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1. Executive Summary 
This report describes our research on the Program Composition for Embedded Systems. Our 
project is based on the automatic generation of resource management components for embedded 
applications, and on the use of static analysis techniques for code verification. 

Resource management is the key component of any real-time application. Traditional 
approaches to the development of embedded applications usually restrict their resource 
management capabilities to the level of the real-time scheduler implemented as an 
admissibility policy associated with a myopic dispatcher mechanism. The main problem with 
this approach is that they have very limited visibility of the actual levels of resource 
availability in the system. The non-functional aspect aspects of the architecture are completely 
ignored by these approaches. To overcome these limitations, system developers manually 
optimize the architectures for the particular application under consideration. These 
optimizations are not reusable and, once a new application is needed, a new architecture needs 
to be created. 

Kestrel is implementing high-performance real-time scheduling algorithms using automatic 
software synthesis technology. In this approach, a high-level description of a particular real-
time scheduling problem is translated into an algorithmic model. This model is then further 
refined into a very optimized lower-level implementation that targets the execution platform 
and middleware architecture. The two main benefits of this modeling and synthesis approach 
are: (1) the clear separation between functional requirements and lower level implementation 
details; and (2) the support for automatic translation of the functional specification into a 
product family of real-time scheduling services. 

The generator was implemented as a component of Planware, a software synthesis tool 
specialized to the domain of resource planning and scheduling. Planware was initially 
designed as a generator for off-line schedulers that operate in batch mode. The goal of the 
project was to implement a generator for real-time schedulers that could be integrated in the 
Boeing OEP. 

There are two main differences between generating real-time schedulers and offline 
schedulers: awareness and adaptivity. The first difference is that real-time schedulers must be 
aware of the actual level of resources available for its own execution, and for the execution of 
the tasks it is scheduling. These schedulers should be able of not only allocating task for 
execution, but also of monitoring different levels of resource availability in the system. In 
response to feedback from the environment, the scheduler should be able to estimate QoS 
levels and decide, based on the required QoS levels specified, how to execute the next set of 
tasks. 

The second main difference is that real-time schedulers must dynamically adapt its allocation 
or dispatch strategy based on the difference between nominal or required QoS levels, and 
actual or estimated values. The scheduling algorithms must identify that the situation has 
changed and that maybe a different scheduling strategy is needed. For example, if a fighter is 
performing a patrol mission and suddenly needs to engage the enemy, the scheduling strategy 
for on-board systems should also adapt to give higher priority to task related to combat mode 
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as opposed to patrol or recognizance mode. 

The work on the generator involves writing Planware program schemas, templates for program 
generation, capable of implementing a number of different real-time scheduling strategies: ranging 
from static, offline scheduler to pure dispatch-based, dynamic scheduling algorithms. In addition to 
designing and implementing the generator, the models describing the problem to be solved also must 
be described. This report will focus on the latter: The modeling approach and the resource models 
used to develop end-to-end resource management capabilities for embedded applications. 

In addition to the resource management problem modeling, this project also performed a defect 
analysis of the software infrastructure used as the experimental platform: The Tao ORB used by 
Boeing’s BoldStroke architecture. The result was that a reduced number of non-critical defects were 
detected in thousands of different files. 
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2. Introduction 
This document addresses the problem of correctly and efficiently managing resource usage 
over time in real-time, embedded applications. The main goal of this research was to 
investigate how real-time performance requirements specified at system design time can be 
used to synthesize high-performance scheduling algorithms that guarantee desired QoS levels 
during system execution. To accomplish that, we built a prototype software development 
environment that supports the precise specification of scheduling requirements for real-time 
systems, and automatically synthesizes and integrates highly specialized and optimized 
services for resource management into a real-time application architecture. 

The motivation behind our approach is the critical role scheduling services play in supporting 
QoS requirements for real-time systems [5], and the ad-hoc nature of the design process cur-
rently used for these types of services. Section 3 below describes in more details the specific 
real-time compositional problem we are addressing and its importance. Section 4 discusses 
how our work relates to current research in this area, and emphasizes the differences between 
Kestrel’s algorithm generation approach and recent work on adaptive scheduling algorithms 
like RT-ARM [8]. Section 6 describes how Planware addresses the technical challenges in the 
PCES program. Section 5 summarizes Planware modeling approach. Section 7 describes the 
models created using Planware to describe the Sensor to Decision Maker to Shooter/Weapon 
problem. Section 9 described our implementation of the C code generator capable of 
generating C code from our Kestrel’s high-level specification language. 

In section 8 we summarize the results of a static analysis of the TAO ORB code performed by 
Reasoning Inc. The full report of the analysis is provided as an appendix to this report. 
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3. Automatic Synthesis Of Real-Time Scheduling 
Algorithms 
The design and development of real-time, mission-critical applications is a complex activity 
that cuts across several different disciplines. In addition to the complexity associated with 
traditional development of software artifacts, real-time systems are required to correctly man-
age and coordinate the execution of a number of different tasks competing for resource usage 
under very stringent timing constraints. Correctly dealing with time and correctly managing 
resource usage are probably the two most important requirements imposed on the design and 
implementation of real-time systems: The way in which the system handles time and 
resources characterizes the system temporal behavior and its correctness [12]. The key issue 
here is how to play the trade off between the processing overhead of the scheduling algorithm, 
and the quality of service (QoS) resulting from the resource allocation while guaranteeing 
overall system correctness and reliability. 

By the inherent nature of the problem described in the previous paragraph, implementations of 
middleware scheduling services for embedded, real-time applications need to be highly 
optimized for both the lower-level platform executing the tasks, and for the high-level domain 
level application. Historically, this optimization has been performed manually, and using ad-
hoc design approaches. The result of this process is costly maintenance and almost no re-use 
of previously implemented services. Furthermore, timing and scheduling decisions are usually 
implicitly embedded in the code, and made without a solid theoretical foundation that 
guarantees correctness results. This severely limits the ability of predicting system behavior 
under different operating conditions [15]. Correctness claims about the system are then made 
based on the result of exhaustive, and expensive, testing. 

To address some of these problems, several formalisms have been proposed to allow system 
designers to explicitly represent timing and resource constraints. These formalisms also 
facilitate the automatic verification and validation of specifications. Despite the benefits of 
using formal methods, very few approaches provide mechanisms to translate specifications 
into efficient executable code that preserve the properties explicitly represented in the 
specification. Kestrel’s software synthesis environment, Specware [20] and related 
technologies, is one of such approaches. 

One of the domains in which Kestrel’s correct-by-construction software synthesis approach 
has been particularly successful is scheduling. Extremely efficient scheduling algorithms for a 
number of different practical applications have been successfully synthesized using a 
prototype software generator similar to the one discussed here [18, 1]. The new aspect is the 
nature of the real-time scheduling problem, and the set of additional requirements concerning 
the algorithm processing time. Previous efforts at Kestrel were concerned with the generation 
of off-line scheduling systems for target domains where very complex constraints must be 
taken into account like, for example, military logistics and transportation networks. These 
algorithms are very complex and deal with large networks of constraints. Real-time resource 
management imposes a slightly different set of requirements on the characteristics of the 
algorithms generated. Since the scheduler is also competing for resource usage, implementations 
of real-time schedulers trade complexity for efficiency and correctness. The scheduler must be 
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able to allocate time to its own execution, and to precisely compute or estimate its required 
resource usage. The integration of the service into a middleware framework, and required 
optimizations along three dimensions, the higher-level application, the lower level OS, and the 
middleware system, has not previously been investigated. 

As current mission-critical applications evolve into highly distributed, heterogeneous systems, 
the more critical and complex the issue of correctly managing time and resources becomes. 
Our synthesis approach will allow a high level of optimization for each application-platform 
pair with a minimal amount of effort while preserving timing properties. 
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4.  Related Work 
Real-time scheduling problems range from static, single-processor problems in which all tasks 
and respective timing constraints and parameters are known in advance, to dynamic, multiple 
processors where very little is known about the tasks and their temporal characteristics. Purely 
static problems are less interesting since they can usually be solved by an off-line scheduler. 
Before system execution, the scheduler checks schedulability conditions for the set of tasks, 
and defines a certain scheduling policy to be followed by the run-time kernel while executing 
the tasks. For this class of problems, classical scheduling theory provides techniques that 
allow optimal or nearly optimal resource utilization and task processing [21]. Although the 
scheduling problem in this case is not very complex, guaranteeing timing constraints at design 
time and separating timing from functional requirements are still open issues. 

For static problems, the algorithms implementing the scheduling decisions are implicitly 
embedded in the implementation of the application. In other words, the scheduling decisions 
are part of the application’s logic. Maintenance and modifications to system implemented in 
this fashion are very expensive. The generator approach we are proposing allows different sets 
of requirements to be treated individually, represented explicitly, and automatically combined, 
or integrated, during system synthesis. 

The quality of solutions provided by purely static analysis starts to degrade as uncertainty about 
task’s processing and arrival times increases. Dynamic scheduling problems are particularly 
challenging due to the lack of theoretical results capable of guaranteeing that timing properties 
will be satisfied during execution. Traditionally, dynamic real-time systems have been 
statically scheduled using rate monotonic scheduling techniques [10]. Worst-case assumptions 
are used to compensate for the uncertainty on task’s parameters [6]. 

To overcome the limitation of purely static scheduling techniques applied to dynamic 
problems, recent research is considering the use of hybrid allocation schemes that add dynamic 
dispatching capabilities to the task executor [2, 7, 8]. In these approaches, a static analysis is 
initially performed on the set of tasks to be executed. This analysis determines the 
schedulability of the set of tasks, and computes some basic metrics to guide the run-time 
executor. During run-time, the executor uses the result of the static analysis plus values 
computed using one or more scheduling heuristics (e.g., earliest deadline first or minimum 
laxity first) to perform the real-time dispatching of tasks. These types of services are called 
adaptive scheduling, or adaptive resource management [17]. Associated with the notion of 
adaptive scheduling is the concept of Quality of Service (QoS) [9]. QoS requirements 
translate abstract metrics of user perceived system quality into concrete metrics on resource 
utilization. Dynamically allocating, maintaining, and negotiating QoS levels along multiple 
dimensions during system execution is the main motivation behind adaptive resource 
management. 

Notice that adaptation as described above refers to the use of a flexible resource allocation 
policy or scheduling framework capable of compensating only for the uncertainties on 
resource requirements during application execution. Although the use of an adaptive 
scheduling policy facilitates the customization of the software functionality after initial 
development, and has the potential to ”improve versatility and decrease lifecycle maintenance 
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costs for embedded real-time systems, [2]” it does not directly account for uncertainties on the 
computational environment the application will run (e.g., hardware and software platforms, 
network connectivity, etc) and still preserves the two main problems of the ad-hoc design 
nature previously discussed: to demonstrate the correctness of the resource allocation policy, 
empirical results and extensive tests are still required; and to optimize the system performance 
for each application-middleware platform triple, handcrafted code is still necessary. Generic 
scheduling services optimized and tested for only one of the dimensions in isolation-
application, platform, or middleware-provides limited improvement. For example, a very 
efficient, middleware-optimized dispatcher would always compute the heuristic metrics and 
add events to an event queue even when the platform application pair is such that direct 
channels could be established for certain classes of events. 

In our approach, adaptation is achieved at both the software architecture and resource 
management level. The scheduling services generated are parameterized by scheduling policy, 
hardware and software platform, middleware, and higher-level application. Using composition 
and refinement, the generator will automatically synthesize efficient scheduling services that 
are not only tailored to the execution environment, but are also guaranteed to preserve the 
timing properties explicitly described as higher-level requirements. A very efficient 
compilation and propagation mechanism is used to maintain and update the multi-dimensional 
QoS requirements as a network of constraints. As the network evolves, new scheduling 
algorithms can be dynamically synthesized and seamlessly integrated into the overall system 
architecture without disturbance of the application. The need for testing of modified versions 
of the original algorithm is minimized since the generation approach is less likely to introduce 
errors in the new implementation than handcrafted code. 

Given the high performance of automatically generated algorithms, additional scheduling 
techniques like reactive or proactive strategies can also be explored. Reactive and proactive 
scheduling strategies that respond to changes in the environment and dynamically maintain and 
update statically generated schedules are usually very expensive to be used in real-time 
applications. Dispatch heuristics are used because of their little computational overhead. 
Heuristic methods are known to be myopic, that is, given their limited view of the overall 
problem, they provide only local optimality. Better overall system performance can 
potentially be achieved by the use of global scheduling methods. 
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5.  Planware 
Planware system is Kestrel’s domain-specific generator of high-performance planners & 
schedulers. 

Planware provides an answer to the question of how to help automate the acquisition of 
requirements from the user, and how to assemble a formal requirement specification for the 
user. The key idea is to focus on a narrow, well-defined class of problems and programs, and 
to build a precise, abstract, domain-specific description formalism that covers this class. 

From a software development perspective, interaction with the user is only required in order 
to obtain the refinement from the abstract specification to a description of the concrete 
requirements of a particular problem instance. 

Kestrel’s research has focused for years on automating the generation of correct programs 
from formal specifications. Scheduling has been a prime application domain for testing out 
the generation technology. Previous scheduler generators implemented by Kestrel like KIDS 
[18], and some previous versions of Planware [1] were criticized because of the complexity of 
the specification language, and their inability of considering problems with multiple 
resources. Planware’s design focused on addressing these concerns: It is simple to use, and 
can handle the coordination of multiple resources. Planware’s main capabilities are: 

Simple Modeling Language: The complex logical description used by KIDS was substituted with 
a simple, intuitive formalism that describes the behavior of a resource by explicitly 
describing the set of activities it must perform. 

Multiple Resource Coordination: The synchronized use of multiple resources is obtained by the 
use of compact descriptions of resources capabilities represented as services (see section 
5.1.5). 

Configurable Problem-Solving Strategy: The modeler can select the scheduling strategy to be 
used by the generated scheduling application just by choosing among a number of different 
search-based implementations available to the code generator. 

Integrated Development Environment: The modeling, scheduler generation, and schedule 
computation is performed in a uniform development environment that supports all phases of 
the development process. 

5.1. Planware Modeling Primitives  

5.1.1. Planware in a Nutshell 

One of the most important requirements driving the design and implementation of the new 
version of Planware was the ability to represent the synchronization of multiple resources 
without using complex mathematical or logical formalisms. To achieve this goal, Planware 
uses Abstract State Machines (ASM) [16] to model the behavior of tasks and resources. 
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To handle the interactions involved in multi-resource problems, Planware uses a service 
matching theory in which resources can offer and/or require different types of services. The 
scheduler is responsible for matching providers and requesters in a consistent fashion. For 
example, a transportation organization might want a scheduler to simultaneously handle its 
aircraft, crews, fuel, and airport load/unload facilities. Each resource has its own internal 
required patterns of behavior and may have dependencies on other resources. 

The semantics of a resource is the set of possible behaviors that it can exhibit. We treat these 
behaviors as (temporal) sequences of activities modeled as ASM modes (abstract states). Each 
activity is characterized by a set of mode variables (e.g. start-time and duration), the set of 
services that it offers (e.g. the flying mode of an aircraft offers transportation service), and the 
set of services that it requires (e.g. the flying mode of an aircraft requires the services of a 
crew). A formal theory of a resource should have as models exactly the physically feasible 
behaviors of the resource. The axioms serve to constrain the values it can exhibit. A formal 
theory constrains the values that mode variables can take on in states (e.g. the weight of cargo 
cannot exceed a maximum value during the flying mode of an aircraft). The transitions serve 
to constrain the evolution of the mode variables (e.g. the finish time of one activity must occur 
no later than the start time of the next activity; a take-off activity can only be followed by a fly 
activity, etc.). 

All modes have variables for the start-time, finish-time, and duration of the corresponding 
activity, plus related constraints. They may also have other variables and constraints that 
further define the resource behavior, and better describe the mode. A mode may also 
provide and/or require services. Only the temporal resource constraints of the activities are 
relevant, not their nature. Thus the same mechanism can be used to model activities as 
diverse as transportation, computation, allocating a logical design to a hardware/software 
platform, personnel assignments, workflow, manufacturing, and so on. 

A task is also expressed formally as an ASM. The main difference between a task and a 
resource is that a task offers no service – it only requires services of resources. For example, 
a fighter mission may require fuel, crew, and weapons resources. 
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Figure 1: Planware Generation Process 

Figure 1 summarizes the modeling, code generation, and application test process. A more 
detailed explanation of these concepts is provided in the following paragraphs. 

5.1.2. Representing Resources as Activity Machines 

To allow users to specify complex multi-resource problems we started by trying to identify a 
language that would naturally represent the basic concepts in the domain. The first 
approximation was to look for planning and scheduling ontologies.  

