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Note on One Year No Cost Extension
As anticipated during our move from the University of Pittsburgh to Louisiana State University,
we would require a one year no cost extension. Therefore, this report is an annual report. The
final report will be due next year.

Introduction
The well-established breast cancer risk factors may account for only 47% of the breast cancer
incidence in the United States. This leaves a considerable portion of breast cancer from
undetermined origin. This project is investigating the potential that environmental chemicals
and particularly those with estrogenic activity may be involved in the etiology of breast cancer.
We hypothesize that specific features of chemicals can be identified that are significantly
associated with female and breast carcinogens and that these features are related to mechanisms
of chemical carcinogenesis. Our overall scientific objective is to investigate the hypothesized
relationship between environmental chemicals, xenoestrogens, and the development of breast
cancer. The successful completion of this project will provide mechanistic information related to
chemical-induced breast cancer as well as structure-activity relationship (SAR) models capable
of estimating the likelihood that chemicals with unknown carcinogenic activity may be breast
carcinogens.

Body
Software Change
As we noted in our 2004 report, the SAR modeling for this project was originally proposed to be
conducted with the MCASE program. However, for multiple reasons we decided to develop our
own system. This change did not alter the project and an updated Statement of Work was
provided during the past year. I have discussed this matter with Dr. Moore. I am including the
updated (but not yet approved) Statement of Work in the appendices.

We are happy to report that the submitted publication to SAR and QSAR in Environmental
Researth was accepted and published in April of 2005. The manuscript described the cat-SAR
program in detail. We note the publication was on respiratory sensitizers-not breast
carcinogens. The reason for this was 1) it was a small and manageable dataset and 2) a previous
MCASE analysis of this data yielded a very good model. As such, this was a suitable dataset on
which to develop and test the cat-SAR program. A copy of the publication is included in the
appendices.

Specific Aim Accomplishments
The Specific Aims for the project are:
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Specific aim 1: Development and validation of SAR models for female breast carcinogens
(months 1-12).
a. Identify chemicals tested in female rodents from the Carcinogenic Potency Database and

the National Toxicology Program (month 1).
b. Enter chemical structures and potency values into MCASE program (months 2-8).
c. Validate models using 10-fold cross validation (months 9-12)
d. Summarize and interpret models and prepare publication.

As previously discussed, these models have been developed and validated (i.e., a-c) as planned
in MCASE and then with the cat-SAR program. We have also updated rodent carcinogenicity
models so that all models (mouse and rat, as well as female specific version) have been built on
the same datasets and analyzed with the cat-SAR program. We are preparing to publish two
manuscripts describing mouse and rat mammary carcinogens.

Female and Mammary Carcinogen Models
We have had success in developing the female and mammary carcinogen models and have
devoted a significant effort in "assuring" their appropriateness. Basically, we have now
developed several different female and mammary carcinogen models.

1. Rat Mammary Carcinogen Models: In the previous Annual Report we speculated that our
original model protocol might not have been optimal. The common approach of most SAR
studies entails a comparison of structural features between biologically "active" and "inactive"
compounds. Thus, when considering carcinogenesis, the categories are clearly carcinogens and
noncarcinogens. However, when considering organ-specific carcinogenesis as in the case of
breast cancer, we asked the question "what are the appropriate inactive compounds?" Should
they be noncarcinogens or carcinogens that are just not carcinogenic to the organ under study?
As we proceeded we considered both options. We note again this important aspect of the project
was not considered in the original proposal. Moreover, as we investigated this approach, it
became evident that this modeling paradigm is to the best of our knowledge, novel.

We developed two separate models for rat mammary carcinogens: The mammary carcinogen -
noncarcinogen model and the mammary carcinogen - non-mammary carcinogen model. The
details were described in the previous Annual Report. We are happy to report that this new
approach to modeling organ-specific carcinogenicity was successful and a manuscript has been
accepted in Chemical Research in Toxicology pending revisions. The manuscript entitled "A
predictive and mechanistically insightful structure-activity relationship analysis of rat mammary
carcinogens" is included in the appendices.

One set of models for this manuscript was developed based on a comparison of rat mammary
carcinogens to noncarcinogens (MC-NC) and the second and novel method compared mammary
carcinogens to non-mammary carcinogens (MC-NMC). The best rat MC-NC model achieved an
82% observed correct prediction (OCP) rate with a sensitivity of 77% and a specificity of 88%.
The best rat MC-NMC model achieved a 79% OCP rate with a sensitivity of 83% and a
specificity of 74%. As mentioned, the MC-NMC model was based on a learning set that
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contained carcinogens in both the active (i.e., mammary carcinogens) and inactive (i.e.,
carcinogens to sites other than the mammary gland) categories and was able to distinguish
between different types of carcinogens (i.e., tissue specific), not simply between carcinogens and
noncarcinogens. Based on a structural comparison between this model and one for Salmonella
mutagens, there was no observed relationship between the two phenomena since both the active
and inactive categories contained a high proportion of mutagens. Overall, these findings suggest
that the MC-NMC model is identifying structural attributes to address the specific question of
"why do some carcinogens cause cancer in the breast?" which is a significantly different
question than "why do some chemicals cause cancer?'.

2. Mouse Mammary Carcinogen Models:
A similar group of analyses as listed above for rat carcinogens is being completed for mouse
carcinogens. The validation results are shown in Tables 3 and 4. These models are based on 24
mouse mammary carcinogens from the published CPDB target site summary (15).

The Second Specific Aim is:
Specific aim 2: Identify chemical and biological attributes of female and/or breast carcinogens
to provide evidence to test the hypothesis that xenoestrogens are involved in breast cancer
(months 13-36).

a. Compare and identify Structural Feature Overlap Method of female and breast
carcinogens to those of other available toxicological SAR models (see Facilities and
Equipment for a complete list of available models) (months 13-16).

b. As above using Joint Prevalence Method (months 16-24).
c. Identify the exact features of female and breast carcinogen models that are

responsible for predicted similar activities identified above (months 25-26).
d. Conduct QSAR and CoMFA analyses with chemicals containing these structures

using biological data from appropriate assays (months 28-36).
e. Conduct metabolism experiments on identified outliers to see whether metabolic

activation is required for activity and update models if required (months 28-36).
f. Summarize and interpret data and prepare publications (months 28-36).

We have concluded the migration of a set of approximately 20 MCASE toxicological SAR
models to cat-SAR and the models have been validated. This was required for Specific Aims 2a
and 2b. We are currently using these models to prepare the Joint Prevalence Method datasets for
the 20 endpoints.

During this past year, we also ventured out and developed three estrogen cat-SAR models that
will be directly applicable to testing the relationship between estrogenicity and mammary
carcinogenicity. A manuscript describing the cat-SAR analysis of 122 chemicals tested for
estrogenicity in the E-Screen assay is nearly complete.

We note that in particular SA 3 requires the MCASE module META. Moreover, some of the
other sub-SA could be most likely easily accomplished with MCASE. However, as noted in the
previous Annual Report we did not have current access to a working copy of MCASE, though
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Professor Rosenkranz was working on the issue. Sadly, we must report that Professor Rosenkranz
passed away in November of 2004. Due to significant legal issues between himself and Professor
Klopman (his co-developer of MCASE), I will not request to have access to MCASE or META.

In retrospect, SA 3, while generally important, is not a practical aim for this project. The reason
is that since metabolism is not considered during model development, metabolic products cannot
be used to identify outliers. In other words, since the models are built on the parent molecules
(i.e., what the animals are dosed with) they do not explicitly consider metabolic products. Thus
even if we were to analyze known metabolites of a carcinogen, the models would likely identify
the parent structures as relating to carcinogenesis, not the additional metabolism-related
moieties.

Key Research Accomplishments
Developed new SAR modeling algorithm called cat-SAR.

Developed predictive and mechanistically insightful SAR models for rat and mouse carcinogens
and mammary carcinogens

Development of shareable databases/learning sets of carcinogens, their molecular structures and
associated activity values. We are discussing the exact method of "sharing" this information
with Dr. Ann Richard of the Environmental Carcinogenesis Division of the U.S. EPA. Dr.
Richard has developed and maintains the EPA's DSSTox Public Toxicity Database Network.



Reportable Outcomes-This Period
Graduate Students
We are proud to announce that Shanna Moss and Daniel Consoer both graduated with M.S.
degrees from the Department of Environmental Studies at LSU with thesis research based on this
project. Specifically, Ms. Moss was supported for her studies through this project and Mr.
Consoer, while working on related projects, was funded by LSU.

Ms. Moss's thesis is titled Identification of 'structural alerts' and associated mechanisms of
action of mammary gland carcinogens in female rodents.

Mr. Consoer's thesis is titled Evaluation of a Novel Method of Predicting Estrogen Activity of a
Group of Structurally Diverse Compounds.

Manuscripts
Cunningham, A.R., Cunningham, S.L., Consoer, D.M., Moss, S.T. and Karol, M.H. (2005)
Development of an information-intensive structure- activity relationship model and its
application to human respiratory chemical sensitizers. SAR QSAR Environ. Res., 16, 273-285.

(Cunningham, A.R., Moss, S.T. and Cunningham, S.L. (accepted pending revisions) A predictive
and mechanistically insightful structure-activity relationship analysis of rat mammary
carcinogens. Chem. Res. Toxicol.

Funding Applied for Based on Work Supported by this Award
We note that the below listed proposals all relate to the discovery of novel antibreast cancer
therapeutics. Given that the estrogen receptor is involved in the etiology, cure, and prevention of
breast cancer, this IDEA Award has allowed us to pursue new avenues of research into drug
discovery.

We are happy to report that during the last year we received award notice for an IDEA award titled
A novel approach for the identification ofpharmacophores through differential toxicity analysis of
estrogen receptor positive and negative cell lines (PI, $372,542). Our success in achieving this
award lies clearly in the work of the project we are now completing. Specifically, the current award
has provided us with good set of models on which to understand breast carcinogens and particularly
important, has allowed us to develop the basis of a new SAR modeling approach wherein it is
possible to differentiate "different" actions of toxicant or carcinogens. As the current IDEA award is
now focusing on why particular carcinogens are carcinogenic to breast tissue, this new award will
focus on understanding and identifying why toxic agents are only specific to certain types of breast
tumor cells. The goal is to identify novel and highly selective new chemotherapeutic agents and
pharmacophores for their development.

Submitted but not Funded
1. Louisiana Environmental Hazard Survey and Breast Cancer Analysis, The Coypu Foundation
(ARC PI, $241,830)
2. Estimating exposure to environmental carcinogens and breast cancer, The Susan G. Komen
Breast Cancer Foundation (ARC PI, $249,786)
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These first two proposals are based directly on the work of this project wherein we are proposing
to apply the predictive capabilities of the models to Geographic Information System (GIS)
overlays of breast cancer mortality and morbidity and environmental chemical transport data
from Toxic Release Inventory release sites. Only the Komen proposal was returned with review
comments and we are pleased with the fact that on this first attempt for funding of this new
initiative, the comments were positive and useful. We are hopeful that with further refinement of
the proposal, it will become fundable in the near future.

