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ABSTRACT 
 
 
 
A major component of the US Army’s Future Combat Systems (FCS) will be a 

fleet of eight different manned ground vehicles (MGV). There are promises that 

‘advanced automation’ will take on many of the tasks formerly performed by soldiers in 

legacy vehicle systems. However, the current approach to automation design does not 

relieve the soldier-operator of tasks; rather, it changes the role of the soldiers and the 

work they must do, often in ways unintended and unanticipated. This thesis proposes a 

coherent, top-down, overarching approach to the design of a human-automation 

interaction model.   First, a qualitative model is proposed to drive the functional 

architecture and human-automation interface scheme on the MGV fleet. Second, 

proposed model is applied to a portion of the functional flow of the common crew station 

on the MGV fleet. Finally, the proposed model is demonstrated quantitatively via a 

computational task-network modeling program. The modeling approach offers insights 

into the impacts on human task-loading, workload, and human performance.  

Implications for other domains in human systems integration are discussed.  The 

proposed model gives engineers and scientists a top-down approach to explicitly define 

and design the interactions between proposed automation schemes and the human crew. 

 

 

 

 

 

 

 

 

 

 

 

 



 vi

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



 vii

TABLE OF CONTENTS 
 
 
 

I. INTRODUCTION AND BACKGROUND................................................................1 
A. THE U.S. ARMY’S FUTURE COMBAT SYSTEMS (FCS) AND 

THE PROMISE OF AUTOMATION ...........................................................1 
B. EXAMPLES OF HUMAN FAILURES DUE TO POOR 

AUTOMATION DESIGN...............................................................................3 
C. AUTOMATION IS NOT A PANACEA – MUST BE GUIDED BY AN 

ARCHITECTURE...........................................................................................5 
D. STATEMENT OF THE PROBLEM .............................................................7 
E. PROPOSAL......................................................................................................7 
F. METHODOLOGY OVERVIEW...................................................................9 
G. DEFINITION OF TERMS............................................................................10 

II. REVIEW OF THE RELEVANT LITERATURE ..................................................13 
A. UNIT OF ACTION (UA), UNIT OF EMPLOYMENT (UE), AND 

FUTURE COMBAT SYSTEMS (FCS) .......................................................13 
1. UA/UE Doctrine and the ‘Quality of Firsts’....................................13 
2. FCS ORD ............................................................................................14 

B. HISTORICAL EXAMPLES OF AUTOMATION VS. MANNING 
LEVELS..........................................................................................................17 
1. Nuclear Power Plant – Balancing Automation and Human 

Action ..................................................................................................17 
2. Advanced Automation in Spaceflight Systems................................18 
3. US Navy’s Manning Affordability Initiative and the DD-X ..........19 
4. The US Army’s LHX Program.........................................................21 
5. The US Army’s Previous Crew Reduction Efforts for Ground 

Vehicles ...............................................................................................22 
C. FUNCTION ALLOCATION........................................................................23 
D. AUTOMATION DESIGN IS NOT AN ‘ALL-OR-NONE’ CONCEPT 

– LEVELS OF AUTOMATION...................................................................25 
1. Levels (Degrees) of Automation........................................................25 
2. A Model for Types and Levels of Automation ................................27 

E. OTHER LEVELS-OF-AUTOMATION RESEARCH ..............................30 
1. Kaber & Endsley Using a Dynamic Control Task..........................30 
2. LOA Taxonomy from NASA ............................................................32 
3. LOA Research for Multiple UAVs ...................................................35 

III. QUALITATIVE MODEL FOR THE DESIGN OF A HUMAN-
AUTOMATION INTERFACE OF SYSTEM FUNCTIONS................................37 
A. FIVE-STAGE MODEL FOR TYPES AND LEVELS OF 

AUTOMATION IN THE FCS MGV FLEET.............................................37 
B. APPLICATION OF MODEL TO MGV FUNCTIONAL FLOW ............44 
C. APPLICATION OF MODEL TO LITTORAL COMBAT SHIP.............53 



 viii

D. EVALUATIVE CRITERIA..........................................................................53 
1. Primary Criteria ................................................................................53 
2. Secondary Criteria.............................................................................54 

IV. THE HUMAN-AUTOMATION INTERFACE MODEL IN ACTION: A 
QUANTITATIVE IMPLEMENTATION VIA IMPRINT....................................57 
A. NEED FOR QUANTITATIVE MODELS ..................................................57 
B. IMPROVED PERFORMANCE RESEARCH AND INTEGRATION 

TOOL (IMPRINT).........................................................................................57 
C. MGV COMMON FUNCTION MODEL (CFM)........................................59 
D. PLAN FOR QUANTITATIVE ANALYSIS................................................62 

V. RESULTS OF QUANTITATIVE ANALYSIS VIA IMPRINT ............................63 

VI. DISCUSSION .............................................................................................................65 
A. DO NOT OVEREMPHASIZE THE STASTICAL RESULTS.................65 
B. WHAT IMPRINT DOES NOT ACCOUNT FOR......................................68 
C. HSI (MANPRINT) DOMAINS – IMPLICATIONS AND 

TRADEOFFS .................................................................................................68 
1. Manpower and Personnel..................................................................69 
2. Training ..............................................................................................70 
3. Human Factors Engineering.............................................................71 
4. System Safety and Soldier Survivability..........................................71 

D. FURTHER ACTIONS...................................................................................72 

VII. CONCLUSIONS AND RECOMMENDATIONS...................................................73 

APPENDIX.  ADDITIONAL EXAMPLE OF THE MODEL IN ACTION – US 
NAVY’S LITTORAL COMBAT SHIP...................................................................75 

LIST OF REFERENCES......................................................................................................89 

BIBLIOGRAPHY..................................................................................................................95 

INITIAL DISTRIBUTION LIST .......................................................................................105 
 
 
 
 
 
 
 
 
 
 
 



 ix

LIST OF FIGURES 
 
 
 

Figure 1. Qualitative Model for Design for Human-Automation Interaction in the 
FCS MGV Fleet. Note how the UA ‘Quality of Firsts’ are related to the 
proposed model................................................................................................xx 

Figure 2. Qualitative Model Applied to the Local Defense Function ........................... xxi 
Figure 3. FCS Manned Ground Vehicle (MGV) Fleet....................................................15 
Figure 4. Simple four-stage model of human information processing (Parasuraman, 

et al., 2000) ......................................................................................................27 
Figure 5. Levels of automation for independent functions of informationm 

acquisition, information analysis, decision selection, and actin 
implementation. Examples of two systems with different levels of 
automation across functional dimension are also shown (Parasuraman et 
al, 2000). ..........................................................................................................29 

Figure 6. Level of Autonomy Assessment Scale (Proud, et al., 2003, p. 4) ...................34 
Figure 7. Qualitative Model for Design for Human-Automation Interaction in the 

FCS MGV Fleet. Note how the UA ‘Quality of Firsts’ are related to the 
proposed model................................................................................................39 

Figure 8. CFM Function Flow – Level 1.........................................................................45 
Figure 9. CFM Functional Flow – Level 2......................................................................46 
Figure 10. CFM Functional Flow – Level 3 – Function 5.0 (Local Defense)...................47 
Figure 11. Local Defense (CFM Function 5.0), with tasks decomposed and grouped 

in accordance with the proposed information processing flow model ............48 
Figure 12. Local Defense (CFM 5) decomposed into the proposed qualitative model.....49 
Figure 13. Qualitative Model Applied to the Local Defense Function .............................51 
Figure 14. Local Defense (CFM Function 5.0) from Figure 12, modified to reflect the 

types of levels of automation applied as per Figure 13. ..................................60 
 
 
 
 
 



 x

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xi

LIST OF TABLES 
 

 
 

Table 1. Five-Stage Model of Information-Processing for Human-Automation 
Interaction Scheme in the FCS MGV Fleet ................................................. xviii 

Table 2. "Fitts' List" Showing the Relative Benefits of Automation and Humans........24 
Table 3. Levels of Automation of Decision and Action Selection (Parasuraman, 

Sheridan, and Wickens, 2000). ........................................................................26 
Table 4. LOA Taxonomy for human-computer performance in dynamic, multitask 

scenarios (Endsley & Kaber, 1999; Kaber & Endsley, 2004) .........................31 
Table 5. Comparison of Taxonomies: Parasuraman, Sheridan, & Wickens vs. 

Kaber & Endsley..............................................................................................32 
Table 6. Five-Stage Model of Information-Processing for Human-Automation 

Interaction Scheme in the FCS MGV Fleet .....................................................38 
Table 7. Descriptors for each LOA at each of the 5-stages of the proposed model ......40 
Table 8. Analysis of Baseline MGV CFM.....................................................................63 
Table 9. Analysis Results of Proposed Human-Automation Interface Scheme 

Applied to MGV CFM.....................................................................................64 
Table 10. Results of Comparison by Paired t-test............................................................64 
Table 11. Results of Comparison by Wilcoxon Signed Ranks Test ................................64 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii

LIST OF ACRONYMS AND ABBREVIATIONS 

ACM Association for Computing Machinery 
AFM Autonomous Flight Management 
AGS Armored Gun System 
ANSI American National Standards Institute 
APA American Psychological Association 
ARL Army Research Lab 
ARV Armed Robotic Vehicle 
ASCM Anti Ship Cruise Missile 
ASD Air Self Defense 
ASW Anti Submarine Warfare 
ATD Advanced Technology Demonstration 
B.S Bachelor of Science 
BA Basic Access 
BAE-SC BAE – Santa Clara 
C2V Command and Control Vehicle 
CA Crewman’s Associate 
CA-ATD Crewman’s Associate – Advanced Technology Demonstration 
CCS Common Crew Station 
CFM Common Function Model 
CIWS Close in Weapons System 
COA Course of Action 
COP Common Operational Picture 
CRADA Cooperative Research and Development Agreement 
CSG Carrier Strike Group 
CSRDF Crew Station Research and Development Facility 
CTP Common Tactical Picture 
DC Data Collection 
DoD Department of Defense 
DoDI DoD Instruction 
DT Developmental Testing 
DTIC Defense Technical Information Center 
ESG Expeditionary Strike Group 
EW Electronic Warfare 
FA Function Allocation 
FA/TA Function Analysis / Task Analysis 
FCS Future Combat Systems 
FM Field Manual (Army) 
FoS Family of Systems 
FRMV FCS Recovery and Maintenance Vehicle 
GDLS General Dynamics Land Systems 
HFE Human Factors Engineering 
HFETAG Human Factors Engineering Technical Advisory Group 



 xiv

HRED Human Research and Engineering Directorate 
HSI Human Systems Integration 
ICV Infantry Carrier Vehicle 
IEEE Institute of Electrical and Electronic Engineers 
IMPRINT Improved Performance Research and Integration 
IMS Intelligent Munitions System 
IPT Integrated Products Teams 
IRD Interim Requirements Document 
IT Information Technology 
KPP Key Performance Parameter 
LCDR Lieutenant Commander 
LCS Littoral Combat Ship 
LHX Light Helicopter Experimental 
LOA Levels of Automation 
LSI Lead Systems Integrator 
MABA-MABA Men Are Better At – Machines Are Better At 
MAI Manning Affordability Initiative 
MANPRINT Manpower and Personnel Integration 
MCR Main Control Room 
MCS Mounted Combat System 
MDMP Military Decision Making Process 
MGV Manned Ground Vehicles 
MIW Mine Warfare 
MOS Military Occupational Specialties 
MPT Manpower Personnel and Training 
MULE Multifunctional Utility Logistics and Equipment 
MV Medical Vehicle 
MWL Mental Workload 
NASA National Aviation and Space Administration's 
NATO North Atlantic Treaty Organization 
NLOS Non Line of Sight 
NPS Naval Postgraduate School 
NSN National Stock Number 
O&O Operational & Organizational (Plan) 
OE Operational Environment 
OMB Office of Management and Budget 
ONR Office of Naval Research 
OODA Observe Orient Decide Act 
ORD Operational Requirements Documents 
OT Operational Testing 
PCD Procurement Control Drawing 
PEO Program Executive Officer 
PIDS Prime Item Development Specifications 
R&D Research and Development 
RD&E Research, Development, and Engineering 



 xv

RSV Reconnaissance and Surveillance Vehicle 
S&T Science and Technology 
SA Situation Awareness 
SE Systems Engineering 
SI Systems Integration 
SITREP Situation Report 
SMART Self-Monitoring Analysis and Reporting Technology 
SME Subject Matter Experts 
SoS System of Systems 
SPSS Statistical Package for the Social Sciences 
SUGV Small Unmanned Ground Vehicle 
SUW Surface Warfare 
TA Task Analysis 
TACOM Tank Automotive Command (US Army) 
TAD Target Audience Description 
TADSS Training Aids Devices Simulators and Simulations 
TARDEC TACOM Research, Development, and Engineering Center 
TDFA Top Down Function Analysis 
TDRA Top Down Requirements Analysis 
TN Technical Note 
TRADOC Training and Doctrine Command (US Army) 
TTP Tactics Techniques and Procedures 
UA Unit of Action 
UAMBL Unit of Action Maneuver Battle Lab 
UAV Unmanned Aerial Vehicles 
UDLP United Defense Limited Partnership 
UE Unit of Employment 
UGS Unattended Ground Sensors 
USN US Navy 
V.I. Vehicle Integrators 
WMI Warfighter Machine Interface 
WSRT Wilcoxon Signed Ranks Test 

 



 xvi

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 



 xvii

ACKNOWLEDGMENTS 

There are so many people to thank, but only so much space in which to do so.  

First and foremost, thanks to my lovely wife, Kirsten, for her love and support.  It 

certainly has been a two-year adventure here in Monterey in every sense of the word.   To 

my three boys: Matthew, Andrew, and Luke. Matt couldn’t get enough of Red’s Donuts 

on Sunday morning or throwing rocks in the water at the wharf.  If allowed, Andy would 

eat his weight in trail mix while walking around at the mall.  And Luke came into the 

world right here in Monterey,  making the adventure at NPS a little more exciting, if that 

were possible. From President Teddy Roosevelt: “No ordinary work done by a man is 

either as hard or as responsible as the work of a woman who is bringing up a family of 

small children…for the lives of these women are often led on the lonely heights of quiet, 

self-sacrificing heroism.” 

My thanks and deep appreciation goes to my thesis committee of Professors Mike 

McCauley and Mike Green.  I pretty much knew after my first quarter here that both 

would be involved in my thesis regardless of the topic.   

Kudos to Dr. Hal Booher, the ‘father’ of MANPRINT and HSI as we know it today.  

He literally wrote the book on HSI. Thanks to the leadership at ARL/HRED for sponsoring 

me on the two-year adventure to Monterey. Dr. Robin Keesee, the former director of HRED, 

made up his mind that this program would happen and backed it up by sending the students.  

Then Mr. Frank Paragallo went about recruiting the students and getting us out here.   

Thanks to NPS and its O.R. Dept. for agreeing to setting up the very first HSI 

program in the world. Additional thanks to the core and extended HSI faculty at NPS. But a 

special thanks goes to Professor Nita Miller, because without her this HSI curriculum would 

have never seen the light of day. 

Thanks goes to our CRADA partners at BAE Systems (formerly UDLP) in Santa 

Clara, CA.   Jeff Powers, Doug Neil, Gene Brennan, and Ron Natividad were eager for us to 

get on board, and provided me with very helpful guidance early in this project. 

And to the rest of the HSI Cohort 1: we made it.  Hopefully after all of this 

education, we can all spell H-S-I without error. 

 



 xviii

EXECUTIVE SUMMARY 

A major component of the US Army’s Future Combat Systems (FCS) will be a   

fleet of eight different manned ground vehicles (MGV). There are promises that 

‘advanced automation’ will accomplish many of the tasks formerly performed by soldiers 

in legacy vehicle systems. However, the current approach to automation design does not 

relieve the soldier-operator of tasks; rather, it changes the role of the soldiers and the 

work they must do, often in ways unintended and unanticipated. This thesis proposes a 

coherent, top-down, overarching approach to the design of a human-automation 

interaction model.  

Given the available literature on design of automation and the need at BAE 

Systems (one of the defense contractors building the MGV fleet), a qualitative model is 

proposed to drive the functional architecture and the human-automation interface scheme 

on the MGV fleet. The model starts with a five-stage model of information processing for 

the human-automation interaction scheme in the FCS MGV fleet (Table 1).  It stands 

squarely on the shoulders of a few giants in the field of human factors and automation 

research and development (Parasuraman, Sheridan, Wickens, 2000; Kaber & Endsley, 

2004). 

Table 1. Five-Stage Model of Information-Processing for Human-Automation 
Interaction Scheme in the FCS MGV Fleet 

Stage Definition 
1 Information 

Acquisition 
Acquisition and registration of multiple sources of 
information. Positioning and orienting of sensory receptors, 
sensory processing, initial pre-processing of data prior to 
full processing, and selective attention 

2 Information 
Analysis 

Conscious perception and manipulation of processed and 
retrieved information in working memory. Also includes 
cognitive operations (rehearsal, integration, and inference) 
occurring prior to point of decisions. 

3 COA Development Generating (a) the decisions that need to be made, followed 
by (b) formulating options or task strategies for achieving 
goals. 



 xix

Stage Definition 
4 Decision Selection Selection of a particular option, course of action (COA), or 

strategy to carry out. Decision(s) are reached based on the 
Analysis stage (cognitive processing), the COA 
Development stage, and expertise (human or software). 

5 Action 
Implementation 

Consistent with the decision selection(s), carrying out the 
chosen option, COA, or strategy, whether through control 
actions at an interface or other means. 

 

The proposed human-automation interface model is shown graphically in Figure 

1.  This demonstrates the five stages of information processing, as well as the possibility 

for ten levels of automation (LOA) within each of the five stages.  It retains the 

intuitiveness of the original model from Parasuraman et al. (2000) while allowing system 

engineers and designers to explicitly define how the human and proposed automation will 

interact so we might be able to understand how the two will perform as part of the overall 

system in development.  Functions A/A′ and Systems B/B′ will be provided as examples 

of how a human-automation interaction scheme might be designed conceptually. 

 



 xx

 
Figure 1.   Qualitative Model for Design for Human-Automation Interaction in the 

FCS MGV Fleet. Note how the UA ‘Quality of Firsts’ are related to the proposed 
model. 
 

Therefore, to further the ideals of this thesis, Figure 2 graphically presents two 

possible human-automation interface schemes to achieve the common function of Local 

Defense.  The current scheme (yellow line on the graph) employs almost no automation, 

only giving the vehicle commander some physical aids to allow arming and firing of the 

chosen weapon with a single button press. The vehicle commander is totally responsible 

for detecting, identifying, and tracking any local threats.  In the Engagement stage, the 

commander must then make a series of decisions (probably in rapid order) that starts with 

whether to engage the target or not, followed by selections of the appropriate weapon and 

ammunition.  At the Shoot/Report stage, automation design gives the commander some 

physical help by only requiring a simple button press to arm the chosen weapon, and then 

another single-button press to fire the weapon.  Preparation and transmission of the 

digital (i.e., typed text) situation report is left completely with the commander. 
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Figure 2.   Qualitative Model Applied to the Local Defense Function 

 

This thesis implemented the qualitative model applied to the MGV via a 

computational analysis using task-network modeling and Monte Carlo simulation from a 

software package called IMPRINT, developed by the US Army Research Lab’s Human 

Research and Engineering Directorate. Using the proposed architecture in Figure 2, the 

Local Defense function of the MGV fleet was modified to reflect the new and resulting 

human-automation architecture by ‘dialing in’ selected levels of automation for selected 

tasks. 

Comparison of operator task-loading of the current systems vs. the proposed 

automation architecture shows that it is possible to reduce operator task-loading.  A 

primary conclusion of the thesis is that by applying the proposed human-automation 

interface model to other functions in the vehicles, it is possible to make further reductions 

in operator task-loading and mental workload.  This will also support attempts to achieve 
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the current ORD requirement for a vehicle operable by a 2-soldier crew.  This work is 

intended to contribute to the effort to ensure that vehicle systems in the MGV fleet can 

accomplish the overall unit mission and the FCS’ mission as an acquisition program. 

Even if we eventually conclude that an additional crewmember is required on the various 

MGV vehicles, the same qualitative and quantitative models can be used to gain a clear 

understanding of the human-automation interaction as well as the some of the human 

performance ramifications in terms of mental workload. 

With this tool in hand, the exact role of the Soldier operators as the central 

component of the vehicle systems is clearly understood well before the fielding of the 

vehicle systems.  This is but one way (among several) to work toward the ORD 

requirement for a 2-soldier crew.  But, even if the 2-soldier crew requirement is relaxed, a 

coherent plan for automation will help to ensure soldier performance and system 

effectiveness. The focus of the model is to ensure that a reduced-crew can perform well 

enough (not optimally) to accomplish all of the functions and tasks asked of the total 

vehicle system.   

