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EXECUTIVE SUMMARY  
 
 
 The goal of this program was to demonstrate an optical link having a Spur Free Dynamic 
Range (SFDR) in excess of 130 dB in a 1-Hz bandwidth, at 10 GHz.   The approach chosen to do 
this was to use coherent amplitude modulation (AM) to achieve a high initial value of SFDR (> 
120 dB Hz2/3), and to then develop a linearized modulator that would raise this respectable 
number to > 130 dB Hz4/5

. 
 
 The program was divided into two parts.  In the first part a coherent AM optical link was 
developed that demonstrated a SFDR of 120 dB Hz2/3 using a 100 mW laser and Commercial 
Off-The-Shelf (COTS) modulators and photodetectors.  A slightly higher value (123 dB Hz2/3) 
was obtained when the laser power was boosted to 500 mW with a fiber optical amplifier.  The 
link, which used polarization-maintaining components and fiber throughout, and fusion-splices 
instead of connectors, had none of the instabilities historically associated with homodyne 
systems.  The system locked, and held lock, for the duration of all measurements (which often 
lasted all day).  We saw no damage effects in the modulators used, even at the 500 mW power 
levels used at the program’s end. 
 
 The plan to raise the 120-123 dB Hz2/3 SFDR values demonstrated on the first part of this 
program to 130 dB Hz4/5 by using a linearized directional coupler modulator was pursued in the 
second part of the program, but was not completed.  Y-fed directional coupler modulators having 
the correct configuration were loaned to us by the PACT* program office, and an extensive set 
of measurements was conducted on these devices.  After resolving a very serious measurement 
problem, it was found that the devices did indeed perform as theoretically predicted at low 
frequencies.   The devices were stable, did not drift once equilibrium was reached, and showed 
the linearization predicted by theory.  A logarithmic slope of 4.6 was demonstrated for the 
distortional components of the best device; the only reason a perfect slope-5 was not 
demonstrated was because the 3.3-cm device tested was 66 microns too long, and not because it 
had any inherent flaws. 
 
 Our analysis did show, however, that Y-fed linearized directional coupler modulators (and 
perhaps all linearized directional coupler modulators) have a shortcoming that makes them 
unsuitable for wideband operation, at least for coherent AM applications:  RF attenuation in the 
Co-Planar Strip (CPS) traveling-wave electrodes degrades the linearization at higher frequencies.  
The present devices can be designed to operate at a specific center frequency with maximum 
performance, but the linearization bandwidth at this frequency is less than 2 GHz. 
 
 Our measurements on the first part of the program also suggested that the photodetectors 
were beginning to limit the SFDR of the unlinearized link.  Although this will have to be looked 
into more rigorously before any definitive statement can be made, the possibility exists that 
today’s photodetectors could limit the performance of optical AM links to ~ 127 dB Hz2/3. 
 
 
 
 
*Photonic A to D Converter Technology, AFRL Rome/DARPA-MTO 
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1.0 Introduction 
 

 
 Fiber optic links are well known for their ability to transmit very large amounts of 
information over long distances.  However, they have historically suffered from a Spur Free 
Dynamic Range (SFDR) that is about 20 dB lower than that achievable with conventional 
microwave links.  Although this shortcoming is not a handicap for those systems that transmit 
information in a digital format (where distortion is not a real issue), it can be debilitating for 
high-performance analog systems, especially those that must process both weak and strong 
signals simultaneously. 
 
 The root of the problem for intensity modulation/direct detection (IMDD) links is the 
nonlinearity of the modulator.  The distortion generated by all other components is either small 
(as is the case for the photodiode at modest photocurrents [1]), or only plays a role when the 
drive voltage required by the modulator (Vπ) is high (so that preamplifier distortion becomes an 
issue [2]).   Analyses have shown that a better optical modulator would, in fact, allow one to 
equal or perhaps even surpass the performance of microwave links. 
 
 In view of this, a world-wide quest for a highly linear optical modulator was started back in 
the early nineties.  The results have been a large number of theoretical schemes to linearize 
modulators, most of which require extremely tight fabrication tolerances to achieve large 
increases in SFDR.  In almost all of these schemes, one linearizes the modulator by generating a 
secondary distortional component that cancels the distortion generated by the primary modulator.  
The improvement in SFDR is thus directly related to how well one can subtract one large 
distortional term from another.   If the cancellation is not complete, the actual improvement in 
SFDR can be considerably less than the theoretical predictions.  Thus, while appearing attractive 
on paper, almost all of these schemes suffer degradation in implementation, generating at best 5 
to 10 dB of improvement in SFDR at larger bandwidths. 
 
 A SFDR improvement of 5 to 10 dB, however, would be enough if the SFDR of the 
unlinearized link were already 120 to 125 dB Hz2/3.  And coherent AM links, when properly 
configured,  can attain such values.  The two goals for this program were to first demonstrate a 
SFDR of greater than 120 dB Hz2/3 for an unlinearized AM link, and to then enhance this value 
by using a linearized directional coupler modulator to achieve the small amount of linearization 
needed to achieve a SFDR of 130 dB.  We succeeded in accomplishing the first of these goals, 
but were not entirely successful in achieving the second.  
 
 
2.0 Coherent AM Links 
 
2.1 Overview 
 
 Earlier studies showed that coherent AM links had an intrinsic 6 dB SFDR advantage over 
Intensity-Modulated/Direct-Detection (IMDD) links [2].  What was not realized at the time was 
that one can operate a coherent AM link in a manner that would achieve a much greater 
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enhancement in SFDR.  The concept is quite simple, but to understand it, one must first 
appreciate the difference between Intensity and Amplitude modulation. 
 
 Figure 1 shows the transmission profiles for the optical intensity (Figure 1b) and the optical 
amplitude (Figure 1c) for a conventional interferometric modulator. Note that biasing the 
modulator for minimum intensity also gives minimum amplitude.  However, note also that 
operation about this bias point gives a linear response in amplitude, (but a quadratic response in 
intensity).  A coherent AM link is thus intentionally operated at this linear pinch-off point, which 
means that no light is transmitted by the modulator when the modulation signal is zero. 
 
 When biased at pinch-off there is a certain flexibility in how one generates the output 
signal.  For example, if 1 milliwatt of average transmitted power is desired, one could use a laser 
with a few milliwatts of CW power, and then drive the modulator with a large modulation signal.  
Conversely, one could employ a laser with 100 milliwatts of optical power, and drive the 
modulator with a weaker modulation signal.  The advantage of performing the latter - rather than 
the former - is that one is operating in a much more linear regime of the modulator.  Because the 
time-averaged output power is the same for both cases, the power seen by the receiver will be 
identical.  Therefore, operating the system with a higher input power (Pin

o in Figure 1), but with a 
weaker modulation signal to enhance linearity, has no detrimental impact on the rest of the 
system.   
 

