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SYMPLECTIC ATTITUDE ESTIMATION FOR
SMALL SATELLITES

James M. Valpiani*t & Philip L. Palmert

In this paper, a novel method for efficient high-accuracy satellite attitude
estimation is presented. Symplectic numerical methods are applied to the Ex-
tended Kalman Filter (EKF) algorithm to give the SKF, which outperforms
the standard EKF in the presence of nonlinearity and low measurement noise
in the 1-D case. Building on this result, a six-state SKF is compared to an
EKF of the same order for satellite attitude estimation. Simulation of a stan-
dard small satellite mission demonstrates orders of magnitude improvement
in state accuracy and preservation of constants of motion. This new method
shows promise for improved attitude estimation onboard resource-constrained
small satellites.

INTRODUCTION

Increasing satellite attitude requirements demand high accuracy estimation methods
capable of operating under significant computational constraints. To meet these
demands, dynamical modeling has been used as an effective alternative to costly
and resource intensive ADCS hardware for small satellite missions. However, these
models have generally been propagated using methods ill-suited to take advantage
of the unique properties of Hamiltonian systems.

Recently developed symplectic numerical methods have demonstrated promising
results when applied to satellite attitude propagation. Symplectic methods inher-
ently preserve the energy of Hamiltonian systems and as a result they have demon-
strated increased stability and improved long-term performance in comparison to
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nonsymplectic methods (such as Runge-Kutta). The result is a dramatic improve-
ment in state propagation accuracy and constants of motion preservation even for
symplectic methods inferior in order to nonsymplectic ones. Consequently, they are
well suited for systems where preservation of conserved quantities is important for
accurate predictions.

Motivated by a need for highly accurate and efficient attitude estimation al-
gorithms, this paper presents a novel solution that capitalizes on the strengths of
symplectic methods. Beginning with the 1-D case, a symplectic propagator is com-
bined with Extended Kalman Filter (EKF) equations to give a symplectic Kalman
Filter (SKF). The SKF's improved performance over the EKF in the presence of
nonlinearity and low measurement noise motivates the development of a six-state
SKF algorithm for satellite attitude estimation. Comparisons with a standard EKF
demonstrate significantly better steady-state performance.

SYMPLECTIC NUMERICAL METHODS

A symplectic integrator is the exact solution to a discrete perturbed Hamiltonian
system that is close to the actual Hamiltonian of interest. Because Hamiltonian
systems have volume-preserving mappings in phase space as a consequence of Liou-
ville's Theorem, symplectic integrators also preserve volume in phase space to within
machine precision. Therefore, trajectories modeled by these integrators do not cross
in phase space and energy errors about the true energy are bounded. Practically
speaking, symplectic integrators preserve the invariants of motion for Hamiltonian
systems to a much higher degree of accuracy than non-symplectic methods of the
same order. When applied to satellite motion which is governed by rigid body
dynamics, symplectic methods exactly conserve angular momentum and rotational
energy with low amplitude sinusoidal variation and no numerical dissipation.

Generally, non-symplectic methods will introduce secular errors into conserved
values with each evaluation and therefore misrepresent the conservative system as
a dissipative one. Over time, the effect of this dissipation can significantly degrade
state accuracy. In contrast, symplectic integrators' unique properties enable them
to achieve state accuracies equivalent to nonsymplectic integrators while requiring
less function evaluations (i.e. larger time steps) to do so. This makes them ideally
suited to model Hamiltonian systems such as satellite attitude, particularly onboard
satellites with constrained computational resources. When computational resources
are not a significant concern, the comparatively higher-accuracy solutions of sym-
plectic integrators reduce the requirement for frequent measurement updates in the
attitude estimation problem.

Recently, symplectic methods have been applied in a wide variety of fields, rang-
ing from chemistry to celestial mechanics.1 However, these methods have generally
been limited to stochastic applications where the behavior of a multi-body system
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is of greater concern than the behavior of any particular system component. 2 Con-
ventional wisdom held that symplectic methods would not be useful for modeling
specific trajectories.