The models and techniques proposed in this thesis have implications beyond just 

the FCS manned vehicle.  The general model and analytical processes, or similar 

approaches, are certainly necessary in a slew of complex systems that lack an 

‘automation philosophy’ to guide the design of a proper interaction between human and 

automation to ensure total system performance. 
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I. INTRODUCTION AND BACKGROUND  

A. THE U.S. ARMY’S FUTURE COMBAT SYSTEMS (FCS) AND THE 
PROMISE OF AUTOMATION 
Future Combat Systems (FCS) is a joint, networked system of systems made up of 

18 individual systems, the network, and most importantly, the Soldier. FCS will be 

connected via an advanced network architecture that will enable levels of joint 

connectivity, situational awareness and understanding, and synchronized operations 

heretofore unachievable. FCS will operate as a System of Systems (SoS) that will 

network existing systems, systems already under development, and systems to be 

developed to meet the requirements of the Army’s Future Force Unit of Action (UA). 

FCS comprises 18+1+1 systems consisting of unattended ground sensors (UGS); 

two unattended munitions, the Non-Line of Sight – Launch System (NLOS-LS) and 

Intelligent Munitions System (IMS); four classes of unmanned aerial vehicles (UAVs) 

organic to platoon, company, battalion and Unit of Action (UA) echelons; three classes of 

unmanned ground vehicles, the Armed Robotic Vehicle (ARV), Small Unmanned 

Ground Vehicle (SUGV), and Multifunctional Utility/Logistics and Equipment Vehicle 

(MULE); and the eight manned ground vehicles (18 individual systems); plus the 

network (18+1); plus the Soldier (18+1+1) (US Army, 2005). 

BAE Systems (formerly United Defense, Limited Partnership [UDLP]) and 

General Dynamics Land Systems (GDLS) have been named the Vehicle Integrators (V.I.) 

for the manned ground vehicle (MGV) fleet of FCS. The V.I. team of BAE Systems and 

GDLS are jointly responsible for design, development, and production of the MGV fleet.  

The eight vehicles in the MGV fleet are: Mounted combat system (MCS), Infantry carrier 

vehicle (ICV), Non-line-of-sight cannon (NLOS-C), Non-line-of-sight mortar (NLOS-

M), Reconnaissance and surveillance vehicle (RSV), Command and control vehicle 

(C2V), Medical vehicle (treatment and evacuation variants; MV-E and MV-T), and the 

FCS Recovery and Maintenance Vehicle (FRMV). Operating under a cooperative 

research and development agreement (CRADA) between the Naval Postgraduate School 
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(NPS) and BAE’s offices in Santa Clara, CA (BAE-SC), engineers at BAE have 

partnered with NPS to investigate human systems integration (HSI) issues related to the 

MGV fleet. 

BAE Systems is responsible for development and manufacture of several vehicles 

in the MGV fleet, as well as design of the common crew station (CCS) between all of the 

MGV fleet.  The FCS Operational Requirements Documents (ORD; dated 31 January 

2005), requires that all FCS Manned Systems must be operable by a 2-man crew (a driver 

and vehicle commander), with the rationale being that the platform must be simple 

enough for a 2-man crew to operate effectively (US Army, 2005, p. D-7). The lone 

exception is the MCS, a tank-like vehicle which will have a three-person crew.  The limit 

of two soldiers is an intense effort by the Army to gain significant life-cycle cost savings 

by eliminating costly manpower.  Current armored vehicles in the Army fleet typically 

have at least 3-4 soldiers in the crew, sometimes more for certain artillery vehicles. 

Early design meetings for the FCS’ Warfighter-Machine Interface (WMI) have 

routinely promised that ‘advanced automation’ will assume many of the tasks formerly 

performed by soldiers in legacy vehicle systems. However, there does not appear to be a 

coherent plan to design the human-automation interface.  Instead, various engineers have 

proposed a bottom-up process for automation, starting with a detailed task analysis for 

the common crew station. (personal communications, Jeffrey Powers, Dr. Patty 

Lakinsmith, Dr. Douglas Neil, [of BAE Systems], June 2005). Then the V.I. team will 

decide what tasks to automate based on technical feasibility, without regard to the overall 

human-automation interface scheme that would result. There are many talented, 

dedicated engineers and scientists working hard to generate ideas and designs for 

automation on the MGV fleet, but without any general philosophy or overarching design 

concept for automation. 

The overall ideas being proposed for a human-automation scheme are 

inappropriate based on past experience and lessons learned, literature reviews, and 

multiple transportation accidents (aircraft, cars, and trains).  No coherent guide exists tot 

guide decision about what types or and how much automation. Without a reasoned plan 

for the functional architecture of automation design, any automation pieces added to a 
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complex system are not likely to relieve a human operator of tasks; it will merely shifts 

them from being manual tasks to more supervisory ones.  Thus, the human operator must 

become a ‘super-supervisor’ in order to monitor and understand everything that is being 

automated. The MANPRINT/Human Factors chief at BAE confirms that the V.I. would 

benefit from an overarching guide to design the human-automation interface scheme 

across the MGV.   

Therefore, operating within a cooperative research and development agreement 

(CRADA) between NPS and BAE-SC, the goal of this thesis was to provide a process for 

developing a top-down, overarching approach to explicitly define and design the 

interaction between proposed automation schemes and the human crew. It shows an 

approach to developing a functional architecture between human and automation for the 

total system. While it was developed for engineers and scientists at BAE and the V.I., the 

process can be expanded to a wide array of domains (aviation, space, maritime, ground 

transportation, manufacturing, etc.).  It can be applied to the FCS MGV fleet to reduce 

operator workload and possibly improve crew performance. There are implications for 

crew size in the total vehicle system. 

 

B. EXAMPLES OF HUMAN FAILURES DUE TO POOR AUTOMATION 
DESIGN 
There is a sizable research base examining human capabilities (and subsequently, 

human error and failure) involved in work with automated systems.  New technologies 

applied to the control of complex person-machine systems can have a significant impact 

on operator performance and training requirements. While reviewing US Army air 

defense command and control, Hawley, Mares, and Giammanco (2005, p. 3) noted that 

“the crux of the problem of new technologies applied to system control is that they tend 

to remove human operators from moment-to-moment, on-line control and relegate them 

to the role of supervisory controllers. A variety of research has indicated that the 

consequences of this change are not always positive” (Hawley, Mares, & Giammanco, 

2005). 
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Norman (1990) detailed the case of a fuel leak in a commercial airliner in which a 

vigilant second officer detected the signs of one possible problem, but failed to detect 

another. Here is a quote from the accident report, as reported in Norman’s paper (p. 6): 

Shortly after level off at 35,000 ft... the second officer brought to my 
attention that he was feeding fuel to all 3 engines from the number 2 tank, 
but was showing a drop in the number 3 tank. I sent the second officer to 
the cabin to check that side from the window. While he was gone, I 
noticed that the wheel was cocked to the right and told the first officer 
who was flying the plane to take the autopilot off and check. When the 
autopilot was disengaged, the aircraft showed a roll tendency confirming 
that we actually had an out of balance condition. The second officer 
returned and said we were losing a large amount of fuel with a swirl 
pattern of fuel running about mid-wing to the tip, as well as a vapor 
pattern covering the entire portion of the wing from mid-wing to the 
fuselage. At this point we were about 2000 lbs. out of balance.... 

In this example, the second officer (flight engineer) provided valuable feedback 

that something seemed wrong with the fuel balance.  “The automatic pilot had quietly 

and efficiently compensated for the resulting weight imbalance, and had the second 

officer not noted the fuel discrepancy, the situation would not have been noted until much 

later, perhaps too late (1990, p. 6).  Norman argued that “it is essential to examine the 

entire system: the equipment, the crew, the social structure, learning and training, 

cooperative activity, and the overall goals of the task.  Analyses and remedies that look at 

isolated segments are apt to lead to local, isolated improvements, but they may also create 

new problems and difficulties at the system level” (1990, p. 2). 

The aviation realm contains numerous documented case studies and research 

findings that detail the coordination breakdown between flight crews and automation. 

Tools that were supposed to serve the human operators and provided ‘added 

functionality’ actually present new challenges in terms of human factors, usability, and 

training.  Woods and Sarter (1998) capture the user’s perspective on the current 

generation of automated systems. It is best expressed by the questions they pose in 

describing incidents: “What is it doing now? What will it do next? How did I get into this 

mode? Why did it do this? How do I stop this machine from doing this?” (p. 5).  

Questions like this point to automation surprises. 
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A landmark paper from Parasuraman and Riley (1997) noted that designers tend 

to automate everything that leads to an economic benefit and leave the operator to 

manage the resulting systems.  “Technical capability and low cost are valid reasons for 

automation if there is not detrimental impact on human (and hence system) performance 

in the resulting system” (emphasis added; p. 232).   The need for better feedback about 

the automation’s states was revealed in a number of ‘controlled flight into terrain’ (CFIT) 

accidents, in which the crew selected the wrong guidance mode, and indications 

presented were similar to when the system was tracking the glide slope perfectly. For 

example, an Airbus 320 crashed in Strasbourg, France, when the crew apparently 

confused the vertical speed and flight path angle modes. “Unfortunately, the ability to 

address human performance issues systematically in design and training has lagged 

behind the application of automation, and issues have come to light as a result of 

accidents and incidents” (1997, p. 232).   

 

C. AUTOMATION IS NOT A PANACEA – MUST BE GUIDED BY AN 
ARCHITECTURE 
‘Advanced automation’ is frequently touted as a solution to accomplish tasks 

formerly performed by Soldiers, thereby allowing us to decrease the number of Soldiers 

manning a vehicle.  The tendency has been to automate what is easiest and leave the rest 

to the operators. From one perspective, this dignifies the operators.  However, it may lead 

to a “hodgepodge of partial automation, making the remaining human tasks less coherent 

and more complex than they would be otherwise be, and resulting in overall degradation 

of system performance” (Sheridan, 2002, 152).  

The former approach, unconsciously championed by many systems, electronics, 

and software engineers, does not relieve a Soldier of tasks. Rather, it merely shifts 

manual tasks to more supervisory ones.  Automation aids do not “simply supplant human 

but rather changes it, often in ways unintended and unanticipated by the designers of 

automation, and a result poses new coordination demands on the human operator” 

(Parasuraman, Sheridan, & Wickens, 2000, p. 286-287).   A soldier may become a 

‘super-supervisor’ trying to handle the leftover tasks as well as monitor that which has 
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been automated.  The engineers’ motivation is threefold, albeit noble. First is to make the 

system simpler and cheaper to engineer. Second, is to relieve the human operator, to 

reduce mental workload. Third, is to the make the system safer.  Yet automation can have 

just the opposite effect in all three categories (Bainbridge, 1983 as cited in Sheridan, 

2000). 

Vehicles in the MGV fleet will be complex systems with considerable technology 

advances. In some cases, the technology might enable the complete automation of certain 

subsystems, functions, and/or tasks. In many cases, however, Soldiers will still be very 

much involved in system operations.   To combat the increasing complexity and serious 

potential for information overloads, Rouse, Geddes, and Curry (1987) argued that two 

methodological issues must be addressed (explicitly or implicitly) before beginning the 

development of a support system concept: choose a design methodology, and adopt an 

automation philosophy.  

Rouse et al. (1987) argue that any human-machine interface should involve a few 

common methodological ingredients: an understanding of the user-system interaction, 

human capabilities and limitations in performing the general tasks identified, and the 

potential barriers to using the interface.  In addition, “use of advanced hardware and 

software technology should not be an end in itself; it should be the means to providing 

the desired functionality. At the highest levels, this desired functionality is dictation by 

the automation philosophy underlying the support system concept” (1987, p. 90). The 

automation philosophy is governed by the questions of when and how to automate, with 

the answers directly determining the roles of operators in systems. “The purpose of   

explicitly choosing an automation philosophy is to assure that the implications for 

operators’ roles are specific and acceptable prior to system design.  This is important 

because the overall performance of complex systems depends heavily on human 

performance” (italics added; 1987, p.91).  

Rouse et al. caution against simply automating all that is possible, stating that 

“this technology-driven approach is understandable, but is increasingly unacceptable as 

the technology that is driving automation efforts becomes more likely to be 

incomprehensibly complex” (1987, p. 91). They argue for the adoption of an operator- 
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centered automation philosophy, which emphasizes human operators in control and 

technology that provides support, a concept that “requires a comprehensive architecture 

for an intelligent interface” (1987, p.92). 

 

D. STATEMENT OF THE PROBLEM 
The FCS MGV fleet lacks an overarching, top-down approach to its human-

automation interface scheme.  With the current methodology and design approach, it can 

be considered doubtful that performance from a 2-soldier crew will be acceptable, thus 

making the human and crew performance a major risk factor in overall system 

performance. Given the current ORD requirement for a 2-soldier crew, we must design a 

human-automation interface model that can be applied to the MGV common crew station 

(CCS) to increase the probability that a two-soldier crew will be able to perform well 

enough to accomplish all of the functions and tasks asked of the total vehicle system 

(hardware, software, and humans) as part of the Army’s Unit of Action (UA) doctrine. 

While this thesis focuses on ways to solve real technical issues in the FCS MGV 

fleet, the model and analytical processes proposed, or similar approaches, certainly are 

necessary in a slew of complex systems in multiple domains (aviation, space, maritime, 

ground transportation, manufacturing, etc.). As a thorough literature review reveals, there 

are very few people thinking about an ‘automation philosophy’ to guide the complex 

interactions between humans and automation to ensure total system performance.  So 

while the proposals here were developed for the FCS MGV fleet, they are in no way 

limited to that particular application. 

  

E. PROPOSAL 
In response to the problem statement detailed above, a three-step solution is 

proposed.  The first step is to develop a qualitative model to drive the functional 

architecture and the human-automation interface scheme on the MGV fleet.  This is but 

one way (among several) to work toward the ORD requirement for a 2-soldier crew.  But, 

even if the 2-soldier crew requirement is relaxed, a coherent plan for automation will help 

to ensure soldier performance and system effectiveness. The focus of the model will be to 
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ensure that a reduced-crew can perform well enough (not optimally) to accomplish all of 

the functions and tasks asked of the total vehicle system. 

The second step will be to apply the interface scheme against selected parts of the 

CCS function/task analyses (provided by BAE human factors specialists in their Santa 

Clara, CA office).  The function/task analysis (FA/TA) provides an overall reference on 

how the Army and the V.I. envision the total vehicle system to operate.  As such, the 

FA/TA is currently indifferent as to the allocation of functions and tasks between the 

hardware/software components of the system and the human crew. 

Lastly, it would beneficial to gain a quantitative understanding how the 

application of the qualitative model to a block of functions from the FA/TA will affect 

soldier performance in the common crew station. One way to quantify estimated human 

performance in a system still in conceptual design is to predict human mental workload 

via a task-network modeling program. In this case, we will model the updated task 

analysis in a modeling program called Improved Performance Research and Integration 

Tool (IMPRINT), provided by the US Army Research Laboratory’s Human Research and 

Engineering Directorate (ARL/HRED).   IMPRINT allows analysts to quantify operator 

mental workload via prediction of task-loading in the proposed vehicle system, a key 

aspect of overall human performance (see ARL/HRED, 2005; Mitchell, 2000).  The goal 

of this quantitative modeling will be to predict whether the new human-automation 

interface scheme, as modeled in IMPRINT, will lower operator task-loading predictions.  

If the mental workload score predictions are lower after apply the new model of human-

automation interface, we can reasonably argue that careful, continued application of the 

new interface model may allow for satisfactory 2-soldier performance in the final system 

design. 

The proposed thesis will provide a top-down, overarching approach that enables 

engineers to explicitly define and design the interaction between proposed automation 

schemes and the human crew.  In effect, it constitutes the design methodology and 

automation philosophy, as espoused by Rouse et al. (1987). With this tool in hand, the 

exact role of the Soldier operators as the central component of the vehicle systems is 

clearly understood well before the fielding of the vehicle systems. In this way, we can 
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take a step towards reducing workload peaks and improving human performance.  It will 

also support attempts to achieve the current ORD requirement for a vehicle operable by a 

2-soldier crew.  This work is intended to contribute to the effort to ensure that vehicle 

systems in the MGV fleet can accomplish the overall unit mission and the FCS’ mission 

as an acquisition program. 

 

F. METHODOLOGY OVERVIEW 
The methodology is described in four parts.  First, it was necessary to conduct a 

comprehensive review of the Army’s doctrinal concepts for the Unit of Action and Unit 

of Employment (UA/UE).  FCS is the materiel solution to meet the UA/UE concept of 

future warfare, or how the Army wants its soldiers and units to fight in the future.  To 

understand the materiel requirements, it is vital to thoroughly understand the fighting 

doctrine that FCS is being built to achieve. 

The second major phase was to conduct a thorough review of the current ORD, 

the UA Operational and Organizational (O&O) Plan, the prime item development 

specifications (PIDS) and procurement control drawing (PCDs) for each of the vehicles 

being developed by the Army in conjunction with the Lead Systems Integrator (LSI) 

team of Boeing and SAIC.  This family of doctrine, requirements, and specifications 

documents served to form the core of an overall ‘human-automation interface’ 

requirements listing and top-down requirements and functional analysis that was needed 

for the design phase of this thesis.  Thus, the project required a thorough review in 

performing functional and task analyses (e.g., Kirwan & Ainsworth, 1992).  Human 

factors specialists at BAE have already developed a fairly mature FA/TA for the common 

crew station (CCS), and developed a functional flow that was used in this project. 

The third phase was to conduct a thorough literature review of automation design 

methodologies, especially as they relate to potentially reducing manning requirements 

(Chapter II).  Two great examples of the military Services attempting to use ‘advanced 

automation’ to gain manpower savings are the Army’s LHX helicopter program (which 

later became the RAH-66 Comanche), and the Navy’s DD-X program. This phase formed 

the basis for the qualitative model proposed in Chapter III. In short, a 5-stage model for 
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types and levels of automation is proposed, both in textual and graphical form.  The 5-

stage model was applied against a selected group of functions from the CCS FA/TA 

provided by engineers at BAE-SC. Primary sources for the qualitative model include  

Parasuraman, Sheridan, and Wickens (2000), Parasuraman (2000), Endsley and Kaber 

(1999), Kaber and Endsley (2004), Proud, Hart, and Mrozinski (2003), and Billings 

(1997). 

The fourth phase of the thesis was a quantitative task-loading analysis of the new 

human-automation interface in IMPRINT.    Analysts with BAE-SC and ARL/HRED 

have developed a task-network model in IMPRINT using a set of functions common to 

the entire MGV fleet.  Using their model as a baseline, I applied the proposed human-

automation interface scheme to their selected portions common function model (CFM) to 

investigate whether predictions of total mental workload would decrease. This phase of 

the thesis was designed to demonstrate, quantitatively, how human task loading might be 

affected by a new human-automation interface scheme. 

The proposed human-automation interface scheme for the MGV fleet can 

contribute to multiple HSI and MANPRINT (Manpower and Personnel Integration) 

domains that will require trade-off analysis to resolve.  We can anticipate impacts to 

nearly all of the domains, including Manpower, Personnel, Training, Human Factors 

Engineering, Soldier Survivability, and System Safety (see US DoDI 5000.2, pp. 32-33, 

and US Army Regulation 602-2 for details of the HSI/MANPRINT domains and their 

definitions).   The potential HSI (MANPRINT) domain tradeoffs will be discussed in 

Chapter VI. 

 

G. DEFINITION OF TERMS 

A comprehensive list of acronyms appears on pages xiii-xv. However, there are 

several terms that must be defined now since they lie at the heart of the problem 

statement, methodology, and literature review. 

Automation – Device or system that accomplishes (partially or fully) a function that was 

previously, or conceivably could be, carried out (partially or fully) by a human operator 

(Parasuraman et al., 2000).  
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Key Performance Parameter (KPP) - KPPs are those attributes or characteristics of a 

system that are considered critical or essential to the development of an effective military 

capability.  

Human Systems Integration (HSI) – comprehensive management and technical program 

that focuses on the integration of human considerations into the systems acquisition 

process. 

MANPRINT – acronym for Manpower and Personnel Integration, the US Army’s 

implementation of HSI that focuses on the integration of human considerations into the 

system acquisition process to enhance soldier-system design, reduce life cycle ownership 

costs, and optimize total system performance.   
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II. REVIEW OF THE RELEVANT LITERATURE 

A. UNIT OF ACTION (UA), UNIT OF EMPLOYMENT (UE), AND FUTURE 
COMBAT SYSTEMS (FCS) 

1. UA/UE Doctrine and the ‘Quality of Firsts’ 
Prior to beginning a rigorous systems engineering and capabilities needs process 

that will produce FCS, it is imperative to thoroughly understand the fighting doctrine that 

the Amy envisions for the Year 2015 and beyond.  The Army’s Training and Doctrine 

Command (TRADOC) argues that an increasingly demanding operational environment 

(OE) points to the necessity to build a “ground force designed for rapid deployment and 

operations across the full spectrum of war” (US Army TRADOC, 2003).   

To do this, TRADOC envisions two major echelons of combat formations: the 

Unit of Action (UA), and the Unit of Employment (UE).  UEs will be tailorable, higher-

level echelons (what we now know as division, corps, and echelons above corps) that 

integrate and synchronize Army, Joint, and Multinational forces for full spectrum 

operations at higher operational levels of war.  They link ground and joint forces and 

orchestrate ground operations that decide joint campaigns. UEs will focus on major 

operations and decisive land campaigns in support of joint operational and strategic 

objectives. 