EIN

PIN

EOUTPOUT ,

Vrf = Vmcos(ωmt) = modulation

m =
Vπ

⋅ πVm

E = Optical Field 
P = Optical Power

PIN
o

POUT

0
Vπ 2V π

V (OR φ)

0
Vπ 2Vπ

ε IN
o

EOUT

−ε IN
o

Vπ/2

BIAS POINT FOR MOST LINEAR 
INTENSITY  MODULATION

BIAS POINT FOR MOST LINEAR 
AMPLITUDE  MODULATION

Vπ/2

V (OR φ)

EOUT  = ε IN COS  φ
o

POUT  = PIN COS   φo 2 φ = πV 
2Vπ

Carrier-SuppressedAmplitude Modulation:

This is Double-Sideband Carrier-Suppressed AM

with Power               in each sidebandm  εIN  
8

o 22

Eout ( t ) = ⋅ m ⋅ cos( ωο − ω m) t + cos( ωο + ωm) t( )
εin
2

ο

a.

b.

c.

 
Figure 1.  Amplitude versus Intensity modulation. 

 
 
 In fact, the received optical power is quite small.  An AM system operated at pinch-off has 
a fully-suppressed carrier, so that only the sideband energy reaches the photodetector.  Because 
the maximum sideband energy allowed by the SFDR condition is a very small fraction (< 0.5%) 
of the total laser energy, the received power for a 100 milliwatt laser will be a fraction of a 
milliwatt, which is substantially less than the local oscillator power (~ 2 milliwatts).  The AM 
receiver power-handling requirement is thus very modest, even for 100 mW laser powers, and 
well within the capability of today’s photodiodes [1]. 
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2.2  Theoretical Performance of an Unlinearized AM Link 
 
 
 The Spur Free Dynamic Range (SFDR) is the ratio, expressed in dB, of the largest 
undistorted signal to the smallest signal measurable in an analog microwave system.  The largest 
signal is defined to be one for which the biggest spur is just equal to the noise floor, the smallest 
signal is defined to be one that is just equal to the noise floor.   The SFDR is therefore the 
maximum Signal to Noise Ratio (SNR) consistent with distortionless operation of a system. 
 
 Figure 2 shows a simple AM system. The Mach Zehnder modulator is biased at Vπ so that 
the carrier is completely suppressed.  The modulated light and local oscillator (LO) laser light are 
combined and mixed on a photodetector (an optical squarer).  When properly phase-locked, the 
system recovers the information signal, θ(t).   For a single RF tone, θ(t) is given by θocos(ωmt). 
 
 

 
 

Figure 2.  A simple AM link using a Mach Zehnder modulator and homodyne detection. 
 
 
 To follow this mathematically, one starts with a modulated signal.  The output of the Mach 
Zehnder is given by [2] 
 
 Es(t) = Es cos(ωct) sin(θ(t))  (1) 
 
When θ is small, this can be approximated by  
 
 Es(t) = Es cos(ωct) θ(t) (2) 
 
 Equation (2) is an AM signal with fully suppressed carrier; this is the form the signal must 
have for the approach that we are proposing, regardless of the type of modulator used.  The local 
oscillator signal is  
 Elo( t) = Elo cos(ωc t + φ)  (3) 
 
When these two lightwaves are added and squared at the photodetector, and averaged over 
several optical cycles,  one finds that 
 

Es cos(ωct) θ(t) + Elo cos(ωc t +φ)( )2
= 1

2 Es
2θ 2 + 1

2 Elo
2 + 2 EsEloθ cos(ωc t) cos(ωct + φ)  (4) 
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Reducing the cosine product to the cosines of the sum and difference of the arguments, and 
performing the time average gives the photodetector current, I. 
 
 I = A 1

2 Es
2θ2 + 1

2 Elo
2 + θ EsElo cos(φ)( ) (5) 

 
where A is a constant that converts the optical fields, squared, into an electrical current.   
 
 The purpose of the locking circuit in Figure 2 is to adjust and hold the angle φ at the value 
that gives maximum recovery of the modulation information.  For this configuration, that angle 
would be any integer multiple of π.  Setting cos φ  equal to 1, and recognizing that 1

2 A Es
2 and  

1
2 A Elo

2  are the DC photocurrents for the source and local oscillator laser, respectively, one can 
rewrite this as 
 I = Isθ

2 + Ilo + 2θ IsIlo  (6) 
 
In computing the SFDR for weak received signals, one can normally ignore the first term (more 
about this later). 
 
 The dominant source of distortion in this link is the nonlinearity of the sin(θ) term in eqn  
(1).  Using Fourier-Bessel expansions, one can show that the power in the third order intermod 
(IM3) divided by the power in one of the fundamentals for two-tone excitation, each of amplitude 
θο, is given by [2] 
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 (7) 

 
The electrical signal power at the detector for one of the tones is given by the third term of 
equation (6), 
 P1 = 4IsIlo θ 2(t) = 2 IsI loθo

2 (8) 
 
 The maximum power occurs when the spur power just equals the noise power.  For a 
reasonably high local oscillator power, (Ilo > 2 mA), one can ignore the kT noise of the detector 
amplifier. The noise is then just the photonic shot noise plus the Relative Excess Noise (REN) of 
the laser (Relative Intensity Noise minus the shot noise). 
 

 P1(θo)
θo

2

8
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2

= Pnoise = 2eIloB + I lo
2 REN B  (9) 

 
where B is the noise bandwidth.  Substituting equation (8) into (9)  gives the sixth power of θo  
which can be easily solved to give P1 max.  One then computes the SNR using this value, finding 
 

 SFDR = 4
Is

eB + 1
2 I loREN B

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
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 (10) 
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For a laser equivalent current of 100 mA and zero REN, the SFDR for a 1 Hz bandwidth is 124.6 
dB.  Reducing this to 50 mA gives a SFDR of 122.6 dB. 
 
 Is in this equation is the photodetector current that one would measure with the local 
oscillator laser turned off, and with the modulator biased for maximum throughput.  (One doesn’t 
really do this; this is just a definition).  Thus, if the modulator had excess loss (as they all do), the 
laser power would have to be raised to compensate for this loss. 
 
 There are three shortcomings of the detection scheme shown in Figure 2 that we can easily 
remedy.  First, our derivation assumed 100% efficient combining of the light.  However,  
combiners have a maximum theoretical efficiency of only 50 %.  Thus half the LO and signal 
light are lost, which reduces the SFDR.  Second, in deriving this relation, we purposely neglected 
the first term in equation (6).  When Is is small, this is justified.  However, for our application, Is 
is quite large, which means that this first term will generate a non-negligible 2nd harmonic.  And 
third, performance is degraded by REN noise in the photodetector, especially if one raises the 
LO power to increase link gain. 
 
 These three shortcomings can be eliminated by using the dual-balanced detector shown in 
Figure 3. 

 
 

Figure 3.  A dual-balanced detector. 
 

 The two photodiodes are connected in a way that gives high common mode rejection.  For 
common mode illumination (i.e., equal signals on both detectors), all of the current generated in 
the top photodiode flows through the bottom photodiode, and none flows into or out of the 
transimpedance amplifier.  It is trivial to show that the current into the amplifier is given by the 
differential signal I1 – I2, where I1 and I2 are the top and bottom photocurrents, respectively.  
Because of this feature, and the symmetric split of the directional coupler, fluctuations in the 
local oscillator power do not show up at the amplifier input.  Nor do the time variations 
generated by the first term in equation (6), which could generate undesirable second harmonics.  
Furthermore, because all of the energy from both lasers reaches the photodiodes, the process is 
100 % efficient.  
  
