

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public released; distribution is unlimited

CONFIGURATION AND MANAGEMENT OF WIRELESS
SENSOR NETWORKS

by

Min Young Kim

December 2005

 Thesis Advisor: Gurminder Singh
 Second Reader: Arijit Das

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2005

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Configuration and Management of
WIRELESS SENSOR NETWORKS

6. AUTHOR(S) Min Yung Kim

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public released; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Wireless sensor networks (WSNs) are expected to play an essential role in the
upcoming age of pervasive computing. As a new research area, there are several open
problems that need to be investigated. One such problem is configuration and management
of WSNs. To deploy sensors efficiently in a wide area, we need to consider coverage,
purpose and geographic situation. By considering these elements, we can make general
deployment strategies. Another issue is management of various sensors in wide area. To
handle these issues, we need approaches from different view, management levels, WSN
functionalities, and management functional areas.

In this thesis, I describe some of the key configuration and management problems
in WSNs. Then, I present a newly developed application to address these problems.

15. NUMBER OF
PAGES 149

14. SUBJECT TERMS
Wireless sensor networks, Deployment strategies, management
Dimensions, Mote, Coverage 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public released; distribution is unlimited

CONFIGURATION AND MANAGEMENT OF WIRELESS SENSOR NETWORKS

Min Y. Kim
Major, Korean Army

B.S., Korean Military Academy, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2005

Author: Min Y. Kim

Approved by: Gurminder Singh

Thesis Advisor

Arijit Das
Thesis Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Wireless sensor networks (WSNs) are expected to play an

essential role in the upcoming age of pervasive computing.

As a new research area, there are several open problems that

need to be investigated. One such problem is configuration

and management of WSNs. To deploy sensors efficiently in a

wide area, we need to consider coverage, purpose and

geographic situation. By considering these elements, we can

make general deployment strategies. Another issue is

management of various sensors in wide area. To handle these

issues, we need approaches from different view, management

levels, WSN functionalities, and management functional areas.

In this thesis, I describe some of the key

configuration and management problems in WSNs. Then, I

present a newly developed application to address these

problems.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. BACKGROUND .. 1
B. OBJECTIVES .. 1
C. RESEARCH QUESTIONS 1
D. SCOPE ... 2
E. THESIS ORGANIZATION 2

II. SENSOR NETWORK CONFIGURATION 5
A. INTRODUCTION 5
B. CONFIGURATION CHALLENGES 6
C. SENSOR CONFIGURATION STRATEGIES 8

1. General Strategies 8
a. Predetermined Strategy 8
b. Self-regulated Strategy 8
c. Randomly Undermined Strategy 9
d. Biased Distribution Strategy 10

2. Energy Efficient Strategies 10
III. SENSOR NETWORK MANAGEMENT 13

A. INTRODUCTION 13
B. MANAGEMENT CHALLENGES 14
C. MANAGEMENT DIMENSIONS 15

1. Dimensions for WSN Management 15
2. WSN Functionalities 16

a. Configuration 17
b. Sensing 17
c. Processing 18
d. Communication 19
e. Maintenance 21

3. Management Levels 22
a. Business Management 22
b. Service Management 22
c. Network Management 25
d. Network Element Management 25
e. Network Element 26

4. Management Functional Areas 28
a. Configuration Management 29
b. Fault Management 30
c. Performance Management 31
d. Security Management 32
e. Accounting Management 33

IV. OVERVIEW OF THE TESTING HARDWARE AND SOFTWARE 35

viii

A. INTRODUCTION 35
B. HARDWARE ... 35

1. Overview 35
2. Proposed Deployments 36
3. Systems Components 37
4. MSP410 Mote MICA2 Platform Core

(Microcontroller, Radio) 38
5. MSP410 Mote Sensing Subsystem, Passive

Infrared (PIR) Sensor 40
6. MSP410 Mote Sensing Subsystem, Magnetic

Sensor 41
7. MSP410 Mote Power Characteristics 42
8. MBR410CA Mote Base Station 44

C. SOFTWARE ... 44
1. MOTE-VIEW Client Software 44
2. XServe 48
3. Surge Network Viewer (Surge-View) 48

V. CONFIGURATION AND MANAGEMENT APPLICATION 51
A. APPLICATION REQUIREMENT 51

1. Planning Stage 51
2. Management Stage 51

B. APPLICATION COMPONENT AND EVALUATION 52
1. Planning Stage 52

a. Setting Background 52
b. Mote Addition and Deployment 54
c. Verification 54

2. Management Stage 56
a. Receive Data from Base Station 56
b. Network Status 56

VI. DISCUSSION .. 57
A. SUMMARY .. 57
B. CONCLUSIONS AND FUTURE WORK 58

APPENDIX: CONFIGURATION AND MANAGEMENT APPLICATION SOURCE
CODE. ... 59

LIST OF REFERENCES .. 127
INITIAL DISTRIBUTION LIST 131

ix

LIST OF FIGURES

Figure 1. Management dimensions for WSNs (From : Ruiz et al,
2003) .. 16

Figure 2. The role of configuration management (From: Ruiz
et al, 2003) 29

Figure 3. Mote Security System MSP 410CA 35
Figure 4. MSP410 Mote deployment for perimeter monitoring:

MSP410 Series User’s Manual (from: Crossbow, 2005) 36
Figure 5. MSP410 Mote deployment for a dense grid

monitoring: MSP410 Series User’s Manual (Crossbow,
2005) .. 37

Figure 6. (a) MSP410 Mote and (b) Mote’s basic block diagram
MSP410_Datasheet (http://www.xbow.com) 38

Figure 7. (a) Photo of a MICA2 (MPR4x0) without antenna, (b)
MICA2 block diagram of a MPR/MIB User’s Manual
(Crossbow, 2005) 39

Figure 8. MBR410CA, MSP410CA base station 44
Figure 9. Three-layer software framework for a WSN: MOTE-

VIEW 1.0 User’s Manual (from: Crossbow, 2005) ... 45
Figure 10. Screenshot presents MOTE-VIEW “Data” view

received from MSP410 system: MOTE-VIEW 1.0 User’s
Manual (from: Crossbow, 2005) 46

Figure 11. Screenshot presents THE MOTE-VIEW “Chart”
view received from the MSP410 system: MOTE-VIEW
1.0 User’s Manual (from: Crossbow, 2005) 47

Figure 12. Screenshot presents MOTE-VIEW “Topology” view
received from MSP410 system: MOTE-VIEW 1.0 User’s
Manual (from: Crossbow, 2005) 47

Figure 13. Surge’s output for a WSN Topology and
Statistics: Getting started Guide (from: Crossbow,
2005). ... 49

Figure 14. HistoryViewer output for a WSN Data Topology
and Statistics (from: Getting started Guide,
Crossbow, 2005). 49

Figure 15. Snapshot of Google earth 52
Figure 16. GPS Coordinates Input 53
Figure 17. User input for mote deployment and Screen

after deploying motes 54
Figure 18. Verification line between each mote and

connection status 55
Figure 19. Connection status of deployed 56

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF TABLES

Table 1. MSP410 Mote PIR Sensor’s specification and
Performance based on the MSP410 Series User’s
Manual (Crossbow, 2005). 41

Table 2. MSP410 Mote Magnetic Sensor’s specification:
MSP410 Series User’s Manual (from: Crossbow, 2005) 42

Table 3. Motes’ power requirements for various operations
based on the MSP410 Series and MPR/MIB User’s
Manual (Crossbow, 2005) 43

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ABBREVIATIONS AND ACRONYMS

CCD Charge Coupled Device

DoS Denial of Service

LLA Logical Layered Architecture

MIB Mote Interface Boards

MPR Mote Processor Radio

MSP Mote Security Package

PIR Passive Infrared

QoS Quality of Service

RF Radio Frequency

UTM Universal Transverse Mercator

VFA Virtual Force Algorithm

WSNs Wireless Sensor Networks

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGMENTS

This thesis is dedicated to my family. My lovely wife,

Sook, and our children, Myoung-Chul and Myoung-Hyuen, have

constantly supported me with their love, encouragement, and

patient.

I would also like to acknowledge my advisors, Gurminder

Singh and Arijit Das, for their continual guidance,

mentorship, and support throughout this thesis. They have

patiently encouraged my efforts with their inspirational

comments. Without their help, this work would never reach

the level of quality that I have always wanted in my life.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

Wireless sensor networks (WSNs) are expected to play an

essential role in the upcoming age of pervasive computing.

As a new research area, there are several open problems that

need to be investigated. One such problem is configuration

and management of WSNs.

When we deploy a sensor network, although there are

suggested configurations to determine sensor placement for a

given target distribution, we need to check whether this

deployment will be effective for the given terrain. To check

the state of the WSNs, we need tools which police the state

and identify nodes failure.

The task of developing management systems is very

complex and has several constraints and considerations. For

instance, it needs to manage tens of thousands of network

elements with particular features and organization. The task

becomes worse when we consider the physical restrictions of

the sensor nodes, in particular energy and bandwidth

restrictions.

B. OBJECTIVES

The first object of this thesis is research for

configuration and management of WSNs. The second object is

developing configuration and management application of WSNs.

C. RESEARCH QUESTIONS

The primary target of this thesis is a configuration

and management of WSNs. The study will be in accordance with

the following questions.

 2

What are the basic characteristics of Sensor Network?

• Characteristics of motes.

• What is the limit of WSNs?

• Overview and evaluation of existing
implementations

• How to configure WSNs?

• What are the restrictions in configuration of
WSNs?

• What are the existing deployment methods?

• How to deploy the sensor node?

• How to manage WSNs?

• What are the constraints in management of WSNs?

• What are the existing management methods?

• How can we identify and report failures in sensor
networks?

D. SCOPE

The scope of this research can be divided into two

parts. The first one will be research on configuration and

management of WSNs. In the second part, I will implement

interface application which will be used for that purpose

using Crossbow’s hardware technology.

I will focus my research on the limitation in

configuration and management of WSNs. Then I will research

the existing methods for configuration and management of

WSNs. My interface application will work for deployment in

designing stage and tell the status of each node in managing

stage.

E. THESIS ORGANIZATION

This thesis is organized as follows. Chapter II

describes configuration challenges and deployment strategies

for WSNs. Chapter III covers management challenges and

 3

dimensions for WSNs. Chapter IV describes characteristics of

Crossbow’s MSP410CA security system which was tested for

this thesis. Chapter V covers configuration and management

application of WSN which was developed by us and describes

the application’s requirement and component. Chapter VI

describes summary, conclusion and future work.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. SENSOR NETWORK CONFIGURATION

A. INTRODUCTION

A WSN consists of a large number of sensor nodes

deployed over an area and integrated to collaborate through

a wireless network. In this meaning, how to deploy a sensor

node is fundamental problem in WSN. It has a great impact on

efficiency and cost. So when we deploy a sensor node, we

need to think about consideration like purpose of deployment

and the topography and coverage ability of a sensor node.

Most of all the purpose of WSN is to get large coverage with

as few sensor nodes as possible.

As an example, consider the millions of acres that are

lost around the world, due to forest fires every year. In

all fires, early warnings are critical in preventing small

harmless brush fires from becoming monstrous infernos. By

deploying specialized wireless sensor nodes in strategically

selected high-risk areas, the detection time for such

disasters can be drastically reduced, increasing the

likelihood of success in early extinguishing efforts. Also,

since the nodes are self-configuring and do not need

constant monitoring, the cost of such a deployment is

minimal compared to the huge losses incurred in a large

blaze (Meguerdichian, Koushanfar, Potkonjak & Srivastava,

2001).

In this Chapter, I will speculate about problems in

configuration of WSNs followed by discussion of existing

strategies to deploy sensor nodes usefully.

 6

B. CONFIGURATION CHALLENGES

Configuration involves procedures related to planning,

placement, and self-organization of a WSN. The configuration

(predeployment) is related to the:

• Definition of WSN application requirements

• Determination of the monitoring area (shape and
dimension)

• Characteristics of the environment

• Choice of nodes

• Definition of the WSN type

• Service provided

In the deployment phase, sensor nodes can be placed by

dropping them from a plane, rocket, or missile, and placed

one by one by a human or a robot. Any placement approach for

sensor nodes must also take into account the expense and

difficulty in redeploying nodes. This is chiefly due to the

limited life span of nodes and to their generally no

replaceable power sources (Mehrotra, 2001). Another problem

is the optimal location of the access point (sink node or

base station). An inefficient configuration may adversely

affect overall performance. WSNs are application specific,

which means that the configuration changes from one WSN to

another (Ruiz et al., 2005).

Mostly, WSNs are deployed to monitor certain areas or

object, for example, to detect intruders, wildfires, or rare

animals in a habitat. To detect objects, sensors are needed

to be in a close enough range to sense the object or event.

Now, we have two questions. One is which points or places

are close to enough to sensor such that an event taking

 7

place at this point can be sensed. In other words, which

points are covered? Coverage is thus an important aspect of

QoS in sensor network.

The second question is: Given an area to be observed

and some coverage requirement, what number of sensors is

needed and where should they be placed? This question can be

posed under several interesting constraints, for example,

cost constraints, presence of obstacles, availability of

different types of sensors, and so forth (Karl & Willig,

2005).

In WSNs, coverage has a two-fold meaning: range and

spatial localization. Range refers to the geometric area of

a designated sensing mission, while spatial localization

emphasizes the relative spatial positions of sensor nodes

and targets so as to extract accurate measurement (Wang,

Hassanein & Xu, 2005).

Meguerdichian and colleagues define the coverage

problem from several points of view including deterministic,

statistical, worst and best case, and present examples in

each domain (Meguerdichian et al., 2001).

Meguerdichian et al. define the attempts which are made

to quantify the quality of service by finding areas of lower

observability from sensor nodes and detecting breach regions

in worst-case coverage. On the contrary, finding areas of

high observability from sensors and identifying the best

support and guidance regions are of primary concern in best-

case coverage. They also propose optimal polynomial-time

algorithms for solving each case (Meguerdichian et al.,

2001).

