
___ . Carnegie Mellon
Software Engineering Institute

QuARS: A Tool
for Analyzing
Requirements

Giuseppe Lami

September2005

DiSTRIUTION STATENTEMNTA
Approved for Public Release

Distribution Unlimited

TECHNICAL REPORT
CMU/SEI-2005-TR-014
ESC-TR-2005-014

I f

____ CarnegieMellon
Software Engineering Institute
Pittsburgh, PA 15213-3890

QuARS: A.Tool for Analyzing
Requirements

CMU/SEI-2005-TR-014
ESC-TR-2005-014

Giuseppe Lami

September2005

Software Engineering Measurement and Analysis
Initiative

Unlimited distribution subject to the copyright.

20051223 017

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a

federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external

and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

A bstract .. vii

1 Introduction ... 1
1.1 Addressing the Quality of NL Requirements: An Overview of the State of

the A rt 2

2 A Quality-Model-Driven Approach to NL Requirements Analysis 5
2.1 A Quality Model for Expressiveness Analysis 6

2.2 The Linguistic Approach to Consistency and Completeness Evaluation 9

3 The QuARS Approach to Improving the Quality of NL Requirements 11
3.1 Design of an Automatic Tool for NL Requirements Evaluation 12

3.1.1 Input and Output .. 14
3.2 Functional Description of QuARS .. 15

3.2.1 Expressiveness Analysis .. 15
3.2.2 Tailorability Issues ... 21
3.2.3 Metrics Derivation .. 23

4 Empirical Studies on the Effectiveness of QuARS 25

5 Conclusions and Future Directions .. 29

References/Bibliography .. 31

CMU/SEI-2005-TR-014

ii CMU/SEI-2005-TR-O1 4

List of Figures

Figure 1: Two-Dimensional Representation of the NL Requirements Quality 6

Figure 2: QuARS High-Level Architecture Scheme .. 12

Figure 3: QuARS GUI Frames .. 15

Figure 4: Lexical-Based Expressiveness Analysis .. 16

Figure 5: Active Link Between the Output and the Input Frames 17

Figure 6: Hiding the False Positives ... 18

Figure 7: Syntax-Based Analysis .. 19

Figure 8: View Derivation ... 20

Figure 9: Graphical Representation of a View Derivation 21

Figure 10: Creating a New Dictionary .. 22

Figure 11: Metrics Calculation ... 23

CMU/SEI-2005-TR-014

iv CMU/SE1-2005-TR-O1 4

List of Tables

Table 1: Ambiguity Indicators ... 7

Table 2: Specification Completion Indicators .. 7

Table 3: Understandability Indicators ... 7

Table 4: Expressiveness Defect Indicators ... 8

Table 5: Quality Indicators vs. Linguistic Techniques ... 12

CMU/SEI-2005-TR-014 v

vi CMU/SEI-2005-TR-O1 4

Abstract

Numerous tools and techniques are available for managing requirements. Many are designed

to define requirements, provide configuration management, and control distribution.
However, there are few automatic tools to support the quality analysis of natural language
(NL) requirements. Ambiguity analysis and consistency and completeness verification are
usually carried out by human reviewers who read requirements documents and look for
defects. This clerical activity is boring, time consuming, and often ineffective.

This report describes a disciplined method and a related automated tool that can be used for
the analysis of NL requirements documents. The tool, called the Quality Analyzer for
Requirements Specifications (QuARS), makes it easier to extract structured information and
metrics for detecting linguistic inaccuracies and defects.

QuARS allows requirements engineers to perform an initial parsing of requirements by
automatically detecting potential linguistic defects that can cause ambiguity problems at later
stages of software product development. The tool also provides support for the consistency
and completeness analysis of the requirements.

CMU/SEI-2005-TR-014 vii

viii CMU/SEI-2005-TR-O1 4

1 Introduction

Creating high-quality software requirements is the first step in producing quality software. If
requirements documents are incorrect, inconsistent, incomplete, or even subject to
misinterpretation, there will be problems affecting both the software development and the
usefulness of the end product. Methods and tools can be employed to reduce the number of
potential problems. Two basic approaches exist. The language used to express the
requirements can be formalized, or the procedures for analyzing the requirements can be

formalized.

In recent years, many semiformal and formal languages have been developed in an attempt to
reduce ambiguity, inconsistency, and incorrectness in requirements descriptions. The use of
graphical object modeling languages such as the semiformal Unified Modeling Language
(UML) has become very popular [Rumbaugh 99]. Formal specification languages (including
the Z Notation [Spivey 92] and the B-Method [Abrial 96]) have been defined to add
formality and remove ambiguities. A drawback to these languages, however, is that they are
difficult for non-experts to understand, which limits their practical application. Natural
language (NL) continues to be the most common way to express software requirements.

The use of NL for specifying requirements, despite its inherent ambiguity, has some
advantages. NL requirements can be shared easily among various people involved in the
software development process and used in several product development phases. For example,
they can be used as working documents for system architecture designers, testers, and editors
of user manuals; as a data source for project managers; and to establish agreement between
customers and suppliers.

In the software industry, ambiguity analysis and checks for consistency and completeness in
software requirements are usually performed by humans through a tedious procedure of
reading requirements documents and looking for errors. Most of the errors these inspectors
find are in fact simple linguistic errors. Recent market research on the potential demand for

automated linguistic tools for requirements analysis concludes, "Because an engineering
approach suggests the use of linguistic tools suited to the language employed in the narrative
description of user requirements, we find that in a majority of cases it is necessary to use NL
processing systems capable of analyzing documents in full natural language" [Mich 04].

This technical report describes a disciplined method and a related automated tool that can be

used for the analysis of NL requirements documents. It aids in the creation of quality
requirements by making it easier to extract structured information and metrics for detecting
linguistic inaccuracies and defects.

CMU/SEI-2005-TR-014 1

1.1 Addressing the Quality of NL Requirements: An
Overview of the State of the Art

Ambiguity in NL requirements can be reduced through the use of two types of approaches:

0 The restriction of the degree of freedom in writing requirements. (This can be

accomplished by using templates for structuring requirements documents or adopting a
restricted English language that avoids ambiguous terms and styles.)

* Analysis of the NL text to identify and correct ambiguity defects.

Not many techniques exist for NL requirements analysis, and only a few of them are

supported by automatic tools. The most popular technique for NL requirements analysis is a

document inspection performed by skilled persons or teams composed of different

stakeholders (e.g., developers, testers, customers, project managers). During the inspection,

the person or team reads the requirements to find as many defects as possible.

The following sections summarize some recent works and studies dealing with the evaluation

and enhancement of the quality of NL requirements. The studies are classified into three
categories: restrictive, inductive, and analytic, each of which has advantages and drawbacks.

Restrictive Techniques

Restrictive techniques define rules that limit the level of freedom in writing requirements in
NL. While they mitigate the effects of the inherent ambiguity of NL, they do not address the
needs of the user as well as they do the needs of the requirements engineers because they

make the requirements more precise and analyzable but less comprehensible.

In "Natural Language Processing for Requirement Specifications," Macias and Pulman apply
domain-independent Natural Language Processing (NLP) techniques to control the

production of NL requirements [Macias 93]. NLP techniques are used on requirements
documents to check the vocabulary used, which must be fixed and agreed upon, and the style

of writing, which must follow a set of pre-determined rules set to make documents clear and

simple to understand. Their technique involves the association of an ambiguity rate with
sentences depending on the degree of syntactic and semantic uncertainty in the sentence,
characterized by under-specifications, missing information, and unconnected statements.

Their study discusses how NLP techniques can help in the design of subsets of English

grammar to limit the generation of ambiguous statements.

