
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

TEST

by Jason Cooper

TR 2003-50

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2003 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Data Dependent Keying for Wireless Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Army Research Office,PO Box 12211,Research Triangle Park,NC,27709

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Data Dependent Keying for Wireless Networks
Manish Karir John S. Baras

Center for Satellite and Hybrid Communication Networks
Department of Electrical and Computer Engineering & Institute for Systems Engineering

University of Maryland, College Park, MD 20742, USA
{karir, baras}@isr.umd.edu

Abstract— The failure of the 802.11 WEP security specification
to provide any reasonable level of security has come under sharp
criticism recently. In this paper we propose a novel scheme
for providing security in both a basestation based, as well as
an ad hoc network environment. Our proposed scheme uses
data exchanged between communicating peers to evolve per
packet keys. In addition to the concept of Data Dependent
Keying(DDK) we include other well known security primitives
such as SHA-1 based HMAC and RC4 encryption to provide
a complete security solution for wireless networks. We argue
that our scheme provides an adequate security/overhead tradeoff,
and can be easily implemented in current hardware platforms.
In addition, the low overhead characteristic as well as the use
of symmetric cryptographic functions makes the scheme an
attractive option for sensor networks, where energy efficiency
is a primary objective.

I. INTRODUCTION

Security concerns have been an afterthought in the design of
wireless networks. A survey of wireless networking research
quickly reveals that this is true not only for networks that
include a basestation, but is also true for ad hoc or infrastruc-
tureless networks. Therefore, we are faced with a situation
where we have to backfit security schemes into wireless
network scenarios. The 802.11 standard for wireless networks
does include some simple security features, but the level of
security they provide is simply inadequate. The situation is
only made worse by oversimplistic implementations of the
standard.

The failings of the security features of 802.11 standard
(WEP) have come under significant criticism recently. It has
been shown that the weakness of the 802.11 security mecha-
nisms is primarily due to the poor practice of cryptographic
principles. Some of the primary weaknesses that have been
pointed out are: short initialization vector, which is transmitted
in the clear; the use of simple CRC32; the use of a single
shared key; and the lack of a mechanism to change the secret
key [1].

The standards documents for various aspects of ad hoc
networks are still under development by the IETF. However,
even in their current forms, most proposals tend to ignore the
problem of security. Only recently has focus turned to this
important aspect, as attacks on routing protocols, data for-
warding, node authentication and data encryption are starting
to be examined in more detail.

In this paper we propose a novel scheme for providing
security in both an infrastructured as well as an ad hoc
wireless network environment. Our proposed scheme uses

data exchanged between communicating peers to evolve per
packet keys. For each pair of communicating peers, the key
evolves differently based upon the data that is exchanged
between them. In addition to the concept of Data Dependent
Keying(DDK) we include other well known security primi-
tives such as SHA-1 based HMAC and RC4 encryption to
provide a complete security solution for wireless networks.
We make the assumption that our security scheme will work
in conjunction with a 802.11-like MAC layer, where each
data packet that is successfully received is acknowledged. The
system is bootstrapped by initializing all nodes to be deployed,
with the same initial key. After bootstrapping, depending on
the communication pattern and the data exchanged between
pairs of nodes, a copy of the original key is used to derive
subsequent keys for communication between that pair.

The rest of this paper is organized as follows. Section II
outlines some related work in the area of security, both for
802.11 as well as ad hoc networks. Section III describes in
detail our proposed Data Dependent Keying scheme. Section
IV provides a brief description of how DDK can be used to
implement security in both infrastructured as well as ad hoc
networks. Section V concludes with a brief summary of our
contributions, and sketches out future work.