 8

C. SENSOR CONFIGURATION STRATEGIES

1. General Strategies

Sensor configuration strategies may vary depending on

purpose, cost and application. Even though, a lot of

deployment strategies can be chosen for WSNs, Wang et al.

(2005) generalize four methods of sensor deployment. The

following section will detail these strategies.

a. Predetermined Strategy

Two situations are considered in predetermined

strategy. In first situation, the environment or target is

specified. So we can deploy sensor node by this information

or specified target. In second situation, we can deploy

sensor node at regular intervals. In this situation, we need

some grid-based topology in which the sensing site is

spatially modeled as a grid-based distribution. Dhillon,

Chakrabarty and Iyengar (2002) determined the granularity of

the grid (distance between adjunctive grid points) by the

desired accuracy. Wang et al. (2005) noted that

predetermined strategy can provide an optimal solution for

desirable coverage and obtain high Qos and cost efficiency

at the same time. But the problem of the first situation is

that we often can not obtain knowledge of the environment

and target. On the contrary, a regular grid-based approach

has better adaptation to the variation of the conditions.

But, it also has some drawbacks. The grid coverage relies on

accurate sensor detection in reality, although sensor

detection is often uncertain.

b. Self-regulated Strategy

Self-regulated strategy is developed to overcome

the difficulties of the predetermined approach. Howard,

Mataric and Sukhatme (2002) propose a potential field-based

 9

method to deploy sensor nodes automatically in an unknown

environment. Because the sensing fields are established in a

manner in which each sensor node is repelled by obstacles

and by other nodes, the entire network is self-spread

throughout the environment and can reach the maximum

coverage. Clouqueur et al. (2002) present a scheme to deploy

sensor nodes sequentially in steps by introducing path

exposure as a metric of goodness. With the strategy of

properly choosing the number of sensors in each step, the

cost of deployment can be minimized to achieve the desired

detection performance. Self-regulated methods are scalable

to increasing the number of sensor nodes, but the

computational expense may become prohibitive.

c. Randomly Undermined Strategy

Randomly undermined strategy is more realistic for

a large-scale WSN application, such as unknown battlefields

or hostile terrains. With this approach, sensor nodes are

generally spread uniformly in a given area (Tilak, Abu-

Ghazaleh & Heinzelman, 2002). This strategy is preferable

because of easy placement of nodes and therefore low cost.

Although sensing devices can be randomly deployed in two- or

three-dimensional spaces, the coverage might not be uniform

due to obstacles or other sources of noise in the

environment. Based on an initial random distribution, Zou

and Chakrabarty (2003) introduced a practical virtual force

algorithm (VFA) to reposition the sensors in order to

enlarge coverage to the desired optimal results, thus

dealing with cases of high- and low-detection accuracy while

considering energy constraints.

 10

d. Biased Distribution Strategy

The uniform deployment of sensor nodes may not

always satisfy the design requirements but biased deployment

may. Willig et al. (2002) illustrate an example of biased

placement of sensors in a large-scale office building in

which the density of sensor nodes close to the windows is

much higher than that in the middle of the room. Some

comparisons of different deployment strategies by means of

simulations have been presented by Tilak et al. (2002).

Ray et al. (2003) proposed a new framework. In

their framework, they provide robust location detection in

harsh environment by overlapping sensor coverage. A unique

set of sensors cover each position in region. To reduce the

number of active sensors required by the system, they use

identifying code theory, which keep a large number of

sensors to be maintained in an energy-saving mode. They have

also proposed a polynomial-time algorithm ID-CODE for

determining sensor placement by generating a corresponding

irreducible identifying code.

2. Energy Efficient Strategies

Irali, Maleki and Predram (2005) investigated and

developed energy-efficient strategies for deployment of WSNs

(WSN) for the purpose of monitoring some phenomenon of

interest in a coverage region. They first described a two-

level WSN structure where the sensors in the lower level

monitor their surrounding environment and the micro-servers

in the top level provided connectivity between the sensors

and a base station. Irali et al. then formulated and solved

the problem of assigning positions and initial energy levels

to the micro-servers and concurrently partitioning the

sensors into clusters assigned to individual micro-servers

 11

so as maximize the monitoring lifetime of the two-level WSN

subject to a total energy budget. This problem, called MDEA,

was solved for both collinear deployment and planar

deployment situations.

 12

THIS PAGE INTENTIONALLY LEFT BLANK

 13

III. SENSOR NETWORK MANAGEMENT

A. INTRODUCTION

As both the environment of a WSN and the WSN itself

change, the system has to adapt. It has to monitor its own

health and status to change operational parameters or to

choose different trade-offs. In this sense, the network has

to maintain itself; it could also be able to interact with

external maintenance mechanisms to ensure its extended

operation at a required quality (Mainwaring et al., 2002)

Until now, WSNs and their applications have been

developed without considering an integrated management

solution. The task of building and deploying management

systems in environments that will contain tens of thousands

of network elements with particular features and

organization and that deal with the aforementioned

attributes is not trivial. This task becomes more complex

due to the physical restrictions of the unattended sensor

nodes, in particular energy and bandwidth restrictions.

(Ruiz, Nogueria & Loureiro, 2005)

In this chapter, my focus is on medium-sized WSN

management. Clearly, the mechanisms associated with

traditional management paradigms must be rethought. In this

sense, a new paradigm called autonomic management is

explored. The rest of this chapter is organized as follows.

At first, I will present an overview of network management

and discuss the management challenges for WSNs. Then,

management dimensions (management levels, WSN

functionalities, and management functional areas) are

presented.

 14

B. MANAGEMENT CHALLENGES

In this section, we will compare the management of

traditional networks with the management of WSNs and discuss

important characteristics of WSNs that make their management

different from that of other networks.

In planning stage, the traditional computer networks

are designed to assist a variety of applications. The

network tends to follow established planning of available

resources and the location of each network element is

renowned. In a WSN, the network is planned to have

unattended operation. For instance, the initial

configuration of a WSN can be quite different from what was

supposed to be in cases such as deploying the nodes to a sea,

forest, or other remote regions. Another difference is

topology status. In WSN, topology is dynamic because sensor

nodes can become out of service temporarily or permanently

(nodes can be discarded, lost, destroyed, or even run out of

energy).

An essential characteristic of managed WSNs based on an

autonomic system, which is a method to self-managed

computing systems with a minimum of human interference. WSNs

management requires capability of self-configuration, self-

organization, self-healing, and self-optimization. System

configuration must arise automatically. It must be able to

recover from routine and unexpected events that might cause

some of its parts to malfunction. The network must be able

to discover problems or potential problems, such as

uncovered area, and then find an alternate way of using

resources or reconfiguring the system to keep it functioning

smoothly. A managed WSN also looks for ways to optimize its

 15

functioning. A managed WSN needs to know its environment and

the context surrounding its activity and act accordingly

(Ruiz et al., 2003).

The task of building and deploying autonomic management

systems with tens of thousands of network is very complex.

This task becomes even more involved due to the physical

restrictions of the sensor nodes, in particular energy and

bandwidth restrictions. The management application to be

built also depends on the kind of application being

monitored. To deal with complex management situations, using

management dimensions is a good strategy.

C. MANAGEMENT DIMENSIONS

The following section involves how the traditional

management dimensions can be valid in WSN management. Also,

new dimension for WSN management (Ruiz et al., 2005) is

proposed that reflects the general features of the different

types of the networks.

1. Dimensions for WSN Management

The management application needs to be compatible with

the monitored application because WSNs are embedded in

applications to monitor the environment and act upon it. It

is needed to distinguish the WSN and establish a novel

management dimension to develop WSN management services and

functions. Thus, Ruiz et al. (2005) categorizes five main

WSN functionalities: configuration; sensing; processing;

communication; and maintenance. A novel dimension for the

management is defined by these functionalities, as presented

in Figure 1. In this way, abstractions offered by management

functional areas, management levels, and WSN functionalities

 16

construct an organization of WSN management. The novel

dimension introduced can be observed in the upper part of

Figure 1.

Figure 1. Management dimensions for WSNs (From : Ruiz

et al, 2003)

The next subsections describe WSN management from the

angle of management level, WSN functionalities, and

management functional areas.

2. WSN Functionalities

Ruiz et al. (2003) proposed the novel dimension for the

WSN functionalities composed by the configuration, sensing,

processing, communication, and maintenance functionalities.

These WSN functionalities can be observed in the upper part

of Figure 1. This novel dimension presents a scheme to

characterize WSNs considering that they are application

dependent.

MANAGEMENT LEVELS

Business Management

Service Management

Network Management

Network Element Management

Network Element

FUNCTIONAL AREAS

Configuration Management

Fault Management

Performance Management

Security Management

Accounting Management

WSN FUNCTIONALITIES

Configuration

Maintenance

Sensing

Processing

Communication

 17

a. Configuration

Configuration is connected with planning,

placement, and self-organization of a WSN. Ruiz et al.

(2003) discussed the configuration considering the possible

types of WSN and the other two management dimensions.

WSNs can be classified in various ways when we

consider the network management level and management

functional areas based on configuration functionality.

Various kinds of WSNs and key elements are described in

below.

• Homogeneous/ heterogeneous: same hard ware

• Hierarchical/ flat: nodes are grouped for the
purpose of communication

• Stationary/ dynamic: WSN is static

• Symmetric/ asymmetric: each transceiver has the
same transmission range

• Regular/ irregular: placement of node

• Sparse/ dense: number of nodes per area unit

b. Sensing

The autonomous sensor nodes provide the lowest

level of the sensing application. Data gathering is an

important operation in a sensor network. Sensing

functionality depends on the kind of the phenomenon. Thus,

WSNs can be organized to continuous, reactive and periodic.

In case of coexisting approaches in the same network, this

model is referred to as the hybrid collect model.

Temperature detection is an example of a continuous

phenomenon and a sensor deployed for animal detection is an

example of an application in which the phenomenon is moving.

 18

Other examples of phenomena are video; audio; pressure;

mechanical stress; humidity; soil composition; luminosity;

seismic; and chemical.

Whether gathering is continuous or not, WSNs are

defined depending on how the data will be transmitted to the

observer. The sensing includes the exposure (time, distance,

and angle of phenomenon exhibition at the sensor),

calibration, and sensing coverage. It will be wasteful if

all sensor nodes are active all the time depending on the

density of the phenomenon. A model that is compatible to

this case is the Frisbee model (Cerpa et al., 2001). On the

other hand, redundancy (overlapping in the sensor coverage)

should be utilized in such a way that fault tolerance in the

communication network is avoided and better accuracy can be

found in Vieira et al. (2003). In any case, the sensors can

be mobile. In this case, the sensors are moving with respect

to each other and to the observer as well, and they have

direction, orientation, and acceleration.

c. Processing

Memory and processor of a sensor node form the

computational module, which is a programmable part that

offers computation and storage for other nodes in the system.

Algorithms must be developed depending on the communication

constraints of the system. The computational module performs

basic signal processing (e.g., simple translations based on

calibrating data or threshold filters) and dispatches the

data according to the application. Processing can also

involve correlation procedures such as data fusion, which

merges one or more data packets received from various

sensors to create a single packet (data fusion). Data fusion

allows design of a network that delivers required data while

 19

meeting energy requirements and helps to reduce the amount

of data transmitted between the sensor nodes and the

observer.

d. Communication

Individual nodes communicate and coordinate among

themselves. Infrastructure and application are proposed for

two types of communication. The communication needed to

configure, maintain, and optimize operation is referred to

infrastructure communication. The configuration and topology

of the sensor network may be varying depending on the

presence of a hostile environment and nodes that fail

regularly. In this case, new protocols are required to

promote WSN productivity. In a static sensor network, an

initial stage of the infrastructure communication is

required to establish the network and an additional

communication is needed to complete its reconfiguration. If

the sensors are mobile, additional communication is needed

for path discovery/reconfiguration.

Application communication relates to the passing

on sensed data (or information obtained from it).

Transmitting and receiving a data packet needs fixed cost

energy related to the hardware and a variable cost that

depends on the distance of transmission. Therefore, short

distance transmissions are preferred to conserve energy. In

a homogeneous and flat WSN, the sensor nodes can establish a

multi-hop network by forwarding each other’s messages, which

can provide different connectivity options. In a

heterogeneous and hierarchical WSN, the cluster heads can

establish a single-hop network for reporting aggregated data

to the BS. Within a cluster, measured data are sent to the

cluster head by the sensor nodes under its control. All

 20

nodes in a cluster are the same except in the heterogeneous

WSN, where the cluster head has a larger transmission

capacity.

Considering the data delivery required by the

application interest, WSNs can be classified as continuous,

when sensor nodes accumulate data and send them to an

observer continuously along the time, and as on demand, when

they answer an observer’s query. A WSN is event driven when

sensor nodes send data referring to events happening in the

environment and programmed when nodes accumulate data

according to conditions defined by the application. The

hybrid model is used for mixed approaches in the same

network. The cost of sending data continuously may lead to a

more rapid consumption of the limited network resources and,

thus, shorten resource lifetime.

Multi-hop wireless capabilities will allow

communication and coordination among autonomous nodes in

unexpected environments and configurations. At the same time,

wireless channels present challenges of dynamic operating

conditions, power constraints for autonomously-powered nodes,

and complicating interactions between high level behavior

and lower level channel characteristics.