Fuchs also describes a restrictive approach in his definition of a limited natural language,
called Attempt Controlled English (ACE), which can be easily understood by anyone

involved in the software development process [Fuchs 95]. ACE uses a subset of English that
is simple enough to avoid ambiguities, yet allows domain specialists to define requirements

in NL with the rigor of formal specification languages.

The Cooperative Requirements Engineering with Scenarios (CREWS) project aims to define

a scenario-based method to elicit and validate requirements [Ben Achour 99]. This method is

2 CMU/SEI-2005-TR-014

based on cooperation between users and requirements engineers in defining scenarios. The
scenarios express the goal in a format acceptable by both parties. The CREWS-L'Ecritoire
method uses scenarios expressed in a middle ground between completely free use of NL and
predefined templates. It also combines the use of informal narrative prose to express
scenarios with structured NL to analyze them.

Inductive Techniques

Inductive techniques identify common problems in NL requirements and propose corrective
actions or writing styles. They recommend safe writing styles for requirements but do not
provide the means to apply them; hence they have a limited impact in practice.

In his paper "Writing Good Requirements," Hooks discusses a set of quality characteristics
needed to produce well-defined NL requirements [Hooks 94]. He provides some common
problems that arise when requirements are produced and how to avoid them. An in-depth
survey is included that lists the principal sources of defects in NL requirements and the
related risks.

Firesmith provides an as-yet-not-exhaustive list of the characteristics that good-quality
requirements should have, along with a discussion of the typical defects, in requirements
[Firesmith 03].

In their research, Kamsties and Peach focus on the ambiguity evaluation of NL requirements
[Kamsties 00]. They propose that ambiguity in requirements is not just a linguistic problem
and suggest using checklists that cover both linguistic ambiguity and domain-specific
ambiguity.

Analytic Techniques

Analytic techniques do not involve changing NL requirements, but instead use linguistic
techniques to identify and remove defects. They have a high potential for impact in practice
but have not been studied or developed in depth, and as a result are not very precise or
effective.

Goldin and Berry have implemented a tool for the extraction of abstractions from NL texts,
(i.e., repeated segments identifying significant concepts on the application field of the
problem at hand) [Goldin 94]. Their technique is limited to a strict lexical analysis of the text.

In the paper "Automated Analysis of Requirement Specifications," Wilson and his coauthors
examine the quality evaluation of NL software requirements [Wilson 97]. In their approach, a
quality model is defined which consists of quality attributes and quality indicators. They have
developed an automatic tool called Automated Requirement Measurement (ARM) to perform
the analysis against the quality models to detect defects and collect metrics.

Mich and Garigliano propose a set of metrics for syntactic and semantic ambiguity in
requirements [Mich 00]. Their approach is based on the use of information on the possible

CMU/SEI-2005-TR-014 3

meanings and roles of the words within sentences and on the possible interpretations of
sentences. This is done using the functionalities of a tool called LOLiTA (large-scale, object-

based, linguistic interactor, translator, and analyzer).

Natt och Dag and his colleagues presented an approach for identifying duplicate requirement
pairs [Natt och Dag 011. Based on statistical techniques for the similarity analysis of NL
requirements, this technique may be used successfully for revealing interdependencies and as

a support for the consistency analysis of NL requirements. In fact, the automatic
determination of clusters of requirements dealing with the same arguments may support
human analysis in detecting inconsistencies and discrepancies by identifying smaller sets of
requirements.

Ambriola and Gervasi aim to achieve high-quality NL requirements through CIRCE, a

system that can build semiformal models almost automatically [Ambriola 97]. The system
extracts information from the NL text of the requirements, then measures and checks the

consistency of the models. CIRCE promotes the use of a suitable style in the requirements.

The aim of the work described in this report is to further develop analytic methods in order to
provide an effective way to analyze NL requirements.

4 CMU/SEI-2005-TR-014

2 A Quality-Model-Driven Approach to NL
Requirements Analysis

To achieve quality, NL requirements must embody several properties [Firesmith 03]. In this
section, quality properties that can be addressed and evaluated through NL understanding
techniques are described.

These quality properties can be grouped into three categories:

"* Expressiveness-characteristics dealing with an incorrect understanding of the meaning
of the requirements. Ambiguities and poor readability are frequent causes of
expressiveness problems in requirements documents.

"* Consistency-characteristics dealing with the presence of semantic contradictions in the
NL requirements document.

"* Completeness--characteristics dealing with the lack of necessary information within the
requirements document.

The application of linguistic techniques to NL requirements allows analysis from a lexical,
syntactical, or semantic point of view. "Lexical" refers to the words or vocabulary of a
language, apart from its grammar or construction. "Syntax" is the way words are put together
to form phrases, while "semantics" refers to the meaning of language.

For this reason it is more useful to talk about lexical non-ambiguity or semantic non-
ambiguity rather than non-ambiguity in general. For instance, an NL sentence may be
syntactically non-ambiguous (in the sense that only one derivation tree exists according to the
syntactic rules applicable), but it may be lexically ambiguous because it contains words
without unique meanings.

Figure 1 shows that the quality of NL requirements can be represented as a two-dimensional
space, where the horizontal dimension is composed of the main target qualities to be achieved
(expressiveness, consistency, and completeness) and the vertical dimension is composed of
the different points of view from which the target qualities can be considered.

The difficulty of applying linguistic techniques varies according to the kind of analysis: in
fact, while it is relatively easy to perform lexical analysis, it is much harder to deal with
semantic problems in NL requirement documents. At a lexical level, only the individual
words in the sentences are considered, but at the syntactical level the structure of the

CMU/SEI-2005-TR-014 5

sentences must be examined, taking into account the role that each word plays in the
sentences. At the semantic level, the meaning of the whole sentences must be derived.

Lexical Syntactic Semantic
Expressiveness Ambiguity mitigation

Understandability 1
improvement ________
Specification •rJLI
completion

Consistency

Completeness

Figure 1: Two-Dimensional Representation of the NL Requirements Quality

Linguistic techniques can effectively address the issues related to the expressiveness because
the lexical and syntactical levels provide means enough to obtain effective results. For this

reason the quality model described in this section addresses the expressiveness property of
NL requirements but does not consider the consistency and completeness properties.

2.1 A Quality Model for Expressiveness Analysis
Similar to any other evaluation process, the quality evaluation of NL software requirements
must be conducted against a model. The quality model defined for the "expressiveness"
property of natural language software requirements aims to provide a quantitative evaluation
(i.e., allowing the collection of metrics), that helps in detecting and correcting defects, and
provides the same output based on the same input in every domain.

The expressiveness quality model is composed of three quality characteristics evaluated by

means of indicators. Indicators are linguistic components of the requirements that are directly
detectable and measurable in the requirements document.

The expressiveness characteristics are:

"* Unambiguity-the capability of each requirement to have a unique interpretation.

"* Understandability-the capability of each requirement to be fully understood when

used for developing software and the capability of the requirement specification
document to be fully understood when read by the user.

"* Specification Completion-the capability of each requirement to uniquely identify its

object or subject.

Indicators are syntactic or structural aspects of the requirement specification documents that
provide information on defects related to a particular property of the requirements
themselves. Table 1, Table 2, and Table 3 describe the indicators related to each quality
property and include examples of the keywords to be used for detecting potential defects in
the NL requirements.

6 CMU/SEI-2005-TR-014

Table 1: Ambiguity Indicators

Indicator Description

Vagueness When parts of the sentence are inherently vague (e.g., contain

words with non-unique quantifiable meanings).

Subjectivity When sentences contain words used to express personal opinions

or feelings.

Optionality When the sentence contains an optional part (i.e., a part that can
or cannot considered).

Implicity When the subject or object of a sentence is generically expressed.

Weakness When a sentence contains a weak verb.

Table 2: Specification Completion Indicators

Indicator Description

Under-specification When a sentence contains a word identifying a class of objects

without a modifier specifying an instance of this class.

