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Abstract

This paper presents theoretical and numerical results for the cou-

pled local mode formalism of the seismo-acoustic wavefield in gen-

erally anisotropic range-dependent media. General anisotropy affects

the form of the elastic stiffness tensor, which directly affects the po-

larization of the local modes, the frequency and angular dispersion

curves, the coupling of the local modes in range-dependent media,

and also introduces the effects of nearly degenerate modes. The effects

of anisotropy and the combination of anisotropy and lateral hetero-

geneity are examined for 1-D and 2-D models, respectively. Horizon-

tally polarized shear motion plays an important role in seismo-acoustic

wave propagation in shallow water environments. The transverse par-

ticle motion cannot be ignored when anisotropy is present for low

frequency modes having significant bottom interaction. The seismo-

acoustic wavefield has polarizations in all three coordinate directions

even in the absence of any scattering or heterogeneity. The magni-

tude of anisotropy as well as the direction of the symmetry axis can

be of equal importance. Even weak anisotropy may have a significant

impact on seismo-acoustic wave propagation, depending on the prop-

agation direction in relation to the symmetry axis orientation of the

anisotropy. Unlike isotropic and VTI media where acoustic signals

are composed of P-SV modes alone (in the absence of any scattering),

tilted TI media allow both quasi-P-SV and quasi-SH modes to carry

seismo-acoustic energy. The discrete modes for an anisotropic medium

are best described as generalized P-SV-SH modes with polarizations in

all three Cartesian coordinate directions. The superposition of these

generalized P-SV-SH modes describe the seismo-acoustic signal and

reveal the importance of using an elastic treatment of the seafloor



bottom/subbottom for low frequency shallow water seismo-acoustic

wave propagation.



1 Introduction

This work presents theoretical and numerical results for modeling seismo-

acoustic wave propagation in 1-D homogeneous anisotropic and 2-D anisotropic

range-dependent shallow water environments. There is an apparent trade-

off between anisotropy and lateral heterogeneity, and it can be difficult to

separate the two effects in a propagating signal. Mochizuki (1997) obtained

analytical expressions concerning the trade-offs between anisotropy and het-

erogeneity by extending the Central Slice Theorem to the anisotropic case.

The motivation of this work is to begin to unravel these two effects numeri-

cally and consider them separately within a coupled local mode framework.

Shallow water environments may be highly variable, with both lateral

heterogeneity and anisotropy being almost ubiquitous in the seafloor bot-

tom/subbottom regions. Some common causes of lateral heterogeneity in

shallow water environments are marine sediment composition, non-planar

boundaries, rough surfaces, strong density or velocity contrasts, and varia-

tion in water column depth and/or sediment cover thickness. Shallow wa-

ter sediments exhibit considerable lateral heterogeneity over short ranges

(Stoll et. al., 1994). In addition to lateral heterogeneity, anisotropy is of-

ten an intrinsic property of marine sediments. Marine sediments exhibit

anisotropy and high velocity gradients in shear velocity (Ewing et. al.,

1992). Anisotropy in material properties can lead to observed anisotropic

effects in fluid flow(permeability), heat or electrical conductivity (resistiv-

ity), stress and strains, or elastic properties for example (Friedman and

Jones, 2001). When considering acoustic propagation, the elastic proper-

ties of anisotropic marine sediments are of primary concern. Possible sources

of elastic anisotropy in marine sediments are reported to be the alignment of
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cracks and/or pores in the sediment structure, preferred orientation of min-

eral grains, and lamination as a result of compositional layering. (Carlson

et. al., 1982).

[Figure 1 about here.]

[Figure 2 about here.]

Marine sediments often have transversely isotropic elastic symmetry (TI)

with the fast velocity directions in the plane parallel to the bedding plane and

the slow velocity direction along the normal of the bedding plane as shown in

figure ??. The slow velocity direction is parallel to an infinite fold symmetry

axis 9, also shown in figure ??. This type of elastic anisotropy found in marine

sediments is likely predominantly due to compositional layering (Carlson et.

al., 1982).

There exists a wide body of literature on the investigations of wave prop-

agation in TI environments, and much recent work has been done investigat-

ing more generalized anisotropy. The majority of investigations have concen-

trated on TI elastically symmetric media with a vertical symmetry axis(VTI),

where . = i as in figure ??, or with a horizontal symmetry axis(HTI), where

S= cos ýoi + sin ý4. Figure ?? and figure 2 show the fixed coordinate frame

of reference. An example of a VTJ medium is the horizontally layering of fine

isotropic sediments, and an HTI medium can be produced by the introduction

of vertical parallel cracks in isotropic sediments. Although VTI and HTI are

completely adequate for many applications, there are many instances where

a more general orientation of the symmetry axis 9 is needed, and should be

considered to complement the existing body of VTI and HTI work. Simply

having VTI or HTI layered sediments with non-horizontal bedding planes
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provides an example of a TI medium with a non-vertical and non-horizontal

tilted symmetry axis. Anisotropic variations other than azimuthal may also

be considered, where the anisotropic symmetry axis 9 is allowed to tilt in

both azimuth and elevation. Martin et. al. (1997), Thomson et. al. (1997),

and Zhu and Dorman (2000) provide complementary results to the work pre-

sented in this paper. In addition, Martin et. al. (1997) provides an excellent

summary of work relevant to the topic of anisotropy and coupled modes.

The work presented in this dissertation employs a modal representation of

the seismo-acoustic signal. An acoustic signal may be composed of acoustic

modes, hybrid acoustic-crustal modes also known as seismo-acoustic modes,

and crustal modes. An acoustic mode carries its energy in the water col-

umn and has very little interaction with the bottom/subbottom. A crustal

mode propagates its energy in the sediment and basement layers. A hy-

brid acoustic-crustal mode has significant energy in both the water column

and the underlying sediment and basement layers. Neglecting any seafloor

bottom/subbottom elastic properties may be a reasonable approach for prob-

lems involving high frequencies where the depth of the water column is much

greater than the wavelength of the acoustic signal of interest. For these prob-

lems the acoustic signal may be entirely contained within the water column

and may not interact with the seafloor. However, for low frequencies and

shallow water environments the bottom interaction of the acoustic signal

becomes significant, and affects the propagation of the acoustic signal. An

acoustic wavefield will interact with the bottom/subbottom at some portion

if not the entire length of the propagation path. Therefore, the characteris-

tics of the acoustic signal are influenced by interactions with the seafloor and

seabed. Energy from the acoustic wavefield can be scattered, radiated into
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the bottom, or absorbed by attenuation, resulting in a signal that is more

accurately described as seismo-acoustic. The seismo-acoustic signal then is

composed of both acoustic modes and hybrid acoustic-crustal modes. In this

work the focus remains predominantly on acoustic and seismo-acoustic modes

(hybrid acoustic-crustal modes) with energy within the fluid layer. Odom et.

al. (1997) investigate the effects of VTI elastic symmetry on local modes and

on the coupling of local modes, focusing on sediment modes. Their model has

been modified to facilitate the study of acoustic and seismo-acoustic modes in

a generally anisotropic medium. The work of Odom et. al. (1997) is extended

by including a more generalized description of anisotropy found in marine

sediments. A modal formalism and coupled local mode formalism are used

to examine the seismo-acoustic wave propagation in 1-D and 2-D anisotropic

models respectively. The coupled local mode formalism is not necessary for

wave propagation in a 1-D homogeneous plane layered anisotropic structure.

However, the coupled local mode formalism is an appropriate method for

the 2-D range-dependent anisotropic wave propagation problem. Therefore

the method of modes is also applied when the wave propagation problem re-

duces to a 1-D homogeneous plane layered anisotropic structure. The effect

of symmetry axis rotations on the propagating modes are investigated.

The body of the paper centers around two distinct models. The first

model describes general anisotropy for a 1-D homogeneous plane layered

structure. The effects of anisotropy, entirely independent of any range-

dependence are considered. The second model focuses on the effects of

anisotropy in combination with a 2-D range-dependent medium. Anisotropic

effects on mode coupling, induced by lateral heterogeneity are considered.

Section 2 discusses anisotropy and wave propagation for a 1-D homoge-
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neous anisotropic plane-layered structure. A brief description of the modal

formalism of Maupin(1988) as applied to the 1-D anisotropic structure is

contained in section 3.1. An introduction to TI elastic symmetry and nomen-

clature is found in section 2.1 and section 2.2 demonstrates the usefulness

of the Bond transformation in obtaining a generalized elastic stiffness ten-

sor. Numerical calculations are discussed in section 3 for the 1-D homoge-

neous anisotropic plane layered structure. The anisotropic model/profile is

described in section 3.2 and slowness curves are considered in section 3.3.

Section 3.4 covers angular and frequency dispersion curves while section 3.5

provides the resulting generalized eigenfunctions. The combined effects of

anisotropy and lateral heterogeneity are presented in section 4, beginning in

section 4.1 with a brief discussion on the coupled local mode formalism of

Maupin (1988) for a 2-D anisotropic range-dependent structure. The descrip-

tion of the 2-D anisotropic range-dependent structure and its velocity/density

profile is found in section 4.2 and a discussion on coupled local modes, in-

cluding local mode coupling matrices, eigenfunctions, and dispersion curves is

presented in section 4.3. The summary, conclusions and discussion of results

are contained in section 5.

A variety of useful relations, such as theory, and concepts concerning

anisotropy have been collected and presented in the appendices. Appendix

A expands on the elastic stiffness tensor and matrix notation, while Appendix

B provides further insight on the differential operator A from the equations

of motion. Appendix C defines the coupling matrix Bq, and Appendix D

defines some possible forms of anisotropy parameterization. Appendix E

elaborates on the specifics of the Bond transform for a TI medium. The no-

tation used along with definitions of variables or parameters can be found in
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the List of Symbols. Symmetry planes and wave polarizations are considered

in Appendix G for TI elastic symmetry.

2 Anisotropy Background

A study of a 1-D homogeneous plane-layered structure, with the absence of

any range-dependence is presented. By assuming anisotropic sediments, the

elastic properties of the sediment layers are allowed to vary with propagation

direction. Specifically, energy propagating along different directions within

the sediment layers will result in the wave propagating at different veloci-

ties. These anisotropic sediments are assumed to have TI elastic symmetry

with an arbitrarily oriented symmetry axis (§). The effect of anisotropy on

propagating modes, including changes in phase and group velocities, and

eigenfunction polarizations are investigated.

2.1 Transversely Isotropic Elastic Symmetry

Nomenclature for anisotropy has not been standardized in the literature.

This poses a problem that Crampin (1989) and Winterstein(1990) recog-

nized over a decade ago. Because transverse isotropy is used with multiple

meanings in the current literature, any possible confusion is attempted to be

eliminated by explicitly stating the nomenclature used in this work.

For the purposes of this dissertation, a general anisotropic medium is

defined by an elastic stiffness tensor belonging to the transversely isotropic

elastic symmetry system. The nomenclature of Winterstein (1990) is used,

where TI refers to a medium with transversely isotropic elastic symmetry hav-

ing an infinite-fold symmetry axis. A medium retains its TI elastic symmetry
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regardless of the orientation of the symmetry axis or any physical rotation

of the media. A TI medium with a vertical, horizontal, or arbitrarily tilted

symmetry axis is labeled VTI, HTI, and TTI respectively.

The term "transverse" in transverse isotropy refers to any direction which

is perpendicular to the symmetry axis of the medium and not to a fixed co-

ordinate direction. As noted by Winterstein (1990), TI has occasionally been

used to refer to a VTI medium. In addition, hexagonal symmetry has often

been used interchangeably with the TI symmetry in the wave propagation

communities. The hexagonal symmetry class is a subset of the TI symmetry

system. Both TI and hexagonally symmetric media have the same strain-

energy functions, and the elastic equation of motion will be exactly the same

for both media. Elastically, a hexagonally symmetric and TI symmetric

medium look exactly the same, but compositionally or structurally they are

quite different. It is likely that a real earth structure would belong to the

transverse isotropy symmetry class, and according to Winterstein (1990),

sediments are unlikely to be structurally hexagonally symmetric. Elastically,

TI and hexagonal symmetries have the exact same degree of symmetry, since

both require five elastic constants. However, structurally TI has a higher de-

gree of symmetry and is closer in symmetry to isotropy than the hexagonal

symmetry. This is a result of TI having an infinite-fold symmetry axis, the

hexagonal symmetry only has a six-fold symmetry.

TI is an elastic symmetry system distinguished by a unique form of the

elastic stiffness tensor. The elastic stiffness tensor has five independent con-

stants that define the individual coefficients. Each coefficient is a linear

combination of these five independent constants, and these five independent

constants can be parameterized into several forms. They may be expressed
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as velocities, elastic moduli, or even a combination of ratios of velocities

and elastic moduli (see Appendix D). In comparison, an isotropic material

is parameterized by only two elastic moduli. Although the elastic symmetry

has been limited to transverse isotropy for this work, the theory and some

portions of the code can incorporate more general anisotropy (up to 21 inde-

pendent elastic moduli). The elastic stiffness matrix 'C for a VTI medium

is:

A H F O 0 0

H A F O 0 0

F F C O 0 0
aC where H= A-2N (1)

0 0 0 L 0 0

0 0 0 L 0

0 0 0 0 0 N

The A, C, F, L, N and H = A - 2N represent the VTI elastic moduli in Love

(1944) notation. The 6 x 6 abbreviated subscript matrix 'C contains all of

the information of the elastic stiffness tensor, Ciklj (see Appendix A).

The form or appearance of the elastic stiffness matrix is similar to an

orthorhombic symmetric medium. They share the same filled-in elements

and the same zero elements. The TI medium has a higher degree of symmetry

than the orthorhombic medium, which has nine independent constants. The

VTI medium in equation 1 may be thought of having the appearance of a

quasi-orthorhombic medium. Such similarities with other symmetry systems

are helpful when the elastic stiffness matrix aCij is rotated to more general

orientations.

The elastic moduli A, C, F, L, N from the above VTI medium in equa-

tion (1) can be related to velocities for compressional and shear plane-waves

in the medium. The following describe the wave velocities for horizontally
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transmitted plane waves within the xy-plane.

AH (A compressional waves (2)

horizontally polarized shear waves (3)
-p

lv -- L vertically polarized shear waves (4)

A vertically transmitted plane wave parallel to the z-axis have the veloc-

ities

ay r- q compressional waves (5)
p

/3V - shear waves (6)

The elastic constant F is not typically defined in terms of a plane wave

velocity. Muyzert and Snieder (2000) relate the elastic parameter F to a

velocity of a wave propagating in a vertical plane between a source and

receiver, and assign a velocity 7 to the elastic parameter. Muyzert and

Snieder (2000) indicate that Anderson (1961) relates this velocity 'Y to a

wave with an incidence angle of 450 with the vertical axis.

3 y -= velocity within the vertical xz-plane (7)
P

where -y2 = &2 - 2/32 in an isotropic medium.

The a and 0 represent the compressional and shear velocities, respec-

tively, and the subscripts H and V denote the horizontal and vertical dis-

placement directions. When A = C = A + 2p, L = N = p, and F A A, the

medium is isotropic and rotationally independent.
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2.2 Bond Transformation

Using the Bond transform for tilting a structure's symmetry axis has been

suggested by Crampin (1981) and Winterstein (1990) and actually imple-

mented for acoustic body waves by Auld (1990) and recently by Zhu and

Dorman (2000) and Okaya and McEvilly (2003). The Bond transformation

is applied in the study of global modes and coupled local modes(section 4)

to obtain a general rotation of the elastic stiffness matrix with TI symmetry.

A formalism similar to Crampin (1981) is used where the propagation

direction is assumed to always coincide along a fixed coordinate direction, the

x-axis. The elastic stiffness tensor is rotated in order to consider anisotropy

with various symmetry axis orientations. This is equivalent to keeping the

elastic stiffness tensor fixed and varying the direction of propagation. The

first method is preferred because the theory does not need to be modified

for each directional change, only the elements of the elastic stiffness tensor

need to be changed. A physical reasonableness to the modeling should be

retained. Randomly perturbing various elements of Ctj can lead to a non-

physical elastic stiffness matrix. By starting with a real physical model, the

reasonableness of the model is maintained regardless of any rotation of the

medium. Odom et. al. (1996) provides a good summary of the conditions

which constrain the elastic moduli of a TI elastically symmetric medium.

Another advantage of the Bond Transformation is working with a 6 x 6

matrix with only 36 individual elements rather than a fourth order tensor

with 81 individual elements. Complex tensor transformations are replaced

with simple matrix multiplication to transform the elastic stiffness matrix to

any arbitrary orientation.

Rotating the elastic stiffness matrix aC1j essentially changes the form of
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the elastic stiffness tensor, how the matrix or tensor is populated changes.

This directly affects the solution of the equation of motion as the elements

of aC1j change. The elastic stiffness matrix is a function of the spherical

coordinate angles 0 and W when aCj = aCij(0, W)

For an isotropic medium, the direction of propagation does not matter.