3 ' 4

This was dispelled by Palmer et al5 in 1999, when they published an orbit estima-
tion algorithm that used symplectic methods for modeling individual satellite orbits.
Motivated by the relatively high power consumption of GPS receivers onboard small
satellites, the authors developed a method that was both fast and highly accurate
to minimize CPU power consumption and reduce the number of GPS measurements
required for orbit determination. Using symplectic methods, they demonstrated
modeling accuracies on the order of centimeters for propagations spanning multiple
days with sparse measurements.

The application of symplectic numerical methods to satellite ADCS design is a
very recent development. In 2004, the same authors presented results from the first
application of symplectic methods to satellite attitude propagation.6 The authors
sought to address the drawbacks incurred from linearization inherent in the EKF
approach to small satellite attitude estimation, including: shorter timesteps and
increased computational demand needed to limit error growth in simplified state
prediction methods; limited ability to utilize more accurate integration schemes due
to constrained computer resources; and increased polling of attitude sensors in order
to compensate. Noting the predictability of small satellite dynamics and the small
disturbances they experience, the authors pointed out that symplectic methods are
well-suited for attitude propagation. Using a simple low-order composite symplectic
method and a time-transformation, they propagated torque-free satellite motion
while conserving integrals of motion exactly. In the presence of gravity-gradient
torque, the authors demonstrated low amplitude sinusoidal errors about conserved
system values using large timesteps; in contrast, a standard nonsymplectic Runge-
Kutta method gave secularly increasing errors of the same order of magnitude using
a stepsize two orders of magnitude smaller.

I-D SYMPLECTIC KALMAN FILTER

Based on the advantages of using symplectic numerical methods outlined above, it
seemed reasonable to hypothesize that they provide improved accuracy when applied
to nonlinear estimation for Hamiltonian systems. In order to test this hypothesis
and determine the advantages and disadvantages of this approach, the application
of symplectic propagation to nonlinear estimation in the I-D case was investigated.
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1-D EQUATIONS OF MOTION

Starting with the equations for a nonlinear pendulum

H =p2  - cos(q) (la)
2

q=p (lb)

p- -_q2 sin (q) (ic)

a symplectic discretization was applied. The numerical method chosen was the
second-order implicit midpoint rule (IMPR)2

Zj+l = Zj + Atf (zJ +z+1) (2)

where f (z) = dz Note that subscripts j are used to indicate propagation times.
Applying the IMPR method to Equations (1) gives

qj+l = 2Xj+I - qj (3a)

Pj+I = Pj - AtQ2 sin (Xj+l) (3b)

Xj+1 qj + qj+l (3c)2
At 2 • At

Xj+ + 4 Q sin (Xj+,) = -•-pj + qj (3d)

In this formulation, all system nonlinearity is contained in the variable Xj+j and
the update equations for qj+l and pj+l are simple linear equations. The iterative
Newton-Raphson method was employed to solve Equation (3d) to within a user-
defined tolerance.

1-D SYMPLECTIC KALMAN FILTER EQUATIONS

The well-known Extended Kalman Filter algorithm is summarized below. Note that
the subscripts n are used to indicate observation times:

"* Propagate the previous time's state estimate x•-_ to obtain the current time's
state prediction xt^

x -x-- 1 + f (X-nl) dt (4)

" Propagate the previous time's error covariance estimate Pn- 1 to obtain the
current time's error covariance prediction P,- using the state transition matrix
Cn and process noise Qn

Pn, = -%Pn-nl(T + Q. (5)



"* Calculate the Kalman gain K& using the observation matrix H" and the ob-
servation noise covariance R&

K(HnPn H, + (6)

"* Calculate the current state estimate iX,

:i,, = Sc + &• (z,,- Hnk) (7)

"• Calculate the current error covariance estimate P"

P. = (I - K.Hn) P, (8)

The standard EKF was implemented using a second-order nonsymplectic Runge-
Kutta numerical method 7 for state propagation in Equation (4). The symplectic
EKF (hereafter referred to as SKF) was created using Equations (3) for state prop-
agation.