Table 3: Understandability Indicators

Indicator Description

Multiplicity When a sentence has more than one main verb or more than one

subject.

Readability The readability of sentences is measured by the Coleman-Liau
Formula of readability metrics (5.89*chars/wds-

0.3*sentences/(100*wds)-15.8]). The reference value of this

formula for an easy-to-read technical document is 10. If the value

is greater than 15, the document is difficult to read.

The defined quality model aims at identifying potential syntactic and semantic deficiencies

that might cause problems when an NL requirements document is used or transformed into a

more formal document. The criteria used in the quality model has been driven by results in

the natural language understanding discipline, by experience in formalization of software

requirements, and by an in-depth analysis of real requirements documents from industrial

partners. Moreover, the definition of our quality model has benefited from the progress in the

field of requirement engineering and software process assessment according to the SPICE

model (ISO/IEC 15504) [SPICE 98].

The quality model, though not exhaustive, is specific enough to include a significant portion

of the lexical and syntax issues of requirements documents. While it does not cover all the

CMU/SEI-2005-TR-014 7

possible quality aspects of software requirements, it is sufficiently specific when being
applied (with the support of an automatic tool) to compare and verify the quality of

requirements documents.

The sentences that are recognized as defective according to the quality model described in
Table 1, Table 2, and Table 3 are not defective sentences according to the rules of the English
language but are incorrect in terms of our expressiveness characteristics.

The quality model was derived to use as a starting point for the creation of an automatic tool

for the analysis of NL requirements. The indicators it is composed of are terms and linguistic
constructions that characterize a particular defect and are detectable by looking at the
sentences of requirements documents.

Table 4 explains how the quality model indicators can be found by performing a linguistic
analysis of the requirements document.

Table 4: Expressiveness Defect Indicators

Indicator Description

Vagueness The use of vague words (e.g., easy, strong, good, bad, useful,
significant, adequate, recent).

Subjectivity The use of subjective words (e.g., similar, similarly, having in mind,
take into account, as [adjective] as possible).

Optionality The use of words that convey an option (e.g., possibly, eventually, in
case of, if possible, if appropriate, if needed).

Implicity The use of sentence subjects or complements expressed by
demonstrative adjectives (e.g., this, these, that, those) or pronouns

(e.g., it, they).

The use of terms that have the determiner expressed by a

demonstrative adjective (e.g., this, these, that, those), implicit
adjective (e.g., previous, next, following, last), or preposition (e.g.,
above, below).

Weakness The use of weak verbs (i.e., could, might, may).

Under-specification The use of words that need to be instantiated (i.e., flow [data flow,
control flow], access [write access, remote access, authorized access],
testing [functional testing, structural testing, unit testing]).

Multiplicity The use of multiple subjects, objects, or verbs, which suggests there
are actually multiple requirements.

Readability The readability as determined by the Coleman-Liau formula.

8 CMU/SEI-2005-TR-014

2.2 The Linguistic Approach to Consistency and
Completeness Evaluation

To find out how much support linguistic techniques could provide in the consistency and
completeness analysis of NL requirements documents, we investigated tools and techniques
that could be used without the adoption of formal methods.

The analysis of NL requirements for consistency and completeness begins with the
identification of items that address related objects. Then it is necessary to put together all the
sentences dealing with specific topic. We call such a group of sentences a View. Possible
topics are

"* quality characteristics (attributes) of the product described in the document under
analysis (e.g., security, efficiency)

"* components of the products described in the requirements document or belonging to the
external environment (e.g., the user interface or the user)

"* functionalities of the product (e.g., the printing function)

To derive a View from a document, special sets of terms are needed that represent key words
related to the topic to which the View is related. We call these sets of terms "V-dictionaries."

The derivation of the Views can be made automatically using the methodology defined in this
report. The methodology is based on V-dictionaries containing words that relate to a
particular topic. The construction of these V-dictionaries is done by the users and relies on
their skills and the study of appropriate technical documentation.

Once the V-dictionaries of interest have been built, the identification of those sentences
belonging to the related View can be made automatically by relying on the output of a syntax
analysis and the appropriate V-dictionary. Sentences with the subject or object expressed by
terms in the V-dictionary can be tagged as belonging to that View. In other words, the idea is
to put together those sentences in the requirements document that directly or indirectly deal
with a particular topic.

The output of this analysis can be used by those performing the consistency and
completeness analysis of a requirements document. They can then concentrate their work on
subsets of the sentences in the document to make it easier to detect possible problems.

One of the principal advantages of applying the View approach is its assistance in detecting
misplaced sentences. A misplaced sentence is one that deals with a particular aspect of the
system that is described by the requirements but not included in the part of the document
where that aspect is treated.

An example is provided in Figure 9 on page 21. The figure shows the output from analyzing
the "security" characteristic in a requirements document from an industrial project. The graph
represents the position of all the sentences that include the list of security words and phrases.
As the figure indicates, the View comprises nine sentences. Seven of them belong to Section

CMU/SEI-2005-TR-014 .9

3, Safety and Security Requirements, and the other two to Section 2 of the document. When
the analyzers of the requirements document perform a consistency or completeness analysis
of the security requirements, they will probably concentrate their attention on Section 3.
Without the tool, they might miss the two sentences from Section 2.

The technique used for identifying the sentences belonging to a View is indeed a difficult and
challenging one. The effectiveness and the completeness of the View strictly depend on the
associated V-dictionary. The more precise and complete the V-dictionary, the more effective
the outcome. Depending on the technique used and the content of the V-dictionary, some
relevant terms might be missed. Some terms relating to a View might have been omitted, or

the document under analysis might contain specific terms that can be understood only in
context.

For example, if the View relates to the security quality characteristic of the product, a

sentence like this might appear in the document: "The firewall to be used in the system is
Apache." Most likely, the term "firewall" (which is a term relating to security) will be
indicated by use of the term "Apache" when it is mentioned subsequently. Nevertheless,

because Apache is the name of a specific tool, we can expect that it could be not included in
the V-dictionary relating to security. To solve this problem, a new methodology needs to be
implemented for enriching the set of terms based on a syntactical analysis of the document.

This methodology relies on the concept of subject-action-object (SAO) triplet, which can be
derived easily from the output of the syntactic parser.

The idea is to select the SAO triplets which identify the action with a special verb. We might
start with an ad-hoc V-dictionary, then consider, for instance, the following verb categories:

"* compositional verbs (e.g. to comprise, to compose, to include)

"* functional verbs (e.g. to support, to include, to use)

"* positional verbs (e.g. to follow, to precede)

If the subject of the SAO belongs to the special set of terms, then the object of that SAO is
also a candidate to be included in the set of terms. Conversely, if the object of the SAO
belongs to the special set of terms, then the subject is also a candidate to be included. This
methodology would allow for the term "Apache" to be included in the security-related V-

dictionary.

To further enrich the V-Dictionaries, other related literature (such as technical documents)
could be analyzed along with the requirements documents in order to identify a larger
number of terms.

10 CMU/SEI-2005-TR-014

3 The QuARS Approach to Improving the
Quality of NL Requirements

Although NL is the most-used means of expressing requirements, tools and techniques that
support the analysis of these requirements are lacking. The QuARS tool, which is further
described in this chapter, was designed to automate the evaluation of the expressiveness of an
NL requirements document and provide support for completeness and consistency analysis.

The quality model used contains a set of indicators (derived from the linguistic elements of

the sentences of NL requirements documents) that express a potential defect. Different
linguistic techniques can be used in order to automatically detect these indicators within a
document.

These linguistic elements can be grouped into two categories:

* lexical techniques

* syntactical techniques

The kind of analysis that can be performed using a lexical technique is a called a
morphological analysis, which means it is possible to verify that the single terms occurring in
the sentences are correctly written (according to the English lexicon) or suitably chosen.