 To see better how this works, consider again the signal and local oscillator fields given by 
equations (2) and (3).  Light passing through the 3 dB coupler is split and sent to the two output 
ports, with no phase shift for the thru port, and a 90o shift for the cross port.  Thus, the 
photocurrent at the top detector will be given by  
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 I1 =
1
2

Es cos(ω ct) θ(t) + Elo sin(ω ct + φ)( )2
=

Es
2 θ 2

4
+

Elo
2

4
+

EsElo θ sinφ
2

 (11) 

 
and that at the bottom by 
 

 I2 =
1
2

Es sin(ω ct) θ(t) + Elo cos(ω ct + φ)( )2
=

Es
2 θ 2

4
+

Elo
2

4
−

EsElo θ sinφ
2

 (12) 

 
The current flowing into the amplifier is given by 
 
 I1 − I2 = Es Elo θ(t) sinφ  (13) 
 
which is the same as the time-varying term in equation (6) except for a 90o shift in φ  (produced 
by the 90o hybrid).  This differential signal is maximized when φ is 90o.  Note that the currents 
that would produce the REN and the term that would produce a 2nd harmonic are gone.  The 
photonic shot noise at each detector, however, is uncorrelated, and so doesn’t subtract.  Thus the 
REN noise term disappears from equation (9), but the shot noise term does not.  The equation for 
the SFDR of a system using a balanced detector is therefore 
 

 SFDR = 4
Is
eB

⎛ 
⎝ 

⎞ 
⎠ 

2/3

 (14) 

 
 
2.3  Link Gain and Noise Figure 
 
The SFDR is the most important figure of merit for any link. The link gain and noise figure, 
however, are quantities often of more interest to system designers.  The system gain is given by 
 

 G = 4IloIs
π

2Vπ

⎛

⎝⎜
⎞
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2

Zo
2  (15) 

and the noise figure by 
 

 NF = 1+
1

2Is
π
Vπ

⎛
⎝⎜

⎞
⎠⎟

2

Zo
kT
e

 (16) 

 
where Zo is the characteristic impedance of the system (typically 50 Ohms) and Vπ is the 
modulator switching voltage.  Equation (16) assumes that the kT noise following the 
photodetector is negligible compared to the shot noise.  If the photodetector has an internal 50-
Ohm resistor (as many do), the link gain will be reduced by 6 dB; the noise figure, however, will 
remain unchanged. 
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2.4  Laser Noise 
 
 The fact that the dual balanced detector removes the REN term from equation (10) does not 
mean that the effects of REN have disappeared altogether.  Because the detected signal is 
proportional to the product of the amplitudes Es and Elo (see equation (13)), fluctuations in the 
amplitude of both the source and local oscillator lasers can affect the received signal.  We have 
analyzed this process in some detail in Appendix I, and have found that laser fluctuations can 
add noise skirts to the received signal.  These noise skirts will be narrow (< 1 MHz) and should 
not affect the SFDR unless one is measuring tones that are within 1 kHz of each other.  We refer 
the interested reader to the appendix for more details. 
 
2.5  Finite Extinction 
 
 Mach Zehnder modulators separate the light at the input, run it through two arms, and then 
recombine it after having shifted the phase in each arm.  If the amplitudes at the point of 
recombination are equal, the extinction ratio (the on/off ratio) can be virtually infinite.  However, 
if one arm of the interferometer attenuates the light just slightly more than the other, or if the 
polarizations rotate ever so slightly, then the two fields cannot subtract completely, and the ratio 
will be finite. Although the power leaking through the device will normally be quite low, the 
field amplitudes that correspond to this power can be significant.  For example, an extinction 
ratio of 20 dB means that the emerging field has an amplitude that is 10% of Es. Commercial 
devices have extinction ratios that range between 20 and 30 dB. 
 
 We have analyzed this problem in Appendix II, and have found that two things must go 
awry before there is any degradation in SFDR:  (1) the extinction ratio must be finite, and (2) 
there must be a phase locking error in the receiver.  Poor extinction by itself does not cause a 
problem. One can show that the complete signal is recovered, with no adverse effects. However, 
if one has finite extinction, and the phase of the LO is not some exact multiple of π/2, one sees a 
small second harmonic. 
 
 A useful number is the phase tolerance that would give a 2nd harmonic SFDR equal to the 
3rd order intermod SFDR.  For a 1 MHz bandwidth and an extinction ratio of 20 dB (the worst 
value that one would expect), the phase error must be less than 6.8 degrees, which is a reasonable 
number to achieve.  Table 1 shows the phase locking tolerances for several bandwidths and 
extinction ratios.  These numbers define the accuracy with which one must lock the receiver to 
avoid a 2nd harmonic.  
 

Table 1.  Tolerable phase locking error versus modulator extinction ratio and noise bandwidth. 
 

Bandwidth ∆φ (20 dB) ∆φ (30 dB) 
1 Hz 0.68o 2.17o 

1 MHz 6.8o 21.7o 
1 GHz 21.6o 63.7o 

 
 
 



 

 

 

9

2.6  The Use of an Optical Amplifier to Increase the SFDR 
 
 Equation (14) shows that the SFDR increases as Is

2/3, where Is is the equivalent detector 
current of the light that would reach the photodetectors if the modulator were biased for 
maximum transmittance.  An Is of 100 mA, for example, gives a SFDR of 124.6 Hz2/3, an 
excellent value for an unlinearized system.  However, achieving such a value is not easy.  The 
insertion loss of the modulator (typically 3 - 4 dB), the less-than-ideal quantum efficiency of the 
photodetectors (0.75 Ampere/Watt), the power that must be tapped off to provide the local 
oscillator signal, and the small but non-negligible insertion loss of other optical components all 
conspire to drive up the value of the actual laser power required.  To get an Is of 100 mA, one 
typically needs greater than 300 mW of laser power. 
 
 Single-line narrow-linewidth lasers that produce > 300 mW of power at 1.55 µm are not yet 
available commercially (though they may be soon).  However, one can use an optical amplifier 
to raise the power to almost any value desired.  The question is whether this can be done in a 
way that increases the SFDR performance of the link.  The answer is that it can, if correctly 
implemented. 
 
 The fundamental noise associated with any optical link is the photonic shot noise.  This 
noise is related to the statistical nature with which photons are emitted by the laser.  If one 
generates an average of 10 photons in one second, the rms fluctuation in that number is 10 ,  or 
about 3.2.    This rms deviation is the noise; hence, the SNR is 10/3.2, or 3.12.  If one increases 
the number of photons per second to 1000, the deviation is 32, so the SNR is 1000 divided by 32, 
which is 31.2.  Thus, by simply increasing the photon flow rate, one increases the SNR.  
 
 Now, suppose one amplifies this weak photon source (10 photons +/- 3.2 per second) with 
a noiseless optical amplifier having a gain of 100.  The optical beam now has 1000 +/- 320 
photons per second.   Thus, even though the photon number has increased markedly, the SNR 
(1000/320 = 3.12) has not.  The fluctuations of the original source are simply multiplied by the 
gain of the amplifier. 
 
 This, of course, is how it has to be.  An amplifier cannot improve the SNR of an incoming 
signal; it can only make it the same or worse.  Thus, a MOPA (Master Oscillator/Power 
Amplifier) consisting of a 10 mW source laser, and having a gain of 20 dB, will produce a 1 
Watt beam having the SNR of a 10 mW beam.   The SNR is thus set by the source laser, not the 
following amplifier.  
 