3. Pharmacophore discovery by differential toxicity studies, The Susan G. Komen Breast Cancer
Foundation, (Billy Day PI, $249,422)

This proposal was a simpler version of the just discussed IDEA award.

Conclusions
With the success of the rat mammary carcinogen models we are preparing a similar manuscript
describing mouse mammary carcinogens. We are also completing work on a general chemical
carcinogen manuscript and one describing female-specific carcinogens. Also of importance, we
are working on several xenoestrogen and toxicological models that, although not detailed in the
project proposal, will be of great importance for studying the receptor- and mutagenesis-based
mechanisms of breast carcinogenesis.

To date, after approximately three years of work, we have developed the proposed models set
forth in Specific Aim 1 using MCASE. We are now slightly behind schedule due to the time
required to develop the cat-SAR program. However, in conjunction with this and other projects
in my laboratory, all the required components for Specific Aim 2 are being or will be completed
in the coming year. There should be no significant future delays or problems accomplishing the
tasks of Specific Aim 2. This is of particular relevance for Specific Aims 2a and 2b that require
other toxicological models (e.g., mutagenicity and estrogenicity) on which to compare the female
and mammary gland carcinogen models.

Looking forward I see no obstacles to the successful completion of this project in a timely
manner which includes the anticipated request for a one-year no cost extension due to our move
from the University of Pittsburgh to LSU and the concurrent development of the cat-SAR
program.

Finally, in our discussion with friends knowledgeable in SAR and carcinogenesis including the
late Professor Rosenkranz, we are very excited about the prospects of this project that lay before
us. Specifically, by being able to address the issue of "why chemical carcinogens cause cancer
in the breast?" rather than previous SAR-based questions of "why do chemicals cause cancer?"
we anticipate taking SAR-based analyses of breast carcinogens to a new level of detail and
understanding.
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Development of an information-intensive structure-activity
relationship model and its application to human

respiratory chemical sensitizers

A. R. CUNNINGHAMt*, S. L. CUNNINGHAMt, D. M. CONSOERt,
S. T. MOSSt and M. H. KAROLT

tDepartment of Environmental Studies, Louisiana State University, Baton Rouge, LA 70803, USA
tDepartment of Environmental and Occupational Health, University of Pittsburgh,

Pittsburgh, PA 15261, USA

(Received 20 May 2004; in final form 9 October 2004)

Structure-activity relationship (SAR) models are recognized as powerful tools to predict the toxicologic
potential of new or untested chemicals and also provide insight into possible mechanisms of toxicity.
Models have been based on physicochemical attributes and structural features of chemicals. We describe
herein the development of a new SAR modeling algorithm called cat-SAR that is capable of analyzing
and predicting chemical activity from divergent biological response data. The cat-SAR program develops
chemical fragment-based SAR models from categorical biological response data (e.g. toxicologically
active and inactive compounds). The database selected for model development was a published set of
chemicals documented to cause respiratory hypersensitivity in humans. Two models were generated that
differed only in that one model included explicate hydrogen containing fragments. The predictive
abilities of the models were tested using leave-one-out cross-validation tests. One model had a sensitivity
of 0.94 and specificity of 0.87 yielding an overall correct prediction of 91%. The second model had a
sensitivity of 0.89, specificity of 0.95 and overall correct prediction of 92%. The demonstrated predictive
capabilities of the cat-SAR approach, together with its modeling flexibility and design transparency,
suggest the potential for its widespread applicability to toxicity prediction and for deriving mechanistic
insight into toxicologic effects.

Keywords: Structure-activity relationship (SAR); In silico modeling; Respiratory sensitizer; Predictive
toxicology; Chemical fragments; Categorical SAR (cat-SAR) program

1. Introduction

The task of identifying toxic agents is not a small or trivial challenge. One approach has been
to use mathematical models that relate biological activity to chemical structure. Benfenati
and Gini [1] describe modem structure-activity relationship (SAR) and quantitative SAR
(QSAR) methods as typically involving three parts: (1) the chemical part, (2) the biological
part (i.e. activity) and (3) the methodology for relating parts 1 and 2. The main premise for
these methods is that recurring and identifiable attributes of chemicals are associated with, or
responsible for, particular biological effects. The attributes can take many forms including

*Corresponding author. Email: arc@lsu.edu
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chemical structures, chemicophysical or quantum mechanical properties and graph indices,
to name a few. There are numerous methods that relate chemical structure with activity such

as those based on human expertise like Ashby's "structural alerts" for potential
carcinogenicity [2-4] to statistical QSAR methods like Hansch analysis (see e.g. [5]),

comparative molecular field analyses (CoMFA) [6] and MCASE [7-9].
Advances in computing and chemoinformatics, standardized biological or toxicological

testing, and the subsequent development of large libraries of test results have ushered in the era of

computational or in silico SAR. Computational SAR models have gained recent acceptance in

the regulatory community for both human health [10] and ecological endpoints [11]. Dearden
succinctly summarized the field of computational SAR or in silico toxicity prediction to include
QSAR models of congeneric and noncongeneric datasets and "expert systems" [12]. The utility

and application of some important expert system toxicology prediction methods have been
reviewed by Richard [13,14]. Through the use of various techniques, the overall goal is to
identify meaningful associations between activity and chemical structure. These associations

can then be used to investigate the underlying mechanisms of toxicity, or be extended to estimate
or predict the toxicity of untested compounds.

With today's fast CPUs, abundant amounts of computer memory, and the availability

of chemical informatics and graphics software we have aimed to readdress the challenge
of computer-based SAR expert systems for modeling large and chemically diverse
datasets. We describe herein the first generation of a new data and information-intensive

approach to toxicological SAR modeling. The program is based on the well-established
premise in SAR modeling that like structure begets like activity and employs chemical
substructures to differentiate between categories of biologically active and inactive

compounds for toxicological endpoints. We have named the new program cat-SAR for
categorical SAR.

The cat-SAR program uses 2-dimensional chemical fragments generated by the Sybyl
HQSAR module. We chose early in the development process of cat-SAR to use the Sybyl
platform which already possessed the needed utilities of in silico chemical fragmenting,

molecular graphics, and chemical informatics and database requirements associated with our
modeling goals. Of importance, the HQSAR module is used solely to generate molecular
fragments and is not used for further model development or statistical analysis.

Briefly, the HQSAR module is used to generate a list of chemical fragments

associated with compounds in a learning set and produce a data matrix of compounds
and fragments. In the data matrix, the rows are the chemicals and the columns are the
molecular fragments. Thus for each chemical, a tabulation of all its fragments are

recorded across the table rows and for each fragment all chemicals that contain in it are
tabulated down the table columns. The compound-fragment matrix is then analyzed, in

conjunction with the known biological activity category of each compound, by the cat-
SAR program. The cat-SAR program identifies structural features associated with the

biologically active and inactive categories. The cat-SAR program, the respiratory
sensitizer learning set (described below), and the compound-fragment matrix are

available through the corresponding author.
Since cat-SAR modeling is independent of the biological data used in the process we

anticipate that it can be generally applied from the study of drugs to environmental toxicants.

Moreover, the models can be used for either mechanistic studies of biological phenomena or
for the prediction of biological activity for untested compounds.
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The cat-SAR program stands alone from other computerized SAR expert systems in its
openness, flexibility, routine for identifying important attributes of biological activity or
inactivity, and its method for predicting the activity of untested compounds. Several
commercially available computational SAR expert systems including MultiCASE, TOPKAT,
and Oncologic are relatively closed systems where proprietory (and unknown) routines are
used to generate the final model. On the other hand, cat-SAR is completely open with every
detail of modeling transparent to the user. As for inflexibility, many of the commercially
available expert systems maximally only allow the user to alter the makeup of the learning
sets (users cannot alter the parameters for model development). The cat-SAR approach
allows the user to select and/or adjust many parameters during the model process from
learning set makeup, to selection of types of fragment attributes to consider, to ultimately
what numerical or statistical considerations are employed in developing the final model.

These are described in detail below.
The cat-SAR approach is also a very data- and information-intensive SAR expert system.

During model development and the creation of the final model, all fragments associated with
the categories are presented. This leaves the user with an unbiased view of all important
features associated with the biological endpoint. Consider the fact that the published MCASE
model of the same respiratory sensitizer learning set used herein produced a model based on
eight biophores and no biophobes [15]. One of the models developed with the cat-SAR
program produced 1213 fragments associated with activity and 92 associated with inactivity.
Similarly, the prediction of the activity of compounds outside the model's learning set
presents the user with a complete correspondence between all the fragments in the model
(e.g. 1213 active and 92 inactive) and those in the compound being predicted. Again
considering the published MultiCASE report for this dataset, MultiCASE predicted the
activity of methyldopa and presented the user with two reasons (i.e. biophores) for why the
compound was predicted active. The cat-SAR program provided 22 reasons.

The approach we have taken in developing cat-SAR clearly diverges from existing SAR
expert systems and is more in tune with modern QSAR techniques. For instance, the user is
presented with a number of selectable and adjustable modeling parameters. The notion of
having selectable and adjustable modeling parameters facilitates that ability to rigorously
explore the relationships between chemical structure and biological activity.

We chose to test the method on a previously published respiratory sensitization model due
to its small size (i.e. 80 compounds) and good modeling potential that was previously
demonstrated using CASE-MultiCASE [15]. This model has recently been reviewed by
Rodford et al. [16].

2. Materials and methods

2.1 Description of the cat-SAR SAR program

The cat-SAR models are built through a comparison of structural features found amongst the
active and inactive compounds in the model's learning set. A categorical approach is used
with, in this instance, compounds designated as active or inactive. For this exercise, active
compounds were chemical respiratory sensitizers and inactive compounds were
nonsensitizers. The modeling process began with the compilation of a set of chemicals
and their biological activity (described below). Using the Tripos Sybyl HQSAR module, each
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chemical was fragmented into all possible fragments. HQSAR allows the user to select
attributes for fragment determination including atom size, bond types, atomic connections,
inclusion of hydrogen atoms, chirality and hydrogen bond donor and acceptor atoms.
Moreover, fragments can be linear, branched or cyclic moieties.

We developed two sets of fragments from the model's learning set. The first (fragment set
ABC) contained fragments between three and seven atoms in size and considered Atoms, Bond
types, and atomic Connections (i.e. the arrangement of atoms in the fragment). The second
(fragment set ABCH) included the same descriptors as the previous set plus associated Hydrogen
atoms. A compound-fragment matrix was produced for both sets of fragments.

A measure of each fragment's association with biological activity was next determined.
This step is controlled by the user. To ascertain an association between each fragment and
activity (or lack of activity) a set of rules is established to choose "important" active and
inactive fragments. It should be noted that in this generation of the program we are using a
common-sense approach, rather than statistical analysis, to select "significant" fragments.

The first selection rule is the number of times a fragment is identified in the learning set.
For this exercise, it was arbitrarily set at three compounds (or 3.75% of the compounds in the
learning set). This was a reasonable decision considering that if a fragment is found in only one or
two compounds in the learning set it may be a chance occurrence. We do, however, note that
fragments found in only one or two compounds may not be outliers but rather underrepresented
descriptors of activity. On the other hand, since the learning set is composed of only 40 active and
40 inactive compounds (see next section), if we required fragments to be found in more than three
compounds, we would expect to miss important features.