The communication approach can be organized as

below for any of the above models:

• Flooding (sensors broadcasting their information
to their neighbors, which in turn broadcast these
data until they reach the observer)

• Gossiping (sending data to one randomly selected
neighbor)

• Bargaining (sending data to sensor nodes only if
they are interested)

 21

• Uni-cast (sensor communicating to the sink node,
cluster head, or BS directly)

• Multicast (sensors forming application-directed
groups and using multicast to communicate among
group members)

e. Maintenance

The WSNs uses maintenance functionality to enable

configures, protect, optimize and heal themselves without a

lot of input from the human operators. Maintenance notices

failures or performance degradations, initiates diagnostic

procedures, and carries out corrective actions on the

network. Its ability to detect changes in the network state

allows the self-management to adapt and optimize the network

behavior. Beyond corrective maintenance, the other types of

maintenance are adaptive, preventive and proactive. The

system should adapt to meet the changes in adaptive type,

learn to anticipate the impact of those changes in

preventive type or learn to intervene so as to preempt

negative events in proactive type. An example of maintenance

concerns the density of nodes in the WSN. For instance, in

case of a high node density, the maintenance can turn off

some nodes temporally.

The WSN state (e.g., topology, energy, coverage

area) changes regularly. In the case of static networks,

changes happen because nodes may become unavailable during

operation. This dynamic behavior must be observed. The

maintenance depends on the knowledge of the network state.

Thus, maintenance functionality is needed to keep the

network operational and functional to guarantee robust

operation in dynamic environments, as well as optimize

overall performance. Maintenance provides dependability, the

 22

main attributes of which are reliability; availability;

safety; security; testability; and perform ability. WSNs

have important characteristics based on the application.

Some of them are:

• Planning

• Deployment

• Coverage

• Accuracy

• Fidelity

• Density

• Self-organization

• Adaptation

• Location

3. Management Levels

Different management levels are discussed in this

subsection. Management levels consist of business, service,

network, network element management and network element.

a. Business Management

Business management manages development and

determination of cost functions because WSNs depend on

applications. A sensor networks can be represented as a cost

function associated with network setup, sensing, processing,

communication, and maintenance. WSN applications have

gigantic possible profits for society as a whole and

represent new business opportunities.

b. Service Management

WSN services are related with functionalities

associated with application objectives. Basic WSN services

are sensing, processing, and data dissemination. Two main

 23

issues, quality of service (QoS) and denial of service (DoS)

are associated with WSN service management:

(1) Quality of service. To be effective and

provide guaranteed services, Qos architectures require QoS

elements to be adequately configured and monitored. So

management applications must manage QoS aspects. QoS models,

QoS sensing, processing, and QoS dissemination are

components involved in QoS support to WSNs. If the number of

monitored QoS parameters is large, the energy consumption

will be increased and the network lifetime will be reduced.

(2) QoS model. A QoS model identifies an

architecture in which some of the services can be presented

in WSNs. All other QoS components, such as QoS sensing, QoS

processing, and QoS dissemination (e.g., signaling, QoS

routing, and QoS MAC), must cooperate to accomplish this

goal. A management application can set up the QoS model and

manage the QoS signaling that coordinates behavior of the

other components. QoS-related tasks must be performed by

using network management functions.

(3) QoS sensing. QoS sensing considers the

sensor device calibration, environment interference

monitoring, and exposure (time, distance, and angle between

sensor device and phenomenon). Meguerdichian et al. (2001)

defines coverage area as a measure of QoS for a WSN. In the

worst-case coverage, attempts are made to quantify the

quality of service by finding areas of low observability to

sensor nodes and detecting breach regions. In the best-case

coverage, the management application must find areas of high

observability to sensors and identify the highest accuracy.

A denser network will lead to more effective sensing because

of the higher accuracy of the network and better fault

 24

tolerance. But, this will cause to collisions, congestion

situations, increase latency and reduce energy efficiency.

Thus, the management application requires the flexibility of

meeting the performance demands by controlling the reporting

rate of sensors, controlling the virtual topology of the

network (by turning off some sensors), or optimizing the

collective reduction communication operation (by data

aggregation).

(4) QoS dissemination. Energy and dynamic

topology of WSNs make QoS dissemination a challenging task.

The two components for QoS dissemination are QoS routing and

QoS medium access control (MAC). QoS routing discovers a

path that meets with a given QoS requirement, and QoS MAC

solves the problem of medium contention that supports

reliable uni-cast communication (Wu and Harms, 2001).

(5) QoS processing. Processing quality is

decided by not only processor and memory capacities buy by

the robustness and complexity of the algorithms used. The

computing paradigm is more dependent on one driven by data

than one based on computational power. The way to measure

processing performance is more dependent on the immediacy

and accuracy of the response and energy consumption than

processor speed. Individual computers become less important

than lower granularity and dispersed computing attributes.

The energy consumption to execute a service

with a determined quality level decides the network quality

of service. In most WSNs, energy consumption is one of the

main concerns. However, in urgent situations, the network

needs to apply the maximum of energy possible to deliver

information — for instance, in WSNs deployed over the forest

to monitor a fire as much information as possible is needed

 25

in the shortest time period. In this case, proper and fast

delivery of information is more important than the network

lifetime

Any situation that reduces the capacity of

the network to perform its expected job is called DoS

(denial of service). Some examples of incidental threats are

hardware failures, software bugs, resource exhaustion, and

unexpected environmental conditions. DoS aspects will be

discussed in Subsection Security Management.

c. Network Management

This layer aims to deal with a network, especially

when the network is distributed over a wide geographical

area. Relationships among sensor nodes are to be considered

in the network management level. Individual nodes need to

sense, process data, and communicate, thus contributing to a

common objective. In this way, nodes can be involved in

collaboration, connectivity, and aggregation relationships.

d. Network Element Management

Managed network elements characterize the sensor

and actuators nodes or other WSN entities, which perform

management functions and present sensing, processing, and

dissemination services. The basic functions of a WSN

management network element are

• Power management (how a sensor node uses its
power)

• Mobility management (how the movement of sensor
nodes is planned, run, and registered)

• State management (how a sensor node manages the
three management states defined for a node:
operational, administrative, and usage)

 26

• Task management (how a sensor node balances and
schedules the sensing, processing, and
dissemination tasks given to a specific network
state)

To perform coordinated activities with global

objectives, each sensor node needs to be autonomous and

capable of organizing itself in the overall community of

sensor nodes.

Considering processing power, memory capacity,

battery lifetime, and communication throughput, sensor nodes

have strong hardware and software restrictions. These are

typical characteristics of mobile and wireless. Thus,

software designed for a sensor node must consider these

limitations. The most concerned physical restriction of a

WSN is the obtainable energy because batteries are often not

revived during the operation of a sensor node and all

activities performed by the node must take energy

consumption into account.

e. Network Element

The network element is composed of physical and

logical components of a managed element. Physical resources

involve sensor or actuator nodes; power supply; processor;

memory; sensor device; and transceiver. Logical resources

involve communication protocols; application programs;

correlation procedures; and network services. Because

applications may require networks with a large number of

sensor nodes, a network element can deal with a single node

component or a group of nodes. A manageable element can be a

cluster of nodes or a cluster-head node, rather than an

individual node in such a case.

 27

Understanding node capability allows function

management to be structured and fine-tuned more efficiently.

The physical aspects of a network element are explained in

the following.

(1) Power Supply. The most widely used power

supply in a WSN is the battery, which is classified into the

following types (Savvides et al., 2001):

• Linear model — the battery is regarded as a bucket
of energy that is linearly drawn from this bucket
by the energy consumers

• Dependent model — takes into account the rate at
which energy is drawn from the battery to compute
the remaining battery lifetime; at high discharge
rates, the capacity of the battery is reduced

• Relaxation model — considers a phenomenon seen in
real-life batteries in which the battery’s voltage
recovers if the discharge rate is decreased

(2) Computational Module. This module is

composed of processor and memory. It is responsible for the

collaborative processing between nodes to achieve the levels

of service and reliability desired by the observer.

(3) Sensor element. Sensing devices can be

classified into three groups: monitors (e.g., magnetometer,

light sensor, temperature, pressure, humidity); motion

detectors (e.g., accelerometer); and media processing (e.g.,

audio, video).

(4) Transceiver Radio frequency (RF),

infrared, and optical are considered to the main types of a

transceiver. RF communication is based on electromagnetic

waves with frequencies ranging from tens of kilohertz to

hundreds of gigahertz. The size of the antenna is the most

important factors in the design of RF communications. An

antenna should be at least l/4 to optimize transmission and

 28

reception, where l is the wavelength of the carrier

frequency. A transmitting device uses a laser beam to send

information in optical laser communication. An optical

receiver receives the signal and decodes the data in the

form of a photodiode or charge-coupled device (CCD) array.

Optical communications can be categorized into two types:

passive (the laser signal is generated through a secondary

source) and active (the transmitting device generates its

own laser signal).

(5) Software. This represents programs and

procedures that becomes an autonomous system capable of

performing the information processing, relaying, or routing.

4. Management Functional Areas

WSN management takes into account fault, security,

performance, and accounting management functional areas

extremely dependent on the configuration functional area. In

WSNs, all operational, administrative, and maintenance

characteristics of the network elements; the network,

services; and business; and the adequate execution in the

activities of configuration, sensing, processing,

communication, and maintenance are dependent on the

configuration of the WSN. This idea is depicted in Figure 2,

in which the configuration functional area plays a central

role.

 29

Figure 2. The role of configuration management (From:

Ruiz et al, 2003)

a. Configuration Management

Any problem or situation not anticipated in the

configuration phase can affect the offered service because

the objective of a sensor network is to monitor (acquisition,

processing, and delivery of data) and, eventually, to

control an environment. The configuration management must

present self-organization, self-configuration, self-

discovery, and self-optimization. Some management functions

defined for network level configuration management are:

• Requirements specification of the network
operational environment

• Monitoring of environmental variations

• Size and shape definition of the region to be
monitored

• Node deployment — random or deterministic

• Operational network parameters determination

• Network state discovery

• Topology discovery

• Network connectivity discovery

• Control of node density

• Synchronization

 30

• Network energy map evaluation

• Coverage area determination

• Integration with observer

Some management functions defined for network-

element level configuration management are:

• Node programming

• Node self-test

• Node location

• Node operational state

• Node administrative state

• Node usage state

• Node energy level

b. Fault Management

Faults in WSNs are tend to occur frequently and

not an exception. This is one of the reasons why management

of WSNs is different from the traditional network management.

Due to energy shortage, connectivity interruption, and

environmental variations, faults happen all the time. In

general, sensor networks need to be fault tolerant and

robust and require surviving in spite of occurrences of

faults in individual nodes, in the network, or even in

services provided. Other events can happen in a WSN related

to communication in addition to events caused by energy

problems; quality of service; data processing; physical

equipment fault; environment; integrity violation;

operational violation; security; and time-domain violation.

So, even if a node has an adequate energy level to perform

its function, it may decide not to do that for other reasons.

 31

Fault management must provide basic characteristics such as

self-maintenance, self-healing, and self-protection.

In a WSN, Failures happen frequently, and fault

management is a critical function. Several characteristics

of sensor networks propose that faults, common in

traditional computer networks, will be even more common in

this kind of network. Fault management will play an equally,

if not more, crucial role in WSNs.

c. Performance Management

In performance management, the higher the number

of managed parameters, the higher the energy consumption and

the lower the network lifetime are. On the other hand, if

parameter values are not attained, it may not be possible to

manage the network properly.

The configuration (in terms of sensor capabilities,

number of sensors, density, node distribution, self

organization, and data dissemination) is important in

determining the performance of the network. Performance

management must deal with the self-service characteristic.

As such, the performance of the network and provided service

are best measured, when it meets the accuracy and delay

requirements of the observer, as well as consumed energy.

The accuracy specifies the reliability or

exactness of a result. The accuracy of a measurement at a

network element (sensor) is specific to the physical

transducer and the nature of the phenomenon. At the network

level, accuracy is determined by the delay in data delivery

due to network congestion, route length, duty cycle of the

sensors, or aggregation processing of data. Accuracy at the

service level depends on the metric chosen by the

 32

application for establishing the coverage area and amount of

energy to be spent in gathering and disseminating data.

Because multiple samples will be received from different

sensor nodes and with different data quality, additional

performance metrics need to include:

• Coverage area

• Exposure

• Sensor cost

• Scalability

• Produced data quality

In some applications, in addition to information

about some features of the phenomenon, it might be essential

to know where (sensor location), when (data–time), and how

(sensor calibration, exposure) to manage the WSN performance.

d. Security Management

Due to ad hoc organization, intermittent

connectivity, wireless communication, and resource

limitations, security functionalities for WSNs are

complicated to provide. A WSN is threatened by different

safety threats: internal, external, accidental, and

malicious. Information or resources can be destroyed;

information can be modified, stolen, removed, lost, or

disclosed and service can be interrupted. Even if the WSN is

secure, the environment can change it insecure or vulnerable.

Security management must provide self-protection,

reliability, disposability, privacy, authenticity, and

integrity.

Determining if a fault or collection of faults is

the result of an intentional DoS attack presents a concern

of its own — a point that becomes even more difficult in

 33

large-scale deployments, which may have higher nominal

failure rates of individual nodes than small networks will.

The robustness against physical challenges may avoid some

classes of DoS attacks. Each layer of the protocol stack is

susceptible to various DoS attacks and has several options

available for its defense.

e. Accounting Management

Accounting management involves functions connected

to the use of resources and corresponding reports. It

establishes metrics and quotes and limits what can be used

by functions of other functional areas. These functions can

trace the behavior of the network and even make inferences

about the behavior of a given node. Accounting management

must be considered self-sustaining.

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

IV. OVERVIEW OF THE TESTING HARDWARE AND SOFTWARE

A. INTRODUCTION

This chapter presents overview of the hardware and

software which are used in this thesis. I will introduce

MSP410CA Mote Security System, a Crossbow commercial product

and software; MOTE-VIEW client software, XServe and Surge-

view.