All planes are symmetry planes and all directions are symmetry axis direc-

tions. The elements of the elastic stiffness tensor do not change with any

rotation of the medium. For an anisotropic medium, the velocity of plane

waves vary with propagation direction through the medium. The elements

of the elastic stiffness tensor change with any rotation of the medium. For

a TI elastically medium, five independent elastic moduli along with two po-

lar coordinates relating the symmetry axis and the propagation direction

are needed to adequately describe the velocity of plane wave through the

medium. The elements of Ciklj are linear combinations of the five indepen-

dent constants, being functions of the polar angles 0 and 0.

While the elastic stiffness matrix may be rotated, the physical boundaries,

discontinuities and the boundary conditions of the 1-D structure remain fixed.

The procedure for implementing the Bond transformation is to rotate the

elastic stiffness matrix with respect to a fixed set of coordinate axes. In

general three angles 0, 0, W are needed to transform the elastic stiffness matrix

'Cij to any arbitrary orientation. The rotations are taken first about the z-

axis, next about the y-axis, and finally about the z-axis again. 0 is an angle in

the xy-plane and corresponds to the first rotation about the z-axis. The angle

0 is defined in the xz-plane and corresponds to the second rotation about the

y-axis. The final angle so is also defined in the xy-plane which corresponds to

the third rotation about the vertical axis. When the starting medium is VTI,
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only rotations through the angles 0 and p need to be considered. In figure

?? the Bond transformation is visually demonstrated. The elastic stiffness

matrix representing the elastic constants within the layer can be rotated to

any arbitrary orientation, as shown by the blocks on the right of the figure.

The spherical coordinates of the symmetry axis directions, 9 = 9(0, •)can

be projected onto a unit sphere. When tilting the symmetry axis, the sym-

metry axis traces lines of constant elevation on the unit sphere as ýa is varied

and remains 0 fixed. Similarly, keeping cp fixed at some value and varying the

value of 0 traces lines of constant azimuth. The lines of constant elevation

represent changes in azimuthal anisotropy and the lines of constant azimuth

representation changes in elevational anisotropy. These are shown as red arcs

in figure 4.

Applying the Bond Transformation to the unrotated elastic moduli within

aCii:

,C' = [MY][aC"][MY]T Bond transformation about y-axis (8)

aC = tMZ][aC'][MZ]T Bond transformation about z-axis (9)

My and MZ are transformation matrices (e.g. Auld, 1990) about the y-axis

and z-axis respectively, and are defined for an elastic stiffness tensor with TI

symmetry in the Appendix E.

Substituting equation (8) into equation (9) and using the matrix multiplica-

tion property [MZMY]T = [My]T[Mz]T to obtain:

"aC = [R] [aC"] tR]T where R = MZMY (10)

The individual elements of the elastic-stiffness tensor can be found by the
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following relation for a medium with TI elastic symmetry.

aCj = A(RIRjl + Ri2Rj2) + H(P7,1Rj2 + RP2Rjl)

+ F(RIR,3 + RI2Rj 3 + RP3Rjl + fI3Rj2) + CR,3R, 3

+ L(RI 4Rj 4 + RI5 Rj5 ) + NRi6Rj 6  (ll)

The elements of aCij or Ciklj are dependent upon the orientation of the

symmetry axis through the elements of R. A rotation of the symmetry

axis changes the value of any given element in CIj, where the specific ele-

ments of CIj remain linear combinations of A, C, F, L, N as demonstrated

by equation(11). The tractable, analytic form for the rotated elastic stiffness

matrix found in equation (11) is due to the large number of elements with

zero-values for a VTI medium.

The sensitivity of the aC0 j elements rotation can be determined by taking

the derivative of equation (11) with respect to 0 and p. The derivative with

respect to a generic angle A is:

a(aC)- _(aCli) where A = or o (12)
aA aA

The angular sensitivity of a TI symmetric medium with an arbitrarily
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tilted symmetry axis may be express as:
_ _ _ _ = O RA( O R+j O R i22  O R- 2

OaC1A aAk OA 1  aA 1A aA)

+ H IM0 32+t19\ + OAl a ~ 31 ±ai j Ri 2 M

+ \ F maRl RA3 + Ri, + -Ri2 R 3 + RI 2  j3aAa aA

+ L(114±Rj + RI "R34 + -a'5-Rj5) +±Rij5

+ N (9,6R 6 +•• 6 R. R a) (13)

[Figure 3 about here.]

Each element of the aC0  matrix may be evaluated through equation (11)

and equation (13). Figure 3 plots the al element and its angular sensitivity

as function of 0 and p.

Auld (1990) provides a more complete treatment of the Bond transfor-

mation and additional details are included in Appendix D. Appendeix G

contains a useful and instructional tutorial on symmetry planes and wave

polarizations for a TI medium. The appearance of a lower degree of symme-

try when the TI symmetry axis rotated has been determined independently,

but similarly to Okaya and McEvilly (2003). Whereas they determined that

rotations about the y-axis result in a monoclinic form of the elastic stiffness

matrix, the rotations in Appendix G show that rotations where the symme-

try axis remains in any of the coordinate planes results in a monoclinic form

of the elastic stiffness matrix.
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3 1-D Plane-Layered Anisotropic Structure

Calculations

A phase velocity ordering is used for all of the modes when considering the

eigenfunctions, dispersion curves, and coupling matrices. The modes are

ordered from smallest phase velocity to the largest phase velocity, where the

lowest order mode has the lowest phase velocity and the highest ordered

mode has the highest phase velocity. Note that the phase velocity ordering

scheme is independent of polarizations of the particular modes, therefore the

phase velocity ordering is still used when the P-SV and SH modes propagate

independently. This is slightly different than Odom et. al. (1996), and

Park and Odom (1998) where only the P-SV modes were included in the

phase velocity ordering of the modes, and the SH modes were not included.

The mode finding code developed by Park (1996) calculates the eigenvalues

and eigenfunctions, which is an extension of the Chen (1993) algorithm.

The ANIPROP code (Park, 1996) has been modified to include fluid layers

and used to generate eigenvalues and eigenfunctions for each given model.

The fluid/solid reflection and transmission coefficients were determined using

the method of Mallick and Frazer (1991), when adding the fluid layers to

ANIPROP. The effect of tilted TI symmetry on eigenfunctions is studies, as

well as their and their respective phase and group velocities. Consider the

tilting of the symmetry axis along lines of constant azimuth and constant

elevation as shown in figure 4.

[Figure 4 about here.]

The model, described in the next section is characterized by propagating

acoustic modes which have phase velocities within the range of 1500m/s and
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200rm/s for frequencies between 10.0Hz and 100.0Hz. The corresponding

wavelengths at 50.0Hz would be A = 30m and A = 40m respectively. The

computations were carried out on a desktop PC with dual 400MHz proces-

sors.

[Table 1 about here.]

3.1 Modal Formalism for Plane Layered Anisotropic

Structure

A modal representation of the Green's function for the 1-D seismo- acoustic

wave propagation problem is employed, with the expression of the wave-

field as a superposition of global modes. The global modes are defined

as the eigenfunctions (displacement and tractions) of a 1-D homogeneous

anisotropic structure. The homogeneous plane-layered medium is infinite in

the xy-plane, and the global modes are the eigenfunctions appropriate for

the entire domain and path of propagation. The initial mode excitation may

be determined by an appropriate source term.

The modal representation of the wavefield is a convenient method of solv-

ing the non-separable first order coupled equations of motion. The modes

also provide a natural way of observing hos sources and material parame-

ters affect the wavefield. However, some limitations exist. The computation

time for calculating the modes and therefore the wavefield becomes larger as

the number of layers and or frequency of the model increases. This can be

inconvenient for very detailed analyses.

[Figure 5 about here.]
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The modal formalism based on Maupin's (1988) theory is presented for

a 1-D plane layered seismo-acoustic environment with general anisotropy as

shown in figure 5. This modal approach to the equations of motion has the

advantage of allowing the physics of propagation to be examined on a mode

by mode basis and is formally exact. The modal theory arises out of the

equations of motion and is a convenient first order theory. Additional and

complimentary work with coupled-modes are given by Odom (1986), Maupin

(1988), Odom et. al.(1996),and Park and Odom (1998, 1999). The theory for

the 1-D plane layered wave propagation problem contains two critical steps:

i) expressing the equation of motion as a first order differential equation and

ii) solving the wave-equation with a superposition of global modes. For this

chapter the application of the modes is limited to deterministic anisotropic

structures. In addition, only the discrete modes are considered, while the

continuum modes and their contribution are neglected. Attenuation is also

ignored, although the theory remains valid for the inclusion of attenuation,

since complex quantities have been accounted for throughout the theory.

Weak attenuation could easily be included as a perturbation.

As previously shown in figure ?? and 2, a Cartesian coordinate system

is assumed with wave propagation progressing in the horizontal direction

parallel to the x-axis. The y-axis, the transverse direction, is the geometric

symmetry axis for the 1-D medium along which material properties remain

constant. This direction corresponds to the motion of a pure horizontally

polarized shear wave. The z-axis is the vertical direction, positive downwards,

and corresponds to the direction of motion of a pure vertically polarized shear

wave.

The Einstein summation convention is assumed unless otherwise noted.
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The theory development uses both Woodhouse(1974) and abbreviated sub-

script notation (e.g. Auld, 1990), also known as Voigt notation (e.g. Nye,

1957), for representing the fourth order elastic stiffness tensor, Ciklj. The

Woodhouse notation is used primarily to represent a general anisotropic

medium in the modal theory and the coupled local mode theory (section 4),

and the abbreviated subscript notation is convenient for rotating the elastic

stiffness matrix through the Bond transformation. In order to avoid some

confusion, a superscript notation has been introduced. The superscripts w

and a imply Woodhouse and abbreviated subscript notations respectively

(i.e. WC or 'C). The indices of the fourth order elastic stiffness tensor are

iklj rather than the conventional ijkl in order to facilitate the mapping be-

tween tensor notation and the matrix notation of Woodhouse (1974). In

addition, lower case indices vary over ranges of i, k, 1, j = 1, 2, 3 while upper

case indices vary over ranges of I, J = 1, 2, 3, 4, 5, 6. A more detailed account

of elastic stiffness tensor and matrix representations are located in Appendix

A.

C = CikIj fourth order elastic stiffness tensor

aC = aC~j 6 x 6 abbreviated subscript elastic stiffness matrix

"'C = (wCij)kl 9 x 9 Woodhouse elastic stiffness matrix

The 3-component displacement field vector w = (w1 , w2 , w3) is assumed

to be in harmonic form and involves a double Fourier transform over y and

t of the displacement field w(x, y, z, t):

w(x, z, ky, W) = j w(x, y, z, t)exp(-ikyy + iwt)dydt (14)

Note that the physics convention of the Fourier Transform has been used,
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the same as Aki and Richards (1980). The double Fourier transform has a

mixed sign convention consistent for wave propagation problems. In contrast,

Maupin(1988) used the engineering convention of the Fourier Transform.

Therefore, the right going wavefields in this work have a phase factor in

the form:

exp(ikxx - iwt) (15)

Throughout this work, all references to the displacement, traction, and stress-

displacement vectors incorporated the double Fourier transform. The 3-

component tractions can be expressed as:

ti "'0 (16)= axj

where the elastic stiffness matrix, 'Cij, is in Woodhouse (1974) notation.

Each traction vector relates to stress elements in the form ti = (r•-, Ti2, 7i3 )

for i = 1,2,3.

The equations of motion have the same general form for both fluid and

solid media. The equations of motion are found in Appendix F in equation

(86). The For solid media a 6-component displacement-stress vector u =

(w, t)T can be introduced, where t = tj. For fluid media, a 2-component

displacement-stress vector may be defined as u = (w, t)T where w = w, and

t = 7-ii (no summation). The equation of motion for the 1-D plane-layered

structure shown in figure 5 can now be expressed as:

- Au-F (17)
ax

and the boundary conditions as:

[Tiilm [W31 , 0 (18)

[t3] = [W]. 0
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where the mO subscript is for fluid-fluid and fluid-solid interfaces and the

n t h subscript is for solid-solid interfaces. A free-slip boundary condition is

imposed on the horizontal displacements at the fluid-solid interfaces. The

solid-solid interfaces are assumed to be welded contacts where the displace-

ment vector w and the traction vector t 3 are continuous across the interfaces.

For fluid-fluid interfaces and fluid-solid interfaces the displacements, w3 , and

the vertical stress, T33 , are assumed to be continuous across the interfaces.

Following the notation of Maupin(1988), the square brackets with a subscript

(e.g. [quantity].,m) in equation (18) and the following equations represent

the evaluation of a quantity across the interface m or n. The quantity may

be continuous or discontinuous and the evaluation is taken from the bottom

of the interface to the top of the interface. For example, a discontinuity in

the elastic stiffness matrix across the nth interface would be expressed as:

racij]n = aCi, n+ - aCij In- (19)

The differential operator A, described in Maupin (1988), from equation

(17) and the boundary conditions from equation (18) contain the physics of

the 1-D problem for the plane layered homogeneous anisotropic structure.

Implicit in the A operator is the elastic stiffness matrix 'C which represents

a TI elastically symmetric medium with an arbitrary symmetry axis. The

orientation of the symmetry axis is defined by the two angles 0 and V as

in figure 2 and figure 4. To obtain a general rotation of the elastic stiffness

matrix with TI symmetry, the Bond transformation is utilized. The elements

of the A operator may be real or complex. Attenuation may be included as

complex values when the medium becomes visco-elastic. Although attenua-

tion effects are currently neglected, the complex form of the elements of the

A operator are retained. The generalized form of the operator A in equation
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(??) of Appendix ?? does not need to be complex, but the form used by

Maupin (1988) remains complex due to the explicit derivative with respect

to the y-coordinate. The form of A can be found in Appendix B for a fluid

medium, a general solid anisotropic medium, as well as for specific tilted TI

orientations where meaningful analytical results can be obtained. F from

equation (17) is the sum of an external source Fs .

F =FS ) (20)

A modal description of the wavefield is assumed, and the reader is remined

that the modal representation of the wavefield is formally exact. The modes

are independent solutions for the equations of motion and are functions only

of depth. The initial wavefield, u is expressed as a superposition of global

modes Ur = (wr, rt)T weighted by source excitation amplitude coefficients

c0. The horizontal wave number is kr(ý) and x, denotes the source position.

u = (w,t)T  Z co exp i kT(()dk ur(z) (21)
kr <) 21

The modal description of the wavefield in equation (21) is for the discrete

modes only, and the continuum modes have been neglected. The seismo-

acoustic signal propagating within the 1-D plane-layered waveguide will ex-

perience geometrical spreading as the signal propagates along the x-direction.

The modes of the homogeneous plane-layered medium are also energy nor-

malized.

(rkT(2 )s) geometrical spreading term (22)

(8v•U ) energy normalization term (23)

where vr, Ur, and Ir are the phase velocity, group velocity, and energy inte-

gral of the mode r respectively as defined by Aki and Richards (1980).
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Note that no assumptions have yet been made about the nature of the

symmetry of the elastic layers in the modal theory. The theory describes

propagation where the elastic regions have general triclinic anisotropy - a

medium described by 21 independent elastic moduli. One consequence of

restricting wave propagation to the x-direction is the reduction in the number

of elastic elements from the elastic stiffness tensor Cik1j needed to describe

the medium. For the 3-D propagation problem, all 21 elements of the elastic

stiffness tensor would be needed and included in the differential operator A.

For the 2-D propagation problem with propagation along the x-direction in a

medium with triclinic symmetry, the total number of elastic elements needed

from Ciklj is 15. These fifteen elements of the elastic stiffness matrix remain

linear combinations of the original 21 independent elastic moduli when aCij

has been rotated.

C1 l C13 C 14 C15 C16

C31 C33 C34 C35 C36 (24)

C41 043 C44 045 C46

C51 C53 054 C55 C56

C61 C63 C64 C65 C 66

The second row and the second column of the elastic stiffness matrix in

abbreviated subscript notation are not used in the 2-D wave propagation

theory within the xz-plane. Using the symmetry relationships for the elastic

stiffness tensor, the 15 elements of the abbreviated elastic stiffness matrix
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needed are:

aC,1 I aC 13 , aC 14 , ac15, aC 16

ac33, 'C 34, C35, aC36, aC44  (25)

ac 45 , a C46 0 55 , C56, a0 6

The propagating seismo-acoustic signal will only be sensitive to these

15 elements of the elastic stiffness matrix, regardless of whether the elastic

stiffness matrix is rotated or not. Essentially, the 2-D description excludes

any sensitivity to the elements in the 2 ,d row and 2 nd column of the elastic

stiffness matrix. Zhu and Dorman (2000) also report a dependence of 15

elements for the elastic stiffness tensor for a general TI medium.