The second rule relates to the proportion of active or inactive compounds that contain each
fragment. For both the ABC and ABCH fragment sets, we set the proportion at 0.90.
We reasoned that even if a particular fragment is associated with activity, there may yet be
other reasons (i.e. fragments) for its being inactive, thus it would not be expected to be found
in 100% of the active compounds. Likewise is true for inactive fragments. Thus, if we
considered only those fragments found exclusively in active or inactive compounds we would
rarify the fragments pool to an unreasonable level and risk losing valuable information.
On the other hand, we expected that fragments found to be present approximately equally in
the active and inactive fragment sets would not be associated with biological activity. Such
fragments may serve as chemical scaffolds holding the biologically active features and are
not directly related to activity or inactivity.

In summary, fragments were considered "significant" if they were found in at least three
compounds in the learning set and also found in at least 90% of the active or inactive
compounds that derived them.

The resulting list of fragments can then be used for mechanistic analysis, or to predict the
activity of an unknown compound. In the latter circumstance, the model determines which, if
any, fragments from the model's learning set thecompound contains. If none are present, no
prediction of activity is made for the compound. If one or more fragments are present, the
number of active and inactive compounds containing each fragment is determined.
The probability of activity or inactivity is then calculated based on the total number of active
and inactive compounds containing the fragments.

The probability of activity of a test chemical is calculated from the average probability
of active and inactive fragments. For example, if a test compound contains two fragments,
one present in 9/10 active compound (i.e. 90% active) and one in 3/3 inactive one
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(i.e. 100% inactive), the unknown compound will be predicted to be active based on the
higher probability of activity derived from chemicals containing these fragments.

In this manner, the probability of activity or inactivity is determined by comparison of the
structure of the unknown compound with the entire structural information present in the
model.

It requires noting that cat-SAR predictions are based on what can be conceived as two
separable models: The inactive fragment model and the active fragment model. By so doing,
cat-SAR predictions are based on information that is associated with biological activity and
inactivity. The cat-SAR program does not employ the use of default predictions wherein, as
in the case of MultiCASE, if no biophores are present in an unknown chemical it is predicted
by default to be inactive. This, of course, presents the situation wherein the cat-SAR program
will not make predictions on some chemicals. Although this may seem like a drawback to the
program by appearing less universal, the user of the program always has the option to simply
define chemicals that are not predictable by cat-SAR with a default value.

2.2 Respiratory sensitization databases

The dataset of respiratory sensitizers has been reported by Graham et al. [15]. Briefly,
chemical sensitizers were identified through a search of the medical literature. Selection
criteria were in accordance with the US Department of Health and Human Services
"Guidelines for Diagnosis and Treatment of Asthma" [17]. The search criteria included
chemicals with inhalation challenge followed by a drop of > 20% in forced expiration
volume at I s within 24 h of challenge. Forty compounds were identified. No reports were
identified of chemicals tested as described and found to be nonsensitizers in humans except
for the often-used control substance, lactose. Since, as discussed, the cat-SAR method
requires a comparison of biologically active with inactive compounds, we designated as
"negative" a set of 40 chemicals previously selected as respiratory nonsensitizers by Graham
et al. [15]. These 40 compounds were randomly selected from a dataset of chemicals tested
for human allergic contact sensitizing ability via patch testing and were found to be
nonsensitizers [18]. The assumption was made that dermal nonsensitizers would also be
respiratory nonsensitizers. In general, chemicals were relatively small organic compounds
that did not include salts, metals, mixtures, or polymers.

3. Results and discussion

3.1 Predictive performance of the cat-SAR respiratory sensitization models

To evaluate the predictive ability of the models, a leave-one-out cross-validation test was
conducted. For each chemical in the learning set, one at a time, its chemical fragments were
removed from the total fragment set, and the probability of activity or inactivity associated
with each fragment was recalculated. Using the criteria described above to estimate activity
of unknown compounds, the activity of the removed chemical was predicted.

Overall, the ABC and ABCH models correctly classified 91 and 92% of the chemicals they
were capable of predicting (table 1). The predicted activity for each chemical is listed in
table 2. The cat-SAR program, using the n-1 cross-validation learning sets (i.e. models built
on 79 compounds), was unable to make predictions for five chemicals in the ABC model and
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Table 1. Predictive performance of ABC and ABCH respiratory sensitization models. The ABC model was based
on fragments of size between three and seven heavy atoms and considered atoms, bonds, and atom connection.

The ABCH model also included consideration of hydrogen atoms.

Total. Model Active Inactive
Model Fragments * Fragmentst Fragments* Fragmentsi Sensitivity§ Specificityll OCP#

ABC 5737 1305 1213 92 0.94 0.87 0.91
ABCH 14424 3356 2926 430 0.89 0.95 0.92

*number of fragments derived from learning set.
5
number of fragments meeting specified rules of the model.

t
number of fragments meeting specified rules to be considered as active.

1
number of fragments meeting specified rules to be considered as inactive.

'number of correct positive predictions I total number of positives.
"number of correct negative predictions / total number of negatives.
*Observed Correct Predictions: Number of correct predictions / total number of predictions.

three in the ABCH (table 2). The reason for this is that each of these compounds did not
possess any structural features that the n-I models could base a prediction upon. A previous
CASE/MultiCASE model of the same data reported an overall correct classification of 95%.
This was based on the Bayesian combination of four CASE/MultiCASE submodels that

individually had sensitivities ranging from 72-80% and specificities ranging from 95-98%
[15]. In a separate published model based on chemicophysical parameters, a sensitivity of
85% and a specificity of 74% was achieved [19]. Interestingly, the individual ABC and

ABCH cat-SAR models are quite balanced with respect to sensitivity and specificity (table
1). This is not the case with the previous CASE/MultiCASE and chemicophysical models.
The individual CASE/MultiCASE models tended to have a better ability to predict the

inactive chemicals and the chemicophysical model was better able to predict the active ones.
The question arises as to why the program produced wrong predictions. In the case of any

of the previously mentioned respiratory sensitizing models, the simplest explanation lies in
the possibility that some of the information on which the models were built is not correct.
Consider the National Toxicology Program's Salmonella mutagenicity database. The
Salmonella database is derived from a standardized protocol and, more importantly, has been
analyzed for reproducibility and accuracy by replicate analyses of chemicals [20]. The
interlaboratory reproducibility of the Salmonella mutagenicity assay is only 85% [20].
Therefore, the databases may contain some incorrect information.

However, other explanations should be considered. The incorrect ABC model prediction
for hexamethylene diisocyanate and the incorrect ABC and ABCH model predictions for
isophorone diisocyanate are of interest. They both contain the isocyanate moiety which is
clearly associated with biological activity. The cat-SAR program also identifies this moiety
in these two compounds. However, the compounds contain a number of inactivating
fragments that counterbalance the isocyanate-related ones. At this time, a complete
understanding of the inaccurate predictions is not possible, but further development of both
the models and the databases should lead to a more comprehensive analysis.

3.2 Respiratory sensitization model analysis

As described above, two models were developed using the same set of 80 compounds. These
models can be considered as independent since they are built upon different fragment bases.
The ABC model started with a total fragment set of 5737 and the ABCH model with a set of
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Table 2. Model validation for respiratory sensitizers. Compounds with values above 50% were predicted to be
active compounds and those below 50% were predicted to be inactive.

Model 3-713/0.90

Experimental ABC % ABCH %
Chemical Activity Active Active

I ,5-Napthalene diisocyanate + 1.00 1.00
2-(N-Benzyl-N-tert-butylamino)-4'-hydroxy-3'-hydroxymethyl + 0.63 0.59

acetophenone di acetate
2,4-Toluene diisocyanate + 1.00 1.00
2,6-Toluene diisocyanate + 1.00 1.00
6-Amino penicillanic acid + 1.00 1.00
7-Amino cephalosporanic acid + 0.99 0.99
Ampicillin + 1.00 1.00
Azocarbonamide + 1.00 0.98
Benzylpenicillin + 1.00 1.00
Brilliant orange GR + 1.00 1.00
Carminic acid + 0.57 0.54
Cephalexin + 1.00 1.00
Chlorhexidine + 1.00 0.96
Dicblorvos +**
Dimethyl ethanolamine + 1.00 1.00
Diphenyl methane-4,4!-diisocyanate + 1.00 1.00
Epigallocatechin gallate + 0.57 0.60
Ethanolamine + 1.00 1.00
Ethyl cyanoacrylate + 0 .03'
Ethylenediamine + 1.00 1.00
Fenthion + 0.91 0.96
Hexamethylene diisocyanate + 1.000.8
Isononanoyl oxybenzene sulfonate + 0.98 0.82
Isophorone diisocyanate + O.22ý .7
Maleic anhydride + 1.00 1.00
Methyl-2-cyanoacrylate +**
Methyldopa + 0.99 0.95
Phenylglycine acid chloride + 1.00 1.00
Phthalic anhydride + 1.00 1.00
Piperacillin + 1.00 1.00
Piperazine + 1.00 1.00
Plicatic acid + 0.53 0.74
Reactive orange 3RZ + 1.00 1.00
Rifafix red BBN + 1.00 1.00
Rifazol black GR + 1.00 1.00
Tetrachloroisophthalonitrile +**
Tetrachlorophthalic anhydride + 1.00 1.00
Triethylenetetramine + 1.00 1.00
Trimellitic anhydride + 1.00 1.00
T~'losin + 0 .14 ' . 4
1,1,3,3,5-Pentamethyl-4,6-Dinitroindane - 0.00 0.00
1,4-Cineole - 0.00 0.04
1-Hexanol - *0.07

2,4-Dimethylhenzyl acetate - 0.00 0.02
2-Butyl-4,4,6-trimethyl-1,3-dioxane - loot1 0.50
2-tert-Amylcyclohexyl acetate - 0.03 0.06
3,6-Dimethyloctan-3-yl acetate - 0.05 0.06
3-Butyl phthalide, - 0.03 0.06
4-Acetyl-6-tert-butyl- 1, 1-dimethylindane - 0.00 0.06
5-Methyl ce-ionone - 0.12 0.09
9-Decenyl acetate - 0.05 0.05
Acetyl ethyltetramethyltetralin - 0.00 0.00
Allyl heptylate - 0.10 0.05
Benzyl butyrate - 0.10 0.06
Butyl isobutyrate - 0.06 0.07
Camphene - 0.00 0.04
cis-3-Hexenyl anthranilate - 0.65' 0.35
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Table 2 - continued

Model 3-7/3/0.90

Experimental ABC % ABCH %
Chemical Activity Active Active

cis-4-Decen- 1-al - 0.03 0.04
Citronellyl nitrile - 0.03 0.05
Cyclohexylethyl alcohol - 0.00 0.06
Dibutyl sulphide - 1.001 0.93
Dihydro-isojasmone - 0.03 0.04
Dimethylheptenol - 0.03 0.05
Ethyl acetoacetate ethylene glycol ketal - 0.27 0.19
Ethyl lactate - 0.09 0.07
Eugenyl phenylacetate - 1.00 0.81 t
-y-Dodecalactone - 0.05 0.07
Geranyl benzoate - 0.03 0.06
Heptyl butyrate - 0.06 0.06
Hexane - 0.00 0.09
Hexyl tiglate - 0.04 0.06
Isoamyl butyrate - 0.06 0.06
Lactoscatone - 0.04 0.05
l-Carvyl propionate - 0.04 0.04
Methyl tiglate - 0.09 0.07
Musk xylol - 0.00 0.00
Phenylethyl acetate - 0.77t 0.32
p-Isopropylcyclohexanol - 0.00 0.04
Rhodinyl formate - 0.03 0.05
Undecenyl acetate - 0.05 0.05

* no prediction was made for the compound.
wrong prediction was made for the compound.