B. HARDWARE

1. Overview

MSP410CA Mote Security System consists of eight nodes

which use battery power and target at serving security

implementations. The MSP410 mote is the WSN component in

configuration and management application that is responsible

for creating and maintaining the wireless ad-hoc mesh

network and then for collecting and returning to the base

station the sensor’s values that will be shown in the

application. MBR410CA base station is interface between MSP

410 motes and computer. In the following sections the

MSP410CA system will be explained and Crossbow

implementations will also be proposed. Figure 3 shows

elements of the kit.

Figure 3. Mote Security System MSP 410CA

 36

2. Proposed Deployments

A variety of security applications can be developed by

the MSP410CA Mote Security System support. MSP410 Motes can

be deployed in a perimeter or grid pattern in a typical

security application. The MSP410 Mote is able to generate

detection by transmitting the proper sensor’s data to the

base station directly or through the network and by

combining wireless mesh networking technology and carrying a

set of sensors. Figure 4 presents a possible perimeter

deployment around a building and shows the distances between

the motes which recommended by Crossbow. Figure 4 also shows

the orientation restriction recommended by Crossbow, to

achieve better results. In the MSP410 Sensing Subsystem

section we will further study this constraint.

Figure 4. MSP410 Mote deployment for perimeter

monitoring: MSP410 Series User’s Manual (from:
Crossbow, 2005)

 37

Figure 5 shows the proposed dense grid deployment

presented in the user’s manual. The proposed deployment

contains the suggested distances and the same orientation

restriction with the perimeter option. The purpose of the

above dense grid is to provide complete coverage of the area

of interest. It is not the communication range but the

average sensor’s effective distances restricts the distances

in both proposed. Greater distances can be used between the

motes, in case the application’s requirements do not

indicate complete area coverage. Thus a greater area will be

covered by the same number of motes, but possibly, some

shadow areas also will be formed.

Figure 5. MSP410 Mote deployment for a dense grid

monitoring: MSP410 Series User’s Manual
(Crossbow, 2005)

3. Systems Components

The MSP410 Mote Security System consists of two parts.

The first part, MSP410 Motes is responsible for the sensing

functions and for the deployment and maintenance of the

 38

wireless mesh ad-hoc network. The other part MBR410CA, the

base station, acts as the important WSN interface with other

systems. The base station is responsible for delivering the

collected data to the connected system. The base station is

also used to reprogram the motes. The following sections

detail further the above system’s components, based on the

information included in the MSP410 Series User’s Manual and

the MPR/MIB User’s Manual (Crossbow, 2005).

4. MSP410 Mote MICA2 Platform Core (Microcontroller,
Radio)

The MICA2 processor/radio board and a variety of

sensors comprise the mote, the core element of the MSP410CA

system. Figure 6 shows the mote in the “heat reflective

plastic enclosure” and the mote’s basic block diagram. This

section focuses on the platform, microcontroller, and radio.

 (a) (b)

Figure 6. (a) MSP410 Mote and (b) Mote’s basic block
diagram MSP410_Datasheet (http://www.xbow.com)

The processor/radio part, the left part of the above

block diagram, belongs in the MICA2 Crossbow products’

family. The MPR/MIB User’s Manual separates MICA2 into three

models based on their RF frequency band: the MPR400 (915

 39

MHz), the MPR410 (433 MHz) and the MPR420 (315 MHz). The

MSP410CA system uses the second model, the MPR410. All the

MICA2 models are compatible and can communicate with each

other. Figure 7 shows the platform and the block diagram of

the MICA2.

 (a) (b)

Figure 7. (a) Photo of a MICA2 (MPR4x0) without antenna,

(b) MICA2 block diagram of a MPR/MIB User’s
Manual (Crossbow, 2005)

The Amtel Atmega128 microcontroller is the basic

platform element which has total control of the functions.

The external flash and the 64-bit Serial ID number are two

peripherals which are directly connected to the processor

and all the sensors and devices which are not directly

connected to the processor are also handled as peripherals.

The 51-pin Hirose interface connector provides wired

communication and reprogramming functions

The other important element of the MICA2 Platform Core

is the Chipcon CC1000 radio. It manages transmission at an

effective baud rate 19.2 kilobit per second (kbps). Two-tone

 40

Frequency Shift Keying (FSK) modulation and Manchester

encoding is used for transmission (MSP410 Series User’s

Manual [Crossbow, 2005]). Within the specified band, the

radio can be tuned up to four different channels around

433MHz,. The actual number of possible channels is higher,

but the recommended channel spacing in order to avoid

interference is greater than 500 kHz.

5. MSP410 Mote Sensing Subsystem, Passive Infrared
(PIR) Sensor

A set of sensors are under the plastic enclosure of the

MSP410 Mote, except the core’s board microcontroller and the

radio components. These sensors are the system’s important

interfaces, with an environment responsible for gathering

data. The collected information is passed to the board part

where a basic manipulation happens. Then the information is

encapsulated in a message, which is transmitted through the

network forward to the base station.

The PIR sensor supports 360-degree coverage in a

horizontal direction. To enhance the sensor’s capabilities,

a lens is used. The horizontal field of view is further

subdivided into nine individual beams. A shadow is produced

by warm object close to a sensing element. Whenever a shadow

crosses sequentially at least two of the horizontal beams,

object detection takes. The four PIR elements also provide

“Quad Detect capability.” This capability enhances the

system’s ability to identify an object’s movement and

direction by including into the data message, which the node

sends to the base station, not only the PIR value but also

the quad that had the detection.

The outputs of a PIR sensor are affected by the

sensor’s sensitivity, the sensor’s position, the ambient

 41

thermal noise and the object’s characteristics (type, size,

distance, velocity, direction, aspect). Sensors use

filtering for the input output signal to increase the

sensing performance and to reduce the effect of the noise.

Table 2 summarizes the specification and performance of

the MSP410 PIR sensor based on the MSP410 Series User’s

Manual (Crossbow, 2005).

Specifications - Performance Value Comments

Optical wavelength 5 µm to 14 µm

Optical bandwidth 0.01 Hz to 15 Hz

Field of view vertical ± 15° °

Field of view horizontal ± 45

Storage temperature -55°C to +125°C

Range for human detection 30’ to 40’

Range for cars detection 50’ to 60’

Range for large tracks detection 70’ to 80’

For Motes
height ≈ 3’
off the ground

Outdoor air
temperature ≈
7°C.

Table 1. MSP410 Mote PIR Sensor’s specification and

Performance based on the MSP410 Series User’s Manual
(Crossbow, 2005).

6. MSP410 Mote Sensing Subsystem, Magnetic Sensor

The magnetic sensor is triggered by changes in the

local magnetic field, which may be produced by a near-

passing object. The use of proper noise-filtering algorithms

 42

and two-stage amplification minimizes false detections and

succeeds in maximum detection ranges. The magnetic sensor’s

specifications are presented in the following table provided

by Crossbow in its MSP410 Series User’s Manual (Crossbow,

2005).

Parameter Typical value

Bridge resistance 1100 ohms

Field range
± 6 gauss (Earth’s field =

0.5 gauss)

Sensitivity 1 mV/V/gauss

± 1 gauss 0.05% FS

± 3 gauss 0.4% FS

Linearity error

(best fit straight line)

± 6 gauss 1.6% FS

Bandwidth DC to 5 MHz

Noise Density 50 nVsqrt Hz @ 1kHz

Resolution 120 µgauss @ 50 Hz BW

Storage Temperature -55°C to 175°C

Table 2. MSP410 Mote Magnetic Sensor’s specification:

MSP410 Series User’s Manual (from: Crossbow, 2005)

7. MSP410 Mote Power Characteristics

The MSP410 Mote uses two-AA-battery to be operated.

This subsection focuses on some of the power characteristics

of the motes. From 3.6 to 2.7 V is the practical operating

 43

voltage. Additionally, the MICA2 board can be powered

through the 51-pin connector and the two-pin Molex

connector. However, in the MSP410CA product, the last three

abilities are not applicable because of the enclosure.

Circuit Mode Current

PIR Off 1 µA

PIR On 300 µA

Magnetometer, per axis Off 1 µA

Magnetometer, per axis On 3 mA

Radio Off 1 µA

Radio RX mode 8 mA

Radio at 1 mW TX mode 16 mA

Processor Sleep 15 to 20 µA

Processor Active 8 mA

Serial flash memory Write 15 mA

Serial flash memory Read 4 mA

Serial flash memory Off 2 µA

Table 3. Motes’ power requirements for various

operations based on the MSP410 Series and MPR/MIB User’s
Manual (Crossbow, 2005)

The above table summarizes the power requirements for

various operations. Finally, according to the system’s

manual, the two AA batteries last ten hours.

 44

8. MBR410CA Mote Base Station

The MBR410CA Base Station (Figure 8) consists of two

different pieces, A MIB510CA serial gateway and a MICA2

series MPR410 radio/processor board.

The base station primarily supports two different

operations. First, this configuration allows data

aggregation from the nodes on a computer platform connected

to the MBR410CA by having the node ID 0 acts as a base

station for the WSN,. In addition, the developer has the

ability to reprogram the motes by using the RS-232 serial

programming interface.

Figure 8. MBR410CA, MSP410CA base station

C. SOFTWARE

1. MOTE-VIEW Client Software

The purpose of mote-view client software is to make the

deployment and monitoring of the system easier. It also

supports wireless sensor data logging to a database,

analysis, and presentation of those data.

Figure 9, The MOTE-VIEW user’s manual image, shows

complete three-layer WSN implementation architecture. The

client layer provides monitoring interpretation and analysis

of the raw data returned by the sensors. The second server

 45

layer stores the raw data in a database for logging

purposes. Then, those data arrive at MOTE-VIEW through the

second-server layer. Finally, in the mote layer, motes use

the onboard sensor, and through their program written in

TinyOS, perform a specific task, gathering the proper data

for the application.

MOTE-VIEW supports all the Crossbow WSN hardware

products. MOTE-VIEW was used for checking the MSP410CA

systems topological and networking connections during the

initial set up monitoring, and evaluation of WSNs.

Figure 9. Three-layer software framework for a WSN:
MOTE-VIEW 1.0 User’s Manual (from: Crossbow,

2005)

The MOTE-VIEW’s main objective is to provide an easy

and functional graphical user interface. The following

sections provide a brief description of the interface’s

functionality, as explained in the MOTE-VIEW user’s manual

(Crossbow, 2005).

 46

Figure 10 shows a screenshot of data returning from the

MSP410CA system. Once a sensor network is setup and

connected to the user’s computer, which runs MOTE-VIEW, the

user has the ability, after the proper database and firmware

application configuration, or after starting a “data log”

menu option, to observe data from the database. Through the

window, “data view” tab selection, the user can select the

sensor’s data, the nodes status, and server’s possible

messages.

Figure 10. Screenshot presents MOTE-VIEW “Data” view

received from MSP410 system: MOTE-VIEW 1.0
User’s Manual (from: Crossbow, 2005)

The user also can check different aspects of the sensor

network system by selecting different menu options. The

“Chart” tab show sensor’s historical data graphs: Figure 11

shows the graph of the “Chart” tab. The “Chart” selection

can show up to three different graphs from various sensors,

and up to twenty-four nodes.

 47

Figure 11. Screenshot presents THE MOTE-VIEW “Chart”

view received from the MSP410 system: MOTE-VIEW
1.0 User’s Manual (from: Crossbow, 2005)

Figure 12 shows the final MOTE-VIEW presentation option.

The “Topology,” gives the user the ability to map the

network’s nodes, including position and parenting

information. The user also has the ability to insert

background images, presenting properly the system’s real

development environment. All of the above three charts can

be printed by using the print option.

Figure 12. Screenshot presents MOTE-VIEW “Topology” view

received from MSP410 system: MOTE-VIEW 1.0
User’s Manual (from: Crossbow, 2005)

 48

2. XServe

XServe is a command-line tool that facilitates the

sensor’s data readings, which is described in the MOTE-VIEW

1.0 User’s Manual (Crossbow, 2005). The user can use XServe

from a Cygwin command line, or as a data-logging server for

MOTE-VIEW, using the LogData menu.

3. Surge Network Viewer (Surge-View)

Surge-View consists of the Surge Graphical User

Interface (GUI), the Stats, and the HistoryViewer programs.

Although the user can see the sensors’ board data through

Surge, main concern of this tool is related to the system’s

networking issues. The user can view the mote’s connectivity

and routing statistics through the GUI. Additionally, the

network performance can be stored in the control station

(PC) for later usage. Stats give data about the network’s

condition. Finally, HistoryViewer enables the network’s

topology and statistics playback. The following figures

present different outputs of the Surge-View software product.

(Getting started Guide, Crossbow, 2005).

 49

Figure 13. Surge’s output for a WSN Topology and

Statistics: Getting started Guide (from:
Crossbow, 2005).

Figure 14. HistoryViewer output for a WSN Data Topology

and Statistics (from: Getting started Guide,
Crossbow, 2005).

 50

THIS PAGE INTENTIONALLY LEFT BLANK

 51

V. CONFIGURATION AND MANAGEMENT APPLICATION

A. APPLICATION REQUIREMENT

1. Planning Stage

If we deploy sensor nodes without proper planning, it

will require a high cost and effort to correct problems

later.

First requirement in planning stage is the information

about terrain. So, application needs to show user a map or a

picture which displays configuration of the ground. Then the

user can decide where sensor node should be deployed.

To deploy sensor nodes, application needs to know the

mote positions and display the motes on the map by their

position.

Next requirement is verifying deployment plan. After

deploying each node, user wants to check the deployment. A

most important consideration in this step is the

connectivity between nodes. Connectivity depends on testing

mote, MSP 410CA. Range limit is various by the purposes and

situations. Salatas (2005) tested that the average range

between motes to be 45M allows them to be connected to one

another to form a mesh network. So the user can enter a

range for the deployment. Our application needs to know this

range and use it to verify the network connectivity.

2. Management Stage

After the planning stage, the user would deploy the

network, and should test the network status as deployed.