The syntactical techniques are more sophisticated than the lexical techniques. Syntactical
techniques rely on an understanding of the syntactic roles of each word in the sentence and of

the relations among them-that is, the subject, the related verb, and the associated
complements must be identified.

Some of the indicators of the quality model can be found by applying lexical techniques; oth-
ers need the application of syntactical techniques. In, the correspondence between each qual-

ity model indicator and the necessary technique to be applied to make its detection automatic
is shown.

CMU/SEI-2005-TR-014 11

Table 5: Quality Indicators vs. Linguistic Techniques

Lexical Syntactical
Technique Technique

Vagueness X

Subjectivity X

Optionality X

Implicity X

Weakness X

Under-specification X

Multiplicity X

Readability X

The analysis of NL requirements documents should not be limited to the detection of the
indicators of the reference quality model. It should also be automated for the derivation of
information supporting the consistency and completeness analysis. The View derivation is a

way to provide the requirements analyzer with practical support for this kind of analysis. The
derivation of the Views can be made using lexical techniques, but can not be limited to the
mere detection of the occurrence of terms belonging to a domain dictionary. The application
of syntactical techniques is also necessary.

3.1 Design of an Automatic Tool for NL Requirements Evaluation
This section provides a high-level architectural description of the QuARS tool. It was
developed to be modular, extensible, and easy to use. The architectural design provides for
the first two characteristics. Figure 2 depicts the high-level architectural design.

sentences.txt
r -- - ----
' metrics

S vague

Lexical Idctr weak

Parser Indicators subjectiveS... D etector-- -. .
multiple

D timplicit

ied VatiIu S Log

DomainIndicator- related
dictionaries . Graphic dictionaries

Figure 2: QuARS High-Level Architecture Scheme

12 CMU/SEI-2005-TR-014

The functions performed by the five main components are lexical analysis, syntax parsing,

comparisons to the quality model, the construction of views, and the maintenance of
dictionaries.

1. Syntax Parser-Using the Minipar application, the syntax parser derives the syntactical

structure of each sentence in the requirements document1. Minipar associates tags with

the words in the sentence to indicate the syntactical role of each of them. It also derives
the relationships among the syntactical components. An example sentence follows.

"The system shall provide the manual of the user."

This sentence is syntactically analyzed by the syntax parser in the following way:

1 (the - Det2 det)

2 (system - N 4 s)

3 (shall - Aux4 aux)

4 (provide - V EQ i (gov fin))

5 (the - Det6 det)

6 (manual - N 4 obj)

7 (of - Prep 6 mod)

8 (the - Det9 det)

9 (user- N 7 pcomp-n)

This outcome has to be interpreted as follows:

line 1: the term "the" is the determiner (tag Det) of the noun "system" at line
number 2 (tag 2)

line 2: "system" is a noun (tag N) and it is the subject (tag s) of the verb at line 4 (tag 4)
line 3: "shall" is the auxiliary (tag Aux) of the verb at line 4 (tag 4)
line 4: "provide" is the main verb (tag V)
line 5: "the" is the determiner of the noun at line 6 (tag 6)

line 6: "manual" is a noun (tag N) playing the role of object (tag obj) of the verb at

line 4 (tag 4)
line 7: "of" is a preposition (tag Prep) of the term at line 6 (tag 6) and it is the modifier

of it (tag mod)

line 8: "the" is the determiner (tag Det) of the term at line 9 (tag 9)
line 9: "user" is a noun (tag N) playing the role of complement (tag pcomp-n) due to

the term "of" at line 7 (tag 7)

'Minipar is available at http://www.cs.umanitoba.ca/l-indek/minipar.htm.

CMU/SEI-2005-TR-014 13

Syntax parsers calculate one of the possible derivation trees for sentences under analysis

using the rules of the English language. More than one derivation tree can exist for a

sentence, and the parser might provide the wrong syntax recognition of the sentence.
This problem is common to all the existing syntax parsers for English sentences. The
Minipar syntax parser is one of the most widely used English language syntactical

parsers and guarantees a higher rate of correctly derived sentences (about 85%).

2. Lexical Parser-The lexical parser identifies specific words and phrases appearing in the
sentences of the requirements document. It is used to perform a morphological analysis
of the sentences and to support analysis based on the detection of special terms or words
in the requirements document.

3. Indicators Detector-The indicators detector is an original component that points out the
occurrences of the indicators in the document (on the basis of the outcomes of the syntax

and lexical parsers) and writes them in the log file. Along with the View deriver, this
component has been fully developed using the C++ language.

4. View Deriver-The view deriver is an original component that acquires, as a first step,

the structure of the document in terms of the partition of sections and subsections. Then
Sit checks to see if a sentence belongs to a View according to the rules defined in Section
2.3. Finally, it counts the number of sentences recognized as belonging to a View
occurring in each section or subsection of the requirements document. The data are
represented graphically as output.

5. Dictionaries-Dictionaries are the passive components of the tool. They contain sets of
terms that are necessary to perform syntactical and lexical analysis and View
derivations. The number and the content of these dictionaries may vary according to the
application domain and user needs.

3.1.1 Input and Output
The inputs of the tool are composed of the following elements:

* requirements document to be analyzed. The format of this input file is plain text format

(e.g., .txt, .dat). This file is given to the syntax parser component, which produces a new
file containing the parsed version of the sentences according to the format described on
page 13.

* indicator-related dictionaries. These dictionaries may contain either the terms indicating
the defects according to the quality model or the domain dictionaries to be used for the

View derivation. Dictionaries must be in simple text format.

The outputs of the tool include the following:

"* log files containing the indications of the sentences containing defects. A log file for each
kind of analysis is produced.

"* the calculation of metrics about the defect rates of the analyzed document

"* the graphical representation of the Views over the whole analyzed document

14 CMU/SEI-2005-TR-014

3.2 Functional Description of QuARS
In this section the functional description of the tool is provided. Screenshots of the QuARS's

graphical user interface (GUI) are shown to aid in the description. The GUI was developed

using the TCL-TK language. The GUI when the tool is in the initial state is shown in Figure 3.

QL~ARS Dcleee npeoea.y

$vntually
possibly
optionally
ooand/o
or/and
probably
if appropriate _ _Output

if necessary Dictionaries Frameif case :'::

ppif needed

/01,

Input
Frame

JR-hk d-A'kjuFwinW 4,SA 1 b ±fl&U W 12%

N-24I l~kiL - I- -I 1 5-0 9MI qý &~7

Figure 3: QuARS GUI Frames

The QuARS GUI is composed of three principal frames:

" Dictionaries Frame-shows the content of the dictionaries along with function buttons

for dictionary-handling.

"* Input Frame-shows the content of the text file containing the requirements to be

analyzed. Function icons and buttons are provided for loading, handling, and saving the

input file.

• Output Frame-shows the outcome of the analysis, including the requirements

expressiveness analysis, support for requirements consistency and completeness analysis,

and metrics derivation.

The analysis outputs are described in more detail in the following sections.

3.2.1 Expressiveness Analysis
This section describes the way QuARS performs the expressiveness analysis. The

expressiveness analysis aims at detecting defects in the requirements that could cause

CMU/SEI-2005-TR-014 15

problems due to misinterpretation. The expressiveness analysis is conducted against the

quality model described in Section 2.1. Both lexical analysis and syntax analysis are used.

3.2.1.1 Lexical-Based Analysis
As shown in Figure 4, select the "L" button on the top tool bar of QuARS (arrow 1) to

perform the lexical-based analyses.

Once the lexical-based analysis has been selected, the dictionaries frame shows the
dictionaries corresponding to all the available lexical-based analyses (arrow 2). Select the
kind of analysis you want to perform by selecting the correspondent dictionary bookmark in
the dictionaries frame. The default available dictionaries for the lexical-based expressiveness
analysis are optionality, subjectivity, vagueness, and weakness.