MONTE CARLO SIMULATION SETUP

In order to compare the performance of the EKF and the SKF, a Monte Carlo
simulation was developed using the following conditions:

"* State vector composed of generalized coordinate, q, and generalized momen-
tum, p

x = [q pit (9)

"• Direct observation of q
H = [1 0] (10)

"* Approximate integration of the state transition matrix

4) =o22 At (1

Tq Op]

"* Following the standard practice for comparing estimators set by Athans,8' 9' 10

process noise was omitted to prevent masking of linearization errors

Q = 02.2 (12)

To determine the relative merits of the SKF versus the EKF, the simulation varied
over a set of parameters as outlined in Table 1.
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Nonlinearity (qo, rad) Measurement Noise Variance (R, rad2) Measurements/Orbit
1.29 (5 * 10-5)2 400
1.86 (5 * 10-4)2 200
2.44 (5 * 10-3)2 100
2.73 (5 * 10-2)2 50
3.14 (5 * 10-1)2 10

Table 1: 1-D Monte Carlo Simulation Parameter Space

The expected performance of both filters decreased down each column in Table
1, with the pathological parameter set defined by the bottom row. For each of
the 125 possible combinations of parameters, 25 Monte Carlo runs were conducted.
Each run used unique observation sets defined by Zru = {z, : tO < tn <_ tend}

where z, = q,, + v,, and v,, - N (0, Rparameter set). In addition, parameters that were
constant for both the EKF and SKF throughout the simulation are outlined in Table
2.

Propagation At (see) Truth At (sec) Po rad2, rad2  Q2  IMPR Tolerance (rad)
k1 0] 1 1*10-125.*10-3 5 *10-5 10 1i 01

Table 2: 1-D Monte Carlo Simulation Constant Parameters

Truth At was the propagation step used for determining the true values of the
pendulum state and IMPR Tolerance was the value used in the Newton-Raphson
method for Equation (3d). Since only steady-state performance was evaluated, P0

was kept constant and artificially large to ensure initial filter convergence.

MONTE CARLO SIMULATION RESULTS

For each parameter set, the absolute value of the position error was averaged across
the 25 runs at each observation time. The results from the filters within each pa-
rameter sct fell into one of four categories: the filter converged, the filter diverged,
the filter failed to reach steady-state and had unbounded error growth at the end of
the simulation, or the filter reached steady-state with errors greater than 3 a of the
measurement noise. For this system, 99.73% of the observations are within 3 0- of the
true value; 11 subsequently, results with steady-state errors greater than this value,
results with unbounded error growth, and divergent results were grouped together
as undesirable filter results. Then, a visualization tool was used to make general
trend observations regarding the performance of each filter as different parameters
varied; results are shown in Figure 1. These visualizations are useful for developing
an intuitive feel for the filters' relative performance trends. Comparing the two vi-
sualizations, it appears that the SKF gives convergent behavior in regions of high
nonlinearity, high measurement frequency, and low measurement noise whereas the
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Figure 1: Comparison of 1-D SKF and EKF Performance Trends

EKF appears to fall short in these areas. In the EKF region of undesirable perfor-
mance (red volume), the ratio of the position error below which the filters performed
for 95% of the steady-state gave a relative measure of the advantage of using the
SKF in lieu of the EKF. For example, Figure 2 shows the effect of reducing the
measurement noise standard deviation by an order of magnitude from the left plot
to the right: the ratio of the 95% steady-state error value increases nearly tenfold.
Though these ratios are meaningless as independent measures of performance (due
to the divergent nature of the EKF solution), they demonstrate the advantage of
using the SKF as measurement noise decreases. Similar relationships hold for in-
creasing nonlinearity and increasing measurement frequency; these results indicate
that the SKF is more suited than the EKF to handle nonlinear Hamiltonian systems
in the presence of high-accuracy, high-frequency observations.

x 100 Enfr of Paramle, Variation on Relatve SKF Advantage (1) nil Efn t of Panneote, Variation on Relaove SKF Advantage (2)
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""Ti-.e (-e; ) Y jrri (- 1I)

Figure 2: Effect of Parameter Variation on Relativc SKF Advantage
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SYMPLECTIC KALMAN FILTER FOR SATELLITE ATTITUDE

Building on the results from the 1-D case, a symplectic propagator was developed
based on previous work by Palmer 6"12"1 3 and incorporated into a six-state SKF.
Then, comparisons to a nonsymplectic flight-tested EKF used on current and pre-
vious SSTL missions'14"15 were made.