II. RELATED WORK

The security provided by WEP has been strongly criticized.
[1] was among the first to describe in detail the flaws in
802.11 security. They clearly demonstrated the problems of
802.11 in relation to the three fundamental goals of security;
Confidentiality, Access Control and Data Integrity. They argue
that weakness in initialization vector(IV) use, as well as the
use of simple CRC32 by 802.11, makes it vulnerable to a
wide variety of attacks. In addition, they also describe flaws
in some common implementations of WEP which worsen the
problems. While [1] focused primarily on the weakness of IV
use in WEP, [2] pointed out further problems in the WEP
access control mechanisms. They argue that the only viable
long term solution to the collective problems of WEP is a
major overhaul of the current standard.

The security aspects of ad hoc networks have also come
under criticism. Various forms of attacks have been described
on the routing mechanisms for these networks. Most of the
protocols that have been proposed do not incorporate security
in their design. This leaves them vulnerable to several attacks
based on spoofed, altered, or replayed routing information[11].

MESSAGE

HMAC MESSAGE

N

Transmitted Packet

MESSAGEHMAC

Ciphertext

Fig. 1. Packet structure while using DDK

Recent work has focused on adding security to the various
routing schemes. [3] proposed the use of certificates with
routing protocols such as AODV and DSR to provide pro-
tection from various attacks where routing packet headers
might be modified by malicious nodes, as well as scenarios
where false routing packets can be inserted into the network
by malicious nodes. [4] on the other hand has developed
protocol extensions to AODV which provide security via the
use of asymmetric cryptography. They do not describe how
public keys for all the nodes are distributed. In addition [5]
[6] have proposed a delayed disclosure based protocol for
broadcast and multicast authentication. They do not however,
address how those protocols can be used for unicast data
security, and do not provide a method for encryption of
the data being transmitted. [7] is a secure ad hoc routing
protocol that uses symmetric cryptography and is based on
the broadcast authentication described in [5] [6]. It modifies
the original DSR routing protocol to make it more secure.
[11] discusses attacks and countermeasures for some attacks
on sensor networks, and focuses primarily on routing and data
forwarding attacks.

To the best of our knowledge, a data dependent keying
mechanism has not been studied for its applicability in wireless
networks.

III. DATA DEPENDENT KEYING

The Data Dependent Keying(DDK) scheme, aims at pro-
viding a viable alternative to WEP. In addition, DDK can also
be used to provide security in wireless ad hoc and sensor
networks. The subsequent sections describe the different facets
of this scheme. While designing DDK we attempted to keep
the following design principle in mind.

• Data confidentiality: Only two communicating parties
should know the content of their communications.

• Data integrity: It should not be possible for a malicious
third party to modify data in transit from one party to its
communicating peer.

• Security from replay attacks: The scheme should be
protected against simple replay attacks, where a malicious
third party records communications between two peers
and at a later date plays back some or all of the packets.

• Protection from passive attacks: It should not be possi-
ble to build a key dictionary or otherwise compromise
security via passively monitoring the wireless channel.

Active Key: K

K1 = f(K,D)

Active Key: K

Active Key: K

Active Key: K1

K{D,H},N

Node BNode A

Active Key: K

Active Key: K1

Active Key: K1

Active Key: K

Active Key: K

Active Key: K

K1 = f(K,D)

ACK ,H}

K1{D1,H1},N1

K{D

Fig. 2. Data Dependent Key Evolution

• Protection from random errors in the wireless link: The
scheme should be robust against random and unpre-
dictable behavior of the wireless channel including op-
eration in a hostile environment.

The following sections describe key features of DDK and
how they collectively form a system that meets the goals
outlined in the design principles.

A. Data Dependent Key Evolution

One of the key ideas behind DDK is the ability to derive
a key chain that depends only on previous data exchanged
between two communicating pairs. The nodes on deployment
are initialized with the same secret initial key. Subsequent
keys are derived from the initial key and the data exchanged
between pairs of nodes. As the keys are evolved based on data
transmitted from a node, for any pair of communicating nodes,
the keys used to send data from node A to B are different than
the keys used to send data from node B to A.