Every term in the differential operator A which contains elastic moduli

also contains the elements of WC1 1 . It is reasonable to expect that the equa-

tions of motion and therefore the modes are sensitive to the changes in these

elastic elements.

aC1 , a C1 5 ,aC 1 6 , a• 5 5 aC 5 6 , 'C 6 6  (26)

3.2 Anisotropic Model

Nine parameters are necessary to describe each elastic layer. The necessary

parameters include the thickness of the layer, the density, the five elastic

moduli, and the two polar angles for the symmetry axis. The elastic moduli

A, C, F, L, N describe the intrinsic elastic symmetry of the layer, the polar

angles describe the orientation of the symmetry, and the thickness describes

the boundaries of the layer.

It is assumed that all anisotropic layers have the same symmetry axis

orientation. The elastic properties are constant within each layer, where
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each layer may have its own degree of anisotropy, except the last layer which

is defined as a uniform isotropic halfspace.

A sediment model that is representative of a typical marine sediment

profile has been chosen. A typical sediment structure with TI anisotropy

has its symmetry axis normal to the bedding planes. The density for typical

sediments range from 1.90-2.49g/cm', while compressional speeds vary from

1.87 - 4.87km/s and the degree of velocity variation due to anisotropy varies

from 1-13% (Carlson et al.) The degree of anisotropy typically increases with

depth, where sediments with bedding exhibit a higher degree of anisotropy

than unbedded sediments. The global modes are determined for a 1-D plane

layered medium with the velocity/density profile shown in figure 6.

[Figure 6 about here.]

The model is a variation of the Berge et. al. (1991) profile, and similar

to the model used by Odom et. al. (1996) and Park and Odom (1998). The

velocity and density profile is based upon a data set acquire in situ near the

New Jersey coast from Berge et. al. (1991), with the addition of a deeper

water column and an oceanic crustal component. The model consists of an

isovelocity fluid layer, five thin anisotropic sediment layers and seven thin

isotropic layers, a higher velocity subbottom layer, and a uniform isotropic

halfspace as a basement layer. The model has a water column depth of 100m.

The low shear speed sediments have a total thickness of 27.5m and overlay

higher speed sediments 372.5m thick. The degree of anisotropy varies from

11% to 15% for the shear velocities. The compressional speeds of all the

layers are isotropic. Figure 6 shows the velocity/density profile, while table

2 provides the parameter values for the model structure.

[Table 2 about here.]
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Table 2 indicates that the elastic symmetry is actually a reduced version

of the TI elastic symmetry. In all of the layers A = C , leaving only four

independent elastic moduli. This effectively places all of the anisotropy in the

difference between the shear moduli N and L. The anisotropy is purely shear

in nature, where the compressional velocity is isotropic and the shear velocity

is transversely isotropic. Berge et. al.'s (1991) experiment was insensitive to

compressional wave anisotropy.

The Berge et. al. (1991) data set is altered further by allowing the

symmetry axis of the TI layers to vary. With the modified Berge et. al.

model as a starting VTI medium, the symmetry axis is rotated for all the

anisotropic layers by using the Bond transformation as discussed previously.

3.3 Slowness Curves

Slowness curves reveal the nature of anisotropy in the direction of propaga-

tion. The slowness curves show the inverse of the velocities of three mutu-

ally orthogonal plane-waves propagating in an anisotropic medium: quasi-P,

quasi-SV, and quasi-SH. Velocities and therefore slownesses of the medium

are determined numerically solving the Christoffel equation 27 (e.g. Auld

1990).

(k 2 _yij -_ pW 2 jij)Vj 0

Ik 2 yj - pW26j 1 0 (27)

Solving the characteristic equation could be attempted analytically, which

involves a cubic polynomial. Although there exists an analytical solution

to the general cubic equation (first published by the Italian mathematician

Girolamo Cardano in 1545, english translation published by M.I.T. Press,
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1968), it is not very insightful for the general elastic stiffness tensor. The

characteristic equation to be solved is:

-(2)3 + (7Y + -22 + 733) + (723Y32 + 712'Y21k2 k2/

+ 713731 - 711722 - 711733 -- 722733) , V

+ - Y-11722'Y33 - 711'Y23732 - 712721733 + 713721732

+ 1/12723731 - 113722731 = 0 (28)

Slowness curves may be considered where the symmetry axis remains

along a fixed direction and the propagation direction is allowed to vary. The

slowness curves for the first anisotropic sediment layer, as described by line

2 of table 2 are shown in Figure 7. The slowness curves show plane-wave

propagation in the xy, xz, and yz-planes.

tFigure 7 about here.]

Figure 7 shows the slowness curves for the xy, xz, and yz propagating

planes for symmetry axes aligned with the ý, ,ý, and ý axes respectively.

The quasi-P plane waves are entirely isotropic in nature, being rotationally

invariant and all anisotropy is only in the shear velocities. For a modal

description of a seismo-acoustic wavefield in a waveguide, the P and SV

polarizations are always coupled together as P-SV modes. Therefore, any

variation in the SV plane-wave velocity will affect the P-SV propagating

modes, even without any variation in the P plane-wave velocities.

[Figure 8 about here.]

Figure 8 shows the slowness curves for the xz propagation plane for 36

symmetry axes orientations within the first quadrant. The intervals of 0 and
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cp are 00, 200, 400, 500, 700, and 900. The horizontal axis of the figure is the W'

axis, where rows represent changes in the azimuthal angle W. The vertical axis

of the figure is the 0 axis, where columns represent changes in the elevational

angle 0. Note that all of the slowness curves in the fifth row are degenerate

along the z-axis. These are slowness curves for propagation in the xz-plane

at 0 = 700 and V = 00, 20', 400, 500, 70', 900. The two shear velocities remain

degenerate for propagation along the z-axis for all variations of V. When

the shear velocities are degenerate along the z-axis, then the modes separate

into two subfamilies of P-SV and SH modes that propagate independently.

This is the same mechanism for a VTI medium, where the degenerate shear

velocities along the vertical direction allow the SH and P-SV modes propagate

independently.

The line singularites for a TI medium is dependent upon the the specific

values of the elastic moduli A, C, F, L, N. Every different TI model may have

a line singularity at a different value of elevation 0. The TI medium used in

this dissertation has a line singularity at approximately 700 elevation. When

S= 70', the line singularity nearly intersects the z-axis. The shear plane-

wave velocities may become degenerate, but the polarization of the two shear

waves still remain orthogonal.

There are instances where the plane waves (body waves) become degen-

erate. This only occurs for the shear waves. The degeneracies of the shear

plane waves occur at singularities in the phase velocity sheet. For a VTI

medium, line singularities occur at 0 approximately 700 and 1100, and kiss

singularities occur at 0 = 00 and 0 = 1800. A kiss singularity occurs where

two phase-velocity sheets touch tangentially at isolated points. A line singu-

larity occurs where two phase-velocity sheets intersect. The phase-velocity
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sheets intersect in the plane perpendicular to the symmetry axis 9. A kiss

singularity always occurs in a medium with transverse isotropic elastic sym-

metry. The kiss singularity occurs where the phase-velocity sheet intersects

the symmetry axis 9. The slowness surfaces for VTI media have singularities.

The P-wave slowness sheet doesn't have any singularities, and is a perfect

sphere. The two shear wave slowness sheets have two kiss singularities and

two line singularities (Crampin; 1981,1984,1989,1991). Crampin (1989,1991)

contain 3-D schematics that graphically distinguish between the different

types of singularities.

3.4 Angular and Frequency Dispersion Curves

A dispersion curve shows how the velocities of a set of modes change with the

variation of a particular independent variable. The phase or group velocities

of the modes trace out branches as the independent parameter is varied.

The dispersion curves are functions of w, 0, and p which are defined as the

frequency, angle of symmetry axis 9 tilt in the vertical plane 0, and angle of

symmetry axis 9 tilt in the horizontal plane V.

[Figure 9 about here.]

Fixing the symmetry axis orientation by keeping 0 and o constant while

varying w results in a standard frequency dispersion curve. For a 1-D model,

the frequency dispersion curve in figure 9 shows how the number of acous-

tic modes and the phase velocity of the model varies with frequency. The

frequency dispersion curve produces vertical branches in phase or group ve-

locity. The frequency dispersion curve for the general TI medium looks very

much like the frequency dispersion curves for isotropic or VTI media. In both
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frequency dispersion curves of figure 9, notice the "solotone" effect, where

the spacing of the eigenvalues cluster to form apparent "solotone" branches,

the dark bands in the figures. The modes that contribute to the "solotone"

branches are the modes sensitive only to the isotropic portion of the model,

and are therefore labeled as "invariant acoustic modes". The "solotone" ef-

fect is due to discontinuities in the density and elastic moduli of the model.

The solotone effect is a direct result of the inclusion of an elastic bottom

structure for the sediments and basement layers. This effect has been docu-

mented by Lapwood(1975), Kennett et. al.(1983), and Alenitsyn(1998). The

"solotone" branches are not a result of any anisotropy in the model, however

the invariant modes that contribute to the "solotone" branches play an im-

portant role in angular dispersion curves. This solotone effect is frequency

dependent. The number of modes in the 1500m/s-2000m/s range increases

with frequency, and the number of acoustic/invariant modes become more

numerous as the frequency increases. Another feature worth noting in the

frequency dispersion curves occurs for the eigenvalues at higher frequencies.

Figure 9(b) reveals modes that are closely spaced together and experience a

braiding effect, where the two eigenvalues appear to become intertwined, even

though they do not cross. This effect is not seen for the VTI case in figure

9(a) where the quasi-P-SV and quasi-SH modes propagate independently.

Fixing the value of w and 0 while varying po creates an azimuthal angu-

lar dispersion curve. Keeping w and 99 constant while varying 0 creates an

elevational angular dispersion curve. The phase and group velocities of the

modes are first computed for a beginning symmetry axis orientation §(0, W).

The symmetry axis 9 in the angular dispersion curves is then allowed follow

lines of constant elevation or constant azimuth on a unit sphere as described
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in figure 4.

[Figure 10 about here.]

The VTI and TTI models appear similar, when observing the frequency

dispersion curves in figure 9. The differences between the models become

much more evident in the angular dispersion curves. An angular dispersion

curve with variations in 0 or ýo produce horizontal branches of phase or group

velocities. Figure 10 displays azimuthal angular dispersion curves on the top

(figures 10(a) and 10(b)) and elevational angular dispersion curves on the

bottom (figures 10(c) and 10(d)). The left most figures (figures 10(a) and

10(c)) are the phase velocity angular dispersion curves and the figures on

the right (figures 10(b) and 10(d)) are the group velocity angular dispersion

curves. Note that a rectangular grid is used rather than a polar grid for the

angular dispersion curves. The velocities are displayed on the vertical axis,

and the angle variations are on the horizontal axis. A visual inspection of the

angular dispersion curves reveals that a complexity exists when considering

anisotropy. The dispersion branches show many instances where the branches

approach one another. The phase velocities appear to attract and repel one

another as the tilt angle varies for the 1-D model. It is evident that the

the greatest changes in phase and group velocities occur for the elevational

angular dispersion curves (changes in 0).

The eigenvalues do not remain evenly spaced. Near 0' the variations

are small and the curvature of the dispersion branches are nearly fiat- For

azimuthal variations in V there are less converging and diverging of the dis-

persion branches and the spacing of the eigenvalues remain more even. Take

note of the horizontal branches that occur at 1511m/s, 1550m/s, 1625m/s,

and 1904m/s at 50.0Hz, which have been highlighted in red in figure 10(c).
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These are the dispersion branches for the invariant acoustic modes at 50.0Hz.

The phase velocities for the invariant acoustic modes for other frequencies

are found in table 3.

The phase velocity of these modes scarcely change for any variations

of the symmetry axis direction, in either the azimuthal or elevational dis-

persion curves. These modes are the same invariant acoustic modes that

participate in the "solotone" effect in the frequency dispersion curves. The

frequency "solotone" effect precisely predicts the invariant modes that sam-

ple the isotropic part of the model which are not sensitive to any tilt of the

symmetry axis. Because of the constancy of these modes, they allow for an

"angular solotone" effect to occur when another mode branch sensitive to tilt

angle approaches. These modes that are affected by the tilt of the symme-

try axis are labeled "sensitive modes". The phase branches do not actually

intersect, but as the sensitive mode approaches the invariant mode, their

characteristics switch. The invariant mode branch takes on the character of

the sensitive mode branch and the sensitive mode branch takes the character

of the invariant mode branch. When the P-SV and SH modes coalesce into

a single family of quasi-P-SV and quasi-SH modes or P-SV-SH modes, then

any neighboring phase velocity branch may approach the invariant acoustic

mode branches and switch characteristics.

[Table 3 about here.]

An example of this can be seen in figure 17 of the eigenfunction section 3.5,

which will be discussed in further detail later. Two sensitive mode branches

can also approach one another. The branches do not actually cross, but they

effectively take on the characteristics of the other mode. It appears that

when two mode branches that are sensitive to the tilt of the symmetry axis,
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that they are modes of different wave types. A quasi-P-SV mode approaches

a quasi-SH mode or vice versa. When the P-SV and SH modes propagate

independently, then only the P-SV modes will approach the invariant acoustic

modes and switch characteristics.

The angular dispersion curves are sampled discretely, so the near cross-

ing of the branches may lack some strong curvature in the narrow angular

ranges. A degeneracy in the mode eigenvalues (phase velocities) occurs when

C, = Cq or k, = kq. The two modes combine into a single composite mode

which is mutually orthogonal to all of the other modes in the basis set. The

result is still a set of mutually orthogonal modes, but the number of modes

is reduced as the two modes combine into a single mode. As two modes

become nearly degenerate, the phase and group velocities and mode shapes

move toward a single phase and group velocity and mode shape. When the

eigenvalues become nearly degenerate, then the branches either pinch close

together, or indicate an apparent crossing. An actual crossing of the disper-

sion branches does not need to occur in order for the mode order sequence to

change. The phase velocity branches appear to cross, but they never actu-

ally cross because of the numerical method imposed by the ANIPROP code.

Park(1996) applies an approximate plane wave solution when the reflectivity

matrix is nearly defective. The reflection matrix is formally defective when

two eigenvalues are repeated, and only one eigenfunction is shared for the

duplicated eigenvalues. The treatment of the defective matrix is necessary

for numerical stability in ANIPROP, as two eigenvalues become degenerate

or nearly degenerate. In the real earth, the modes likely never cross because

heterogeneity and roughness would destroy the degeneracy. Polarization of

the modes ,whether predominantly P-SV or SH, cannot be inferred directly
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by a visual inspection of the curves, apart from the invariant acoustic modes.

Similar findings to Martin et. al. (1997) and Thomson (1997) have been

observed, where the group velocity branches cross, but they do not necessar-

ily correspond to crossings of plane-waves in the slowness diagrams. Their

phase and group velocity dispersion curves show many of the same features

as the angular dispersion curves. Martin et. al. (1997) report the cross-

ing of the phase velocities in azimuthal angular dispersion curves. Several

obvservations include the pinching together of the phase velocity branches,

apparent crossings of the phase velocity branches, as well as changes in the

mode order sequence. Mode ordering can change for variations in 0 or p0. The

change in the sequence of the modes occurs for both types of angular dis-

persion curves, azimuthal and elevation. The branches approach very closely

without actually touching.

The angular dispersion branches of the modes are symmetrical over a

180' range, with the mirror symmetry plane occurring at 900. This is true

for changes in 0 or ý. For propagation in the xz-plane, the P-SV angular dis-

persion branches are symmetrical over a 90' range and the mirror symmetry

occurring at 45'. The SH angular dispersion branches are not symmetrical

over the range of 00 - 900 in the xz-plane.

The group velocity angular dispersion curves are helpful in revealing how

quickly the velocity of the energy of a mode changes with the rotation of

the symmetry axis. The invariant acoustic modes have particularly stable

group velocities for changes in 0 or p. The group velocity of the invariant

acoustic modes only tend to change when near degeneracies occur and the

mode characteristics are being switched with another mode. Other modes

reveal group velocity changes as the symmetry axis sweeps across constant
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lines of azimuth or elevation. The group velocities are particularly sensi-

tive to changes in the characteristics of the modes due to apparent branch

crossings in the phase velocities. The group velocities change rapidly when

another mode approaches. These changes occur over an angular range that

correspond to the near crossings of the phase velocity branches.

The higher group velocities belong to the invariant acoustic modes. These

are similar to the "banded" modes discussed in Thomson(1997). When the

sensitive modes transition into an invariant mode, the group velocities of both

modes converge, and then cross. The sensitive mode's group velocity then

resumes the invariant's place, and the invariant mode becomes a sensitive

mode with a lower group velocity.

It is usually easier to interpret the azimuthal angular dispersion curves

than the elevation angular dispersion curves as in figure 10. However, addi-

tional insight into the mode branch sensitivity to the tilt of the symmetry

axis § may be gained when the velocity data for an entire set of elevation

angular dispersion curves is stacked.