SATELLITE ATTITUDE PROBLEM

Fundamentally, the problem of three-axis attitude parameterization is to specify the
orientation of the satellite body frame with respect to another known coordinate
frame (commonly, the local orbital or inertial coordinate frames). Euler angles offer
an intuitive way to represent a satellite's attitude. These angles are determined
from a series of positive right-hand rotations from the local orbital coordinate frame
to the satellite body frame. In this paper, the pitch-roll-yaw (2-1-3) sequence is
used. However, though Euler angles are particularly useful due to their conve-
nient physical interpretation, there are no all-attitude 3-parameter sets that are free
of singularities. 6 As a result, it is often convenient to utilize the singularity-free
Euler parameters in attitude equations, represented in this paper by the 4-parameter
quaternion q.

DYNAMICS

Satellite dynamics in inertial space are governed by Euler's equations of motion.
Describing the rotational motion of the satellite with respect to an inertial frame
gives'

7

IdIb/i = -Wb/i X (Iwb/i + h) - l + N (13)

where
[Il 112 1131

1= 1121 22 123 (14)
131 132 133

is the moment of inertia tensor of the satellite,

Wb/i = [wl w2 w3 ]T (15)

is the inertially referenced body angular rate vector,

h = [h, h2 h3]T (16)

is the satellite's internal angular momentum vector (produced by reaction wheels
or control-moment gyroscopes, for example), N is the total external torque vector
about the satellite center of mass with respect to the inertial coordinate frame, and
subscripts 1, 2, and 3 are the axes of the satellite body coordinate frame. Assuming
the principal moments of inertia axes are along the body axes, the off-diagonal terms
of Equation (14) are zero.
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KINEMATICS

Kinematics, or the study of motion independent of forces, are governed by a sep-
arate equation based on quaternions. Assuming a satellite in a circular orbit, the
quaternion evolution isi 8

1 [Q (01) -* ((17)

where ol = [Wbi 02 = [0 n 0 n is the orbital mean motion, and

P4 P3 -P2 P1 qi
p-p9q (p)rq -P3 P4 Pi P2 q2

P2 -Pi P4 P3 q3

-Pi -P2 -P3 P4 q4 (18)

q4 -q3 q2 qi Pi

q3  q4 -ql q2 P2
-q2 ql q4 q3  Pa
-ql -q2 -q 3 q4 P4

SYMPLECTIC PROPAGATOR FOR SATELLITE ATTITUDE

Consider the case of a triaxial satellite in a circular orbit with mean motion n. Its
rotational dynamics are governed by Equation (13) and its kinematics are governed
by Equation (17). For the sake of convenience, w is taken to mean Wb/i (inertially
referenced body angular rates) and motion is described with respect to the principal
satellite axes 11, 12, and 13. Assuming no external or internal torques (i.e. N = 0
and h = 0), then the system is Hamiltonian and two conserved values of motion are
the rotational energy

1 3
E= ZWkIkWk (19)

k=1

and the angular momentum of the satellite in the inertial frame

L = D(nt)AT (Iw + h) (20)

where A is the direction cosine matrix (DCM) from the local orbital frame to the
body frame, and D is the DCM from the inertial frame to the local orbital frame.
The symplectic IMPR method will exactly conserve these quadratic first integrals
over time.2 Applying the second-order IMPR method from Equation (2) to the
satellite dynamics and using superscripts to denote propagation steps gives

j+1) +j) At ( ±ll.203 + H 120 2 + H 13033 + +U 1 ) (21a)

W(j+1) WW (21b)cica
w2 2 + At ( +20103 + H 2 1 0L1  H 2 3 0 3  U 2 ) (21b)

(wj+) = Wj) (ac H 1 32  + +
Wi W3 ± At ±a00 H31031 +H 32 0~2 +U 3) (21c)



where
Nk

Uk -- k = 1,2,3 (22)