14424 fragments (table 1). In both models, approximately 23% of the total number of
fragments met the criteria to be considered "significant" (i.e. 1307 significant /5753 total
= 22.7% for ABC and 3356 significant /144424 total = 23.2%) (table 1). The remaining
fragments were either not present in a sufficient number of compounds (i.e. found in < 3 or
3.75% of compounds in the learning set), or the fragments did not come from compounds that
were predominately (i.e. > 90%) active or inactive.

Overall, both models performed similarly. However, when considering the sensitivity and
specificity of the models, the distinction was not clear-cut. The ABC model was better able
to correctly predict the active chemicals while the ABCH model was better able to predict
the inactive ones. At this point, we chose to focus on the ABC model. This decision was
based on several criteria: (1) Both models have nearly equivalent correct prediction rates
(table 1) and make similar predictions on the majority of compounds in the validation set
(table 2), (2) Considering the law of parsimony, the ABC model is based on fewer
fragments and (3) The models are constructed from a set of 40 chemicals tested and found
to be respiratory sensitizers, whereas the set of 40 chemicals designated as "inactive" are
presumed to lack activity. Therefore, based on the quality of information of these active and
inactive sets, we favored a model with better ability to predict activity as compared with
inactivity.

Although beyond the scope of this report, we bring attention to the finding that the cat-
SAR method derives multiple independent models for the same endpoint. The observation
that the ABC and ABCH models do not predict the same activity for each chemical suggests
that the models may be capable of describing different attributes of the activity. This suggests
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the possibility of development of a consensus model using a Bayesian technique similar to
those previously reported using CASE/MultiCASE [15].

3.3 Examples of the cat-SAR model predictions

Methyldopa and 2,4-dimethylbenzyl acetate were selected to demonstrate the predictive
ability of the cat-SAR modeling method for an active and inactive chemical, respectively. For
this demonstration, we used the ABC model for reasons just described. Tables 3 and 4 list the
significant fragments derived from the two compounds. Figures 1 and 2 illustrate the intact
compounds and their associated fragments. The predictions presented for the two compounds

are based on results obtained from the leave-one-out validation exercise. Therefore, the
compounds themselves are not contributing to the fragment set of the model and are thus not
influencing their own prediction of activity or inactivity.

Table 3 lists and figure 1 shows all the significant fragments used in the leave-one-out

validation exercise to predict the activity of methyldopa. Methyldopa was predicted to have a
probability of activity of 0.988. This represents the average probability of activity of the 22

fragments used in the prediction (table 2). No fragments associated with methyldopa were
considered inactive.

Likewise, table 4 and figure 2 shows all the significant fragments used in the validation
exercise to predict the activity of 2,4-dimethylbenzyl acetate. 2,4-Dimethylbenzyl acetate
was predicted to have a probability of inactivity of 1.0.

As indicated, the prediction for the respiratory sensitizing ability of methyldopa and 2,4-
diemthylbenzyl acetate were based on the complete correspondence of significant fragments

Table 3. Fragments from the ABC model leave-one-out validation analysis used to predict the activity of the
respiratory sensitizer methyldopa

Fragment No. Active* No. Inactivet Total* % Active % Inactive

frag258 10 1 11 0.909 0.091
frag283 10 1 11 0.909 0.091
frag308 10 1 11 0.909 0.091
frag348 8 0 8 1.000 0.000
frag357 8 0 8 1.000 0.000
frag400 14 0 14 1.000 0.000
frag471 6 0 6 1.000 0.000
frag522 6 0 6 1.000 0.000
frag914 4 0 4 1.000 0.000
frag915 4 0 4 1.000 0.000
frag920 4 0 4 1.000 0.000
frag921 4 0 4 1.000 0.000
frag2378 3 0 3 1.000 0.000
frag2401 3 0 3 1.000 0.000
frag2415 3 0 3 1.000 0.000
frag2416 3 0 3 1.000 0.000
frag2463 3 0 3 1.000 0.000
frag2471 3 0 3 1.000 0.000
frag2472 3 0 3 1.000 0.000
frag2507 3 0 3 1.000 0.000
frag2509 3 0 3 1.000 0.000
frag2706 3 0 3 1.000 0.000

Probability of activity 0.988 0.012

* number of active compounds that contain the fragment.
number if inactive compounds that contain the fragment.
number of compounds in the dataset that contain the fragment.
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Table 4. Fragments from the ABC model leave-one-out validation analysis used to predict the activity of the
respiratory nonsensitizers 2,4-Dimethylbenzyl acetate.

Fragment No. Active * No. Inactivet Total* % Active % Inactive

frag4970 0 3 3 0.000 1.000
frag4979 0 3 3 0.000 1.000
frag4982 0 3 3 0.000 1.000
frag5003 0 4 4 0.000 1.000
frag5011 0 4 4 0.000 1.000
frag5032 0 4 4 0.000 1.000
frag5033 0 4 4 0.000 1.000
frag5073 0 4 4 0.000 1.000

Probability of activity 0.000 1.000

See table 3 footnotes for reference.

from the model's validation set to all the fragments identified in the compound. Methyldopa was
predicted to be active based on 22 fragments from its validation set of fragments. Inspection of
these fragments revealed several major themes. Fragment 348 leads to a series of complimentary
moieties covering the amine to carboxylic acid portion of the molecule. Fragment 283 covers the
para unsubstituted phenol and accounts for four other validation fragments. Fragment 2706

0 0
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Frag 921 Frag 920

O 0 1 1 -M Nn

0)I oragFrag 
4 0 0 N>ý Any

Frag 2472 Frag 471
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Frag 2416 OH NFrag

Frag 2463 N ,,O Frag 522HN Frag 348

O HO N ny

Frag 2471 Frag 2706 Methyldopa Frag 914

Frag 283
Frag 251)7 0-, . Frag 915

•0 ) 0,..•/ Frag 3 0)8

Ox Frag 258
Frag 2509

Frag 2401 Frag 2378

Figure 1. Illustration of the 22 significant fragments contributing to the active validation prediction of methyldopa.
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Frag 5011

Frag 5033

Frag 5073
2,4-diemthylbenzyl acetate

Frag 5032

Frag 4982 Frag 4970

Frag 4979

Frag 5003

Figure 2. Illustration of the eight significant fragments contributing to the inactive validation prediction of
2,4-dimethylbenzyl acetate.

covers the 3,4-diol and accounts for five other validation fragments. Fragments 2415 and 2416

are closely related to Fragment 2706 but cover just the 3-hydroxyl.
For 2,4-dimethylbenzyl acetate, Fragments 4970 and 4979 cover the para substituted

methyl section of the molecule. Moreover, Fragment 5073 covers the 2,4-methyl substitution
and can account for four similar fragments.

From a prediction point-of-view, any one fragment would have been sufficient for the
accurate prediction in these examples. From a mechanism point-of-view, for methyldopa,
just the four major fragment families (i.e. from fragments 348, 283, 2706, and 2416) would
have covered the major identified structural themes relating to activity. The same is true for
2,4-dimethylbenzyl acetate where two sets of similar fragments (i.e. from fragments 5073-
4970) described the compound. In this model, the fragment redundancy is obvious. However,
we speculate that this may not be the case with other toxicological endpoints. In models for
other endpoints, where fragments are similar but not exact, each fragment may contribute
novel mechanistic and predictive information to the model.

Clearly, from the results of the validation exercises, the cat-SAR program in not
performing at 100% accuracy. To judge the predictive performance of our models, we
compared them to two previously developed MCASE models. One model is based on
the National Toxicology Program's Salmonella mutagenicity database. The Salmonella
database is derived from a standardized protocol and, more importantly, has been analyzed
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for reproducibility and accuracy by replicate analyses of chemicals [20]. As previously
indicated, the interlaboratory reproducibility of the Salmonella mutagenicity assay is only
85% [20].

4. Conclusions

The new cat-SAR modeling approach described herein has a predictive ability in line with
other respiratory sensitization models developed by us [15,19]. This clearly suggests its
utility and warrants further development. It is applicable to toxicological or pharmacological
SAR modeling. The cat-SAR program uses a binary approach to identify structural features
associated with biological activity or inactivity. This is straightforward when the toxicologic
endpoint is categorical (e.g. sensitizers vs. nonsensitizers, carcinogens vs. noncarcinogens or
mutagens vs. nonmutagens). However, for other endpoints, where a continuous scale of

activity is measured, the dichotomy can be imposed between highly active and less active
compounds (e.g. extremely toxic vs. nontoxic as in the case of LD50 values or high or low
receptor affinity as in the case of estrogen receptor ligands).

The cat-SAR method has two main areas of strength when compared with other 2-
dimensional modeling systems. The first is the transparency of the method. The derivation of
model fragments and decision rules are open for inspection. The entire compound-fragment
matrix and the identified model fragments are all easily inspected. The second strength is the
amount of user-selectable parameters available for adjustment. For the fragment
development part of the program, the user can select fragments of different size and choose
other fragment attributes including the consideration of atoms, bond, and hydrogen atoms.
Moreover, when identifying important or significant fragments the user can manipulate the
selection process by altering the requirements for how many compounds in the learning set
contain each fragment and also what proportion of active or inactive compounds in the
learning set contain the fragment.

Thus, the cat-SAR method is transparent with regard to the overall modeling process.
Users of the program have the opportunity to optimize the process for their own needs.
Considering the fact that toxicologic endpoints differ in their mechanisms, it makes sense
that the modeling algorithm should be transparent to meet the requirements of the endpoint
being modeled.

Overall, in prediction mode, this method presents the user with a complete correspondence of
fragments in the model and the unknown chemical. In model analysis mode, the method provides

the user with a complete listing of all interesting fragments. It should be noted that there is no
hierarchy of fragments or filtering of "significant" fragments other than what the user chooses.
There are no hidden or proprietary rules in the process. All fragments that meet the user-specified

structural requirements and the rules of association with activity or inactivity are included in the
model. This leads to the identification of many (e.g. 1000 s) fragments, some with great structural
similarity. This clearly presents difficulty in being able to succinctly describe the model.
However, important information is retained and accessible to the user.