Units of Action (UA) will be the tactical warfighting echelons of the Army’s 

Future Force (analogous to what we now call brigade and below).  One or more UAs may 

fight under the command and control of a UE.  The UA will fight battles; the UE will 

orchestrate multiple engagements to win battles.  The function of the UA is to close with 

and destroy enemy forces though integrated fire and maneuver, and tactical assault. UAs 

will initiate operations to gain information superiority and fully understand the terrain, 

weather, enemy, and friendly forces; then turn that knowledge to advantage (US Army 

TRADOC, 2002).   

There are two key concepts in this brief discussion of the UA that are pertinent. 

First, formations in the UA will be enabled be a ‘Quality of Firsts’—See First, 

Understand First, Act First, and Finish Decisively. UA capabilities will permit future 
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commanders to “develop the situation before making contact, maneuver to positions of 

advantage and, when ready, initiate decisive action by destroying enemy systems beyond 

the range of their weapons to set the conditions for decisive assault and the UA’s ability 

to develop situations out of contact” (US Army TRADOC, 2003, p. 1-2).  The second key 

concept, already alluded to, is that UAs must develop the situation out of contact, without 

the need to first find and fix the engaged enemy force (US Army TRADOC, 2002).  This 

is a leap-ahead operational paradigm, to be enabled by new and emerging technologies. 

In the past, ground maneuver units conducted ‘maneuver to contact’ in order to find and 

fix the enemy, putting the formation at significant risk.  The UA concept directs that 

Army forces will find and understand the enemy prior to establishing contact, and then 

act before the enemy has a chance to put the formation in harm’s way. 

How does this UA/UE doctrine pertain to FCS? Simply put FCS is the materiel 

solution to meet the UA/UE concept of future warfare, or how the Army wants its 

soldiers and units to fight in the future.  To understand the materiel requirements, it is 

vital to thoroughly understand the fighting doctrine that FCS is being built to achieve.  

FCS is conceived to enable the networked UA to “develop the situation in and out of 

contact, set conditions, maneuver to positions of advantage, and to close with and destroy 

the enemy through standoff attack and combat assault” (US Army TRADOC, 2003, p. 

1-3).  As described in Chapter I, the FCS Family of Systems (FoS) includes a planned 

fleet of manned ground vehicles that will provide specific functions in support of the 

operational concept. “The manned systems will provide capabilities that will enable many 

of the key operational parameters of the FCS force, including lethality overmatch, 

assured survivability and battle command on the move. Essentially, these [manned] 

systems contribute to the synergy that facilitates the ‘quality of firsts’” (US Army 

UAMBL, 2005, p. D-1). 

2. FCS ORD 
To understand the capabilities and requirements that the US Army and the LSI are 

trying to develop with FCS, especially as it pertains to various automation designs in the 

MGV fleet, it is necessary to thoroughly review the FCS ORD.  The ORD places many 

requirements and needed capabilities on the MGV fleet and associated network, far too 
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many to review in this thesis. There is an implicit assumption in the FCS program is 

expecting the development and maturation of a number of advanced automation 

technologies that can be integrated in the overall FoS and the MGV fleet.   

The FCS ORD (see US Army UAMBL, 2005, Annex D) calls for eight manned 

platforms that provide specific functions in support of the operational concept: Mounted 

combat system (MCS), Infantry carrier vehicle (ICV), Non-line-of-sight cannon (NLOS-

C), Non-line-of-sight mortar (NLOS-M), Reconnaissance and surveillance vehicle 

(RSV), Command and control vehicle (C2V), Medical vehicle (treatment and evacuation 

variants; MV-E and MV-T), and the FCS Recovery and Maintenance Vehicle (FRMV). 

Figure 3 outlines the fleet in development.  The approach is to maximize commonality of 

these platforms, to include a common crew station (CCS) among all eight vehicles.  Also 

of particular importance to this thesis is the requirement that the manned systems must be 

operable by a 2-man crew (a driver and vehicle commander).  The current lone exception 

is the MCS variant which has been approved for an increase to a 3-soldier crew.  

IMPRINT analysis by Mitchell, Samms, Henthorn, and & Wojciechowski (2003) was the 

primary driver of this increase.  

 

 

 
Figure 3.   FCS Manned Ground Vehicle (MGV) Fleet 
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To gain an appreciation for the breadth and width of the requirements placed on 

the MGV fleet, and the implicit demands for highly advanced automation that must 

follow, here is a list of four major requirements placed on the common crew station: 

• Wireless, remote operation of the vehicle by a dismounted crewman 

• Control of unmanned systems and their payloads/mission packages 
(including unmanned aerial vehicles and unmanned ground systems) 

• Control other manned platforms through robotic, non-mechanical tether 
(up to six vehicles) 

• Operable by one crewmember for limited periods of time 

Each one of these ORD requirements would require a major systems engineering and 

R&D effort to achieve the desired automation design.   Undoubtedly, the V.I. team will 

assign knowledgeable, dependable, multidisciplinary teams of engineers and scientists to 

work on each requirement.  However, it is safe to say that each team will take a 

significantly different approach to achieving their goal.  The result will be four totally 

different schemes to describe the resulting interaction between the human crew and the 

hardware/software automation design.  Thus, the burden will be placed on the operators, 

as well as the training system, to gain a full understanding of how each of these modes 

will operate.  

 Beyond the four examples of automation modes highlighted above, there are 

dozens of calls for advanced automation design on the MGV fleet throughout the ORD, 

both explicit and implicit.  Several examples are: embedded sensor suites, physiological 

monitoring, weapons engagements, cooperative engagements, chemical-biological hazard 

detection, signature management, laser detection, automatic internal lighting, air self 

defense against multiple aerial targets, automated mission planning, acquisition and 

prioritization of multiple targets, monitoring and analysis of multiple supply needs, 

embedded prognostics and diagnostics for maintenance, automated preventative 

maintenance checks, decision aids to facilitate maintenance planning, and the list goes 

on.  As an extension of the argument in the previous paragraph, the V.I. team will employ 

dozens of dedicated engineers and scientists in a strenuous attempt to meet these 

requirements. However, each person or team will likely work independently of each other 

and develop their own overarching architecture for their piece of automation.  Some may 
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attempt to explicitly design the interaction between human and automation, but many will 

not. The results will be dozens of different schemes, explicit or implicit, to describe the 

resulting interaction between the human crew and the hardware/software automation 

design.  Ultimately, it will be up to the FCS training system and the Soldier to learn and 

understand the many different modes of operation. This may well make it more difficult 

for soldiers to achieve acceptable operations or maintenance performance in the vehicle 

system (though we have yet to empirically prove this).  

  

B. HISTORICAL EXAMPLES OF AUTOMATION VS. MANNING LEVELS 
The Army’s FCS is by no means the first attempt to make the tradeoff between 

advanced automation design and the promise of reduced manning levels in extremely 

complex systems.  There are four historical examples reviewed in an attempt to acquaint 

the reader with other major technology systems that were heavily concerned with the use 

of automation and the resulting manpower and human performance concerns, both in and 

out of the US DoD.  They include a European nuclear power plant, a NASA project, the 

US Navy’s DD-X, and ending with the Army’s LHX program. 

1. Nuclear Power Plant – Balancing Automation and Human Action 
In a case study of a specific nuclear power plant in Europe, Fewins, Mitchell, and 

Williams (1992) reviewed the assessment of the plant’s operation to ascertain whether 

proposed staffing levels were adequate.  The primary objective was to assess “whether 

automation provisions with the design system would enable a specified plant manoeuvrre 

to be adequately carried out given the minimum main control room (MCR) staffing 

complement of one supervisor and one desk operator” (Fewins et al., 1992, p. 241).  

Additional objectives included identifying requirements for man-machine interface, work 

organization, training, and procedures; HSI/MANPRINT practitioners will recognize the  

similarity to the domains of human factors engineering, manpower, personnel, and 

training. They conducted a hierarchical task analysis, timeline analysis, and workload 

assessment to meet their objectives. 

Their analysis strongly indicated that the workload assessed was within the 

capability of an increased staff of two desk operators and a supervisor, provided that 
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limited developments to the automation were adopted. However, the workload was much 

too high for the minimum staffing complement (one operator and one supervisor) without 

widespread automation, which was not considered practicable because of safety 

implications and projected cost.  They recommended an additional desk operator in the 

staffing complement. Fewins, et al. (1992)  also concluded that limited automation was 

an acceptable option for reducing operator workload in selected functions and tasks.   The 

use of their methodology provided useful recommendations for the automation of parts of 

the control process, as well as man-machine interface design, and procedures and 

training. 

2. Advanced Automation in Spaceflight Systems  
Despite its acknowledged potential, advanced automation is rarely used in 

spaceflight systems, because many managers consider intelligent control systems an 

unacceptable risk. A group of NASA researchers make the case for introducing more 

advanced automation into spaceflight systems by defining systems engineering practices 

that improve reliability and earn trust (Freed, Bonasso, Ingham, Kortenkamp, Pell, & 

Penix, 2005).  They argue that automation reduces dependences on people in potentially 

advantageous ways that can pay off as reduced staffing and training costs.  In addition, 

onboard automation “can perform actions that would otherwise be performed by the 

crew” (Freed et al., 2005), enable reduced crew size requirements among other potential 

benefits. 

Freed et al.’s vision of advanced automation allows goal-based commanding of 

system activities, in contrast to timed action-sequence commanding traditionally used. 

They also argue for variable autonomy, or the ability of intelligent control software to 

supports changes in degree of automation.  The goal of variable autonomy software 

architecture is to allow systems to operate with dynamically varying levels of 

independence, intelligence and control. “A human user, another system, or the 

autonomous user itself may adjust the system’s ‘level of autonomy’ as required by the 

current situation” (2005, p. 6).   A key conclusion from their arguments is that variable 

autonomy is necessary for any application of autonomous control technology that needs 

to interact with humans [emphasis added]. “Humans who rely on the autonomous control 
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systems will want to be able to take control of it at various times and at various levels” 

(2005, p. 8).  Their concepts on variable autonomy play a key part in the model of 

human-automation interaction proposed in this thesis. 

3. US Navy’s Manning Affordability Initiative and the DD-X 
Engineers and scientists with the US Navy conducted a program in 1995-2000 

called the Manning Affordability Initiative (MAI) which  aimed to provide the 

“processes, tools, interaction guidelines, and procedures required to optimize a combat 

systems environment for the warfighter at reduced manning levels” (US Navy, 2002).  

The goal of the program was at least a 50% manpower reduction while demonstrating 

operational utility for all functions and maintaining or improving a ship’s operational 

performance.  

In a series of papers advocating an HSI approach to achieving reduced manning 

levels on future US Navy ships, there emerged three main themes to achieve reduced 

manning. First, move many functions currently performed by the ship’s crew off the ship.  

Second, accept increased levels of risk by eliminating or consolidating some watch 

stations and reducing some support and hotel services.   Finally, the point to the need to 

invest in emerging technologies that would reduced the number of sailors need onboard 

navy ships (Bost & Galdorisi, 2004; see also Malone & Bost, 2000; Hamburger, Bost, & 

McKneely, 1999). 

The group went on to argue for the selective insertion of technology (i.e., 

automation) to enhance operator performance or substitute for manpower, with “human 

supervision of automated processes and human selection of automation levels. With the 

advent of ‘smarter’ systems that work cooperatively with human supervision, the role of 

many warfighter shifts from manual control and data input towards strategic thinking and 

planning. This shift in design focus may allow one operator to supervise processes and 

systems that were previously controlled by two, three, or more operators. Thus, 

automation must be planned carefully and designers must not necessarily take the human 

out of the information loop just because the control loop is removed in a mission 

process.” (Bost & Galdorisi, 2004, p. 8).   
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Another key aspect from the Navy’s MAI is the explicit call for a top-down 

function analysis (TDFA) and top-down requirements analysis (TDRA).  Bost, 

McKneely, and Hamburger (1998) call the TDFA a process that evaluates which tasks 

should be down manually and which should be done with automation.  Typically, the 

human element is not considered in the TDFA, leading to systems that do not account for 

human capabilities or limitations.  They argue for tools such as better allocation of 

functions, function decomposition, and workload assessment, to name a few.  Similarly, a 

TDRA is concerned with identifying, analyzing, and integrating requirements for 

missions, system functions, and human involvement in the performance of functions.  In 

addressing approaches to reduce system manning, “simply automating system functions 

will not provide the warfighter with what he or she needs to monitor, plan, react, 

understand, maintain situation awareness, supervise, make decisions, make judgments, 

and modify plans due to changes in the tactical situation” (Malone & Bost, 2000, p. 1).  

The go on to argue for the TDRA as the HSI process for defining human requirements 

early in system development.  “The only viable approach to optimal manning reduction is 

to develop a system where human and machine synergistically and interactively 

cooperate to conduct the mission, and where the automated systems supports human 

performance….” (2000, p. 1). 

Before we close with our review of the Navy’s MAI and reduced-manning 

programs, it is important to draw attention to the Navy’s DD(X) program, a family of 

Navy ships with a peculiar and unique requirement: they must be manned by a mere 95 

sailors, one-third the usual size of current or previous ships in a similar mission class. In 

fact, the manning requirement is a Key Performance Parameter (KPP) on the DD(X) 

program, a huge boon the HSI practitioners involved with the program and the MAI.  

Since manning is a KPP on the DD(X) program, it will gain serious attention, engineering 

effort, resources, and manpower since the DD(X) program manager and the Navy must 

prove that the DD(X) can perform to published standards with a severely reduced crew 

complement. This fact is important to note because the 2-soldier crew requirement on the 

Army’s FCS MGV fleet is not a KPP, and so far has not gained a comparative attention 
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and engineering effort to prove that its vehicles can be operated by only 2 soldiers (as 

compared to the traditional 4 soldiers or more). 

4. The US Army’s LHX Program 
The reduced manning goals in FCS’ MGV fleet are by no means the Army’s first 

attempt to realize manpower savings via the promise of advanced automation. Perhaps 

the most ambitious helicopter development program ever undertaken by the US Army 

was the LHX (for Light Helicopter, Experimental), a system that eventually became the 

RAH-66 Comanche.  The Army originally conceived the LHX as a 7500-lb aircraft 

requiring only a single crewmember, an advantage that would result in a smaller target 

profile, as well as realize considerable manpower savings over the life-cycle of the 

system.  Of course, design for single crewmember operations would require considerable 

effort and expense to automate many systems operations and functions.  Army 

helicopters with similar missions have always employed two crewmembers, a pilot and 

gunner/observer (both rated aviators). In effect, the Army’s goal was to introduce such 

advanced automation as to replace a human operator and reduce crew size by 50%. 

Rigorous analyses by the Army Research Institute Field Units at Fort Rucker, 

Alabama (home of the US Army Aviation Center) looked into human performance data 

while evaluating various automation options, as well assessing the feasibility of operating 

the LHX with a single crewmember.  In a landmark publication, McCracken & Aldrich 

(1984) developed an analytical process for evaluating human task-loading in the LHX 

under 29 different mission scenarios, effectively predicting mental workload via 

computational analysis.  In fact, the analytical process developed by McCracken and 

Aldrich is a precursor of today’s IMPRINT software. The results of their study concluded 

that the human in a single-pilot aircraft would become overwhelmed in critical situations 

(i.e. weapons engagements), even with considerable theorized automation help.   Further 

analysis predicted that a dual-crewmember aircraft would experience multiple overload 

conditions in 22 of 29 mission segments, thus requiring some automation even with two 

operators in the cockpit.   

In addition to the analysis at Fort Rucker, the Army established the Crew Station 

Research and Development Facility (CSRDF) at NASA’s Ames Research Center at 
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Moffett Field in Mountain View, CA with the express purpose of evaluating technologies 

and human performance to determine whether single-pilot operations were feasible in the 

LHX.  Despite considerable efforts at Fort Rucker, the US Army Aviation Systems 

Command in St. Louis, Missouri, and the CSRDF at NASA-Ames, by late 1987 the data 

available on LHX crew performance was pointing towards the need for a dual-

crewmember setup. Accordingly, the LHX Program Manager went the US DoD 

Acquisition Executive and recommended a flat decision to continue development with a 

two-crewmember crew station that was single-pilot operable (personal communications, 

Dr. Michael McCauley, July 2005; James Minninger, October 2005; Dr. Harold Booher, 

October 2005; see also Booher, 1997). 

5. The US Army’s Previous Crew Reduction Efforts for Ground 
Vehicles 

Before the thesis closes the review on previous examples of manning vs. 

automation, it is correct to note that the Army has been looking at reduced manning in its 

ground vehicles for some time. The US DoD Human Factors Engineering Technical 

Advisory Group (HFETAG) has been looking at reduced manning for ground vehicles 

since at least the mid-1980s.  A review of the meeting minutes from the HFETAG 

website (http://hfetag.dtic.mil) shows that several of the HFETAG meetings in the past 

twenty years had presentations on crew size reduction in armored vehicles.   

An extension of the 1980s HFETAG crew reduction efforts is the Crewman’s 

Associate Advanced Technology Demonstration (CA-ATD) sponsored by the US Army’s 

Tank-Automative Command (TACOM).  Active during 1994-2003, the CA-ATD 

focused on the integration of the crew and electronic subsystems into current and future 

vehicles, accomplished through the development of advanced crew stations which would 

increase crew performance and reduce crew workload.  The CA-ATD program also 

focused on ways to create a two-man crew station while maintaining combat 

effectiveness. Many of the products and results of the program are being incorporated 

into the MGV fleet designs (personal communications, Dr. Patty Lakinsmith, July 2005; 

see also Karjala, 2001).  
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Lastly, the US Army nearly fielded a tank-like vehicle with a three-man crew 

(versus the standard four-man) in the mid-1990s.  The M8 Armored Guns System (AGS) 

was designed to be an air-droppable, lightweight gun system, but only required a crew of 

three through the use of an autoloader (a mostly physical, vice cognitive, function 

previously performed by the fourth crewmember).  However, the program was terminated 

in 1996 and abandoned, ostensibly due to budget issues.  Incidentally, the AGS is an 

example of a program in which MANPRINT considerations were purposely rejected; it is 

not a coincidence that the Army canceled the program (see Booher, 2003, p. 667; 

Federation of American Scientists, 2000). 

 

C. FUNCTION ALLOCATION  
At the heart of these previous examples of automation design versus possible 

manpower reduction has been the concept of function allocation (FA).  Its main aim is to 

provide a rational means of determining which systems-level functions should be carried 

out by humans and which by machines.  As technology has progressed over the past 

several decades, many purchasers of advanced (and expensive) defense weapons systems 

have made the not-unreasonable assertion that advanced technology can take over many 

tasks and functions previously done by human beings—the most variable, unpredictable, 

and expensive part of the overall system. “Function allocation tries to balance attempts to 

mechanize or automate as many system functions as possible by seeking roles and tasks 

for humans that makes the best use of their capabilities while recognizing human 

limitations” (Beevis, Essens, & Schuffel, 1996, p. 1). Function allocation is linked to 

issues of automation and manpower reduction, as well as to questions about human 

responsibility for the safe and effective operation of a system.   

In 1951, Dr. Paul Fitts edited and prepared a report titled Human Engineering for 

an Effective Air-Navigation and Traffic Control System. In this report he created two 

lists, one defining what man is better able to accomplish, and another listing what 

machines are better able to accomplish. This seminal contribution to the literature 

effectively started the discipline known as Function Allocation.  By the late 1950s, the 

Fitts’ List approach of comparing human and machine capabilities had been incorporated 
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into a number of human engineering guidelines (Beevis, Essens, & Schuffel, 1996). This 

approach grew into what became known as the MABA-MABA (Men are Better At—

Machines are Better At) lists. This general approach was the primary way to determine 

function allocation within a system.   Table 1 lists the relative capabilities originally 

developed by Fitts and adapted from Sheridan (2002) and Fuld (2000) (as cited in 

Wickens, 1992, p. 429). 