Smith & Becker in [19] describe an ontology for planning and scheduling systems. The five 
top-level entities in this ontology are tasks or demands, activities, resources, services, and 
constraints. Using this ontology, the role of a scheduling or planning system can be described 
as the prescription of a sequence of activities that a set of resources must perform over time to 
perform the services required by a task. Based on this description, it is clear that any 
formalism for describing a scheduling problem domain must be able to represent tasks, 
resources, activities, and services, plus associated constraints. 

If we consider the processing of an activity by a resource as a possible “state” or “mode” the 
resource entity can assume, we can think of a resource model as the description of all the valid 
sequences of activities it can perform. For example, a transportation aircraft might have the 
following sequence of activities: 

Prepare    Fly   Fly    Unload    Refuel    Fly    and so on. 
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Or a strike fighter might execute the following sequence of activities while executing a 
mission: 

Rearm    Position    EngageTarget    Position    EngageTarget    and so on. 

Each legal sequence of activities is called a behavior. A resource is characterized by a potentially 
infinite collection of behaviors. A convenient and intuitive model for concisely representing 
an infinite collection of behaviors is a state machine. Our modeling approach is based on state 
machines. Since the term ”state” is somewhat misleading we prefer to refer to our models as 
activity machines, as exemplified in Figure 2. 

 

In the activity machine diagram, we refer to the boxes/states as activities. The arrows are 
called transitions and indicate which activities can legally follow one another. 

5.1.3. Representing Activities as Sets of State Variables 

The activity machine per se gives us general information about the legal sequences of 
activities for a resource, but little information about the activities. Clearly in scheduling we need 
to model the timing of activities, as well as capacity of a resource to do useful work, and other 
physical constraints. The next step in modeling resources is to represent information about an 
activity via activity variables, simply called variables. The set of variables defined for a 
particular resource model represents the state descriptor used to describe all activities 
performed by this resource. For example, a Fly activity of a transportation resource might be 
characterized by variables that model its start time, finish time, origin, destination, and others. 
Planware uses the same collection of variables to characterize all activities of a particular 
activity machine. This collection is sometimes called the signature of the machine (See Figure 
3). Technically, each activity is treated as a first-order theory, with the signature providing the 
vocabulary of the theory, and the axioms specifying constraints on the meaning of the 
variables (and other vocabulary).  
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mode-machine StrikeFighter is 
 constant baseLoc : Location 
  constant fuelBurnRate : BurnRate 
  constant maxFuelCapacity : Capacity 
  constant engagementDuration : Duration 
  constant rearmingDuration : Duration 
  input-variable targetLoc : Location 
  input-variable munitionType : Munition 
  input-variable targetYield : Capacity 
  internal-variable origin, dest, airRefTrack : Location 
  external-variable st, et, duration : Time 

 end-mode-machine 

Figure 3: Activity Machine Signature for a Strike Fighter Resource 

The variables defining the signature of an activity machine are further divided into four 
groups: constants, internal variables, external variables, and input variables. 

Constants: are the fixed parameters used to characterize invariant aspects of the resource. For 
example, the size of the cargo hold of an aircraft, its maximum speed, the maximum 
amount of fuel it can carry are parameters that can be constants for a given aircraft 
type. The set of constants define the input values that should be provided to the 
scheduling system to create concrete instances of resources at schedule computation 
time. 

Internal Variables are auxiliary variables used by the scheduler for bookkeeping purposes. 
For example, if there is a constraint that states than an aircraft needs to go through 
preventive maintenance after a certain number of hours flown, an internal variable can 
be used to maintain the number of hours flown since last maintenance. 

External Variables represent the values that are modified by the scheduler engine while 
computing the schedule. For example, the start and end time of an aircraft Fly activity 
will be set by the scheduler based on the availability of additional resources like Crews and 
Airports. External variable values depend not only upon the evolution of the resource 
machine but also upon the scheduling decisions made by the problem-solving control 
strategy. 

Input variables Input variables serve as a mechanism for passing parameters between a 
resource requesting a service and a resource providing it. For example, the origin and 
destination of a Fly activity may be specified as input variables whose values get 
assigned each time a transportation task needs to be satisfied. Input variables act as 
constant variables for a given fragment of the resource behavior. The role of the 
input variables and external variables will be further discussed when we present the 
concept of services and service matches. 

After defining the variables that can take on possibly new values at each activity, we can express 
more information about a behavior: 
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Most variables of interest hold their values for the duration of an activity, and only change 
with the transition between activities. In the syntax construct used to describe valid 
transitions, the variables whose values change as a result of the transition are explicitly 
represented. Three external variables are pre-defined for all activity machines, and do not 
need to be explicitly represented in the assignments field of a transition: start-time, end-
time, and duration. Implicit in the structure of the activity machine is the constraint that 
states that the start-time of an activity is always greater than or equal to the end-time of 
the preceding activity; and that the end-time of an activity is equal to or greater than the 
sum of its start-time and its duration. Additional properties about the possible values a 
variable can take on can be stated through the use of constraint expressions. 

5.1.4. Defining Behavior using Constraints 

Not all combinations of values for the variables are physically possible. For example, if the 
maximum munition capacity of a fighter is 100 tons, then an activity in which the 
munitionRequired variable has a value exceeding 100 tons does not model a realizable 
situation. To rule out such impossible situations, each activity has axioms that express 
constraints on the values that variables can take on in an activity. The generated scheduler 
uses the constraints expressed in the model as pruning conditions to drive the expansion of 
the search tree. 

Furthermore, it is necessary to put constraints on transitions, to model the physically 
realizable evolution of variables between activities. For example, the transition from 
Preparation to TakeOff in Figure 2 specifies that the end time of activity Preparation 
should less than or equal to the start time of activity TakeOff. The constraints labeling a 
transition must refer to the values of variables in both the before and after modes. The usual 
notation is to refer to the value of a variable x in the after state by priming it: x’. So the 
constraint endTime’ <= startTime means that the finish time of the before activity must 
be no later than the start of the after activity. As previously mentioned, a number of 
temporal constraints between modes do not need to be explicitly represented since the 
structure of the machine already assumes temporal dependencies between the sequence of 
valid activities. The constraints on the transitions are called guards. Guards are used to guide 
the scheduler to expand the correct sequence of activities needed to satisfy the request. 

Similar to the guards on the transition, the assignment of values to variables can also be used 
to express or enforce constraints. Conditional expressions can be used in the definition of 
variable assignments to drive the valid sequence of activities expanded. Figure 4 shows an 
example of a simplified Planware model for a strike fighter with four activities: Idle, 
Rearming, Positioning, Refueling, and EngagingTarget, and some of the valid transitions 
between the different modes. In the transition from Rearming to Positioning we determine if a 
Refueling activity is needed or not: If there is enough fuel to engage the target and return to 
the home base, no refueling is needed; otherwise, the value of the variable airRefTrack is set 
to the location of the air refueling track. The variable airRefTrack is used in the guard of the 
transition from Positioning to Refueling to force the scheduling algorithm to include an air 
refueling activity in the activity sequence if necessary.  
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mode-machine StrikeFighter is 

mode Idle has  
end-mode 
mode Rearming has 

required-invariant loadMunition (st, et, rearmingDuration, munitionType)  
end-mode 
mode Positioning has  
end-mode 
mode EngagingTarget has 

provided-invariant engageTarget(st, et, targetLoc, munitionType, targetYield)  
end-mode 
transition from Idle to Rearming when {} is  
{ duration := rearmingDuration } 
transition from Rearming to Positioning when {} is { 

                    dest := (if  (consumedFuel(baseLoc, targetLoc, fuelBurnRate) <= maxFuelCapacity) 
         then findAirTrackLocation(baseLoc, targetLoc)  

       else targetLoc), 
       airRefTrack := (if (consumedFuel(baseLoc, targetLoc, fuelBurnRate) <= axFuelCapacity)  

     then dest 
     else zeroLoc)} 

transition from Positioning to Refueling when { airRefTrack != zeroLoc } is {}  

transition from Positioning to Engaging when { dest = targetLoc } is {}  

end-mode-machine 

Figure 4: Activity Machine for Strike Fighter Resource 

5.1.5. Coordinating Resources Using Services 

The modes or activities, the variables, the transitions, and the constraints are sufficient to 
represent the behavior of an individual resource. The key missing element of this formalism is 
how to connect resources to tasks, and how to coordinate the usage of several resources to 
accomplish complex tasks. For example, the transportation of certain amount of cargo 
between two locations may involve the usage of a number of different aircraft, airports, crews, 
fuel, ground control personnel, diplomatic clearances, etc. Engaging a given target may 
involve the coordination of air refueling tankers, escort aircraft, air patrol, jammers, etc. 

We need to provide modeling constructs that allow the explicit representation of these 
dependencies. The missing modeling construct is the service: The service is the element used 
to coordinate and synchronize the execution of activities across different resources. Each 
activity machine may specify required and/or provided services. Machines that only request 
services define the top-level tasks that drive the entire scheduling process. Resources are 
machines that provide one or more services. Resources can also request additional services. 
For example, to provide transportation service to a transportation request, the aircraft may 
need services from one or more crew resources. Figure 4 gives an example of a resource that 
offers an engageTarget service and requires a loadMunition service to be able to engage the 
target. In this case, the resource plays the dual role of provider and requester. The concept 
of requested and provided services allows tasks and resources to be represented using a 
uniform formalism. 
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As illustrated in figure 4, a service is specified by a predicate associated with a mode 
together with an indication of whether it is a provided or required service. For example, the 
engage target service may be represented by the predicate engageTarget(startTime, 
endTime, targetLoc, targetMunitionType) which specifies a certain target located at 
coordinates specified as targetLoc to be engaged some time during the time interval defined 
by the values of startTime and endTime. 

The requester resource specifies the service as a required condition. The provider specifies it as a 
provided condition. For temporal synchronization, a service can be specified as a pre-
condition, a post-condition, or an invariant. If the service is specified as an invariant, both 
activities, the requesting and the providing, should start and end at the same time. For the 
other types, there are set of rules to establish the appropriate synchronization depending on 
the characteristics of the provider and requester. For example, if the requesting service is a 
pre-condition and the providing service is a post-condition, the providing activity should 
finish before the requesting activity can start. 

5.1.6. Passing parameters through Service Descriptions 

There is also a set of rules governing the assignment of values to the parameters specified in 
the service description. For the requesting resource, external variables present in the service 
predicate will have their values set by the scheduler after an appropriate provider has been 
identified. All other variables will not change value. For the providing resource, input 
variables present in the service predicate will act as constants for the purpose of finding a valid 
sequence of activities to satisfy the request. External variables will be unified with external 
variables coming from the requester. At scheduling time, any constraints imposed on the 
external variables of the requester, will be translated to the corresponding variables of the 
provider. In our engageTarget example, the variables targetLoc and targetMunitionType are 
defined as input variables. Their values will be passed by the requesting target and will be 
treated as constant for the duration of that particular mission. 

Before we go on to discuss how services between machines are linked up, we note that the 
introduction of services in mode machines allows us to treat tasks as a special case of 
resource. Tasks are the drivers of a planning or scheduling problem. The overall nature of the 
scheduling problem is to carry out a set of tasks subject to the constraints imposed by the 
available resources. In terms of the activity machine model, a task can be modeled as a 
resource that requires service, but offers none. Figure 5 shows an air strike task modeled as a 
simple machine with just one mode. Its engagingTarget mode requires the service 
engageTarget. The task model also specifies the values to be used in the service request: 
target position and munition type are defined as constant parameters and should be provided 
as input to the provider resource. Note that the engageTarget mode has two axioms expressing 
constraints on the start and finish time of the activity – the start time must occur no earlier 
than the earliestTimeOnTarget and the finish time must occur before the latestTimeOnTarget. 
Figure 5 represents a typical example of a task model. 
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mode-machine Target is 

constant targetClass : TargetClass  

constant minKillProbability : Probability  

constant targetLoc : Location 

constant earliestTimeOnTarget, latestTimeOnTarget : Time  

constant munitionType : Munition  

external-variable st, et, duration : Time  

mode  EngagingTarget has 

required-invariant  engageTarget(st, et,  targetLoc, munitionType)  

constraint  st >= earliestTimeOnTarget  

constraint  et <= latestTimeOnTarget 

end-mode 

end-mode-machine 

Figure 5: Target Task Model 

We have modeled the component tasks and resources individually, and now we need to model 
the composite system. To model a complex resource system we focus on the interactions of 
the components, which are specified by the services. We use the service match formula 
schema below to express the conditions under which the service provided by resource Prov 
satisfies the service required by resource Req: 

∀ (constants (Req), input-vars (Req), constants (Prov)) 
∃ (ext-vars (Req), internal-vars (Req), input-vars (Prov), ext-vars (Prov), internal-vars 

(Prov)) 
(Provided Conditions (Req) ∧  ProvidedConditions(Prov) 

 
ReqConditions(Req) ∧  Constraints (Req) ∧  ReqConditions(Prov) ∧   

Constraints (Prov)) 
We expect two kinds of information from reasoning about the formula. First, we get witnesses 
for the existentials, meaning that for each existentially quantified variable, we extract a term 
over the preceding universally quantified variables. Second, we gather up any of the conjuncts in 
the consequent of the formula that cannot be proved. These gathered constraints are the 
aggregated constraints of the composite resource Req - Prov. While they are not provable at 
design time, they will be treated as constraints to enforce at run-time (i.e. schedule-
computation-time), either via pruning or constraint propagation. 

In Planware the actual ground constraints are determined dynamically, and depend on the input 
data, together with the dynamics of the scheduling process (the current state of the process). 
This is in contrast to many Operations Research and Constraint Programming systems in 
which a static set of constraints is passed to a generic solver. Planware not only generates a 
customized solver for each problem, but the solver works on a dynamic constraint problem. 
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5.1.7. Scheduler Code Generation 

From the activity machine models described in the previous section, Planware automatically 
generates a fully operational scheduling application. The key component of the generated 
code is a search-based scheduling algorithm, and a constraint propagation mechanism. 

In addition to the search algorithm implementation, support code is also generated to represent 
resources and activities, and to produce I/O for the application. In the following paragraphs 
we will explain in more detail the code generation process, and the different components 
created by Planware. 

5.1.8. Scheduling implemented as a Bidding Process 

Planware generates search-based scheduling algorithms implementing a bidding process as its 
main control cycle. In this process, entities requiring services post tasks, or requests for bids. 
Provider resources capable of performing the type of service specified in a task respond with 
their best bid according to their own internal strategy. The requesters then collect the bids, rank 
them according to the requester’s objective function, select the best bid, and notify the 
selected bidders. Constraint propagation is triggered every time a bid is accepted. The 
propagation updates the internal state of the resources involved in the bidding. The rejected 
bids are discarded, and no additional work is needed. 

5.1.9. Algorithms Generated by Composing Program Schemas 

The concrete implementation of the scheduling algorithm used in a particular application is 
obtained by instantiating and composing program schemes. A program schema is a 
parameterized fragment of algorithmic logic that gets instantiated for each service match 
between a given provider and requester. Different program schemes are used to allow a 
number of different bidding generation and bidding selection mechanisms to be combined in 
the implementation of an application. For example, a program schema could be used to 
implement a bidding mechanism in which the first feasible bid is accepted; a different one 
could collect up to n bids, and select the one that can finish the service with the minimum 
amount of time; a third one could generate all possible bids and select the one with earliest 
start-time. 

5.1.10. Schema Composition Driven by Service Tree 

The program schemes are composed in a tree-like structure reflecting the structure of service 
matches defined by the activity machine models. As described in the previous section, an 
activity machine can request, and/or provide services. For each required service in the model, 
the generator code will search for a matching provider – a resource providing a service that 
matches the signature of the required service. As a provider for a given service can request 
additional services from other resources, the service matches define a directed acyclic graph 
we refer to as the service-match tree. The code generator traverses this service tree creating the 
appropriate code to formulate the task, generate the bids, and select the best bid. 
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5.1.11. Scheduling Strategy Selected through Service Match 

 

Figure 6: Service Tree for Target Scheduler 

The service-match tree is an auxiliary data-structure automatically generated by Planware 
before the actual application generation. By exposing the structure of the service-match tree to 
the user through the graphical interface, a greater level of control over the code generation can 
be obtained. An advanced user can configure the search schemes to be used by the generator 
for each service match in the tree. Figure 6 shows a possible service tree for a model in which, 
to engage a target, Strike Fighter may require escort, EW defense, air refueling, and munition. 
Each of the required resource may also require additional resources. In this example, the 
munition resource requires some storage space at the AirBase. Through the GUI, the user can 
select the search strategy used to satisfy the requests, as well as the sequence in which the 
services are satisfied. Once a provider and a requester for a given service are specified, the system 
automatically generates and inserts in the model source file a textual representation describing 
the service tree containing all possible matches between the different resources. Figure 7 
shows the service match between the target task and the strike fighter. In this example, there is 
only one type of resource that can provide the engageTarget service. In general, several 
different resources could offer the same service. 