The cat-SAR program of course has some drawbacks and limitations. Like so many other
expert systems in toxicology, it is applicable only to organic chemicals. Metals, mixtures, and
polymeric compounds are not suitable for analysis. Moreover, as mentioned, the cat-SAR
program presents the final SAR model, in terms of all relevant fragments. This lead to a model

that may contain 1000 s of fragments which may lead to difficulty in model interpretation.
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TOC Graphic Illustration of how SAR models can remove layers of chemical information in
order to study specific aspects of the process. Consider chemical carcinogenesis: A SAR model
developed from many chemicals, that have been categorized as carcinogens and mncarcinogens
removes common chemical structures (top layer) to reveal features associated with carcinogens
(middle layer). The SAR model described herein was subsequently developed from carcinogens
that have been categorized as breast carcinogens and non-breast carcinogens. This later model
removes carcinogen-related structures (middle layer) to reveal a set of features associated with
breast-specific carcinogens (bottom layer).
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Abstract

Structure-activity relationship (SAR) models are powerful tools to investigate the mechanisms of

action of chemical carcinogens and to predict the potential carcinogenicity of untested

compounds. We describe herein the application of the recently developed cat-SAR algorithm to

two learning sets of rat mammary carcinogens. One set of models developed was based on a

comparison of rat mammary carcinogens to noncarcinogens (MC-NC) and the second compared

mammary carcinogens to non-mammary carcinogens (MC-NMC). The best rat MC-NC model

achieved an 82% observed correct prediction (OCP) rate with a sensitivity of 77% and a

specificity of 88%. The best rat MC-NMC model achieved a 79% OCP rate with a sensitivity of

83% and a specificity of 74%. The MC-NMC model was based on a learning set that contained

carcinogens in both the active (i.e., mammary carcinogens) and inactive (i.e., carcinogens to sites

other than the mammary gland) categories and was able to distinguish between different types of

carcinogens (i.e., tissue specific), not simply between carcinogens and noncarcino gens. Based

on a structural comparison between this model and one for Salmonella mutagens, there was no

observed relationship between the two phenomena since both the active and inactive categories

contained a high proportion of Salmonella mutagens. Overall, these findings suggest that the

MC-NMC model is identifying structural attributes to address the specific question of "why do

some carcinogens cause cancer in the breast?" which is a significantly different question than

"why do some chemicals cause cancer?'.
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Introduction

The identification of human carcinogens is a difficult and complex task. Only a limited number

of high-quality epidemiological studies have been conducted that identify particular agents that

induce cancer in humans. In lieu of such data, rodent cancer bioassays or short-term tests for

genotoxicity have been used to estimate the likelihood that particular chemicals will be human

carcinogens.

However, it is evident that not all chemicals in use today will be tested for carcinogenesis. There

are approximately 75,000 industrial chemicals on the Toxic Substance Control Act's Chemical

Substance Inventory (1) and the National Institute of Environmental Health Sciences estimates

that there are over 80,000 chemicals registered for use in the United States (2). A complete two-

year bioassay as conducted by the National Toxicology Program (NTP) including planning,

evaluation, and review takes about five years to complete, costs between $2-4 million, and uses

400 animals (3). To test all chemicals in this manner is thus prohibitive.

In fact, the NTP has only tested over 500 chemicals for rodent carcinogenicity in standardized 2-

year rodent bioassays. Furthermore, the Carcinogenic Potency Database (CPDB) analyzes and

consolidates into a single resource the world's diverse literature and NTP Technical Reports of

chronic long-term animal cancer bioassays (4). To date, analyses of 6073 experiments on only

1458 chemicals are available on the CPDB's web site (5). Fortunately, the consolidation,

standardization, and analyses of cancer bioassay data by the CPDB provides a comprehensive

resource for investigating chemical carcinogenesis including analyses by structure-activity

relationship (SAR) modeling and predictive toxicological methods.
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SAR modeling and other predictive toxicological methods provide a means to estimate

toxicological properties of chemicals based on information from previously tested compounds.

We have reported predictive and mechanistically insightful SAR models for mice (6) and rats (7)

using the CASE/MULTICASE SAR expert system and chemical carcinogenicity data from the

first five plots of the CPDB (8-12). Depending upon validation methods, these models had an

observed correct prediction (OCP) rate for chemicals removed from the model's learning set of

between 64% and 78% (6, 7). Many others have also demonstrated varying degrees of success

modeling chemical carcinogens. The utility and application of some important toxicologically-

focused predictive methods have been reviewed in-depth by Richard (13,14).

The SAR models of rat and mouse carcinogens developed by us, while being predictive, also

provided insight into the structural underpinnings for species-specific carcinogenesis. Many,

though not all, of the readily explainable attributes of these models corresponded with the

genotoxic or electrophilic paradigm of carcinogenesis (15). In retrospect, this is not surprising

given the large numbers of electrophilic or proelectrophilic carcinogens used to build the models

and the apriori acceptance of the electrophilic theory. These findings did however provide solid

evidence that many of the features developed for the models were justifiable and mechanistically

sound.

Of note, even in light of this bias toward electrophilic ity, we were able to glean an interesting

relationship between estrogenicity and carcinogenicity. We identified a 2-dimensional feature of

rodent carcinogens that dichotomizes the so-called "beneficial" (e.g., phytoestrogens) from

5



"harmful" (e.g., pesticides and industrial chemicals) xenoestrogens (16). Further investigation of

this feature showed that differences in regional lipophilicity were evident between

phytoestrogens and other man- made xenoestrogens. We speculated at the time that these

differences in chemical features of estrogen could induce different biological responses (16-18).

During this same time, the estrogen receptor alpha (ERcc) ligand binding domain was crystallized

and its atomic coordinates resolved with those of bound estradiol and raloxifene (19), genistein

(20), and 4-hydroxytamoxifen and diethylstilbestrol (21). It was noted that the lipophilic cavity

is nearly twice the size of estradiol, which may explain in part the ER's promiscuity (22). Most

importantly, it was observed by these authors that estrogen antagonists induce a different

conformational change in the AF-2 region compared to that for the natural ligand. These

analyses demonstrated the utility of SAR analysis to not only generate predictive models that are

explainable by current knowledge but also their ability to provide hypothetical (and testable)

information regarding the mechanistic action of toxicants.

The study described herein uses a new SAR algorithm to analyze chemicals that specifically

induce mammary cancer in rats. Environmental risk factors, including chemical exposure, may

play a role in the development of breast cancer. Unfortunately, many of these factors remain

largely unknown. We note that one group of chemicals that has received considerable attention

with regards to breast cancer is the environmental endocrine disruptors, with specific attention

paid to the xenoestrogens (23,24). For instance, rmny industrial chemicals (e.g., PCBs and

pesticides), consumer products (e.g., plasticizers and phenols), and plant products (e.g.,

phytoestrogens such as genistein and coumestrol) have been shown to possess estrogenic activity

in a number of in vitro and in vivo assays. As such, xenoestrogens warrant vigorous attention,
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especially in light of conflicting epidemiological data and expert opinions regarding their role in

the development of this disease (25-28). Overall, in a thorough review of the literature, it was

concluded that the available data do not support or reject the relationship between exposure to

organochlorine compounds and breast cancer (25). As for the role of xenoestrogens in general,

the National Research Council states that in fact most studies have been limited primarily to

DDT, DDE, TCDD, and PCBs with other compounds receiving little or no attention (29).

Although xenoestrogens have received much public attention, there is a sizable majority of

rodent mammary carcinogens that are not estrogenic. Thus, although environmental estrogens

may play an important role in the development of breast cancer, other nonestrogenic chemicals

may also contribute to the disease. As such, any screening approach designed to identify

environmental estrogens, although useful, will not allow for the identification of all potential

mammary carcinogens.

The Food and Drug Administration's (FDA) National Center for Toxicological Research

recently noted that FDA reviewers are interested in organ-specific carcinogenicity to aid in

evaluating new chemicals (30). As such, they have undertaken the task of building an organ-

specific database of chemical carcinogens from CPDB data. In their preliminary SAR analyses

of liver carcinogens, they obtained a correct prediction rate of 63%, with a sensitivity of 30% and

a specificity of 77% (30). Their efforts in developing this comprehensive dataset of organ-

specific toxicological data will provide a needed resource for the development and validation of

organ-specific SAR models.
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Aside from the practical needs of entities like the FDA for estimating organ-specific toxicity, the

development of organ-specific carcinogenicity models is also technically appealing. SAR

models developed from whole-animal carcinogenicity data attempt to deal with many underlying

and often competing mechanisms. As such, it is quite possible that information is lost in the

modeling process. Therefore by focusing on specific organs, we hypothesize the development of

a clearer picture of the chemical requirements for carcinogenesis in that organ.

For the analyses described herein, we used a newly developed SAR expert system to analyze the

set of rat mammary carcinogens reported in the CPDB (31). The system is called cat-SAR for

categorical-SAR. Basically, the cat-SAR approach is a computational SAR or in silico toxicity

prediction "expert system" as classified by Dearden (32). In a previous analysis of human

respiratory sensitizers, the cat-SAR program was able to achieve an overall correct prediction

rate of 92% with sensitivities between 89 and 94% and specificities between 87 and 95% (33).

The approach we have taken in developing the cat-SAR program clearly diverges from existing

commercial SAR expert systems and is more in tune with modern QSAR techniques. For

instance, the user is presented with a number of selectable and adjustable modeling parameters.

The control and selection of modeling parameters facilitates the ability to rigorously explore the

relationships between chemical structure and biological activity. Ultimately, this rationale

negates any a priori requirements that a given set of data must fit the attributes of a predefined

and often proprietary modeling process.
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The cat-SAR models are built through a comparison of structural features found amongst

categorized compounds in the model's learning set. Generically, these categories are

biologically active and inactive compounds. When just considering whole animal

carcinogenesis, the categories are simply carcinogens and noncarcinogens. However, when

considering organ-specific carcinogenesis, the question arises as to the selection of the inactive

or noncarcinogenic compounds. Should they be whole animal noncarcinogens or carcinogens

that are just not carcinogenic to the organ under consideration? For this exercise, we considered

both options and developed predictive SAR models comparing rat mammary carcinogens to

noncarcinogens (MC-NC model) and rat mammary carcinogens to non-mammary carcinogens

(MC-NMC model).

Materials and Methods

Mammary Gland Carcinogen Learning Sets

The CPDB standardizes the experimental results (whether positive or negative for

carcinogenicity), including qualitative data on strain, sex, route of compound administration,

target organ, histopathology, and the author's opinion and reference to the published paper, as

well as quantitative data on carcinogenic potency, statistical significance, tumor incidence, dose-

response curve shape, length of experiment, duration of dosing, and dose rate (8). Moreover, a

potency value for carcinogens, the TD 5 0 is available. The TD50 is "that dose rate (in mg/kg body

weight/day) which, if administered chronically for the standard lifespan of the species, will halve

the probability of remaining tumorless throughout that period" (8).

9



The rat mammary carcinogen learning sets were developed from the published CPDB carcinogen

target site summary (31). This reference listed 102 rat mammary carcinogens. We excluded

norlestrin and dimethylaminoethylnitrosoethyl urea nitrite salt. Norlestrin is a mixture, while the

second compound is an organic complex. Therefore a total of 100 rat mammary carcinogens

were included in the learning sets.