The key evolution for a single pair of nodes A and B can
be summarized as follows. Initially both nodes A and B have
the same key K. Node A uses a hash generation algorithm,
an encryption algorithm and the key K to encrypt data that it
sends to Node B. It then computes the next key K1 via some
function performed on the key K and the data D

K1 = f(K, D)

Node B on receiving encrypted data from Node A proceeds
to decrypt it using key K to obtain data D. Node B then
verifies that the packet has been correctly received via the
HMAC, as described in the next section. If the packet was
received correctly, it then computes the next key K1 via the
same operation that Node A used as it has the same key K and
data D . At this point Node B does not install this new key K1
as the active key. Both A and B have to agree on when key
K1 should be used. Node A can only install K1 as the active

key when it is sure that node B has correctly computed K1 as
well and vice versa.

After node B has correctly received the data, and used it
to compute K1, it generates a link layer ACK for that data.
This ACK implicitly informs node A that B has correctly
computed the next key. The ACK packet includes a keyed
hash value to prevent an ACK spoofing attack. When node
A receives and verifies this ACK, it installs key K1 as the
active key and will use it to send the next packet. Node B
will not install the key K1 as the active key unless it receives
the next packet from Node A which is not a retransmission
of the previous packet. Node B can distinguish a new packet
from a retransmission, via the nonce field in the packet which
is different for each new packet. The key evolution process is
also illustrated in Figure 2. After each successful exchange of
data between nodes A and B, a new key is derived to be used
for the transmission of the subsequent packet.

If the data packet from node A is lost, it will be retrans-
mitted after a timeout using the active key, which is the key
that was used for the last packet. If the ACK for the data
packet from node B were to get lost, node A will retransmit
the packet using the previous key K and node B will use also
use the previous key K to decrypt the packet.

One important aspect of the key evolution process that we
omitted so far, for purposes of clarity, is the actual details of
the function f. This function can be chosen from a class of
functions as long as it preserves the essential feature that, it
should take the current key K and the last data item encrypted
using K, as input and produce a new key K1 in a manner such
that K1 depends on the value of both the previous key K as well
as the previous Data D. For example, a simple implementation
of f might be to compute a hash of the data, and then
subsequently use this hash in a simple XOR operation. This
can be achieved by using a keyed hash function that takes
the random nonce, which is transmitted with the packet as the
key:

K1 = K ⊕ H(D, N)

Both the sending and the receiving nodes are correctly able
to perform this operation as they both have the same data
and the nonce. While any data corruptions to the data will
be identified by a failure of the HMAC check, it is possible
for the nonce to be modified silently by the channel without
detection. This however, does not pose a serious problem as
the resynchronization procedure described in section III.E will
detect a loss of synchronization and will subsequently force a
key resynchronization.

B. HMAC

In addition to the data dependent key evolution, we also in-
clude SHA-1 based HMAC, on the original data packet [8][9].
The MD5 message digest could also be used in place of SHA-
1, what is important is that a keyed hash function be used. The
choice of the particular hash function would probably depend
on the platform for which DDK was being implemented. For
an environment that incorporates basestations and laptops,
SHA-1 might be a good option, while for implementation on
platforms that have limited energy or computation capabilities,

MD5 might be a better option. We describe the use of SHA-1
algorithm here as an example.

The SHA-1 algorithm produces a 160-bit message digest
for every data packet. The HMAC algorithm uses the SHA-1
algorithm to obtain the MAC using the key K and the original
data packet M as input. If H denotes the SHA-1 hash function,
ipad denotes n repetitions of the byte 0x36, and opad denotes
n repetitions of the byte 0x5C and the secret key is denoted
by K, then the generation of the HMAC can be denoted as
shown below:

HMAC(D, K) = H(K ⊕ opad, H(K ⊕ ipad, D))

The use of keyed HMAC is necessary as, it was well pointed
out in [10], encryption without authentication is simply not
suffient to offer any level of security. In comparison WEP
uses an unkeyed CRC32 algorithm, and thereby offers little
security. The HMAC is even more for important for DDK
because we evolve the keys between two peers based on the
assumption that they both have the same copy of the original
data. Using HMAC helps us ensure not only that a received
data packet came from who we think it came from, but also
protects us against random bit corruption in the wireless link.