[Figure 11 about here.]

Figure 11 shows the stacked elevation angular dispersion curves for several

frequencies. The number of modes and character of the curves is frequency

dependent. The width of the envelopes tells us the sensitivity of the modes

to changes in azimuth at a particular angle 0. At 50.0Hz when 0 is near 0'

the envelope is narrow and the phase branches are only slightly dispersed.

This is true of the branches near 700 as well. The envelope has the largest

width in the 0 range from 50 - 300, 450 - 650, and 75' - 90' for Figure 11(e)

at 50.0Hz.
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3.5 Generalized Modes for Anisotropic Media

The focus for this section is on the effect anisotropy has on the modes -

eigenfunctions. The concept of generalized modes of Crampin (1981) is used

to described modes with particle motion in all three coordinate directions.

Any lateral heterogeneity is neglected for now, but will be included in section

4. In addition the crustal modes are ignored, and only the modes which

contribute primarily to an acoustic or seismo-acoustic signal are considered.

These are the discrete modes within the phase velocity range of 1500m/s

- 2000m/s. From the angular dispersion curves it has been demonstrated

that changes in the orientation of the symmetry axis can have a dramatic

impact on the eigenvalues of the propagating modes. How these variations

in the modal eigenvalues affect the characteristics of the eigenfunctions are

now considered.

The most distinctive feature of acoustic wave propagation in anisotropic

media is 3-D polarization of the particle motion. The polarization of the

modes depends on the angle between the propagation direction and the sym-

metry axis direction of the anisotropic media. The properties of the elastic

stiffness matrix determine the degree with which the modes share particle

motion polarizations. Crampin (1981) notes that the two independent wave

types, P-SV and SH, of isotropy coalesce into a single family of generalized

modes with three dimensional elliptical motion for general anisotropy. The

once pure P-SV modes acquire SH motion and the once pure SH modes

acquire P-SV motion. This results in quasi-P-SV and quasi-SH modes or

generalized P-SV-SH modes, which possess polarizations into all three coor-

dinate directions.

The eigenfunctions are generally complex in value. Anytime the sin-
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gle generalized family of modes for anisotropic media separate into two in-

dependent family of modes, the components of the eigenfunctions become

purely real or purely imaginary. When a medium exhibits more generalized

anisotropy, the eigenfunctions may have both real and imaginary components

in the three polarization directions. The imaginary components represent a

phase delay in the time domain.

As discussed in Appendix (G), the form of the elastic stiffness tensor af-

fects the eigenvalues of the modal basis in the seismo-acoustic waveguide.

Special symmetry axis orientations exist where P-SV and SH motions propa-

gate independently in TI symmetric media. In an isotropic medium, the pure

P-SV and pure SH modes do not share the same particle motion polariza-

tions. The medium is completely rotationally symmetric. For a TI elastically

symmetric medium, the P-SV particle motions and the SH particle motions

propagate independently when the symmetry axis . lies within the sagittal

plane or along one of the three coordinate axes, as summarized by table 4.

The sagittal plane is defined as the vertical plane containing the propagation

direction. Since the propagation direction is assumed to be parallel to the

x-axis, the sagittal plane is parallel to the xz-plane.

[Table 4 about here.]

A visual interpretation of the eigenfunctions at 50.0Hz in figure 12 reveals

the P-SV modes have polarizations only in the xz-plane, and the SH modes

have polarization in the y-direction. The pure SH modes are all rather similar

to one another, with no particle motion in the fluid, and the largest ampli-

tudes in the thin anisotropic sediments. The shape of P-SV and SH eigen-

functions are similar to the propagating modes for an equivalent isotropic

medium. Schoenberge and Costa (1991) found that SH waves in a stratified
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monoclinic medium can be modeled using an equivalent stratified isotropic

medium for propagation in the plane of symmetry. In instances where the P-

SV and SH modes propagate independently, it may not be entirely necessary

to implement anisotropic modeling. When the P-SV and SH particle motions

propagate independently in a plane layered homogeneous medium (i.e. the

absence of scattering), only the P-SV modes are necessary to represent the

seismo- acoustic wavefield.

[Figure 12 about here.]

The SH modes (e.g. 12(b)) are purely sediment and crustal modes when

they propagate independently.

As shown in figure 13 the mode shape of mode 9 does not vary dramati-

cally when the symmetry axis ý is aligned with any of the three coordinate

axes. This is typical of any of the modes when the symmetry axis g is aligned

parallel to one of the coordinate axes.

[Figure 13 about here.]

The P-SV and SH motions are also separable when 0 = 700. These sym-

metry axis orientations correspond to one of the line singularities in the TI

elastically symmetric medium. The eigenfunctions are complex, but other-

wise very similar to those in figure 12.

[Figure 14 about here.]

As seen in figures 12 and 14, there is no SH motion in the fluid lay-

ers. Even in the generalized eigenfunctions, motion is suppressed in the

y-direction because the fluid layer can not support any shear stress. How-

ever, y-displacements in the generalized eigenfunctions do become evident in

the bottom/subbottom layers for a tilted symmetry axis.
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For more general tilt of the symmetry axis away from the sagittal plane

or coordinate axes, the aCre has the form of a quasi-triclinic elastic stiffness

matrix. For these general geometries, the modes of the waveguide belong to

the generalized eigenfunctions. They have polarization in all three coordinate

directions, as seen in figure 14. The modes can be classified as predominantly

quasi-P-SV or predominantly quasi-SH for most symmetry axis orientations.

Energy begins to appear in the SH component of the quasi-P-SV modes as

shown in figure 14(a). A similar effect for the quasi-SH eigenfunctions is

shown in figure 14(b). As the symmetry axis is tilted away from the vertical

the quasi-SH eigenfunctions gain particle directions in the x and z-directions.

However, some symmetry axis orientations exist where it is impossible to

label a mode as predominantly quasi-P-SV or predominantly quasi-SH. These

modes can be more accurately described as composite P-SV-SH modes. As

seen in figure 14(c)the amplitudes in the vertical, y and x directions are

similar magnitudes for the P-SV-SH modes. The quasi-P-SV, quasi-SH, and

P-SV-SH modes possess both P-SV and SH particle motion characteristics.

This is a direct result of treating the sediments and bottom/subbottom as

elastic.

The quasi-P-SV, quasi-SH, and P-SV-SH modes for when the symmetry

axis ý(O, ýo) = 9(80', 20') are shown in figure 19. The x, y, and z components

of displacement are in figures 19(a), 19(b), and 19(c) respectively. Notice

that the amplitudes of the modes are about the same magnitude in the three

coordinate directions. The x- and z-components resemble hybrid acoustic-

sediment particle motions, and the y-components resemble the displacements

of sediment modes.

[Figure 15 about here.]
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Some of the modes have the majority of their energy in the water column

and the isotropic portions of the model. They have relatively little particle

motion in the anisotropic sediment regions of the model. These invariant

modes are predominantly quasi-P-SV acoustic modes with very little parti-

cle motion in the y-direction. Because these eigenfunctions are dominated

by the isotropic features of the model, they are only slightly affected by any

tilt of the symmetry axis within the anisotropic sediments. They closely re-

semble the P-SV acoustic modes for isotropy and symmetry axis orientations

where P-SV and SH mode propagate independently. An example of an in-

variant acoustic mode is shown in figure 15. These are the same modes that

participate in the frequency and angular solotone effects observed in the dis-

persion curves. The acoustic modes are more sensitive to the anisotropy at

lower frequencies. As the frequency increases, the acoustic modes' phase and

group velocities become more invariant, indicating they become less sensitive

to the anisotropy. These acoustic modes then become the invariant acoustic

modes seen in the dispersion curves that participate in the "solotone" effect.

An example of the frequency dependence of an acoustic mode is shown in

figure 16. The figure shows the second acoustic mode for when . = 2. The

x-component and z-component particle motions are shown in figures 16(a)

16(b) respectively.

[Figure 16 about here.]

In order to satisfy the boundary conditions between a fluid and anisotropic

solid for the equations of motion, the particle motion in the y-direction must

be included. The modes in figure 14 clearly show that as the symmetry

axis . tilts away from the vertical, the P-SV particle motion is no longer

independent of the SH motion. Quasi-SH, quasi-P-SV and P-SV-SH modes
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are needed for and accurate representation the seismo-acoustic wavefield.

For the dispersion curve in figure 10 near degeneracies occurred for P-SV

modes, even when the SH modes propagate independently. These degen-

eracies are due entirely to the solotone effect, where the phase and group

velocities of the invariant acoustic modes are almost stationary.

[Figure 17 about here.]

Near degeneracies seen in figure 10 affect the characteristics of the modes.

Even though the dispersion curves do not cross, the characteristics of the

modes switch. This is seen in the dispersion branches when a sensitive mode

becomes an invariant mode. Figure 17 shows how the characteristics of the

modes changes as the angle 0 varies. Figures 17(a), 17(b), and 17(c) show the

displacements for the x, y, and z-directions respectively. The mode begins

as a predominantly quasi-SH mode and transforms into a predominantly

quasi-P-SV as the angle 0 varies. The characteristics of the quasi-SH mode

are taken on by the quasi-P-SV mode and the characteristics of quasi-P-SV

mode are taken on by mode the quasi-SH mode. The identity of the mode in

figure 17 is exchanged as it closely approaches the quasi-P-SV mode. As the

modes approach near degeneracy, the eigenfunctions of both modes transition

towards composite modes with characteristics of both modes. There can exist

two P-SV-SH modes that closely resemble each other as the modes become

nearly degenerate.

The mode order sequence does not remain fixed for increases in frequency

or changes in symmetry axis orientations. The sense of mode ordering is

somewhat lost when the two sets of mode polarizations coalesce into a single

set of generalized P-SV-SH modes. The sequence of the mode ordering is not

completely clear as the symmetry axis is tilted. The switching of modes is a
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complex function of the phase and group velocity relationships with the phase

velocities approaching one another and where the group velocities actually

cross. For TI elastic symmetry, the mode ordering of the eigenfunctions does

not necessarily stay fixed as the symmetry angle is tilted. The mode ordering

changes when two modes approach one another. The mode order sequence

tends to remain the same for the eigenfunctions at lower frequencies. The

eigenvalues are spaced further apart and near degeneracies do not occur.

As the frequency increases, the eigenvalues become more closely spaced, as is

evident in the the dispersion figures 9 and 10. Near degeneracies have a higher

occurrence as the frequency increases, and the modes switch characteristics

more often. Although it may be insightful to keep track of individual modes

and their characteristics as they transition from quasi-P-SV to quasi-SH or

vice versa, it really is not necessary. The modal formalism of section 3.1 does

not require all of the modes to be individually identified as P-SV, SH quasi

P-SV, quasi SH or P-SV-SH. All that is needed is to be sure and include all

of the modes important to the seismo-acoustics waves composition.

[Figure 18 about here.]

[Figure 19 about here.]

The modes of the shallow water waveguide may be directly excited by any

number of source types. When the PSV and SH modes propagate indepen-

dently, then the polarization of the acoustic modes are more source dependent

represented by figure 18. An explosive source will excite only PSV motion

(x and z-displacements). The displacements for the x, y, and z-directions

excited by an explosive source are shown in figures 18(a), 18(b), and 18(c)

respectively. Moment tensor sources can also be of interest for some acoustic

41



wave propagation problems, such as T-wave excitation (Park et. al., 2001).

A pure double couple in the xy-plane will only excite SH motion as displayed

in figures 18(d), 18(e), and 18(f). The excitation of the P-SV and SH modes

can be compared to the excitation of quasi-P-SV, quasi-SH, and P-SV-SH

modes. Using an explosive source, energy becomes evident in the x, y, and

z-displacement directions in figures 19(a), 19(a), and 19(a) respectively. The

significance is that the wavefield will contain y-displacements in the absence

of any heterogeneity or scattering. Using a double-couple source contained in

the horizontal plane, excitation of x, y, and z-displacements again becomes

evident as shown in figures 19(d), 19(e), and 19(f) modes. Here, a shear

source is able to excite modes which contribute to a seismo-acoustic wave-

field. Because of the 3-D polarization of the modes, they may be excited by

a wide range of sources.

The generalized mode structure is significant for shallow water media.

With the bottom interacting modes, acoustic energy can leave the water col-

umn. It can then be attenuated by the low shear velocity sediments, and

redistributed to other predominantly sediment modes. In addition, energy

from other sources or signals, such as noise, from the sediment and bottom

layers can enter the water column through these bottom interacting modes.

With the anisotropic bottom interacting modes, there exists a greater oppor-

tunity for the energy to become redistributed and leave or enter the water

column. This is due to the three component nature of the eigenfunctions,

the displacement and the tractions. Therefore, in the presence of anisotropy,

attenuation of bottom interacting modes would be underestimated if isotropy

is assumed.

G

42



4 Anisotropy and Geometrical Heterogeneity

It is helpful to separate the effects of anisotropy and the effects of hetero-

geneity in a complicated medium. In sections 2 and 3 the effect of anisotropy

in the absence of heterogeneity was investigated. Now consider the effect

of lateral heterogeneity on the coupling of local modes for isotropic, VTI,

and TTI media. The local modes are defined as the eigenfunctions of a 1-D

model that is the local equivalent of the range-dependent model at a fixed

position xi. The local modes are weighted by range-dependent amplitude

coefficients, which can be determined by solving an evolution equation. This

evolution equation depends on the coupling matrix Bqr which contains all

of the physics for the redistribution of energy between coupled local modes.

Bqr contains the elastic moduli of the model, lateral derivatives of the elas-

tic moduli, the local eigenfunctions, and the vertical derivatives of the local

eigenfunctions.

Building upon the previous discussions concerning homogeneous plane-

layered anisotropic media, now consider 2-D wave propagation effects for a

range-dependent model. The local modes are orthogonal, but any lateral

heterogeneity breaks the orthogonality of the modes, and allows them to

couple, where energy is redistributed between the modes.

4.1 Coupled Local Mode Formalism for Anisotropic

Range-Dependent Media

The theory presented for the 1-D homogeneous anisotropic plane-layered half-

space of section 3.1 can be extended. The method of coupled local modes is

applied to the 2-D range-dependent seismo-acoustic wave propagation prob-
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lem. Any introduction of lateral heterogeneity leads to two additional steps in

solving the equations of motion. As for the previous homogeneous anisotropic

plane-layered medium, the equations of motion can be expressed as a first

order differential equation and the solution of the coupled first order equa-

tions are expressed in terms of the basis of local modes. In addition, the

interface boundary conditions must be transformed into equivalent localized

volume forces, and an evolution equation for the amplitude coefficients which

describes the coupling between modes in a range-dependent medium must

be obtained. The specific deterministic anisotropic structure of the medium

is assumed to be known for the model.

The modal theory in Section 3.1 is extended by following the the cou-

pled local mode formalism of Maupin (1988). The boundary conditions for

geometrical heterogeneity along interfaces may be expressed as:

[t(h)3]n = [W(ii)]n = 0, for the nth interface (29)

The local coupled mode formalism also assumes that all tractions vanish

at the free surface, imposes a free-slip boundary at any fluid-solid interfaces,

and enforces a radiation condition at infinity. In addition, the displacement

and tractions are considered continuous across interface normals.

Consider an effective volume force term FT arising from traction discon-

tinuities along interfaces.

fs [tS ) (z - h. (x))

This additional effective volume force will be found in the coupling terms of

the local modes. The interfaces between fluid layers are considered planar,

and do not contribute an equivalent volume force.
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As before a modal description of the wavefield is assumed, where the

local modes are independent solutions for the non-separable equation of mo-

tion. The wavefield, u is expressed as a superposition of local modes ur(z; x)

weighted by range-dependent amplitude coefficients c,(x).

U= (w,t)T= Ecr(x) exp (if k"(,) <) ur(z;x) (30)
r x

where kT(ý) is the local horizontal wave number, and x, denotes the source

position.

Substituting the Ansatz (30) into the equation of motion (17), taking

the scalar product with respect to local mode uq, and then evaluating the

scalar product integrals results in an evolution equation for the amplitude

coefficients cr(x).

O-- = Bqrcr (31)

where the coupling matrix Bqr is defined as:

Bqr = -uex p ( (ki - V)d2)

and the Hermitian scalar product is defined as:

(uq, Ur) = i (w*qtr - t*qwr) dz (33)

The range-dependent amplitude coefficients are determined from the solu-

tion of equation (??). The combined effects of heterogeneity and anisotropy

on the eigenfunctions are studied through the coupling matrix nqr. For a

deterministic medium, Bqr is a mode coupling matrix which essentially de-

termines how much of the modal energy from local mode q is redistributed
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into local mode r. The coupling matrix contains an inner product which

introduces volume terms and interface terms. It contains the local eigen-

functions, their vertical derivatives, and the material properties as well as

any lateral heterogeneities. The range-dependent amplitude coefficients are

determined from the solution of equation (31). Bqr would be a diagonal

matrix, describing the only self-modal coupling, for a homogeneous plane-

layered medium. The modes are all mutually orthogonal, preventing any

redistribution of energy between the modes. Some heterogeneity needs to

exist for the coupling matrix Bqr to contain off diagonal terms that leads

to mode coupling. The heterogeneity could be sloping or rough interfaces,

volume variations, or both. A full expanded form of the coupling matrix Bqr

can be found in Appendix C.