 Why, then, should one use a MOPA?   If one were to receive all of the power generated by 
this system, one would have a SNR no better than that of the weaker source laser, so why bother?  
The reason one bothers is that in a very large number of applications, not only does one not 
receive all of the power, but more often than not, one receives only a very small fraction of the 
broadcast power.  Communication and signal processing systems routinely divide a high-power 
signal into hundreds of much weaker signals, or propagate it through space where a large fraction 
of the power is lost to beam divergence (Lasercom systems). Why are MOPAs useful in these 
applications?   
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 The reason is simple, and can best be understood by the Lasercom example.  Here one 
typically has a source of 10 milliwatts that is amplified to 1 Watt.  The SNR of this broadcast 
signal is that of a 10 milliwatt source.  However, due to beam spreading, the received beam at a 
one-geosynch distance is about 1 microwatt!  The SNR of this signal is thus that of a 1 microwatt 
laser, which is appreciably worse than that of a 10 milliwatt laser.  Thus, it doesn't matter that the 
broadcast beam has the SNR of a 10 milliwatt source, and not that of a 1 Watt source, because 
the statistics of the received beam are that of a 1 microwatt source, which is 40 dB lower than 
that of the 10 milliwatt source. 
 
 A more complete noise analysis, which includes the additive noise of the optical amplifier, 
shows that MOPAs are useful in those applications where the product of the MOPA amplifier 
gain, G, multiplied by the system attenuation that follows the amplifier, A, is substantially less 
than unity (Figure 4).  Thus, if GA <<1, the MOPA amplifier does not corrupt the system SNR.   
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Figure 4.  SNR versus position in link for a system using an optical amplifier of gain G, followed by 
an attenuator having a value of A. 

 
 
 The source of attenuation in our AM link is the carrier-suppressed mode of operation: the 
modulator is biased at pinch-off so that with no modulation, no power reaches the photodiode.  
When a modulation signal is applied to the modulator, the only power that reaches the 
photodetector is that of the generated sidebands, which are very weak (a few tenths of a 
milliwatt). Thus, the modulator attenuates the parent source by almost 30 dB.  Hence, for our 
case where the desired gain (G) is 3 (100 mW →  300 mW), the condition that GA is <<1 is 
well-satisfied (3 x .001 = .003, which is << 1).  The fact that we are dealing with homodyne 
detection in a coherent system does not invalidate this conclusion: the fundamental GA <<1 rule 
still applies. 
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3.0  SFDR Measurements for the Unlinearized AM link 
 
3.1  Experimental Setup 
 
 A schematic diagram of the link in its simplest form is shown in Figure 5.  The link 
consists of a medium-power laser,  a directional coupler that splits off a small amount of laser 
power for use in the homodyne mixing process  (i.e., for use as a local oscillator signal), an 
electrooptic modulator, a 50:50 4-port directional coupler, a dual-balanced photodetector, and the 
locking circuit needed for stable operation. 
 
 The locking circuit ensures that the phase of the local oscillator and signal lightwaves are 
always in quadrature. If they are not, i.e., if the relative phase of either lightwave is shifted, the 
signal will be reduced; if is shifted by 90o, it goes to zero (see, for example, equation (13)).   
Therefore, in order to maximize the received signal and to eliminate slow fluctuations in that 
signal, one must hold the differential phase between the two arms of the interferometer to a fixed 
value (an odd-integer multiple of 90o).  The locking circuit shown in Figure 6 does this by using 
a dithering technique to adjust the length of one branch of the fiber interferometer so that the RF 
signal picked off at the 20 dB directional coupler is maximized.  This particular technique was 
found to be superior to another technique that monitored the DC photocurrent at either detector.  
The only drawback was the need for additional components: an RF coupler, an amplifier and a 
diode power detector. 
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Figure 5.    A  simple homodyne AM link. 
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Figure 6.   The experimental link with details of the locking technique shown. 
 
 
 A photo of the experimental layout and the ancillary electronics is shown in Figure 7.  The 
unit in the center of the picture is the spectrum analyzer used to measure the fundamental signal 
and the 3rd order intermodulation products, the two instruments to the lower right are the signal 
sources, the small black box sitting on top of the instruments is the optical amplifier used in an 
experiment that we will discuss later, and the box under it is that amplifier’s power supply.   
Pictures of individual components of interest are the Mach-Zehnder modulator (Figure 8), the 
piezoelectric fiber stretcher that was used in the control circuit to mechanically change the length 
of one of the fibers (Figure 9), the dual-balanced photodetector (Figure 10), and an older picture 
of the experimental setup that shows the commercial locking electronics (the blue-yellow box) 
used to drive the line stretcher (Figure 11). 
 
 With the exception of the dual-balanced detector and the optical amplifier used later, all 
components in the link were Polarization-Maintaining (PM).  The Mach-Zehnder modulator was 
special-ordered to have PM fibers on the input and output, the directional couplers and variable 
splitter were made with PM fiber, and the source laser also had a PM output fiber.  Furthermore, 
with two exceptions (the laser and the dual-balanced photodetector), all connections were fusion- 
spliced.   
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Figure 7.  Experimental setup and support equipment. 
 
 

 
  

 

 
 

Figure 8.  The X-cut (push-pull) Mach-Zehnder modulator. 
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Figure 9.  Piezoelectric line stretcher wound with PM fiber. 
 
 

 
 

Figure 10.  The dual-balanced photodetector. 
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Figure 11.  An earlier setup showing the control electronics (the blue-yellow box). 
 
 
 
3.2  Measurement Technique 
 
 The SFDR was measured using the standard two-tone approach, in which two tones, 
separated in frequency by a small amount (typically 80 MHz for the measurements reported 
here), are simultaneously applied to the input of the link.  Initial measurements were performed 
at a 1 GHz center frequency, but as better equipment became available and as our confidence in 
the measurement technique increased, we progressively raised the center frequency to 3 GHz and 
then to 9-10 GHz. There was no measurable difference in the SFDR at the different frequencies, 
which is what one would expect for a link in which the modulator distortion dominates.  All final 
measurements were performed at 9 or 10 GHz. 
 
 A recurring problem with measurements of this sort is interference from undesired 
intermodulation tones generated by nonlinearities in the measurement equipment.  The signal 
sources themselves, the spectrum analyzer used to measure all tones, and any microwave 
amplifiers used in the circuit, either as preamplifiers or as postamplifiers, can all produce spurs 
that mask those produced by the optical link.  A crucial requirement for an accurate measurement 
of the link SFDR, therefore, is that the spurious intermodulation tones generated by the ancillary 
equipment be negligible compared to those generated by the link.  
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 To eliminate spurs caused by the signal sources, microwave isolators were used at the 
sources’ output in order to prevent nonlinear interactions between the two.  A tunable YIG filter 
was used to suppress spurs generated whenever a microwave amplifier was used between the 
dual-balanced photodetectors and the spectrum analyzer.  Spurs in the spectrum analyzer were 
identified by changing the values of the electronically-switchable attenuators within the analyzer, 
and monitoring the change in the measured intermodulation tone:  if a 10 dB change in the 
attenuation changed the spur in question by 10 dB, then the analyzer was not producing an 
interfering spur; if the change was greater than 10 dB, then a higher level of input attenuation 
had to be used.   
 