 

Table 2. "Fitts' List" Showing the Relative Benefits of Automation and Humans 
Humans are better at Automation is better at 

Detecting small amounts of visual, auditory, or 
chemical signals (e.g., evaluating wine or 
perfume) 

Monitoring processes (e.g., warnings) 
 
 

Detecting a wide array of stimuli (e.g., integrating 
visual, auditory, and olfactory cues in 
cooking) 

Detecting signals beyond human capability (e.g., 
measuring high temperatures, sensing infrared 
light and x-rays) 

Perceiving patterns and making generalizations 
(e.g., “seeing the big picture”) 

Ignoring extraneous factors (e.g., a calculator 
doesn’t get nervous during an exam) 

Detecting signals in high levels of background 
noise (e.g., detecting a ship on a cluttered 
radar display) 

Responding quickly and applying great force 
smoothly and precisely (e.g., autopilots, 
automatic torque application)  

Improvising and using flexible procedures (e.g., 
engineering problem solving, such as on the 
Apollo 13 moon mission) 

Repeating the same procedure in precisely the 
same manner many times (e.g., robots on 
assembly lines) 

Storing information for long periods and recalling 
appropriate parts (e.g., recognizing a friend 
after many years)  

Storing large amounts of information briefly and 
erasing it completely (e.g., updating predictions 
in a dynamic environment) 

Reasoning inductively (e.g., extracting meaningful 
relationships from data) 

Reasoning deductively (e.g., analyzing probable 
causes from fault trees) 

Exercising judgment (e.g., choosing between a job 
and graduate school) 

Performing many complex operations at once (e.g., 
data integration for complex displays, such as 
in vessel tracking) 

Despite the marvelous simplicity of the Fitts List, most practitioners and 

researchers seem wholly unsatisfied with the progress of the FA discipline as a whole 

over the past five decades. This general guideline to FA was, at the time, a proactive 

approach to embedding concerns for human capabilities and limitations in systems and 

provided a sense of direction for the discipline. However, this historical approach and its 

practice in the ensuing decades came to be an unrealistic and outdated concept, never 

fully developing into a useful concept. A 1992 NATO research group called FA the 

weakest in a group of six human engineering analysis techniques (Beevis, Essens, & 

Schuffel, 1996), and the International Journal of Human-Computer Studies dedicated its 
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entire February 2000 special issue to review the status of FA. The workshop drew the 

following conclusions [Beevis et al., 1996, p. xix]: 

• Problems with terminology remain, particularly when human factors 

specialists communicate with those in other engineering disciplines 

• FA is not an isolated activity and must be incorporated in the development 

process early enough to influence design decisions and to permit iteration 

• No single technique is available that deals with all of the issues involved 

in assigning functions 

• FA decisions must be validated by predictions of operator workload or 

system performance and the allocation decisions revised if necessary in an 

iterative approach 

• Little research activity is devoted currently to human behavior in systems 

operations or to improving human factors engineering techniques 

Perhaps the most telling quote comes from Sheridan, concluding that FA practitioners are 

“obliged to continue our efforts to underpin what is essentially an artful design synthesis 

with a modicum of science (2000, p. 204).  

 

D. AUTOMATION DESIGN IS NOT AN ‘ALL-OR-NONE’ CONCEPT – 
LEVELS OF AUTOMATION 

1. Levels (Degrees) of Automation 
While the Fitts list gives a useful starting point to think about the allocation of 

functions between human and automation (hardware and/or software), many layman tend 

to see the allocation as an ‘all-or-none’, black-or-white, binary affair. The function or 

task is either completely manual or completely automatic, with nothing in between.   We 

can point to robotized factories as a popular example in the media, with little mention of 

the associated programming, monitoring, fault detection and diagnosis, and maintenance 

functions performed by humans (Sheridan, 1992, 2002). The truth, at the heart of this 

thesis, is that humans and automation will work together as part of the FCS Family of 

Systems. “The human and computer can interact in an infinite number of ways, resultant 
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in an infinite spectrum of allocation possibilities from which to choose” (Sheridan, 2002, 

p. 58). 

Automation can vary across a “continuum of levels, from the lowest level of fully 

manual performance to the highest level of full automation” (Parasuraman, Sheridan, & 

Wickens, 2000, p. 287).   Table 3 shows the 10-point scale with higher levels 

representing increased autonomy of the machine over the human. For example, at a low 

level 2, several options are provided to the human, but the system has no further say in 

which decision is chosen. At level 6, the system automation gives the human only a 

limited time to override before carrying out the decision. Each level carries with it 

additional opportunities for machine error; each precludes human intervention to a 

greater extent. 

Along with the scale that he largely developed, Sheridan (1992) anticipated that 

for some tasks, we are happy to let the computer go all the way, while for others we 

would prefer to limit automation at a level well down in the list.  The tendency has been 

to automate what is easiest and to leave the rest to the human. “From one perspective, this 

dignifies the human contribution; from another it may lead to a hodgepodge of partial 

automation, making the remaining human tasks less coherent and more complex than 

they need be and resulting in an overall degradation of system performance” (Sheridan, 

1992, p. 358).  

Table 3. Levels of Automation of Decision and Action Selection (Parasuraman, 
Sheridan, and Wickens, 2000). 

High 10. The computer decides everything and acts autonomously, ignoring 
the human 

 9. Informs him or her after execution if it, the computer, decides to 
 8. Informs him or her after execution only if he or she asks, or 
 7. Executes automatically 
 6. Allows the human a restricted time to veto before automatic 

execution, or 
 5. Executes that suggestion if the human approves, or 
 4. Suggests one, and 
 3. Narrows the selection down to a few, or 
 2. The computer offers a complete set of action alternatives, or 

Low 1. The computer offers no assistance; the human must do it all 
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2. A Model for Types and Levels of Automation 
Along with this ‘Levels-of-Automation’ (LOA) approach, Parasuraman, Sheridan, 

and Wickens (2000) extended the concept to cover automation of different types of 

function in a human-machine system.  The scale in Table 3 refers mainly to “automation 

of decision and action selection, or output functions of a system. However, automation 

may also be applied to input functions, i.e. to functions that precede decision making and 

action” (2000, p. 287).  Thus, in expansion of the LOA concept, they proposed a four-

stage view of human information processing (Figure 4). 
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Figure 4.   Simple four-stage model of human information processing (Parasuraman, 

et al., 2000) 

 

By their own admission, this four-stage model is almost certainly a “gross 

oversimplification of the many components of human information processing” (2000).  

However, their structure is useful in practice, and provides a “simple starting point with 

surprisingly far-reaching implications” for designing the interaction scheme between a 

human and automation.  They go on to reason that the four-stage information processing 

model of has “its equivalent in systems functions that can be automated” (2000).  They 

further proposed that automation can be applied to four classes of function (see also 

Sheridan, 1998; Billings, 1997; Lee & Sandquist, 1996): 

1. information acquisition 

2. information analysis 

3. decision and action selection 

4. action implementation 

Each of these functions can be automated to differing degrees, or many levels. 

The multiple levels of automation of decision making (as shown in Table 2) “can be 

applied, with some modification, to the information acquisition, information analysis, and 
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action implementation stages as well” (Parasuraman, et al., 2000, p. 288).  Students and 

fans of the late Colonel John Boyd, US Air Force, may appreciate how the four broad 

functions of this model are analogous to the infamous Observe-Orient-Decide-Act 

(OODA) loop commonly used by defense and business personnel around the world (see 

Boyd, 1996).  

The particular advantage of the Parasuraman, Sheridan, and Wickens model is the 

simple schematic they provide for model types and levels of automation (Figure 5). A 

particular system can involve all four dimensions at different levels. Thus, for example, a 

given system (A) could be designed to have moderate to high acquisition automation, low 

analysis automation, low decision automation, and low action automation. Another 

system (B), on the other hand, might have high levels of automation across all four 

functions (2000).  Their graphical representation of a human-automation interface 

scheme makes it particularly easy to envision the overarching functional architecture of a 

system, to see exactly how a human will interact with the designed automation.   Like 

slider bars on your stereo equalizer, systems and human factors engineers can ‘slide up’ 

or ‘slide down’ the level of automation in each major function of a particular, thereby 

explicitly specifying how the human will interact with the automation. 



 29

Information
Acquisition

Automation Level

Information
Analysis

Automation Level

Action
Implementation

Automation Level

Decision
Selection

Automation Level

High High High High

Low Low Low Low

System B

System A

 
Figure 5.   Levels of automation for independent functions of informationm 

acquisition, information analysis, decision selection, and actin implementation. 
Examples of two systems with different levels of automation across functional 
dimension are also shown (Parasuraman et al, 2000). 

 

The model they outlined provides a “framework for examining automation design 

issues for specific systems” (2000, p. 289). They proposed a series of steps and an 

iterative procedure for examining which system functions should be automated and to 

what extent.  They go on to argue that the human performance consequences of specific 

types and levels of automation constitute the “primary and secondary evaluative criteria 

for automation design using the model” (2000, p. 286).  Their primary evaluative criteria 

include mental workload, situation awareness, complacency, and skill degradation. 

Secondary evaluative criteria include automation reliability and costs of decision/action 

outcomes.  All of these should be applied “to evaluate the feasibility and appropriateness 

of particular levels of automation” (2000, p. 289) in an iterative process. 
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In a closely related paper published at the same time, Parasuraman (2000) also 

discusses the types-and-levels model as a qualitative approach to human-automation 

interaction design.  However, he also goes on to argue for the development of 

quantitative models that could inform the design of human-automation interaction, 

pointing out several computational and formal models of human interaction with 

automation.   For example, if available, such models “could address the major issue in the 

design of effective human-automation interaction, namely the determination of the 

specific type and level of automation in a particular system….There may be tradeoffs in 

benefits and costs involved in different levels of automation and choosing the level that 

maximizes the overall gain may be guided by quantitative models” (2000, p. 940).  He 

concludes that “an important future research need is the integration of qualitative and 

quantitative models” (2000, p. 946) which should provide for a more objective basis for a 

determining effective modes of human interaction with automation. 

Overall, the model presented in Parasuraman et al. (2000) and Parasuraman 

(2000) is the foundation for this thesis, as will be illustrated in Chapter III.  Starting with 

their model for types and levels of automation, the proposed qualitative model blends 

ideas from three other research teams, each of which is discussed below.  Beyond that, 

the urging from Parasuraman (2000) to blend in a quantitative approach gives rise to the 

use of IMPRINT from ARL/HRED as a way to predict operator task-loading once the 

proposed qualitative model is applied to a system in development. 

 

E. OTHER LEVELS-OF-AUTOMATION RESEARCH  

1. Kaber & Endsley Using a Dynamic Control Task 
In addition to the four-stage model proposed by Parasuraman, Sheridan, and 

Wickens, there are two other major research teams that have proposed level-of-

automation taxonomies similar in scope and intent.  The first major thrust comes from 

Endsley and Kaber (1999; see also Endsley & Kaber, 2004; Kaber, Endsley, Wright, & 

Warren, 2002).  These researchers developed a 10-level taxonomy applicable to a wide 

range of psychomotor and cognitive tasks, as well as numerous work domains, with four 
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generic functions that can be allocated to a human operator and/or a computer. The 

functions are: 

1. Monitoring: taking in all information relevant to perceive system status 
2. Generating: formulating options or task strategies for achieving goals 
3. Selecting: deciding on a particular option or strategy 
4. Implementing: carrying out the chosen option through control actions at an 

interface 

In their work, ten LOAs were systematically formulated by assigning these four functions 

to the human or computer, or a combination of the two, as shown in Table 3.  

 

Table 4. LOA Taxonomy for human-computer performance in dynamic, multitask 
scenarios (Endsley & Kaber, 1999; Kaber & Endsley, 2004) 

Functions 
Level of Automation Monitoring Generating Selecting Implementing 

(1) Manual Control  Human Human Human Human 
(2) Action Support Human/Computer Human Human Human/Computer
(3) Batch Processing Human/Computer Human Human Computer 
(4) Shared Control Human/Computer Human/Computer Human Human/Computer
(5) Decision Support Human/Computer Human/Computer Human Computer 
(6) Blended Decision Making Human/Computer Human/Computer Human/Computer Computer 
(7) Rigid System Human/Computer Computer Human Computer 
(8) Automated Decision Making Human/Computer Human/Computer Computer Computer 
(9) Supervisory Control Human/Computer Computer Computer Computer 
(10) Full Automation Computer Computer Computer Computer 

 

Kaber and Endsley (2004, p. 115) contend that their LOA taxonomy provides 

several advantages over previous/historical hierarchies of LOAs.  It provides greater 

detail on ‘who’ (the human or computer) is doing ‘what’ at each LOA.”  Furthermore, the 

list (Table 3) does not “focus only on decision making and defining authority.” The key 

advantage is that it allows “careful empirical assessment of which aspects of automation 

might be helpful or harmful to human performance in conjunction with [the proposed] 

system.”   They cite the Parasuraman et al. (2000) model for LOA design, but point out 

that their own model considers the option generation (planning) function, instead of the 

information analysis function in the Parasuraman et al. model.  However, the other three 

functions in the Parasuraman et al. model are identical to the monitoring, selection, and 

implementation features of the Kaber & Endsley taxonomy (see Table 4). 
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Table 5. Comparison of Taxonomies: Parasuraman, Sheridan, & Wickens vs. 
Kaber & Endsley 

Parasuraman, Sheridan, & Wickens 
(2000) 

 Kaber & Endsley (2004); Endsley & 
Kaber (1999) 

Information Acquisition = Monitoring 
Information Analysis =

 = Generating 
Decision Selection = Selecting 

Action Implementation = Implementing 
 

In the three publications cited from the team of Kaber and Endsley, they drew a 

number of conclusions regarding automation design and LOAs. In Endsley and Kaber 

(1999), their research explored various LOAs in the context of a dynamic control task as 

a means of improving overall human/machine performance. Results suggest that, in terms 

of performance, “human operators benefit most from the implementation portion of the 

task, buy only under normal operating conditions” (1999, p. 462). In addition, joint 

human/automation option generation significantly degraded performance in comparison 

to human or automated option generation alone.  

A follow on study from Kaber and Endsley (2004) examined the effects of LOAs 

in interaction with adaptive automation in a similar dynamic control task.  Again, results 

revealed LOA to be the driving factors in determining primary task performance. “The 

results are supportive of intermediate LOAs…as approaches to human-centered 

automation” (2004, p. 113). The empirical results from these studies, combined with 

other LOA empirical research (such as Ruff et al., 2002, below), give us some guidelines 

for choosing LOAs in new human-automation systems under development.  The results 

give us an initial target for the proper LOA and at the proper function to gain improved 

human performance in the human-automation interaction. 

2. LOA Taxonomy from NASA  
The other major LOA taxonomy in the literature is a four-stage model from 

Proud, Hart, and Mrozinski (2003) out of the National Aviation and Space 

Administration’s (NASA) Johnson Space Center in Houston, TX.  These engineers were 
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seeking to shift, where appropriate, several functions from humans to an autonomous 

flight management (AFM) system, encapsulated in a prototype call SMART (Spacecraft 

Mission Assessment and Re-planning Tool). SMART is a “functionally decomposed 

flight management system with an appropriate level of autonomy for each of its 

functions” (2003, p. 1), but Proud et al. needed a method to determine the appropriate 

level of autonomy for each function within a system.   Starting with Sheridan’s degrees of 

automation scale (1992; see Table 2) and then moving to the Parasuraman et al. (2000) 

four-stage model already discussed, they realized that the AFM functions fell into a 

similar four-tier system using the terms monitor, analyze, decide, and act.   

They correctly realized one of the limitations of the LOA scale (Table 2) in that 

Sheridan’s 10-LOA scale refers mainly to automation of decision and action selection, or 

the output functions of a system.  Automation may also be applied to the input functions 

of system, i.e. the information acquisition, information analysis, and even option 

generation functions. They then integrated aspects of Boyd’s OODA loop (Boyd, 1996) 

to develop an 8-level level of autonomy scale to determine how to assign a level of 

autonomy for a particular function (Figure 6). 

 

Level Observe Orient Decide Act 

8 

The computer gathers, 
filters, and prioritizes 
data without displaying 
any information to the 
human. 

The computer predicts, 
interprets, and integrates 
data into a result which is 
not displayed to the 
human. 

The computer performs 
ranking tasks. The 
computer erforms final 
ranking, but does not 
display results to the 
human. 

Computer executes 
automatically and does 
not allow any human 
interaction. 

7 

The computer gathers, 
filters, and prioritizes 
data without displaying 
any information to the 
human. Though, a 
program functioning" 
flag is displayed. 

The computer analyzes, 
predicts, interprets, and 
integrates data into a 
result which is only 
displayed to the human if 
result fits programmed 
context (context 
dependant summaries). 

The computer performs 
ranking tasks. The 
computer performs final 
ranking and displays a 
reduced set of ranked 
options without 
displaying "why" 
decisions were made to 
the human. 

Computer executes 
automatically and only 
informs the human if 
required by context. It 
allows for override 
ability after execution. 
Human is shadow for 
contingencies. 
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Level Observe Orient Decide Act 

6 

The computer gathers, 
filters, and prioritizes 
information displayed to 
the human. 

The computer overlays 
predictions with analysis 
and interprets the data. 
The human is shown all 
results. 

The computer performs 
ranking tasks and 
displays a reduced set of 
ranked options while 
displaying “why” 
decisions were made to 
the human. 

Computer executes 
automatically, informs 
the human, and allows 
for override ability after 
execution. Human is 
shadow for 
contingencies. 

5 

The computer is 
responsible for gathering 
the information for the 
human, but it only 
displays nonprioritized, 
filtered information. 

The computer overlays 
predictions with analysis 
and interprets the data. 
The human shadows the 
interpretation for 
contingencies. 

The computer performs 
ranking tasks. All results, 
including "why" 
decisions were made, are 
displayed to the human. 

Computer allows the 
human a context-
dependant restricted time 
to veto before execution. 
Human shadows for 
contingencies. 

4 

The computer is 
responsible for gathering 
the information for the 
human and for 
displaying all 
information, but it 
highlights the non-
prioritized, relevant 
information for the user. 

The computer analyzes 
the data and makes 
predictions, though the 
human is responsible for 
interpretation of the data.

Both human and 
computer perform 
ranking tasks, the results 
from the computer are 
considered prime. 

Computer allows the 
human a pre-
programmed restricted 
time to veto before 
execution. Human 
shadows for 
contingencies. 

3 

The computer is 
responsible for gathering 
and displaying 
unfiltered, unprioritized 
information for the 
human. The human still 
is the prime monitor for 
all information. 

Computer is the prime 
source of analysis and 
predictions, with  human 
shadow for 
contingencies. The 
human is responsible for 
interpretation of the data.

Both human and 
computer perform 
ranking tasks, the results 
from the human are 
considered prime 

Computer executes 
decision after human 
approval. Human 
shadows for 
contingencies. 

2 

Human is the prime 
source for gathering and 
monitoring all data, with 
computer shadow for 
emergencies. 

Human is the prime 
source of analysis and 
predictions, with 
computer shadow for 
contingencies. The 
human is responsible for 
interpretation of the data.

The human performs all 
ranking tasks, but the 
computer can be used as 
a tool for assistance. 

Human is the prime 
source of execution, with 
computer shadow for 
contingencies. 

1 
Human is the only 
source for gathering and 
monitoring (defined as 
filtering, prioritizing and 
understanding) all data. 

Human is responsible for 
analyzing all data, 
making predictions, and 
interpretation of the data.

The computer does not 
assist in or perform 
ranking tasks. Human 
must do it all. 

Human alone can 
execute decision. 

Figure 6.   Level of Autonomy Assessment Scale (Proud, et al., 2003, p. 4) 

 

The scale from Proud et al. they developed in Figure 6 also highlights one of the 

key elements missing from the Parasuraman et al. model (2000): the Parasurman et al. 

model lacked useful descriptions of what the exact interaction between human and 
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automation is supposed to be at each level of automation in each the functions. The intent 

of the Proud et al. (2003) scale is “to help system designers easily and correctly identify 

the level of autonomy to design each function within their system. They are available for 

either identifying the level of autonomy of an existing function or for proposing an 

appropriate level of autonomy during the design of a new system. The OODA category 

aspect of this scale is advantageous because: 1) it allows more specific verbal description 

of the level of autonomy of a specific function than previous scales, and 2) it allows the 

function types to be weighted differently across a particular level. The second point is 

important to understanding the scale as a whole. A 5 in the Act column does not have the 

same costs, training requirements, or other assumptions as a 5 in the Orient column” 

(Proud et al., 2003, p. 5).  The table developed by Proud et al. (2003) figures prominently 

in the proposed qualitative model along with the Pararsuraman et al. model (2000). 

3. LOA Research for Multiple UAVs 
Ruff, Narayanan, and Draper (2002) reported on an evaluation that compared 

effects of LOA and decision-aid fidelity on the number of UAVs that could be 

successfully controlled by one operator during a target acquisition task.  Their LOAs 

included manual control, management-by-consent, and management-by-exception. The 

three LOAs corresponded to automation levels 1, 5, and 6 (respectively) from the 

Parasuraman et al. (2000) model (see Table 2). Dependent variables included mission 

efficiency, percentage correct detection of incorrect decision aids, workload and situation 

awareness (SA) ratings, and trust in automation ratings. Results indicated that an 

automation level incorporating management-by-consent (Sheridan LOA-5) had some 

clear performance advantages over the more autonomous (management-by-exception; 

LOA-6) and less autonomous (manual control; LOA-1) levels of automation. LOA-5 kept 

workload under control even with the operator controlling two or four UAVs, and SA 

scores were superior for LOA-5 across the number of UAVs controlled.    