The deterministic coupling matrix of Maupin (1988) contains both bound-

ary interface terms and volume terms. The volume terms contain lateral

derivatives of matrices containing elastic moduli. When we assume that the

material properties are constant within each layer of the model, then any

derivative of these constants is zero. All volume terms in the coupling ma-

trix Bqr become zero, and we are then left with only the interface terms of

the Bqr matrix. Therefore in the absence of material property variations we

obtain:

Bqr 1• r hn [-w q *P 2wr _ wq* Q wr 2
B kq kr Z23 -w- + w'*Q 22w 1

- z (C31C)t -t q*(C-1 )9W + tq*c-ltr

( otq* / 2
33 1 a tr33_ - tr +Wq*,WQ J, 2W

Oz pW2 9z Wt3 A pW2 )3 1 1 )Ih(x)-

- h ((k - kr)( 33  33 1) exp (Z If(kq - k
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where the WQij matrix is defined as:

WQij = WCij - (wcil)(6WC5)(wCij) (35)

4.2 Anisotropic Laterally Heterogeneous Media

The local eigenfunctions and mode coupling for two classes of models are

analyzed: where the symmetry axis 9 is defined by a fixed 0 and variable ý

and where the § is defined by a fixed Vp and variable 0. Finally, the coupling

matrices of the models are compared and studied to reveal modal energy

redistribution in the presence of range-dependence. The VTI model will be

the standard for comparing the various rotations of the general anisotropic

medium belonging to the TI symmetry class.

The shallow 2-D water environment has a bottom/subbottom with com-

plex elastic properties that vary in both direction and location. Figure 20

shows a representation of a 2-D range-dependent model. The thin anisotropic

sediments are modeled as in Sections 2 and 3.

[Figure 20 about here.]

When investigating the effects of anisotropy in a 2-D range-dependent

seismo-acoustic environment, 1-D profiles are generated that are the local

equivalent of the range-dependent model shown in figure 20. At a particular

point, xi of the 2-D range-dependent model a 1-D profile is created with

the same elastic properties and depth dependence as the 2-D model. For

example, the density and elastic moduli of the 2-D model are described in
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the 1-D profile as:

p(xi; z) p(z)

A(xi; z) =A(z)

C (xi; z) = C(Z)

F(x,; z) =F(z)

i(xi; z) = (z)

N(xi; z) =N(z)

The model is range-dependent with elastic sediments and bottom layers.

The anisotropy belongs to the transversely isotropic elastic symmetry class,

and is only in the thin sediment layers. All other layers remain isotropic.

The elastic parameters are known and assumed to be deterministic in nature,

while ignoring any small scale variations that would be evident in a real earth

structure.

For the 1-D profile, the same model as shown in figure 5 and table 2 is

used. The 1-D vertical profiles are the plane layered homogeneous anisotropic

halfspace considered previously in Sections 2 and 3.

4.3 Deterministic Interface Coupling Matrices

The coupling matrix Bqr essentially determines how much of local mode r

is redistributed into mode q. For isotropy, when the symmetry axis g is

within the sagittal plane, or ý is aligned to one of the coordinate axes, the

SH and P-SV particle motions propagate independently. Any mode coupling

is dominated by nearest neighbor interactions between modes of the same

wave type. If the modes involved in the Bq, matrix are strictly different

wavetypes with completely separate polarizations, then the coupling between
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the different wavetypes will be zero. Only SH/SH and P-SV/P-SV coupling

is observed between the modes. Figure 21 shows the Bqr coupling matrices

for pure P-SV and SH modes at 20.0Hz, 30.0Hz, 40.0Hz, and 50.0Hz.

[Figure 21 about here.]

The white elements in the coupling matrices represent zero values. Note

that the diagonal elements, which represents the self-coupling of a mode or

the phase of the mode, have also been set to zero. It appears that the coupling

between modes may not be dominated by nearest-neighbor interactions, but

in fact the modes are only coupling with their respective wave types and the

coupling is strongest for the nearest mode of the same wave type. Absolutely

no coupling occurs between the SH and P-SV local modes. If the P-SV

and SH modes are separated and then grouped first by modal wavetype,

and second ordered by phase velocity, then the nearest-neighbor coupling of

Odom et. al. (1996) is observed.

As the symmetry axis is tilted, coupling can occur between any general-

ized mode regardless of mode wavetypes, as shown in figure 22. The quasi-P-

SV, quasi-SH, and generalized P-SV-SH modes may have energy in all three

coordinate directions, allowing the modes to be available for a wide redistri-

bution of energy whenever lateral heterogeneity is present. The mode cou-

pling may be dominated by nearest-neighbor interactions or by non-nearest-

neighbor interactions. The strength of the coupling depends on the closeness

of the phase velocities of the modes and the degree of similarity of the polar-

izations. However, the 3-D particle motion of the local modes allow coupling

between all of the modes, whether of similar or dissimilar polarization.

[Figure 22 about here.]
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Figure 22 shows the Bqr coupling matrices for a symmetry axis orientation

where .(0, V) = (10°, 20') Notice that all of the modes couple to some

degree.

The invariant acoustic modes have polarizations predominantly in the

sagittal plane. The invariant modes appear at higher frequencies in isotropic,

VTI, and TTI media. They are essentially insensitive to most tilt of the

symmetry axis . within thin anisotropic sediment layers. These modes couple

weakly with any predominantly quasi-SH modes when lateral heterogeneity is

present. In contrast, the invariant acoustic modes may couple strongly with

any quasi-P-SV, generalized P-SV-SH, or quasi-SH modes with significant

particle motion polarizations in the sagittal plane.

Near degeneracies play an important role in the coupling of local modes.

Since the Bqr matrix is directly dependent upon the phase velocities of the

two modes, as well as the eigenfunctions of the modes,it is important to

consider what happens as the eigenvalues become degenerate. Many near

degeneracies in the modal phase velocities can be seen in Figure 10(c) between

100 - 200 and 70' - 800.

B Bqr (36)Br=Ak

As the difference between the mode phase velocities becomes smaller, the

contribution to the coupling matrix Bq, may become larger.

Ikr q (37)kq - kr W w(Cr - cq) (7

The coupling of the two modes are expected to become very large as

they approach a near degenerate state. The Bq, coupling matrix may be

dominated by such interaction of closely spaced modes. The coupling at

near degeneracies is not infinite, but the closely spaced phase velocities, and
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therefore the closely spaced wavenumbers of the two discrete modes, can

dominate the coupling term between the modes, as shown in figure 23(a).

When the nearest-neighbor contributions are removed as in figure 23(b),

then the Bqr coupling matrix is similar to the one in figure 22(d). As the

modal phase velocities converge, the polarizations of the modes become more

alike.

[Figure 23 about here.]

In contrast, when the spacing of two eigenvalues is large, then the coupling

between two modes is weak. In addition, If two eigenfunctions have rather

dissimilar polarizations, then the coupling may also be weak, if the wave

numbers of the two modes are not in close proximity to one another. An

example of when the polarizations are completely dissimilar is when pure P-

SV and SH local modes propagate independently, as observed in figure 21. In

general, eigenfunctions with different polarizations will tend to couple more

weakly than eigenfunctions that have similar polarizations. The strongest

coupling occurs between modes of similar polarizations. For an isotropic case

only P-SV modes may have similar polarizations with other P-SV modes, and

only SH modes may have similar polarizations with other SH modes. For the

more general anisotropic case, any two modes with particle motions in all

three polarization directions and closely space eigenvalues will exhibit strong

coupling.

[Table 5 about here.]

Table 5 summarizes the combinations of of wave types that will couple for a

TTI medium.
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When the symmetry axis 9 allows for a quasi-triclinic form of the elastic

stiffness tensor all the modes are excited regardless of the source type, and all

the modes are involved in the coupling, although some modes contribution

is much smaller than others. The coupling matrix Bqr results suggest that

the combination of a tilted symmetry axis and lateral heterogeneity is rather

efficient at scattering a seismo-acoustic signal.

Figure 24 shows the Bqr coupling matrices for four moment tensor sources,

which is of interest for T-wave excitation. The figure clearly shows which

modes are excited when the source modes are pure P-SV and SH modes with

separate polarizations. The explosive source in figure 24(a) clearly shows

that the SH modes are excluded entirely as they are not excited at all. A

double couple source in the xz-plane produces a similar coupling matrix to

the explosive source, where again the SH modes are not directly excited,

as shown in figure 24(c). The double couple sources in the xy-plane and

the yz-plane only excite the SH modes, as shown in figures 24(b) and 24(d)

respectively.

[Figure 24 about here.]

4.4 Stochastic Interface Coupling Matrices

Park and Odom (1999) have successfully included both deterministic bathymetry

terms and rough boundary interface terms for isotropic and transverse isotropy

media into the coupled mode equations. The formulation for the scattering

coupling matrix Sqr presented by Park and Odom (1999) is valid for more gen-

eral anisotropy symmetries, such as those already discussed previously. The

terms of the coupling matrix can be cast in a form that that only includes

the displacement w, the traction vector t, and their respective derivatives.
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This gives uniformity, where all of the coupling matrices may be expressed

in terms of the stress-displacement vector u = (w, t)T and is derivatives.

The evolution equation for coupling due to stochastic rough interfaces

come from the dissertation of Minkyu Park (1997):

__q aur h *.t (2f r
Odq< -uq- >u i + n[wq.tr]o) exp ~io(k - kq)d))d d,

OX 'O ( x 0OcT

+ DqrCr + YEqrx

r r

- Bqrdr + E DqrCr + 55 EqsBsrCr
r r r S

Y: Bqrdr + E SqrCr (38)
r r

The Bqr matrix is defined the same as in section ?? and Appendix C.

The matrices Do and E,, are defined as:

Dqr +1 ( [n

Fh) [q Otr (fi,) 1 h0 h0, 1 *t

Oz 1 n + ()2 o)- (fi0ho ho r qt)< ---
n n q* . • -- -r

+ h [wM th ( In )exp (Z kf)do( - (39)

Eqr - -i n hon [wq* tt r("A)]n exp z f (k r - kV)d< )

Note the sign correction for the fourth term of the Dqr matrix. After some
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algebra, the matrices can be expressed as:

Dqr q* at'] ho iq* !at~
n "Oz -n 1 OZ I(ho) 0

±ik T  2 [wq*" trIn + 2nn [wq* t] (41)
n z (I + (ho)n

xexp (Z Ij (kr - kq)d<), (42)

Eqr = E-- 2 [wq* ti]nexp (i (kr - kq)d) , (43)

The derivative of the traction vector t 3 can be determined from the orig-

inal equations of motion. The vertical derivatives of the tractions t 3 and tj

can be expressed as:

at3 _ 2w- at, (44)
az 09X

where it has been assumed that all propagation is restricted to the xz-plane,

and all derivatives in the y-coordinate direction are zero.

Figures 25 and 26 present the scattering coupling matrix Sqr for a VTI

medium and TTI where .(O, ýo) = (10', 200) respectively.

[Figure 25 about here.]

The rows and columns of Sqr represent the primary and scattered modes

respectively. Figure 25 is similar to those presented by Park and Odom

(1999), except that SH modes have been included into the mode sets. Fig-

ure 26 represents the extension of the work presented by Odom and Park

(1999) to a more general case of anisotropy, where the symmetry axis of the

TI elastically symmetric medium may have any arbitrary orientation. The

symmetry axis, 9(0, o) = (100,200), is not to far from vertical. Some of
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the scattered modes are preferentially excited, while others are less excited.

Scattered modes 2, 4, and 5 from Figure 26(c), represented by columns 2,

4, and 5 respectively, are excited to a much smaller degree than scattered

modes 0, 3, 4, 7, 9, and 11. At the frequency of 40.0Hz (Figure 26(c)), it can

be seen that the primary modes 1, 4, 6, 7, 9, and 12, represented by rows 1,

4, 6, 7, 9, and 12 contribute the most to resulting scattered wavefield. What

is interesting is the characteristics of these modes. The primary modes 0,

3, and 11 are "invariant" acoustic modes, with the majority of their energy

in the isotropic portion of the model. They do not contribute to the scat-

tered wavefield as strongly as the more "sensitive" modes. This implies that

the energy will remain coherent longer in these modes that the "sensitive"

modes. However, these same "invariant" modes from the scattered wave-

field receive more energy than the "sensitive" type modes. This implies that

rough interface boundaries tend to preferentially redistribute energy from

"sensitive" modes to "invariant" modes. This may indicate that energy from

seismic sources below that water column would be preferentially scattered

into "invariant" acoustic modes, which would remain coherent longer. Such

mechanism could help explain T--wave generation.

[Figure 26 about here.]

5 Summary and Conclusions

The form of the elastic stiffness matrix, and its symmetry in relation to the

propagation direction affects the wave propagation in the seismo-acoustic

waveguide. The form of the elastic stiffness tensor determines whether the

local modes coalesce into a set of quasi-P-SV, quasi-SH, and generalized P-
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SV-SH modes or into P-SV and SH modes which propagate independently.

This distinction greatly affects the polarization of the propagating signal.

Since it usually cannot be prearrange to record a seismo-acoustic signal in a

symmetry plane, tilted anisotropy cannot be completely ignored. Horizontal

shear motion is often ignored or neglected in the modeling of acoustic signals.

The majority of attention has been placed on the P-SV motion. However, any

description of seismo-acoustic signal propagation which ignores SH motion

in these environments would be incomplete. All three coordinate particle

motion polarizations must be included into the seismo-acoustic wavefield.

Conversion of acoustic energy into horizontally polarized shear motion

can be expected at fluid/solid boundaries where lateral heterogeneity or

anisotropy exists in the solid layer. As a result, one consequence of the

presence of anisotropy is that the seismo-acoustic signals can have a signifi-

cant portion of their energy in horizontally polarized shear motion (SH and

quasi-SH) even in the absence of any range-dependence. This is in contrast

to an isotropic or VTI elastic medium, where all acoustic energy propagates

independently of any horizontally polarized shear motion. In the absence of

any scattering, all particle motion for an acoustic signal would be restricted

to the sagittal plane. For general anisotropy the compressional motion(quasi-

P), vertically polarized shear motion (quasi-SV) and horizontally polarized

shear motion (quasi-SH) no longer propagate independently. Horizontally

polarized shear motion experiences more attenuation than compressional mo-

tion, where intrinsic SH attenuation is approximately 2-3 times larger than

compressional wave attenuation, or even larger in low shear speed sediments.

Because shear motions experience higher attenuation than compressional mo-

tion, this could be an important loss mechanism for acoustic signals with
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significant seafloor interaction. The SH motion could have a profound effect

on the propagation of the acoustic signal. The signal may experience more

energy loss than an equivalent signal propagating in an isotropic model or

only fluid layers. Hughes (1990) observed high propagation loss in thin sed-

iment layers over hard bottoms. Some of this type of loss may result from

acoustic energy being converted to quasi-SH modes.

The elements of the Bqr coupling matrices have given insight into the

degree of energy distribution among the modes due to heterogeneity in the

presence of anisotropy. It has also become clear that a generalized set of

P-SV-SH modes is required to correctly model seismo-acoustic signals where

tilted anisotropy is present. Since there no longer exists a clear distinc-

tion between pure P-SV and SH modes, all modes can carry energy for the

seismo-acoustic signal. The implication is that all of the modes are intri-

cately coupled for even weak anisotropy. There are more modes available in

anisotropic media for the redistribution of energy. The combination of lat-

eral heterogeneity and anisotropy is very effective at scattering the wavefield.

Any lateral heterogeneity can cause the modes to couple, and the coupling

tends to become stronger as the phase velocities associated with the local

modes converge to similar values. In contrast the isotropic and transversely

isotropic modes transfer energy only to a few nearest-neighbor modes of

the same wavetype (e.g. modes having the same polarizations). In near-

est neighbor energy transfer, lower order modes couple to the nearest lower

order modes and higher order modes transfer energy to the nearest higher

order mode. With the introduction of even modest amounts of anisotropy,

it becomes possible for higher order modes to directly transfer energy into

lower order modes without cascading down through multiple nearest neighbor
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interactions.