As discussed below, the cat-SAR program derives SAR models through the comparison of

structural features associated with categorical responses (e.g., active vs. inactive compounds or

carcinogens vs. noncarcinogens). When just considering whole animal carcinogenesis, the

categories are simply carcinogens and noncarcinogens. However, when considering organ-

specific carcinogenesis, selection of the inactive or noncarcinogenic compounds could be whole

animal noncarcinogens or carcinogens that are not carcinogenic to the organ under consideration

We considered both options for this analysis. Hence, we developed two separate sets of models

for rat mammary carcinogens: The mammary carcinogen - noncarcinogen (MC-NC) model and

the mammary carcinogen - non-mammary carcinogen model (MC-NMC).

Since we had sufficient numbers ofnoncarcinogens and non- mammary carcinogens to include as

"inactives", we made triplicate inactive datasets (designated Sets 1, 2 and 3 in Table 1) of 100

chemicals each. By so doing we were able to assess the stability of the derived models.

Statistical comparison of the each of the models' fragment sets and predictivity was conducted to

determine whether the three sets were statistically different. Moreover, this approach prevented

the chance of selecting 100 inactive compounds that produced a "good" model. For the MC-NC

model three random sets of 100 noncarcinogens were randomly selected from the 449 rat
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noncarcinogens listed in the CPDB. Likewise, for the MC-NMC model three random sets of 100

carcinogens were selected from the 395 rat carcinogens in the CPDB that did not induce

mammary cancer.

The Categorical-SAR or cat-SAR Expert System Methodology

The Learning Set

The cat-SAR models are built through a comparison of structural features found amongst two

designated categories of compounds in the model's learning set. As mentioned, for these

analyses the categories for the first model were mammary carcinogens vs. noncarcinogens (MC-

NC) and mammary carcinogens vs. non-mammary carcinogens (MC-NMC) for the second

model The cat-SAR learning set consists of the chemical name, its structure as a .MOL file, and

its categorical designation (e.g., one or zero). Organic salts are included as the freebase. Simple

mixtures and technical grade preparations are included as the major or active component.

Metals, metaloorganic compounds, polymers, and mixtures of unknown composition are not

included.

Since the cat-SAR program requires a number of user-specified options, there is not an a priori

determination of the final model. In other words, the user is allowed to explore and optimize the

modeling program. As such, we have developed and reported herein several different cat-SAR

MC-NC and MC-NMC models.

In Silico Chemical Fragmentation and the Compound-Fragment Data Matrix
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Using the Tripos Sybyl HQSAR module, each chemical was fragmented in silico into all

possible fragments meeting user-specified criteria. HQSAR allows the user to select attributes

for fragment determination including atom count (i.e., size of the fragment), bond types, atomic

connections (i.e., the arrangement of atoms in the fragment), inclusion of hydrogen atoms,

chirality and hydrogen bond donor and acceptor groups. Fragments can be linear, branched or

cyclic moieties.

The first sets of models developed contained fragments between three and seven atoms in size

and considered Atoms, Bond types, and atomic Connections. These are referred to as ABC

fragment set models. The second set included the same descriptors as the previous set plus

associated Hydrogen atoms. These are referred to as ABCH fragment set models.

Upon completion of the fragmentation routine, a Sybyl HQSAR add-on procedure produces the

compound-fragment data matrix as a text file. In the matrix, the rows are intact chemicals and

the columns are molecular fragments. Thus for each chemical, a tabulation of all its fragments

are recorded across the table rows and for each fragment all chemicals that contain it are

tabulated down each column.

The HQSAR module is not used for statistical analysis or model development. The compound-

fragment matrix is then analyzed, using the cat-SAR programs we have developed in order to

identify structural features associated with active and inactive compounds. The programs,

mammary carcinogen models, and the compound-fragments matrix are available through the

corresponding author.
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Identifying "Important" Fragments of Activity and Inactivity

A measure of each fragment's association with biological activity was next determined. This

step is controlled by the user. To ascertain an association between each fragment and activity (or

inactivity) a set of rules is established to choose "important" active and inactive fragments. It

should be noted that in this generation of the program we are using a common-sense approach,

rather than statistical analysis, to select "significant" fragments.

The first selection rule is the number of times a fragment is identified in the learning set. For

this exercise, it was arbitrarily set at three compounds in the learning set (i.e., 1.5%). This was a

reasonable decision considering that if a fragment is found in only one or two compounds in the

learning set it may be a chance occurrence. We do, however, note that fragments found in only

one or two compounds may not be outliers but rather underrepresented descriptors of activity.

On the other hand, since the learning sets are composed of 100 active and 100 inactive

compounds, if we required fragments to be found in more than three compounds, we would

expect to miss important features.

The second rule relates to the proportion of active or inactive compounds that contain each

fragment. We derived models for two proportions, 0.75 and 0.90, for boththe ABC and ABCH

fragment sets. In general, we reasoned that even if a particular fragment is associated with

activity, there may be other reasons (i.e., fragments) for its being inactive, thus it would not be

expected to be found in 100% of the active compounds. A similar argument can be made for

inactive fragments. Thus, if we considered only those fragments found exclusively in active or
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inactive compounds, we would rarify the fragments pool to an unreasonable level and risk losing

valuable information. On the other hand, we expected that fragments found to be present

approximately equally in the active and inactive fragment sets would not be associated with

biological activity. Such fragments may serve as chemical scaffolds holding the biologically

active features and are not directly related to activity or inactivity.

In summary, fragments were considered "significant" if they were found in at least three

compounds in the learning set and depending on model, also found in at least 75% or 90% of the

active or inactive compounds that derived them. The models developed are listed in Table 1.

Predicting Activity

The resulting list of fragments can then be used for mechanistic analysis, or to predict the

activity of an unknown compound. In the latter circumstance, the model determines which, if

any, fragments from the model's learning set the compound contains. If none are present, no

prediction of activity is made for the compound. If one or more fragments are present, the

number of active and inactive compounds containing each fragment is determined. The

probability of activity or inactivity is then calculated based on the total number of active and

inactive compounds containing the fragments.

The probability of activity of a predicted chemical is calculated from the average probability of

the active and inactive fragments contained in it. For example, if a compound contains two

fragments, one being found in 9/10 active compounds in the learning set (i.e., 90% active) and

the other being found in 3/3 inactive compounds (i.e., 100% inactive), the unknown compound
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will be predicted to be inactive based on the higher probability of inactivity derived from

chemicals containing these fragments. In this manner, the probability of activity or inactivity is

determined by comparison of the structure of the unknown compound with the entire structural

information present in the model.

"Validating" the Model

The cat-SAR program contains a leave-one-out cross-validation routine. For each chemical in

the model's learning set, one at a time, its chemical fragments were removed from the total

fragment set, and the probability of activity or inactivity associated with each remaining

fragment was recalculated. Using the same criteria described above, the activity of the removed

chemical was then predicted using the reduced fragment set.

The cat-SAR predictions are based on two separable fragment sets: The inactive fragments and

the active fragments. As mentioned, the predicted activity of a chemical is based on the average

probability of all the active and inactive compounds contributing to its fragments. As such, the

user can "decide" at what predicted probability of activity or inactivity to categorize the test

compound as a carcinogen or noncarcinogen.

To address this, we have adapted a routine from our previous MultiCASE work in which we

identify a cut-off point that optimally separates the prediction of active and inactive compounds.

This is based on the results of the validation exercise. In other words, since the prediction of

activity or inactivity is a probability, we allow the validation exercise to guide us in determining,

based on a probability of activity, what is ultimately classified as an active or inactive prediction.
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Results and Discussion

Overview of Predictive Performance of the Cat -SAR Mammary Carcinogen Models

The best rat MC-NC model achieved an 82% observed correct prediction (OCP) rate with a

sensitivity of 77% and a specificity of 88% (ABC 3/90 Model 1, Table 1). This model made

predictions on 145 of the 200 chemicals in the learning set. The best rat MC-NMC model

achieved a 79% OCP rate with a sensitivity of 83% and a specificity of 74% (ABC 3/90 Model

2, Table 2). This model made predictions on 124 of the 200 chemicals in the learning set.

In order to better judge how well these two models performed, we can consider the "accuracy" or

reproducibility of in vivo or in vitro toxicological tests themselves. In general, surrogate tests

and carcinogen bioassays are not reproducible with 100% concordance. For instance, the NTP's

Salmonella mutagenicity database, which is derived from a standardized protocol, has been

estimated to be 85% reproducible in vitro (34). Moreover, it was found that based on "near-

replicate" experiments in the CPDB, there was also a degree of non-reproducibility (4,35). For

example, 11 out of 54 chemicals tested in similar experiments for their ability to induce cancer in

mice were discordant (i.e., 80% reproducible) and 16 out of 104 chemicals tested for cancer in

rats were discordant (i.e., 85% reproducible) (4). This does not imply that the CPDB data is

flawed, only that there is variability in results. However, based on these findings, and since the

majority of results in the CPDB have not been subjected to replication, it does suggest that SAR

models built on this data will not, nor should be expected to achieve 100% accuracy. The cat-

SAR mammary carcinogen models appear to be in the same neighborhood of predictivity as the

bioassays themselves.
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Analysis of Random Subsets of Inactives Models

Statistical analysis of each set of three models derived from the random selection of non

carcinogenic or nonmammary carcinogenic compounds indicated the models had approximately

the same OCP rate. The most variable set of OCP values was for the rat MC-NMC ABCH 3/90

model where it varied from 72-79% (Table 2). All other models showed a closer spread of OCP

values. This provides a degree of confidence that the accurate predictions made by the models

were not spurious events based on the fortuitous selection of "good" compounds for the learning

set. In other words, this provides assurance that the models are based on a sound foundation and

are not providing arbitrary predictions or mechanistic assertions.

Comparison of 75% vs. 90% Models

In order to best compare the 75% and 90% models as well as comparisons described below

between the ABC and ABCH models, we chose to consider the average values for fragment

counts, OCP, sensitivity, and specificity. These were calculated for each set of three models

derived from different sets of randomly selected inactive compounds. This makes discussion of

the data more straightforward and also provides for a more robust analysis. However, similar

observations can be found when comparing individual models as well.

As the criteria for selecting important fragmerts increased from those found in 75% of active or

inactive compounds to those found in 90%, the model's OCP, sensitivity, and specificity

increased. For example, when looking at the ABC MC-NC models, as the fragment selection

criteria increased from 75 to 90% the average OCP rose from 74 to 81% (Table 1). The
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sensitivity and specificity also rose from 71 to 81% and from 78 to 80%, respectively (Table 1).

Similar increases can be seen for all other rat MC-NC and MC-NMC models (Tables 1 and 2).

The trend in improved OCP, sensitivity, and specificity indicates that as the requirements for

selecting important fragments are tightened (e.g., increasing proportion from 75% to 90%) the

accuracy of predictions made from the resultant more stringent model increased. This is not

unexpected. There is a cost associated with this increased accuracy, however. The more

stringent models do not contain as many important fragments as the less stringent ones. The rat

MC-NC ABC 3/75 model was based on an average of 1484 fragments while the 3/90 model

contained 1152 (Table 1). Similar trends can be found for the other models.