Ruff et al. concluded that workload “does not abate as human tasks are 

automated” (2002, p. 348). Increasing automation to management-by-consent (LOA-5) 

maintains human-in-the-loop system functionality, but it reduces human responsibility for 

functions that humans do poorly (e.g., vigilant monitoring). Increasing automation to 
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management-by-exception (LOA-6) further removes the human from the decision-

making process, lowering SA and making it more difficult for the human to make 

decisions when he or she is finally called upon. “Therefore, the foremost 

recommendation that stems from this study is the importance of an active role of the 

human operator in complex system decision-making processes” (2002, p. 348). 
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III. QUALITATIVE MODEL FOR THE DESIGN OF A HUMAN-
AUTOMATION INTERFACE OF SYSTEM FUNCTIONS 

A. FIVE-STAGE MODEL FOR TYPES AND LEVELS OF AUTOMATION IN 
THE FCS MGV FLEET 
Given the available literature on design of automation and the opportunity to 

participate in the FCS MGV program through BAE-SC, a qualitative model is proposed 

to drive the functional architecture and the human-automation interface scheme on the 

MGV fleet. With this tool in hand, the exact role of the Soldier operators as the central 

component of the vehicle systems is clearly understood before the fielding of the vehicle 

systems.  This is one way (among several) to work toward the ORD requirement for a 2-

soldier crew.  But, even if the 2-soldier crew requirement is relaxed, a coherent plan for 

automation will help to ensure soldier performance and system effectiveness. The focus 

of the model will be to ensure that a reduced-crew can perform well enough (not 

optimally) to accomplish all of the functions and tasks asked of the total vehicle system.   

The model proposed starts with Table 5, a five-stage model of information 

processing for the human-automation interaction scheme in the FCS MGV fleet.  It stands 

squarely on the shoulders of a few giants in the field of human factors and automation 

research and development.  It starts with the four-stage model proposed by Parasuraman 

et al. (2000) (see Figure 4). In addition, the LOA taxonomy from Endsley & Kaber 

(1999) (see Table 3) highlights the fact that option generation is an important facet of 

information-processing scheme for the MGV fleet and its soldier-operators (see Table 4).   

However, the term ‘generation’ from Endsley & Kaber (1999) does not quite 

capture the flavor of information-processing scheme in these Army vehicles.  Instead, we 

turn to Army Field Manual 5-0 about the doctrine for the military decision making 

process (MDMP; see US Army, 2005).  Army doctrine uses the term ‘Course of Action 

(COA) Development’ to describe both the generation and analysis of strategies to 

accomplish a mission, function, or task.  So the five-stage model proposed in Table 5 

borrows the term ‘COA Development’ to better describe the particular function and lend 

the proper Army flavor to this model. 
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Table 6. Five-Stage Model of Information-Processing for Human-Automation 
Interaction Scheme in the FCS MGV Fleet 

Stage Definition 
1 Information 

Acquisition 
Acquisition and registration of multiple sources of 
information. Positioning and orienting of sensory receptors, 
sensory processing, initial pre-processing of data prior to 
full processing, and selective attention 

2 Information 
Analysis 

Conscious perception and manipulation of processed and 
retrieved information in working memory. Also includes 
cognitive operations (rehearsal, integration, and inference) 
occurring prior to point of decisions. 

3 COA Development Generating (a) the decisions that need to be made, followed 
by (b) formulating options or task strategies for achieving 
goals. 

4 Decision Selection Selection of a particular option, course of action (COA), or 
strategy to carry out. Decision(s) are reached based on the 
Analysis stage (cognitive processing), the COA 
Development stage, and expertise (human or software). 

5 Action 
Implementation 

Consistent with the decision selection(s), carrying out the 
chosen option, COA, or strategy, whether through control 
actions at an interface or other means. 

 

Following the simple schematic from the Parasuraman et al (2000) model shown 

in Figure 4, the proposed human-automation interface model is shown graphically in 

Figure 7.  This figure demonstrates the five stages of information processing, as well as 

the possibility for ten LOAs within each of the five stages.  It retains the intuitiveness of 

the original model while allowing system engineers and designers to explicitly define 

how the human and proposed automation will interact. Hopefully, this approach will 

enable better understanding of how the two will perform as part of the overall system in 

development.  We will return to a discussion of Functions A/A′ and Systems B/B′ 

momentarily. 
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Figure 7.   Qualitative Model for Design for Human-Automation Interaction in the 

FCS MGV Fleet. Note how the UA ‘Quality of Firsts’ are related to the proposed 
model. 

 

The final segment of the proposed human-automation interface model borrows 

from the Proud et al. (2003) model. Table 6 contains a description of the proposed 

interaction between human and automation at each function of the five-stage model 

(Table 5) at each LOA.  The descriptors in Table 6 are intended as an aid to system 

engineers and designers to understand the subtle changes in human-automation 

interaction with each change in LOA at each function.  For instance, as a designer thinks 

about moving from LOA 3 to LOA 6 in the Analysis stage, he will have this table of 

descriptors to help understand the implications of that shift in terms of human-automation 

behaviors, roles, and responsibilities. The table’s descriptors also illustrate how human-

automation compares between two different stages while at the same LOA.   
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Table 7. Descriptors for each LOA at each of the 5-stages of the proposed model 

Level 
Information  
Acquisition 

Information 
Analysis Generation Decision(s) 

Selection 
Action 

Implementation 

10 

Automation uses 
internal and external 
sensors to gather, filter, 
and prioritize data 
without displaying any 
information to the 
human operator. 

Automation 
predicts 
anticipated 
future events 
using 
information 
from objects in 
the environment, 
interprets and 
integrates data. 
Results are not 
displayed to the 
human. 

Automation 
generates the 
decision(s) to 
be made and 
the COAs 
available.  
Rank orders the 
best choice 
(based on 
internal 
algorithm). 
Does not 
display to the 
human 
operator. 

Automation 
selects best 
choice from its 
own list of 
COAs. Does 
not display 
selection 
justification 
process or 
choice to 
human 
operator 

Automation carries 
out decision(s) 
autonomously 
without delay. 
Human is 
completely out of 
the loop, and no 
intervention is 
possible. System 
does not even 
display that action is 
being implemented. 

9 

Automation uses 
internal and external 
sensors to gather, filter, 
and prioritize data w/o 
displaying any 
information to the 
human. Only displays 
“program functioning” 
flag to confirm system 
status; human monitors 
system status via flag, 
and takes over sensors 
if necessary 
(essentially moving 
down one level). 

Automation is 
an ‘information 
manager’ that 
predicts, 
interprets, and 
integrate data 
into a result 
which is only 
displayed to the 
human if result 
fit programmed 
context (context-
dependent 
summary) 

Automation 
generates 
decision(s) to 
be made and 
applicable 
COAs.   
Displays best 
option to 
human operator 
only if asked 
for it. 

Automation 
selects best 
choice from its 
own list of 
COAs. 
Displays the 
selection 
process only if 
required by 
context. 

Automation 
executes action w/o 
delay and only 
informs the human if 
required by context 
(or if automation 
decides to). No 
override or 
intervention is 
possible(?) 

8 

Automation uses 
internal and external 
sensors to gather, filter, 
and prioritize data w/o 
displaying any 
information to the 
human. On request, 
displays status of sub-
systems (sensors, 
comm. links, weapons, 
links, etc) for human to 
monitor.  

Automation is 
an ‘information 
manager’ that 
predicts, 
interprets, and 
integrates data 
into a result 
(context-
dependent 
summary) which 
is only displayed 
if asked for by 
the human. 
Information 
integration 
augments human 
operator 
perception and 
cognition. 

Automation 
generates 
decision(s) to 
be made and 
applicable 
COAs.  Rank 
orders COAs 
for each 
decision. 
Displays list 
(up to 5) only if 
human asks for 
it. 

Automation 
displays best 
choice from its 
own list of 
COAs. 
Displays 
selection 
process and 
result if asked 
by human 
operator. 

Automation 
executes w/o delay 
and only informs 
human of action if 
asked for it. 
Override by human 
is possible after 
execution starts; 
human monitors for 
contingencies. 
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Level 
Information  
Acquisition 

Information 
Analysis Generation Decision(s) 

Selection 
Action 

Implementation 

7 

Automation uses 
internal and external 
sensors to gather, filter, 
and prioritize data.  
Displays filter and 
prioritized information 
to human. Also 
displays sub-systems 
statuses for human to 
monitor. Automation 
has primary control 
over sensors to scan 
and observe; human 
can take over sensor 
placement. 

Automation 
overlays 
predictions with 
analysis and 
interprets the 
data (simple 
summary, not 
context-
dependent). The 
human is shown 
all of the results.  

Automation 
generates 
decisions to be 
made and 
COAs. Rank 
order COAs 
(by embedded 
algorithm or 
criteria), and 
displays the 
best option to 
the operator. 

Automation 
displays top 
recommended 
COA to human 
for yes/no 
decision. 

Automation 
executes w/o delay, 
informs the human 
explicitly, and 
allows for override 
after execution. 
Human monitors for 
contingencies. 

6 

Automation 
responsible to gather 
data via sensors and 
links. Displays only 
highlighted, prioritized, 
relevant information, 
along with sub-systems 
statuses.  Automation 
has primary control 
over sensors to scan 
and observe; human 
can take over sensor 
placement. 

Automation 
overlays 
predictions with 
analysis and 
interprets the 
data. Human 
monitors the 
interpretation for 
contingencies. 

Automation 
generates 
decision(s) to 
be made and 
COAs and 
displays in 
recommended 
rank order (up 
to 5 COAs) to 
human 
operator. 
Operator may 
generate 
additional 
decision(s) and 
COAs, but not 
for input to 
computer. 

Automation 
displays up to 
5 COAs in 
rank order, 
from which the 
human must 
choose. 

Automation delays 
execution by a 
context-dependent 
amount of time that 
allows the human 
operator to veto the 
action before it is 
carried out. Human 
monitors for 
contingencies. 

5 

Automation 
responsible to gather 
data via sensors and 
links. Displays all data 
to human operator, but 
highlights prioritized, 
relevant information. 
Displays sub-systems 
statuses.  Automation 
has primary control 
over sensors to scan 
and observe; human 
can take over sensor 
placement. 

Automation 
analyzes the data 
and makes 
predictions. 
Human 
completes 
interpretation 
and integration 
into information. 

Automation 
generates 
decision(s) to 
be made and 
COAs. 
Displays in 
recommended 
rank order (up 
to 5) to human 
operator. 
Human may 
generate 
additional 
decision(s) and 
COA(s) for 
input to 
computer. 

Automation 
displays up to 
5 COAs in 
rank order. 
Human 
chooses from 
this list, or 
from own list. 

Automation delays 
execution by a pre-
programmed (fixed) 
amount of time that 
allows the human 
operator to veto the 
action before it is 
carried out. Human 
monitors for 
contingencies. 
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Level 
Information  
Acquisition 

Information 
Analysis Generation Decision(s) 

Selection 
Action 

Implementation 

4 

Automation 
responsible to gather 
data via sensors and 
links. Displays all data 
to human operator, but 
highlights non-
prioritized, relevant 
information. Displays 
sub-systems statuses.  
Automation has 
primary control over 
sensors to scan and 
observe; human can 
take over sensor 
placement. 

Automation is 
the prime source 
for analysis and 
prediction. 
Human 
monitors, and is 
responsible for 
prediction and 
integration of 
data into 
information. 

Automation 
generates 
decision(s) to 
be made and 
COAs. 
Displays full 
list in 
recommended 
rank order to 
human 
operator. 
Operator may 
generate 
additional 
decision(s) and 
COA(s) for 
input to 
computer (if 
needed). 

Automation 
displays full 
list of COAs in 
recommended 
rank order. 
Human can 
choose from 
this list, or 
from own list 
of COAs. 

Automation 
executes after 
human operator 
explicitly approves. 
Human monitors for 
contingencies. 

3 

Automation 
responsible to gather 
data via internal and 
external sensors; has 
primary control over 
sensors to scan and 
observe. Displays 
unfiltered, 
unprioritized data to 
human operator; 
displays status of sub-
systems (sensors, 
weapons, comm. links, 
CTP/COP).  Human is 
still the prime monitor 
of all data; augments 
automation with own 
sensory receptors.  
Human has the ability 
to take over sensor 
placement from 
automation. 

Automation is 
the prime source 
for analysis, 
displaying 
rudimentary 
results to 
monitoring 
operators. 
Human operator 
responsible for 
all prediction, 
interpretation, 
and integration. 

Automation 
generates 
decision(s) to 
be made and 
COAs. 
Displays up to 
5 COAs for 
each decision 
in random 
order to human 
operator (by 
design, or if 
ranking 
algorithm not 
available). 
Human may 
generate 
additional 
decision(s) and 
COA(s) for 
input to 
computer. 

Automation 
displays up to 
5 COAs in 
random order. 
Human selects 
from this list, 
or from his/her 
own list of 
COAs.  

Human operator 
executes by minimal 
physical interaction 
(e.g. 1-2 switch 
actuation or button 
presses). 
Automation ‘agents’ 
track user interaction 
with computer and 
execute all sub-tasks 
automatically (i.e. 
batch processing). 
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Level 
Information  
Acquisition 

Information 
Analysis Generation Decision(s) 

Selection 
Action 

Implementation 

2 

Human is the prime 
source for sensing, 
monitoring, and 
prioritizing data. 
Human positions 
sensors (own, internal, 
and external) as part of 
selection attention; has 
full control of sensors 
in order to scan and 
observe. Automation 
tracks status of relevant 
sub-systems (sensors, 
CTP/COP, weapons, 
comm links) but does 
not display; shadows 
for emergencies(?). 

Human is the 
prime source for 
analysis, 
prediction, 
interpretation, 
and integration 
of data into 
information. 
Automation only 
displays raw 
data values from 
sensors and links 
to help human 
operator. 

Automation 
generates 
decision(s) to 
be made and 
COAs. 
Displays full 
list of COAs 
for each 
decision in 
random order 
to human 
operator (by 
design, or if 
ranking 
algorithm not 
available). 
Human may 
generate 
additional 
decision(s) and 
COA(s) for 
input to 
computer. 

Automation 
displays 
complete set of 
decision/ 
action 
alternatives. 
Human selects 
COA from the 
full list, or 
from own list 
of COAs. 

Human operator 
executes by 
extensive, indirect 
physical 
manipulation of 
necessary sub-
systems (e.g. 
teleoperation, 
remote operations, 
slaving of human 
physical action, 
virtual 
environments). 

1 

Human is the only 
source for sensing and 
registration of input 
data; filters, prioritizes, 
understands. 

Human performs 
all perception 
and cognitive 
processing, 
making 
predictions and 
interpretation of 
data, or 
integrating 
several variables 
into a single 
value. No 
information 
available from 
automation. 

Human 
operator 
generates 
decision(s) to 
be made and 
the available 
COAs. No 
assistance from 
automation. 

Human selects 
choice from 
his/her own list 
of COAs, with 
no assistance 
from 
automation.  

Human operator 
carries out the 
decision, directly 
and physically 
implementing all 
aspect of the chosen 
action with no 
interaction or help 
from automation. 

 

 Referring back to Figure 7, let’s look at the examples of Functions A/A′ and 

Systems B/B′ on the graphical scheme.  Function A might represent one proposed way to 

describe the human-automation interaction for this particular function as it proceeds from 

information acquisition to analysis and on through to decision selection and action.   

System designers have deliberately designed this interaction as a way to understand how 

the two components will interact, and also to conceptually understand what exactly the 
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automation should be designed and built to do as it aids the human operator.  However, 

they also would like to look at the alternative of Function A′, another way of deliberately 

describing the interaction.  This example shows the utility of the proposed model as 

modified from Parasuraman et al. (2000) for the MGV fleet. The graphical representation 

of human-automation interface makes it particularly easy to envision the overarching 

functional architecture of a system or function to understand exactly how a human will 

interact with the proposed automation. Like the slider bars on your stereo equalizer, the 

designers could simply ‘slide down’ the LOA on several of the functions. Combined with 

the descriptors in Table 6, designers can clearly understand the new relationship between 

human and automation throughout the entire Function A/ A′.   Likewise, System B/B′ 

may represent a much smaller system that can be looked at as whole from information 

acquisition through to the decision and action stages.  In this case, designers might be 

thinking about introducing more automation to the small system, and can use the  

graphical representation in Figure 7 along with the descriptors in Table 7 to better 

understand the resulting relationship between human and automation in their new 

proposal.  

 

B. APPLICATION OF MODEL TO MGV FUNCTIONAL FLOW 
The next step in the thesis is to exhibit how the proposed qualitative model might 

be applied against the functional flow that describes MGV operations.  The human 

factors group at BAE-SC has developed a FA/TA and functional flow for the CCS of the 

MGV fleet.  The FA/TA provides an overall reference on how the Army and the V.I. 

envision the total vehicle system to operate.  As such, the FA/TA is currently indifferent 

as to the allocation of functions and tasks between the hardware/software components of 

the system and the human crew.  Using the FA/TA and functional flow provided from 

BAE-SC engineers, Figure 8 shows a top-level view of the five functions envisioned for 

the CCS in what is being called the Common Function Model (CFM). The five functions 

thought to be common to the entire MGV fleet are vehicle movement (driving), 

communication, vehicle commander’s awareness, driver’s local surveillance, and local 

defense.  This thesis will focus on applying the proposed qualitative human-automation 

interaction model to the last of these, the Local Defense function. 
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Figure 8.   CFM Function Flow – Level 1. 

 

Figure 9 shows a further decomposition of the functional flow to a secondary tier 

that will be called level two. Notice that the Function 5 (Local Defense) has two 

subfunctions called Acquire/Track Threat and Engage Threat. 
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Figure 9.   CFM Functional Flow – Level 2 
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Figure 10 shows a third-tier decomposition of the Local Defense only into a series 

of tasks; this is the final decomposition.  The tasks contained in Function 5.1 

(Acquire/Track Threat) are displayed underneath its bubble, as are the tasks for Function 

5.2 (Engage Threat). The tasks involved preparing and transmitting a digital SITREP 

(situation report) are repeated in both tasks depending on the flow. 

 

5.1

Acquire/Track 
Threat

Engage 
Target? (Y or 

N)

5.0

Local Defense

5.2

Engage Threat

Target Detected

END (Continue 
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Target 
Detected 

Using Indirect 
Vision

Target 
Detected 

Using 
Periscope

Target Identified

Target 
Detected 

Using Indirect 
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Target 
Detected 

Using 
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Prepare Digital 
SITREP

NO

Transmit Digital 
SITREP

Select 
Weapon 
System

Select Ammo

Arm 
Weapon

Announce 
Fire 

Command
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Weapon

Announce 
Fire

Fire 
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YES

Track 
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Figure 10.   CFM Functional Flow – Level 3 – Function 5.0 (Local Defense) 
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Figure 11 goes one step further to collect the decomposed tasks into groups that 

adhere to the information processing model proposed in Table 5.   

5.1.4 / 5.2.5
SITREP

5.2.4
Shoot

5.1.3
Engage?

5.2.3
Decisions

5.1.2
Track

5.1.2
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5.1.1
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5.1
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Engage 
Target? (Y or 
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Target 
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Track 
Target

 
Figure 11.   Local Defense (CFM Function 5.0), with tasks decomposed and grouped 

in accordance with the proposed information processing flow model 

 

Using the functional flow for Local Defense graphically shown in Figure 11, the 

next step is to then apply it against the proposed model for MGV human-automation  
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interaction shown in Figure 7.  The result is the proposed schematic in Figure 12. Here 

we can begin to understand the possible relationship between human and automation in 

the Local Defense function. 

 
Figure 12.   Local Defense (CFM 5) decomposed into the proposed qualitative model 

 

At this point in the process, we can now begin to purposely design the interaction 

between the human operators and a conceptual automation scheme, or to quote 

Parasuraman et al., we can begin to ask “what level of automation should be applied 

within each functional domain. There is no simple answer to this question, and tradeoffs 

between anticipated benefits are likely” (2000, p. 289). The graphical model in Figure 12 

and the descriptors in Table 7 are proposed as a guiding framework.  Evaluative criteria 

will be discussed below, but three clusters of sources can help to begin the process.  The 

first is prior empirical research, such as that reviewed earlier from Kaber and Endsley 

(2004) and Ruff et al. (2002).  “To take a hypothetical example, suppose prior research 

has shown (or modeling predicts) that, compared to manual operation, both human and 
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system performance are enhanced by level 4 automation but degraded by automation 

above level 6” (Parasuraman et al, 2000, p. 290).  This could serve as an initial 

specification for the upper and lower bounds of automation in a certain function. 

Research sources include the writings from experienced researchers in the field who have 

delved into real automation and resulting human accidents, such as Billings (1997), 

Norman (1990), Woods and Sarter (1998).  The second cluster looks to Army doctrine 

and past experience from tactics, techniques and procedures (TTPs), which can guide us 

as to understanding what has (and has not) worked in past and current systems.  Closely 

related is the third cluster, input from subject matter experts (SMEs).   SMEs may be real 

soldiers who work in the combat development or material development structures for the 

Army. They can also include the experience and expertise of scientists and engineers who 

have been involved in systems design in the past, particularly human factors specialists. 