An investigation has been carried out on how the anisotropic elastic stiff-

ness tensor affects eigenfunctions, phase and group velocity dispersion curves

as a function of frequency or symmetry axis orientation (angular dispersion

curve), and energy transfer between modes. The magnitude of anisotropy as

well as the direction of the symmetry axis have been observed to be of equal

importance. Any rotation of the symmetry axis away from vertical (e.g. non-

horizontal bedding planes) will cause energy to be transferred between the

modes, even if lateral variation is weak. Heterogeneity is very efficient at

redistributing energy among modes in anisotropic media. The combination

of lateral heterogeneity and anisotropy appears to be effective at scattering

a signal, and energy is redistributed broadly among all of the propagating

modes. It has been demonstrated that an elastic treatment of the bottom

and subbottom of the shallow water environment at low frequencies is nec-

essary for understanding the propagation of the seismo-acoustic energy for

tilted anisotropy.
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A Elastic Stiffness Tensor and Matrix Nota-

tion

The fourth order elastic stiffness tensor Czklj has symmetries that allow the

21 independent elements to be expressed in more compact matrix notations.

The elastic stiffness tensor obeys the following symmetry:

Cik j = Ckij = C Cljik

which reduces the 81 components of Cikzj to at most 21 independent compo-

nents.

The indices of the fourth order elastic stiffness tensor are iklj rather than the

conventional ijkl in order to facilitate the mapping between tensor notation

and the matrix notation of Woodhouse (1974). Woodhouse's notation (1974)

and abbreviated subscript notation (e.g. Auld, 1990) describe the exact

same elastic parameters from the elastic stiffness tensor Ciklj. However, the

Woodhouse matrix and the abbreviated subscript matrix are not equivalent.

C Ciklj fourth order elastic stiffness tensor

ac aCIJ 6 x 6 abbreviated subscript elastic stiffness matrix

'C (wCij)kI 9 x 9 Woodhouse elastic stiffness matrix

Wcij 3 x 3 Woodhouse submatrix

Lower case suffixes such as iklj have values that range from i, k, 1,1j

1, 2, 3. Upper case suffixes such as IJ have values that range from I, J -

1, 2, 3, 4, 5, 6. The individual elements of the elastic stiffness tensor can be

put into a matrix format by using an abbreviated subscript notation, also

known as Voigt notation (Nye, 1957) or matrix notation. Table A.1 below

describes how to transfer between traditional fourth order tensor notation
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and the abbreviated subscript notation for the individual elements of Ciklj

and CIj.

[Table 6 about here.]

The four suffixes iklj are replaced with two suffixes IJ. Considering the

Woodhouse elastic stiffness matrix first, which is composed of nine subma-

trices:

(W611)kl (wC12)kl (wC13)k1

wc (wcij)kl (wC21)k (wC22)kl (W23)kl (45)

(w31)kl (wC32)k (w 3 3 )kl j

The 9 x 9 Woodhouse matrix is a symmetric matrix, and there are only six

unique submatrices, where:

"wC WC = wi C W = "OT = w6i (46)

The elements of the Woodhouse submatrices wCij expressed in traditional

fourth order subscript notation, composing the 9 x 9 Woodhouse matrix:

CuuI1  C 1121 C1 13 1  C1112 C1122 C1132  C1113 C1123 C1133

C1211 C1221 C1231 C1212 C1222 C1232 C1213 C1223 C1233

C1311 C1321 C1331 C1312 C1322 C1332 C1313 C1323 C 1333

C2111 02121 C2131 02112 C2122 02132 02113 02123 02133

w - C2211 C2221 02231 02212 02222 C2232 C2213 02223 02233

C2311 C2321 C2331 C2312 02322 C2332 C2313 02323 C233 3

C3111 C3121 C3131 C3112 C 3 12 2 C3132 C3113 C3123 03133

C3211 C3221 C3231 C3212 C3222 C3232 C3213 C3223 C3233

C3311 C3321 C3331 C3312 C3322 C3332 C3313 C3323 C3333

(47)
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The elements of the Woodhouse submatrices as expressed in abbreviated

subscript notation, composing the 9 x 9 Woodhouse matrix:

CI C16 C15 C16 C12 C 14  C15 C 14 C13

C61 C66 C65 C66 C62 C64 C65 C64 C63

C51 C56 C55 C56 C52 C54 C55 C54 C53

C61 066 C65 C66 C62 C64 C65 C64 C63

C21 C26 C25 C26 C22 C24 025 024 023 (48)

C41 C46 C45 C46 C42 C44 C45 C44 C43

C51 C56 C55 C56 C52 C54 C55 C54 C53

C41 C46 C45 C46 C42 C44  C45 C44 C43

C31 C36 C35 C36 C32 C34 C35 C34 C33

The above forms of the 'C are valid for any triclinic anisotropic medium with

21 independent constants, as well as for any medium with a higher degree of

symmetry, such as TI. Substituting the Love notation (1944) elastic constants

into the Woodhouse matrix for a TI elastically symmetric medium.

For 9(O, p) 9(0', 0°) = i

A 0 0 0 H 0 0 0 F

0 N 0 N 0 0 0 0 0

0 0 L 0 0 0 L 0 0

0 NO N 0 0 0 0 0
WC H 0 0 0 A 0 0 0 F (49)

0 0 0 0 0 L 0 L 0

0 0 L 0 00 L 0 0

0 0 0 L 0 L 0

F 0 0 0 F 0 0 0 C
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For (0, = a §(90o, 00) =

C 0o 0 F 0 00 F

0 L 0 L 0 0 0 0 0

S0 L 0 0 0 L 0 0

0 L 0L 0 0 0 0

WC F 0 0 0 A 0 0 0 H (50)

0 0 0 0 ON O N 0

0 0 L 0 0 0 L 0 0

0 0 0 0 0 N 0 N 0

F 0 0 0 H 0 0 A

For b(O, v) = 9 (900, 900)

A 0 0 0 FO0 0 OH

0 L 0 L 0 0 0 0 0

L0 N 0 0 0 NO 0

------------------
0 L 0 L 0 0 0 0 0

WC F 0 0 0 C 0 0 0 F (51)

0 0 0 0 L 0 L 0

0 0N 0 G NO 0

0 0 0 0 0 L 0 L 0

H 0 0 0 F 0 0 A

The 6 x 6 abbreviated subscript matrix is also a symmetric matrix, with the

possibility of 21 unique and independent elements where:

a 0cI aCIjT = acj0  = aCjIT. (52)

Any additional symmetry would reduce the number of independent elements.

The elements of the abbreviated subscript elastic stiffness matrix expressed
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in traditional fourth order tensor notation for a general triclinic medium.

C0111 C 1 122 C1133 C1123 C 1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C= - C3311 C3322 C3333 C 33 23 C3313 C3312 (53)
C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C 13 12

C1211 C1222 C1233 C1223 C1213 C 12 12

The abbreviated subscript elastic stiffness matrix with the elements expressed

in abbreviated subscript notation.

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36 ()
C41 C42 C43 C44 C45 C46

C51 C52  C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

Consider a TI elastically symmetric medium as used in the main text of the

paper. The elastic moduli are expressed in Love notation (1944).

For (0, 9) s(0', 0°)

A H F 0 0 0

H A F 0 0 0

F F C 0 0 0
"aC =where H = A -2N (55)

0 0 0 L 0 0

0 0 0 0 L 0

0 0 0 0 0 N
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For 9 (0, ý) =(900, 0°) =

C F F 0 0 0

F A H 0 0 0

F H A 0 0 0
aC where H= A- 2N (56)

0 0 N 0 0

0 0 0 L 0

0 0 0 0 L

For 9(Ocp) ( = (90', 90')

A F H 0 0 0

F C F 0 0 0

H F A 0 0 0
aC where H A - 2N (57)

0 0 L 0 0

0 0 0 N 0

0 0 0 0 0 L

The individual elements for a TI medium with an arbitrary symmetry axis

9 (0, 0) can be determined by equation (11) from the main text. The elements

of 'C will be linear combinations of the elastic moduli A, C, F, L, N.
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B Differential Operator A

The differential operator A from the equation of motion (17) in the main

text and in equation (98) below is described in greater detail.

- Au- F (58)

ax

where u is the stress-displacement vector, A is a differential operator

which contains the combinations of the elastic stress matrix WCij and its

derivatives, and F is an external force.

The operator lacks any horizontal derivatives and the only derivatives are

vertical derivatives of the elastic moduli, horizontal slowness, and eigenfunc-

tions. For a fluid medium or a solid anisotropic structure, the differential

operator A may be expressed in terms of sub-operators:

A All A12 (59)

For a solid triclinic anisotropic medium, the sub-operators are:
A" ((w�1)('C13) a + (WCj1)(WC, 2 )ip,

A1 2  
-1(wc1 l)

A 2  WCWQ) I(

A21 = CJ - _w --•z('Q3a3-) + ipm Q2 3a + -- ( Q3 2ip) + p2('Q22)
- z 0Z z Oz

A 22  ( a1("C 3l)(wCi) + iP(WC 21)(('C•I1)), (60)

where the WQij matrix is defined as:

WQij = wcij - (WCii)(WCI-l)(WCij) (61)

This general form is valid for any triclinic anisotropic structure. The differ-

ential operator A for a TI elastically symmetric medium can be obtained by
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substituting the elastic stiffness submatrices from Appendix A into equations

(60),(60),100), and (100). The differential operator A is then expressed ana-

lytically for the case when the symmetry axis • is aligned with the Cartesian

coordinate axes.

For §(O, ý) = ý(0O, 00)

0 ikA7 A-2 F2

Al l iky 0 0

az_ 0 0ý7z

(I 0 0
A 120 1 0

0 0 L1

A 21 22 a (L 2-) + kY2  (4N(N-A) k- 2NF o + o(Ik L)
A 0 -PLO &ZYz A ) A 49z az

0 ikLkz + - (ikyA ) -P a (ACF2 a + k 2 L
Yz a Aýz A 8-z,

0 ik -aa

A 22  ikA-2N o 0- (62)

o7aF 0 0
az A

This is the same result found by Park and Odom (1997).
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For 9(0, §(90',00)

All (0 i0 0

0 0
A2  ~ -p ( ) ~ (cF2)i~ A~2NF) a (kN

0 okN i~c2~~2 Ccz(F8~± 2

A212  
(63)o( L~
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For .§(0, yp) =(90o, 900)

0 ikyF A-2NA 9
YA A O9zAll = ky 0 0 J

A 0 0

0 0

0 0

A 2' 2- az (L-a) + k9 2 (AC;2) ik9 (N___) _ + a (ikyL)
(&Pw a z '9 A ______

0 ik 9L-z + • (ik 2NF) 2 '9 (+N(N-A) ± k L

0 i'ky a

A22  • E (64)

azA-2N 0 0

azA

Additional symmetry, where the TI elastic symmetry reduces to isotropic

symmetry may be considered. When A = C, L = N, H = F, and F =

A - 2L, then all planes within medium are symmetry planes, and therefore
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all directions are equivalent:

0 ik j AF a

A'A

A1' = ik (0b) , ~ A~F) kyAx2~ (kL

A(12 0 1 0

A 0 L 
-,0P 0 01

(6)
A_ o - • ý7 ( az) + k• 22- + A (ikyL) ,

Ak A + ikA o-( 2 a ('5
OF0 0k

OzA

where A= A + 2[, L = 1, and F =A.

This is the same result as reported by Park and Odom (1997) and Maupin

(1988).

Consider the case where p = 0 and the isotropic medium becomes an isotropic

fluid. As stated by Maupin (1988), the WCOl matrix becomes singular for a

fluid layer. A simple solution is to define the WCl, matrix and its inverse

WC-1l within a fluid as Kennett (1983) does in his monograph:() (00'\
A 0 0100

(wCII)u o o0 (wC1)fl i ( o o 0 (66)

0 0 0 0 0 0

Therfore, a form of the differential operator and equation of motion for any
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fluid layers may be formulated.

49

A 1  = 0k0 0 0

000A1A

A21  0 0 -0 0p ,0 0 -p0

A21 = ik0 0 0 , (67)

_A 0 0
az

After some algebra, the system of equations can be reduced to a two compo-

nent displacement-stress vector form.

0 ,k2+ & 1 19
Af luid =, 2  a 1•+ 2 a - (68)

-pw 2 0

where u, w2, w3 , and t are defined as:

u = (wI,t)T (69)

W2 = ikpt (70)

w3  - (71)
pw2 3z

t = tiz (72)

This is Maupin's (1988) result for a fluid layer. The fluid/solid coupling

terms used in the main text are the same as those reported in Maupin (1988).
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Tromp (1994) also has described fluid/solid coupling terms using a slightly

different modal notation.
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C Coupling Matrix Bqr

The Bqr coupling matrix as described by Maupin(1988) and the main text is

defined as:

Bqr = - q, _ + Z hwq* [t]•) exp ( jj (kq - kr)d j3)

where the Hermitian scalar product is defined as

(Uq, Ur) . if (wqt, - tqWr) dz (74)

The traction t may be discontinuous across the interfaces, resulting in the

evaluation of an improper integral. This leads to interface summation terms

that include jumps across the boundary discontinuities. The coupling matrix

for an unperturbed, deterministic structure has the expanded form:

Bk - 2W, + tq* ( p2  t_ q* __atr dz

'r- JO k ( 1~q -w A pw *p 2 3  0 Q32 ip9
( wq*, w2Wr _wq* awr a* 19wr Owq*

+ • OW (2 33 Wz wZPQ23-• + -(j32ZPWr
1hX 9Z 49Z az O9z

-wr*Q 22 wrp2  a (C3 )tr _ wq*ip(C21 "C-l)tr tq*(C c139w

+t q*(c-ic,2)ipwr + tq*C-I-tr) dz
q* 2 r wq* awr + q* r2 aw q*

± >n PW wQ33 ± Q2 2 WrP -(C 3 1CIQ W,

-tq*(C;•C 3)-w+ tq*ClItr

33 1 atr31 Pw2)q )wq* w
Oz.pW2 0z 33 ( p2) t 3 3  -I h(k)-

h ((k - Vr)(w,*t3 3 ± 3 1~) exp ( k j)k< (75)

When the material properties are constant within each layer of the model,

then any derivative of the constants is zero. When the horizontal derivatives
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of the elastic moduli are zero, then volume terms of the coupling matrix Bqr

become zero, and only the interface terms of the Bqr matrix remain. The

fluid-fluid interface terms have been neglected and their contribution to the

coupling terms is assumed negligible. Therefore, in the absence of material

property variations, the coupling matrix reduces to:

B 1 r f q* 2 
wr _ iwq* qwr

qr -- PLO h Q33-L w + wq*Q22 wrp2

awe* 0wr 1Oz (31C1)tr- t*(csCla-•z+ ta*c-Itt

G ( tq 1 0at 3 3  q* 1 p 2 \ q* , 2 7 r ) -
ý__Z pw2 aZ '33 (A p-W2 3•3-[W 1 w1~)

r) hWq + tq*W- ) q~ rw)p w

- ih ((kq - kr)(wq*t33 + t 1w)) ) exp (ifX(kq - kr)d(q))

We allow the material properties to vary with range within each layer. For

this case all of the interface terms are zero, while the volume terms remain

non-zero, giving the are the volume terms of the coupling matrix Bq,

I q-q*- 2wr Wq* w"Wr wq, - aWr q*

Jh(x) r (-33 W•z ZP 23- + - Q32ipw- k Wr 2 Owq*

- _Q22 w p q* ( C3 -C )tr) - w q*ip(C 21C-l)tr -- t3 Wr

OZ O

+tq*(CjjiC 12)ipwr + tq*Ci.i-tr) dz
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D VTI Parameterization

The elastic stiffness constants in the elastic stiffness tensor, Cikli, can be

parameterized in a number of ways. Each parameterization results in the

exact same elastic stiffness tensor. Love notation (1944), Backus notation

(1965) and Takeuchi and Saito notation (1972) are each considered. The

theory of Odom et. al. (1996) and Park et. al. (1997) use the Love pa-

rameterization where the five independent constants for a VTI medium are

expressed as the elastic moduli A, C, F, L, N. Both relied on the Disper8O

code which uses Takeuchi and Saito notation (1972) where the five indepen-

dent constants are expressed as velocities ac and fv along with ratios of

the elastic moduli X, 0, 7, which are based on Love's notation. Park (1996)

uses Backus notation (1965) where the five independent parameters of a VTI

medium are the elastic moduli A, B, C, D, P. The relationship between the

three parameterizations is outlined below.

D.1 Love Parameterization

The ACFLN parameterization for a VTI medium can be described in terms

of aqyOH,,ýv and A,fCD,B.

[Table 7 about here.]

D.2 Takeuchi and Saito Notation (Anderson Notation)

The anisotropy describe by Takeuchi and Saito (1972) is described by five

parameters, a horizontal compressional velocity, a vertical shear velocity, a

ratio of horizontal and vertical compressional velocities, a ratio of horizontal
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and vertical shear velocities, and a fifth anisotropic parameter. The previous

results can be substituted into the expressions given by Takeuchi and Saitio.

The Takeuchi and Saito notation can be described in terms of ACFLN,

and A, BA , D, E.

[Table 8 about here.]

Notice that parameter q is not to be confused with the angle V in the xy-plane

describing the orientation of the symmetry axis 9 of the TI medium.