C. Encryption

Using the building blocks described in the previous two
subsections on data dependent keying and HMAC, we now
describe how secure communications can be build on top of
them. While we describe the use of RC4 for encryption and
decryption, it should be noted that other encryption algorithms
such as RC5 might be chosen as well. The decision of which
algorithm is chosen would depend on the capabilities of the
implementation platform.

We start with message or data packet D that has be
transmitted from A to B. We first compute the HMAC over D,
using the current active key K as described in the subsection
on HMAC. We then append the HMAC to the original data
packet to generate the plaintext P.

HMAC = HMAC(D, K)

P =< D, HMAC >

The secret active key K is used to generate a RC4 key-stream
of the same length as P and the two are XOR’ed together to
generate the ciphertext C.

C = RC4(K) ⊕ P

C = RC4(K)⊕ (< D, HMAC(D, K) >)

Finally, we append a random nonce N to the ciphertext to
help protect from a replay attack as well as to help the receiver
distinguish a new packet from the retransmission of a previous
packet. This result is then transmitted to B. The nonce field
is also used in the synchronization recovery procedure as
described later.

A → B :< N, C >

D. Decryption

When a node receives an encrypted packet from a peer, it
compares the nonce from the received packet with the stored
value of the nonce from the previous packet, to determine
whether this is a new packet or a retransmission of the previous
packet. If this is a retransmission of the previous packet, then
the current value of the active key K is used. If this is a new
packet, then the previously computed new key K’ is used. To
decrypt the packet, we first extract the ciphertext C from the
received packet. Next we generate a RC4 key stream using the
key K or K’. The plain text is extracted from the ciphertext
via:

P = RC4(K) ⊕ C =< D, HMAC >

At this point we generate a HMAC H’= HMAC(D,K) of
the data portion of the plaintext, and then verify that H’ is the
same as the HMAC H in the plaintext. If H’ is the same as H
then the received packet is valid and accepted for delivery to
the upper layers. In addition, a link layer ACK is sent back to
the sender that acknowledges the receipt of the packet.

E. Synchronization Recovery

Even though by using HMAC we obtain a reasonable level
of assurance that the packet received by node B is the same
as was transmitted by node A, there is still a finite possibility
that both the message portion of the packet and the HMAC
will be modified in such a way that it still produces a valid
but different message than was transmitted. Since DDK relies
on maintaining data synchronized keys between two commu-
nicating parties, this situation would desynchronize the key
information between the two nodes. To protect against this we
have developed a checkpoint based re-synchronization method.
As the keys evolve over time, at periodic intervals a special
message is exchanged between the two that establishes the
current valid key as the fallback key. This special message is
simply the ID of a node that is encrypted using the current key
and transmitted just like any other data packet. On receiving
this packet a node installs the current active key as the fallback
key. If the ID field in the received packet is set to NULL, the
key evolution process is placed in a disabled state. This feature
is used to perform simple key revocation.

De-synchronization is detected when two communicating
nodes can no longer receive messages from each other as the
HMAC check on received packets from another node repeat-
edly fails. Or when a node fails to get valid acknowledgements
from the node it is communicating with. In this scenario, both
nodes revert to the fallback key and attempt to reestablish
communication. Only if they both have the same fallback key
can they reestablish communication.

It is essential that the same key not be used more than
once to encrypt messages. If an attacker obtains two messages,
encrypted with the same key he can obtain critical information
regarding the plaintext messages via a simple XOR operation
on them.
If

C1 = RC4(K) ⊕ P1

C2 = RC4(K) ⊕ P2

then
C1 ⊕ C2 = P1 ⊕ P2

It is important that the fallback key not be used directly, as
it has already been used once before. Therefore, when a node
is attempting to perform synchronization recovery, it derives
a key based on the fallback key using a random nonce.