W 0+1)
Wk= 2 , k =1,2,3 (23)

12-13 , 13I1 6 12 (24)

1, 12 13

H12  h3 1H -h2  1 = h3 H23  hi-,H31 - h2 H 32 h- (25)
1,' H2 12 12 13 13

At is the timestep, and superscripts (j) and (j + 1) indicate propagation steps. Once
the dynamics are propagated to give the satellite angular velocity, the next step is
to propagate the kinematics to determine the satellite attitude. Assuming that the
angular velocity vector in body coordinates is constant over a single timestep, a
closed-form solution to Equation (17) exists19

qj+l = e2At (°)e½At*(°2)q (26)

This solution can be treated via a two step method6

q% = e½At*(°2)qj = cos f qj + Q* (02) qj (27a)
n

l(IwI~t'\
1 IIWL~tX(• _t) q 8 sin(2I / -- oA) q(7b

qj+i = e2•tO(°)qs = cos qs+ Q (ol)q, (27b)

The question now arises as to the relationship between the dynamics and the kine-
matics. In the case of a Hamiltonian system which can be separated naturally

H(q,p) = HA(q,p) + HB(q,p) (28)

then different rules can be applied to each variable subset. This is the approach
used in partitioned Runge-Kutta methods such as the second-order St6rmer-Verlet
(leapfrog) method2' 2,

jt f A HA P=Pj) (29a)

Pj+1 = f2 pi, At, i9 ) (29b)

fi iAf OHA = (29c)
2' op ) p /

where fl and f2 refer to the specific method used to propagate each variable. Com-
bining this leapfrog method with the propagation equations outlined above for the
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dynamics and kinematics gives a composite numerical method for the satellite at-
titude, and every composite method is symplectic when applied to Hamiltonian
equations.21

A number of other modifications to this model have been made but have not yet
been included in this analysis. Though the IMPR discretization for the dynamics
preserves the true phase space trajectory, a shift in phase along the trajectory is
possible and a time transformation has been derived that accounts for the shifts.1 3

Additionally, gravity gradient torques have been incorporated into the dynamical
equations. Though angular momentum and rotational energy are no longer constants
of motion, a Jacobi constant arises and it is preserved by the symplectic attitude
propagator. In the future, other torques may be included in the dynamical model
as perturbations, which has been done previously in symplectic orbit propagators. 21

6-STATE KALMAN FILTER

The symplectic propagator described above was added to the flight-tested SSTL
6-state Kalman filter algorithm to determine the relative merits of the SKF over the
EKF when applied to the satellite attitude problem. However, the use of quater-
nions for kinematic parameterization in the symplectic propagator presents a unique
problem. Though quaternions are 4-parameter sets, they are not independent due
to the unit norm constraint. It is therefore possible to estimate all four quaternion
values, or to estimate three quaternion values and derive the fourth. Both meth-
ods have merits, but the three quaternion approach, known as the 6-state filter, is
generally more computationally efficient. 22'23 The algorithm outlined below closely
follows the SSTL derivation by Hashida.24

Assuming that the true state is a small deviation from the predicted state, error
values can be defined based on these relationships

q = Jq 0 4- (30a)

w = w + C;- (30b)

where the ̂  subscript indicates a state estimate and the - subscript indicates that
the estimate has been propagated forward in time to give a state prediction. In
addition to the true 7-parameter state, x = [qT wT] T, the 6-parameter error state
is defined as

R = [jf jWT]T (31)

where the - superscript denotes variables associated with the error state; J7 is de-

fined by 5q - [j4, 5q4 ]T; and Jq4 = ± 1 - lq-2. Linearizing the dynamics and

kinematics from Equations (13) and (17) and using the same assumptions from the
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symplectic propagator gives

&q= -C ((Z7) c7+ l6u; (32a)
23bI•& = - [C (da) I - C (Icdi + h)] Jw (32b)

where
0 -a 3 a2 1

a x b = C(a)b, C(a)= a3  0 -a, (33)
-a2 a, 0

These linearized equations are then used to form the state transition matrix for the
error state