Network status includes connection status, and location and

battery level of each node. To check network status, our

 52

application needs to receive such information from deployed

nodes. This data is received from MBR 410CA mote base

station by serial.

B. APPLICATION COMPONENT AND EVALUATION

1. Planning Stage

a. Setting Background

Firstly, user needs to set the background picture

which will show the place where sensor node will be deployed.

In this application, the map can be a jpeg image of the

terrain. To deploy motes, user needs their precise

coordinates on the terrain. These coordinates can be

collected by a GPS device or other means. In this thesis, we

used Google earth [http://earth.google.com/] to collect this

information. In our application, the user can choose

specific place where mote will be deployed and can check

their coordinates. Figure 15 shows picture and coordinates.

Figure 15. Snapshot of Google earth

 53

User can import the image using the “Background”

menu command “import”. After importing picture in the

configuration and management application, we need to enter

coordinates from window to UTM (Universal Transverse

Mercater Grid). Figure 16 shows that user input upper-left

and lower-right coordinates of the area of deployment. User

can open the input box from the “Background” menu command

“Set Coordinates”. We assume that tested area is small and

same degrees and minutes in coordinates. So, user does not

need to input direction in latitude and longitude as well as

degrees and minutes. For example, upper left corner

coordinates of the following picture is actually 121˚ 52’

20.09” N and 36˚ 35’ 55.19” W. But, the user only needs to

input 2009 and 5519. These input coordinates will be saved

in file “coordinates.txt”.

Figure 16. GPS Coordinates Input

 54

After entering the coordinates, user can check

motes coordinates by moving cursor over the mote icon on the

display.

b. Mote Addition and Deployment

After deciding the place where the user wants to

deploy motes, user can input the GPS coordinates of the

motes using the “Plan” menu command “Insert mote”. These

input coordinates will be saved in the file, “data.txt”.

After the coordinates of motes have been entered, the user

can deploy motes by selecting the “Plan” menu command

“Deploy Mote”. Figure 17 shows deployed mote on the screen.

Figure 17. User input for mote deployment and Screen

after deploying motes

c. Verification

To verify that the deployed configuration works,

user needs to input the range limit of the mote

communication. Range limit should vary depending on the

geographic layout of the deployment. For example, the range

of the mote communication may be smaller in steep slopes..

 55

Whenever the user chooses the “Verify” command from the

“Plan” menu, application draws blue line between motes, if

the distance between each mote is in the range limit. If

there is no line, it means that distance is over the range

limit. Figure 18 shows the display upon verification. In

this step, calculated distances between two motes are saved

to file, “ConfigData.txt” which is used to by Salatas’

(2005) Object tracking application.

User can check ID and coordinates of each mote by

moving cursor on top of the mote icon. A text-line along the

bottom of application window shows this information and

connection status. Since our application is not yet

connected to MBR 410CA, it shows “NOT CONNECTED”.

Figure 18. Verification line between each mote and

connection status

 56

2. Management Stage

a. Receive Data from Base Station

To receive data from MBR 410CA, user can select

serial port or converted USB port between laptop and MBR

410CA. By default, COM 5 is set in application.

b. Network Status

Upon connecting to MBR 410CA, the application

starts receiving live data from MBR 410CA and saves this

data to a file “data.txt”. So, when the user clicks each

mote, application reads this file and shows received

information in the line across the bottom of the screen.

Figure 19 shows this information-connection status, node id,

longitude, latitude, parent id and battery status.

Figure 19. Connection status of deployed

This application produces several data files. The

data received from MBR410CA base station is important for

checking network status of WSN. But this data will grow fast

as time goes. So it needs to be archived periodically.

 57

VI. DISCUSSION

A. SUMMARY

In this thesis, we have discussed issues related to the

planning, configuration and management of WSNs. For

efficient deployment strategies, we have covered general

strategies and energy-efficient strategies in Chapter II.

General strategies can be divided into predetermined, self-

regulated, randomly undermined and biased distribution

strategy by purposes and situation.

In Chapter III, we have discussed management challenges.

Due to difference between traditional network and WSN, WSN

need to consider factors which are not considered in

traditional networks. We considered different approaches

along the management dimension to deal with complexity of

WSN. Management dimension can be divided into three big

parts; WSN functionalities, functional areas and management

levels.

MSP410CA was described in Chapter IV. MSP410CA consists

of eight motes which are in charge of communication and

detection, and a base station which is the interface between

motes and computer.

We developed a visual application to help configure and

deploy WSNs. The developed application has been presented in

Chapter V. In our application, the user needs to set

background and change coordinates for deploying mote into

predetermined geography. Input coordinates for deploying

motes in planning stage is saved to file which is used later

 58

with GPS to deploy motes in real geography. The data

received from MBR410CA base station is also saved to file to

monitor network status.

B. CONCLUSIONS AND FUTURE WORK

WSNs are an exciting and useful technology which will

be used in various areas in the near future. Though a lot of

research has been conducted, there are several open problems

to be solved. One of the problems is management of these

networks. As mentioned before, traditional networks are

quite different with WSNs. We explored challenges and

existing methods of configuration and management of WSN.

Though we have developed an application for these purposes,

we have several additional issues to be investigated. For

example, our application assumes that deployed area is not

wide area due to range limit in MSP410CA security system.

So, user does not need to input all of the coordinates. But,

for a wide area, user needs to input all coordinates and

application needs to handle these data, i. e., different

degrees and minutes. Furthermore for power management, if

battery level of mote is low, it needs to give a manager

alarm message which will be useful to keep network status.

Our future work involves building more advanced

applications as well as solving the issues mentioned above

and testing them with a real WSN in real life.

 59

APPENDIX: CONFIGURATION AND MANAGEMENT APPLICATION
SOURCE CODE.

/**

 * <p>Title: ConfigManageApplication </p>

 * <p>Description: This class is responsible to provide a simple user

interface.

 * </p>

 * <p>Copyright: Copyright (c) 2005</p>

 * <p>Company: Naval Postgraduate School, Monterey, CA</p>

 * @author Min Kim

 * @version 1.0

 */

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

class ConfigManageApplication extends JFrame implements ActionListener,

 MouseListener, MouseMotionListener {

 private JMenu file, bg, plan, manage,help;

 private JMenuItem f1, f2, f3, f4, f5, b1, b2, p1, p2, p3, p4,

 m1,m2, m3, m4, h;

 private JMenuBar bar;

 private JPanel main;

 private JTextArea tArea;

 private MainScreen screen;

 private AddMote am;

 60

 private ChangeCoordinates co;

 private SimpleRead sr;

 private AboutBox about;

 private PrintJob pjob;

public ConfigManageApplication() {

 super("Configuration and Management Application of WSN");

 init();

}

private void init() {

 try {

 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName()

);

 setIconImage(Toolkit.getDefaultToolkit().getImage("moteIcon.jpg"))

 ;

 addMouseMotionListener(this);

 addMouseListener(this);

 file = new JMenu("File");

 file.setMnemonic('f');

 f1 = new JMenuItem("New", new ImageIcon("new.jpg"));

 f1.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_N,

 ActionEvent.CTRL_MASK));

 f2 = new JMenuItem("Open", new ImageIcon("open.jpg"));

 f2.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_O,

 ActionEvent.CTRL_MASK));

 f3 = new JMenuItem("Save", new ImageIcon("save.jpg"));

 61

 f3.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_S,

 ActionEvent.CTRL_MASK));

 f4 = new JMenuItem("Print", new ImageIcon("print.jpg"));

 f4.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_P,

 ActionEvent.CTRL_MASK));

 f5 = new JMenuItem("Exit", new ImageIcon("moteIcon.jpg"));

 f5.setAccelerator(KeyStroke.getKeyStroke('s',

 ActionEvent.ALT_MASK));

 file.add(f1);

 file.add(f2);

 file.add(f3);

 file.addSeparator();

 file.add(f4);

 file.addSeparator();

 file.add(f5);

 f1.addActionListener(this);

 f2.addActionListener(this);

 f3.addActionListener(this);

 f4.addActionListener(this);

 f5.addActionListener(this);

 bg = new JMenu("Back Ground");

 bg.setMnemonic('b');

 b1 = new JMenuItem("Import", new ImageIcon("moteIcon.jpg"));

 b2 = new JMenuItem("Set Coordinates", new

 ImageIcon("moteIcon.jpg"));

 bg.add(b1);

 bg.add(b2);

 62

 b1.addActionListener(this);

 b2.addActionListener(this);

 plan = new JMenu("Plan");

 plan.setMnemonic('p');

 p1 = new JMenuItem("Clear data", new

 ImageIcon("clear.jpg"));

 p2 = new JMenuItem("Insert Mote", new

 ImageIcon("addmote.jpg"));

 p3 = new JMenuItem("Deploy Mote", new

 ImageIcon("moteIcon.jpg"));

 p4 = new JMenuItem("Verify", new ImageIcon("verify.jpg"));

 plan.add(p1);

 plan.add(p2);

 plan.add(p3);

 plan.add(p4);

 p1.addActionListener(this);

 p2.addActionListener(this);

 p3.addActionListener(this);

 p4.addActionListener(this);

 manage = new JMenu("Manage");

 manage.setMnemonic('m');

 m1 = new JMenuItem("Insert_COM_Number", new

 ImageIcon("moteIcon.jpg"));

 m2 = new JMenuItem("Clear data", new

 ImageIcon("moteIcon.jpg"));

 m3 = new JMenuItem("Recive data", new

 ImageIcon("moteIcon.jpg"));

 63

 m4 = new JMenuItem("Stop data", new

 ImageIcon("moteIcon.jpg"));

 manage.add(m1);

 manage.add(m2);

 manage.add(m3);

 manage.add(m4);

 m1.addActionListener(this);

 m2.addActionListener(this);

 m3.addActionListener(this);

 m4.addActionListener(this);

 help = new JMenu("Help");

 help.setMnemonic('h');

 h = new JMenuItem("About..", new ImageIcon("about.jpg"));

 help.add(h);

 h.addActionListener(this);

 bar = new JMenuBar();

 bar.add(file);

 bar.add(bg);

 bar.add(plan);

 bar.add(manage);

 bar.add(help);

 tArea = new JTextArea();

 main = new JPanel();

 main.setLayout(new BorderLayout());

 screen = new MainScreen();

 64

 main.add(screen, BorderLayout.CENTER);

 main.add(tArea, BorderLayout.SOUTH);

 setContentPane(main);

 setJMenuBar(bar);

 addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent we) {

 System.exit(0);

 }

 });

 about = new AboutBox(this, "Configuration and Management of

 WSN", true);

 setSize(1009,675);

 setVisible(true);

 } catch (Exception e) {

 e.printStackTrace();

 System.err.print("Sorry..there was an error initializing

 main window");

 }

}

public void mouseClicked(MouseEvent e) {

 String s, ss;

 int dataId=100;

 int ux=100;

 int uy=100;

 int id=100;

 int par=100;

 int bat=100;

 65

 double x = (e.getX()-4)*co.modifiedX;

 double y = (e.getY()-51)*co.modifiedY;

 x = co.inputStartLongitude-x;

 y = co.inputStartLatitude-y;

 Double dx = new Double(x);

 Double dy = new Double(y);

 int x1 = dx.intValue();

 int y1 = dy.intValue();

 String str = tArea.getText();

 tArea.setText(" point[x:"+x1+", y:"+y1+"]");

 try{

 BufferedReader in = new BufferedReader

 (new FileReader("data.txt"));

 while((s=in.readLine()) != null){

 String[] val = s.split("[:[^0-9]]");

 dataId = Integer.parseInt(val[3]);

 ux = Integer.parseInt(val[15]);

 uy = Integer.parseInt(val[26]);

 if ((x1<ux)&(x1>ux-25)&(y1<uy)&(y1>uy-25)){

 tArea.setText(" [NOT CONNECTED] Node ID:

 "+dataId+", Longitude: "+ux+", Latitude: "+uy);

 try{

 BufferedReader inn = new BufferedReader

 (new FileReader("received data.txt"));

 while((ss=inn.readLine()) != null){

 String[] value = ss.split("[:[^0-

 9]]");

 id = Integer.parseInt(value[4]);

 66

 par = Integer.parseInt(value[14]);

 bat = Integer.parseInt(value[21]);

 if ((x1<ux)&(x1>ux-

 25)&(y1<uy)&(y1>uy-25)&(id==dataId)){

 tArea.setText(" [CONNECTED]

 Node ID: "+id+", Longitude:

 "+ux+", Latitude: "+uy

 +", Parent: "+par+", bat:

 "+bat);

 }

 }

 }

 catch(FileNotFoundException re) {

 re.printStackTrace();

 }

 catch(IOException re) {

 re.printStackTrace();

 }

 }

 }

 }

 catch(FileNotFoundException ef) {

 ef.printStackTrace();

 }

 catch(IOException ef) {

 ef.printStackTrace();

 }

}

 67

public void mouseDragged(MouseEvent e) {

}

public void mouseEntered(MouseEvent e) {

}

public void mouseExited(MouseEvent e) {

}

public void mouseMoved(MouseEvent e) {

}

public void mousePressed(MouseEvent e) {

}

public void mouseReleased(MouseEvent e) {

}

public void actionPerformed(ActionEvent actionEvent) {

 if (actionEvent.getSource() == f1) {

 screen.fromStart();

 }

 else if (actionEvent.getSource() == f2) {

 screen.im();

 }

 else if (actionEvent.getSource() == f3) {

 screen.createImage();

 screen.save();

 }

 else if (actionEvent.getSource() == f4) {

 pjob = getToolkit().getPrintJob(this, "Printing", null,

 null);

 if (pjob != null) {

 Graphics pg = pjob.getGraphics();

 68

 if (pg != null) {

 screen.printAll(pg);

 pg.dispose();

 }

 pjob.end();

 }

 }

 else if (actionEvent.getSource() == f5) {

 System.exit(0);

 }

 else if (actionEvent.getSource() == b1) {

 screen.setB();

 }

 else if (actionEvent.getSource() == b2) {

 co = new ChangeCoordinates(this,"change coodonation",true);

 }

 else if (actionEvent.getSource() == p1) {

 try{

 PrintWriter newData = new PrintWriter(new

 FileWriter("data.txt"));

 newData.print("");

 newData.close();

 }

 catch(FileNotFoundException k) {

 k.printStackTrace();

 }

 catch(IOException k) {

 k.printStackTrace();

 69

 }

 }

 else if (actionEvent.getSource() == p2) {

 am = new AddMote(this,"Add Mote",true);

 }

 else if (actionEvent.getSource() == p3) {

 screen.deployMote();

 }

 else if (actionEvent.getSource() == p4) {

 MainScreen.rangeLimit = JOptionPane.showInputDialog(null,

 "Insert the range limit");

 screen.verify();

 }

 else if (actionEvent.getSource() == m1) {

 SimpleRead.comNumber = JOptionPane.showInputDialog(null,

 "insert the con number for the serial port (COM#)");

 }

 else if (actionEvent.getSource() == m2) {

 try{

 PrintWriter newData = new PrintWriter(new

 FileWriter("received data.txt"));

 newData.print("");

 newData.close();

 }

 catch(FileNotFoundException k) {

 k.printStackTrace();

 }

 catch(IOException k) {

 70

 k.printStackTrace();

 }

 }

 else if (actionEvent.getSource() == m3) {

 SimpleRead.begin();

 tArea.setText(" Data is receiving from Base Station");

 screen.drawLine();

 }

 else if (actionEvent.getSource() == m4) {

 SimpleRead.pause();

 tArea.setText(" Data receiving is stopped");

 }

 else if (actionEvent.getSource() == h) {

 about.setVisible(true);

 }

}

public static void main(String args[]) {

 ConfigManageApplication fg = new ConfigManageApplication();

}

}

/**

 * <p>Title: MainScreen </p>

 * <p>Description: This class is responsible to draw everything.