K ′ = RC4(K, N)

This value of the nonce N is then transmitted to the receiver
at the head of the transmitted packet. On receiving this packet
a node that is in synchronization recovery mode will use
the value in the nonce field of the packet to derive K’, and
then proceed to use that key for packet decryption as usual.
This operation is similar in spirit to the operation of WEP,
however, in our case a node is only expected to be in this
mode for a very limited amount of time and is only expected
to transmit a few packets while in this mode, therefore, we do
not suffer from the same problems as WEP as key collisions
are unlikely when we only use the fallback key to derive at
most a few derivative keys. Moreover, a backoff algorithm is
used to limit how frequently resynchronization is attempted to
aleviate attacks where de-synchronization is being caused by
a malicious host.

IV. SECURITY IN WIRELESS NETWORKS

In this section we briefly illustrate how DDK can be used
to provide security in both an ad hoc network as well as in
networks which utilize basestations.

A. Securing Infrastructured Networks

In a network that contains basestations DDK is similar in
operation to WEP. The primary difference is that unlike WEP
in DDK the key is changed with the transmission of every
data packet. This addresses some of the shortcomings of WEP.
The other significant advantage of using DDK is the use of
a HMAC algorithm instead of a simple CRC to verify data
integrity. During deployment, the basestation is configured
with an initial key, which is also distributed to all the initial
clients. Using this initial key, the basestation performs the re-
synchronization procedure with each client, to bootstrap the
key evolution process.

Adding a new node simply consists of installing the initial
key onto a new client and introducing it into the network.
The basestation will perform resynchronization with it and
incorporate it into the network. As the basestation contains
a separate key for communication with each client; key re-
vocation is achieved by the basestation sending a checkpoint
message with the id field set to NULL. This will place the
key evolution state machine on the client in the disabled state.
At the same time the basestation will disable its key evolution
state machine for that particular client.

B. Securing Ad Hoc Networks

DDK can also be used to provide security in an ad hoc
network environment. In an ad hoc network, each node per-
forms the same functionality that a basestation would perform

in a fixed infrastructure network, and security is provided on a
hop by hop basis. Therefore, in an ad hoc network, each node
would maintain a separate key evolution state machine for
each of its next hop neighbors. As a data packet is forwarded
through the network, encryption is performed at each hop and
at each hop a separate encryption key is used for encryption.
To bootstrap the key evolution, each authorized node is given
the same initial key during network deployment. The nodes
then perform the re-synchronization process to start the key
evolution process depending on the data they exchange with
their next hop neighbors.

Adding a new node simply consists of installing the same
initial key that was used during the initial network deployment
on the new node and inserting it into the network. Depending
on its neighbors, it will evolve subsequent encryption keys.
If a node suspects one of its neighbors, it can revoke its key,
via a simple process of sending it a checkpoint message with
the ID field set to NULL. This will disable the key evolution
state machine for exchanging data packets between those
two particular next hop neighbors. The node that sends the
NULL checkpoint message will ignore any further messages
from the suspect node. Other nodes may however, continue
communication with the suspect node. This protects us from
malicious, captured nodes attempting to shutdown the entire
network by simply sending out NULL checkpoint messages
as they travel through the network. Only communication with
a particular node is disabled.

Used in this manner, DDK can significantly enhance the
security of an ad hoc network. It can prevent an entire class
of simple eavesdropping and replay attacks as in order to be
able to receive packets, a node must be able to obtain the
initial key used during deployment. Sinkhole, spoofed/altered
packets, selective forwarding, and route falsification attacks
[11] are also prevented as a node can not participate in the
ad hoc network, unless it has a copy of the valid initial key.
DDK does however fail to provide any security in the scenario
where a node is able to fraudulently able to obtain this initial
key. The only option in that scenario is for the next layer of
security, possibly at the routing layer to detect the malicious
node, and use DDK to trigger a key revocation.