I 6 ~-l-~At ~ a ~ ~ - -c(Con~) 113x3Cn = 16x6+P,,At, P.n -- 0 (j-, JW) = 03x3 1-_1 [C (L'n) I-C(Icýn+hn)]

(34)
In this implementation, direct observation of 5J is assumed for simplification, giving
the following observation matrix

H = [13x3 03A3] (35)

The 6-state Kalman Filter algorithm follows Equations (4) to (8), with some modi-
fications:

"* Calculate the current time's 7-parameter state prediction k• = [41T 6 ynT]T

xR = Xn- 1 +j f (n-1)dt (36)

"* Propagate the error state's error covariance matrix forward in time using the
error state transition matrix in Equation (34)

P = P-= -l' + Q± (37)

"* Calculate the error Kalman gain

!kn = Pn-T k!-nPn- -- +Rn- (38)

* Calculate the error state estimate xn = n

Xn = !kn (Zn - h (Xn)) (39)

"* Calculate the error state's error covariance matrix estimate

/5 = (16.6a- !K!•n)/31 (40)
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* Calculate the 7-parameter state estimate C - [qT dT]T using the error state

estimate xR, the 7-parameter state prediction Rn, and Equations (30)

J4q4 = + 1- Jq6n (41a)

J•n =T (41b)

4n = 60. ®9 4n (41c)

6ýn = 6Cýn + Cn (41d)

The standard 6-state EKF uses a second-order nonsymplectic Adams-Bashford method
to propagate the state in Equation (36), while the SKF uses the symplectic propa-
gator outlined previously.

SYMPLECTIC KALMAN FILTER RESULTS

To compare the two estimation methods, realistic satellite configurations and mis-
sion profiles were selected for simulation. Many configurations were tested, and a ivA.

representative case was based on the upcoming U.S. Air Force Academy FalconSAT-
3 small satellite mission, 25 with one modification. In order to test the findings of
Section , a high-accuracy measurement device was substituted for the standard low-
accuracy magnetometer planned for FalconSAT-3. Instead, the Advanced Stellar
Compass (ASC) 26 recently flown on ESA's PROBA-1 mission was selected due to
its successful implementation as a rate-gyro replacement onboard an agile resource-
constrained small satellite, and for its ability to provide high-accuracy attitude
observations with high frequency at fast rotation rates (up to 2.5 deg) Table 3
summarizes the simulated satellite properties.

I (kgm') Mass (kg) Obs Freq (Hz) Obs Accuracy (1 o, arcsec)
389 0 0

0 3.89 0 50 2 1
0 0 1.0321

Table 3: SKF Versus EKF Simulation Satellite Properties

In addition, properties for a circular orbit were derived from the FalconSAT-3
mission27' 28 and are summarized in Table 4.

Mean Motion (c) Orbit Period (min) Altitude (km) Inclination (deg)

0.0627 95.7 560 35

Table 4: SKF Versus EKF Simulation Orbit Properties

An SSTL RK-45 integrator was used to propagate the satellite kinematic and
dynamic equations to obtain both the true trajectory and the observation set using
observation properties from Table 3 and initial conditions from Table 5.

13



qi :q2 q3 q4 W1 (•e) w2 (_ W3 (d IAt
0.0088 0.0086 0.0086 0.9999 2 0.3 0.5 0.01

Table 5: SKF Versus EKF Simulation Initial Conditions

For filter initialization, the diagonal values of the covariance matrix for both the
EKF and SKF were set high relative to the measurement noise since only steady state
performance was considered. Measurement noise was selected to give optimal filter
performance and process noise was set to zero to minimize masking of linearization
errors, consistent with previous authors' analysis.8' 17  The state vector for both
filters was initialized to zero values, and a standard small satellite ADCS step size
of 0.1 seconds was used. In Figure 3, the significant difference between the two
filters' state estimation performances can be seen.
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Figure 3: SKF Versus EKF State Estimation Error

The contrast in kinematic and dynamic estimation performance is highlighted
using a logarithmic scale for the error values in Figure 4. Remarkably, the SKF
state error is one order of magnitude smaller than the EKF state error in the steady
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state.
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Figure 4: SKF Versus EKF Log State Estimation Error