The text file containing the requirements must be loaded before starting the analysis by
selecting the LOAD button in the input frame. A window showing the options for selecting a

text file from the PC file system appears. Once the input file has been selected, its content
appears in the input frame.

iIý I S16C 1- 'l1

clearlbh line number.
r 6.ATIA1256: The astem shallprvd *profite dataand access secu*.t

wella Is defective because It contains the warding: appropriate

mhe ntlbh line number:
user friendly r 272. ATIA1311: The alatem shefllprovide Iftble object level cunly for database

confusedlow I i defecti because It contains the wordina: flexible

acceptable QuAlS ILexicaq vaguenens Statistics (on "SEI.reqs-mono..txt" file):

adequate Number of evaluated sentences: 332

ei Number of defective sentences: 6
_ _ _ __ Defect rate: 1%

M iT R%0 7ý '1 "T W
2 1. Requirements for the Functions and Performance of the System

3 ATIA384: The system shall provide capability to maintain grades and adjustments.

4 ATIA417: The system shall provide capability to remove student from training.

5 ATIA451: The system shall provide capability to deliver educationifraining products and materials, including safely materials, to the leamer at home, units, training cer.

6 ATIA469: The system shall provide the capability to manage and manipulate the educatiosnraining catalog.

7 ATIA479: The system shall maintain the education/Iraining product catalog.

B ATIA40: The system shall provide a capability to search the education/training products catalog.

•!: ;;i • •,::: ; ;:: :;•:: ::; •' :i; i: jlreu:1• FkLoaded SEk~emmo.n~ tutijReudabidlndnulie n • Faet n dafm i 16.51131 ~Qt S o4.01blhulit 03.20312O31

Figure 4: Lexical-Based Expressiveness Analysis

"The analysis starts when the analysis button is pushed (Figure 4 - arrow 3). The output frame
will show the sentences in the input file that contain the particular defect you are

16 CMU/SEI-2005-TR-014

investigating, along with the indication of the individual term that makes the sentence

defective (according to the kind of analysis selected). Now the defective sentences can be

corrected. If a sentence in the output frame is clicked, the same sentence in the input file is

highlighted in the input frame (Figure 5, arrow 1). You can now correct the defective

sentence in the input frame (Figure 5, arrow 2). After the all the defective sentences have

been corrected and saved, the analysis can be redone to verify that no new errors were

introduced.

usrfriendy F 272.kt ATA2I:TeIeuit o dtbs

clear r_ .269 _

well is defective because It contains the wording: appropriate •°

coby erent Th i
user friendly • r- 2"72. ATIA1311': Ph. I a •~eojcteesecurity for database

difficultobjects.
confused Is defective because It contains the wording: flexible

clearly O-ARS [Lexical] vaguenes Statistics (on 'SEl-reqs-mon....Lt"r file):
acceptable
agreable N Number of evaluated sentences: 332

Number of defect"v sentences: 6i

_ Defect rates 1%

266 ATL684: The n . at" accessto users of oducationuraining documents and matenals. At

The system shall provide the capability to manage and ensuo t cy, data security, data access, and integrity of application .otware and databasr

268 AT0L548: The system shall provide for the establishment of inclusive dates during whi ser access is granted (term of access) and, after expiration, user access r

17:Te system shall support system security based audits a. •€ ['

271 ATLA13 :1 ,, n, ' nl .. r n' of the data. I •i I•

272 ATIA1311: The system shall provide flexible object level security for database objects.

273 ATIA1323: The system shall not require any special equipment to gain access to the system. 21

jlnro Fle Loaded ý bd r~~er -at ", J ýed-byne lC*-L-eel Fornal 1U.113 FQTu5 S n4~l 015Ii 02c3 =203i

Figure 5: Active Link Between the Output and the Input Frames

"The tool sometimes identifies "false positives." A false positive is a sentence recognized as

defective by the tool but considered acceptable by the user. In this case the user can activate

the corresponding check boxes (Figure 6 - arrow 1). The false positive sentences are hidden

in the output frame and will not be displayed even if the tool still considers them defective.

The hidden sentences can be displayed again by clicking the "Resume Hidden Sentences"

button in the output frame.

CMU/SEI-2005-TR-014 17

_ ,* ,I, , , I - - IPile Etdlhr m : i few tnya Meericae.O &taq 7 ' ::, : :" " : :

fP " 2 71 T7A1961: The system Mtarl identify and produce, if apmopnate, a91 training products,

eventually rateriia, and/or information necessary to train one or more cnlical coflective or indcrdeual
possibly 'i '
optionally MI e beca It In the rdin If appropriate
and/or
or/and The line number.
probably fr 281. ATIA2033: The system shat/provide eecunly measures to ensure oný/ authonzed user
if appropriate ss t cted andfoi sensitie information
if necessary __d__e__ol h ordln__ _andor

if cane
if needed rQuARS [LexicaQ optlonallty Statistica (on "SEI-reqs-monon..txt" file):
when necessary • f*

hen possible Nmber of eluated sentences* 332

_Number of defective sentences: 3
DI' ELETEI gi&W~6 ýAV P~A1 R,/ INT

[QsAeRS Sudmat*ef
Ek fnif4 SJealh Yew Analanwl~

2 1. Requirements for the Functions and Performance of the System

3 ATtA384: The system shall provide capability to maintain grades and adjustments.

4 ATIA417: The system shall provide capability to remove student from training.

5 ATIA451: The system shall provide capability to deliver education/fraining products and materials, including safety materials, to the leamer at home, units, training cern

6 ATIA469: The system shall provide the c+ability to manage and manipulate the educationifraining catalog.

7 ATIA479: The system shall maintain the education/training product catalog.

g ATLA480: The system shall provide a capability to search the education/training products catalog.

• : :::• : ':: : : :;: : •:• ;; ?':'i"": ; ned Fie Loadedf SE -em•-nena-,s lead•Re • Indexn lCeoeeeerl_. Freoval 16 5113 l~ruAS v4 Olb (tO 53.2001203l

Figure 6: Hiding the False Positives

3.2.1.2 Syntax-based Analysis

As shown in Figure 7, the "S" button on the top toolbar of the GUI (arrow 1) is used for
performing the syntax-based expressiveness analysis.

Once the syntax-based analysis has been selected, the dictionaries frame shows the

dictionaries for each type of the available syntax-based analyses (arrow 2). Select the type of

analysis from the correspondent dictionary bookmark in the dictionaries frame. The available

analyses are: implicity, multiplicity, and under-specification.

The analysis is performed in the same way as the lexical analysis. For performing both

analyses, the tool first derives the syntactical structure of each sentence in the input file. This

structure (which is not displayed) is necessary for detecting the implicity, multiplicity, and

under-specification defects in the requirements document. While dictionaries are necessary

for the implicity and under-specification analyses, the multiplicity analysis doesn't need a

dictionary because it relies on the syntactical structures of the sentences.

18 CMU/SEI-2005-TR-014

,M AR~Edt iew : AMSS rat4mrn&aio LOO QrR OiI G ; J j lb j 6 J •j 1 9 '1 !"ýj a: 1•

The line number: _J,
tetn F 6. That is the testing procedure to be folloeed too.

procedure contains a uns.eesente... bec... the term: testingSprocess '"• ,Jmaual The line number:
Ftac B. Those procedures prewnooaf removed shall be inclued in the document ation

peport contains a unmsecified sentence because the term: procedure

document 2 1The line number:
requiemen F 1 i the devrelopers shall prepare all documrents including those in the testing list.

butho ni,... ntsu cified sentence because the term: testing

frequency Th
Teline number:

4 e r 'I"

Ein Edit Jeah Y.rý re~ He*

I1 The CM documentation shall include a configuration list.
2 These persons shall develop the system code those shell develop the interface.

