intersubband resonances in wider wells.
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Figure 7: (a) Calculated wavefunctions of asymmetric coupled QWs for difference
frequency generation. (b) Absorption coefficient of structure in (a).

We have observed THz splitting in a dozen asymmetric double quantum well
structures designed for THz difference frequency mixing. For example, the double QW
spectrum in Figure 7(b) shows sharp absorption peaks and a 30 meV splitting between
MIR resonances. We observed THz splitting of the intersubband levels in double
quantum well samples grown with and without Si doping.

Attempted Intersubband Difference Frequency Generation using MIR QCLs:

Our ultimate goal is to perform difference frequency mixing of NIR diodes.
However, we are still working on increasing the single well E 12 to 1.55 g.m. Therefore,
we chose to test our system by mixing MIR lasers with a THz energy separation. We
borrowed three MIR QCLs from Claire Gmachl (Princeton University). They have
wavelengths of 10.4, 8.4, and 7.4 ptm (119, 148, and 165 meV) and high peak powers of
100, 100, and 800 mW, respectively. Several combinations of lasers were resonant with
various samples; the sample shown in Fig. 8 had the highest predicted THz power. We
attempted difference frequency generation at difference energies of 46 meV = 27 p.m and
17 meV = 73 gim.

In collaboration with Alexey Belyanin, we developed a model for the DF power
in our non-phase-matched system. According to this model, the maximum allowable
path length through the nonlinear medium is about 0.5 mm. So, we chose an edge-
coupling geometry to maximize the DF power. We compared the nonlinear
susceptibilities, X(2), of our double quantum well structures to choose the combination of
electron density, ISB peak width, and energy which best matched our MIR QCLs. We
also considered several phase-matching schemes: interaction with the phonon resonance
or intersubband absorption of an additional layer, phase mismatch tuning by waveguide
plateau width adjustment, and path length adjustment in a multi-bounce scheme.
However, none of these schemes offered a significant benefit in this first-order attempt.
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Figure 8: Left: Intersubband absorption spectra of the sample structure shown at right.
This sample has the largest calculated DFG power for our MIR QCLs. Note that the
intersubband absorption remains strong and sharp even at room temperature.

Our experimental setup is shown shematically in Fig. 9. We achieved a peak
2 -2intensity at the sample of 0.9 kW/cm2 for the 10.4 jim laser and 1.4 kW/cm for the 7.4

/am laser, with 80 ns pulses at 2% duty cycle. Although we predicted a DF peak power of
about 300 pW for the sample shown in Fig. 2, we were unable to observe any nonlinear
generation.
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Figure 9: Experimental setup for difference frequency generation.

We also attempted another THz generation scheme based on pumping with a
powerful, ultrafast MIR laser. Due to the broad frequency spread of the ultrafast laser, a
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single beam is predicted to excite a coherent oscillation between the E 2 and E 3 levels,
resulting in tens of pW of THz emission. Unfortuantely, we were unable to observe
difference frequency generation in this configuration.

Detailed Theory of ISBT Broadening Mechanisms:

We have developed a detailed theory of the intersubband absorption spectrum.
Static Dynamic We begin with a realistic 8-band k.p calculation

of the nonparabolic subbands. Then, we
Direct Screening, Depolarization calculate the absorption spectrum using the

Band shift semiconductor Bloch equations (SBEs). The
bending SBEs describe the interaction of a

Exchange Self-energy Vertex semiconductor with light through the dipole
correction (excitonic) interaction. We use this formalism to

correction incorporate coherent and incoherent light-

Table 1: Coulomb interactions included in semiconductor interactions by taking into

intersubband absorption model, account band dispersions, Coulomb
interactions, and decoherence and relaxation

processes including phonon scattering and interface roughness scattering. This is one of
the first cases where they are applied to intersubband dynamics.

Many-body interactions play a critical role in intersubband absorption, and we
have included their effects via the SBEs. Table 1 shows the four types of Coulomb
interactions which have been incorporated in our theory. Figure 10 shows the effects of
the many-body interactions one at a time. Figure 10(a) is the single-particle spectrum,
which is broad due to nonparabolicity. Adding the self energy shifts the resonance to
higher energy and broadens it slightly, as does the depolarization shift. The vertex
correction causes a strong redshift and a dramatic narrowing of the resonance. The
vertex correction turns out to be the dominant effect in this regime of carrier density and
well width.
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Figure 11: Nonparabolic dispersion relation and absorption coefficient at (a) 0 K and (b)
300 K. The arrows indicate the single-particle ISBA energies. (c) Calculated and
experimental intersubband absorption of 10 nm QW as a function of temperature.