As hypothesized, the SKF preserves constants of motion to a much higher degree
of accuracy than the EKF. The SKF produced rotational energy error two orders
of magnitude smaller than the EKF, and angular momentum errors one order of
magnitude smaller than the EKF. These results are presented in Figure 5.
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CONCLUSIONS

A novel method for efficient high-accuracy satellite attitude estimation based on
symplectic numerical methods has been presented. The application of a symplectic
integration method to the EKE algorithm outperformed the standard EKE in the
presence of nonlinearity and low measurement noise in the 1-D case. Using this
result, a six-state SKF was developed for satellite attitude estimation. Numerous
small satellite simulations were conducted and the SKE demonstrated orders of mag-
nitude improvement in state accuracy and preservation of constants of motion over
the EKE. Based on these results, there appears to be a clear advantage to using the
SKE in place of the EKF onboard small satellites that do not have the computa-
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tional capacity to accommodate increased model evaluations, especially those with
properties modeled above (namely, gyroless agile small satellites with high-accuracy
attitude observation devices).

ACKNOWLEDGEMENT

The authors would like to thank the Marshall Aid Commemoration Commission for
its generous support via the Marshall Scholarship, and Dr. Yoshi Hashida of the
Surrey Satellite Technologies, Ltd. (SSTL) ADCS team for his time, insight, and
technical assistance, which proved invaluable throughout the research effort.

References

[1] Markiewicz, D. W., "Survey on Symplectic Integrators," Tech. rep., University
of California at Berkley, Spring 1999.

[2] Leimkuhler, B. and Reich, S., Simulating Hamiltonian Dynamics, Cambridge
Monographs on Applied and Computational Mathematics, Cambridge Univer-
sity Press, Cambridge, 2004.

[3] Channell, P. J. and Scovel, C., "Symplectic Integration of Hamiltonian Sys-
tems," Nonlinearity, Vol. 3, No. 2, 1990, pp. 231-259.

[4] Hayes, W., "A Brief Survey of Issues Relating to the Reliability of Simulation
of the Large Gravitational N-body Problem," Tech. rep., University of Toronto,
June 1996.

[5] Mikkola, S., Palmer, P., and Hashida, Y., "A Symplectic Orbital Estimator
for Direct Tracking on Satellites," Journal of Astronautical Sciences, Vol. 48,
No. 1, 1999, pp. 109-125.

[6] Palmer, P., Mikkolla, S., and Hashida, Y., "A Simple High Accuracy Integrator
for Spacecraft Attitude Systems," AIAA Guidance, Navigation, and Control
Conference, Providence, Rhode Island, 2004.

[7] Fiares, J. D. and Burden, R., Numerical Methods, Thomson Learning, Pacific
Grove, 3rd ed., 2003.

[8] Athans, M., Wishner, R. P., and Bertolini, A., "Suboptimal State Estimation
for Continuous-Time Nonlinear Systems from Discrete Noisy Measurements,"
IEEE Transactions on Automatic Control, Vol. AC-13, No. 5, 1968, pp. 504-
514.

[9] Bellaire, R. L., Nonlinear Estimation with Applications to Target Tracking,
Ph.D. thesis, Georgia Institute of Technology, 1996.

17



[10] Julier, S., Uhlmann, J., and Durrant-Whyte, H. F., "A New Method for the
Nonlinear Transformation of Means and Covariances in Filters and Estimators,"
IEEE Transactions on Automatic Control, Vol. 45, No. 3, 2000, pp. 477-482.

[11] Vallado, D. A., Fundamentals of Astrodynamics and Applications, Microcosm
Press, London, 2nd ed., 2001.

[12] Palmer, P. L. and Mikkola, S., "High Precision Integration Methods for Attitude
Modelling," Tech. rep., Surrey Space Centre, 2004.

[13] Palmer, P. L. and Mikkola, S., "On the Integration of the Spacecraft Attitude
Equations," Tech. rep., Surrey Space Centre, 2004.

[14] Hashida, Y., "ADCS for Future UoSat Standard Platform: Surrey Satellite
Technology Limited Internal Technical Note," Tech. rep., Surrey Satellite Tech-
nology Limited, 2004.