3 The TOE description shall if necessary as a minimum describe the product type and the general IT features of the TOE.

4 The evaluator shall confirm the information proinded in terms of conformance to all requirements.
56 The evaluator shall confirm that the TOE description is clear and internally consistent.

6 That is the tenting procedure to be tollowecd too.

7 the system shall run efficiently and i shall ron cor actly as well

8 Those procedures previously removed shall be inctuded in the documentation

I PieF Leaded seel-ue FS-dk IeebrryIdei lCdnsW c orl- 16 2246; IQuS Ad 01 2td0n 2ýG23]l

Figure 7: Syntax-BasediAnalysis

The QuARS tool uses the View derivation for the consistency and completeness analysis.
Unlike in the expressiveness analysis, the aim is not the detection of defects at the sentence
level of the requirements document, but the derivation of semantic information.

The semantic information is the "~argument"r a sentence deals with. A View is a filter for
sentences that deal with a particular argument. The QuARS tool is able to show graphically
the number of occurrences of sentences belonging to a particular View for each section of the
requirements document. The View derivation relies on dictionaries, which contain V-domain-
related terms instead of defect-related terms. A V-dictionary is the set of all the terms dealing
with a particular View (i.e., those terms that, if contained in a sentence, indicate that the
sentence is dealing with the argument to which the View is referring). The rest of this section
will illustrate the way QuARS derives this information.

As shown in Figure 8, click the "V" button on the top tool-bar of the GUI (arrow 1) to select
the View derivation functionality of the QuARS tool.

Once the View derivation functionality has been selected, the dictionaries frame will show

the available dictionaries (Figure 8, arrow 2). Each dictionary in the dictionaries frame
corresponds to a particular View that can be derived. Select the View of interest by selecting

the corresponding V-dictionary.

Once the requirements file is loaded, the View derivation can 1-,; started.

CMU/SEI-2005-TR-014 19

The output of the View derivation is a table (arrow 3) displayed in the output frame. The rows

of this table correspond to the sections or subsections of the document under analysis. The
first column contains the number of sentences belonging to the View, and the second column
contains the total number of sentences of the correspondent section or subsection.

These data are shown graphically by an MS Excel graph corresponding to the table.

OoGt;nIveWa'w1 ww 2y _ ___1 [VIVi

OuARS [Views Derivationi security ANALYSIS
Section Id I #Of View's Sentences I #Of Section Sentences

canaccreditation authe 1. o u10 p eB,padt-on o seuiy " t 12. 12 1,0
attack • 3. 17 lie

aWuthenticate _ _ __4. I 0 13

S ite d l sen muihlo

authentication 5. 10 114
2uthorise user the6. a n0 15nia e c t e
back dolor The7. y0 1s3

between-the-line entry scntg
canadian Trusted computer product evaluation crtieria p cCTCPEC ,++ : ++ ,++++ +++ ° ++ •= +......: ,+ ,+:+ •; : •

fil Elý mylo

2 1. Requirements for the Functions and Performance of the System +

3 ATIA384: The system shall provide capability to maintain grades and adjustments.

4 ATLA417: The system shall provide capability to remove student fr'om training.

5 ATIlA451: The system shall provide capability to deliver education/training products and materials. including safety materials, to the learner at home, units, training cerr ,
6ATIA469: The system shall provide the capability to manage and manipulate the educatiorn/taining catalog. '

7ATLAA79: The system shall maintain the education/training product catalog.

8 ATIA4B0: The system shall provide a capability to search the educatiomraining products catalog.

]QuiSA.lb uila,4J2 3

Figure 8: View Derivation

Figure 9 shows the output of the View derivation. In this case, the View derived is the

security characteristic, and the dictionary in the dictionaries frame contains a set of terms
directly or indirectly correlated to a security issue.

20 CMU/SEI-2005-TR-014

CuhRS OhWeere L I S IV1 ?

, ecuthenticate ~ k ~~eImr~ Fqes zzuA 5rde•mtlce edrslo~a 1 t*-pruperty t 4 l f W a
accreditation authonly j -G C 5 C
add-on secunty JAsn dol grafico~ _7 i"

whmi..I AMS A*W. dp... d~e~KWO- s.ea"Ysl•iI uhentication

authorise user

back door20
Betl-LaPadule 1S0
between-the-line entry p

canadian Trusted compu eO
CTCPEC

140

MW I DEE II I .I
too

40

2 1. Reojremenrts for the Fur 0 14 0 ¶0M3
3 A -TA84: The system shall .

4 A T IA 4 1 ? : T h e s y s t e m s ha ll t J1 2 .0 0 3 .0 0 4 ,0 0 5a 0 0 e61 . 1 e , 0M

5 ATLAA51: The system shellttfmn e

6 ATLA469: The system s" ptrt

7 ATIA479: The system shall maintain the . ielro ls9 proct catalog.

8 ATLA4M : The system shall prftide a capability to search the educatiotraining products ceataog

L ~~~~jirvA FiateedWd SEireqweee-e FReadilmylrrdý t~JCuw-L- jj 1,513 IO .45RS ni ,bld~ Oa202312

Figure 9: Graphical Representation of a View Derivation

3.2.2 Tailorability Issues

The QuARS tool was designed to be highly tailorable for different application domains and
user needs. The main aspect of the QuARS tailorability is the way it handles the dictionaries
(see Figure 10). In fact, it is possible to permanently modify dictionaries, create new
dictionaries, and delete existing ones using the set of function buttons in the dictionaries
frame (Figure 11 - arrow 1). The use of these function buttons is described below.

"* New-used to create a dictionary. The ability to add new dictionaries for lexical analysis
and View derivation allows the QuARS tool to be adapted to particular application
domain and user needs. For example, for a particular application domain, it might be
necessary to eliminate some terminology that could be a source of ambiguity. The
creation of new dictionaries is not permitted for the syntax-based analysis because the
dictionary is strictly connected to its analysis routine, and a new syntax-based analysis
would require a new routine.

A dictionary can be modified by editing it directly in the dictionaries frame. Figure 10
(arrow 2) shows the creation of a new dictionary in the QuARS.

" Delete-allows a dictionary to be deleted. This function is not allowed for syntax-based
analysis.

* Reload- displays the last saved version of a dictionary.

• Save-makes modifications to a dictionary permanent.

CMU/SEI-2005-TR-014 21

* Clear-clears the content of a dictionary, which becomes permanent when the "save"
function is selected.

* Print-prints the contents of the dictionary.

1921A 101911ILS t-SvIý ? 1
3,IIS Ddulaee S.i.4,001anluo -9ARM Woas

_________________________________ Th. line number.
eventually r 6. Tha is the testing proceuren to be t1tioud Ioo
possibly I contains a uneveoffled sentence because the tern: testinlgA
riptionally i
andtor The line number

apo pria te

ewbhedsltheleterm- testingt

cbfflnecess ry w T.LtEA 1 nar iobs eedtennhieninnd

3 he TO dessntib n shall if neceOmaaokeace nninimom
I Thuenalutor eall cnfin thu ntonnationpnhoied i

IThattte CMdcmntati ondhele inlobe aofo igured too.
7 Thein pertons shall tonevcenlyp and iyte oda e thon selon as well

3~~ Theanosoanennn TORdsritinshll9neesay s inmu E .s~nni

lM~ ~ i mn the information p2 10.43

6 hti. te* testng, prceurt bt e flln ie too,

7tThe sytm shoallenatnon shH inolod a-11toaio a

Thr i. thet iesin theeon toin heiedn fotoe toool o t

The ~ ~ ~ ~ ~ ~ ~ ~ - on esl-o ehulltlie asorttwe thatus the TOE, dtestinigleted nenel s et

r If f

Figur t0: Creating ahlphpn Newlcmnt Dictionaho i te eain
22e because05-T-O 4h a etn