5.1.12. Constraint Propagation Implemented by Arc Consistency 
Algorithm 

The constraint propagation code used to update the resources is not automatically synthesized. 
A standard implementation of an arc consistency algorithm that propagates temporal 
constraints on a simple temporal network is used. All schedulers generated share the same 
implementation.  
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service-match  Target EngagingTarget engageTarget is  

service-requester  Target 
requester-mode EngagingTarget 
requested-service  required-invariant engageTarget  
search-strategy BreadthFirst  
service-providers has { 

provider-record StrikeFighter Engaging engageTarget is  
service-provider StrikeFighter  
provider-mode  Engaging  
provided-service  

provided-invariant engageTarget  
search-strategy  BreadthFirst 
end-provider-record 
} 

end-service-match 

Figure 7: Service Match generated for Target task and StrikeFighter 

The constraint propagation is responsible for maintaining consistent start times for all scheduled 
activities. Each activity has a time bound representing the earliest and latest time the activity 
can start executing. Each activity time bound defines a node in the constraint network. The 
scheduler adds temporal constraints (arcs) between time bounds (nodes) as the problem 
solving process evolves. If constraint violations are detected, scheduling decisions are 
retracted, and the search backtracks to the last decision point before the violation. 

5.1.13. Resource Represented as Capacity Profile 

Activities and resources are closely related. Resources are represented by a capacity profile: A 
temporal sequence of activities representing the resource reservations performed by the 
scheduler. The profile represents a trace of the activity machine defined in the abstract model. 
The data structure used to represent the profile must be optimized for lookup and update. 
During the bid creation phase of the scheduling algorithm, the providers inspect their capacity 
profile searching for feasible intervals capable of feasibly performing the requested service. 
Once the requester accepts a bid, the selected provider updates its own profile to reflect the 
new reservation. Planware uses a binary tree implementation optimized for the particular type 
of resource. 

The representation of the activities in the resource profile is generated from the set of 
variables defined by the activity machine model. All activities created for a given resource 
instance share the same set of constants. Activities are defined as a record structure with a 
field for each variable described in the model. The code to access and set each one of these 
fields is automatically generated. Additional code to print and display individual activities, 
and activities sequences is also generated to facilitate debugging, testing, and schedule 
visualization. A number of different output formats are supported: plain text, XML, etc. 
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5.1.14. Activity Sequences computed Dynamically 

Activities are dynamically created at schedule computation time. Activity sequences are created 
by the bidding mechanism previously discussed. The generation of the bid creation 
mechanism is one of the most complex components of Planware. It involves the generation of 
code capable of querying the resource profile for feasible intervals, expanding the sequence of 
activities the resource must execute, and enforcing the constraints imposed on the service by 
both the requester and by the provider resource. 

The bid creation mechanism is implemented as a 3-step process: Identify feasible capacity 
intervals, expand activity sequence for selected intervals, propagate temporal constraints. If 
these three steps generate a feasible activity sequence, a bid containing this sequence is sent to 
the tasker resource. If the bid is accepted, then the resource profile is updated to include the 
new sequence of activities. 

After a bid has been accepted, and the resources appropriately updated, the search algorithm 
change its focus to schedule additional pending service requirements. Depending on the 
configuration provided by the user through the service match, the search proceeds by 
scheduling the requirements of the current bidder, or goes back to the level of the previous 
requester, and schedule its next task. The sequence of services scheduled is also determined 
by the service match structure. 

In terms of the global behavior of the application, the execution of the generated scheduler 
starts by reading a file describing all the top-level tasks, and all concrete resources available. 
The scheduling algorithm cycles through the top-level tasks, and expands the search following 
the structure defined by the service-match tree. If a top-level task cannot be satisfied using the 
available resources, it is marked “unschedulable” and discarded. Once there are no more 
pending tasks in the system, the scheduling algorithm finishes its execution and, if instructed 
to do so, outputs the schedule in text form, writes the schedule to an XML file, and/or displays 
the schedule on the GUI. 

5.1.15. Planware Implementation – IDE for Domain Modeling and 
Planning 

Planware’s implementation can be divided into two main components: the graphical interface, 
and the code generator. 

Planware Interface implemented as a NetBeans Module 

The interface component is written in Java and uses the open source configurable IDE 
platform NetBeans, which is an extensible integrated development environment designed to 
support multiple programming languages and formalisms. Additional capabilities are added to 
the NetBeans platform by writing modules using its customization API. A NetBeans module 
is just a JAR file (collection of compressed Java class files) that can be “installed” in the 
platform. A module can implement a number of different capabilities like syntax sensitive 
source code edition, compilation, execution, and debugging among others. The Planware 
module provides 
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1. An outline editor for editing activity machines based on a hierarchical representation 
of the models. 

2. A graphical editor that allows the visualization and fast specification of activity 
machines. 

3. A source code editor for more detailed specification of the models. 

4. 4. Visualization tools for inspecting the results of executing the generated code on 
test data. 

Developing resource models in this environment requires very little knowledge of Planware 
syntax. The set of syntax constructs is small and most of the model creation activity can be 
accomplished using just the outline and graphical editors. 

A typical Planware resource model has less than a hundred lines of code, and can be created 
in a matter of minutes. A complete application model can be defined in few hours using a 
highly interactive environment. 

The advantage of using an extensible platform like NetBeans is that the full application 
development and execution can take place in the same environment, and using the same 
interaction paradigm. Defining models, generating and compiling code, and executing the 
scheduler are all defined using the same basic set of actions and gestures. 

Planware Code Generator implemented as a Specware Application 

Planware code generator is implemented as an application layer on top of Specware, Kestrel’s 
software synthesis platform. The Planware code generator translates the activity machines, 
and service match structure into an implementation of the algorithms and auxiliary data-
structures described in section 5. Planware first generates an intermediate representation of the 
algorithms in MetaSlang, the specification language used internally by Specware. This 
representation is then further refined, optimized, and composed with appropriate library code 
to generate a highly optimized implementation of the scheduling application in some 
programming language. 

For a problem model with five different resource types (approximately 500 lines of code), 
Planware generates an intermediate representation with around 10,000 lines of code. The size 
of final code in the target language usually increases by a factor of 3 or 4 in comparison with 
the generated code since all the library code used is included as part of the target 
implementation. The total synthesis time is on the order of 1 or 2 minutes for average size 
models – 4 or 5 different types of resources. 

In terms of run-time performance of the generated schedulers, without any special heuristics 
added, models with four resource types running on data sets with thousands of tasks, and around 
20 resource instances for each resource type, generate schedules in a matter of seconds. The 
runtime performance of the generated code was around 20% faster than the performance 
provided by scheduling applications previously developed manually by the authors for the 
domain of logistical deployment. 
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5.1.16. Planware Application Development Process 

The application development process currently supported focuses on the generation of 
centralized, offline algorithms. The Planware domain analysis and application development 
process has the following steps: 

1. Requirement Acquisition – The user interactively develops a model of the scheduling 
problem using the primitives previously discussed. This model describes the kinds of tasks 
and resources that are of concern. Figure 8 shows the graphical representation of a 
problem model. 

The problem model is formalized into a specification that can be read abstractly as follows: 
Given a collection of task instances and a collection of resource instances, find a schedule 
that accomplishes as many of the tasks as possible (or (approximately) optimizes the given 
cost function), subject to all the constraints of the resource models, and using only the 
given resources. 

The required and offered services of a resource express the dependencies between 
resource classes. The arrows between the resources in figure 8 represent the services 
required and provided. Planware analyzes the task and resource models to determine a 
hierarchy of service matches (service required matched with service offered) that is rooted 
in a task model. 

 

Figure 8: Planware Model for Sensor to Decision Maker to Shooter Scheduler 

2. Algorithm Design – The problem specification is used to automatically instantiate program 
schemes that embody abstract algorithmic knowledge about global search and constraint 
propagation. The algorithm generation process follows the structure of the service hierarchy, 
resulting in a nested structure of instantiated search schemes. 
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3. Datatype Refinement and Optimization – Program schemes used by the generator are 
described in terms of abstract datatypes. After the generation of the scheduling algorithm, 
abstract datatypes are refined to concrete programming language types. Additional program 
transformations to provide further optimizations can then be manually or automatically applied 
to the resulting code. 

4. Code generation – Finally code in a programming language (currently CommonLisp) is 
generated. In one recent example, we developed formal models for air cargo packages, cargo 
aircraft, air crews, and port facilities. In about one second Planware generates about 19000 LOC 
of source code comprising over 1780 definitions. 
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6.  Addressing PCES Technical Challenges 
Kestrel’s efforts focused on the SDMS/W Challenge problems. The motivation and 
justification for this choice is the high level of automation software synthesis, and Planware in 
particular, can provide to the development of systems addressing these problems. 

Planware is a generator for planning and scheduling applications. It automatically generates 
fully executable scheduling systems from high-level descriptions of tasks and resources. The 
generator takes as input a set of resource models and outputs the implementation of a planning 
and scheduling algorithm specialized to the resources and constraints specified in the model. 
The generated code takes as input data representing the parameters defining concrete 
instances of tasks and resources, and computes a set of resource reservations to perform all 
activities required by the tasks. 

The algorithms generated by Planware implement a control cycle that decomposes high-level 
tasks into lower level tasks directly associated with resource consumption. The same concept 
is used in Hierarchical Task Network Planning [3, 4], and seems to be the principle behind the 
task network architecture [13, 14]. 

In PCES, our goal was to cast the program composition and system configuration problem as 
an extended version of a planning and scheduling problem. This allows us to model and 
reason about heterogeneous sets of resources and tasks in a uniform and integrated way. We 
have identified at least three classes of tasks and resources: operational, related to theater level 
activities and resources (e.g., aircraft, targets, UAVs, UCAVs, C2 nodes etc); configuration, 
related to set of software components needed by each operation resource to perform the 
operational activities (e.g., GPS, Weapon System, ATR, etc); and embedded or real-time, 
related to the lower level resources and tasks required to implement the functionality provided 
by each software component (e.g., CPU, Memory, bandwidth). In this formulation, software 
components are modeled as resources whose role is to manage the use of lower level 
resources to satisfy the high-level operational goals. The focus of the generated application is 
to manage resource utilization. 

The generated scheduler can potentially handle any functional or non-functional 
component property that can be modeled as a resource utilization problem. 

The concrete plan we proposed was to show that Planware can provide end-to-end 
resource management capabilities by providing a functionality equivalent or 
complementary to the one currently provided by the Task Network Architecture. 

In the following paragraphs we address in more details Kestrel’s contribution to the 
challenge questions. 
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6.1. Sensor to Decision Maker to Shooter/Weapon (SDMS/W) 
Challenges  

Platform-level Resource Management 

[QPR01] Accurately modeling platform capabilities (e.g., sensors, weapons, 
maneuverability) 

Planware models represent platform capabilities in terms of activities and services they can 
provide, and resources it may use. The emphasis is on resource consumption. 

[QPR02] Performing tradeoffs between platform tasking alternatives Planware models can 
represent several alternative plans to execute a given task (e.g., two imaging sensors that 
require different amounts of CPU and network resources). The scheduler algorithm generated 
is responsible for performing the tradeoffs among different alternatives. The user can specify 
in the models how to select among a number of different alternatives at different levels of the 
task decomposition process. 

[QPR03] Determining and specifying relationships among activities performed across 
coordinated segments 

Coordination is achieved through the decomposition of high-level tasks into lower level ones 
while guaranteeing that certain constraints are satisfied. For example, the requirement that a 
UAV starts transmitting an image to the C2 node when the UCAV is at a certain distance of 
the target can be accomplished by a high-level task that requires the UAV to be at a certain 
mode when the UCAV approaches the target. The scheduler will be responsible for 
coordinating the actions and guaranteeing that the lower level resources needed are available 
at the same time in both platforms. The implementation of coordination of different resources 
in real-time is out of our scope. The generated scheduler only guarantees that the coordination 
is feasible at configuration time. As execution evolves, a real-time coordination mechanism 
may require a complete different set of models that need to be integrated into the platform. 

[QPR04] Assessing task granularity and specifying loadable task networks  

The scheduler will be responsible to decomposing the task network into its lower level 
resource requirements. The scheduler will identify if a given task network can be supported in 
the current configuration, or if the configuration required can be feasibly implemented given 
the existing configuration. I am not sure what “task granularity” means in this context.  

[QPR05] Effectively and dynamically scheduling CPU resources for platform 
tasking needs 

In this phase, we are focusing our efforts on the modeling and decomposition of tasks 
into its resource requirements, and on the generation of priority policies that would 
guarantee the feasibility of the required activities at design or configuration time. We 
would first rely on the currently available dispatching techniques to execute our schedule. 
In the next phase, once we understand the task decomposition and resource usage, we are 
planning to incorporate dynamic schedulers generated by Planware into the OEP platform. 
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Multi-Network Resource Management 

[QMR01] Reasoning about, quantizing, and prioritizing cross-network bandwidth needs 
and importance 

The main strength of Kestrel’s generated schedulers is the ability of scheduling multiple 
resources in distributed and coordinated fashion. Planware models, and schedulers, can 
represent multiple network types, and implement a number of different allocation policies. 
Each network class or instance can have its own allocation policy, and the scheduler will 
manage bandwidth utilization according to the specified policies. 

[QMR02] Adaptive allocation of resources to mitigate contention while preserving QoS 

Adaptive resource allocation is related to dynamic scheduling. The schedulers generated 
implement reactive capabilities that can be used to perform load balancing and other resource 
management capabilities. Similar to the comments on dynamic scheduling, we would not 
address these problems in the first phase. 

Dynamic Tactical Link Management 

[QDT01] Data management strategies to route high priority data through the network in 
a timely manner 

[QDT02] Dynamic timeslot allocation to reallocate network time slots based upon 
changing mission modes. 

Planware schedulers can naturally address both of these problems. In a first phase, we will 
assume that we each mission mode has a pre-defined requirement for network usage. In the 
future, we will explore more dynamic mechanisms that would allow the timeslot allocation to 
be sensitive to other environment factors in addition to mission mode. 

6.2. System-wide QoS Management Challenges 
Kestrel’s solution is aiming at “combining individual QoS solutions in a seamless manner to 
get end-to-end, dynamic QoS management among competing elements is the end challenge”. 
End-to-end and Roundtrip Sensor Data Delivery, Processing, and Control: 

[QER02] Provide accurate and timely delivery of control signals from C2 to 
shooter/weapon 

[QER03] Compose these into a round-trip SDMS/W system 

[QER04] Mediate the contending requirements of multiple participating nodes 

Our goal to address all these questions is to develop rich resource and task models 
representing all the relevant entities that need to be managed to guarantee end-to-end QoS. 
Our focus is on the “timely” delivery of data and control signal while naturally 
managing contention. The “accurate” and “sufficient” are outside the scope of the 
scheduler, unless, of course, they can be represented as some kind of measurable 
resource capacity. 
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Rapid Reconfiguration and Reaction to Dynamic Conditions and Changing Missions: 

[QRR01] Support rapid mission mode changes 

[QRR02] Operate effectively (by mission standards) in hostile, changing environments 

[QRR03] Support changing numbers and types of participants with shared resources 

[QRR04] Proactively anticipate mission mode transitions, predict reconfigurations, and 
adapting 

As previously mentioned, we de-emphasized the dynamic aspects of the problem by proactively 
trying to anticipate change as much as possible. We investigated how to provide 
different schedulers for different mission modes, and how to transition between them 
as changes occur. We still need more experience with changes in mission modes to be 
able to adequately address these questions. Our plan is to move into the more dynamic 
scenarios as our task networks models mature. 

6.3. System Evolution Challenges 
[SEV01] A means by which architectural aspects can be expressed and mapped from 
one architecture (legacy) to another (future). 

[SEV02] Model translators that migrate legacy models to a new paradigm based on the 
mapping expressed above. 

[SEV02] Code translators that migrate legacy code to a new paradigm based on the 
mapping expressed above. 
Kestrel’s synthesis approach addresses some evolution challenges different from the 
ones listed above. The generator approach allows the problem specification, and the 
underlying technology used to solve the problem to evolve separately. Since we expect 
the problem specification to change faster than the underlying technology, the models 
defining this specification can be modified in a matter of minutes, and a complete new 
application, obeying the same architectural constraints, can be generated almost 
immediately. As the technology evolves (e.g., new algorithms, new languages, new 
paradigms, new modeling formalisms), the generators need to be adapted, and previously 
generated systems must be re-generated from existing models. The time to adapt the 
generator engine can be on the order of weeks or months depending on the scale of change. 
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7. Sensor to Decision Maker to Shooter/Weapon (SDMS/W) 
This section presents models of high-level tasks and resources for an example scenario based 
on the proposed PCES Sensor to Decision Maker to Shooter/Weapon challenge problem. 