Therefore, to further the ideals of this thesis, Figure 13 graphically presents two 

possible human-automation interface schemes to achieve the common function of Local 

Defense.  The current scheme (yellow line on the graph) employs almost no automation 

at all, only giving the vehicle commander some physical aids to allow arming and firing 

of the chosen weapon with a single button press. The vehicle commander is totally 

responsible for detecting, identifying, and tracking any local threats.  Unfortunately, the 

common FA/TA provided by BAE-SC does not account for the COA Development stage 

proposed in this thesis, so it is skipped and simply left at full manual control.   In the 

Engagement stage, the commander must then make a series of decisions (probably in 

rapid order) that starts with whether to engage the target or not, followed by selections of 

the appropriate weapon and ammunition.  At the Shoot/Report stage, automation design 

gives the commander some physical help by only requiring a simple button press to arm 

the chosen weapon, and then another single-button press to fire the weapon.  Preparation 

and transmission of the digital (i.e. typed text) situation report is left completely with the 

commander. 
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Figure 13.   Qualitative Model Applied to the Local Defense Function 

 
In contrast to the current scheme, a new proposal for human-automation is 

graphically represented in Figure 13 with the red line.  Notice that, per the description of 

the model in Figure 7, the ‘slider bars’ are up to higher LOAs for certain tasks in the 

Local Defense function. The new proposal blends some prior research, some SME input, 

and some human factors knowledge.   

Starting with the Detection and Identification tasks, the interface is moved up to 

LOA-3 in accordance with the descriptors in Table 6.  Upon reflection about the Tracking 

task, it was decided that the soldier simply monitoring any proposed automation would 

require just as much mental workload effort and doing it himself, so it is left unchanged.  

Moving to the Engagement tasks, the human will get some help in making the decision to 

engage or not.  After that, it is hypothesized that an intelligent automation scheme would 

quickly make the correct recommendation for the appropriate weapon and ammunition 

based on sensor data.  If the commander decides not to engage the target, he would move 
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straight away to the SITREP preparation and transmission. Finally, as the functional flow 

continues, computer software would ask the commander if he wants to arm the chosen 

weapon. Then the commander can fire the weapon with a single button press (no change 

from the current scheme).  To end the sequence, the commander would get considerable 

aid in preparing and transmitting the SITREP, a big change from the current system.  Of 

course, the entire sequence feeds back on itself and repeats, as dictated by the operational 

situation. 

There are four dashed arrows in the proposed human-automation scheme that 

require some explanation.  For the two decisions at LOA-7, the proposed interface would 

entail the computer making a recommendation to the vehicle commander for a yes-or-no 

decision.  If the human accepts the recommendation, the next task occurs. However, for 

these two decision tasks, if the commander rejects the recommendation, then the scheme 

reverts to LOA-1, the same as the current scheme.   For the task of arming the chosen 

weapon, a similar scheme results. If the vehicle commander decides to reject (or 

override) the arming of the weapon, then the interaction reverts to LOA-1.   Lastly, the 

computer will prepare a SITREP based on available data and transmit automatically 

unless the commander rejects (or overrides) the preparation/transmission task, causing a 

reversion to LOA-1. 

The white boxes at the bottom of each of the five stages in Figure 11 depict basic 

pieces of information about what might be displayed to the vehicle commander at that 

stage of the functional flow.  In the Detection stage, the commander will probably need to 

see the proper symbology of all targets, the status of his vehicle’s sensors, and status of 

the common operational picture (COP), common tactical picture (CTP), and any 

communications links to the network. In the Identification/Track tasks, the commander 

will likely need to have further information about the target, such as location, bearing, 

speed, even altitude. Information for any of these stages may come from the vehicles own 

sensors, from the COP, or over the network.  In the COA Development stage, the 

commander will need to see the possible COAs, depending on the LOA used.  In a slight 

shift, the white boxes below the Engagement and Shoot/Report tasks each delineate 
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exactly what decisions have to be made, and what actions must be carried out. These 

decisions and actions can be accomplished by the soldier-automation team. 

 

C. APPLICATION OF MODEL TO LITTORAL COMBAT SHIP 
The example detailed in the previous section is for only one function of the 

common crew station for the MGV fleet.  In an attempt to provide the reader with another 

example of how this process might be carried out in another domain, Appendix B of this 

thesis contains an example of the Parasuraman et al. (2000) model of human-automation 

interface applied to the US Navy’s Littoral Combat Ship.  

The paper included in the Appendix was developed as a conceptual project for a 

course in Systems Engineering and Integration at the Naval Postgraduate.  The paper was 

published in the proceedings of the 2005 Human Systems Integration Symposium (see 

Kennedy, Thomas, & Green, 2005).  

 

D. EVALUATIVE CRITERIA 
Borrowing once again from Parasuraman, Sheridan, and Wickens (2000), any 

particular “level of automation should be evaluated by examining its associated human 

performance consequences. However, human performance is not the only important 

factor. Secondary evaluative criteria include automation reliability and the costs of 

decision/action consequences” (p. 289), though others may include ease of systems 

integration, efficiency/safety tradeoffs, issues of operators, and more.  “These should be 

applied to evaluate the feasibility and appropriateness of particular levels of automation” 

(p.289), done in an iterative process. They emphasize, however, that the model should not 

be treated as a static formula or as a prescription that decrees a particular type or level of 

automation. Rather, when considered in combination with primary and secondary 

evaluative criteria, the model they provided, and expanded in this thesis, “can provide 

principled guidelines for automation design” (p. 289).  

1. Primary Criteria 

Over the past 25 years, researchers have found that automation can have both 

beneficial and negative effects on human performance. There are four main human 
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performance areas recommended by Parasuraman et al. (2000) as primary evaluative 

criteria: mental workload (MWL), SA, complacency, and skill degradation.   Evidence 

suggests that well-designed information automation can change MWL to a level that is 

appropriate for the systems tasks being performed. However, “clumsy” automation can 

lead to increasing workload (2000). As will be discussed below, MWL can be modeled 

during system design to assess if it is reasonable throughout system functional flow. 

Besides unbalanced MWL, automation can incur human performance costs in the 

other three criteria suggested. Situation awareness can be negatively affected when the 

operators loses “awareness of the system and certain dynamic features of the work 

environment” (2000, p. 291). If the MGV automation scheme is highly but not perfectly 

reliable in executing the major decision choices, “then the operators may not monitor the 

automation and its information sources and hence fail to detect the occasional times when 

then automation fails” (2000, p. 291) or is wrong. Complacency is greatest in high MWL 

setting when the operator is engaged in multiple tasks. Third, skill degradation can 

certainly occur over time if the system decisions are routinely carried out by the 

automation. “These potential costs—reduced situation awareness, complacency, and skill 

degradation—collectively demonstrate that high-level automation can lead to operators 

exhibiting out-of-the-loop unfamiliarity. All three sources of vulnerability may pose a 

threat to safety in the system failure” (2000, p. 291). The MGV automation design must 

demonstrate that potential human performance costs, along with unbalanced MWL, do 

not occur. “By considering these human performance consequences, the relative merits of 

a specific level of automation can be determined” (2000, p. 291). 

2. Secondary Criteria 
Secondary evaluative criteria can include automation reliability and the cost of 

decision and action outcomes. Reliability is typically defined in probabilistic terms, such 

as a reliability of .997 or a mean time to failure of 10,000 hours. In addition, “failures 

may occur not because of a predictable (in a statistical sense) malfunction in software or 

hardware, but because the assumptions that are modeled in the automation by the 

designer are not met in a given operational situation” (2000, p.292). The reliability of 

automation also influences human trust, possibly undermining potential system 
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performance benefits when the automation is underused or disabled. In addition to 

reliability, “assessing the appropriate level of automation for decisions requires additional 

consideration of the costs associated with decision and action outcomes” (2000, p. 292; 

see also Lee and See, 2004). 
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IV. THE HUMAN-AUTOMATION INTERFACE MODEL IN 
ACTION: A QUANTITATIVE IMPLEMENTATION VIA IMPRINT 

A. NEED FOR QUANTITATIVE MODELS 
Parasuraman et al. (2000) correctly argue for the primary evaluative criteria as 

part of the design process for a human-automation interaction scheme.  As discussed in 

Chapter II of this thesis, Parasuraman (2000) also argued for the development of 

quantitative models that could inform the design of human-automation interaction, 

pointing out several computational and formal models of human interaction with 

automation.    

This thesis implemented the qualitative model applied to the MGV (per Chapter 

III) via a computational analysis using task-network modeling and Monte Carlo 

simulation from a software called IMPRINT (see below for details).   This demonstration 

is a way to quantitatively predict human task-loading attempts to evaluate the primary 

criterion of mental workload.   There is one example in the literature from Parasuraman et 

al. (2005) where a automation scheme has been modeled via a computational task-

network model. In the study, the research team investigated the effects of a delegation-

type interface on human supervision of multiple unmanned vehicles. As part of the 

experimentation program, they conducted analysis via WinCrew to carry out a mental 

workload prediction (personal communication, Dr. Hiroshi Furukawa, 20 Sep 05).  

WinCrew is a precursor to the program MicroSAINT, which is the heart of ARL/HRED’s 

IMPRINT software.   The Parasuraman et al. (2005) paper provided the inspiration to 

demonstrate the proposed MGV human-automation guidelines in IMPRINT. 

 

B. IMPROVED PERFORMANCE RESEARCH AND INTEGRATION TOOL 
(IMPRINT) 

IMPRINT is a stochastic network-modeling tool designed to help assess the 

interaction of soldier and system performance from concept and design through field 

testing and system upgrades. An important feature of IMPRINT is that it helps 

researchers and designers evaluate operator and crew mental workload while testing 
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alternate system-crew function allocations. The amount of mental workload that is 

required to use a system has a significant effect on human performance within the 

system. IMPRINT gives system designers the information they need to predict how 

changes in design can affect overall system performance. Since FCS is still early in the 

design phase, IMPRINT is a very suitable tool to use (Mitchell, Samms, Henthorn, & 

Wojciechowski, 2003; Mitchell, 2005).  

One major function of IMPRINT, via task-network modeling, is to predict 

operator task-loading using cognitive resources (visual, auditory, cognitive, motor, and 

speech) and Monte Carlo simulation.  This provides quantitative values for total 

momentary workload based on the estimates of cognitive resources provided by the 

analyst.  The IMPRINT methodology has a long history in the Army, originated during 

the early days of the LHX program as discussed in Chapter II. Without a doubt, the 

accuracy and precision of the modeling results depend on the skill and experience of the 

analyst (as they say, Garbage In—Garbage Out). However, it is a well accepted modeling 

methodology in use by multiple Army (and DoD) programs. 

The task-network model in IMPRINT is generally run for a set period of time; 

anywhere from one minute to several hours, depending on the needs of the analyst.  The 

models generated for this thesis were set to run for 60 minutes. To run the simulation for 

the set time, the analyst provides a random number seed to the program, an integer from 

1-100,000. In effect, the random number seeds simulate the variation that would normally 

be provided by different human subjects.  IMPRINT provides a host of numerical results 

straight to Microsoft Excel for further scrutiny.  Chief among these is the total 

momentary workload score calculated each time a tasks begins or ends.  The advanced 

workload feature of IMPRINT used in this analysis calculated workload based on the 

cognitive resources being used by the operator, and incorporates the fact that multiple 

tasks are being performed simultaneously. 

Previous technical reports and publications from ARL/HRED using IMPRINT 

have incorporated a workload ‘threshold’ value where the operator was considered to be 

a state of ‘high’ or ‘very high’ workload.  This concept of a workload threshold goes 

back to the original LHX analysis from McCracken and Aldrich (1984).  The IMPRINT 
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workload value of 60 has been used by a consensus of workload modeling SMEs to 

represent the ‘high’ threshold, while the workload value of 100 is equivalent to the ‘very 

high’ threshold (Mitchell, Samms, Henthorn, & Wojciechowski, 2003; Mitchell, 2005).  

Previous technical analysis by IMPRINT modelers for the FCS MGV fleet has 

yielded five metrics of use in the IMPRINT analysis: 1) maximum momentary workload 

calculated during the data run, 2) number of times in the simulation run that workload 

exceeded 60 (high), 3) number of times that workload exceeded 100 (very high), 4) the 

percentage of time spent over the high threshold, and 5) the percentage of time spent over 

the very high threshold.  These five metrics are used in this thesis. 

 

C. MGV COMMON FUNCTION MODEL (CFM) 
IMPRINT analysts with ARL/HRED, the FCS LSI (Boeing, SAIC) and the V.I. 

team (BAE and GDLS) have developed a CFM based on the CCS FA/TA discussed 

earlier.  The CFM model is generally approved by all of the analysts involved in the 

project, and has been through the scrutiny of multiple SMEs to ensure it is a valid 

representation of the task-network and functional flow anticipated for crews in the CCS 

of the MGV fleet.  This model, provided by analysts from BAE to the author, acts as the 

baseline for the task-loading analysis in this thesis. 

Using the proposed scheme in Figure 13, the Local Defense function (CFM5) of 

the baseline was modified to reflect the new and resulting human-automation scheme by 

‘dialing in’ selected levels of automation for selected tasks. The exact task-network 

changes are not reproduced here, but Figure 14 is provided to give the reader an 

understanding of how the Local Defense task-network in the CFM was modified to 

account for the proposed human-automation interaction.  The full task-network model is 

available electronically from the author on request.  
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Figure 14.   Local Defense (CFM Function 5.0) from Figure 12, modified to reflect the 

types of levels of automation applied as per Figure 13.  
 

While IMPRINT is a great tool for early analysis, it cannot fully capture the 

nuances of the proposed human-automation interface in the estimates of cognitive 

resources, task completion times, etc.  IMPRINT is limited in its ability to fully model the 

interaction and subsequent operator human, but its results do provide some bounds and 

guidance on the real problem of crew size and paired human-automation behavior in the 

MGV fleet. 
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To collect baseline data for the analysis, the simulation was run for 60 minutes.  A 

set of random number seeds were generated in Microsoft Excel for use in the random 

number seed part of the simulation.   After inputting the random number seed and 

executing the baseline CFM model, it took approximately 2-5 minutes to complete the 

simulation and generate the data into Excel. Then another random seed was entered and 

the simulation run again, continuing this process a dozen times to get a set of usable data 

that the author felt comfortable with. 

As with the baseline CFM model, simulation was run for 60 minutes to permit 

side-by-side comparison of the five workload metrics.  However, completing the data 

runs for the modified CFM was a much longer, more involved process.  First attempts at 

modifying the CFM involved breaking each baseline tasks into two or more tasks, which 

were carried out by human and automation in parallel in the task network. The subtasks 

assigned to automation were carried out without error in no time and with no workload 

channel values.  The subtasks assigned to the human were given modified workload 

channel values based on the nature of the resulting interaction with automation. This 

process of assigning new tasks and workload values carries as much ‘art’ as it does 

‘science’. It is entirely up to the modeler, with his experience and expertise, to guide the 

process.  After some early data runs, the author realized the method of having the 

subtasks in parallel was causing unintelligible results: all of the workload results were in 

the many, many times in excess of the baseline CFM scores, indicating a serious problem 

with the veracity of the model.  

Realizing this was an error, the author then shifted to running the resulting 

subtasks in serial. Repeated modifications of the model and about an additional 60 data 

runs were necessary before IMPRINT yielded intelligible results.  Further modifications 

to the task-network eventually were necessary to capture the some of the intricacies of the 

proposed human-automation interaction and predicted task-loading (i.e., MWL, a key 

component of human performance). All told, the author completed over 250 data runs.  

Once the author was comfortable with the execution of the modified CFM, the 

author ran another set of eleven data runs using the same random number seeds as the 

baseline analysis, and then tabulated the scores for five chosen metrics.  In effect, using 
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the same random seeds simulated using the same human subjects for both the baseline 

and modified CFM. This is a key variance reduction technique, and allowed a side-by-

side comparison of the baseline CFM versus the modified CFM. 

  

D. PLAN FOR QUANTITATIVE ANALYSIS 
Given the baseline-modification plan of action, the plan for data analysis was 

straightforward.  In this case, the baseline CFM and the proposed modifications represent 

a classic ‘before-after’ comparison, and the paired t-test is appropriate.  The data for the 

five metrics collected above (maximum workload, number of time over 60 and 100, 

percent of time over 60 and 100) were compared via the paired t-test.  The data certainly 

displayed interval/ratio scale properties. The assumption of normality in the paired 

differences was reasonable for three of the metrics, but somewhat weak for two others.  

Thus, the five before-after metrics were also compared via the equivalent nonparametric 

inferential statistic, the Wilcoxon Signed Ranks Test (WSRT).  The conclusions were the 

same regardless of the test conducted.  
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V. RESULTS OF QUANTITATIVE ANALYSIS VIA IMPRINT 

Eleven data runs were conducted each for the baseline MGV CFM as well as the 

modified CFM with the proposed human-automation interface scheme out of Figure 11.  

Table 8 shows the tabulated results from the baseline CFM, while Table 9 shows the 

tabulated results for the modified CFM.  Each simulation run was conducted eleven times 

with the common random number seeds.  The sample mean and standard deviation are at 

the bottom of each table to gain an understanding of the variability in the data. 

 

Table 8. Analysis of Baseline MGV CFM 

Run 

Maximum 
Workload 

Number of Times 
Workload 

Exceeds (>) 60 

Number of 
Times Workload 
Exceeds (>) 100 

Percent of Time 
Over High 

Threshold (> 60) 

Percent of Time 
Over Very High 

Threshold (> 100) 
1 297.26 792 401 46.22% 21.44% 
2 428.76 751 449 49.15% 24.72% 
3 451.88 1055 723 64.58% 39.36% 
4 589.65 2614 2254 85.94% 72.65% 
5 1100.08 3381 3200 87.03% 80.25% 
6 412.11 847 469 49.02% 24.15% 
7 213.33 627 233 35.32% 11.43% 
8 353.92 1222 820 67.24% 40.75% 
9 586.23 926 588 52.84% 31.63% 

10 284.02 581 232 34.01% 11.68% 
11 431.67 812 514 49.22% 28.48% 

x̄  468.08 1237 898 56.41% 35.14% 
s 245.70 941 981 18.57% 23.26% 

  

Comparison of the five metrics via paired t-test yielded statistically significant 

differences in four of the five metrics (Table 9).  The number of times workload exceeded 

60 and 100, and the percentage of time workload was over 60 and 100, were significantly 

lower  in the modified CFM than in the baseline CFM. The difference in maximum 

workload was not significant. 
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Table 9. Analysis Results of Proposed Human-Automation Interface Scheme 
Applied to MGV CFM 

Run 

Maximum 
Workload 

Number of Times 
Workload 

Exceeds (>) 60 

Number of Times 
Workload 

Exceeds (>) 100 

Percent of Time 
Over High 

Threshold (> 
60) 

Percent of Time 
Over Very High 

Threshold (> 100) 

1 270.14 538 231 34.06% 11.79% 
2 382.25 680 372 31.02% 13.34% 
3 675.88 924 585 49.16% 28.06% 
4 444.44 997 655 57.60% 38.81% 
5 808.38 2568 2311 85.32% 75.89% 
6 497.86 1170 767 65.72% 38.38% 
7 213.33 603 236 33.45% 10.91% 
8 420.67 803 422 44.47% 21.06% 
9 208.5 479 215 30.21% 11.61% 

10 262.82 487 218 27.83% 10.39% 
11 216.63 485 201 27.05% 9.98% 

x̄  400.08 885 565 44.17% 24.57% 
s 413.08 920 598 45.18% 25.84% 

 

Table 10. Results of Comparison by Paired t-test 

Metric 
Mean 

Difference SE Mean t df p-value 

Maximum Workload 68.00 53.05 1.282 10 .229 
Number of Times > 60 352.182 153.57 2.293 10 .045 
Number of Times > 100 333.636 155.57 2.145 10 .058 
Percent of Time > 60 12.24% 3.95% 3.102 10 .011 
Percent of Time > 100 10.57% 3.84% 2.756 10 .020 

 

Since the assumption of normality in the paired differences was weak in two 

cases, comparison of five metrics was also conducted via the WSRT (Table 10).  The 

conclusions are the same as the paired t-test results. 

 

Table 11. Results of Comparison by Wilcoxon Signed Ranks Test 
Metric T p-value 

Maximum Workload 1.282 .285 
Number of Times > 60 2.293 .016 
Number of Times > 100 2.145 .021 
Percent of Time > 60 3.102 .016 
Percent of Time > 100 2.756 .021 
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VI. DISCUSSION 

A. DO NOT OVEREMPHASIZE THE STASTICAL RESULTS 
The goal of this thesis was to provide a process for developing a top-down, 

overarching approach to explicitly define and design the interaction between proposed 

automation schemes and the human crew. It shows an approach to developing a 

functional architecture between human and automation for the total system. In effect, it 

constitutes the design methodology and automation philosophy, as espoused by Rouse et 

al. (1987). While it was developed for engineers and scientists at BAE and the V.I., the 

process can be expanded to a wide array of domains (aviation, space, maritime, ground 

transportation, manufacturing, etc.). Chapter III covered the development of the 

qualitative to drive the design process. It is a logical approach to function decomposition 

with a reasonable paradigm to use to conceptualize the shared roles between human and 

automation. With this tool in hand, the exact role of the Soldier operators as the central 

component of the vehicle systems can be more clearly understood well before the fielding 

of the vehicle systems.  

The results show that it is possible to gain a reduction in operators task-loading, 

but is not inevitable.  Using IMPRINT, we associate task-loading with the construct of 

mental workload, an idea that cannot be easily measured under any circumstances.  The 

research community generally accepts MWL as a key facet of overall human 

performance, but simply lowering MWL will not necessarily improve human (and thus 

system) performance. Simply adding more automation will not automatically decrease 

task-loading and mental workload.  The literature review in this thesis should convince 

the reader of these assertions.   