3.2.3 Metrics Derivation
The QuARS tool can also calculate the defects rate during a requirements analysis session.

Figure 11 shows how the QuARS GUI allows the user to gather these metrics.

taking into accoun

asO" posblY QuARS [LSytcica ml i ujctiity Statistics (on 1242rqs- os-.to" f ie):

N of evaluated sentences: 30

bi r Q"s 6Defect rate* 2%

sm lryR
a a iiyId x (Colemr oaLiau Formula) 10.4416

worts
b-iag'her

-- uAR
"xcl " 'oalt Statistics (on "SEI-reqs-moonc-s.txt

" file):.
.,•"1lower

I Number o luated sentences: 332

1 6 Th e sta te men tg of T O E senl iN u mb e r d efe ctive s e nte n c e s : u onf

taking into consideration Read a t (Colean-Ls au Formular t e o n b

F ..possible Ction
o tr•• i s ar av ia l subjectivity Statistics (on "SEl-reqs oo-s.tx file):

as,

d8Tefecatiemeto O sen urte rrnc oes is hl counte fad, epl and th p oorgnstiona weuit h roices pelwhct toe the ~ t otorsall cnum btatter onf orek" :

senTenes

in
the reutement

dOcument
is ceall

ated
on.

1 The PP developer shall proadde b
siPPtridcton

s- e ColoheanLau
R aity f lna is cthe alcue

t

1 The stateon p age f cort a PPid entifination) t Thif ormula ass u esmptio ue inhot easily ao
the TOEea

rdeIsue t can d beos read. The

f u The sttintrodton
shal cont ail in te

oto of the QuARs
agU i n igured1,, airo 1

Al The s1:tmet rics ereatedt thel currenti exsation an becdsplayed in the ouTput frate. Foreac

nTh ealuypersorm the lte d metrics are maiiable:ntand evn ondiffe r c (

21T:P nrdufction shalcntain cesP i scont edt and th e scriptvinor mtion withcessary to ietify ca taloge regis er, adc ossrfe

22 arrow hction
ohafl metrics Coman- besavedora

Ilo

fihile by selectn thated opio ine

f

" 11 D ef ctraw2 .the col ti n f m etrics e ch anay i (b ot lae xica l a n syntax-eby aselecin th at num ber of

the metrics & logs menu (Figure 11, arrow 3).

CMU/SEI-2005-TR-014 23

24 CMU/SEI-2005-TR-O1 4

4 Empirical Studies on the Effectiveness
of QuARS

This section describes the outcomes of two empirical studies conducted to test the
effectiveness of the QuARS tool. The following initial hypotheses were tested:

1. Using QuARS reduces the time required to review or inspect requirements documents,
reducing the cost of inspection.

2. Using QuARS alone or in conjunction with human inspection identifies more defects
than human inspection alone.

If these hypotheses are valid, the tool will allow human inspectors to focus their attentions on
understanding the business domain rather than dealing with problems in the language of the

specification.

The first experiments involved testing requirements documents that had been inspected

by humans. The experiments were intended to discover whether QuARS would identify
further problems and to characterize the types of problems found. Two detailed cases are
presented below.

Case 1: Company A, an Insurance Business

Company A uses a formal Fagan-type inspection process for requirements documents. The
process has been in use for over a year. All participants had inspections experience. Company

A provided us with a document that had already been inspected, but did not provide data on

the cost or duration of the initial inspection. The documents were MS Word text documents
and contained the following sections:

* title page

* revision control

* introduction

* item-tagged requirements statements in outline form

The document contained 445 sentences or fragments. There was little introductory or
extraneous text. The outline had four levels of nesting, and the nested outline was copied and
pasted into an ASCII text document.

Each of the QuARS functions was executed and the log recorded. The summary of the results
follows:

* 574 sentences

CMU/SEI-2005-TR-014 25

*. readability index (Coleman-Liau) 14.1 (college-level text)

* 234 defects found by QuARS

* 168 defective sentences, equal to 29% of the total sentences in the document. (Sentences
may contain multiple defects.)

The time required to execute the procedure was approximately 60 minutes.

QuARS produced two types of false positive. The first type was the result of a specific

business usage of a word that was also found in one of the QuARS lexicons. In the insurance
industry, the word "commission" refers to a payment to the sales person. The default values
for QuARS analysis describe this word as "under-specified." In particular, the syntax was
"commission file" referring to a data file that was uniquely specified for the work at hand.

"Commission" in this form represented 6 false positives.

The second type of false positive included sentences with the word "this." In the
requirements, a second sentence had been appended to a specification sentence in order to

make a distinction that the requirement referred to a specific use (e.g. "this" and not "that").

The antecedent for "this" would have been completely clear to either developer or tester.

However, it should be noted that such sentences with implicit usage cannot stand alone.

Consider the following sentence:

"Any in-house conversions or transfers into products on this report will show in the premium
column."

This sentence cannot be properly interpreted if the prior sentence does not have an immediate

antecedent for "this" naming the referenced report. Therefore, the warning about implicit
usage is valuable in any circumstances where the requirements document is likely to change
in ways that affect sentence order.

Processing the QuARS results by hand to eliminate the false positives was easy and took less
than 1 hour. Of 234 defects, 72 were identified as false positives.

Total processing time was approximately 2 hours and 96 defective sentences were found,
meaning 16% of the total sentences had escaped detection by human inspectors.

Case 2: Company B, a Manufacturer of Communications Equipment

Company B uses an independent contractor to inspect requirements. Costs and cycle time are
known. The requirements are complicated by the use of both graphical and text-based

specifications. Company B used the QuARS tool to analyze these documents themselves with
assistance from the researchers, so we did not have access to the actual statements.

26 CMU/SEI-2005-TR-014

The summary of the results follows:

* 2,396 statements

* 279 human-identified defects

* 692 QuARS identified defects

* 484 defective sentences

* 179 defects reported as false positives

The human inspector was able to identify defects in graphical requirements that QuARS did
not identify. On the other hand, all text-only defects identified by the human inspector were

also identified by QuARS.

Company B also recorded a learning curve. The work was divided into six components. The
first two components took approximately 60 minutes each to analyze. The last three

components took only 15 minutes to analyze. Again, the false positives were very easy to

remove. The total effort, including removal of false positives, was approximately 6 hours and
the work was spread over 3 days as a part-time effort.

By comparison, the cycle time for the requirements expert was 10 days and the cost of using

the consultant was approximately $6,000.

Both case studies support our second hypothesis. In both cases, QuARS uncovered

significant defects that had escaped human inspectors. The cost of running the tool was trivial

compared to the cost of using only human inspectors.

The first hypothesis is still not fully tested, but the evidence suggests that it will be validated.

The underlying reason is complex and based on the premise that reviewers experience a

maximum defect find rate. That is, if inspectors reach the threshold find rate - say 30 defects

per hour - it is virtually certain they have not found all the defects they are able to identify.
Companies with significant inspection experience usually require that such documents are re-

inspected. The majority of requirements problems identified on first inspection are language-

related problems as there are checklists and teaching methods to cover this type. By reducing

the language problems, re-inspection is less likely to be needed-hence the total cycle time to
process and approve requirements will be less.

CMU/SEI-2005-TR-014 27

28 CMU/SEI-2005-TR-O1 4

5 Conclusions and Future Directions

The QuARS tool-still in prototype stage-has been used for analyzing requirements
documents taken from real industrial projects to verify its functionalities and get feedback
from industry about its effectiveness. The outcomes of these trials are encouraging because
QuARS has been recognized as effective in terms of both number and relevance of defects
detected.

The tool is highly adaptable to different application domains and requirements. It can run
with almost all types of textual requirements because it uses simple text files as input, and
almost all the formats produced by commercial text editors can be converted into text files.