The temperature dependence of the ISBT is simply incorporated through the carrier
density, band filling, and nonparabolicity. At low temperatures, the carrier density is low
and the carriers are all at the lowest possible energies [Fig. 11 (a)]. This gives the
minimum nonparabolicity broadening and a sharp absorption line. At room temperature,
the carrier density is about three times higher and the carriers are thermally excited to
higher energies in the subband [Fig. 11 (b)]. This redistribution strongly increases the
nonparabolicity broadening, shifting the resonance to lower energy and broadening it.
Figure 11(c) shows the excellent agreement achieved between experiment and theory for
the temperature dependence of the intersubband lineshape for a 10 nm QW.

The NASA group published several further analyses of collective effects in
intersubband resonances. One is an extension of their previous description based on the
Intersubband Semiconductor Bloch Equations which treats dephasing in a more detailed
way. They find changes in the intersubband absorption lineshape due to the interaction
of the Fermi-edge singularity and the intersubband plasmon. Another analysis predicts
the appearance of transparency induced by out-of-phase intersubband plasmon coupling.
This effect can be observed by tailoring the electron population. A third study shows that
by correctly including electron-electron and electron-phonon interactions, their theory
predicts a smaller linewidth for GaAs-based ISBTs, in agreement with experiment.
These works explore fundamental physics and have application to the many intersubband
light generation and detection mechanisms in the mid and far infrared.
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Other Accomplishments:

Understood Carrier Distribution in QWs:

We have used Shubnikov-deHaas (SdH) measurements in conjunction with Hall
measurements to elucidate the carrier distribution in our nominally undoped 20-period
QW samples. Whereas the Hall effect measures all of the carriers in the entire sample,
the SdH effect is sensitive only to the high-mobility 2DEGs in the QWs. We find two
regimes of carrier distribution, illustrated in Fig. 12. Early in the MBE growth run, the
SdH density equals twenty times the Hall density. This indicates that the carriers are
distributed uniformly throughout the QWs. After about 30 growths, the SdH density is
much greater than 20 times the Hall density, indicating that the carriers are concentrated
in only a few QWs. We attribute this behavior to a constant Fermi level pinning at the
sample surface coupled with a decreasing density of unintentional donors in the AlSb
barriers. This understanding was important for achieving higher energy ISBTs.

SdH x 20 = Hall SdH x 20 >> Hall

density

Figure 12: The inferred density profile through the multiple QW region (left) early and
(right) late in the MBE growth run.

First Spectroscopy with THz QCL:

We have obtained pulsed and CW THz quantum cascade lasers (QCLs) from
Jerome Faist's group (U. Neuchatel), in collaboration with Frank Tittel (Rice U.). The
lasers operate at 64 gtm (4.7 THz), 86 jtm (3.5 THz), and 127 rtm (2.3 THz), with a
typical threshold current of 210 A/cm2 and peak power < -4 mW.

We have made the first spectroscopy application of a THz QCL, as shown in
Figure 13. We measured cyclotron resonance in 9 nm InAs QWs to find m*(T). We
expected Eg to decrease with increasing temperature, causing m* to decrease. Instead, we
observed that m* increases with increasing temperature. These results will improve our
modeling of the temperature dependence of the ISBT.
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4. Can you give any further guidance regarding the DTIC acquistion and distribution
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5. Finally, on the Report Documentation Page I was unsure what to list in item 14 under
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in addressing these questions. Also, please forward these questions to the correct Program
Manager if I have been provided your contact information in error. We appreciate any
assistance you can provide.

Thank you,

Sarah Phillips

Sarah Phillips
International Programs Administrator
Electrical and Computer Engineering
Abercrombie Lab A-101

Rice University
6100 Main St. - MS 366, PO Box 1892
Houston, TX 77251-1892
Phone: 713/348-6362
Fax: 713/348-5686
Email: sphillips@rice.edu
http://www.innovateconference.org
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