 71

 * </p>

 * <p>Copyright: Copyright (c) 2005</p>

 * <p>Company: Naval Postgraduate School, Monterey, CA</p>

 * @author Min Kim

 * @version 1.0

 */

import com.sun.image.codec.jpeg.*;

import java.awt.event.*;

import java.awt.*;

import javax.swing.*;

import java.awt.image.*;

import java.util.Vector;

import java.net.*;

import java.awt.geom.*;

import java.io.*;

class MainScreen extends JPanel {

 private ConfigManageSystem main;

 private ChangeCoordinates co;

 72

 public static final int LINE = 1;

 public static final int PIC = 2;

 private int mode = LINE;

 private int pos;

 private int x1, y1, x2, y2; //calibrate dx, dy to draw line to mote antena

 private int ix1, iy1, ix2, iy2;

 private double ux1, uy1, ux2, uy2;//x, y value get from point rp

 private double dx1, dy1, dx2, dy2;//change double value from dataLongitude,

 dataLatitude

 private double dataLongitude, dataLatitude, dx, dy;

 private Vector all = new Vector();

 private String[] filelist;

 private Image offScreen;

 private Image buffer;

 private JFileChooser fChooser1, fChooser2, fChooser3;

 double modifiedX, modifiedY, modifiedX1, modifiedY1;

 static String rangeLimit = "20";

 Rectangle rrp;

public MainScreen() {

 73

 setBackground(Color.white);

 setCursor(new Cursor(Cursor.CROSSHAIR_CURSOR));

 fChooser1 = new JFileChooser();

 fChooser1.setDialogTitle("Insert image..");

 fChooser1.setDialogType(JFileChooser.OPEN_DIALOG);

 fChooser1.setApproveButtonMnemonic('i');

 fChooser1.setFileHidingEnabled(true);

 fChooser1.setApproveButtonToolTipText("Click to insert the image");

 fChooser2 = new JFileChooser();

 fChooser2.setDialogTitle("Save as JPEG");

 fChooser2.setDialogType(JFileChooser.SAVE_DIALOG);

 fChooser2.setApproveButtonMnemonic('s');

 fChooser2.setFileHidingEnabled(true);

 fChooser2.setApproveButtonToolTipText("Click to save image as JPEG");

 fChooser3 = new JFileChooser();

 fChooser3.setDialogTitle("Open image..");

 fChooser3.setDialogType(JFileChooser.OPEN_DIALOG);

 fChooser3.setApproveButtonMnemonic('i');

 fChooser3.setFileHidingEnabled(true);

 fChooser3.setApproveButtonToolTipText("Click to open the image");

 74

 try {

 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

 } catch (Exception we) {

 }

}

private boolean confirm(String one) {

 one = one.substring(one.lastIndexOf('.'));

 if (one.equalsIgnoreCase(".jpg") || one.equalsIgnoreCase(".jpeg") ||

 one.equalsIgnoreCase(".gif") || one.equalsIgnoreCase(".png"))

 return true;

 else

 return false;

}

public void createBuffer() {

 buffer = createImage(getWidth(), getHeight());

 displayAll(buffer.getGraphics());

}

 75

public void createImage() {

 offScreen = createImage(getWidth(), getHeight());

 displayAll(offScreen.getGraphics());

}

public void fromStart() {

 all.removeAllElements();

 setBackground(Color.white);

 setForeground(Color.black);

 paint(getGraphics());

}

public void im() {

 if (fChooser3.showDialog(main, "Open image") == JFileChooser.APPROVE_OPTION) {

 if (confirm(fChooser3.getSelectedFile().getName())) {

 File jmk = fChooser3.getSelectedFile();

 fromStart();

 Point lp = new Point(0, 0);

 try {

 76

 URL jk = new java.net.URL("file:/" +

 jmk.getAbsolutePath());

 Image pic = Toolkit.getDefaultToolkit().getImage(jk);

 MediaTracker med = new MediaTracker(this);

 med.addImage(pic, 0);

 med.waitForID(0);

 int wi = pic.getWidth(this);

 int he = pic.getHeight(this);

 wi = (getSize().width - wi) / 2;

 he = (getSize().height - he) / 2;

 lp = new Point(wi, he);

 all.addElement(new All(PIC, pic, lp));

 paint(getGraphics());

 } catch (Exception mn) {

 }

 }

 }

}

public void save() {

 77

 File sav = null;

 if (fChooser2.showDialog(main, "Save image") == JFileChooser.APPROVE_OPTION) {

 sav = new File(fChooser2.getCurrentDirectory(),

 fChooser2.getSelectedFile().getName() + ".jpg");

 BufferedImage bimg = null;

 int w = offScreen.getWidth(this);

 int h = offScreen.getHeight(this);

 int[] pixels = new int[w * h];

 PixelGrabber pg = new PixelGrabber(offScreen, 0, 0, w, h, pixels, 0, w);

 try {

 pg.grabPixels();

 } catch (InterruptedException ie) {

 System.err.println("Sorry..error parsing Image");

 }

 bimg = new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB);

 bimg.setRGB(0, 0, w, h, pixels, 0, w);

 try {

 FileOutputStream fos = new FileOutputStream(sav);

 JPEGImageEncoder jpeg = JPEGCodec.createJPEGEncoder(fos);

 jpeg.encode(bimg);

 78

 fos.close();

 } catch (Exception jk) {

 System.err.println("Sorry..error writing to file");

 }

 }

}

//method which draw mote by user input

public void deployMote(){

 String string,str, stringModifiedX, stringModifiedY;

 Image image;

 int dataId, drawLongitude, drawLatitude;

//get image from file

 image = Toolkit.getDefaultToolkit().getImage("mote.JPG");

 MediaTracker dTracker = new MediaTracker(this);

 Point np = new Point(0, 0);

 try{

 dTracker.addImage(image,0);

 dTracker.waitForAll();

 }

 79

 catch(InterruptedException mn){

 }

//reading coordinates from input file

 try{

 BufferedReader in = new BufferedReader(new FileReader("data.txt"));

 while((string=in.readLine()) != null){

 String[] value = string.split("[:[^0-9]]");

 dataId = Integer.parseInt(value[3]);

 dataLongitude = Integer.parseInt(value[15]);

 dataLatitude = Integer.parseInt(value[26]);

 System.out.println("dataId:"+dataId);

 System.out.println("dataLongitude:"+dataLongitude);

 System.out.println("dataLatitude:"+dataLatitude);

 try{

 BufferedReader reader = new BufferedReader

 (new FileReader("coordinates.txt"));

 while((str=reader.readLine()) != null){

 String[] coValue = str.split("[:[^0-9]]");

 modifiedX1 = Double.parseDouble(coValue[0]);

 80

 modifiedY1 = Double.parseDouble(coValue[2]);

 stringModifiedX = coValue[4]+"."+coValue[5];

 stringModifiedY = coValue[6]+"."+coValue[7];

 modifiedX = Double.parseDouble(stringModifiedX);

 modifiedY = Double.parseDouble(stringModifiedY);

 dataLongitude = (modifiedX1-

 dataLongitude)/modifiedX;

 dataLatitude = (modifiedY1-

 dataLatitude)/modifiedY;

 System.out.println("modifiedX1:"+modifiedX1);

 System.out.println("smodifiedX:"+stringModifiedX);

 System.out.println("dataLongitude:"+

 dataLongitude);

 Double dx= new Double(dataLongitude);

 Double dy= new Double(dataLatitude);

 drawLongitude = dx.intValue();

 drawLatitude = dy.intValue();

 //draw mote by input coordinates

 np = new Point(drawLongitude, drawLatitude);

 81

 all.addElement(new All(PIC, image, np));

 paint(getGraphics());

 }

 }

 catch(FileNotFoundException e) {

 e.printStackTrace();

 }

 catch(IOException e) {

 e.printStackTrace();

 }

 }

 }

 catch(FileNotFoundException e) {

 e.printStackTrace();

 }

 catch(IOException e) {

 e.printStackTrace();

 }

}

 82

public void verify(){

 String r; //string which is reading data file

 double dx, dy; //parsing string which is in string r

 int longitude, latitude; //parsing string which is in string r

 int i = 0;

 double x, y; //distance between x, y

 double distance = 0; //distance between point

 int intDistance = 0;

 int preDistance = 0;

 double limit = Double.parseDouble(rangeLimit);

 limit = limit * 3.0824;

 Point [] ip = new Point[9];

 Point2D.Double [] dp = new Point2D.Double[9];

//receive coordinates from data file

 try{

 BufferedReader in = new BufferedReader(new FileReader("data.txt"));

 while((r=in.readLine()) != null){

 String[] value = r.split("[:[^0-9]]");

 dx = Double.parseDouble(value[15]);

 83

 dy = Double.parseDouble(value[26]);

 longitude = Integer.parseInt(value[15]);

 latitude = Integer.parseInt(value[26]);

 ip[i] = new Point(longitude, latitude);

 dp[i] = new Point2D.Double(dx, dy);

 System.out.println("ip[" +i+"]:" +ip[i]);

 i++;

 }

 try{

 PrintWriter newData = new PrintWriter(new

 FileWriter("/j2sdk1.4.1_02/bin/

 configuration_file/ConfigData.txt"));

 newData.print("");

 newData.close();

 }

 catch(FileNotFoundException k) {

 k.printStackTrace();

 }

 catch(IOException k) {

 k.printStackTrace();

 84

 }

//calcurate distance by input coordiantion

 for (int m = 0; m<i ; m++){

 for (int n = m+1 ; n<i ; n++){

 x = Math.pow(Math.abs(dp[m].getX()-dp[n].getX()),2);

 y = Math.pow(Math.abs(dp[m].getY()-dp[n].getY()),2);

 distance= Math.sqrt(x+y);

 Double doubleDistance= new Double(distance);

 intDistance = doubleDistance.intValue();

 String temp="";

 String ttemp="";

 String configData="";

 if ((m+1)==n) {

 /*ConfigData.txt saves user's coordinates input.

 This file is used in object tracking application.