D.3 Modified Backus Parameterization

The angular dependence of the compressional and shear velocities are treated

in a similar manner to the formulas of Backus(1965), Crampin(1977), Shearer

and Orcutt (1986), and Park(1996).

Pa 2(ý) = A+Bcos2++Ccos4ý

p2 2()) D+Bcos2ý (77)

The previous works related the five parameters A, B, C, D, B to the in-

dividual elastic stiffness tensor elements for a HTI, with a symmetry axis in

the x-direction . These expressions are similar, except they describe the Ciklj

elastic stiffness tensor for a VTI medium.

[Table 9 about here.]

Additional parameterizations of VTI media include the Thomsen param-

eterization (1986) and the alternate parameterization of Romanowicz and

Snieder(1988) and Muyzert and Snieder(2000).
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E Bond Transformation of TI Symmetric Struc-

tures

Any arbitrary tilt of a TI symmetric medium can be obtained by rotating

through the two angles 0 and cp. The Bond transformation matrices described

by Auld(1990) are found below.

aXX azY az ,y 2a yaxz 2axzaxx 2axxaxy

2 2 2a ayy ayz 2ayxayy

2 a2  a a~a - az y azz2 2azyazz 2azzazx 2azxazy (8M = z zz(78)

ayzazx ayyazy ayzazz ayyazz +t ayzazy ayzazz + ayzazx ayyazx +r ayxazy

azzaxx azyaxy a-zaxz axyazz + axzazy axzazx + axxazz axxazy + axyazx

axxayx axyayy axzayz axyayz + axzayy axzayx + axxayz axxayy + axyayz

The Bond transformation matrix M is composed of the elements form the

general transform matrix a.

a ayx ayy ayz

Lazx azy azz

The general transformation matrices for rotation about the y and z axes are

ay and az respectively.

a=cos 0 0 - sinG 1ay= 0 1 0

sin 0 0 cos 0

[ cos W sin g 0

aZ= -singp cos o 0

0 0 1
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The corresponding Bond transformation matrices about the y and z axes are

then My and MZ respectively.

cos2 0 0 sin2 o 0 -sin20 0

0 1 0 0 0 0

sin20 0 cos 2 0 0 sin20 0
my =(79)

0 0 0 cos 0 0 sin 0

1 sin2 0 -sin20 0 cos 20

0 0 0 - sin 0 0 cos 0

cos2 ýO sin2 9P 0 0 0 sin 29P

sin2 W cos2 (P 0 0 0 - sin 2W

0 0 0 0 0 0
Mz (80)

0 0 0 cos W -sinW 0

0 0 0 sin W cos W 0

-. sin2W isin2W 0 0 0 cos2W

Applying the Bond transformation to the elastic stiffness matrix aC to obtain

a general rotation.

C" =: [R] [aC][R]T where R = MZMY

The individual elements of the elastic-stiffness tensor for a TI elastically

symmetric medium can be found by the following relation.

acd• = A(RjlRji + Ri2R32) + H(RF4Rj2 + Ri2Rjl) (81)

+ F(PIýRj 3 + R 2Rj3 + Ri3Rj, + RIa3Rj 2) + CR, 3 Rj3

+ L(Ri4Bj4 + Ri5Rj5 ) + NRi6Rj6

The R transformation matrix for a general rotation of a VTJ medium to any
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arbitrary orientation is:

cos2 0cos2 'p sin 2 'P sin2 Gcos29P

cos2 0 sin2 'P cos2 'P sin2 0 sin2 'p

sin2 0 0 cos2 oR =

-½sin20 sinW9 0 sin 20 sin 'o

!cos 0 sin 299 0 1 sin 20 cos W
2 0 2 sin2sn

-½cos 2 Osin2'p 1sin2'o -!sin Osin2'

sin 0 sin 2'p - sin 20 cos2 'p cos 0 sin 299

sin 0 sin 2'p - sin 20 sin2  -cos 0 sin 2'p

0 sin 20 0
(82)

cos 0 cos p -cos 20 sin V sin 0 cos 'p

cos 0 sin 'p cos 20 cos p sin 0 sin 'p

-sin 02 cos sin 20 sin 2'p cos 0 cos 2'p

Once the rotated elastic moduli are determined for some symmetry axis

ý(O, 0), they can be inserted into the elements of the differential operator

A and the coupling matrix Bqr. The elements of aCij need to be converted

from abbreviated subscript notation into Woodhouse notation as done in Ap-

pendix A. It should be noted that the Bond Transformations that include

rotations about both the y and z axes are best done numerically. Analytical

results are not always insightful for most arbitrary symmetry axis orienta-

tions of .(O, Vp).

The sensitivity of the elastic stiffness matrix to changes in 0 and 'p may also

be considered.

a - ACRT + R aRT where R = MZMY (83)
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The individual elements of the derivative of the elastic stiffness matrix with

respect to the generic angle A is:

a(aCH ) . A / I___Rjl _ ORj1  OR+ 2  + _ R Rj2__

-A i9AR,~ aA ± ARJ±i aAJ

+ ORil _R+ ORj 2  OR+ 2 RI, Rj
( aA' 2  aA + AR±2 aA}

+ F A na+Al +-•- aA +Pa-
+ ORi3 -Rj+ OR, 3 R.72 + ORj2
~OA33I~ OA ± AR±2 Oz

+~ i -3+ R,ý3•+-- a +j•[R O,• R ,1 ORj3  tR,
+ LO( R19Rj 3 O+P OA +R] + OA,)

OAO A Ra)R A 5
L(P4R • ±Rj 44± O0-Rj•) OR•

+ N (aR6R + Ri6-O-a)

- sin 20cos 2  0 sin 20cos2 q
-sin20sin 2  0 sin 20sin2 (P

OR sin 20 0 - sin2 o

ao cos 20 sin s 0 cos 20 sinso

- sin 0 sin2ýo 0 -cos20cos W

-½sin 20 sin 2 (p 0 ½sin 20 sin 2(P

cos 0 sin 2W -2cos 2cos20 -sin Osin 2W

cos 0 sin 2 W -2 cos 20 sin2 Wo sin 0 sin 2 W

0 2 cos 20 0
(84)

- sin 0 cos W 2 sin 20 sin W cos 0 cos W

- sinOsin W -2 sin 20cos (p cosOsin W

-cos 02 cos W cos 20 sin 2W - sin 0 cos 2W
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- cos2 0 sin 2o sin 2p - sin2 0 sin 2V

cos2 0 sin 2V - sin 2V sin2 0 sin 2•

OR 0 0 0

~ot 1 sin 20 cosp 0 1 sin 20 cos ýo
2 2

cos 0 cos 2V 0 1 sin 20 sinp

-cos 2 0cos2o cos2Wp -sin 2 0cos2W

-2 sin 0 cos 2V sin 20sin 2W 2cos0cos 2o

2 sin 0 cos 2W -sin20sin2V -2cos0cos2W

0 0 0
(85)

-cos 0 sin V - cos 20 cos W - sin 0 sin

cos 0 cos ( - cos 20 sin (p sin 0 cos W

2 sin 02 sin (p sin 20 cos 2V -2 cos 0 sin 2W
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F Equations of Motion and First Order Equa-

tions

Consider the equations of motion for elastic waves in anisotropic structures

as described equation (3) of Maupin (1988).

2w bft1  Obft 2 +bft 3-pw~w - ± +±
ax ay 09z

ti = cj (86)a• xj

The characteristic equation can be expanded out for each individual traction

vector.

=w + W2w wc W3w (87)h an•x 1 '2-• +C13--

t + 022w ± WC 2 3 w (88)

"- WC ±WY aw a9w-- +± W (89)
t3 = WC31 +X -'32 ay + az33 -89

Now consider the the derivative with respect to x of w and tj. The

derivatives are chosen to be expressed only in terms of material properties

and the vectors w and t I:

ww -1 WC1 2 OW WCl-lWC13aW
a + - (90)

.PW W -pww y-- - (X23  -ayC
a9 aw ay aw z a--q t,3 wý a X3 ( -lýw) ca (wC3 I I -tI - F (91)

aZ ay) -- a-- az-

Now consider w and t 2 and their derivative with respect to y. The deriva-

tives are chosen to be expressed only in terms of material properties and the
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vectors w and t2:

Ow C2 22 22 ±C C23K (92)
aOw 0 'X 9wZwcC~-

_OW W - ~ x O ,W_--x -5- Oax C1W2

-2_ 31a ax Oz 3 Oz a (W3wCw lti) -F (93)

Similarly the derivatives of w and t2 with respect to z may be consid-

ered. The derivatives are chosen to be expressed only in terms of material

properties and the vectors w and t 3 :

w9W wiw1t3 ±C31G aw~gi OWC3'3 w (94)
O9z Ox ay
at3  0 0) Owt3)

- -PW W - a-Z10(1 aW I~(wc1 3 wc~l3 )Ozax a a( ay aOx

ay Ox) '9 ) - (a _Cýt - F (95)

These three sets of equations can be reformulated into a single set of

generalized equations of motion.

aw -wcFýIntm - w; WCdWC w ±Wl w (6

atrn -P2 - Oa ((wcjj - WCw,,CMM1wC",)Ov)

Oxa ((wo.. - WC W7,CMM-ilw G) )w
- Oa (WCimWC I t)

"± ((-.. - WCjmnwCmm-lW Cmi) a

9 ((cj - wCjmwCm~n~n lwCmj) ax3
a (wCjmwCrnrntm) -F (97)

where m 1, 2, 3 and xmn x, y, z
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An eigenvalue problem may be formulated from the generalized equations

of motion, which results in a generalized firt order coupled equation.

aum - Amu' - F where um = (w, tm)T (98)

OXm

A (A= AYA (99)

For a solid triclinic anisotropic medium, the sub-operators for the generalized

first order coupled equation are:

/m =
11 _ -(WC1)(WCii) + ( wCjj) ,

(wcl

219 ((wc W9x l W( mmm1wC )
A = -pzrw -

xjxjx
C9 (w - WCnjmCmm-IwCi)19)

-9 ((Wcj - WC mwCmm-lwC ) a -

2m2 =(- (WCim)(WCm1) - 19j(wc)(wc1)"(W O , (100)
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G Symmetry Planes and Wave Polarizations

The polarization of the modes composing the seismo-acoustic wavefield de-

pend on the propagation direction through the anisotropic medium. The

polarization of any mode will change if the propagation direction changes or

the elastic stiffness matrix is rotated. Pure P-SV and SH polarization di-

rections exist in a TI elastically symmetric medium for specific propagation

directions. The polarization of the modes is determined by the proximity of

the propagation direction to the symmetry axis direction.

The form of the elastic stiffness matrix indicates the amount of symme-

try and the location of symmetry planes for an anisotropic medium. These

symmetry planes, help predict when transverse particle motion may propa-

gate independently of the P-SV particle motion, or when quasi-SH particle

motions propagates independently of quasi-P-SV particle motions.

Auld(1990) discusses pure plane-wave mode propagation directions in re-

lation to symmetry planes and symmetry axes. The modes of a shallow water

waveguide follow these same principles with a little modification. P, SV, and

SH plane waves propagate independently for pure mode directions of propa-

gation. For the modes of a shallow water wave guide, the P and SV particle

motions are always coupled, but the SH particle motions may propagate

independently for some geometries of the symmetry axis and propagation

directions. If the SH motions coupled with either SV or P particle motions,

then the modes will have polarizations in all three coordinate directions.

[Table 10 about here.]

Whenever the propagation is within a symmetry plane, the single gener-

alized mode family splits into two independent mode families, and the SH
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modes will propagate independently of the P-SV modes. The propagation,

in a sense will behave as quasi-isotropic. This is true regardless of whether

the anisotropy is strong or weak. A VTI medium can be thought as a quasi-

isotropic or quasi-orthorhombic medium. The wave propagation is similar to

an isotropic medium, but the modes have slightly different shapes.

Consider rotating the elastic stiffness matrix, so that the symmetry axis

first aligns with the three coordinate axes. When s = x, y^, or 2 then the form

of the elastic stiffness matrix remains in the form of a quasi-orthorhombic,

with 12 non-zero matrix elements and the remainder having zero values:

C11 C 12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0 where i or 101)

0 O 0 C44 0 0

0 0 0 0 C55  0

0 0 0 0 0 C66

For a VTI medium, all elements of the elastic stiffness matrix aC1 g are

unaltered by rotations about the z-axis.

An orthorhombic medium has the xy, xz, and yz-planes as symmetry

planes, and the quasi-orthorhombic elastic stiffness matrix will have these

symmetry planes as well. Applying the symmetry principles from table 10

for § along any of the coordinate axes, the SH modes will propagate inde-

pendently of the P-SV modes. The mode set is separated into two families

of modes, the SH modes and the P-SV modes, when the 9 is aligned with

any of the three coordinate axes.

Now consider tilting the symmetry axis 9 so that it remains in the xz-

plane. The elastic stiffness matrix aC0j takes on the form of a monoclinic
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medium where the single symmetry plane is orthogonal to the y-axis and

parallel to the xz-plane.

C11 C12 C13 0 C15 0

C21 C22 C23 0 C25 0

C C31 32 C33 0 C 35  0 where .(O, p) = ý(all, 000102)

0 0 0 C44 0 C46

C5 052 C53 0 C55 0

0 0 0 C64 0 C66

A monoclinic medium has a single plane of symmetry. Consider the form

of the elastic stiffness matrix when the symmetry is parallel with the xz, yz,

and xy-planes respectively. The tilted TI medium with the symmetry axis

along one of the coordinate planes has the form of a monoclinic material,

but with a higher degree of symmetry. A true monoclinic material has 13

independent parameters. The tilted TI medium only has five independent

elastic moduli, even though the elastic stiffness matrix is populated the same

as a monoclinic medium. The elastic stiffness tensor can be thought of ex-

hibiting a quasi-monoclinic form, with higher symmetry due to a reduction

in the number of independent elastic moduli.

For the symmetry axis in the xz-plane, the C22 element is insensitive to

any variation in 0 when p = 00. This is of little consequence, since the

C22 element is not included in the equation of motion for 2-D propagation

along the x-direction. The horizontally polarized shear modes will propagate

independently of the P-SV modes for all orientations of the symmetry axis

that lie in the xz-plane. The modes are split into two families of propagating

modes: P-SV modes with polarizations in the xz-plane and SH modes with

polarizations in the transverse coordinate direction.
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Now consider tilting the symmetry axis so that it remains in the yz-plane.

The elastic stiffness matrix again takes on the form of a quasi-monoclinic

medium where the single symmetry plane is orthogonal to the x-axis and

parallel to the yz-plane.

C11 C12 C13 C 14  0 0

C21 C22 C23 C24 0 0

CC31 32 033 034 0 0 where 9(0, 9) = ý(all, 9090103)

C41 C42 C43 C44 0 0

0 0 0 0 C55 C56

0 0 0 0 C65 C66

The C11 element of the stiffness tensor is insensitive to any variations of

0 when p = 90'.

The symmetry plane and symmetry axis principles indicate that no pure

horizontally polarized modes should be expected when the elastic stiffness

matrix is in this form, unless the symmetry axis 9 is vertical or horizon-

tal in the yz-plane. The principles indicate that the quasi-shear modes will

have polarizations parallel to the symmetry axis, having both transverse and

vertical components. The modes will likely consist of a single family of gen-

eralized P-SV-SH modes with polarizations in all three coordinate directions.

The quasi-monoclinic elastic stiffness matrix has a higher degree of symmetry

than a true monoclinic medium.

Next consider tilting the symmetry axis 9 so that it remains in the

xy-plane. The elastic stiffness matrix again takes on the form of a quasi-

monoclinic medium with the single symmetry plane orthogonal to the z-axis
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and parallel to the xy-plane.

Cl 1  C12 C13 0 0 C16

C21 C22 C23 0 0 C26

"C"31 032 33 0 0 036 where .(O, (p) =(90', a//0104)

0 0 0 C44 C45 0

o o 0 C54 C55 0

C61 C62 C63 0 0 C 6 6

The 033 element of the elastic stiffness matrix is insensitive to any vari-

ations of (p for 0 = 900.

Now consider tilting the symmetry axis to a general orientation that ex-

cludes the coordinate axes directions and the xy, xz, and yz coordinate planes.

The general form of the rotated aCIj elastic stiffness matrix is quasi-triclinic

in nature with a higher degree of symmetry than a true triclinic elastic stiff-

ness matrix. Similar to the monoclinic comparison, a ture triclinic material

has 21 independent elastic moduli. The rotated elastic stiffness matrix in

equation (105) still only has 5 independent elastic moduli. Each element re-

mains a linear combination of the five elastic moduli. So the rotated elastic

stiffness matrix can be thought of being quasi-triclinic, with a higher de-

gree of symmetry due to the reduction in the number of independent elastic

moduli.