The thesis demonstrated that the proposed model can be implemented in 

IMPRINT as a way to quantify the effects of the proposed human-automation interface 

scheme on task-loading predictions (and thus mental workload). Only the Local Defense 

function of the CFM was quantitatively modeled, but it helps us gain some understanding 

of the human performance ramifications of the proposed model, as per the primary 
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evaluative criteria put forth by Parasuraman et al. (2000). In this way, we can take a step 

towards reducing workload peaks and improving human performance.  

A primary conclusion of the thesis is that by applying the proposed human-

automation interface model to other functions in the vehicles, both in the CFM and in 

vehicle-specific function, it is possible to make further reductions in operators task-

loading, and this MWL.  This will also support attempts to achieve the current ORD 

requirement for a vehicle operable by a 2-soldier crew.  This work is intended to 

contribute to the effort to ensure that vehicle systems in the MGV fleet can accomplish 

the overall unit mission and the FCS’ mission as an acquisition program. Even if we 

eventually conclude that an additional crewmember is required on the various MGV 

vehicles, the same qualitative and quantitative models can be used to gain a clear 

understanding of the human-automation interaction as well as the some of the human 

performance ramifications in terms of mental workload. 

Caution should be taken not to overemphasize the results of the paired 

comparisons in the Results.   Again, the goal of the thesis was to demonstrate how the 

proposed interface scheme might be quantitatively modeled.  There are many 

knowledgeable IMPRINT practitioners who can improve on the steps taken in this thesis 

to quantify the possible human performance ramifications. Echoing previous IMPRINT 

technical reports and papers (Mitchell, 20005; Mitchell et al, 2003), this type of 

quantitative analysis can direct the engineer and researcher towards areas of task demand 

in new, manned systems that need improvements. 

Another key point to make about the possible reductions in task-loading (and 

thus, MWL) is to understand that they are possible if, and only if it is possible to design 

the automation to the levels recommended in the proposed model!  If the proposed 

automation level is not technically feasible, or costs too much to achieve, then you may 

not be able to achieve the predicted operator task-loading predictions.  Should engineers 

and designers be forced to ‘dial down’ the LOA for a function, modifying the IMPRINT 

analysis is a possible way to understand the implications on task-loading, and thus 

possible ramifications for human performance. 
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There is a final note of caution in interpreting the results.  In the midst of making 

the 250+ data runs in IMPRINT with the different random number seeds, there were 

several cases of extreme outliers in terms of calculated task-load, with maximum 

workload scores reaching in excess of 2000 on one or two occasions.  It merely goes to 

show that IMPRINT, while a wonderful tool for analysis of systems early in the design 

process, has inherent variability and that multiple runs with common random number 

seeds are necessary achieve accurate estimates of workload. 

The author is firmly convinced that if he took the time to replicate the analysis 

over 40-50 data runs (with common random number seeds to reduce variability and 

induce the paired t-test), that the results would yield at least 3-5 severe outliers in terms 

of workload score.  Post-hoc analysis of some outlier cases shows that the simulated 

vehicle commander was trying to accomplish unrealistic number of tasks simultaneously.  

In some instances, not only was the commander conducting various tasks in the Local 

Defense function, but the simulation might have the same person monitoring the driver, 

talking on the intercom, typing a digital message, and more.  This artificially drives the 

momentary workload score into unrealistic totals. In real operations, the vehicle 

commander would have shed and/or prioritize tasks in order to bring his workload under 

some semblance of control. To paraphrase legendary Frederick Taylor, the ‘father of 

scientific management’, he would be required to have too many hands, too many feet, 

and too many heads (Taylor, 1957). 

Post-hoc analysis of other outlier cases reveals another situation that IMPRINT 

analysts must be wary of.  This thesis made modification to only the Local Defense part 

of the CFM, leaving the remaining functions unchanged.  There was one case during 

early data runs where a certain random number seed simply never called upon the Local 

Defense function, even after 60 minutes of simulated action.  In that case, the total 

workload metrics became severe outliers because the simulation never called on the 

functions where automation had been ‘dialed in’ to help the human operator!  In that 

case, the random number seed and its results were discarded.  The prudent practitioner 

will not make conclusions from only a single data run, but rather after at least 10 data 

runs to gain some idea of the variability involved the simulation.  
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B. WHAT IMPRINT DOES NOT ACCOUNT FOR 
The results of this thesis should not be construed as an argument that the MGV 

fleet can be operated with only two soldiers. Nowhere does this thesis make that 

argument or conclusion.  While the thesis has been able to show how the application of 

the qualitative human-automation interaction model can bring a possible reduction in 

operator task-loading due to purposely designed automation features, it would be a 

serious (and unfounded) leap of logic to conclude that it can ensure adequate human 

performance by a two-soldier crew.   

The CFM analysis via IMPRINT concentrates wholly on combat operations in the 

MGV common crew station, arguably the most intense and cognitively difficult mission 

segment of the MGV fleet.  However, the IMPRINT models do not account for a host of 

other functions that the MGV fleet and its crew members will take on outside of combat 

operations that can be very demanding, both mentally and physically (personal 

communication, John Lockett, 27 September 2005).  It would be careless not to point out 

that the models, in their present state, do not even attempt to account for activities such as 

crew rest (sleep), performance under fatigue, environmental taxons such as heat, cold, 

and/or chemical-biological warfare environment.  The models do not account for physical 

labor required in certain resupply and logistics operations, where an extra crew member 

may be invaluable in loading, unloading, or cross-loading of ammunition, food, water, 

and other supplies.  Lastly, the model, running only 60 minutes, does not attempt to 

understand how crews would perform and rest under long-tern operations, such as the 72-

hour mission profile dictated in the FCS O&O Plan and ORD. 

 

C. HSI (MANPRINT) DOMAINS – IMPLICATIONS AND TRADEOFFS 
The proposed human-automation interface scheme for the MGV fleet can 

contribute to multiple HSI (MANPRINT) domains that will require trade-off analysis to 

resolve.  We can anticipate impacts to nearly all of the domains, including Manpower, 

Personnel, Training, Human Factors Engineering, System Safety, and Soldier 

Survivability (see US DoDI 5000.2, pp. 32-33, and US Army Regulation 602-2 for 

details of the HSI/MANPRINT domains and their definitions). 
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1. Manpower and Personnel 
The trade-off between the crew-size requirements in the ORD and overall crew 

performance was the prime initiator of this thesis.  Simply writing and approving a 

requirement for crew of set size is not enough.  The crew-size requirement must be 

balanced with requirements in human factors engineering and overall human 

performance.  A primary conclusion of the thesis is that by applying the proposed human-

automation interface model to other functions in the vehicles, both in the CFM and in 

vehicle-specific function, it is possible to make further reductions in operators task-

loading, and MWL.  This will also support attempts to achieve the current ORD 

requirement for a vehicle operable by a 2-soldier crew.  This work is intended to 

contribute to the effort to ensure that vehicle systems in the MGV fleet can accomplish 

the overall unit mission and the FCS’ mission as an acquisition program. 

However, further analysis using the Target Audience Description (TAD) may 

reveal that not just any soldier will be able to man a vehicle in the MGV fleet.  It may 

prove much more difficult for a brand new soldier or lower-category soldier to efficiently 

and effectively operate these highly advanced crew stations across the MGV fleet.   

Rather, it will a soldier with more experience or more intelligence (i.e. higher test scores) 

to operate in the crew station with advanced automation schemes. 

An additional consideration is the range of military occupational specialties 

(MOS; see US Army Pamphlet 611-21) that will man the CCS of different vehicles in the 

MGV fleet.  Infantry soldiers will be in the ICV, tankers in the MCS, medics in the MV, 

artillery soldiers in the NLOS-Cannon, various logistics and maintenance in the FRMV, 

etc.  Each of these MOS has unique requirements for physical strength, medical status, 

and intelligence/aptitude. Yet, they will all be manning a similar CCS that may not take 

into account the differing personnel requirements of all the MOS called to man the crew 

station in the O&O plan. 
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2. Training 
Regardless of final design of the human-automation interaction scheme in the 

MGV fleet, it will be necessary to acquaint soldiers in training as to the exact nature of 

the resulting interaction between themselves as operators and the software/hardware 

automation.   The extensive literature base available on human-automation performance 

makes it quite clear that humans and failures often occur when the operators simply do 

not understand what the automation is doing, best expressed when humans start asking: 

What is it doing now? What will it do next? Why did it do this?” (see Woods & Sarter, 

1998) 

As with the possible need for a higher category of soldier to man the MGV, the 

requisite amount of training in the CCS will likely increase.  This is especially true if 

high levels of automation are introduced in some functions.  The soldier-operators must 

be able to clearly understand what any automation scheme is doing ‘behind the scenes’, 

so to speak.  They must have a succinct and accurate ‘mental model’ of the overall 

operation so that they are able to anticipate, troubleshoot, and even take over from the 

automated system when necessary.  Simply believing that certain tasks and functions 

work ‘like magic’ is a recipe for human error and system failure, thus a degradation in 

system performance. 

A final item in training is the issue of soldier trust in automation.  As a crewman 

and part of this total vehicle system, the soldier-operator’s trust in the automation is 

dependent on his familiarity with the automation scheme.  This could demand longer 

training periods (in or out of the schoolhouse) and high fidelity training aids, devices, 

simulators, and simulations (TADSS).  There are also accounts of operator misuse of 

automation, where excessive trust can lead operators to rely uncritically on automation 

without recognizing its limitations or fail to monitor the automation’s behavior 

(Parasuraman & Riley, 1997; see also Parasuraman & Miller, 2004; Lee & See, 2004). 

The increased training demands may be alleviated through well-conceived, 

human-centric embedded training, performance support systems, and job performance 

aids. 
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3. Human Factors Engineering 
This thesis has largely been a human factors engineering effort, but with 

definitive effects on other HSI/MANPRINT domains. The proposed qualitative model 

has a goal of not only defining the human role in the overall system, but also in keeping 

MWL at an acceptable level during the entire functional flow.  It fosters improved human 

performance as part of the total vehicle system, in turn enhancing system effectiveness 

and suitability.  IMPRINT is a good way to quantify the effects of task-loading, and is in 

extensive use already in the MGV program.  

4. System Safety and Soldier Survivability 
The potential impacts of this thesis are similar for the System Safety and Soldier 

Survivability (SSv) domains, though probably less effect. System safety experts normally 

conduct extensive Failure Modes Effects Analysis (FMEA) and Failure Modes Effect 

Criticality Analysis (FMECA) concurrently as a system moves from Milestone B towards 

Milestone C in the DoD systems acquisition process.  The FMEA/FMECA efforts should 

be widened slightly to look at the interaction between hardware/software automation and 

the soldier-operators.  Ignoring the interaction causes the FMEA/FMECA efforts to miss 

possible key points of system failure that may not be attributable directly to software, 

hardware, or human. 

The impact on SSv, similar to FMEA/FMECA, lies along the analysis of potential 

fratricide as a result of a breakdown or misinterpretation of the human-automation 

interaction scheme in the vehicles.  Recommended automation levels allow sensors and 

software (automation) to be much more involved in the acquisition, analysis of target 

information than in the past, targets that may be friendly.  Likewise, automation in the 

form of decision/action support may err and recommend action against a friendly target 

based on automated target assessment. SSv assessments using the US Army Research 

Lab’s PAL (Parameter Assessment List) should include checks on any possible fratricide 

potential caused by unexpected (or incorrect) human-automation interaction. 
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D. FURTHER ACTIONS 
Parasuraman et al. (2000) proposed both primary and secondary evaluative 

criteria that provide a good road map of further actions as the design of the MGV crew 

stations continue.   In the primary evaluative criteria, this thesis was wholly focused on 

the MWL aspect, analytically predicting task-loading as a result of the crew station and it 

proposed human-automation interaction.  Once simulations and prototypes are available 

for user demonstrations, it will prove useful to empirically evaluate mental workload via 

a variety of means (physiological, primary task, secondary tasks, or subjective rankings; 

see Gawron, 2000), and then look at the relationship between MWL and actual crew 

performance. 

Parasuraman et al. (2000) emphasize the importance of testing and evaluating 

preliminary choices of automation functionality. Iterative testing against the proposed 

primary and secondary evaluative criteria will establish the best automation levels for the 

system. Complacency, skill degradation, and the constructs of SA can be evaluated 

throughout the development testing and operational testing (DT/OT) schedules.   

Additionally, the proposed models in this thesis and the MGV crew stations are natural 

candidates for rapid prototyping and experimentation (see Moore, Kennedy, and Kern 

2003; Kennedy and Durbin, 2005 for examples). Use of these tools and techniques during 

the system design and development phase of the DoD acquisition process can be the 

primary ways to gather data on human performance (primary evaluative criteria). 

Finally, the entire FCS program is decisively moving from concept to reality.  

Further iterations of the systems engineering process will continue to further define and 

refine necessary the details of the MGV crew stations and the exact roles for soldiers as 

the operators and maintainers.  Human factors engineers, manpower and personnel 

specialists, training designers, and safety, health and survivability analysts will be needed 

to round out a design team with other engineers of various backgrounds (software, 

electronics, mechanics, etc.). User groups and SMEs will also be necessary to evaluate 

and refine the design as the system takes form. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

This thesis provides human factors engineers, systems engineers, designers, and 

developers a top-down, overarching approach that enables them to explicitly define and 

design the interaction between proposed automation schemes and the human crew.  In 

effect, it constitutes the design methodology and automation philosophy, as espoused by 

Rouse et al. (1987). A qualitative model was proposed to drive the functional architecture 

and human-automation interface scheme on the Army’s FCS manned vehicle fleet. The 

proposed model is applied to a portion of the functional flow of the MGV common crew 

station It is a logical approach to function decomposition with a reasonable paradigm to 

use to conceptualizing the shared roles between human and automation. With this tool in 

hand, the exact role of the Soldier operators as the central component of the vehicle 

systems can be more clearly understood before the fielding of the vehicle systems. The 

proposed model was then demonstrated quantitatively via a computational task-network 

modeling program (IMPRINT), to gain an understanding of the impacts on human task-

loading, and therefore workload and human performance. 

Judicious application of the proposed qualitative model, coupled with quantitative 

analysis of the task-loading effects via IMPRINT, can be continued for other functions in 

the various MGV crew stations. This will further provide a guide to defining the 

relationship between human and automation and the resulting human performance 

ramifications.  This is but one way (among several) to work toward the ORD requirement 

for a 2-soldier crew.  But, even if the 2-soldier crew requirement is relaxed, a coherent 

plan for automation will help to ensure soldier performance and system effectiveness. 

The focus of the model is to ensure that a reduced-crew can perform well enough (not 

optimally) to accomplish all of the functions and tasks asked of the total vehicle system.  

If we eventually conclude that an additional crewmember is required on the various 

MGV vehicles, the same qualitative and quantitative models can be used to gain a clear 

understanding of the human-automation interaction as well as the some of the human 

performance ramifications in terms of mental workload. 
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While this thesis focuses on ways to solve real technical issues in the FCS MGV 

fleet, the model and analytical processes proposed, or similar approaches, certainly are 

necessary in a wide array of complex systems in multiple domains (aviation, space, 

maritime, ground transportation, manufacturing, etc.). As a thorough literature review 

reveals, there are very few people thinking about an ‘automation philosophy’ to guide the 

complex interactions between humans and automation to ensure total system 

performance.  So while the proposals here were developed for the FCS MGV fleet, they 

are in no way limited to that particular application.  
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APPENDIX.  ADDITIONAL EXAMPLE OF THE MODEL IN 
ACTION – US NAVY’S LITTORAL COMBAT SHIP 

Included is the complete paper titled Developing a Human-Automation Interface 

Model of the Littoral Combat Ship’s Fire Control System.  It was published in the 

proceedings of the 2005 Human Systems Integration Symposium held 20-22 June 2005 in 

Arlington, VA. 

 



 76

Joshua S. Kennedy, Jeffrey A. Thomas, and John M. Green 
 

Developing a Human-Automation Interface Model 
of the Littoral Combat Ship’s Fire Control System 

 
ABSTRACT 

 
This paper outlines how Human Systems 
Integration (HSI) methodology was used to 
design a fire control system for the U.S. Navy 
Littoral Combat Ship (LCS) as an example, 
with an emphasis on reductions in manning. 
The design team’s original objective was to 
design a control system for the main gun that 
could be operated by one person or less.  
Mission analysis of the LCS and its weapons 
systems generated possibilities for manning 
reduction that extend well beyond the ship’s 
main gun. The team’s application of HSI 
methodology gave rise to a ‘fire control 
system’ where the operator-automation team 
could accomplish the ship’s surface warfare as 
well as air self-defense missions with only one 
sailor.  The team applied a model of human 
interaction-with-automation to outline the 
design methodology (Parasuraman, Sheridan, 
& Wickens, 2000).  This approach also 
delineates several tradeoffs among HSI 
domains to be made in further iterations of the 
HSI process. In order to ensure optimal system 
performance, it is critical to implement HSI 
methodology for all complex systems 
requiring a human interface. 

 
INTRODUCTION 

 
In support of its Sea Power 21 strategic vision, 
the U.S. Navy is developing the Littoral 
Combat Ship (LCS) to deliver focused mission 
capabilities to enable joint and combined 
forces the capability of defeating the 
conventional and asymmetric access-denial 
threat in the littoral area (U.S. Navy PEO 
Ships, 2004).  

 
The littoral area of control extends from the 
open ocean, to the shore, and to those inland 
areas that can be attacked, supported and 

defended directly from the sea. The LCS will 
defeat enemy littoral defenses including 
mines, fast swarming small boats, and 
submarines, ultimately ensuring maritime 
access in any environment (see figure 1). 
“Working together as part of a netted 
distributed force, this future fleet will project 
power forward and enable naval and joint task 
force commanders to dominate the littoral 
battlespace” (US Navy, 2004). 

 

 
Figure 1  Artist Conception of Littoral 
Battlespace 

  
Mission Analysis 
This project was a course requirement for 
SI4001 (Systems Integration and Architecture) 
as part of the new HSI Masters of Applied 
Science program at the Naval Postgraduate 
School (NPS), CA. The professor is the third 
author.  In the beginning of the course, he 
issued this directive: “Design a control system 
for the LCS guns that can be operated by one 
person or less”.  Our team understood this to 
be a primitive need statement that supports 
minimal manning and provided a starting 
point for the analysis process. 

 
At first glance, we were tempted to use the 
traditional approach of applying only human 
factors engineering design concepts to design 
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a computer display for the LCS gun system. 
However, since it is closely related to systems 
engineering (SE), the HSI process must begin 
with a thorough understanding of the U.S. 
Department of Defense and the U.S. Navy’s 
needed capabilities (requirements analysis). 
Three Navy lieutenants and four Army 
civilians conducted background research into 
the LCS and various gun systems to identify 
capability gaps between legacy gun systems 
and the intended capabilities of the LCS gun 
system. We derived an accepted gun system 
designed from the user’s perspective to enable 
and enhance the LCS capabilities in the 
littoral. 

 
The LCS Flight 0 Interim Requirements 
Document (IRD) was the primary reference 
document (US Navy 2003). The LCS focused 
mission capabilities are mine warfare (MIW), 
littoral surface warfare (SUW) against small, 
highly armed boats, and littoral anti-submarine 
warfare (ASW). Its inherent mission 
capabilities include joint littoral mobility, 
maritime interdiction/interception operations, 
homeland defense, and others. In addition, to 
support its focused and inherent mission area, 
it must also have core capabilities for air self 
defense (ASD), survivability, aviation support, 
logistics, and others. Based on the IRD, the 
gun control system for the LCS must help 
enable the LCS to achieve these capabilities—
and do it with one operator or less. 

 
Going from a “Gun Control System” to 
a “Fire Control System” 

 
Mission analysis of the LCS and its weapons 
systems generated possibilities for manning 
reduction that extended well beyond the ship’s 
main gun. The team’s application of HSI 
methodology gave rise to a ‘fire control 
system’ where the operator-automation team 
could accomplish the ship’s surface warfare as 
well as air self-defense missions with only one 
sailor.  The system is made up of not only the 
hardware and software, but also the humans 
that must operate, maintain, and support it. 
The human element of the system will 

ultimately affect its operational effectiveness 
and suitability.  

 
After gaining an understanding of the LCS 
missions and what the gun control system 
must support, we began to ask some questions: 

 
Q1) What exactly are the targets of the gun 
system?  
A1) The naval officers on the team said it 
would be the surface threat of multiple small 
boats. 
Q2) Will the gun system ever shoot at an 
aerial threat, like a threat aircraft or an anti-
ship cruise missile (ASCM) as per the ASD 
capability?   
A2) No. Other systems on the LCS address the 
aerial threat. For example, the MK 15 Phalanx 
Close-In Weapons System (CIWS) can be 
used against ASCM, the SM-2 Standard 
Missile SM-2 can be used against threat 
aircraft, and the RIM-7 Sea Sparrow missile 
against either.  

 
Q3) Will the CIWS, SM-2, or RIM-7 ever be 
used against surface threats?  
A3) No, they are strictly for ASD. 