 Measurements at the beginning of the program were made by first measuring the 
fundamental and intermodulation tones directly, (i.e., without the use of a postamplifier), and 
then measuring the noise by installing a high-gain, low-noise postamplifier to raise the noise well 
above the noise floor of the spectrum analyzer.  This technique, while simple and fundamentally 
correct, had the drawback that it required an accurate measurement of the amplifier gain at the 
fundamental tone and intermod frequencies. 
 
 Toward the end of the program, a postamplifier with a high IP3 was used, together with a 
YIG filter, to measure the fundamental and intermodulation tones and the link noise.  This 
technique did not require any measurement of the postamplifier gain.  It also allowed one to 
measure the noise in the presence of a large signal, a necessary feature for links having 
upconversion noise (a mixing between low-frequency noise and the fundamental tones).  We 
observed no up-conversion effects for our link.  
 
3.3  Configurational Effects 
 
 One of the more interesting effects that we found was that the SFDR one measures depends 
on the geometrical configuration of the modulator and/or detector used.  By this we mean 
whether the modulator has a single-sided or push-pull drive, or whether the detector is single or 
dual-balanced.  The dependence for the detector was expected, that for the modulator was not. 
 
 Figure 12 shows a Mach-Zehnder z-cut modulator with single-sided drive.  One sees that 
the hot electrode is above one guide only.  Because the field under this electrode is 7-10 times 
stronger than that under the ground plane electrode, the refractive index change for the left 
waveguide is 7-10 times greater than that for the right.  The modulator effectively has a single-
sided drive because the lion’s share of the phase change is occurring in the left waveguide, with 
almost none occurring in the right. 
 
 The push-pull modulator shown in Figure 13, on the other hand, has waveguides situated to 
the left and right of the hot electrode.   Because the index change depends on the magnitude and 
direction of the applied electric field, the phase change in the left guide is the same as that in the 
right, but of opposite sign. The application of a single voltage thus gives a “push-pull” effect, 
i.e., the phase is advanced in one guide and retarded in the other. 
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Figure 12.  A single-sided z-cut Mach-Zehnder modulator. 
 
 
 
 The salient point here is that the SFDR of a link using a single-sided drive is 4 dB worse 
than one using a push-pull drive.  This result, which is not intuitively obvious, was confirmed 
both experimentally and analytically.  The poorer performance is related to the fact that the 
single-sided device is “wasting” the light that is not phase-shifted; the push-pull drive produces 6 
dB more signal power than the single-sided drive for a given input optical power, which 
translates into a 4 dB advantage in the SFDR.  Interestingly enough, the SFDR of an IMDD link 
does not depend upon the type of modulator used; the effect only occurs in coherent links. 
 
 A similar effect occurs when one uses a single detector instead of a dual-balanced device.  
In this case, however, the SFDR penalty is only 2 dB.  This is because a 6 dB signal reduction is 
now accompanied by a 3 dB reduction in the noise, giving a 3 dB drop in the SNR, and a 2 dB 
drop (3 x 2/3) in the SFDR.   These results, together with a more obvious change that occurs with 
a 5 dB reduction in laser power, are summarized in Table 2.  
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Figure 13.  A push-pull (x-cut) Mach-Zehnder modulator. 
 
 
 
 
 

Table 2.  SFDR configurational handicaps. 
 

Equipment SFDR Handicap (dB)

Single-sided modulator (vs dual) 4.0

Single detector (vs dual-balanced) 2.0

100 mW laser (vs 300 mW) 3.2
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3.4  SFDR Measurement Data 
 
 The SFDR measurements were made over the entire length of the program, not because the 
measurement took that long, but because improvements in components and techniques were 
constantly being made as time progressed.  The initial measurements, for example, were made 
with a single-sided modulator and a single photodetector, whereas subsequent measurements 
were made with the more appropriate devices. 
 
 There were some setbacks along the way.  The dual-balanced detector we ordered early in 
the program was destroyed by connecting it to too high a voltage, and had to be replaced.  The 
replacement unfortunately had a built-in amplifier with a low IP3 that seriously degraded the 
SFDR of the link, and had to be swapped for one without an internal amplifier.  Several 
problems also occurred with our 100 mW laser, which had an intermittently-defective thermal 
controller that allowed the laser to drift to other frequency modes; this hampered locking and 
made stable measurements difficult.  The device had to be sent back to the manufacturer twice 
before the defective controller was finally repaired.  However, once these issues were resolved, 
the experiment gave accurate and reproducible results. 
 
 Problems with thermal and environmental instabilities that we had encountered on an 
earlier program did not occur with this setup.  We attribute this dramatic improvement in 
stability to the use of fusion splices and PM fiber and components throughout the link.  It is our 
belief that the problems encountered earlier were due to small reflections at the connectors and 
polarization wander due to time-varying stresses in the fibers.  The use of fusion splices and PM 
eliminated both of these problems. 
 
 Two different configurations were measured.  The first, shown in Figure 6, consisted of a 
100 mW laser and all of the attendant components described earlier.  The second was the same 
link with the same laser followed by an optical amplifier (see Figure 16).  The optical power 
available from this MOPA (Master Oscillator Power Amplifier) combination was 1 Watt.  
However, the highest power used during this program was 500 mW. 
 
 Measurements were made by first bringing the system up slowly, with constant 
readjustments of the modulator bias point so that good pinch-off (extinction) was maintained.   
This is a slightly hair-raising procedure, because if an operator-error occurs, one can easily zap 
the detector with a Watt of optical power.  However, once the operating point is reached and the 
system stabilizes, the bias point holds rather well.  For a stand-alone system, however, one would 
have to develop some control circuitry to do this start-up, and to lock the modulator bias point to 
the desired value. 
 
 The system was typically allowed to stabilize for an hour or so.  The fundamental tones and 
3rd-order intermodulation tones were then measured as a function of signal source power.   The 
measurement of the fundamental tones was almost instantaneous, but measurement of the 
intermods was not because of proximity to the noise floor. A series of measurements was made 
at each frequency, each at the lowest possible resolution bandwidth, and with signal averaging 
used.  When the link incorporated a postamplifier, a YIG filter was used to first measure the 
fundamental tones, and to then block these tones before they could enter the postamplifier and 
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spectrum analyzer, thus preventing undesired intermodulation in these devices.  This required a 
manual tuning of the filter at each frequency.   The final averaged data were plotted, fit with 
straight lines on a log plot, and the SFDR calculated from the intercept of these lines with the 
measured noise floor. 
 

Figure 14 shows the results of one of these measurements for a laser power of 100 mW.   
The power of the primary tone, the intermodulation tone, and noise are plotted as a function of 
the source power, all in dBm.  Although the laser power was 100 mW, only 26.7 mW would 
actually reach the detectors if the modulator were biased for full transmission (which, of course, 
it never is).  This value, when converted to a photocurrent, determines the SFDR of the system.  
In addition to the components shown in Figure 6, the setup included a postamplifier with a noise 
figure of 3.8 dB, a gain of 45 dB, and a 1- dB compression point of 34 dBm .  The noise floor in 
Figure 14 has been corrected for the measured kT noise of the amplifier and spectrum analyzer (a 
0.6 dB correction).  The total local oscillator current (Ilo) was 15 mA. 
 
 The measured SFDR for this case is 119.3 dB Hz2/3.  The theoretical value (equation (14)) 
for the measured Is of 20 mA is 120.1 dB Hz2/3.  Our measured value is thus about 0.8 dB shy of 
this prediction. 