The approach proposed by Kestrel for end-to-end resource management was to use the Planware 
modeling and synthesis tool to model tasks and resources at different levels of abstraction, 
starting with high-level operational models, and mapping them to real-time tasks and resources. 
The resulting hierarchical models can be used not only for the automatic generation of 
operational schedulers, but also for the generation of real-time resource managers. 

The steps that are needed to obtain these hierarchical models are the following: 

1. Model operational tasks and resources (e.g. C2, UAVs) as state or activity machines, 
determining operational resource allocation and defining the task network for target 
prosecution. 

2. Identify the system components and behavior required in each mode (e.g. video 
delivered to the C2 node at a specified rate and quality when the UAV is sensing the 
target) and add them to the model as a second layer, determining the configuration of 
each resource in each mode and decomposing the task network for target prosecution 
into a modes/capabilities model. 

3. Map the required components and behavior to embedded resources that are added to 
the model as a third layer, decomposing the task network for system configuration in 
each mode into a real-time schedule. 

The generation of an embedded resource manager for a demonstration on the Boeing 
OEP required the following additional steps that were not completed: 

4. Enable a Planware scheduler to generate schedules in a format that can be used in the 
OEP. 

5. Enable a scheduler in the OEP to be configured with the schedules generated by 
Planware for each mode, and reconfigured at each mode transition. 

This document addresses the modeling steps. The generation of an embedded resource 
manager will be discussed in a separate context. Section 7.1 and Section 7.2 present an 
example operational scenario and high-level models. Section 7.3 and Section 7.4 discuss the 
decomposition of the activities in the high-level model and the mapping to embedded 
resources. 

7.1. Example Operational Scenario 
The example scenario for the end-to-end resource management model is based on the Boeing 
BBN UAV OEP scenario. The operational resources included in this scenario are CAOC, 
UAV C2 (UAC2), UCAV C2 (UCC2), and a number of UAVs and UCAVs. 
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The demo scenario proposed by Boeing includes the following steps: Track, Identify, Deal 
with Failures (Links, Visibility, Equipment), Attack, (Battle Damage Assessment (BDA), Re-
attack and Re-BDA.  

The sequence of actions are described as: 

1. Ground sensor does initial detection of mobile target and notifies CAOC. 

2. CAOC sends UAV to investigate. 

3. UAV provides video (perhaps streaming) to UAV C2. 

4. UAV C2 digitizes and creates images and sends them to CAOC. 

5. 5. CAOC performs ATR to turn image into a track. 

6. Automatic Target Recognition component (ATR) is re-locatable and could happen on 
any of the C2 or AV nodes. 

7. CAOC creates VTF-like entity using the track and a link to the UAV image stream. 

8. CAOC tasks UCAVs with VTF. 

9. UCAV C2 receives tasking from CAOC and assigns UCAV 1 and sensor and shooter 
and provides the track to UCAV 1. 

10. UCAV 1 starts to prosecute the track and then loses comm with UCAV C2. 

11. UCAV 2 establishes comm with UCAV C2 and relays comm to UCAV 1. 

12. UCAV 1 prosecutes target. 

13. UAV provides BDA to CAOC (could be UCAV). 

14. CAOC determines that target not destroyed and tasks UCAVs with re-attack. 

15. UCAV 2 prosecutes target. 

16. UAV provides BDA to CAOC (could be UCAV). 17. CAOC determines target 
destroyed. 

The main task of the CAOC in the scenario is to prosecute a target once that target is detected 
(by a sensor external to the scenario). The UAVs and UCAVs provide services or capabilities 
(through the UAC2 and UCC2) to support that task: 

The UAVs provide sensor products (video) that are converted to images at the UAC2 and sent 
to the CAOC. 

The UCAVs may also provide sensor products that are converted to images at the UCC2 and 
sent to the CAOC. 
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The UCAVs are tasked (through the UCC2) to engage the targets. 

Both UAVs and UCAVs may provide Battle Damage Assessment (BDA) to the CAOC after 
each engagement. 

The first three services correspond to the AV roles of UAV Sensor (UAS), UCAV Sensor 
(UCS), and UCAV Weapon (UCW). 

BDA is assumed to be a service of the CAOC or C2 nodes: The C2 nodes receive sensor products 
from the AVs and either process them locally or send them to the CAOC as images. The AVs 
in this case perform the role of UAS/UCS. 

7.2. High-Level Models 
Figure 9 shows Planware activity-machine models of the high-level tasks and resources for the UAV 
scenario, including the top-level task for target prosecution (ProsecuteTarget) and the top-level 
resources (CAOC, UAC2, UCC2, UAV, UCAV). 

7.2.1. High-Level Tasks 

Figure 10 shows the source code for a task model. The complete source code for this model is 
included in Appendix A. The top-level task ProsecuteTarget is modeled as an activity 
machine with a single activity, which requires a service from the top-level resources: 

• Prosecuting is the single activity of the ProsecuteTarget activity-machine. 

o caocProsecuteTarget(targetLocation) is the service required by the task from the 
CAOC in that activity. The service request passes the location of the target to the 
CAOC.  
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Figure 9: Operational Models for Target Prosecution  

7.2.2. Resources 

CAOC: The CAOC has two main activities or modes: 

Idle is the initial state of the CAOC, and does not provide or require any service. 

Active is an activity that can be decomposed into three sub-activities: Tracking, 
Engaging, and Assessing. The CAOC requires and provides the following 
services when in Active mode: 

• Provides caocProsecuteTarget(targetLocation) to the task. 

• Requires c2SenseTarget(targetLocation, avSensorId). The location of the 
target is passed in the variable targetLocation from the requesting task to 
the provider of the service, which assigns an AV sensor to investigate. The 
service returns the identity of the AV sensor when the sensor is in position. 
We assume the CAOC has access to images derived from the AV sensor 
during all the time that it is in one of the sub-modes of Active mode. 

The Active mode has three sub-modes: 

Tracking: in this mode, the CAOC, using the images derived from the AV 
sensor, calculates the target track, and therefore the current target location. 
This mode requires no service. 
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Engaging: in this mode, the CAOC tasks a C2 node to assign a UCAV to 
engage the target. 

The engaging activity requires the service 
c2EngageTarget(currentTargetLocation, avSensorId, avWeaponId). The 
CAOC passes the current location of the target and the previously assigned 
avSensorId to the provider of the service. The service returns the identity of 
the UCAV assigned to engage the target, when it is in position. 

Assessing: this mode is for battle damage assessment. The CAOC uses images 
derived from the AV sensor (again, with the previously assigned avSensorId) 
to determine if the target has been destroyed. 

The CAOC goes through the three sub-modes and then has the option of transitioning to Idle 
(if the target is destroyed and there is no other target to prosecute) or back to Active.  
 
mode-machine Target is 

constant targetLocation : Location 
constant earliestEngageTime : Time 
constant latestEngageTime : Time 
external-variable startTime : Time 
external-variable endTime : Time  
external-variable duration : Duration 
internal-variable requiredEngageTargetCapacity: Capacity 
initial final mode Targeting has 
required-invariant engageTarget(startTime, endTime, duration, targetLocation) 

constraint startTime >= earliestEngageTime 
constraint endTime <= latestEngageTime 

end-mode 
transition from Initialization to Targeting when {} is  
{ startTime := timeZero, 
   endTime := timeInfinite, 

        duration := oneTimeUnit, 
        requiredEngageTargetCapacity   := unitCapacity} 
end-mode-machine 

Figure 10: Source Code for Task Model 

The assignment of the same AV sensor for the three sub-modes is a choice that may or may not 
be desirable: The AV sensor being used for Tracking will already be in position and sensing 
the target when the CAOC moves into Engaging and Assessing. On the other hand, the 
assignment of the same AV sensor for the three sub-modes prevents the UCAV that engages 
the target from being used for tracking or damage assessment. Moreover, the AV sensor might 
not be able to stay with the target long enough because of fuel limitations. 

The assignment of independent sensors for the three sub-activities would enable the UCAV that 
engages the target to perform tracking or damage assessment as well. On the other hand, 
constraints would be needed to prevent the scheduler from allocating four AVs to each target 
when only two are needed. 

The sub-modes Tracking and Assessing require no service from other operational resources, 
but will require service from lower-level resources (ATR and BDA modules) when these are 
included in the model. 
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UAC2/UCC2: The UAC2 has two modes, Idle and Sensing.  

Idle: is the initial mode of the UAC2. 

Sensing: in this mode, the UAC2 assigns a UAV to sense the target, receives video 
from the UAV, and sends images to the CAOC. 

• Requires uasSenseTarget(targetLocation, avSensorId). The target location is 
passed to the provider of the service, and the service returns the identity of 
the provider (UAV sensor). 

• Provides c2SenseTarget(targetLocation, avSensorId) to the CAOC. The 
UAC2 receives the target location from the requester of the service, and 
returns the identity of the UAV sensor. 

The UCC2 Idle and Sensing modes are identical to the UAC2 modes, except that the 
required service is renamed ucsSenseTarget(targetLocation, avSensorId) to reflect the 
fact that the UCC2 controls UCAVs and not UAVs. The UCC2 adds a third mode: 

Engaging: in this mode, the UCC2 assigns a UCAV to engage the target. 

• Requires ucwEngageTarget( targetLocation, avSensorId, avWeaponId). The 
UCC2 passes the target location and identity of the AV sensor to the UCAV, 
and receives back the identity of the UCAV. 

• Provides c2EngageTarget(targetLocation, avSensorId, avWeapontId). The 
UCC2 receives the target location and identity of the AV sensor from the 
CAOC, and passes back the identity of the UCAV. 

UAV/UCAV: The UAV and UCAV require a more elaborate model than the other 
resources to account for movement from the base to the target and vice versa. The 
model for the UAV must include a unique identifier that can be passed to the 
consumers of the sensor products it generates, and also parameters to calculate the 
flight time to the target and the maximum range of the UAV: 

• avId: unique identifier for UAV. 
• baseLocation: location of the base, assumed to be fixed. 
• maxSpeed: maximum speed of the UAV. 
• maxFuelLevel: amount of fuel that the UAV can carry (assumed to be 

replenished at the base). 
• burnRatePerDistance: amount of fuel consumed per distance traveled (when 

traveling to the target and back). 
• burnRatePerDuration: amount of fuel consumed per time unit when sensing the 

target. 
• maxMunitionCapacity: number of targets that the UCAV can engage before 

rearming. The UCAV, in addition, must have a munitions capacity that limits how 
many targets it can engage before returning to the base to rearm: 
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The actual locations of origin and destination for each mode, fuel level, and munition 
capacity (for the UCAV) are kept as internal mode variables in the model. The fuel level 
and munition capacity must be non-negative at all times. 

The UAV has the following modes: 

IdleOnGround: this is the initial mode for the UAV. The origin and destination must 
be equal to the base location. The fuel level is replenished while the UAV is in 
this mode. There may be a minimum duration for each stay on the ground. 

Positioning: this is the mode in which the UAV is flying to the target or back. The 
appropriate amount of fuel is subtracted from the fuel level to account for the 
distance. The duration of the flight must be at least the time it takes to fly from 
baseLocation to targetLocation without exceeding maxSpeed. 

Sensing: this is the mode in which the UAV is sensing the target. The origin and 
destination must be equal to the target location. The fuel level is decreased to 
account for the time the UAV stays in this mode. 

• Provides uasSenseTarget(targetLocation, avId). The UAC2 passes the 
target location to the UAV and receives back the identity of the UAV. 

The UCAV has the same IdleOnGround, Positioning, and Sense modes, with the 
munition being replenished (as well as the fuel level) while IdleOnGround, and the 
sensing service renamed to ucsSenseTarget(targetLocation, avId). The UCAV has 
one additional mode Engaging: 

Engaging: this is the mode in which the UCAV engages the target. 

• Provides ucwEngageTarget(targetLocation, avSensorId, avId). The UCAV 
receives the target location and the sensor identity from the UCC2, and 
returns its own identity. 

• The mode Engaging has three sub-modes: 

Ingress: Representing the approach to the target. 

Release: Representing the deployment of the weapon or munition. 

Flyout: Representing the activity of leaving the target area. 

The duration of these modes is assumed to be constant for each one. Fuel 
level is adjusted according to duration. Munition is decremented in activity 
Release. After Flyout, the UCAV may go to Positioning – to fly back to the 
base, or to Sensing – for battle damage assessment, or back to Engaging – if 
there are more targets at the same location. 
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7.3. System Configuration Models 
The next step after defining the models for the operational scenario is to identify the system 
components that are active in each mode for each resource, determining the configuration of 
the components for each mode of the resource. Figure 11 shows and example of this 
decomposition of each mode into components and behaviors for the UCAV in the UCW role. 
The components that are active or inactive in the different modes are shown together with their 
different priorities in each mode, indicating a change in behavior from one mode to the next. 
The mode sequence in Figure 11 corresponds in our model to the following mode sequence: 

Positioning    Ingress    Release    Flyout    Sensing 

The assignment of priorities to each component in each mode in Figure 11 needs to be 
clarified. Changes in behavior may be more significant than the change of priority indicated in 
the figure: the Recon component in Figure 11 may be capable of capturing video and sending 
it to the UCC2 with various settings of quality and data compression. The system 
configuration for each mode should include a list of the possible settings for each component 
and the requirements for each mode, e.g., higher frame rate when navigating, greater image 
resolution when doing damage assessment. 

 

Figure 11: System Configuration for UCAV in UCW Role 

These components are added to the Planware model as resources that provide a service for 
each mode (e.g., a resource Recon that provides a recon service to the UCAV in Ingress, 
Release, Flyout, and Sensing modes, and in turn requires services from the embedded 
resources). 

7.4. Real-Time Resource Management 
The final step after the decomposition of the modes into a component configuration is to map 
each component to real-time resources that they require. For instance, the Recon component 
might require an image to be sent from an on-board sensor at a certain minimum rate. 
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The real-time resources may also be modeled as resources that provide a service to the 
components. Figure 12 shows a configuration resource Recon that provides the recon 
(priority,. . . ) service to the UCAV and in turn requires a service sense at rate(rate, quality, . . . ) 
from the embedded resource OnBoardSensor. 

 
Figure 12: Configuration resource (Recon) and real-time resource (OnBoardSensor) 

Figure 12 illustrates the role of the configuration resource in mapping the requirements of the 
operational model (such as the mode-dependent priority parameter of the recon service) onto 
suitable configurations of the embedded resources (such as the rate and quality parameters of 
the sense at rate service). 

One configuration resource may require service from multiple embedded resources, for 
instance a network link might be required to transmit the data from the on-board sensor back 
to the C2. Figure 13 shows a model representing how the different mission modes described 
in Figure 11 could be mapped to the lower-level embedded resources needed. 

The model in Figure 13 has a state machine representing the different mission modes described in 
Figure 11: Navigation, Ingress, Release, Flyout, and BDA. The mission resource behaves as 
an abstract resource whose role is to provide task decomposition into the lower level 
functionality required. 

Each mission activity require services from state machines representing the diffeent mission 
capabilities: MissionRecon, MissionTrack, MissionShooterSelection, MissionShoot, and 
MissionWeaponSupport. These are also abstract resources. 

The mission capabilities required by each mission mode and their priorities may change from 
mode to mode. Nav mode requires service from MissionRecon, MissionTrack and 
MissionShoot erSelection. The priority of each service can be set by changing the order in which 
they appear in the service match. 
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Figure 13: Planware Model Representing Embedded Resources 

The mission capabilities require service from concrete resources that correspond to software 
components that may reside on an embedded platform (UAV, UCAV) or on a command 
center (UAC2, UCC2). The resources included in the application include AVSensor, 
AVAirframe, ATR, and GPS. These components are comparable to the software components 
in the OEP BasicTNA scenario (OEP Scenario 1.11). 

The software components in turn require service from lower-level resources such as CPU and 
network links. The example shows the CPU resource. 

Notice that each platform (UAV, UCAV, UAC2, UCC2) is represented by a collection of re-
sources (e.g., a UAV will consist of an AVSensor, AVAirframe, GPS, and a CPU). The 
platforms are not resources in themselves, but appear as a homeId constant that is the same for 
each resource belonging to that platform (see appendix A). This arrangement allows services 
to be relocated from one platform to another or constrained to a single platform as 
appropriate, e.g.: 

• MissionTrack capability requires service from an ATR. The scheduler is free to choose an 
ATR module where it is available, either on a UAV or on a UAC2. 

• MissionRecon capability requires service from an AVSensor to locate and track the 
target, and an AVAirframe to be positioned at the target location. These two resources 
must reside on the same UAV platform. The scheduler must choose an AVSensor and an 
AVAirframe with matching homeIds. 