Comparison ofABC vs. ABCH Models

Upon comparison of the ABC to ABCH models, the ABC models typically performed better. In

general, the ABCH models contained about twice as many fragments. For example, the MC-NC

ABC models on average were based on 16979 fragments and the set of ABCH models were

based on 36947 fragments (Table 1). Similar increases were also observed for the total number

of important fragments as well as the pool of active and inactive fragments. The reason for this

is that, as expected, the fragments in the ABCH models are more specific by explicitly

considering hydrogen atoms.

Interestingly, these more specific ABCH fragments did not enhance the overall predictivity of

the models, but lowered it. For example, the rat MC-NC ABC 3/90 had an average OCP of 81%

while the ABCH 3/90 had an OCP of 76% (Table 1). This trend is evident in other comparisons
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between the ABC and ABCH models. However, in general the ABCH models were able to

make predictions on a greater number of compounds. Again, for example, the rat MC-NC ABC

3/90 rmodel made predictions on 139 chemicals while the ABCH 3/90 made predictions on 164

compounds (Table 1). Similar results were seen for other MC-NC as well as MC-NMC models

(Tables I and 2).

Examples of cat-SAR Predictions

Atrazine and fenaminosulf were selected to illustrate cat- SAR predictions of mammary

carcinogens based on the MC-NC model. Nithiazide and 1-phenyl-3,3-dimethyltriazene were

selected to illustrate the MC-NMC models. These "prediction" examples are based on results

obtained from the leave-one-out validation exercise. Therefore, the compounds themselves are

not contributing to the fragment set of the model and are thus not influencing their own

prediction of activity or inactivity. Additionally, the following discussion of the compounds

with consideration of their tumor sites and Salmonella mutagenicity are based on their

classification in the CPDB.

Atrazine is a male mammary carcinogen in rats and does not induce tumors in any other sites in

the rat male. Atrazine also induces cancer of the hematopoietic system and uterus in female rats.

Atrazine has been tested in male and female mice and has been determined not to be a mouse

carcinogen. It is also not a Salmonella mutagen. Atrazine was predicted to be a rat mammary

carcinogen based on the possession of 10 fragments associated with mammary cancer in other

compounds. (Table 3 and Figure 1). Each of these fragments was found in three other
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compounds in the learning set, all of which were mammary carcinogens (Table 3). Atrazine is

therefore predicted to have a 100% chance of being a mammary carcinogen.

Fenaminosulf has been tested in male and female mice and rats and has not been observed to

induce cancer in any of the four groups. Fenaminosulf however, is classified as a Salmonella

mutagen. Fenaminosulf was predicted to be a rat mammary noncarcinogen based on seven

fragments (Table 4 and Figure 2). Each of the seven fragments was found in four other

chemicals in the learning set, none of which were mammary carcinogens. Fenaminosulf is

therefore predicted to have a 100% chance of not being a rat mammary carcinogen.

Nithiazide has been tested in male and female mice and rats. In rats, it only induces mammary

gland cancer in females. It is a noncarcinogen in male rats. Alternately, it only produces liver

tumors in male mice and is a noncarcinogen in female mice. It is also a Salmonella mutagen.

Nithiazide was predicted to be a rat mammary carcinogen based on the possession of 29

fragments. All 29 fragments were predominately found in other mammary carcinogens.

However, six fragments (i.e., frags 329 to 756) also included some inactive members. As such,

Nithiazide was predicted to have a 98% probability of being a rat mammary carcinogen (Table 5

and Figure 3).

Lastly, 1-phenyl-3,3-dimethyltriazene has been tested in male and female rats and was found to

induce cancer of the nervous system. It has not been tested in mice. The compound is a

Salmonella mutagen. 1-Phenyl-3,3-dimethyltriazene was predicted to be a rat nonmammary

carcinogen based on the possession of eight fragments. All of the fragments except fragment
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1552 were derived from other rat nonmammary carcinogens. This compound was predicted to

have a 98% probability of being a nonmammary carcinogen (Table 6 and Figure 4).

Since cat-SAR predictions are based on the complete correspondence of important fragments in

the model to fragments contained in the test compound, redundant reasons for activity or

inactivity are observed. For example, the 10 fragments used to predict the activity of atrazine

can be grouped into those just representing triazine moieties and those including part of the

ethylamino and isopropylamino groups. This presents the program user with a challenge in

understanding the predictions, given the redundant fragments. However, we feel that this is a

strength of the cat-SAR program given the fact that it is capable of simultaneously handling

thousands of fragments in the prediction and analysis processes. As such, no important features

are lost due to filter mechanisms which may or may not be understood and accessible to the user.

Consider that a previous SAR analysis of rat carcinogens from the CPDB based on 745

chemicals using the MultiCASE program yielded only 26 major biophores (7).

Preliminary Mechanistic Analysis

Comparisons between the rat mammary carcinogen models and three other set(s) of cat-SAR

models were conducted to assess the likelihood that these models were related and thus have a

common underlying mechanism(s) of action. For these analyses we considered models based on

rat carcinogens, female rat carcinogens, and Salmonella mutagens (unpublished models).

The extent of relating features between two SAR models can be taken to be indicative of the

extent of mechanistic overlap between models and the underlying biological phenomena they
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describe. We used the Chemical Diversity Approach (CDA) previously described by us to

investigate the possible interrelationships between these models. Briefly, the CDA consists of

using a random sample of 10,000 chemicals representing the "universe of chemicals". Then,

using validated SAR models we predicted the activity of these chemicals. The prevalence of

chemicals predicted to possess simultaneously greater than chance the ability to induce two or

more toxicological effects should then provide a measure of the mechanistic relatedness of these

phenomena.

The first set of CDA analyses considers the relationship between the two rat mammary

carcinogen models (i.e., MC-NC and MC-NMC) and two models recently built from CPDB data

for all rat carcinogens and female rat carcinogens (unpublished data). For these analyses, the

level of significance was set at p<0.00 1). The rat carcinogen and female rat carcinogen models

showed 43.6% greater than expected overlap (Analysis 1, Table 7). This significant overlap is

expected since the learning set for the female rat carcinogen model is a subset of rat carcinogens.

There was also a 72.4 % significant overlap between the rat carcinogen and rat MC-NC models

(Analysis 2, Table 7). Comparison of the female rat carcinogen model to the rat MC-NC model

shows a 138.0% overlap (Analysis 3, Table 7). We note that the rat MC-NC model is not a

perfect subset of the female rat model since several male mammary carcinogens are included in

it. However, the majority of mammary carcinogens in the MC-NC model are female mammary

carcinogens. Overall, this very high degree of overlap underlines the close relationship between

female carcinogens and mammary carcinogens. Taken together, these analyses suggest that the

rat carcinogen, female rat carcinogen, and rat MC-NC models are all closely related.
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On the other hand, the degree of overlap between the rat MC-NMC model with the rat

carcinogen, female rat carcinogen, and rat MC-NC models is not high. The rat MC-NMC and rat

carcinogen model had a significant but modest 19.3% overlap (Analysis 4, Table 7). The rat

MC-NMC model and the female rat carcinogens model had a nonsignificant (p=0.032) overlap

of only 11.4% (Analysis 4, Table 7) and the rat MC-NC and MC-NMC models also had a

nonsignificant (p= 0.010) overlap of 13.6% (Analysis 5. Table 7). These last two analyses

suggest that the rat MC-NMC model is significantly different than the rat MC-NC and female rat

carcinogen models.

The last set of analyses considered the relationships between the carcinogen models and

Salmonella mutagenicity. Analyses 7, 8, and 9 (Table 7) indicate a strong and expected overlap

between mutagenicity and carcinogenicity. Interestingly however, there was no overlap

observed between the rat MC-NMC and Salmonella models (Analysis 10, Table 7) (p=0.961).

Since the rat MC-NMC model contained carcinogens in both its "active" (i.e., mammary

carcinogens) and "inactive" (i.e., carcinogens at other sites than the mammary gland) categories,

the model was standardized for carcinogens. In other words, the MC-NMC is based on

mechanistic attributes that describe how carcinogens may act as breast carcinogens-not how

chemicals are carcinogens.

Although the MC-NMC model was standardized for carcinogens, it also took into account a

basic mechanism of carcinogenicity, that being mutagenicity. Analysis of the Salmonella

mutagenicity of compounds in the rat MC-NC and MC-NMC models showed of the 73

mammary carcinogens with accompanying mutagenicity data from the CPDB, used for both the
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MC-NC- and MC-NMC models, 61 (83.6%) were mutagens. This is consistent with findings by

Gold and colleagues who reported for chemicals tested in both mice and rats, that 79% of

mutagens were carcinogens and only 49% of nonmutagens were carcinogens (4). Considering

the MC-NC model, of the 66 noncarcinogens included in the "inactive" category that had

mutagenicity data, only 14 (21%) are mutagens. This again is consistent with Gold et al. where

they report 25% of noncarcinogens are mutagens (4). On the other hand, when considering the

nonmammary carcinogens used to make the "inactive" category of the MC-NMC model, of the

75 compounds with mutagenicity data, 43 (57.3%) were mutagenic. In other words, the MC-

NMC model, while having carcinogens in both its "active" (i.e., mammary carcinogens) and

"inactive" (i.e., nonmammary carcinogens) categories, both categories also had a high

prevalence of mutagens. Thus mutagenic features were represented in both categories and

therefore were not identified as being associated with activity of either category. As above, since

the phenomena of mutagenesis was not considered in the modeling process, the MC-NMC

describes how carcinogens may act as breast carcinogens-not how mutagens induce cancer.

Conclusions

Currently, the NTP designates 228 substances "known" or "reasonably anticipated" to pose a

cancer risk (36). Unfortunately, this number is based on the analysis of only a few of upwards of

70,000 chemicals manufactured and used in this country. Computational structure-activity

relationships (SAR) have gained recent acceptance in the regulatory community for both human

health (3 7) and ecological endpoints (38). The present investigation consisted of a SAR analysis

of a subset of the CPDB that included mammary carcinogens, noncarcinogens, and carcinogens

at sites other than the mammary gland. Cat-SAR analysis of the MC-NC- and MC-NMC
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datasets produced two sets of models with balanced sensitivity and specificity and OCP values

between 70 and 82%.

Interestingly, the MC-NMC model was based on a learning set that contained carcinogens in

both the active (i.e., mammary carcinogens) and inactive (i.e., carcinogens to sites other than the

mammary gland) categories. The best of these models was able to achieve an OCP of 82%,

indicating the ability to distinguish between different types of carcinogens (i.e., tissue specific),

not simply between carcinogens and noncarcinogens. Moreover, based on a structural

comparison between this model and a model for Salmonella mutagens, there was no observed

relationship between the two phenomena. Likewise, in an analysis of the proportion of

Salmonella mutagens contained in the models learning set, both the active (i.e., mammary

carcinogens) and inactive (i.e., carcinogens to sites other than the mammary gland) categories

had a high prevalence of mutagens. These findings suggest that the MC-NMC model is

identifying structural attributes of chemicals that impart on them the ability to induce breast

cancer which are separable from those generally associated with carcinogenic potential (e.g.,

DNA-reactivity).