The tool also offers many improvement opportunities because the effectiveness of the
analysis performed depends on the completeness and accuracy of the dictionaries used. A
method for enlarging the dictionaries and making them more accurate based on linguistic
techniques has been defined and will be implemented.

Several tests are planned for the future. A high-maturity organization that develops large-
scale systems intends to apply QuARS to their original requirements to compare the results
generated with the orthogonal defect classification data from a completed project. The
comparison will help determine whether the use of QuARS can prevent significant rework
later in the product development life cycle. The results will be used for a simulation study of
the cost and schedule impact of inserting QuARS into the standard process.

QuARS will also be tested in a new product development environment so effects on the
process can be monitored. Such monitoring is much more time consuming, and results from

this study will not be available for several months.

The use of the View dictionaries has not been fully explored. Experiments will be devised to
determine how clustering by vocabulary can be used to examine requirements for omissions

and conflicts.

At this time, QuARS is a research tool and not quite ready for everyday use. It currently
processes only text documents and requirements by defect type. It would be more usable if
the results were recorded by requirement ID so that all the problems with a requirement

appear together. As a stand-alone tool, it also needs the capability to recognize a requirement
ID (such as 4.3.l.a). It would be natural to embed the QuARS engine into a commercial
requirements database tool.

CMU/SEI-2005-TR-014 29

Even as a research tool, QuARS is able to help a single individual parse over 800
requirements statements per hour and eliminate possible false positives. The few trials so far

suggest that the tool is both more effective and more efficient than human inspectors. We
expect, however, that the combination of QuARS with human inspectors will produce the

best possible results.

30 CMU/SEI-2005-TR-014

References/Bibliography

URLs are valid as of the publication date of this document.

[Abrial 96] Abrial, J.R. The B Book -Assigning Programs to Meanings.
Cambridge, England: Cambridge University Press, 1996.

[Ambriola 97] Ambriola, V. & Gervasi, V. "Processing Natural Language
Requirements," Proceedings of the 12th IEEE Conference on
Automated Software Engineering (ASE '97), Washington, D.C.:
IEEE Computer Society Press, November 1997.

http://portal.acm.org/citation.cfm?id=786786

[Ben Achour 99] Ben Achour, C.; Souveyet, C.; and Tawbi, M. "Bridging the Gap
between Users and Requirements Engineering: The Scenario-Based
Approach." International Journal of Computer Systems Science &
Engineering, Special Issue: Object-Oriented Information Systems 5,
1(1999).

[Cockburn 01] Cockburn, A. Writing Effective Use Cases. Boston: Addison-
Wesley, 2001.

[Firesmith 03] Firesmith, D. "Specifying Good Requirements." Journal of Object
Technology 2, 4 (July-August 2003).

[Fuchs 95] Fuchs, N.E. & Schwitter, R. "Specifying Logic Programs in

Controlled Natural Language." Proceedings of the Workshop on

Computational Logic for Natural Language Processing, Edinburgh,
April 3-5, 1995. http:www.ics.mq.edu.au/-rolfs/papers
/ifi-95.17.pdf

[Goldin 94] Goldin, L & Berry, DM. "Abstfinder, a Prototype Abstraction
Finder for Natural Language Text for Use in Requirements
Elicitation: Design, Methodology, and Evaluation," 84-93.
Proceedings of the IEEE International Conference on Requirements

Engineering, Colorado Springs, April 1994. Los Alamitos,

California: IEEE Computer Society Press, 1994.

[Hooks 94] Hooks, I. "Writing Good Requirements," 197-203. Proceedings of
the Fourth International Symposium of the NCOSE 2, San Jose,
CA, 1994. http://www.laas.fr/-kader/Hooks.pdf

CMU/SEI-2005-TR-014 31

[Kamsties 00] Kamsties, E. & Peach, B. 'Taming Ambiguity in Natural Language

Requirements." Proceedings of the Thirteenth International

Conference on Software and Systems Engineering and Applications,

Paris, December 2000.

[Macias 93] Macias, B. & Pulman, S.G "Natural Language Processing for
Requirement Specifications." Safety-Critical Systems: Current
Issues, Techniques and Standards, Redmill, F. & Anderson, T.

London: Chapman-Hall, 1993.

[Mich 00] Mich, L. & Garigliano, R. "Ambiguity Measures in Requirements

Engineering," 39-48. Proceedings of the International Conference

on Software - Theory and Practice, 16th IFIP World Computer

Congress, Beijing, China, August 21-25 2000, edited by Feng ,Y.,

Notkin, D., & Gaudel M., Beijing: Publishing House of Electronics

Industry, 2000.

[Mich 04] Mich, L.; Franch, M.; & Novi Inverardi, P. "Market Research for
Requirements Analysis Using Linguistic Tools," Requirements

Engineering Journal 9, 1 (February 2004): 40-56,

[Natt och Dag 01] Natt och Dag, J.; Regnell, B.; Carlshamre, P.; Andersson, M.; &

Karlsson, J. "Evaluating Automated Support for Requirements

Similarity Analysis in Market-Driven Development" Proceedings of

the Seventh International Workshop on Requirements Engineering:

Foundation for Software Quality, Interlaken, Switzerland, June

2001. http:l/serg.telecom.lth.se/research/publications/docs
/nattochdag-refsq200l.pdf

[Rumbaugh 99] Rumbaugh, J.; Jacobson, I.; & Booch, G The Unified Modeling
Language Reference Manual. Boston: Addison-Wesley, 1999.

[SPICE 98] ISO/IEC TR 15504 (Parts 1-9), 1998.
http://isospice.corn/standard/trl5504.htm

[Spivey 92] Spivey, J.M. The Z Notation: A Reference Manual, 2nd ed. London:
Prentice-Hall, 1992.

[Wilson 97] Wilson W.M.; Rosenberg L.H.; and Hyatt L.E. "Automated
Analysis of Requirement Specifications." Proceedings of the
Nineteenth International Conference on Software Engineering,

Boston, May 1997. http://satc.gsfc.nasa.gov/support
/ICSE_MAY97/armfICSE97-arm.htm

32 CMU/SEI-2005-TR-014

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send coneents regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

(Leave Blank) September 2005 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

QuARS: A Tool for Analyzing Requirements F19628-00-C-0003
6. AUTHOR(S)

Giuseppe Lami
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Software Engineering Institute REPORT NUMBER

Carnegie Mellon University CMU/SEI-2005-TR-014
Pittsburgh, PA 15213

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING AGENCY

HO ESC/XPK REPORT NUMBER

5 Eglin Street ESC-TR-2005-014
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITy STATEMENT 12B DISTRIBUTION CODE

Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAMUM 200 WORDS)

Numerous tools and techniques are available for managing requirements. Many are designed

to define requirements, provide configuration management, and control distribution.
However, there are few automatic tools to support the quality analysis of natural language
(NL) requirements. Ambiguity analysis and consistency and completeness verification are

usually carried out by human reviewers who read requirements documents and look for
defects. This clerical activity is boring, time consuming, and often ineffective.

This report describes a disciplined method and a related automated tool that can be used for
the analysis of NL requirements documents. The tool, called the Quality Analyzer for
Requirements Specifications (QuARS), makes it easier to extract structured information and
metrics for detecting linguistic inaccuracies and defects.

QuARS allows requirements engineers to perform an initial parsing of requirements by

automatically detecting potential linguistic defects that can cause ambiguity problems at later
stages of software product development. The tool also provides support for the consistency
and completeness analysis of the requirements.

14. SUBJECTTERMS 15. NUMBER OF PAGES

Requirements Analysis, Natural Language, QuARS, Quality Analysis 43

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION OF 20. LIMITATION OF ABSTRACT
OF REPORT THIS PAGE ABSTRACT U L

Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