Each software component will require service from a lower-level resource on the same platform 
(CPU, in our example). The homeId of the software component is passed to the lower-level 
resource as an input variable and required to match the local homeId. 
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8. Comments on Reasoning’s ACE/TAO Analysis Results 
Reasoning performed a static analysis of the ACE/TAO code base using Illuma, an automated 
software inspection tool capable of detecting structural defects in software. Illuma detected 8 
defects that could potentially affect the behavior and quality of applications using the 
ACE/TAO framework. Considering the large number of files, 736 files, and the large number 
of lines of code, over 140,000 LOC, composing the ACE/TAO distribution, the fact that 
Illuma was only capable of detecting only 8 structural defects in 7 of the files, lead us to the 
conclusion that the ACE/TAO implementation is a well engineered, mature software system 
that has been extensively and thoroughly tested. 

The detailed report provided by Reasoning is provided as an appendix to this report. This 
section describes the possible implications or impact the identified defects would have in an 
application developed using the ACE/TAO orb infrastructure and services. Please refer to 
Reasoning’s Illuma Defect Data for ACE/TAO report for a more detailed description of the 
defects. Reasoning’s comments on the defect analysis address the generic impact of the 
defects in a software system. The current document addresses the defects in the context of the 
potential use of the affected code and its implications. 

Defect Number 1: 
Location: ace/Configuration.cpp @ ACE Configuration Win32Registry::resolve key : 

line 1059 

Defect type: Memory leak 

Analysis: The variable identified as the source of the memory leak, temp path, is a 
pointer to a fixed-length character array and is allocated no more than once per 
invocation of the function. It would appear that this could indeed be a small 
source of persistent memory leaks, but the functions defined in the affected file 
are almost exclusively used at application startup time for a single-pass 
configuration stage. 

Impact: Minor 

Defect Number 2: 

Location: ace/Log Msg.cpp @ ACE Log Msg::instance : line 34 Defect type: Memory 
leak 

Analysis: The variable identified as the source of the memory leak, tss log msg, is held 
within thread-local storage, which is automatically reclaimed when the lightweight 
process using it exits. In this case, a singleton logging thread holds the only reference to 
this assigned memory, and continues to utilize the variable as long as the application is 
running. 

Impact: None 
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Defect Number 3: 

Location: ace/TP Reactor.cpp @ ACE TP Reactor::remove handler : line 275 

Defect type: Memory leak 

Analysis: The TP Reactor class is a multi-threaded event callback handler for event 
driven code. The method affected, remove handler(ACE Handle Set, ...), 
removes all correlations between events and handlers in a TP Reactor instance, 
and so, is unlikely to be used outside of application shutdown code. For normal 
event handler maintenance, an alternative method exists which removes only 
one event handler from the TP Reactor’s active set. 

Impact: Minor 

Defect Number 4: 

Location: ace/MEM Acceptor.cpp @ ACE MEM Acceptor::accept : line 104  

Defect type: Null pointer dereference 

Analysis: The defect analysis appears to have mistakenly flagged a null pointer 
dereference when a parameter is being written to, not read from. That is, a null 
pointer is passed into a constructor call. The constructor then stores the pointer 
location in the newly-assigned object instance, but does not dereference it. 
Obviously, simply storing (or passing as a method argument) a null pointer does 
not necessarily indicate a program error. (Note: Our understanding of the internals 
of the class whose constructor is called is limited, but, since this possible error is 
in an extremely heavily utilized portion of the network socket-handling code, it 
seems highly unlikely that a null pointer error would have gone unnoticed.) 

Impact: Probably none 

Defect Number 5: 

Location: ace/SString.cpp @ ACE SString::ACE SString : line 394  

Defect type: Null pointer dereference 

Analysis: The basic potential error reported here could only occur in cases where a single 
SString class instance was shared among multiple active exectuing threads - basically, 
there is an instance variable set to 0 only two lines above the potential null pointer bug 
which will prevent the error from happening unless another thread preempts the one 
calling the method, changes the value, and immediately allows the first thread to 
resume. That case is highly unlikely, as the ACE documentation for this class states 
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that it is a special-purpose simple string representation used solely for string-to-integer 
mapping tables requiring specific properties for their key type, and should be avoided 
in favor of the CString class for general use. 

Impact: Minor to none. 

Defect Number 6: 

Location: ace/Svc Conf y.cpp @ ace get module : line 1535 
Defect type: Null pointer dereference 

Analysis: This entire method is a little bit confusing since the source file in question was 
automatically generated from a YACC grammar, and not hand-written. It would 
appear, however, that in cases where no runtime exception support exists in the C++ 
compiler used, it might be possible to give sufficiently skewed input to this function 
in order to generate a null pointer error. However, as this is a purely internal 
function not visible or used outside this particular source file, the triggering of any 
such problem seems highly unlikely. 

Impact: Minor 

Defect Number 7: 

Location: ace/Configuration.cpp @ operator = = : line 362 
Defect type: Uninitialized variable 

Analysis: The variable in question here is of type u int, which is a typedef alias for 
unsigned int. Modern C and C++ compilers implicitly initialize statically 
allocated primitive variables like this one to a value of 0. The assumption here is 
that the check for that case failed here because of the aliased type name, or some 
other minor syntactic issue that confused the analysis. 

Impact: None, except with an extremely buggy compiler  

Defect Number 8: 

Location: ace/Configuration.cpp @ operator= = : line 386 
Defect type: Uninitialized variable 

Analysis: See above – this is an almost identical case, within the same method as the 
above issue. 

Impact: None 
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9.  C Code Generator 
This section describes the Metaslang-to-C-Generator, the task of the which is to produce C-
code from a Metaslang specification as an alternative to the Lisp generation functionality that 
is already part of the Specware system. 

In the current version of the C-Generator, the C-code that is generated from a Metaslang spec-
ification is given in a purely functional style. That means that the functional Metaslang code is 
not analyzed wrt. possible optimizations involving e.g. destructive updates of data structures. 
The transformations from the Metaslang code to the resulting C-code mainly removes all 
”functional features” (e.g. local and anonymous functions, currying, pattern matching) and 
translates the representation of data structures to corresponding C data structures. 

The generated C-Code uses a public-domain garbage collector as storage management tool. 
Garbage is produced whenever a data structure such as a product, co-product, record, or closure 
type is created in the C code. 

The C code generation for a Metaslang specification directly succeeds the type-checking 
step. Several steps are performed prior to the actual C-code generation in order to transform 
the features that cannot directly be mapped to C into those for which it is possible. Among 
these steps are pattern matching compilation, lambda-lifting, and arity normalization. 

Metaslang sorts and operators undergo a number of transformations before they are actually 
mapped into C code. Among them are: 

• Type variables are completely removed from the sort definitions, which means that 
e.g. a List of Nat has the same representation as a List of Strings in the resulting C 
code. 

• Metaslang sorts without a definition are mapped to the sort Any, which is translated to 
the C type void*. 

• Subsorts and quotients are identified with their base sort; no distinction is made in the 
generated C code between the subsort or quotient sort and the corresponding base 
sort. 

• Sorts are ”flattened” meaning that a transformed sort only refers to base sorts in its 
definition, where a base sort is a reference to another sort definition. That means, for 
instance, that if in the Metaslang source a sort is defined to be a co-product of different 
products, it will be transformed to a co-product of newly introduced base sorts, each of 
which defining one of the original product sorts. For example, if the original sort definition 
has been 
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sort BTree = Empty | Node (BTree * Nat * BTree) 

then a a new sort definition for BTree * Nat * BTree will be created resulting in the 
following representation: 

sort Product_1 = BTree * Nat * BTree 
sort BTree = Empty | Node Product_1 

Similar transformations are carried out for products containing co-products, and all 
other combinations. These transformations are performed on all sorts in the input 
specification regardless whether they occur in sort definitions, in signatures of operator 
definitions, or at any other place where sorts are allowed. 

• Arrow sorts, i.e. sorts representing function signatures are all mapped to the same C 
type named ”Closure”, which is defined in $SPECWARE2000/c-lib/meta-slang.h. A 
closure is a structure containing a reference to the function to be called as well as 
information about the environment in which it should run. In case of Metaslang, the 
environment is given Metaslang Sort C Type Literals by a tuple of all free variables 
in the function definition term and their current values. A function represented by 
this closure type can be called using the built-in ”applyClosure” C function, which 
is also defined in the above mentioned file. 

• The primitive sorts Char, Boolean, Nat, Integer, and String are translated to corre-
sponding types in C: 

 MetaSlang Sorts C Type  Literals 

 Boolean.Boolean unsigned int  TRUE, FALSE 

 Char.Char char   C character constants 

 Nat.Nat unsigned int  C int constants 

 Nat.PosNat unsigned int  C int constants 

 Integer.Integer int   C int constants 

 String.String char*  C string constants 

 Any void*  

 () Void  
 

In the context of the translation of operator signatures we distinguish between operators repre-
senting functions and those representing terms. In Metaslang this means that in the first case 
the operator has a sort that can be reduced to an arrow sort “domsrt ! codomsrt”; in the latter 
case, the sort of the operator is different from an arrow sort. We refer to these different cases 
as function operators and constant operators. Function operators are translated into C 
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functions, while constant operators are translated to global C variables. Depending on the type 
of the variable, either the initialization is done directly at the place the variable is introduced, 
or a separate initialization function is generated in case the type of the variable does not 
correspond to a primitive C type. 

The C code generator can also be used to refine sorts and operators that do not have 
definitions in Metaslang. This is a especially very useful in integrating the Metaslang 
specifications into existing C code, as is has been done in the context of the PCES project. 
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10. Concluding remarks and future work 
During this program we developed a detailed model for the challenge problem sensor to de-
cision maker to shooter provided by the join Boeing-BBN OEP. This model can provide the 
functionality to substitute or complement the task network module develope by Boeing. 

The final integration of the generated scheduler with the OEP platform and experimentation 
with the provided OEP scenarios was not finalized as a result of resource limitations. We 
would like to explore a closer integration of the Planware generated scheduler with the Event 
Channel component currently implemented in the OEP platform. Ideally, the generated 
schedulers could provide an integrated component that would substitute both the task network 
and the event channel component. The rationale for using a generator to provide a scheduling 
component was to include high-level, domain knowledge into the real-time scheduling 
decision loop.  

We also performed an extensive and thorough static analysis of the TAO ORB source code: 
Very few problems have been detected, and most of the identified problems will have little or 
no effect on the runtime behavior of the system. 
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Appendix  A Planware Model for SDMS/W Problem 
 
Target = 
mode-machine Target is 
constant targetLocation : Location 
constant earliestEngageTime : Time 
constant latestEngageTime : Time 
external-variable startTime : Time 
external-variable endTime : Time 
external-variable duration : Duration 
internal-variable requiredEngageTargetCapacity: Capacity 
initial final mode Targeting has 
required-invariant engageTarget(startTime, endTime, duration, targetLocation) 
constraint startTime >= earliestEngageTime 
constraint endTime <= latestEngageTime 
end-mode 
transition from Initialization to Targeting when {} is { 
startTime := timeZero, 
endTime := timeInfinite, 
duration := oneTimeUnit, 
requiredEngageTargetCapacity := unitCapacity} 
end-mode-machine 
 
Mission = 
mode-machine Mission is 
external-variable sensorId : NodeId 
external-variable trackerId : NodeId 
external-variable shooterId : NodeId 
external-variable startTime : Time 
external-variable endTime : Time 
external-variable duration : Duration 
input-variable targetLocation : Location 
internal-variable availableEngageTargetCapacity : Capacity 
internal-variable requiredProvideReconCapacity : Capacity 
internal-variable requiredProvideTrackCapacity : Capacity 
internal-variable requiredProvideShootCapacity : Capacity 
internal-variable requiredWeaponSupportCapacity : Capacity 
internal-variable requiredProvideShooterSelectionCapacity: Capacity 
initial final mode Idle has 
end-mode 
mode FlyingMission has 
provided-invariant engageTarget(startTime, endTime, duration, targetLocation) 
mode-machine MissionModes is 
initial mode Nav has 
required-invariant provideRecon(startTime, endTime, duration, targetLocation, sensorId) 
required-invariant provideTrack(startTime, endTime, duration, sensorId, trackerId) 
required-invariant provideShooterSelection(startTime, endTime, trackerId, shooterId) 
end-mode 
mode Ingress has 
end-mode 
mode Release has 
end-mode 
mode Flyout has 
end-mode 
final mode BDA has 
end-mode 
transition from Nav to Ingress when {} is {} 
transition from Ingress to Release when {} is {} 
transition from Release to Flyout when {} is {} 
transition from Flyout to BDA when {} is {} 
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end-mode-machine 
end-mode 
transition from Idle to FlyingMission when {} is {} 
transition from FlyingMission to Idle when {} is {} 
transition from FlyingMission to FlyingMission when {} is {} 
transition from Initialization to Idle when {} is { 
targetLocation := zeroLocation, 
sensorId := noNodeId, 
trackerId := noNodeId, 
shooterId := noNodeId, 
startTime := timeZero, 
endTime := timeInfinite, 
duration := infiniteDuration, 
availableEngageTargetCapacity := unitCapacity, 
requiredProvideReconCapacity := unitCapacity, 
requiredProvideTrackCapacity := unitCapacity, 
requiredProvideShooterSelectionCapacity := unitCapacity, 
requiredProvideShootCapacity := unitCapacity, 
requiredWeaponSupportCapacity := unitCapacity} 
end-mode-machine 
 
MissionRecon = 
mode-machine MissionRecon is 
external-variable sensorId : NodeId 
external-variable startTime : Time 
external-variable endTime : Time 
external-variable duration : Duration 
input-variable targetLocation: Location 
internal-variable availableProvideReconCapacity : Capacity 
internal-variable requiredProvideSensorCapacity : Capacity 
internal-variable requiredProvideAirframeCapacity: Capacity 
internal-variable requiredProvidePositionedAirframeCapacity: Capacity 
initial mode Idle has 
end-mode 
mode Recon has 
provided-invariant 
provideRecon(startTime, endTime, duration, targetLocation, sensorId) 
required-invariant 
provideSensor(startTime, endTime, duration, sensorId) 
required-invariant 
providePositionedAirframe(startTime, endTime, duration, targetLocation, sensorId) 
end-mode 
transition from Idle to Recon when {} is {} 
transition from Recon to Idle when {} is {} 
transition from Recon to Recon when {} is {} 
transition from Initialization to Idle when {} is { 
targetLocation := zeroLocation, 
sensorId := noNodeId, 
startTime := timeZero, 
endTime := timeInfinite, 
duration := infiniteDuration, 
availableProvideReconCapacity := unitCapacity, 
requiredProvideSensorCapacity := unitCapacity, 
requiredProvideAirframeCapacity := unitCapacity, 
requiredProvidePositionedAirframeCapacity := unitCapacity} 
end-mode-machine 
 
MissionTrack = 
mode-machine MissionTrack is 
external-variable trackerId : NodeId 
external-variable startTime : Time 
external-variable endTime : Time 
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external-variable duration : Duration 
input-variable sensorId : NodeId 
internal-variable availableProvideTrackCapacity: Capacity 
internal-variable requiredProvideATRCapacity : Capacity 
initial mode Idle has 
end-mode 
mode Track has 
provided-invariant provideTrack(startTime, endTime, duration, sensorId, trackerId) 
required-invariant provideATR(startTime, endTime, duration, trackerId) 
end-mode 
transition from Idle to Track when {} is {} 
transition from Track to Idle when {} is {} 
transition from Track to Track when {} is {} 
transition from Initialization to Idle when {} is { 
trackerId := noNodeId, 
sensorId := noNodeId, 
startTime := timeZero, 
endTime := timeInfinite, 
duration := infiniteDuration, 
availableProvideTrackCapacity := unitCapacity, 
requiredProvideATRCapacity := unitCapacity} 
end-mode-machine 
 
MissionShooterSelection = 
mode-machine MissionShooterSelection is 
external-variable sensorId : NodeId 
external-variable trackerId : NodeId 
external-variable startTime : Time 
external-variable endTime : Time 
external-variable duration : Duration 
internal-variable availableProvideShooterSelectionCapacity: Capacity 
initial mode Idle has 
end-mode 
mode ShooterSelection has 
provided-invariant provideShooterSelection(startTime, endTime, sensorId, trackerId) 
end-mode 
transition from Idle to ShooterSelection when {} is {} 
transition from ShooterSelection to Idle when {} is {} 
transition from ShooterSelection to ShooterSelection when {} is {} 
transition from Initialization to Idle when {} is { 
sensorId := noNodeId, 
trackerId := noNodeId, 
startTime := timeZero, 
endTime := timeInfinite, 
duration := infiniteDuration, 
availableProvideShooterSelectionCapacity := unitCapacity} 
end-mode-machine 
 