By including carcinogens in the active (i.e., breast carcinogens) and inactive (i.e., non-breast

carcinogens) categories of the MC-NMC, we hypothesize that we have removed a "layer" of

explainable mechanisms associated with chemical carcinogenesis and have revealed another

layer for studying why carcinogens target the breast (Figure 5). In other words, most SAR

models, by analyzing chemicals with a known and specific biological activity, remove the

majority of chemical structures and identify a subset of features associated with the given

biological activity. In fact, we have demonstrated that even traditional organic chemical
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categories are often removed since both the active or inactive groups being modeled contain

many of these traditional features (39). Likewise, since we have populated both the active and

inactive categories with carcinogens, features of chemical carcinogens have been removed from

the MC-NMC model allowing for features associated with how carcinogens target the breast to

be identified.

Finally, the cat-SAR expert system used herein is a knowledge based one (i.e., knowledge

contained in the learning set) and is not hypothesis driven. Thus, the toxicophores identified are

not dependent upon previous knowledge or assumptions regarding a mechanism of action. As

such, the identified attributes of breast carcinogens can be used to explore previously established

or hypothesized mechanisms or more importantly, in the case of the MC-NMC model, to develop

new testable hypotheses relating to the chemical induction of breast cancer.
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Table 1. Predictive performance summary for rat mammary carcinogen - noncarcinogen (MC-
NC) SAR model. The ABC model was based on fragments of size between three and seven
heavy atoms and considered atoms, bonds, and atom connection. The ABCH model also
included consideration of hydrogen atoms.

Model Total. Model Active Inactive Sensitivity Specificity OCP
Fragments Fragments Fragments Fragments

ABC3/0.75
Model 1 18021 1336 758 578 0.73(66/90) 0.78(69/88) 0.76(135/178)
Model2 17369 1486 786 700 0.71(67/95) 0.80(72/90) 0.75(139/185)
Model3 15547 1629 737 892 0.69(62/91) 0.76(67/88) 0.72(129/179)
Average 16979 1484 760 723 0.71 0.78 0.74(134/181
ABC3/0,90
Model 1 18021 1016 642 374 0.82(62/76) 0.78(47/60) 0.80(109/136)
Model2 17369 1129 617 512 0.77(56/73) 0.88(63/72) 0.82(119/145)
Model 3 15547 1311 624 687 0.83(63/76) 0.73(44/60) 0.79(107/136)
Average 16979 1152 628 524 0.81 0.80 0.81(112/139)
ABCIL3/0.75
Model 1 38797 3859 1790 2069 0.72(68/94) 0.76(68/90) 0.74(136/184)
Model2 37636 4293 2007 2286 0.71(70/98) 0.77(75/97) 0.74(145/195)
Model3 34407 4093 1785 2308 0.73(71/97) 0.65(62/95) 0.69(133/192)
Average 36947 4082 1861 2221 0.72 0.73 0.72
ARCH3/0.90
Model 1 38797 2746 1434 1312 0.76(63/83) 0.78(61/78) 0.77(124/161)
Model2 37636 2923 1392 1531 0.75(63/84) 0.78(67/86) 0.77(130/170)
Model3 34407 2949 1372 1577 0.74(66/89) 0.71(52/73) 0.73(118/162)
Average 36947 2873 1399 2210 0.75 0.76 0.76(124/164

Footnotes:
Total Fragments: number of fragments derived from learning set.
Model Fragments: number of fragments meeting specified rules of the model.
Active Fragments: number of fragments meeting specified rules to be considered as active.
Inactive Fragments: number of fragments meeting specified rules to be considered as inactive.
Sensitivity: number of correct positive predictions / total number of positive predictions.
Specificity: number of correct negative predictions / total number of negative predictions
OCP: Observed Correct Predictions: number of correct predictions / total number of

predictions.
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Table 2. Predictive performance summary for rat mammary carcinogen-nonmammary
carcinogen (MC-NMC) SAR model. The ABC model was based on fragments of size between
three and seven heavy atoms and considered atoms, bonds, and atom connection. The ABCH
model also included consideration of hydrogen atoms.

Model Total. Model Active Inactive Sensitivity Specificity OCP
Fragments Fragments Fragments Fragments

ABC3/0.75
Model 1 13868 1349 849 500 0.80(70/88) 0.66(53/80) 0.73(123/168)
Model2 14461 1330 861 469 0.72(63/87) 0.72(59/82) 0.72(122/169)
Model3 14427 1245 767 478 0.68(59/87) 0.74(64/86) 0.71(123/173)
Average 14252 1308 826 482 0.73 0.71 0.72(123/170)
ABlC3/0.90
Model 1 13868 1102 731 371 0.83(58/70) 0.74(40/54) 0.79(98/124)
Model2 14461 1086 723 363 0.82(54/66) 0.72(44/64) 0.75(98/130)
Model3 14427 847 520 327 0.82(51/62) 0.72(41/57) 0.77(92/119)
Average 14252 1308 826 482 0.82 0.73 0.77(96/124)
AICII3/0.75
Model 1 32235 3679 2081 1598 0.81(78/96) 0.62(55/89) 0.72(133/185)
Model2 32374 3921 2088 1833 0.70(66/94) 0.64(59/92) 0.67(125/186)
Model3 32627 3497 1928 1569 0.75(70/93) 0.69(65/94) 0.72(135/187)
Average 32412 3699 2032 1667 0.75 0.65 0.70
A.C113/0.90
Model 1 32235 2750 1642 1108 0.81(65/80) 0.76(50/66) 0.79(115/146)
Model2 32374 2947 1637 1310 0.75(55/73) 0.69(53/77) 0.72(108/150)
Model3 32627 2241 1170 1071 0.81(63/78) 0.70(52/74) 0.76(115/152)
Average 32412 3699 2032 1667 0.79 0.72 0.76

Footnotes: see table 1
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Table 3. Fragments from the ABC 3/0.90 mammary carcinogen noncarcinogen (MC-NC) model

leave-one-out validation analysis used to predict the rat mammary carcinogen atrazine.

Fragment No. Active* No. Inactivef Total % Active % Inactive

Frag 3662 3 0 3 1.000 0.000
Frag 3663 3 0 3 1.000 0.000
Frag 3664 3 0 3 1.000 0.000
Frag 3665 3 0 3 1.000 0.000
Frag 3 666 3 0 3 1.000 0.000
Frag 3667 3 0 3 1.000 0.000
Frag 3668 3 0 3 1.000 0.000
Frag 3670 3 0 3 1.000 0.000
Frag 3671 3 0 3 1.000 0.000
Frag 3677 3 0 3 1.000 0.000

Probability of activity 1.00 0.00

Table 4. Fragments from the ABC 3/0.90 mammary carcinogen noncarcinogen (MC-NC) model

leave-one-out validation analysis used to predict rat noncarcinogen fenaminosulf.

Fragment No. Active* No. Inactive" Totalt % Active % Inactive

Frag 6443 0 4 4 0.000 1.000
Frag 6446 0 4 4 0.000 1.000
Frag 6447 0 4 4 0.000 1.000
Frag 6451 0 4 4 0.000 1.000
Frag 6452 0 4 4 0.000 1.000
Frag 6455 0 4 4 0.000 1.000
Frag 6461 0 4 4 0.000 1.000

Probability of activity 0.00 1.00
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Table 5. 29 Fragments from the ABC 3/90 rat nonmammary (MC-NMC) model leave-one-out

validation analysis used to predict nithiazide as being a mammary carcinogen.

Fragment No. Active* No. Inactivef Totalt %Active %Inactive

Frag328 11 1 12 0.917 0.083
Frag352 11 1 12 0.917 0.083
Frag361 12 1 13 0.923 0.077
Frag508 21 2 23 0.913 0.087
Frag746 12 1 13 0.923 0.077
Frag756 12 1 13 0.923 0.077
Frag1739 10 0 10 1.000 0.000
Frag1740 10 0 10 1.000 0.000
Frag1741 10 0 10 1.000 0.000
Frag1742 9 0 9 1.000 0.000
Frag1743 9 0 9 1.000 0.000
Frag1744 9 0 9 1.000 0.000
Frag1745 9 0 9 1.000 0.000
Frag1746 9 0 9 1.000 0.000
Frag1747 9 0 9 1.000 0.000
Frag1754 9 0 9 1.000 0.000
Frag1758 10 0 10 1.000 0.000
Frag1759 9 0 9 1.000 0.000
Frag1765 10 0 10 1.000 0.000
Frag1775 11 0 11 1.000 0.000
Frag1776 11 0 11 1.000 0.000
Frag1777 10 0 10 1.000 0.000
Frag1778 10 0 10 1.000 0.000
Frag1779 10 0 10 1.000 0.000
Frag1780 10 0 10 1.000 0.000
Frag1781 10 0 10 1.000 0.000
Frag1782 10 0 10 1.000 0.000
Frag8l01 10 0 10 1.000 0.000
Frag1831 10 0 10 1.000 0.000

Probability of activity 0.977 0.023

Table 6. 8 Fragments from the ABC 3/90 rat nonmammary (MC-NMC) model leave-one-out
validation analysis used to predict 1-phenyl-3,3-dimethyltriazene as being a nonmammary
carcinogen.

Fragment No. Active* No. Inactivef Totalt % Active % Inactive

Frag1552 1 11 12 0.083 0.917
Frag1557 0 5 5 0.000 1.000
Frag1558 0 5 5 0.000 1.000
Frag1559 0 5 5 0.000 1.000
Frag1561 0 5 5 0.000 1.000
Frag1572 0 6 6 0.000 1.000
Frag1576 0 6 6 0.000 1.000
Frag1577 0 5 5 0.000 1.000

Probability of activity 0.02 0.98
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Table 7. Mechanistic relationships between the cat-SAR rat mammary carcinogen, other
carcinogen, and Salmonella mutagen models.

Analysis Observed Expected p-value A JOQA/Expected

1. Rat+ F-Rat 1166 812 <0.0001 354 43.6

2. Rat + Rat MC-NC 1410 818 <0.0001 592 72.4
3. F-Rat + Rat MC-NC 1202 505 <0.0001 697 138.0

4. Rat + Rat MC-NMC 1335 1119 <0.0001 216 19.3
5. F-Rat + Rat MC-NMC 769 690 0.032 79 11.4

6. Rat MC-NC + Rat MC-NMC 791 696 0.010 95 13.6

7. Rat+ Salm 1537 1021 <0.0001 516 50.5
8. F-Rat + Salm 1648 692 <0.0001 956 138.2
9. Rat MC-NC + Salm 1595 697 <0.0001 898 128.8
10. Rat MC-NMC + Salm 933 935 0.961 -2 -0.2
Notes:
? : Observed Prevalence - Expected Prevalence
100?/Expected: 100*?/Expected Prevalence
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Figure 5. Illustrative nature of how SAR models can remove mechanistic layers of chemical
carcinogenesis in order to study specific aspects of the process. A typical SAR model developed
from categories of carcinogens and noncarcinogens removes many common chemical structures
(top layer) reveals a set of features associated with carcinogenesis (middle layer). The SAR
model developed from categories that both contained carcinogens (middle layer) reveals a set of
features associated with breast- specificity (bottom layer).
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