 
 

Figure 14.  The fundamental (upper) and IM3 (lower) tones for a laser power of 100 mW and a 
total local oscillator photodetector current of 15 mA.  The red line is the measured noise in a 1 Hz 

bandwidth. 
 

 
 The local oscillator current was then reduced to 5 mA by adjusting the variable splitter 
shown in Figure 6.  The laser power remained fixed at 100 mW.  The measured SFDR, shown in 
Figure 15, is 120.0 dB Hz2/3, a value 0.7 dB higher than the measurement of Figure 14.  Some of 
this increase is due to the fact that less power is going to the local oscillator, and more to the 
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primary signal.  However, the measured value is still a bit less than the theoretical prediction of 
120.55 dB Hz2/3 that one would expect for an Is of 24.2 mA. 
 
 120 dB Hz2/3 is a very respectable value, but 125 would be better.   At this point we 
decided to try using an optical amplifier to boost the laser power to higher values.   A Keopsys 1-
Watt Erbium Doped Fiber Amplifier (EDFA) was available for short-term loan.  This device had 
not been optimized for our particular low-gain application, so there was no guarantee that the 
noise performance would be optimum.  However, some preliminary calculations showed that 
using 100 mW of input power should give an amplifier ideality factor of roughly two, and 
perhaps a little less, for the output powers we planned to use.  This should provide adequate 
noise performance.  
 
 The experimental configuration was modified as shown in Figure 16.  The amplifier was 
placed before the modulator, but after the first power divider.  This ensured that the local 
oscillator signal, which undergoes only minor attenuation, was not corrupted by the EDFA noise.  
The EDFA gain was raised slowly from 1 to approximately 5, at which point the measured 
power into the modulator was 500 mW (!).  The SFDR data for this configuration is shown in 
Figure 17. 

 
 

Figure 15.  Measured tones and noise for a laser power of 100 mW and total local  
oscillator photodetector current of 5 mA. 
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Figure 16.  Link with an optical amplifier (EDFA) to boost the laser power. 
 
 

 
Figure 17.  Measured tones and noise for the link with 500 mW of MOPA power and a total local 

oscillator photodetector current of 15 mA. 
 

 The measured value of 123.0 dB Hz2/3 is an impressive result, but is 2 dB lower than the 
theoretical prediction of 125.0 that one should get for an Is of 112 mA (the measured value).  We 
thought at first that this discrepancy might be due to a higher-than-expected amplifier noise 
figure, but measurements showed that the noise floor was exactly what one would expect for a 
15 mA local oscillator current.  Because the noise is what it should be, the cause of the lower-
than-expected SFDR must be due to an unanticipated nonlinearity elsewhere in the link.  It is our 
current belief that this additional nonlinearity is caused by the photodetectors. 
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3.5  Photodiode Nonlinearity 
 
 The nonlinearity of p-i-n photodetectors has been measured and analyzed by several 
groups.  The distortion that occurs at higher photodetector currents can be separated into two 
types [1, 2]: (1) a component related to transit-time effects that increases linearly with increasing 
modulation frequency (which shows up primarily in the 2nd harmonic), and (2) a component due 
to the intrinsic nonlinearity of the DC responsivity that has the same frequency dependence as 
the detector itself, (constant at lower frequencies with a roll-off in response at the band-limiting 
frequency of the device).  
 
 The distortion that we are interested in can consist of both types.  To keep the analysis 
simple, however, we shall assume here that our detectors can be described by the second type.  
This allows a power series analysis that leads to closed-form result. 
 
 The DC responsivity of a photodiode can be expressed as a power series 
 
 I = aP + bP2 + cP3 + ... (17) 
 
where P is the applied optical power and I is the generated photocurrent.  The coefficients a, b 
and c are normally determined by experimental measurement. 
 
In order to determine the various dependencies, one substitutes an expression for the total optical 
field seen by the photodetector  
 
 P = Es cos(ω ct)θ(t) + Elo cos(ω ct + φ)( )2  (18) 
 
per equations (1) and (3), and uses the two-tone modulation relation 
 
 θ(t) = z cos(ω1t) + cos(ω 2t)( ) (19) 
 
where z is the fractional modulation amplitude. 
 
 After expanding this through third order in P,  reducing the trigonometric functions to 
multiple-angle terms, and substituting Es = 2Is  and Elo = 2Ilo ,  one finds that the 3rd order 
intermodulation term having a cubic dependence on the modulation amplitude, z,  is given by 
 

 IIM 3 =
9
2

b IloIs
3 +

75
2

c Ilo
3 Is

3⎛
⎝⎜

⎞
⎠⎟

z3 cos(2ω1t − ω2t)  (20) 

 
 This is an interesting result for several reasons.  First, it says that one can have 3rd -order 
intermodulation when the diode nonlinearity is only quadratic (c = 0).  This is quite different 
from the IMDD case, which requires a finite c for IIM3 to exist.  Second, the existence of two 
terms with different dependencies means that these terms can interfere and possibly cancel if the 
signs of b and c are opposite.  A measurement of the intermod as a function of Ilo would then 
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have a sharp null for some particular value of Ilo.  We have looked for this effect but have not 
found it, which implies either that b and c have the same sign, or that one term dominates. 
 
If the b-term dominates then  
 
 PIM 3 ~ IloIs

3  (21) 
 
If the c-term dominates 
 PIM 3 ~ Ilo

3 Is
3  (22) 

 
 To determine which of these terms, if either, was playing a role, we varied Ilo and Is 
independently.  If detector nonlinearity were not playing a role and the intermod were being 
generated by the modulator only, then the intermod power should have varied linearly with either 
current, i.e.,  
 
 
 PIM 3 ~ Ilo Is  (23) 
 
 We looked for the c-term first by varying Ilo while holding Is constant; the intermod power 
changed linearly with Ilo, which implies that the c-term is not significant.  We then varied Is 
while holding Ilo constant, and saw an effect. The power of one intermod increased by 1.93 dB 
for every 1 dB change in Is (the signal power), the power of the other by 1.33 dB per dB.  
Although the fact that one changed more than the other is a bit puzzling, the fact that the slope is 
not 1 dB per dB is significant.  That it is not 3 dB per dB as predicted by equation (21) could 
mean that the change is a combination of the linear effect of equation (23) and the cubic effect of 
equation (21). 
 
 If the b-term is indeed causing the SFDR to saturate at some fixed value, then we should be 
able to analytically determine that value in the limit of large Is and Ilo.  The analysis for our dual-
balanced detector is straight-forward, and gives the following relation: 
 

 SFDRdiode =
0.924

e∆f b( )2 /3  (24) 

 
Note that the SFDR is independent of either Is or Ilo.  This peculiar result is due to the fact that 
we have ignored thermal noise by assuming that the shot noise, 2eIlo, is much larger than kT/Zo, 
a perfectly valid assumption for the high detector currents that we are considering. 
 