CII C12 C13 C14 C15 C16

C21 C22 C 23 C24 C25 C26

031 032 C33 C 34 C 35 C36 where §(O, ) (105)

C41 C 4 2 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

061 C62 063 C64 C65 C66
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Except when the symmetry axis § is aligned with the x-axis or y-axis, the

mode set consists of quasi-P-SV, quasi-SH, or generalized P-SV-SH modes.

The form of the elastic stiffness tensor may change as a TI medium rotates

from a general orientation to more specific orientations. The elastic stiffness

tensor of a TTI medium would be described as quasi-triclinic, the elastic

stiffness tensor for a symmetry axis within any of the coordinate planes would

be described as quasi-monoclinic, and the elastic stiffness tensor when the

symmetry axis is aligned with any of the three coordinate axes would be

quasi-orthorhombic.

Figure 27 shows the form the elastic stiffness matrix takes for orienta-

tions of the symmetry axis 9(0, p) in the first quadrant. The vertical axis is

the angle • in 100 increments and the horizontal axis is the angle 0 in 100

increments. Each matrix represents the form of the elastic stiffness matrix

aC1 j for a specific symmetry axis 9 orientation. The first row shows the form

of aC1 j for V = 0' and 0 = 00 - 900. This represents the symmetry axis

within the sagittal plane and the elastic stiffness matrix has the form of a

quasi-monoclinic medium. The first column shows the elastic stiffness matrix

for . = 2, with the form of a quasi-orthorhombic medium or VTJ. The corner

matrices of figure 27 in the tenth column also have the quasi-orthorhombic

form and correspond to HTI media with the symmetry axis 9 aligned parallel

to the i and ý axes. The tenth column shows the form of aCH for 0 = 900

and v 0' -90'. This represents the symmetry axis within the xy-plane and

the matrices have the form of a quasi-monoclinic medium. This also is a HTI

medium where ý(O, •) = cos W2 + sin ýj. The tenth row shows the form of

the elastic stiffness matrices for 4 = 90' and W = 00 - 900. The matrices for

9 in the yz-plane also have a quasi-monoclinic form. All other orientations
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of the symmetry axis for 'C1 i produce the form of a quasi-triclinic medium.

Okaya and McEvilly (2003) noticed similar results for rotations of hexago-

nal symmetry about the x, y, and z axes, and mentioned the appearance of

monoclinic symmetry for rotations about the y-axis. Shoenberge and Costa

(1991) also state that hexagonal anisotropy behaves as monoclinic when the

symmetry axis is within the sagittal plane.

[Figure 27 about here.]
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VTI Compositionally Layered Structure

•_ • •, • fast

VTI TTI HTI

ý vslow

Vslow

v fast vfast
fast V fast slow

f a st V fa st

Figure 1: A representative elastically symmetric transversely isotropic struc-
ture (TI) due to compositional layering with a vertical symmetry axis s.
The fast velocity directions Vfast are normal to the symmetry axis direction
and parallel to the bedding plane, the xy-plane for this instance. The slow
velocity direction V,1,, is parallel to the vertical symmetry axis. A TI struc-
ture with a vertical symmetry axis is often referred to as vertical transverse
isotropy (VTI) or as azimuthally isotropic. The geometrical orientation of
the anisotropy in a plane layered homogeneous anisotropic model, depends
on the orientation of the symmetry axis ý. The white block of material from
the plane layered structure on the right is expanded on the left to show the
importance of symmetry axis direction on velocity properties of the medium.
A structure can be transversely isotropic with a vertical, tilted (neither ver-
tical nor horizontal), or horizontal symmetry axis and be classified as VTI,
TTI, or HTI respectively. For a VTI orientation, the fast velocity direction
is in the horizontal plane. A TTI orientation results in the fast velocity di-
rection being contained to an oblique Dlane and the HTI orientation restricts
the fast velocity directions to a vert~iff plane normal to the symmetry axis
ý. Note that the slow velocity direction (VSIoW) always corresponds with the
symmetry axis direction ý.



Fixed Cartesian Coordinate System

~ (P

coordinate system xy and yz xy plane
full view plane view view

Figure 2: The Cartesian coordinate system is defined with the x-direction
corresponding with the direction of propagation, the z-direction is positive
downwards, and thee y-direction is free of any lateral variations. The sym-
metry axis 9 is defined in reference to the fixed Cartesian coordinate system
by the Spherical coordinate angles 0 and 'o. The angle between the z-axis
and the symmetry axis . is described by 0. The angle between the projec-
tion of the symmetry axis A onto the horizontal plane and the x-direction is
described by V.
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(a) (b) (c)

'M

Figure 3: The C1, element of the elastic stiffness matrix aC1j is shown in
Figure 3(a) for various angles of 0 and ýo. This is a numerical plot of equation
11. Figures 3(b) and 3(c) plot the sensitivity of the C, element to the angles
ýp and 0 respectively.
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Lines of Constant Elevation and Azimuth

Constant

Elevation

Constant
Azimuth

Figure 4: Any tilt of the symmetry axis with respect to the fixed coordinate
system results in an azimuthal, elevational, or a combination of azimuthal
and elevational change in anisotropy. The red line in the horizontal plane
represents changes of azimuth Vo of the symmetry axis and the red line in the
vertical plane represents changes in elevation 0 of the symmetry axis.
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1-D Plane Layered Homogeneous Anisotropic
Structure

x

z

n

Figure 5: A 1-D plane layered homogeneous anisotropic structure representa-

tion of shallow water environments. The model contains fluid layers over thin
anisotropic and/or isotropic sediments, additional sediment and/or basement
layers, and is terminated by an isotropic halfspace. There is no lateral vari-
ations in the structure, and thee elastic parameters only vary with depth.
The anisotropy is restricted to elastically symmetric transverse isotropy, but
the symmetry axis 9 may have any arbitrary orientation.
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Velocity and Density Profile Shear Velocity Profile
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Figure 6: The velocity and density profile of the starting VTI medium. The
red, blue, and dotted black lines represent the shear velocity, compressional
velocity, and density respectively with depth. The profile on the right is
an enlargement of the thin sediment region to show the shear wave velocity
splitting within the anisotropic layers. The solid red line represents the
vertical shear speed /3v and the dotted red line represents the horizontal shear
speed /3 l. Note that the velocity profile lacks any compressional anisotropy
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(a) (b) (c)

Figure 7: The slowness curves for the xy, xz, and yz-planes for a VTI
anisotropic sediment layer, where ý = 2. The inner circle is the compressional
slowness, indicating the absence of any anisotropy in the compressional veloc-
ity. The outer paths represent the vertical and horizontal shear slownesses.
In Figure (a) there is complete shear velocity splitting. Both Figures (b) and
(c) reveal shear velocity singularities at 0 = 0', 180' and 0 z 70', 1100.
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Figure 8: The Figure shows the slowness curves for orientations of the sym-
metry axis 9 within the first quadrant. Each slowness figure indicates a
change in azimuth or elevation of symmetry axis of 100. The horizontal row
represents variations of 0 and the vertical column represents variations of V.
The slowness curves are shown for the xz-plane for an anisotropic marine
sediment layer.
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100 n 200s n0, V ad

.•(60°, 800). The dispersion curves for the VTJ symmetry in (a) and TTI
symmetry (b) are very similar. Both figures clearly show the "so lotone"

effect, the dark bands in both figures (a) and (b). The modal phase velocities

trace out vertical paths that are nearly parallel in figure (a). The even

parallel nature is disrupted when the phase velocities approach the value of

an "invariant" mode. The modal phase velocities in figure (b) also trace out

vertical paths, but a braiding effect can be seen to occur between adjacent

phase velocity traces. The dark bands that represent the phase velocities of

the "invariant" modes are frequency dependent, but they vary more slowly

than for the non-invariant modes.
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50.0Hz Phase Velocity Angular Dispersion Curve: 6=10 4= -90; 50.OHz Group Velocity Angular Dispersion Curve: =0--l -9
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Figure 10: Angular dispersion curves for both phase and group velocities.
Figure (a) and (b) show the angular dispersion curves for the phase and
group velocities respectively for .ý(O, ýo) = §(100, 00 - 900). Figure c) and (d)
represent the angular dispersion curves for the phase and group velocities
respectively for .§(O, ýo) = ý(0O - 900, 10"). In general, changes in elevation
(0) have a larger affect on the phase and group velocities than changes in
azimuth(9)
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Figure 11: The stacked angular dispersion curves show the dependence and
sensitivity of the dispersion branches on variations of the angles 0 and ýO for
a range of frequencies. The thickness of an envelope indicates the sensitivity
of a particular mode to changes in azimuth (po). Note the convergence of
the phase velocities at 0' and approximately 70'. This is where the shear
velocities become degenerate.
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Figure 13: The P-SV mode remains polarized in the sagittal plane when the
symmetry axis 9 = i, y, 2. The mode shapes are similar when the symmetry
axis is aligned parallel to any of the three coordinate axis directions.
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(a) (b) (c)

Figure 14: The quasi-P-SV mode in figure (a) has gained some particle mo-
tion in the y-direction, but still has particle motion predominantly in the
sagittal plane. The quasi-SH mode in figure (b) has gained particle motion
in the sagittal plane, but the mode remains predominantly polarized along
the y-direction. The P-SV-SH mode in figure (c) has polarizations in all
three coordinate directions and attributes of both P-SV and SH modes.
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0 2

Figure 15: An example of an "invariant acoustic mode" at 50.0Hz for
§(O, p) = 9(80o, 300). The mode only gains a very small portion of parti-

cle motion in the y-direction.
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Figure 16: The characteristics of an acoustic mode changes with frequency.
Figure (a) shows the x-component of displacement and figure (b) shows the
z-component of displacement. The acoustic mode shown has a single zero
crossing in the z-component particle displacement within the fluid layer at
higher frequencies.
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X-Displacement Y-Displacement Z-Displacement

(a) (b)(C)

Figure 17: The x,y, and z particle displacements of a mode switches charac-
teristics with another mode due to a near degeneracy. The near degeneracy
occurs a the symmetry axis 9 is varied in 0. In this case the quasi-SH mode
becomes a quasi-P-SV mode as0 =0 00 - 90'.
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X-Displacement Y-Displacement Z-Displacement

(a) (b) (c)

X-Displacement Y-Displacement Z-Displacement

I

7-3

(d) (e) (f)

Figure 18: The figures (a), (b), and (c) show the x, y, and z displacement
components for an explosive source respectively. The figures (d), (e), and
(f) show the x, y, and z displacement component for a double couple source
respectively. An explosive source only excites modes with particle motion in
the sagittal plane. A double couple in the horizontal plane only excites modes
with particle motion in the y-direction. These modes reflect a geometrical
orientation of the symmetry axis . when the P-SV and SH particle motions
propagate independently. The modes of this quasi-monoclinic medium are
similar to modes of an isotropic or VTI medium.
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X-Displacement Y-Displacement Z-Displacement
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X-Displacement Y-Displacement Z-Displacement

~..

(d) (e) (f)

Figure 19: Both explosive and double couple sources are effective at exciting
modes with 3-D particle motion. This is purely a result of the introduction
of anisotropy into the sediments, which results in the coupling of the x, y,
and z particle displacements. Note that the double couple source is more
effective at exciting the lower order modes, than the explosive source. The
figures show the displacement of all the modal eigenfunctions with phase
velocities between the of 1500m/s and 2000m/s. The x, y and z-components
of displacement are shown in figures (a) & (d), (b) & (e), and (c) & (f)
respectively. P-SV-SH modes are clearly evident with energy in all three
coordinate directions.
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2-D Layered Laterally Heterogeneous Anisotropic
Structure

xo

Zo

IzZ
n-i

Zn

Figure 20: A 2-D laterally heterogeneous anisotropic structure. The structure
contains fluid layers over thin range-dependent anisotropic and/or isotropic
sediments, additional range-dependent sediments and/or basement layers,
and is terminated by an isotropic halfspace. The elastic moduli may vary in
both range and depth. The local equivalent of this 2-D model at x0 is the
plane-layered homogeneous anisotropic model in figure 5.
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Figure 22: B qr coupling matrices for quasi-P-SV, quasi-SH, and P-SV-SH
modes at 20.OHz-50.OHz. Any mode may coupling into any other mode
without the restrictions to the quasi-mono clinic symmetries.
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Figure 23: Coupling matrices showing the effects of near degeneracy. Near a
degeneracy in. phase velocity, two modes may strongly couple and dominate
the appearance of the coupling matrix. When the nearest-neighbor coupling
terms are removed, the coupling matrix resembles those of 22
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Figure 24: The excitation of P-SV and SH modes by explosive and double
couple sources for In(0, V) (80', 00).
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Figre 5:Sq, coupling matrices for P-SV and SH modes at 20.OHz-50.OHz.
The rows represent modes from the primary wavefield, and the columns rep-
resent the modes from the scattered wavefield.
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Figure 26: Sq coupling matrices for quasi-P-SV, quasi-SH, and P-SV-SH
modes at 20.OHz-50.OHz. The rows represent modes from the primary wave-
field, and the columns represent the modes from the scattered wavefield.
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Table 1: Mode Wavelength Ranges

Phase Velocity 10.0Hz 20.0Hz 30.0Hz 40.0Hz 50.0Hz 75.0Hz
1500.0m/s 150.00m 75.00m 50.00m 37.50m 30.Om 40.00m
2000.0m/s 200.00m 100.00m 66.67m 50.00m 40.00m 26.67m
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Table 2: Velocity/Density Profile

DEPTH A=aCl, C=AC 33 F=AC 13 L=AC 44 N=aC66  P
100.00 2.250 2.2 2.2 0.0000 0.0000 10002.50 5.544 5.544 5.376 0.0526 0.0669 2100
2.50 5.544 5.544 5.376 0.0526 0.0683 2100
2.50 5.544 5.544 5.376 0.0526 0.0700 2100
2.50 5.544 5.544 5.376 0.0526 0.0714 2100
2.50 5.586 5.586 5.376 0.0792 0.0864 2100

2.50 5.586 5.586 5.366 0.1100 0.1100 2100
2.50 5.649 5.649 5.383 0.1330 0.1330 2100
2.50 5.754 5.754 5.438 0.1580 0.1580 2100
2.50 5.859 5.859 5.495 0.1820 0.1820 2100
2.50 5.964 5.964 5.550 0.2070 0.2070 2100
2.50 6.069 6.069 5.607 0.2310 0.2310 2100

372.50 8.400 8.400 2.798 2.8010 2.8010 2100
1000.00 70.634 70.634 23.528 23.5530 23.5530 2335
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Table 3: Invariant Acoustic Modes

Frequency Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
10.0Hz
20.0Hz 156Dm/s
30.0Hz 1528m/s 1637m/s
40.0H1z 1517m/s 1577m/s 192Gm/s
50.0Hz 1511m/s 1550m/s 1626m/s 1905m/s
75.0Hz 1506m/s 1524m/s 1556m/s 1606m/s 1679m/s 1757m/s
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Table 4: P-SV and SH Particle Motion Independence

Coordinate Axes:
ý (0, •) =(90°, 0')=

ý(O, 9) =(90°, 900)

Sagittal Plane:
9(0, ýo) = 9(allU, 00)
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Table 5: Symmetry Axis Orientation and Coupling

Coordinate Axes:
SH/SH
-P-S V/P-SV
-Arbitrarily Oriented ~
quasi-P-S V/quasi-SH
quasi-P-S V/quasi-P-S V
quasi-P-S V/P-S V-SH
quasi-SH/quasi-SH
quasi-SH/P-SV-SH
P-S V-SH/P-S V-SFI
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Table 6: Abbreviated Subscript Notation

ik or lj IorJ
11 1
22 2
33 3

23,32 4
13,31 5
12,21 6
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Table 7: Love Notation

Love Notation Backus Notation Takeuchi and Saito Notation Isotropy
A-B+C pa4 A + 2p

c :•i B •pa,¢ A + 2p

F A A- 30- 2(D +,P) prj(c2 - 202) A
L + P V P3
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Table 8: Takeuchi and Saito Notation

Takeuchi and Saito Notation Love Notation Backus Notation Isotropy

aH = -A ____ [+2
SpV p vp

L D+E

N __ 1

C A+B+CA A,-B-tC•

F A-3C-2(D+E1
_ _ _ _ _A-2L A-B+C-D-E
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Table 9: Backus Notation

Backus Notation Love Notation Takeuchi and Saito Notation Isotropy

A 3(A+C)+2(F+2L) a2(3(1+0)+277)+2/ 3 V(1-y) A + 2p8 8

Bzz 4(C-A) 4a_(0-1) 02 8c: A+C-2(F+2L) a 2(1+¢-27/)-43,(1-i) 0

L+N P,3, 2 ()2 2o
L2 N p3V2 (12 0
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Table 10: Propagation Principles

Symmetry Plane Principles
propagation direction within symmetry plane:

shear motion polarized normal to symmetry plane
propagation direction normal to TI symmetry axis 8:

shear motion polarized parallel to TI symmetry axis 9
propagation direction parallel to TI symmetry axis s:
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