V. CONCLUSIONS AND FUTURE WORK

In this paper we introduce the concept of Data Dependent
Keying. Data Dependent Keying scheme provides confiden-
tiality, as well as data integrity for a wireless network. We
have described the key evolution mechanism, as well as related
security primitives such as a SHA-1 based HMAC and the use
of RC4 algorithm, which together form a complete security
solution. We also provide illustrative examples of how DDK
can be used in an infrastructure based as well as in an ad hoc
network environment. For an ad hoc network environment,
since we only maintain pairwise keys on a hop by hop basis,
we are not concerned with scalability as the number of nodes
within the range of a given node is not expected to be very
large.

We are currently working on implementing DDK in a linux
testbed via modifications to the device drivers for 802.11b

wireless cards as well as investigating the feasibility of its use
for a sensor network using sensor networking nodes developed
intially at UC Berkeley. The sensor node platform based on
TinyOS offers much promise as we have easy access and
control over the MAC layer functions that are responsible for
link layer ACK generation.

Though in this paper we focused on the use of RC4/SHA-1,
the concept of DDK is much more general, and allows users
to pick from a set of algorithms, as long as they meet the key
criteria. Various alternatives that can also be used to implement
DDK need to be examined in greater detail. Along those lines
we are investigating efficient algorithms for the key evolution
function. Alternate resynchronization/checkpointing methods
also need to be studied. We believe data dependent keying is
a promising flexible security model for wireless networks that
needs to be examined and studied in greater detail.

ACKNOWLEDGEMENTS

The material presented in this paper is based upon work
partially supported by the U.S. Army Research Office under
Award No DAAD 190110494 and partially through collabo-
rative participation in the Collaborative Technology Alliance
for Communications and Networks sponsored by the U.S.
Army Research Laboratory under Cooperative Agreement
DAAD 190120011. Any opinions, findings, and conclusions
or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the U.S.
Army Research Office or the U.S. Government.

REFERENCES

[1] H. Borisov, I. Goldberg, and D. Wagner. Intercepting mobile commu-
nications: The insecurity of 802.11. ACM Proceedings of the Seventh
Annual International Conference on Mobile Computing And Networking,
July 2001.

[2] W. Arbaugh, N. Shanker, J. Wan, and K. Zhang. Your 802.11 wireless
networks has no clothes. IEEE Wireless Communications, pages 44–51,
Dec 2002.

[3] Kimaya Sanzgiri, Bridget Dahill, and Brian N. Levine. A Secure Routing
Protocol for Ad hoc Networks. International Conference on Network
Protocols (ICNP), Nov 2002.

[4] Manel Guerrero Zapata and N. Asokan. Securing Ad hoc Routing
Protocols. In Proceedings of the 2002 ACM Workshop on Wireless
Security (WiSe 2002), pages 1–10, September 2002.

[5] A. Perrig, R. Canetti, D. Song, and D. Tygar. The TESLA Broadcast
Authentication Protocol. RSA Cryptobytes, Summer 2002.

[6] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient and Secure Source
Authentication for Multicast. Proceedings of Network and Distributed
System Security Symposium, Feb 2001.

[7] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: A Secure
On-Demand Routing Protocol for Ad Hoc Networks. Proceedings of
the Eighth ACM International Conference on Mobile Computing and
Networking (Mobicom 2002), Sep 2002.

[8] J. Krawczyk, M. Bellare, and R. Canetti. Hmac: Keyed-hashing for
message authentication. IETF Informational RFC 2104, Feb 1997.

[9] Mihir Bellare, Ran Cannetti, and Hugo Krawczyk. Keying Hash
Functions for Mesage Authentication. Lecture Notes in Computer
Science, vol 1109, pages 1–15, 2002.

[10] J. Walker. Unsafe at any key size: An analysis of the wep encapsulation.
IEEE Document 802.11-00/362, Oct 2000.

[11] Chris Karlof and David Wagner. Secure Routing in Wireless Sensor
Networks: Attacks and Countermeasures. First IEEE International
Workshop on Sensor Network Protocols and Applications, May 2003.