 It is instructional to evaluate this expression using the data for the photodiode of reference 
[1].  One finds that the low-frequency value of b for the particular photodiode measured in that 
reference is 0.448 Ampere-1.  Using this to evaluate equation (24) yields 
 
 SFDRdiode = 127.3 dB  (25) 
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Thus, if our coherent AM link used the particular photodiode measured in reference [1] in a dual-
balanced configuration, the highest SFDR that we could ever attain, assuming unlimited laser 
power, would be 127.3 dB Hz2/3.   Although our analysis is somewhat simplistic in that it ignores 
the high-frequency transit-time effects that occur for the 2nd order term (which could reduce this 
value to 124 dB!), the conclusion is inescapable: it is highly likely that there is a problem with 
detector nonlinearity at higher signal currents (Is), even though the average magnitude of the 
signal current at the detector is small.  
 
 This result, achieved at the very end of the program, changes the complexion of the 
problem we were addressing.  The original assumption was that the modulator was the 
component limiting the values of SFDR that were achievable, and that the nonlinearities of other 
devices were negligible.  And this was true.  However, the work-around provided by the coherent 
approach, which greatly mitigated the nonlinearity of the modulator, brought us to the point 
where the “negligible” distortion of these other components is now non-negligible.  We shall see 
another example of this in the next section on linearized modulators.  
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4.0  Linearized AM Modulators 
 
 
4.1   Introduction.  
 
 There are a variety of ways to linearize optical modulators.  Some of these use a secondary 
modulator to generate a distortional term that is subtracted from that of the primary modulator, 
thereby removing that order of distortion.  Others exploit a particular device feature and achieve 
linearization by a simple change in an operating point. The third class of devices are those that 
can be linearized with an approach that mimics Fourier series decomposition.  And finally, there 
is a fourth class of devices that can be linearized via mathematical modeling, but that are very 
difficult to understand intuitively. A disproportionate number of linearization schemes fall into 
this last category. 
 
 In our proposal we discussed in some detail three particular approaches: 
   
 1. the Dual Parallel Mach Zehnder Modulator (DPMZM),  
 
 2.  the Cascade Modulator, consisting of a series cascade of two Mach-Zehnder-like 

phase shift sections separated by directional coupler sections, and terminated in a Y 
combiner (DMZDCY), and  

 
 3. the Dual-Y Directional Coupler Modulator, a Y-fed directional coupler modulator 

terminated in a Y combiner (DYDCM).  
 
 
 During subsequent negotiations it was decided that only one of these three approaches 
would be pursued in this program:  the Dual-Y Directional Coupler Modulator.  The advantages 
of this approach were that it resulted in a small, self-contained device needing no external 
hardware and requiring no adjustments. A disadvantage was the consequence of this last 
advantage:  because there were no adjustments that one could make, the device had to be 
fabricated with very precise tolerances in order to provide the desired functionality.  Another 
disadvantage was that the device would have a switching voltage (Vπ) that was roughly 3 times 
larger than comparable unlinearized devices (a disadvantage, incidentally, that is shared by many 
linearization techniques). 
 
 Because of this second disadvantage, we analyzed yet a fourth approach mid-way through 
the program:  the Synthesized Directional Coupler, a device that had been studied by a group at 
the University of Minnesota [3].  We originally thought that this approach could yield a device 
that did not have a large switching voltage.  In this, unfortunately, we were wrong.  The 
approach did yield some improvement in switching voltage, but not the factor of three that we 
had originally anticipated.  Because of this, and because the fabrication of the synthesized device 
would be somewhat more complex than the Dual-Y Directional Coupler Modulator, we decided 
to stay with the DYDCM.  However, the synthesized approach had many interesting features, 
one of which is a much greater flexibility in the type of device that one could make, and is thus 
of considerable interest on its own.  In the following section we shall discuss the analysis that we 
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did on this device as part of this program.  This will be followed by a complete analysis of the 
DYDCM, and the experimental work we did to verify its performance. 
 
 
4.2  The Synthesized Directional Coupler Modulator 
 
4.2.1  Theory 
 
 The synthesis approach developed by Gopinath’s group at the University of Minnesota 
allows one to, in principle, design a modulator that can have an arbitrarily-complex transfer 
curve [4]. The approach resembles Fourier synthesis, in that additional lengths of directional 
coupler are used to provide the higher Fourier spatial frequencies needed to synthesize a 
particular transfer curve.  Thus, the more complex the transfer curve, the longer the modulator. 
 
 A directional coupler consists of two optical waveguides that are sufficiently close to each 
other that a small portion of the optical field in one waveguide extends into and overlaps with the 
mode field of the other, and visa versa.  This modal overlap allows energy transfer between the 
two waveguides.  Thus, if one launches light into the end of one guide only, this light will slowly 
transfer into the other guide as it travels along the coupler length.  If the coupler is fabricated 
correctly, all of the light can leave one guide, and end up in the other.  If the coupler is long 
enough, this transfer process will repeat, and all of the energy will transfer back to the original 
guide. 
 
 

R

S  
Figure 18.  Two closely-space optical waveguides that form a directional coupler. 

 
 
The coupled mode equations that govern this energy transfer are given by 
 

 
dR
dz

= jδ R − jκ S  (26) 

 

  
dS
dz

= − jδ S − jκ R  (27) 

 
where 2δ is the propagation constant difference between the  two waveguides that is caused by 
some external  stimulus,  (e.g., an electric field for an electrooptic material), κ is the coupling 
constant between the waveguides, and R and S are the z-dependent complex numbers that 
characterize the field amplitude in the waveguides.  The spatial dependence of the field 
amplitude is given by  
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 Ψ(x, y, z) = R(z)ϕ(x, y)  (28) 
 
where ϕ(x, y)  is the optical mode profile.  Determining R and S along the z-axis determines the 
fields everywhere. 
 
One can simplify these equations by substituting 
 
 R → Rejδ z S → S e− jδ z  (29) 
 
which yields 

 
dR
dz

= − jκ S e−2 jδ z  (30) 

 

 
dS
dz

= − jκ Re+2 jδ z  (31) 

 
To go forward with this approach, one now allows the coupling constant to have variation along 
its length (we’ll say more about how this is done later).  In the weak coupling approximation R is 
approximately unity and S is almost zero.  When this is the case, one can write 
 

 
dS
dz

= − jκ e+2 jδ z  (32) 

 
The solution to this is 

 S(δ ) = − j dz κ (z)e+2 jδ z

− L /2

L /2

∫  (33) 

 
In the limit of large L, where L is the length of the device, or for couplers for which κ →  0 
beyond a certain length, one can write this as  

 S(δ ) = − j dz κ (z)e+2 jδ z

−∞

∞

∫  (34) 

 
Thus, S is the Fourier transform of κ. 
 
 Physically, S(δ) is the optical field amplitude at the output of the bottom guide of Figure 18  
when all of the incident light is put in the top guide.  Because S(δ) is the Fourier transform of 
κ(z), κ(z) will be the inverse Fourier transform of S(δ). 
 

 κ (z) =
− j
2π

dδ S(δ )e−2 jδ z

−∞

∞

∫  (35) 
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We now have all the tools needed to synthesize a modulator having a transfer curve shape of our 
choice.   The general idea is as follows.  For an electrooptic material such as lithium niobate, δ 
will be proportional to the voltage used to drive the modulator. 
 
 δ = γ V  (36) 
 
Thus one can write  

 S(V ) = − j dz κ (z)e+2 jγ V z

−∞

∞

∫  (37) 

 
If one chooses κ(z) correctly, one can make the amplitude of S depend on V however one wants. 
For example, suppose one would like to have the triangular response shown in Figure 19.  What 
must the functional form of κ(z) be to get this shape?   
 