AVSensor = 
mode-machine AVSensor is 
constant homeId : NodeId 
constant requiredCPU : Capacity 
external-variable startTime : Time 
external-variable endTime : Time 
external-variable duration : Duration 
input-variable inHomeId : NodeId 
internal-variable availableProvideSensorCapacity : Capacity 
internal-variable requiredProvideCPUCapacity : Capacity 
internal-variable requiredProvideCPU1Capacity : Capacity 
initial mode Idle has 
end-mode 
mode Sensing has 
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provided-invariant provideSensor(startTime, endTime, duration, inHomeId) 
required-invariant provideCPU1(homeId, requiredCPU) 
constraint (inHomeId = homeId) or (inHomeId = noNodeId) 
end-mode 
transition from Idle to Sensing when {} is { 
inHomeId := homeId 
} 
transition from Sensing to Idle when {} is {} 
transition from Sensing to Sensing when {} is { 
inHomeId := homeId 
} 
transition from Initialization to Idle when {} is { 
startTime := timeZero, 
endTime := timeInfinite, 
duration := infiniteDuration, 
inHomeId := homeId, 
availableProvideSensorCapacity := unitCapacity, 
requiredProvideCPUCapacity := unitCapacity, 
requiredProvideCPU1Capacity := unitCapacity} 
end-mode-machine 
 
AVAirframe = 
mode-machine AVAirframe is 
constant homeId : NodeId 
constant baseLocation : Location 
constant maxFuelCapacity : Capacity 
constant maxSpeed : Integer 
constant fuelDistanceBurnRate : CapacityPerDistance 
constant fuelTimeBurnRate : CapacityPerTime 
input-variable inHomeId : NodeId 
input-variable targetLocation : Location 
input-variable engagementDuration : Duration 
external-variable startTime : Time 
external-variable endTime : Time 
external-variable duration : Duration 
internal-variable origin : Location 
internal-variable destination : Location 
internal-variable fuelLevel : Capacity 
internal-variable availableProvidePositionedAirframeCapacity: Capacity 
internal-variable requiredProvideGPSCapacity : Capacity 
initial final mode Idle has 
end-mode 
mode Positioning has 
required-invariant provideGPS(startTime, endTime, duration, inHomeId) 
end-mode 
rest mode Positioned has 
provided-invariant 
providePositionedAirframe(startTime, endTime, engagementDuration, targetLocation, inHomeId) 
constraint (inHomeId = homeId) or (inHomeId = noNodeId) 
end-mode 
transition from Idle to Positioning 
when {~(targetLocation = baseLocation) & 
(fuelLevel >= 
consumedFuelForDistance(baseLocation, targetLocation, fuelDistanceBurnRate))} 
is { 
origin := baseLocation, 
destination := targetLocation, 
fuelLevel := fuelLevel - 
consumedFuelForDistance(baseLocation, targetLocation, fuelDistanceBurnRate), 
duration := computeFlightDuration(baseLocation, targetLocation, maxSpeed)} 
transition from Positioning to Positioned when { 
(destination = targetLocation) & 
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(fuelLevel >= consumedFuelForTime(fuelTimeBurnRate, engagementDuration))} 
is { 
inHomeId := homeId, 
origin := destination, 
destination := targetLocation, 
fuelLevel := fuelLevel - consumedFuelForTime(fuelTimeBurnRate, engagementDuration)} 
transition from Positioned to Positioning when {((destination = targetLocation) & 
(fuelLevel >= consumedFuelForDistance(baseLocation, targetLocation, fuelDistanceBurnRate))) or 
(~(destination = targetLocation) & 
 (fuelLevel >= consumedFuelForDistance(destination, targetLocation, fuelDistanceBurnRate)))} 
is { 
origin := destination, 
destination := if (destination = targetLocation) 
then baseLocation 
else targetLocation, 
fuelLevel := fuelLevel - 
consumedFuelForDistance(origin, destination, fuelDistanceBurnRate), 
duration := computeFlightDuration(origin, destination, maxSpeed)} 
transition from Positioning to Idle when {destination = baseLocation} is { 
origin := baseLocation, 
destination := baseLocation, 
fuelLevel := maxFuelCapacity, 
duration := oneTimeUnit} 
transition from Positioned to Positioned when {(destination = targetLocation) & 
(fuelLevel >= (fuelLevel - consumedFuelForTime(fuelTimeBurnRate, engagementDuration)))} is { 
inHomeId := homeId, 
fuelLevel := fuelLevel - consumedFuelForTime(fuelTimeBurnRate, engagementDuration), 
duration := engagementDuration} 
transition from Initialization to Idle when {} is { 
inHomeId := homeId, 
targetLocation := baseLocation, 
engagementDuration := oneTimeUnit, 
startTime := timeZero, 
endTime := timeInfinite, 
duration := infiniteDuration, 
origin := baseLocation, 
destination := baseLocation, 
fuelLevel := maxFuelCapacity, 
availableProvidePositionedAirframeCapacity := unitCapacity, 
requiredProvideGPSCapacity := unitCapacity} 
end-mode-machine 
 
ATR = 
mode-machine ATR is 
constant homeId : NodeId 
constant requiredCPU : Capacity 
external-variable startTime: Time 
external-variable endTime : Time 
external-variable duration : Duration 
input-variable inHomeId : NodeId 
internal-variable availableProvideATRCapacity: Capacity 
internal-variable requiredProvideCPU1Capacity: Capacity 
initial mode Idle has 
end-mode 
mode Tracking has 
provided-invariant provideATR(startTime, endTime, duration, inHomeId) 
required-invariant provideCPU1(homeId, requiredCPU) 
constraint (inHomeId = homeId) or (inHomeId = noNodeId) 
end-mode 
transition from Idle to Tracking when {} is { 
inHomeId := homeId 
} 
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transition from Tracking to Idle when {} is {} 
transition from Tracking to Tracking when {} is { 
inHomeId := homeId 
} 
transition from Initialization to Idle when {} is { 
startTime := timeZero, 
endTime := timeInfinite, 
duration := infiniteDuration, 
inHomeId := homeId, 
availableProvideATRCapacity := unitCapacity, 
requiredProvideCPU1Capacity := unitCapacity} 
end-mode-machine 
 
GPS = 
mode-machine GPS is 
constant homeId : NodeId 
constant requiredCPU : Capacity 
external-variable startTime : Time 
external-variable endTime : Time 
external-variable duration : Duration 
input-variable inHomeId : NodeId 
internal-variable availableProvideGPSCapacity : Capacity 
internal-variable requiredProvideCPU1Capacity : Capacity 
initial mode Idle has 
end-mode 
mode Positioning has 
provided-invariant provideGPS(startTime, endTime, duration, inHomeId) 
required-invariant provideCPU1(homeId, requiredCPU) 
constraint (inHomeId = homeId) or (inHomeId = noNodeId) 
end-mode 
transition from Idle to Positioning when {} is { 
inHomeId := homeId 
} 
transition from Positioning to Idle when {} is {} 
transition from Positioning to Positioning when {} is { 
inHomeId := homeId 
} 
transition from Initialization to Idle when {} is { 
startTime := timeZero, 
endTime := timeInfinite, 
duration := infiniteDuration, 
inHomeId := homeId, 
availableProvideGPSCapacity := unitCapacity, 
requiredProvideCPU1Capacity := unitCapacity} 
end-mode-machine 
 
CPU = 
mode-machine CPU is 
constant homeId : NodeId 
constant nodeCPUCapacity : Capacity 
input-variable processingHomeId : NodeId 
input-variable requiredCPU : Capacity 
external-variable startTime : Time 
external-variable endTime : Time 
external-variable duration : Duration 
internal-variable availableProvideCPU1Capacity : Capacity 
internal-variable availableProvideCPU2Capacity : Capacity 
initial final mode Idle has 
end-mode 
mode Busy has 
provided-invariant provideCPU1(processingHomeId, requiredCPU) 
provided-invariant provideCPU2(processingHomeId, requiredCPU) 
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constraint processingHomeId = homeId 
end-mode 
transition from Idle to Busy when {} is { 
duration := computeProcessingDuration(requiredCPU, nodeCPUCapacity)} 
transition from Busy to Idle when {serviceProvided?} is {} 
transition from Busy to Busy when {~serviceProvided?} is { 
duration := computeProcessingDuration(requiredCPU, nodeCPUCapacity)} 
transition from Initialization to Idle when {} is { 
processingHomeId := homeId, 
requiredCPU := unitCapacity, 
startTime := timeZero, 
endTime := timeInfinite, 
duration := infiniteDuration, 
availableProvideCPU1Capacity := unitCapacity, 
availableProvideCPU2Capacity := unitCapacity} 
end-mode-machine 
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Appendix B. ACE/TAO  Defect Analysis 

IllumaSM Defect Data for  

ACE/TAO  
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B.1. INTRODUCTION  

IllumaSM  

Illuma is an automated software inspection service developed by 
Reasoning that rapidly detects critical structural defects in software. It is 
an important complement to functional testing, because it detects defects 
before testing and provides metrics that assist in risk-assessment.  

Deliverables  

Results from an Illuma service inspection are provided in two reports. The 
Illuma Defect Metrics report provides high-level metrics results, and the 
Illuma Defect Data report includes detail for each individual defect. This 
document is the Illuma Defect Data report. 
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B.2. SUMMARY DEFECT REPORT  

B.2.1. Inventory Summary  

Reasoning inspected a complete application. 

Total Number of Source Files:  268 

Number of User Include Files:  468 

Total Number of User Files Processed:  736  

Total LOC of Source Files:  79,876 

Number LOC User Include Files:  60,816 

Total LOC in Project:  140,692 
 

B.2.2. Defect Summary  

The column Defect Instances in the table below details, per defect class, how 
many defects there are in the application.  

The column Files Affected details, per defect class, the number of files in the 
application that have one or more defects.  

Inspection Class  
Defect 

Instances  
Files 

Affected  

Memory Leak  

Reference to allocated memory is lost  

3  3  

NULL Pointer Dereference  

Expression dereferences a NULL pointer  

3  3  

Bad Deallocation  

Deallocation is inappropriate for type of data  

0  0  

Out of Bounds Array Access  

Expression accesses a value beyond the array  

0  0  

Uninitialized Variable  

Variable is not initialized prior to use  

2  1  

Total Defect Instances  8  ---  
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B.3. DETAILED DEFECT REPORT  
 

DEFECT CLASS: Memory Leak       Defect Number: 1  

LOCATION:  

PCES\ACE_only\ACE_wrappers\ace\Configuration.cpp : 1059  

DESCRIPTION:  

Local variable temp_path, declared on line 1012, is assigned a 
pointer to a block of memory allocated by new[] on line 
1013(176(OS_Memory.h)). No other pointer refers to this 
memory block, so it is inaccessible (still allocated, but 
unreachable) once temp_path goes out of scope after line 1059. 
A similar error can be found on line 1067.  

PRECONDITIONS:  

The conditional expression (::RegOpenKey (hKey, 0, &result) != 
ERROR_SUCCESS) on line 1007 evaluates to false AND  

The conditional expression (POINTER == 0) on line 
1013(177(OS_Memory.h)) evaluates to false AND  

The for loop on line 1022 is executed with temp != 0 evaluates 
to true AND  

The conditional expression (ACE_TEXT_RegOpenKey (result, 
temp, &subkey) != ERROR_SUCCESS) on line 1036 evaluates to 
true AND  

The conditional expression (!create || 
ACE_TEXT_RegCreateKeyEx (result, temp, 0, 0, 0, 
KEY_ALL_ACCESS, 0, &subkey, #if defined (__MINGW32__) 
(PDWORD) 0 #else 0 #endif ) != ERROR_SUCCESS) on line 
1042 evaluates to true.  

IMPACT:  

Depending on how long the application runs, how frequently the 
leak occurs, and the amount of available (virtual) memory, 
memory leaks will sooner or later cause performance 
degradation of the application, and potentially of the entire 
system. Eventually, the performance degradation may lead to a 
fatal out-of-memory condition. This condition may be 
encountered by an application unrelated to the one that caused 
the memory leak.  

CODE FRAGMENT:  
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997 HKEY  
998 ACE_Configuration_Win32Registry::resolve_key (HKEY hKey,  
999 const ACE_TCHAR* path,  
1000 int create)  
1001 {  
1002 HKEY result = 0;  
1003 // Make a copy of hKey  
1004 #if defined (ACE_HAS_WINCE)  
1005 if (::RegOpenKeyEx (hKey, 0, 0, 0, &result) != ERROR_SUCCESS)  
1006 #else  
1007 if (::RegOpenKey (hKey, 0, &result) != ERROR_SUCCESS)  
1008 #endif // ACE_HAS_WINCE  
1009 return 0;  
1010  
1011 // recurse through the path  
1012 ACE_TCHAR *temp_path = 0;  
1013 ACE_NEW_RETURN (temp_path,  
1014 ACE_TCHAR[ACE_OS::strlen (path) + 1],  
1015 0);  
1016 ACE_Auto_Basic_Array_Ptr<ACE_TCHAR> pData (temp_path);  
1017 ACE_OS::strcpy (pData.get (), path);  
1018 ACE_Tokenizer parser (pData.get ());  
1019 parser.delimiter_replace ('\\', '\0');  
1020 parser.delimiter_replace ('/', '\0');  
1021  
1022 for (ACE_TCHAR *temp = parser.next (); 
1023 temp != 0;  
1024 temp = parser.next ())  
1025 {  
1026 // Open the key  
1027 HKEY subkey;  
1028  
1029 #if defined (ACE_HAS_WINCE)  
1030 if (ACE_TEXT_RegOpenKeyEx (result,  
1031 temp,  
1032 0,  
1033 0,  
1034 &subkey) != ERROR_SUCCESS)  
1035 #else  
1036 if (ACE_TEXT_RegOpenKey (result,  
1037 temp,  
1038 &subkey) != ERROR_SUCCESS)  
1039 #endif // ACE_HAS_WINCE  
1040 {  
1041 // try creating it  
1042 if (!create || ACE_TEXT_RegCreateKeyEx (result,  
1043 temp,  
1044 0,  
1045 0,  
1046 0,  
1047 KEY_ALL_ACCESS,  
1048 0,  
1049 &subkey,  



 

 59 

1050 #if defined (__MINGW32__)  
1051 (PDWORD) 0  
1052 #else  
1053 0  
1054 #endif /* __MINGW32__ */  
1055 ) != ERROR_SUCCESS)  
1056 {  
1057 // error  
1058 ::RegCloseKey (result);  
1059 return 0;  
1060 }  
1061 }  
1062 // release our open key handle  
1063 ::RegCloseKey (result);  
1064 result = subkey;  
1065 }  
1066  
1067 return result;  
1068 }  
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DEFECT CLASS: Memory Leak      Defect Number: 2  
 
LOCATION:  

PCES\ACE_only\ACE_wrappers\ace\Log_Msg.cpp : 334  

DESCRIPTION:  

Local variable tss_log_msg, declared on line 304, is assigned a 
pointer to a block of memory allocated by new on line 
324(176(OS_Memory.h)). No other pointer refers to this 
memory block, so it is inaccessible (still allocated, but 
unreachable) once tss_log_msg goes out of scope after line 334.  

PRECONDITIONS:  

The conditional expression (key_created_ == 0) on line 256 
evaluates to false AND  

The conditional expression (ACE_Thread::getspecific 
(log_msg_tss_key_, ACE_reinterpret_cast (void **, 
&tss_log_msg)) == -1) on line 307 evaluates to false AND  

The conditional expression (tss_log_msg == 0) on line 313 
evaluates to true AND  

The conditional expression (POINTER == 0) on line 
324(177(OS_Memory.h)) evaluates to false AND  

The conditional expression (ACE_Thread::setspecific 
(log_msg_tss_key_, ACE_reinterpret_cast (void *, 
tss_log_msg)) != 0) on line 331 evaluates to true.  

IMPACT:  

Depending on how long the application runs, how frequently the 
leak occurs, and the amount of available (virtual) memory, 
memory leaks will sooner or later cause performance 
degradation of the application, and potentially of the entire 
system. Eventually, the performance degradation may lead to a 
fatal out-of-memory condition. This condition may be 
encountered by an application unrelated to the one that caused 
the memory leak.  