 
Q4) What does the gun system do during 
MIW and ASW? 
A4) Nothing, there are other weapons systems 
used for those missions. 

 
So then we asked ourselves the crucial 
question: Can we have one operator control 
the weapons for both SUW and ASD? At this 
point in the process, we hatched the idea to 
band together these mission capabilities under 
a single operator. Of course, this concept is 
easier conceived than realized, so the rest of 
this paper portrays our application of HSI 
methodologies while working on this idea. 

 
Consequently, our proposal is more than a gun 
system—it is an integration of the SUW and 
ASD weapons systems into a fire control 
system (FCS) that can be run by one sailor. 
This FCS will integrate the gun system to 
support the SUW focused mission capability, 
plus any combination of CIWS, SM-2 and 
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RIM7 to help achieve the ASD capability 
(both ASCM and threat aircraft. Figure 2 
shows a graphic representation of our 
proposal. 

 
The mission statement of this fire control 
system will be to enable the LCS to effectively 
deliver primary and inherent mission 
capabilities in the littoral. It shall be operated 
by one person or less. It shall integrate and use 
the common tactical picture (CTP) to detect, 
track, engage, and destroy targets.  Its primary 
objective will be to conduct SUW and ASD 
independently or as part of a carrier strike 
group (CSG) or expeditionary strike group 
(ESG). 

 
 

 
Figure 2. Proposed Fire Control System 

 
Assumptions 

 
To begin setting up a functional flow for the 
FCS and its automation, we had to make 
several assumptions.  First, any control system 
on the LCS will be based on the threat posture 
of the ship, typically determined by the ship’s 
commanding officer or higher authority.  To 
begin the design, we designated three postures 
similar to (in order of severity): WHITE, 
YELLOW, and RED.  The color codes are 
also used as air defense warnings by the U.S. 
Department of Defense (DoD) to denote 
degree of air raid probability. In our system, 
WHITE means attack by hostile forces is 
improbable, YELLOW means attack by 

hostile forces is probable, and RED means 
attack by hostile forces is imminent or is in 
progress.  This threat posture will determine 
the level of FCS automation in use, and 
represents the first time a human interfaces 
with the overall system. 

 
As a necessity to begin the functional flow, we 
also assumed high trust, due to reliable 
automation.  This assumption will be 
rigorously evaluated during its life cycle, but 
further design is very difficult without it.  

 
Lastly, we assume that a high threat 
environment equals a high mental workload 
environment. If there are multiple surface and 
aerial targets to detect, track, identify, and 
engage, then the operator’s mental workload 
(MWL) will be appreciably higher.  The ship 
will likely be at threat posture RED. 
Conversely, a low threat environment equals a 
low mental workload environment (i.e. threat 
posture WHITE). 

 
Functional Flow 

 
As shown in figure 3, the FCS functional flow 
has six major functions that are iteratively 
performed for each new contact: 

1. Search for contacts 
2. Detect 
3. Track 
4. Classify 
5. Resolve 
6. Shoot 

 
Most of these functions are self-explanatory, 
but two of them need further definition.  Step 
4, Classify, is where the FCS determines if the 
target is a threat or not.  Since the FCS is 
made up of hardware, software, and humans, 
this function may be carried out by any 
combination of these components, depending 
on the automation design. Step 5, Resolve, has 
a dual meaning.  In this stage, the system 
seeks to gain greater resolution on the target, 
acquiring more information to help decide 
whether to attack it or not. This stage is also 
about resolving to destroy or not. Classify and 
Resolve are functions where the system will 
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have to make multiple decisions prior to 
carrying out an action (Step 6, Shoot).  

 

 
Figure 3. FCS Functional Flow (Level 1)

 
Figures 4 and 5 show a more detailed 
functional flow, with multiple subfunctions 
under the six primary functions. 
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Figure 4.  FCS Functional Flow (Level 
2) 

 
HUMAN-IN-THE-LOOP 

 
We have mentioned the FCS’ automation 
several times, and that this automation must 
allow one operator to control weapons to 
support both the SUW and ASD missions. 
The critical question to be answered at this 
point is where and how the operator will 
interface with the automation in the 
functional flow of this system?  

To answer this question, we needed an 
operator-in-the-loop paradigm. 

 
We found such a paradigm in Parasuraman, 
Sheridan, and Wickens (2000), whose model 
is the foundation of our automation design 
process. Their model, for types and levels of 
automation, provides a framework for 
deciding what aspects of the system should 
be automated and to what extent. 
Appropriate selection of automation levels is 
important because “automation does not 
merely supplant but changes human activity 
and can impose new coordination demands 
on the human operator” (2000).  Automation 
can vary across a continuum of levels, from 
the lowest level of fully manual control to 
the highest level of full automation. Table 1 
shows a proposed 10-point scale, with 
higher levels representing increased 
autonomy of computer over human action 
(2000).  For example, at a low level 2, 
several options are provided to the human, 
but the system has no further say in which 
decision is chosen. At level 6, the system 
automation gives the human only a limited 
time to override before carrying out the 
decision. 
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Figure 5. FCS Functional Flow (Level 2) (continued) 

Table 1. Levels of Automation of 
Decision and Action Selection 
(Parasuraman et al, 2000) 

 
 

Parasuraman et al (2000) proposed that 
automation can be applied to four broad 
classes of functions as shown in Figure 6.  

 

 
Figure 6. Levels of Automation for 
independent functions of information 
acquisition, information analysis, 
decision selection, and action 
implementation. Examples of systems 
with different levels of automation 
across functional dimensions are also 
shown (Pararsuraman et al, 2000) 

 
Using their model, we developed an 
automation scheme for the FCS. In Figure 7, 
instead of presenting system alternatives for 

HIGH 10. The computer decides everything, acts 
autonomously, ignoring the human 

 9. Informs the human only if it, the 
computer, decides to 

 8. Informs the human only if asked 
 7. Executes automatically, then 

necessarily informs the human 
 6. Allows the human a restricted time to 

veto before automatic execution 
 5. Executes the suggestion if the human 

approves 
 4. Suggests one alternative 
 3. Narrows the selection down to a few 

 2. The computer offers a complete set of 
decision/action alternatives 

LOW 1. The computer offers no assistance; 
human must take all decisions and 
actions
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analysis, we propose three possible levels of 
automation based on the LCS’ threat posture 
(RED, YELLOW, or WHITE). As per our 
main assumption, a higher threat level 
(RED) means a higher level of human 
MWL, so we propose a higher level of 
automation across the four broad classes. 
Conversely, a low threat level (WHITE) 
means a lower level of MWL. In the first 
two stages (Acquisition and Analysis), there 
are high levels of automation in all three 
postures. The human operator is largely a 
supervisor in the Acquisition stage, 
presented with information only: the status 
of SUW and ASD weapons, status of 
various LCS sensors (radar, sonar, etc.), and 
status of the common tactical picture with 
other ships, vehicles, and aerial/space 
platforms, among other options.  Likewise, 
in the Analysis stage the automation 
presents the operator information about 
targets detected, including characteristics of 
the target (bearing, speed, altitude) and the 
symbology assigned by the FCS. 

 

 
Figure 7. First stage automation 
scheme for FCS. 

 
The human operator takes a more active role 
between the Analysis and Decision stages as 
defined by the ship’s threat posture, which 
in turn defines the level of automation in 
use. In the WHITE posture, the human 
might have more authority over FCS 
decisions to be made and total control over 

the action to be taken. In the RED posture 
(high threat, high MWL), the automation 
might have more autonomy and the human 
would presumably only have authority to 
override the action the FCS is about to take. 
The YELLOW posture might take a level of 
automation between WHITE and RED. 

 
We also note that the four broad functions of 
Parasuraman et al. are analogous to the 
Observe-Orient-Decide-Act (OODA) loop 
commonly used by DoD personnel across all 
U.S. military Services. 

 
Next, we applied our functional flow to the 
proposed automation scheme, replacing the 
four broad functions with the six major FCS 
functions (see figure 8). Search replaces 
Acquisition; Detect and Track replaces 
Analysis; Classify and Resolve replaces 
Decision, and Shoot replaces Action. Again, 
the three possible levels of automation are 
RED, YELLOW, and WHITE.  For the 
Search, Detect, and Track functions, we 
reasoned that a high level of automation is 
warranted. The FCS, using the ship’s sensor 
and the CTP, will search, detect and track all 
targets, then present real-time and concise 
information to the operator about those 
targets, as well as the status of SUW and 
ASD weapons, sensors, and common tactical 
picture. 

 

 
Figure 8. Proposed Automation 
Scheme for the LCS Fire Control 
System 
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The Classify and Resolve functions 
(replacing Decision) is present four major 
decisions that the system (both software 
and/or human operator) must make.  

1. What is the classification of 
the target? Is it a threat? 
2. What is the priority target? 
What should the FCS shoot at first? 
3. Which weapon to use 
against that target? 
4. Shoot or not shoot? 

One major value of this automation proposal 
based on the Parasuraman et al. model is 
that system designers can fine-tune the 
levels of automation at each of the vertical 
lines in the diagram.  You can simply 
modify the level of automation as you might 
move the slider bars up and down much in 
the same way of slider bars on a stereo 
equalizer, thereby achieving the balance 
between human and software that the system 
designers and engineers desire. 
 
In the WHITE posture, due to the assumed 
low threat level and low operator MWL, we 
propose that the operator interacts more 
fully with the software.  In the first decision, 
the FCS automation classifies the target and 
makes a recommendation to the operator, 
who can then confirm the classification or 
countermand the recommendation. This 
would be similar to level 4 or 5 in table 1. 
Continuing through the functional flow, the 
automation may then present a single 
recommendation for the highest priority 
target (level 3 or 4).  When choosing the 
appropriate weapon system, automation 
level rises back up to level 4/5 (makes 
recommendation, then executes if operator 
approves). Since the optimal weapon to use 
against the selected target is entirely a 
function of target characteristics (surface vs. 
air, then ASCM vs. aircraft), we believe the 
automation would make a better and faster 
decision recommendation than the human. 
The final decision, to shoot or not, is left 
entirely to the human; the automation offers 
no assistance.  In this regard, at the WHITE 
posture, the human operator will be under 

absolutely no pressure or suggestions to ‘pull 
the trigger’—he will be able to make that 
decision unfettered by any recommendations 
from the software. Lastly, the actual act of 
actuating the chosen weapon is left entirely to 
the operator (who at this point is probably 
under supervision from a more senior officer) 
with no input from the FCS automation. 

 
In the YELLOW posture, in response to the 
higher threat level, we can simply move up 
the slider bars on selected decisions to allow 
the system to achieve more efficient 
performance while probably allowing an 
intermediate level of operator MWL.  
Decisions 1-3 might remain at level 4/5, but 
the automation will be allowed greater 
autonomy (and thus influence) in Decision 4 
by actually recommending to shoot at (or not 
shoot at) the target with the selected weapon 
system. However, as with the WHITE 
posture, the final action is left entirely to the 
operator (and possibly his higher 
supervisors). 
 
In the RED posture, due to the assumed high 
threat level and to help alleviate the likely 
high MWL of the operator, we propose that 
the software maintain a higher degree of 
autonomy throughout the Classify and 
Resolve functions, probably similar to level 7 
as per table 1 (software decides 
automatically, then informs the human; 
human can step and override the automation).  
Unlike the other two threat levels, we 
propose that in RED, the automation has 
much greater autonomy, being allowed to 
execute the action unless the operator 
overrides the action.  This kind of autonomy 
may likely well be warranted in high threat 
environment with multiple surface and air 
threats. In addition, but noted in figure 8, is 
the possibility of having the FCS makes a 
steering recommendation for the ship, or 
even steer the ship itself (though this 
possibility may be controversial). This kind 
of design decision would have to be decided 
at the highest levels of the LCS program 
leadership with input from users and subject 
matter experts. 
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Table 2. Operator-Automation 
Interaction at Key Decision Points 
 
Table 2 summarizes the proposed levels of 
automation for each function and the major 
decision points. Again, these levels are 
proposals based on team discussions with 
several subject matter experts (SMEs). The 
value of the Parasuraman et al. model is that 
further discussions within various working 
groups (WG) and integrated products teams 
(IPT), based on experience or other 
empirical research, can easily fine-tune the 
automation levels as necessary.  Of course, 
there is also the possibility of adding or 
removing functions or decisions from the 
functional flow and subsequently the 
automation scheme as depicted in figure 8. 
 
In figures 9-11, we present the latter half our 
FCS functional flow (figure 5) for each of 
the three threat postures. The four major 
decisions in the Classify and Resolve 
functions (denoted by stars) have generally 
increasing levels of automation as threat 
posture goes from WHITE, YELLOW, and 
then RED in response to the operational and 
intelligence situation.  The former half of the 
functional flow is not presented since we 
proposed that automation levels remain the 
same in the Search, Detect, and Track 
functions for each of the three threat 
postures. 
 

Function Flow at WHITE

1

2

3

4

Action

 
Figure 9. FCS Functional Flow at 
threat posture WHITE. The four key 
decisions (stars) and the action are 
spotlighted. 
 
HSI DOMAINS—
IMPLICATIONS AND 
TRADEOFFS 
 
The proposed FCS and its automation scheme 
has major impacts on multiple HSI domains, 
and we have identified a number of tradeoffs 
that need resolving should the system 
continue design and development. 
 
Manpower, Personnel, and Training 
(MPT) 
The zero-based manning concept drove this 
design from the beginning, and if the FCS 
concept is brought to fruition, we stand to 
merge manpower from three or four different 
weapon systems into one fire control system 
operator  
 
In addition, though not discussed in this 
paper, there is the possibility of incorporating 
certain electronic warfare (EW) into the 
automation scheme under the same operator.  
Of course, all this assumes well-designed and 
reliable automation. 
 
As a tradeoff for the possible manpower 
savings, this automation scheme will require 
increased development cost and time from 
systems software engineering.  Most 
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acquisition officials would probably 
characterize it as a high-risk effort in terms 
program cost, performance, and schedule. 
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Figure 10. FCS Functional  Flow at 
Threat Posture YELLOW. Levels of 
automation of slightly higher for 
Decisions 1-3 

 
Functional Flow at RED

1

2

3

4

Action

 
Figure 11. FCS Functional Flow at 
Threat Posture RED. Level of 
Automation higher for All Decisions 
and the Action 
An additional tradeoff will be in the 
Personnel domain, as the knowledge, skills 
and abilities needed to operate this system 
may require higher aptitudes than current or 
legacy technology.  It may not be possible 
for new sailor or lower-category sailor to 
operate this system; rather, it may take an 
experienced and intelligent petty officer or 

junior officer to operate the FCS as proposed. 
 
Likewise, the requisite amount of training to 
operate this proposed FCS will increase.  As 
part of this system, the operator’s trust in the 
proposed FCS automation is highly 
dependent upon his familiarity with the 
automation scheme driving the FCS. This 
will demand longer training periods and high 
fidelity training aid, devices, simulators, and 
simulations (TADSS). It also points out the 
probable need, based on training needs 
analysis, for a stand-along TADSS off-ship, 
as well as onboard scenarios built into the 
FCS. However, the increased training 
demand may be alleviated through well-
conceived embedded training, performance 
support systems, and job performance aids.  
 
Human Factors Engineering 
We have an implicit goal of keeping operator 
MWL at an acceptable level during the entire 
functional flow across all possible threat 
postures. This is to foster improved human 
performance as part of the system, in turn 
improving overall system effectiveness and 
suitability.    HSI practitioners can build a 
comprehensive workload model to assess 
whether MWL is kept at reasonable levels 
throughout the functional flow at different 
threat levels.  For example, the Improved 
Performance Research Integration Tool 
(IMPRINT) from the US Army Research Lab 
(ARL) is a well-documented and widely-used 
tool, particularly for human performance in 
military applications (see the IMPRINT 
website at: http://www.arl.army.mil/ ARL-
Directorates/HRED/imb/imprint/ 
Imprint7.htm. 
 
FURTHER ACTIONS 
 
Evaluative Criteria 
Automation is not an all-or-none affair; 
rather, it can vary by type.  In the 
Parasuraman et al. model, and as used by our 
team, human interaction with automation can 
be applied to any or all of a system’s 
functional flow at the level required to gain 
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optimal system performance. Parasuraman 
et al. (2000) argue that  
 

any particular level of automation 
should be evaluated by examining its 
associated human performance 
consequences. These constitute the 
primary evaluative criteria for levels of 
automation. However, human 
performance criteria is not the only 
important factor. Secondary evaluative 
criteria include automation reliability 
and the costs of decision/action 
consequences. 
 

Automation can have both beneficial and 
negative effects on human performance. 
There are four human performance areas 
that should be included in the primary 
evaluate criteria of this FCS: mental 
workload, situation awareness, 
complacency, and skill degradation (2000). 
Evidence suggests that well-designed 
information automation can change MWL to 
a level that is appropriate for the systems 
tasks being performed. However, “clumsy” 
automation can lead to increasing workload.  
As mentioned above in the HFE 
implications, MWL can be modeled during 
system design to assess if it is reasonable 
throughout system functional flow. 
 
Besides unbalanced MWL, automation can 
incur human performance costs in the other 
three criteria suggested. Situation awareness 
can be negatively affected when the 
operators loses “awareness of the system 
and certain dynamic features of the work 
environment” (2000). If the FCS automation 
is highly but not perfectly reliable in 
executing the major decision choices, “then 
the operators may not monitor the 
automation and its information sources and 
hence fail to detect the occasional times 
when then automation fails” (2000) or is 
wrong. Complacency is greatest in high 
MWL setting when the operator is engaged 
in multiple tasks. Third, skill degradation 
can certainly occur over time if the system 
decisions are routinely carried out by the 
automation.  “These potential costs—

reduced situation awareness, complacency, 
and skill degradation—collectively 
demonstrate that high-level automation can 
lead to operators exhibiting out-of-the-loop 
unfamiliarity. All three sources of 
vulnerability may pose a threat to safety in 
the system failure” (2000). The FCS 
automation design must demonstrate that 
potential human performance costs, along 
with unbalanced MWL, do not occur. “By 
considering these human performance 
consequences, the relative merits of a specific 
level of automation can be determined” 
(2000). 
 
Secondary evaluative criteria can include 
automation reliability and the cost of decision 
and action outcomes.  Reliability is typically 
defined in probabilistic terms, such as a 
reliability of .997 or a mean time to failure of 
10,000 hours.  In addition, “failures may 
occur not because of a predictable (in a 
statistical sense) malfunction in software or 
hardware, but because the assumptions that 
are modeled in the automation by the 
designer are not met in a given operational 
situation” (2000).   The reliability of 
automation also influences human trust, 
possibly undermining potential system 
performance benefits when the automation is 
underused or disabled.  In addition to 
reliability, “assessing the appropriate level of 
automation for decisions requires additional 
consideration of the costs associated with 
decision and action outcomes” (2000).  
 
Incorporating Prior Research, Rapid 
Prototyping and Experimentation 
Our decisions on the type and level of 
automation throughout our functional flow 
was determined by team discussions, input 
from locally available SMEs, and our own 
reasoning, all with the goal of improved 
human performance in the resulting system 
(primary evaluative criteria). Additionally, 
there is the possibility of incorporating prior 
research into these decisions on the 
appropriate type and level. For example, prior 
research may have shown that compared to 
manual operations, both human and system 
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performance are enhanced by level 4 
automation but degraded by automation 
above level 6 (2000). Based on this research, 
we apply the finding at the appropriate place 
in the framework. In lieu of prior research, 
performance modeling may provide similar 
guidelines. 
  
Parasuraman et al. (2000) emphasize the 
importance of testing and evaluating 
preliminary choices of automation 
functionality. Iterative testing against the 
proposed primary and secondary evaluative 
criteria will establish the best automation 
levels for the system. Additionally, the 
proposed FCS and it automation is a natural 
candidate for rapid prototyping and 
experimentation (see Moore, Kennedy, and 
Kern 2003; Kennedy and Durbin, 2005 for 
examples). Use of these tools and techniques 
during the system design and development 
phase of the DoD acquisition process can be 
the primary ways to gather data on human 
performance (primary evaluative criteria).   
 
Finally, the proposed FCS is still very much 
a concept. Further iterations of the SE 
process will be required to further define 
and refine necessary capabilities and 
operational requirements as part of the LCS.  
Human factors engineers and MPT 
specialists will be needed to round out a 
design team with other engineers of various 
backgrounds (software, electronics, etc.).  
User groups and SMEs will also be 
necessary to evaluated and refine the design 
as the system takes shape. 
 
CONCLUSION 
 
The LCS is designed to fight and win the 
world’s littoral area, but it must do so with 
significantly less manning than historically 
used on our ships. The zero-based manning 
concept and the constraint of a single 
operator likely requires the increased use of 
automation.  Automation design is both art 
and science, and can be guided by the model 
presented by Parasuraman et al. Given the 

primitive need, our team judiciously applied 
and modified the model in order to design an 
FCS with an automation scheme that allows 
one operator to control the weapons systems 
for both the SUW and ASD mission of the 
LCS.  Judicious application of the 
Parasuraman et al. model in other programs 
may help achieve reduced manning without 
sacrificing human and system performance. 
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