[15] Hashida, Y., "Simplified Attitude Estimator," 2005, Simplified Surrey Satellite
Technology Limited 6-State EKF Flight Software.

[16] Farrell, J. L., "Attitude Determination by Kalman Filtering," Automatica,
Vol. 6, No. 5, 1970, pp. 419-430.

[17] Steyn, W. H., A Multi-mode Attitude Determination and Control System for
Small Satellites, Ph.D. thesis, University of Stellenbosch, 1995.

[18] Hashida, Y., "Quaternion Derivation," Tech. rep., Surrey Satellite Technology
Limited, 2004.

[19] Wertz, J. R., editor, Spacecraft Attitude Determination and Control, Kluwer
Academic Publishers, London, 1978.

[20] Yoshida, H., "Symplectic Integrators for Hamiltonian Systems: Basic Theory,"

Chaos, Resonance, and Collective Dynamical Phenomena in the Solar System,
edited by S. Ferraz-Mello, International Astronomical Union, 1992, pp. 407-
411.

[21] Mikkola, S., "Numerical Celestial Mechanics," Tech. rep.

[22] Lefferts, E. J., Markley, F. L., and Shuster, M. D., "Kalman Filtering for
Spacecraft Attitude Estimation," Journal of Guidance, Control, and Dynamics,
Vol. 5, No. 5, 1982, pp. 417-429.

[23] Hale, M., "Kalman Filtering and the Attitude Determination and Control
Task," Tech. rep., U.S. Air Force Academy, 2004.

[24] Hashida, Y., "RapidEye ADCS Algorithm Specification Revision 1," Tech. rep.,
Surrey Satellite Technology Limited, 2004.

18



[25] Visser, B., "Falcon Sat-3 Qualification Model (QM) Thermal-Vacuum, Vibra-
tion Test, and Mass Properties Measurement Test Report," Tech. rep., Space
Systems Research Center, 2005.

[261 Jorgensen, J. L., Denver, T., Betto, M., and Van den Braembussche, P., "The
PROBA Satellite Star Tracker Performance," Ath IAA Symposium on Small
Satellites for Earth Observation, Berlin, Germany, 2003.

[27] Wertz, J. R. and Larson, W. J., editors, Space Mission Analysis and Design,
Space Technology Series, Microcosm Press and Kluwer Academic Publishers,
London, 3rd ed., 1999.

[28] Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics,
Dover Publications, Inc., New York, 1971.

19



From RS2: Leveraging COTS Hardware for Rapid Design and Development of Small
Satellites at the USAF Academy
Cristin Anne Smith (USAFA)
View/Down load: Presentation I Paper
Abstract:
The purpose of the United States Air Force Academy (USAFA) Space Systems
Research Program is to give cadets the opportunity to "learn space by doing space" while
also providing an orbiting platform for Air Force and Department of Defense (DoD)
science experiments as FalconSAT-3 is designed to do. This paper describes small
satellite programs at the U.S. Air Force Academy's Space Systems Research Center.
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student experiments. Rapid, low-cost design is achieved by leveraging Commercial Off-the- Shelf
(COTS) hardware to the greatest extent possible. FalconsSAT-2, still searching for an alternate
launch opportunity, was the first to demonstrate the use of COTS modules for this use.
FalconSAT-3, scheduled to be launched in 2006, recently completed critical design and built upon
the successful FalconSAT-2 experience to develop an even more capable spacecraft bus. By
using the off-the-shelf equipment, student involvement in satellite and mission design has been
accelerated and provided the capability to challenge students This paper is declared a work of the
U.S. Government and is not subject to copyright protection in the United States. through more
intense participation over the years. Realizing the rapid turnover and extended commitments of
students in a senior undergraduate program, there is a delicate balance to be found; one
between comprehensive mission and satellite design requirements, and adequate experience in
a multi-million dollar, real world space program. The development of the FalconSAT program will
first be described in the context of the progress made, followed by a more detailed discussion of
the COTS hardware for more efficient development of small student satellites as simple payload
platforms for educational and technological purposes.
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