 
CODE FRAGMENT:  

248 ACE_Log_Msg *  
249 ACE_Log_Msg::instance (void)  
250 {  
251 #if defined (ACE_MT_SAFE) && (ACE_MT_SAFE != 0)  
252 # if defined (ACE_HAS_THREAD_SPECIFIC_STORAGE) || \  
253 defined (ACE_HAS_TSS_EMULATION)  
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254 // TSS Singleton implementation.  
255  
256 if (key_created_ == 0)  
257 {  
258 ACE_thread_mutex_t *lock =  
259 ACE_reinterpret_cast (ACE_thread_mutex_t *,  
260 ACE_OS_Object_Manager::preallocated_object  
261 [ACE_OS_Object_Manager::ACE_LOG_MSG_INSTANCE_LOCK]);  
262  
263 if (1 == ACE_OS_Object_Manager::starting_up())  
...  
267 ;  
268 else  
269 ACE_OS::thread_mutex_lock (lock);  
270  
271 if (key_created_ == 0)  
272 {  
273 // Allocate the Singleton lock.  
274 ACE_Log_Msg_Manager::get_lock ();  
275  
276 {  
277 ACE_NO_HEAP_CHECK;  
278 if (ACE_Thread::keycreate (&log_msg_tss_key_,  
279 &ACE_TSS_cleanup) != 0)  
280 {  
281 if (1 == ACE_OS_Object_Manager::starting_up())  
...  
285 ;  
286 else  
287 ACE_OS::thread_mutex_unlock (lock);  
288 return 0; // Major problems, this should *never* happen!  
289 }  
290 }  
291  
292 key_created_ = 1;  
293 }  
294  
295 if (1 == ACE_OS_Object_Manager::starting_up())  
...  
299 ;  
300 else  
301 ACE_OS::thread_mutex_unlock (lock);  
302 }  
303  
304 ACE_Log_Msg *tss_log_msg = 0;  
305  
306 // Get the tss_log_msg from thread-specific storage.  
307 if (ACE_Thread::getspecific (log_msg_tss_key_,  
308 ACE_reinterpret_cast (void **,  
309 &tss_log_msg)) == -1)  
310 return 0; // This should not happen!  
311  
312 // Check to see if this is the first time in for this thread.  
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313 if (tss_log_msg == 0)  
314 {  
...  
321 {  
322 ACE_NO_HEAP_CHECK;  
323  
324 ACE_NEW_RETURN (tss_log_msg,  
325 ACE_Log_Msg,  
326 0);  
...  
331 if (ACE_Thread::setspecific (log_msg_tss_key_,  
332 ACE_reinterpret_cast (void *,  
333 tss_log_msg)) != 0)  
334 return 0; // Major problems, this should *never* happen!  
335 }  
336 }  
337  
338 return tss_log_msg;  
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DEFECT CLASS: Memory Leak          Defect Number: 3  
 
LOCATION:  

PCES\ACE_only\ACE_wrappers\ace\TP_Reactor.cpp : 275  

DESCRIPTION:  

Local variable aeh, declared on line 258, is assigned a pointer to 
a block of memory allocated by new[] on line 
261(176(OS_Memory.h)). No other pointer refers to this 
memory block, so it is inaccessible (still allocated, but 
unreachable) once aeh goes out of scope after line 275.  

PRECONDITIONS:  

The conditional expression (POINTER == 0) on line 
261(177(OS_Memory.h)) evaluates to false AND  

The conditional expression (!guard.is_owner ()) on line 274 
evaluates to true.  

IMPACT:  

Depending on how long the application runs, how frequently the 
leak occurs, and the amount of available (virtual) memory, 
memory leaks will sooner or later cause performance 
degradation of the application, and potentially of the entire 
system. Eventually, the performance degradation may lead to a 
fatal out-of-memory condition. This condition may be 
encountered by an application unrelated to the one that caused 
the memory leak.  

 
CODE FRAGMENT: 

253 int  
254 ACE_TP_Reactor::remove_handler (const ACE_Handle_Set &handles,  
255 ACE_Reactor_Mask m)  
256 {  
257 // Array of <Event_Handlers> corresponding to <handles>  
258 ACE_Event_Handler **aeh = 0;  
259  
260 // Allocate memory for the size of the handle set  
261 ACE_NEW_RETURN (aeh,  
262 ACE_Event_Handler *[handles.num_set ()],  
263 -1);  
264  
265 size_t index = 0;  
266  
267 // Artificial scoping for grabbing and releasing the token  
268 {  
269 ACE_TP_Token_Guard guard (this->token_);  
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270  
271 // Acquire the token  
272 int result = guard.acquire_token ();  
273  
274 if (!guard.is_owner ())  
275 return result;  
276  
277 ACE_HANDLE h;  
278  
279 ACE_Handle_Set_Iterator handle_iter (handles);  
280  
281 while ((h = handle_iter ()) != ACE_INVALID_HANDLE)  
282 {  
283 size_t slot = 0;  
284 ACE_Event_Handler *eh =  
285 this->handler_rep_.find (h, &slot);  
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DEFECT CLASS: Null Pointer Dereference     Defect Number: 4  

LOCATION:  

PCES\ACE_only\ACE_wrappers\ace\MEM_Acceptor.cpp : 104  

DESCRIPTION:  

The local pointer variable len_ptr, declared on line 82, and 
assigned on line 82, may be NULL where it is dereferenced on 
line 104.  

PRECONDITIONS: 

The conditional expression (this->shared_accept_start (timeout, 
restart, in_blocking_mode) == -1) on line 86 evaluates to false 
AND  

The conditional expression (remote_sap != 0) on line 101 
evaluates to true.  

IMPACT: 

A NULL pointer dereference usually causes a program exception. 
Notable exceptions to this rule are some embedded 
environments, in which a NULL pointer dereference does not 
cause program termination.  

 
CODE FRAGMENT:  

73 int  
74 ACE_MEM_Acceptor::accept (ACE_MEM_Stream &new_stream,  
75 ACE_MEM_Addr *remote_sap,  
76 ACE_Time_Value *timeout,  
77 int restart,  
78 int reset_new_handle)  
79 {  
80 ACE_TRACE ("ACE_MEM_Acceptor::accept");  
81  
82 int *len_ptr = 0;  
83 sockaddr *addr = 0;  
84  
85 int in_blocking_mode = 1;  
86 if (this->shared_accept_start (timeout,  
87 restart,  
88 in_blocking_mode) == -1)  
89 return -1;  
90 else  
91 {  
92 do  
93 new_stream.set_handle (ACE_OS::accept (this->get_handle (),  
94 addr,  
95 len_ptr));  
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96 while (new_stream.get_handle () == ACE_INVALID_HANDLE  
97 && restart != 0  
98 && errno == EINTR  
99 && timeout == 0);  
100  
101 if (remote_sap != 0)  
102 {  
103 ACE_INET_Addr temp (ACE_reinterpret_cast (sockaddr_in *, addr),  
104 *len_ptr);  
105 remote_sap->set_port_number(temp.get_port_number ());  
106 }  
107 }  
108  
109 if (this->shared_accept_finish (new_stream,  
110 in_blocking_mode,  
111 reset_new_handle) == -1)  
112 return -1;  
113  
114 // Allocate 2 * MAXPATHLEN so we can accomodate the unique  
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DEFECT CLASS: Null Pointer Dereference          Defect Number: 5  

LOCATION:  

PCES\ACE_only\ACE_wrappers\ace\SString.cpp : 394  

DESCRIPTION:  

The local pointer variable ACE_SString::rep_, declared on line 
231(SString.h) , and assigned on line 393, may be NULL where 
it is dereferenced on line 394. This NULL pointer dereference 
only happens in an Out Of Memory context. Similar errors can be 
found on lines 492 and 522.  

PRECONDITIONS:  

The function malloc, called on line 393, returns NULL.  

IMPACT:  

A NULL pointer dereference usually causes a program exception. 
Notable exceptions to this rule are some embedded 
environments, in which a NULL pointer dereference does not 
cause program termination.  

CODE FRAGMENT:  

381 ACE_SString::ACE_SString (ACE_Allocator *alloc)  
382 : allocator_ (alloc),  
383 len_ (0),  
384 rep_ (0)  
385  
386 {  
387 ACE_TRACE ("ACE_SString::ACE_SString");  
388  
389 if (this->allocator_ == 0)  
390 this->allocator_ = ACE_Allocator::instance ();  
391  
392 this->len_ = 0;  
393 this->rep_ = (char *) this->allocator_->malloc (this->len_ + 1);  
394 this->rep_[this->len_] = '\0';  
395 }  
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DEFECT CLASS: Null Pointer Dereference          Defect Number: 6  

LOCATION:  

PCES\ACE_only\ACE_wrappers\ace\Svc_Conf_y.cpp : 1535  

DESCRIPTION:  

The local pointer variable mt, declared on line 1521, and 
assigned on line 1521, may be NULL where it is dereferenced on 
line 1535.  

PRECONDITIONS: 

The conditional expression (sr == 0 || st == 0 || mt == 0) on 
line 1524 evaluates to true.  

IMPACT: 

A NULL pointer dereference usually causes a program exception. 
Notable exceptions to this rule are some embedded 
environments, in which a NULL pointer dereference does not 
cause program termination.  

CODE FRAGMENT: 

1511 static ACE_Module_Type *  
1512 ace_get_module (ACE_Static_Node *str_rec,  
1513 ACE_Static_Node *svc_type,  
1514 int & ace_yyerrno)  
1515 {  
1516 const ACE_Service_Type *sr = str_rec->record ();  
1517 const ACE_Service_Type_Impl *type = sr->type ();  
1518 ACE_Stream_Type *st = sr == 0 ? 0 : (ACE_Stream_Type *) type;  
1519 const ACE_Service_Type *sv = svc_type->record ();  
1520 type = sv->type ();  
1521 ACE_Module_Type *mt = (ACE_Module_Type *) type;  
1522 const ACE_TCHAR *module_type_name = svc_type->name ();  
1523  
1524 if (sr == 0 || st == 0 || mt == 0)  
1525 {  
1526 ACE_ERROR ((LM_ERROR,  
1527 ACE_LIB_TEXT ("cannot locate Module_Type %s or STREAM_Type %s\n"),  
1528 module_type_name,  
1529 str_rec->name ()));  
1530 ace_yyerrno++;  
1531 }  
1532  
1533 // Make sure that the Module has the same name as the  
1534 // Module_Type object from the svc.conf file.  
1535 ACE_Module<ACE_SYNCH> *mp = (ACE_Module<ACE_SYNCH> *) mt->object ();  
1536  
1537 if (ACE_OS::strcmp (mp->name (), module_type_name) != 0)  
1538 {  
1539 ACE_DEBUG ((LM_DEBUG,  
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1540 ACE_LIB_TEXT ("warning: assigning Module_Type name %s to Module %s since 
names differ\n"),  

1541 module_type_name,  
1542 mp->name ()));  
1543 mp->name (module_type_name);  
1544 }  
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DEFECT CLASS: Uninitialized       Variable Defect Number: 7  

LOCATION:  

PCES\ACE_only\ACE_wrappers\ace\Configuration.cpp : 362  

DESCRIPTION:  

The local variable rhsInt, declared on line 347, is used on line 
362, before rhsInt has been initialized.  

PRECONDITIONS:  

The conditional expression (nonconst_rhs.find_value (rhsSection, 
valueName.c_str (), rhsType) != 0) on line 310 evaluates to 
false AND  

The conditional expression (valueType != rhsType) on line 318 
evaluates to false AND  

The conditional expression (valueType == STRING) on line 326 
evaluates to false AND  

The conditional expression (valueType == INTEGER) on line 345 
evaluates to true AND  

The conditional expression (nonconst_this->get_integer_value 
(thisSection, valueName.c_str (), thisInt) != 0) on line 348 
evaluates to true.  

IMPACT:  

Usage of uninitialized variables can cause unpredictable results 
in the program (because the value of the variable is essentially 
random), and in the worst case, a program exception.  

CODE FRAGMENT  

260 int ACE_Configuration::operator== (const ACE_Configuration& rhs) const  
261 {  
...  
309 // look for the same value in the rhs section  
310 if (nonconst_rhs.find_value (rhsSection,  
311 valueName.c_str (),  
312 rhsType) != 0)  
313 {  
314 // We're not equal if the same value cannot  
315 // be found in the rhs object.  
316 rc = 0;  
317 }  
318 else if (valueType != rhsType)  
319 {  
320 // we're not equal if the types do not match.  
321 rc = 0;  
322 }  
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323 else  
324 {  
325 // finally compare values.  
326 if (valueType == STRING)  
327 {  
328 ACE_TString thisString, rhsString;  
329 if (nonconst_this->get_string_value (thisSection,  
330 valueName.c_str (),  
331 thisString) != 0)  
332 {  
333 // we're not equal if we cannot get this string  
334 rc = 0;  
335 }  
336 else if (nonconst_rhs.get_string_value (rhsSection,  
337 valueName.c_str (),  
338 rhsString) != 0)  
339 {  
340 // we're not equal if we cannot get rhs string  
341 rc = 0;  
342 }  
343 rc = thisString == rhsString;  
344 }  
345 else if (valueType == INTEGER)  
346 {  
347 u_int thisInt, rhsInt;  
348 if (nonconst_this->get_integer_value (thisSection,  
349 valueName.c_str (),  
350 thisInt) != 0)  
351 {  
352 // we're not equal if we cannot get this int  
353 rc = 0;  
354 }  
355 else if (nonconst_rhs.get_integer_value (rhsSection,  
356 valueName.c_str (),  
357 rhsInt) != 0)  
358 {  
359 // we're not equal if we cannot get rhs int  
360 rc = 0;  
361 }  
362 rc = thisInt == rhsInt;  
363 }  
364 else if (valueType == BINARY)  
365 {  
366 void* thisData = 0;  
367 void* rhsData = 0;  
368 size_t thisLength, rhsLength;  
369 if (nonconst_this->get_binary_value (thisSection,  
370 valueName.c_str (),  
371 thisData,  
372 thisLength) != 0)  
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DEFECT CLASS: Uninitialized Variable           Defect Number: 8  
LOCATION:  

PCES\ACE_only\ACE_wrappers\ace\Configuration.cpp : 386  

DESCRIPTION:  

The local variable rhsLength, declared on line 368, is used on 
line 386, before rhsLength has been initialized.  

PRECONDITIONS:  

The conditional expression (valueType != rhsType) on line 318 
evaluates to false AND  

The conditional expression (valueType == STRING) on line 326 
evaluates to false AND  

The conditional expression (valueType == INTEGER) on line 345 
evaluates to false AND  

The conditional expression (valueType == BINARY) on line 364 
evaluates to true AND  

The conditional expression (nonconst_this->get_binary_value 
(thisSection, valueName.c_str (), thisData, thisLength) != 0) on 
line 369 evaluates to true.  

IMPACT:  

Usage of uninitialized variables can cause unpredictable results 
in the program (because the value of the variable is essentially 
random), and in the worst case, a program exception.  

CODE FRAGMENT: 

260 int ACE_Configuration::operator== (const ACE_Configuration& rhs) const  
261 {  
...  
318 else if (valueType != rhsType)  
319 {  
320 // we're not equal if the types do not match.  
321 rc = 0;  
322 }  
323 else  
324 {  
325 // finally compare values.  
326 if (valueType == STRING)  
327 {  
328 ACE_TString thisString, rhsString;  
329 if (nonconst_this->get_string_value (thisSection,  
330 valueName.c_str (),  
331 thisString) != 0)  
332 {  
333 // we're not equal if we cannot get this string  
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334 rc = 0;  
335 }  
336 else if (nonconst_rhs.get_string_value (rhsSection,  
337 valueName.c_str (),  
338 rhsString) != 0)  
339 {  
340 // we're not equal if we cannot get rhs string  
341 rc = 0;  
342 }  
343 rc = thisString == rhsString;  
344 }  
345 else if (valueType == INTEGER)  
346 {  
347 u_int thisInt, rhsInt;  
348 if (nonconst_this->get_integer_value (thisSection,  
349 valueName.c_str (),  
350 thisInt) != 0)  
351 {  
352 // we're not equal if we cannot get this int  
353 rc = 0; 
354} 
355 else if (nonconst_rhs.get_integer_value (rhsSection,  
356 valueName.c_str (),  
357 rhsInt) != 0)  
358 {  
359 // we're not equal if we cannot get rhs int  
360 rc = 0;  
361 }  
362 rc = thisInt == rhsInt;  
363 }  
364 else if (valueType == BINARY)  
365 {  
366 void* thisData = 0;  
367 void* rhsData = 0;  
368 size_t thisLength, rhsLength;  
369 if (nonconst_this->get_binary_value (thisSection,  
370 valueName.c_str (),  
371 thisData,  
372 thisLength) != 0)  
373 {  
374 // we're not equal if we cannot get this data  
375 rc = 0;  
376 }  
377 else if (nonconst_rhs.get_binary_value (rhsSection,  
378 valueName.c_str (),  
379 rhsData,  
380 rhsLength) != 0)  
381 {  
382 // we're not equal if we cannot get this data  
383 rc = 0;  
384 }  
385  
386 rc = thisLength == rhsLength;  
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387 // are the length's the same?  
388  
389 if (rc)  
390 {  
391 unsigned char* thisCharData = (unsigned char*)thisData;  
392 unsigned char* rhsCharData = (unsigned char*)rhsData;  
393 // yes, then check each element  
394 for (size_t count = 0;  
395 (rc) && (count < thisLength);  
396 count++)  
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B.4. UNDERSTANDING DEFECT CLASS DESCRIPTIONS  

This Appendix provides a detailed explanation of each of the Illuma defect classes for 
C/C++. These examples assist the client in evaluating the impact of each of the defects 
listed in the Detailed Defect Report.  