 */

 try{

 BufferedReader configReader = new

 BufferedReader (new FileReader

 85

 ("/j2sdk1.4.1_02/bin/

 configuration_fil/ConfigData.txt"));

 //existing input case

 while((temp=configReader.readLine()) !=

 null){

 configData = m+","+preDistance+

 ","+intDistance;

 ttemp=ttemp+"\n"+temp;

 }

 preDistance = intDistance;

 configData = configData+ttemp;;

 System.out.println("all

 input"+"\n"+configData);

 try{

 FileWriter dataOutput = new

 FileWriter("/j2sdk1.4.1_02/

 bin/configuration_file

 /ConfigData.txt");

 dataOutput.write(configData);

 86

 System.out.println("input to

 file"+"\n"+configData);

 dataOutput.close();

 } catch(FileNotFoundException k) {

 k.printStackTrace();

 } catch(IOException k) {

 k.printStackTrace();

 }

 //no input case

 while((temp=configReader.readLine()) ==

 null){

 temp = m+",0,"+intDistance;

 preDistance = intDistance;

 System.out.println(temp);

 try{

 FileWriter dataOutput = new

 FileWriter("/j2sdk1.4.1_

 02/bin/configuration_

 file/ConfigData.txt");

 dataOutput.write(temp);

 87

 dataOutput.close();

 } catch(FileNotFoundException k) {

 k.printStackTrace();

 } catch(IOException k) {

 k.printStackTrace();

 }

 }

 }

 catch(FileNotFoundException ev) {

 ev.printStackTrace();

 } catch(IOException ev) {

 ev.printStackTrace();

 }

 }

 //draw blue lines if range limit is not over distance

 between each mote

 ux1 = ip[m].getX();

 uy1 = ip[m].getY();

 ux2 = ip[n].getX();

 uy2 = ip[n].getY();

 88

 ux1 = (modifiedX1-ux1)/modifiedX ;

 uy1 = (modifiedY1-uy1)/modifiedY ;

 ux2 = (modifiedX1-ux2)/modifiedX ;

 uy2 = (modifiedY1-uy2)/modifiedY;

 Double dx1= new Double(ux1);

 Double dy1= new Double(uy1);

 Double dx2= new Double(ux2);

 Double dy2= new Double(uy2);

 x1 = dx1.intValue()+9;

 y1 = dy1.intValue();

 x2 = dx2.intValue()+9;

 y2 = dy2.intValue();

 rrp = new Rectangle(x1, y1, x2, y2);

 if (distance<=limit){

 rrp = new Rectangle(x1, y1, x2, y2);

 all.addElement(new All(LINE, Color.blue, rrp));

 paint(getGraphics());

 }

 }

 }

 89

 }

 catch(FileNotFoundException e) {

 e.printStackTrace(); }

 catch(IOException e) {

 e.printStackTrace();

 }

}

public void drawLine(){

}

public void insertImage(File name, Point loc, String file) {

 try {

 URL jk = new java.net.URL("file:/" + name.getAbsolutePath());

 Image pic = Toolkit.getDefaultToolkit().getImage(jk);

 MediaTracker med = new MediaTracker(this);

 med.addImage(pic, 0);

 med.waitForID(0);

 all.addElement(new All(PIC, pic, loc));

 90

 paint(getGraphics());

 } catch (Exception mn) {

 }

}

//method for importing background

public void setB() {

 try {

 File ju = null;

 String name = "";

 if (fChooser1.showDialog(main, "Insert background") ==

 JFileChooser.APPROVE_OPTION) {

 name = fChooser1.getSelectedFile().getName();

 if (confirm(name)) {

 ju = new File(fChooser1.getCurrentDirectory(),

 fChooser1.getSelectedFile().getName());

 }

 }

 URL jk = new java.net.URL("file:/" + ju.getAbsolutePath());

 Image pic = Toolkit.getDefaultToolkit().getImage(jk);

 91

 MediaTracker med = new MediaTracker(this);

 med.addImage(pic, 0);

 med.waitForID(0);

 int w = getSize().width;

 int h = getSize().height;

 Image resizedImage = null;

 ImageFilter replicate = new ReplicateScaleFilter(w, h);

 ImageProducer prod = new FilteredImageSource(pic.getSource(),replicate);

 resizedImage = createImage(prod);

 all.insertElementAt(new All(PIC, resizedImage, new Point(0, 0)), 0);

 paint(getGraphics());

 } catch (Exception mj) {

 }

 System.out.println("Done");

}

public void paint(Graphics g) {

 createBuffer();

 g.drawImage(buffer, 0, 0, this);

}

 92

public void setDrawMode(int mode) {

 this.mode = mode;

 setCursor(new Cursor(Cursor.CROSSHAIR_CURSOR));

}

public void update(Graphics g) {

 paint(g);

}

public void displayAll(Graphics g) {

 g.setColor(getBackground());

 g.fillRect(0, 0, getWidth(), getHeight());

 for (int i = 0; i < all.size(); i++) {

 All temp = (All) all.elementAt(i);

 Rectangle p = temp.r;

 switch (temp.type) {

 case LINE :

 g.setColor(temp.clr);

 if (p.width != -1) {

 93

 g.drawLine(p.x, p.y, p.width, p.height);

 } else {

 g.drawLine(p.x, p.y, p.x, p.y);

 }

 break;

 case PIC :

 g.drawImage(temp.img, temp.loc.x, temp.loc.y, this);

 break;

 }

 }

 g.dispose();

}

}

/**

 * <p>Title: AddMote </p>

 * <p>Description: This class is responsible to read user's coordination inputs.

 * The inputs are saved to file, [data.txt].

 * The file is used to draw mote to screen depending on user's inputs.

 94

 * </p>

 * <p>Copyright: Copyright (c) 2005</p>

 * <p>Company: Naval Postgraduate School, Monterey, CA</p>

 * @author Min Kim

 * @version 1.0

 */

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.Vector;

import java.io.*;

class AddMote extends JDialog implements ActionListener {

 private JPanel idPan, altPan, latPan, p;

 private JButton addB, moreB, okB;

 private JTextField idT, altT, latT;

 private JLabel idL, altL, latL;

 private String inData;

 95

public AddMote(Frame f, String title, boolean modal) {

 super(f, title, modal);

 idPan = new JPanel();

 altPan = new JPanel();

 latPan = new JPanel();

 addB = new JButton("add mote");

 addB.setMnemonic('a');

 addB.addActionListener(this);

 moreB = new JButton("add more");

 moreB.setMnemonic('m');

 moreB.addActionListener(this);

 okB = new JButton("ok");

 okB.setMnemonic('o');

 okB.addActionListener(this);

 idT = new JTextField(6);

 altT = new JTextField(6);

 latT = new JTextField(6);

 96

 idL = new JLabel("Mote ID");

 altL = new JLabel("Longitude");

 latL = new JLabel("Latitude");

 p = new JPanel(new FlowLayout());

 p.add(addB);

 p.add(moreB);

 p.add(okB);

 getContentPane().setLayout(new GridLayout(4, 1));

 idPan.add(idL);

 idPan.add(idT);

 altPan.add(altL);

 altPan.add(altT);

 latPan.add(latL);

 latPan.add(latT);

 getContentPane().add(idPan);

 getContentPane().add(altPan);

 getContentPane().add(latPan);

 97

 getContentPane().add(p);

 addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent we) {

 dispose();

 }

 });

 pack();

 Dimension scr = Toolkit.getDefaultToolkit().getScreenSize();

 setLocation((scr.width - getSize().width) / 2, (scr.height - getSize().height)

 / 2);

 setVisible(true);

}

public void actionPerformed(ActionEvent e) {

 String temp="";

 String ttemp="";

 if (e.getSource() == addB) {

 //method which add first input to next input

 try{

 98

 BufferedReader in = new BufferedReader

 (new FileReader("data.txt"));

 inData = "id:"+idT.getText()+", "+"longitude:" +altT.getText()+",

 "+ "latitude:"+latT.getText();

 System.out.println("input from dialogue:"+inData);

 //existing input case

 while((temp=in.readLine()) != null){

 System.out.println("first input:"+temp);

 ttemp=ttemp+"\n"+temp;

 }

 System.out.println("next input:"+ttemp);

 inData = inData+ttemp;;

 System.out.println("all input"+"\n"+inData);

 try{

 FileWriter dataOutput = new FileWriter("data.txt");

 dataOutput.write(inData);

 System.out.println("input to file"+"\n"+inData);

 dataOutput.close();

 } catch(FileNotFoundException k) {

 k.printStackTrace();

 99

 } catch(IOException k) {

 k.printStackTrace();

 }

 //no input case

 while((temp=in.readLine()) == null){

 temp = inData;

 try{

 FileWriter dataOutput = new

 FileWriter("data.txt");

 dataOutput.write(temp);

 dataOutput.close();

 } catch(FileNotFoundException k) {

 k.printStackTrace();

 } catch(IOException k) {

 k.printStackTrace();

 }

 }

 }

 catch(FileNotFoundException ev) {

 ev.printStackTrace();

 100

 } catch(IOException ev) {

 ev.printStackTrace();

 }

 } else if (e.getSource() == moreB) {

 idT.setText("");

 altT.setText("");

 latT.setText ("");

 } else if (e.getSource() == okB) {

 dispose();

 } else

 return;

}

}

/**

 * <p>Title: ChangeCoordination </p>

 * <p>Description: This class is responsible to read user input coordination.

 * and change it to UTM coordination.

 Then it saves this coordonation to file coordination.txt

 101

 * </p>

 * <p>Copyright: Copyright (c) 2005</p>

 * <p>Company: Naval Postgraduate School, Monterey, CA</p>

 * @author Min Kim

 * @version 1.0

 */

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.Vector;

import java.io.*;

class ChangeCoordinates extends JDialog implements ActionListener {

 private JPanel x1Pan, x2Pan, y1Pan, y2Pan, P;

 private JButton changeB, cancelB;

 private JTextField x1T, x2T, y1T, y2T;

 private JLabel x1L, x2L, y1L, y2L;

 protected double inputStartLongitude, inputEndLongitude, inputStartLatitude,

 inputEndLatitude;

 102

 protected double modifiedX,modifiedY;

public ChangeCoordinates(Frame f, String title, boolean modal) {

 super(f, title, modal);

 x1Pan = new JPanel();

 x2Pan = new JPanel();

 y1Pan = new JPanel();

 y2Pan = new JPanel();

 changeB = new JButton("cahnge coordinates");

 changeB.setMnemonic('c');

 changeB.addActionListener(this);

 cancelB = new JButton("cancel");

 cancelB.setMnemonic('c');

 cancelB.addActionListener(this);

 x1T = new JTextField(8);

 x2T = new JTextField(8);

 103

 y1T = new JTextField(8);

 y2T = new JTextField(8);

 x1L = new JLabel("Start longitude");

 x2L = new JLabel("Last longitude");

 y1L = new JLabel("Start latitude");

 y2L = new JLabel("Last latitude");

 P = new JPanel(new FlowLayout());

 P.add(changeB);

 P.add(cancelB);

 getContentPane().setLayout(new GridLayout(5, 1));

 x1Pan.add(x1L);

 x1Pan.add(x1T);

 x2Pan.add(x2L);

 x2Pan.add(x2T);

 y1Pan.add(y1L);

 y1Pan.add(y1T);

 y2Pan.add(y2L);

 104

 y2Pan.add(y2T);

 getContentPane().add(x1Pan);

 getContentPane().add(y1Pan);

 getContentPane().add(x2Pan);

 getContentPane().add(y2Pan);

 getContentPane().add(P);

 addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent we) {

 dispose();

 }

 });

 pack();

 Dimension scr = Toolkit.getDefaultToolkit().getScreenSize();

 setLocation((scr.width - getSize().width) / 2, (scr.height - getSize().height)

 / 2);

 setVisible(true);

}

public void actionPerformed(ActionEvent e) {

 105

 if (e.getSource() == changeB) {

 inputStartLongitude = Double.parseDouble(x1T.getText());

 inputEndLongitude = Double.parseDouble(x2T.getText());

 inputStartLatitude = Double.parseDouble(y1T.getText());

 inputEndLatitude = Double.parseDouble(y2T.getText());

 modifiedX = (inputStartLongitude-inputEndLongitude)/1000;

 modifiedY = (inputStartLatitude-inputEndLatitude)/600;

 String s = inputStartLongitude + "." + inputStartLatitude + "." +

 modifiedX + "." + modifiedY;

 try{

 FileWriter dataOutput = new

 FileWriter("coordinates.txt");

 dataOutput.write(s);

 dataOutput.close();

 } catch(FileNotFoundException k) {

 k.printStackTrace();

 } catch(IOException k) {

 k.printStackTrace();

 }

 System.out.println("inputStartLongitude="+inputStartLongitude);

 106

 System.out.println("inputStartLatitude="+inputStartLatitude);

 System.out.println("inputEndLongitude="+inputEndLongitude);

 System.out.println("inputEndLatitude="+inputEndLatitude);

 System.out.println("modifiedX="+modifiedX);

 System.out.println("modifiedY="+modifiedY);

 dispose();

 } else if (e.getSource() == cancelB) {

 dispose();

 } else

 return;

}

}

/**

 *

 * <p>Title: SimpleRead </p>

 * <p>Description: This class is used as a Serial Port reader for the Object

 107

 * Tracking application. It opens a serial port connection

 * and a related input stream, and it read the raw data (bytes)

 * returned from the Crossbow WSN system

 * MSP410. Then it extract the useful information based on the

 * message format that the raw data have and place them

 * inside an array in order to be available from the rest

 * software components of the application. The part of this class

 * that reads data from the serial port is based

 * on the SimpleRead.java file provided from the following URL

 * * ref: java.sun.com/developer/ releases/javacomm/SimpleRead.java May 2005

 * </p>

 * <p>Copyright: Copyright (c) 2005</p>

 * <p>Company: Naval Postgraduate School, Monterey, CA</p>

 * @author Vlasios Salatas

 * @modified by Min Kim

 * @version 1.0

 */

import java.io.*;

 108

import java.util.*;

import javax.comm.*;

import javax.swing.Timer;

public class SimpleRead implements Runnable, SerialPortEventListener {

 static CommPortIdentifier portId;

 static Enumeration portList;

 InputStream inputStream;

 SerialPort serialPort;

 static Thread readThread;

 int numBytes;

 static String comNumber = "COM5";

 int counter;

 // buffer to store the incomming messages

 byte[] holdArray = new byte[1000];

 //array used to store and send the proper data

 int[] dataArray = new int[8];

 109

 //flag to control the program

 static boolean flag = true;

 /**

 * <p>Title: begin </p>

 * <p>Description: it open the com port and start reading data

 */

 public static void begin() {

 portList = CommPortIdentifier.getPortIdentifiers();

 flag = true;

 while (portList.hasMoreElements()) {

 portId = (CommPortIdentifier) portList.nextElement();

 if (portId.getPortType() == CommPortIdentifier.PORT_SERIAL) {

 if (portId.getName().equals(comNumber)) {

 SimpleRead reader = new SimpleRead();

 }

 }

 }

 }

 110

 public static void pause(){

 flag = false;

 }

 public static void resume(){

 flag = true;

 }

 public static void exit(){

 //exit the system

 System.exit(0);

 }

 /**

 * Constructor declaration

 */

 public SimpleRead() {

 111

 try {

 serialPort = (SerialPort) portId.open("SimpleReadApp", 20000);

 } catch (PortInUseException e) {System.out.println("port in use!!!!!!");}

 try {

 inputStream = serialPort.getInputStream();

 } catch (IOException e) {}

 try {

 serialPort.addEventListener(this);