For each defect class, this document provides:  

1. A short description of the class;  

2. The likely impact of the defect;  

3. Advice on how the defect can be repaired;  

4. An example code fragment that explains the defect in detail. Note that the example 
code fragments are not from the inspected application.  

In general, data corruption is considered the worst impact. Data corruption can go 
unnoticed for weeks while damage continues to accumulate.  

When a program exception occurs, there is better evidence that something went wrong. 
Even in this case, the failure sometimes goes unnoticed, for example if the program is a 
cgi-bin program that runs frequently for a short period of time. However, in most other 
situations, a program exception is a fatal error that leads to immediate program 
termination. In an embedded system or "daemon" process, such a failure could be 
catastrophic for the overall system.  

When unpredictable results happen, they may eventually result in data corruption and/or 
program exceptions, but they may also go unnoticed. If they finally cause an observable 
error to occur, a large effort is usually required to track down exactly where the error 
occurs, because the reduction process to track the error down often makes the error fail to 
recur. Certain defects in one application may cause other programs on the same platform, 
or even the operating system, to fail, often after some time has passed. These defects are 
particularly difficult to track down.  

Finally, over 70% of the effort spent on most C/C++ applications is spent in maintenance. 
Even when not directly preventing failures, the removal of defects may greatly reduce the 
cost of:  

• Extending the system with new functionality, such as web-enabling it;  

• Finding the root cause of a failure;  
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• Training new staff and consultants; and  

• Rewriting or replacing the system.  

 

In the descriptions of the defect classes, as much context as reasonably possible is 
provided. It is beyond the scope of this document, however, to explain everything that is 
needed to understand fully how to program in C/C++. The following publications may 
help to gain a deeper understanding:  

• Kernighan & Ritchie, The C Programming Language, 2nd Edition, Bell Telephone 
Laboratories, Inc., 1988.  

• Bjarne Stroustrup, The C++ Programming Language, 3rd Edition, AT&T, 1997.  

• Steve McConnell, Code Complete, Microsoft Press, 1993.  

• Andrew Koenig, C Traps and Pitfalls, AT&T Bell Telephone Labs, 1989.  

• P.J. Plauger, The Standard C library, Prentice Hall, 1992.  

• Scott Meyers, Effective C++, 2nd Edition, Addison Wesley, 1998. 
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B.4.1. Memory Leak  

DESCRIPTION  
 

Memory leak refers to the loss of available memory space that occurs 
when dynamic data (memory allocated on the heap by calling any of the 
standard C library routines malloc(), calloc(), realloc(), strdup() or the 
C++ operator new) is no longer used but never deallocated (by calling 
free(), realloc() or the C++ operator delete).  

IMPACT  

Each time the leak occurs, the application drains the available memory 
pool. On some systems, memory may be allocated from a global pool, in 
which case the loss of available memory may affect the entire system, not 
just the application that caused it. Even on virtual-memory systems, where 
each process has its own protected address space, the gradual increase in 
application size can result in performance degradation that affects the 
entire system.  

Depending on how long the application runs, how frequently the leak 
occurs, and the amount of available (including virtual) memory, memory 
leaks will sooner or later cause performance degradation of the 
application, and potentially of the entire system.  

Eventually, the performance degradation may lead to a fatal out-of-
memory condition. This condition may be encountered by an application 
unrelated to the one that caused the memory leak.  

Understanding the application is important to rating this defect. For 
example, if this defect occurs in a daemon, the impact is almost always 
high, but if it occurs in a CGI script, the impact is usually negligible.  

REPAIR  

A deallocation corresponding to each allocation is not always necessary, 
but it is a safe programming practice. For example, it is not necessary to 
deallocate dynamic data that is allocated in main(), since all dynamic data 
is freed after main() finishes, but a conservative programmer might 
include the deallocation anyway.  

EXAMPLE  
int check_msg() {  
msg_t *msg;  
int status = RET_FAIL;  
...  



 

 78 

msg = (msg_t *)calloc(1, sizeof(*msg));  
if (!msg) {  
errno = OUTOFMEMORY;  
return status;  
}  
err = Readmsg(msg);  
if (err == -1)  
return status;  
...  
}  

 

In this example, memory space is allocated for a new msg. One possible 
execution path, however, is where the Readmsg() call fails; this leads to a 
return without the memory allocated for msg being freed. If this function 
is called frequently, and Readmsg() frequently fails, this could result in a 
large number of memory leaks. Eventually, this can lead to a fatal out-of-
memory program exception. 
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B.4.2. NULL Pointer Dereference  

DESCRIPTION  

A NULL pointer is a pointer that refers to a specific, invalid memory 
address. A dereference means following a pointer to the memory location 
it refers to and accessing the data at that location. Thus, a NULL pointer 
dereference refers to an attempt to access data at this invalid address.  

This defect class also reports situations where a NULL pointer is used in 
an assignment. Even though the assignment is not a defect by itself, a 
subsequent dereference will cause a program exception. The defect is 
reported at the assignment, because this is the earliest point in the code 
where the problem could be identified.  

IMPACT  

On most general-purpose computing platforms (such as Windows or 
UNIX), a NULL pointer dereference usually causes a program exception. 
On systems without memory management hardware, such references may 
not be detected at all.  

REPAIR  

To repair these defects, an if-statement checking for NULL values should 
be placed around the statements that dereference the pointers. Appropriate 
error-recovery should also be provided for the situations where the 
pointers are NULL.  

EXAMPLE  
char* ptr = strrchr(tmp_eq, '-');  
int chan_num = atoi(ptr+1);  

 

The string function strrchr() returns a pointer to the last occurrence of '-' in 
the string tmp_eq, or NULL if the character is not present. The next line of 
code will cause a program exception if ptr is NULL, because atoi() does 
not accept a NULL pointer. A check should be performed before the call 
to atoi() to ensure that ptr is not NULL. 
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B.4.3. Bad Deallocation  

DESCRIPTION  

Bad deallocation refers to the use of an inappropriate memory release 
operation (standard C library routines free() or realloc(), or C++ operators 
delete or delete[]) for deallocating memory, or to the deallocation of 
memory that was never explicitly allocated.  

IMPACT  

Depending on the compiler and the specific operation, the impact of this 
defect may range from no effect at all, to unexpected results, a memory 
leak, memory corruption, or a program exception.  

Specifically:  

• The use of delete on memory allocated with new[] may be a 
memory leak, because only the first element of the array is 
released, not the entire array;  

• The use of delete on memory allocated with malloc(), calloc() or 
realloc(), or strdup() may cause memory corruption, or a program 
exception;  

• The use of free() or realloc()) on memory allocated with new may 
cause memory corruption, or a program exception;  

• The use of free() or realloc() on memory that is not heap-allocated 
may cause memory corruption, or a program exception.  

REPAIR  

Memory allocated with malloc() , calloc(), realloc(), or strdup(), should be 
deallocated only with free() or realloc(). Similarly, memory allocated with 
new should be deallocated with delete, and memory allocated with new [] 
should be deallocated with delete []. Furthermore, free() and delete should 
be applied to the exact same pointer value that was returned by the 
corresponding allocating expression.  

EXAMPLE 1  
DS3_NOC noct3msg;  
memset((void *)&noct3msg, 0, sizeof(DS3_NOC));  
...  
delete (&noct3msg); 
  

In this example, a local variable is initialized to all 0's using the memset() 
function. One of the rules in C++ is that the delete operator can only be 
applied to a pointer value that was previously obtained from the new 
operator. Use of the delete operator in the Example 1 will result in a 
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program exception. 

EXAMPLE 2  
char* buffer = new char[100];  
...  
buffer++;  
...  
delete [] buffer; 
  

In this example, a new character array called buffer is allocated, and later 
the base pointer to that array is incremented. When the memory is 
deallocated, buffer no longer points to the beginning of the allocated 
block. This will often lead to a program exception, or corruption of the 
heap.  

EXAMPLE 3  
char* p = new char[100];  
...  
delete p;  

 

The problem in this example is the missing [] on the delete operator. 
Depending on the compiler, this can result in a program exception, or 
corruption of the heap.  

EXAMPLE 4  
void parse_message(char *msg) {  
char formatstring[100];  
...  
free(formatstring);  
return;  
} 
  

The character array formatstring in this example is stack-allocated. It is 
inappropriate to call free() on stack-allocated memory. Depending on the 
memory manager, this can result in a program exception, or corruption of 
the heap. 
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B.4.4. Out of Bounds Array Access  

DESCRIPTION  

An out-of-bounds array access refers to a defect where an array index 
expression is not within the upper and lower bounds of the array.  

IMPACT  

An out-of-bounds array access defect can cause data corruption or lead to 
a program exception.  

REPAIR  

Array indexing needs to be guarded against out-of-bounds defects.  

For situations where one array is copied into another, this type of defect 
can be repaired by adjusting array sizes.  

For situations where index expressions are used to access arrays, an if-
statement check on the index expression may suffice. In case the index 
expression is controlled by a loop construct, the terminating 
value/condition should be changed to be within the size of the array, and 
the index variable should be checked for manipulations within the loop 
that can cause an out-of-bounds access.  

In case the index variable controlled by a loop is used outside the loop 
(which is in itself questionable programming practice), one should be 
aware that the value of the index variable may be outside the range 
specified by the loop construct.  

The two most common programming mistakes are (1) using the wrong 
inequality test on the loop conditional (generally, <= when it should have 
been <), and (2) using the final value of the loop index variable after the 
loop to index the array, when often the loop is written such that the final 
value is beyond the end of the array. The following two examples 
demonstrate each of these problems.  

EXAMPLE 1  
#define TABLE_SIZE 20  
int PowerOf2[TABLE_SIZE];  
void initTable() {  
int j;  
PowerOf2[0] = 1;  
for (j = 1; j <= TABLE_SIZE; j++)  
PowerOf2[j] = PowerOf2[j-1] * 2;  
}  
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In this example, the problem is that the conditional expression in the for-
loop terminates when j > TABLE_SIZE. During the last iteration of the 
loop, j == TABLE_SIZE, which means that the assignment indexes one 
beyond the end of the array.

EXAMPLE 2  
#define MAX_PATH  
void MungeFilePath(char dos_path[])  
{  
int i;  
char pathName[MAX_PATH + 1]; /* room for trailing ‘\0’ */  
/* Convert MS-DOS path characters to UNIX form, add a  
* trailing ‘/’ if necessary to prepare for later  
* concatenation with the file name.  
*/  
for (i = 0; i < MAX_PATH && dos_path[i] != ‘\0’; i++) {  
if (dos_path[i] == ‘\\’)  
pathName[i] = ‘/’;  
else  
pathName[i] = dos_path[i];  
}  
if (pathName[i - 1] != ‘/’)  
pathName[i++] = ‘/’;  
pathName[i] = ‘\0’;  
...  
} 
  

This code fragment actually has two types of array bounds violations, both 
after the loop. The first defect occurs when the original path is 
MAX_PATH characters long and the last character stored in pathName is 
not a '/'. In this case, the logic is to append a '/' character, followed by a 
NUL character. Even though the programmer made the array one larger to 
hold the trailing NUL character, that is insufficient when both a '/' and a 
NUL character must be appended.  

The second bug occurs when the initial string is zero length (i.e., the first 
character in dos_path is a NUL character). In this case, the first loop does 
not execute at all and the if-statement tests pathName[i – 1]. However, in 
this case i is zero, and this expression accesses a memory location before 
the beginning of the array!  

EXAMPLE 3  
int color[50];  
...  
for (i=0; i<50; i+=3) {  
color[i]= colorSet(i, ...);  
color[i+1]= colorSet(i, ...);  
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color[i+2]= colorSet(i, ...);  
}  

 

An array declared as a[n] has n elements, indexed from 0 to n-1. In this 
example, i is incremented by 3 each time through the for-loop. During the 
last iteration through the loop, its value is 48. When i=48, color[i+2] 
accesses the out-of-bounds element color[50].  
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B.4.5. Uninitialized Variable  

DESCRIPTION  

Uninitialized variable refers to a defect where local and dynamic variables 
are not explicitly initialized prior to use. Note that the ANSI standard 
requires that global and static variables are initialized (ints to 0, floats to 
0.0 and pointers to NULL); therefore this defect is not reported for 
variables with either of these storage classes.  

IMPACT  

Usage of uninitialized variables can cause unpredictable results in the 
program (because the value of the variable is essentially random), and in 
the worst case, a program exception.  

REPAIR  

To repair this type of defect, the variable must be initialized to an 
appropriate value.  

EXAMPLE  
int fun() {  
int len;  
...  
if ((to - from) > 86400) {  
now = localtime(&from);  
len = strftime(&OdateToStr, 64, "%m/%d/%Y - ", now);  
now = localtime(&to);  
len = strftime(&OdateToStr[len], 64, "%m/%d/%Y", now);  
} else {  
now = localtime(&from);  
len = strftime(&OdateToStr[len], 64, "%m/%d/%Y", now);  
} 
  

In the example above, the stack-allocated variable len is uninitialized 
when used in the else clause of the conditional. The then clause of the 
conditional is fine, but if the else path is taken, then the len used in the 
array access is an uninitialized variable. This may result in a program 
exception if the random value in len causes an out-of-bounds array read. 
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C.1. INTRODUCTION
IllumaSM 

Illuma is an automated software inspection service developed by Reasoning that rapidly detects 
critical structural defects in software. It is an important complement to functional testing, because it 
detects defects before testing and provides metrics that assist in riskassessment. 

Deliverables 

Results from an Illuma service inspection are provided in two reports. The Illuma Defect Metrics 
report provides high-level metrics results, and the Illuma Defect Data report includes detail for each 
individual defect. This document is the Illuma Defect Metrics report. 

Application Overview 

Reasoning inspected 736 user files in the ACE/TAO code, including all the source files. 

Note that for billing and defect density computation purposes, the total number of lines in 
source files is used; that is, include files are not counted. 

 

Application overview 

Total Number of Source Files: 268 

Number of User Include Files: 468 

Total Number of User Files Processed: 736 

Total Lines of Source Code in Source Files (LSC): 79,876 

Number of Lines in User Include Files: 60,816 

Total Lines of Code in Project: 140,692
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C.2. Illuma METRICS 

C.2.1 Industry Comparison 

Reasoning found 8 defects in 79,876 source lines, a defect density of 0.10 
Defects/KSLC. In a sampling of 160 projects totaling 22 million lines of code, 33% 
had a defect density below 0.15 Defects/KSLC (green), 33% had a defect density 
between 0.15 and 0.35 Defects/KSLC (yellow), and the remaining 33% had a 
defect density above 0.35 Defects/KSLC (red). 
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C.2.2. File Defect Rating 

 

The following graph shows the percentages of files with low, medium, high and 
very high defect densities, defined with respect to the average defect density of 
this application: 

• Low is less than 0.5 times the average defect density; 

• Medium is between 0.5 and 1.0 times the average defect density; 

• High is between 1.0 and 2.0 times the average defect density; 

• Very high is higher than 2.0 times the average defect density. 

 

                          

 

This graph shows how defects are distributed across the files. Some files may 
exhibit unusually high defect densities, rendering them more likely to fail in the 
field. Such files may require more testing or rewriting. 



 

 90 

C.2.3. Very High Defect Density Files
In the ACE/TAO code, 6 files had a defect density in the very high range. The graph 
below shows the defect density in descending order for these files. It also shows how 
those defects are distributed over defect classes. 

The defects contained in each defect class are listed below: 

Defect Class     Defect  
Initialization     Uninitialized Variable  
Pointer management    NULL Pointer Dereference  
Out of Bounds Array Access  
Memory management    Memory Leak  
Bad Deallocation  
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C.3. Defect Summary 
 

The column Defect Instances in the table below details, per defect class, 
how many defects there are in the application. 

The column Files Affected details, per defect class, the number of files in the 
application that have one or more defects. This is an indication of how much 
work is needed to fix the defects; many defects in one file are easier to fix and 
retest than the same number of defects scattered over many files. 

Defect Summary 

Inspection Class Defect 

Instances

Files 

Affected

Memory Leak 3 3 

NULL Pointer Dereference 3 3 

Bad Deallocation 0 0 

Out of Bounds Array Access 0 0 

Uninitialized Variable 2 1 

Total Defect Instances 8 - 
 

 