 } catch (TooManyListenersException e) {}

 serialPort.notifyOnDataAvailable(true);

 try {

 serialPort.setSerialPortParams(57600,

 SerialPort.DATABITS_8,

 SerialPort.STOPBITS_1,

 SerialPort.PARITY_NONE);

 serialPort.setFlowControlMode(SerialPort.FLOWCONTROL_NONE);

 } catch (UnsupportedCommOperationException e) {}

 112

 readThread = new Thread(this);

 readThread.start();

 }

 public void run() {

 while (flag == true) {

 try {

 Thread.sleep(2000);

 }

 catch (InterruptedException e) {}

 }

 }

 /**

 * Title: serialEvent

 * Description: it sets the serial port parameters and places the data

 * in a buffer

 * @param event

 */

 113

 public void serialEvent(SerialPortEvent event) {

 switch(event.getEventType()) {

 case SerialPortEvent.BI:

 case SerialPortEvent.OE:

 case SerialPortEvent.FE:

 case SerialPortEvent.PE:

 case SerialPortEvent.CD:

 case SerialPortEvent.CTS:

 case SerialPortEvent.DSR:

 case SerialPortEvent.RI:

 case SerialPortEvent.OUTPUT_BUFFER_EMPTY:

 break;

 case SerialPortEvent.DATA_AVAILABLE:

 try {

 while (inputStream.available() > 0 && flag == true) {

 byte[] readBuffer = new byte[41];

 numBytes = inputStream.read(readBuffer);

 // Passes the data that the buffer holds into the message method

 114

 message(readBuffer);

 }

 } catch (IOException e) {}

 break;

 }

 }

 /**

 * <p>Title: message </p>

 * <p>Description: This method first reconstract the message that the MSP410

 * nodes send through the gateway to the serial port. When the

 * message is completed it reads and places the importand

 * values to an array and passes them to the rest software

 * components of the Tracking Object application

 *

 * @param readBuffer byte[]

 */

 private void message(byte[] readBuffer){

 // data variables

 int SeqNumber;

 115

 int SeqNumberF;

 int vref;

 int quad;

 int pir;

 int mag;

 int audio;

 String s;

 String temp="";

 String ttemp="";

 // it initializes a motionDetector object that it is used later to pass the

 // the data to the motionDetector class.

// motionDetector detector = new motionDetector();

 // reconstracts the message

 if (readBuffer[0] == 126){

 counter = 0;

 for(int i = 0; i < numBytes; i++){

 holdArray[counter] = readBuffer[i];

 if (i >= 28 && readBuffer[i] == 126) {

 counter = 0;

 116

 }

 counter++;

 }

 }

 // it stores the data into the data array

 else{

 for(int k = 0; k < numBytes; k++){

 holdArray[counter] = readBuffer[k];

 if (counter == 38 && readBuffer[k] == 126) {

 //store the nodeid

 dataArray[0] = unsigned_int(holdArray[11]);

 //store the parentid

 dataArray[1] = unsigned_int(holdArray[19]);

 //calcutate the seq# and store it

 SeqNumber = unsigned_int(holdArray[13]) +

 256 * unsigned_int(holdArray[14]);

 SeqNumberF = unsigned_int(holdArray[20]) +

 256 * unsigned_int(holdArray[21]);

 dataArray[2] = SeqNumberF;

 117

 //calcutate the vref and store it

 vref = unsigned_int(holdArray[22]);

 dataArray[3] = vref;

 //calcutate the quad1 and store it

 quad = unsigned_int(holdArray[23]);

 dataArray[4] = quad;

 //calcutate the pir and store it

 pir = unsigned_int(holdArray[24]) +

 256 * unsigned_int(holdArray[25] & 0x03);

 dataArray[5] = pir;

 //calcutate the mag and store it

 mag = unsigned_int(holdArray[26]) +

 256 * unsigned_int(holdArray[27] & 0x03);

 dataArray[6] = mag;

 //calcutate the audio and store it

 118

 audio = unsigned_int(holdArray[28]) +

 256 * unsigned_int(holdArray[29] & 0x03);

 dataArray[7] = audio;

 counter = 0;

/*Receiving data from base station is saved to file, [received data.txt].

* It needs to keep network hystory.*/

 try{

 BufferedReader in = new BufferedReader

 (new FileReader("received data.txt"));

 s = "id: " + dataArray[0] + " parent: " + dataArray[1] +

 " vref: " + dataArray[3] ;

 System.out.println("receved data:"+s);

 while((temp=in.readLine()) != null){

 ttemp=ttemp+"\n"+temp;

 }

 s = s+ttemp;;

 try{

 FileWriter dataOutput = new FileWriter("received

 data.txt");

 119

 dataOutput.write(s);

 dataOutput.close();

 } catch(FileNotFoundException ke) {

 ke.printStackTrace();

 } catch(IOException ke) {

 ke.printStackTrace();

 }

 while((temp=in.readLine()) == null){

 temp = s;

 try{

 FileWriter dataOutput = new

 FileWriter("received data.txt");

 dataOutput.write(temp);

 dataOutput.close();

 } catch(FileNotFoundException ke) {

 ke.printStackTrace();

 } catch(IOException ke) {

 ke.printStackTrace();

 }

 }

 120

 }

 catch(FileNotFoundException ev) {

 ev.printStackTrace();

 } catch(IOException ev) {

 ev.printStackTrace();

 }

 }//end if

 counter++;

 }//end for k

 }//end else

 }//end method

 /**

 * Description: It convert the received integer value to unsigned int

 * @param nb

 * @return

 */

 static int unsigned_int(int nb){

 if(nb >= 0)

 121

 return nb;

 else

 return(256+nb);

 }

 }

/**

 * <p>Title: AboutBox </p>

 * <p>Description: This class is responsible to provide application information.

 * </p>

 * <p>Copyright: Copyright (c) 2005</p>

 * <p>Company: Naval Postgraduate School, Monterey, CA</p>

 * @author Min Kim

 * @version 1.0

 */

import java.awt.event.*;

import javax.swing.*;

 122

import java.awt.*;

class AboutBox extends JDialog implements ActionListener {

 private JLabel app, ver, cop, ico;

 private JPanel p1, p2, p3;

 private JButton ok;

public AboutBox(Frame par, String title, boolean mode) {

 super(par, title, mode);

 getContentPane().setLayout(new BorderLayout());

 p1 = new JPanel(new BorderLayout());

 p2 = new JPanel(new FlowLayout());

 ok = new JButton("Ok");

 ok.addActionListener(this);

 ok.setMnemonic('o');

 p2.add(ok);

 p3 = new JPanel(new GridLayout(4, 1));

 app = new JLabel("Application for Configuration and Management of WSN");

 ver = new JLabel("Version 1.0");

 cop = new JLabel("Copyright 2005 by Min Kim");

 p3.add(app);

 123

 p3.add(ver);

 p3.add(cop);

 p1.add(p2, BorderLayout.SOUTH);

 p1.add(p3, BorderLayout.CENTER);

 getContentPane().add(p1, BorderLayout.CENTER);

 try {

 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

 } catch (Exception fg) {

 }

 pack();

 addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent we) {

 dispose();

 }

 });

 app.setForeground(new Color(0, 153, 51));

 ver.setForeground(new Color(0, 153, 51));

 cop.setForeground(new Color(0, 153, 51));

 setSize(new Dimension(330, 215));

 Dimension scr = Toolkit.getDefaultToolkit().getScreenSize();

 124

 setLocation((scr.width - getSize().width) / 2, (scr.height - getSize().height)

 / 2);

}

public void actionPerformed(ActionEvent e) {

 if (e.getSource() == ok) {

 setVisible(false);

 }

}

}

/**

 * <p>Title: All </p>

 * <p>Description: This class is responsible to provide vector element by type.

 * </p>

 * <p>Copyright: Copyright (c) 2005</p>

 * <p>Company: Naval Postgraduate School, Monterey, CA</p>

 * @author Min Kim

 * @version 1.0

 125

 */

import java.awt.*;

import java.awt.geom.*;

class All {

 int type;

 Color clr;

 Rectangle r;

 String s;

 Font f;

 Point loc;

 Image img;

public All(int type, Color clr, Rectangle r) {

 this.type = type;

 this.clr = clr;

 this.r = r;

}

public All(int type, Image img, Point loc) {

 this.type = type;

 126

 this.img = img;

 this.loc = loc;

}

}

 127

LIST OF REFERENCES

Beutel, J. (1999). Geolocation in a picoradio environment,
M.S. thesis, ETH Zurich, Electronics Lab.

Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M. &

Zhao, J. (2001) Habitat monitoring: application driver
for wireless communications technology. ACM SIGCOMM
Computer Communication Review, 31(2), 20–41.

Clouqueur, T., Phipatanasuphorn, V., Ramanathan, P., &

Saluja, K.K. (2002, September). Sensor deployment
strategy for target detection. ACM WSNA, 42–48.

Conover, J. (1999, November). Policy-based network

management. Network Computing.

Dhillon, S.S., Chakrabarty, K., & Iyengar, S.S. (2002).

Sensor placement for grid coverage under imprecise
detections. Int. Conf. inf. Fusion (FUSION), 2, 1581-1587.

Goel, S. & Imieli, T. (2001). Prediction-based monitoring in

sensor networks: taking lessons from mpeg. Technical
report, Rutgers University.

Google Earth (2005). [http://earth.google.com/]. (last

accessed 11/05).

Hollar, S.E.-A. (2000). Cots dust. Master’s thesis,

University of California, Berkeley.

Howard, A., Mataric, M.J., & Sukhatme, G.S. (2002, June).

Mobile sensor network deployment using potential fields:
a distributed, scalable, solution to the area coverage
problem, 6th Int. Symp. Distributed Autonomous Robotics
Syst, 299–308.

Iranle, A., Maleki, M., &Pedram, M. (2005). Energy efficient

strategies for deployment of a two-level WSN. Proecedigns
of the 2005 international symposium on Low power
electronics and design, 233-238.

International Telecommunication Union(ITU). (1992). CCITT

recommendation X. 700. Management framework for open
systems interconnection (OSI) for CCITT application.

 128

International Telecommunication Union(ITU). (1996, May).
ITU-T M. 3010. Principles for a telecommunications
management network.

Karl, H., & Willig, A. (2005). Protocols and Architectures

for WSNs. England: John Wiley
& sons Ltd.

Mainwaring, A.,Polastre, J., Szewczyk, R., Culler, D., &

Anderson, J.(2002, September). WSNs for Habitat
Monitoring. Porceedings of the 1st ACM Workshop on WSNs
and Application.

Meguerdichian, S., Koushanfar, F., Potkonjak, M., &

Srivastava, M.B. (2001, April). Coverage problems in
wireless ad-hoc sensor networks. IEEE INFOCOM, 3, 1380–
1387.

Mehrotra, S. (2001, July). Distributed algorithms for

tasking large sensor network. Thesis submitted to the
faculty of Virginia Polytechnic Institute and State
University.

Ruiz, L. B., Nogueira, J.M.s., & Loureiro, A.A.F. (2003,

Febrary). MANNA: a management architecture for WSNs. IEEE
Commun. Mag., 41(2), 116–125.

Ruiz, L.B.,Siqueira,I.G., Oliveira, L.B., Wong, H.C,

Nogueira, J.M.S., & Loureiro, A.A.F. (2004.October).
Sensor networks: Fault management in event-driven WSNs.
Proceedings of the 7th ACM international symposium on
modeling, analysis and simulation of wireless and mobile
systems.

Ruiz, L. B., Nogueira, J.M.S., & Loureiro, A.A.F. (2005).

Sensor Network Management. In M. Ilayas & I. Mahgoub (Eds,
chap. 3) Handbook of Sensor Networks: Compact Wireless
and Wired Sensing Systems. Boca Raton, FL: CRC Press LLC.

Savvides, A., Han, C.C., & Srivastava, M. (2001, August)

Dynamic fine-grained localization in adhoc networks of
sensors, Proc. ACM MobiCom’01.

 129

Savvides, A., Park, S., & Srivastava., M. (2001, June) On
modeling networks of wireless microsensors. Joint Int.
Conf. Measurement Modeling Computer Syst., 318–319,
Cambridge, MA.

Savarese, C., Rabaey, J., & Beutel, J. (2001, May).

Locationing in distributed ad-hoc WSNs, Proc. IEEE
ICASSP’01. Matrix Pencil for Positioning in Wireless Ad
Hoc Sensor Network 27

Tilac, S., Abu-Ghazaleh, N.B., & Heinzelman, W. (2002,

September). Infrastructure trade-offs for sensor networks.
ACM WSNA’02, 49-58

Vieira, M.A., Vieira, L.F., Ruiz, L.B., Loureiro, A.A. &

Fernandes, A.O. (2003, October). Scheduling nodes in WSN:
a Voronoi approach. IEEE LCN — Local Computer Network.

Wang, Q., Hassanein, H., & Xu, K. (2005). A practical

perspective on WSNs. In M. Ilayas & I. Mahgoub (Eds, chap.
9) Handbook of Sensor Networks: Compact Wireless and
Wired Sensing Systems. Boca Raton, FL: CRC Press LLC.

Willing, A., Shah, R., Rabaey, J., & Wolisz, A. (2002,

August). Altruists in the PicoRadio sensor network. 4th
IEEE Int. Workshop Factory Commun. Syst., 175-184.

Wu, K. & Harms, J. (2001, November). QoS support in mobile

ad hoc networks. Crossing Boundaries — GSA J. Univ.
Alberta, 1(1), 92–106.

Zou, Y., & Chakrabarty, K. (2003, March). Sensor deployment

and target localization based on virtual forces. IEEE
INFOCOM, 2, 1293-1303.

 130

THIS PAGE INTENTIONALLY LEFT BLANK

 131

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Gurnider Singh
 Naval Postgraduate School
 Monterey, California 4.

4. Arijit Das
 Naval Postgraduate School
 Monterey, California

5. Min Young Kim
 Korean National Defense University
 Republic of Korea