S(δ)

δ

1

21

 
Figure 19.  A triangular modulator transfer curve. 

 
Using equation (35) one finds that κ(z) must be 
  

 
κ (z) =

2
π

S(δ )sin(2δ z
o

∞

∫ )dδ =
2
π

δ
0

1

∫ sin(2δ z)dδ +
2
π

(2 − δ )
1

2

∫ sin(2δ z)dδ

=
4 cos z sin3 z

π z2

 (38) 

 
This is plotted in Figure 20 below.  We shall postpone the issue of how one gets a negative κ, 
and assume for the moment that it can be done.  The question for the moment is: how well would 
a modulator, made with such a κ profile, reproduce the desired shape shown in Figure 19?  To 
find out, one cannot simply take the inverse transform of equation (34).  This whole procedure is, 
at best, an approximation.  The correct way to determine this is to use this κ profile, and find the 
exact S that would result by solving the original differential equations ((26) and (27)) exactly 
(numerically). 
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κ(z)

z

 
 

Figure 20.  The shape of κ(z) needed to get the profile of Figure 19. 
 
This has been done using Mathematica’s NDSolve routine and the initial conditions Ro = 1 and 
So = 0 (i.e., all of the input light in the top guide, none in the bottom).  The result, shown in 
Figure 21, looks remarkably triangular, given the approximate nature of the derivation. 
 
 

S(δ)

δ

 
 

Figure 21.  The transfer curve that results from the κ of Figure 20. 
 
Unfortunately, the device length needed to get this shape and still have a reasonable switching 
voltage is roughly 20 cm, which is quite a bit larger than the 10 cm wafer size that is 
commercially available.  However, a high-linearity modulator need not have a perfectly 
triangular shape; it should, however, have very high linearity near the origin.   
 
 After some experimentation it was found that one could increase the slope efficiency by 
increasing κ, and could eliminate the 3rd order term by carefully adjusting the length of the 
coupler.  For a device length of 7.83 cm and a larger κ, one gets the response shown in Figure 
22. 
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S(δ)

δ

 
Figure 22.  A linearized device with the 3rd order term eliminated and a 7.83 cm length. 

 
We define the Slope Efficiency to be the change in transmissivity with voltage at V = 0. 
 

 Slope Efficiency =
dS
dV

 (39) 

 
This is a measure of the change in optical throughput for a given change in voltage.  The larger 
the slope efficiency, the more efficient the device.  To get the slope efficiency, we used our 
measured values of VπL for our Mach-Zehnder modulators, and the relation 
 

 δ =
π V

2Vπ L
 (40) 

 
For a VπL of 16 Volt-cm, the slope efficiency for this particular example is 0.12/Volt. 
 
 This synthesized design, although of some academic interest, is of no immediate practical 
use for two reasons: (1) κ must vary along the coupler length in a well-controlled fashion, which 
is hard to do accurately in LiNbO3 and (2) κ must change sign, which is impossible. 
 
 The Minnesota group found an ingenious solution to this second problem:  they showed [3] 
that a sign change in κ can be affected by shifting the phase in either guide abruptly by 180o.  We 
have checked this analytically, and found that this is indeed the case.   Achieving an accurate 
variation of κ along the coupler length, however, is harder to do.  One can envision schemes in 
which one could ion-mill a slot of varying depth between the waveguides, or fabricate the 
waveguide with a variable separation distance. These approaches, however, would be difficult to 
implement because of the sensitivity of both to the actual titanium diffusion process that forms 
the waveguides. 
 
 A more practical approach is to use a constant κ, and to approximate the desired κ(z) 
profile with a series of rectangular steps, each with the approximate area of the synthesized κ(z), 
and with 180o phase-changes inserted wherever one wanted one rectangle to end and the next to 
begin.  This is shown schematically in Figure 23. 
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Figure 23.  A device design that uses a constant κ and abrupt phase changes to achieve 
linearization. 

 
 The device has three phase changes: one between each rectangle and the next rectangle.  
The device ends where the rectangles end.  The value of κ, constant along the coupler length, 
was chosen so that the area approximated that of the κ(z) curve that it overlays.  The width of the 
shorter rectangles at the ends was carefully adjusted to eliminate the third order term in the 
resultant transfer curve.  Thus, the larger rectangles provide the general shape of the transfer 
curve, the smaller “corrector” rectangles provide the linearization. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24.  Transfer curve for the rectangular κ-profile of Figure 23 (red) and for a Mach-Zehnder 

modulator with the same slope efficiency (blue). 
 

 Figure 24 shows the transfer curve of the results for the rectangular profile of Figure 23 
when the corrector sections are adjusted to eliminate the 3rd order term.  Note that the visible 
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improvement over that of an unlinearized device is not that impressive.  However, the change in 
SFDR, as we shall see shortly, is dramatic. 
 
 The primary reason for investigating this synthesis approach was to see if we could get a 
high degree of linearization while still maintaining a reasonable slope efficiency.  To do this, we 
developed a design approach that allowed us to both maximize the slope efficiency and eliminate 
the 3rd order term for a given device length.  The procedure was as follows: 
 

1. Choose the length of the primary section, L (i.e., the combined length of the two 
larger rectangles). 

 
2. For a given κ, adjust the “corrector” lengths so that the 3rd derivative of the transfer 

curve was zero.  This eliminates the third-order term of the transfer curve. 
 

3. Repeat this process for incremental steps in κ, and find the value that gives the 
maximum slope efficiency. 

 
A plot of the slope efficiency that one gets when this process is carried through is shown in 
Figure 25.  
 

 

κ

dS
dV

L = 5.0 cm

 
Figure 25.  Slope efficiency versus κ .  Each point on the curve is for a device design that has been 

linearized.  The optimum value is 0.48. 
 

A good figure of merit for these devices is the slope efficiency per unit modulator length, defined 
by  
 

 
SE
L

=
1
L

dS
dV

 (41) 

 
Our analyses showed that there are two different values for each modulator design:  one for the 
unlinearized device, and one for the linearized.  For our rectangular constant-κ approach, one 
finds that linearizing reduces the slope efficiency by roughly a factor of two.  The values are 
shown in Table 3, together with that for an unlinearized Mach-Zehnder modulator.  
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Table 3.  Slope efficiencies for various configurations. 
 

    TYPE          SE/L

Unlinearized 0.071 /Vcm

Linearized 0.037/Vcm

MZ modulator 0.098/Vcm
 

 
 
 To formulate a design that would give the best performance consistent with our existing 
manufacturing capabilities, we choose a device length that would fit on a 3” (7.6 cm) diameter 
LiNbO3 wafer.   The final parameters were: 
 

a. a primary section length of 5 cm 
 

b. a total device length of 6.036 cm 
 

c. an optimum κ of 0.48 
 

d. a slope efficiency of 0.22/Volt 
 
 
4.2.2  SFDR 
 
 The SFDR for this design was calculated by first expanding S in a power series, realizing 
that the 3rd order term will be missing because of the linearization procedure. 
 
 S(δ ) = a1δ − a5 δ 5 + ...  (42) 
 
Using this, and the definition of the SFDR, one finds that the two-tone SFDR for any modulator 
with no 3rd order term is given by 
 

 SFDR =
Is

e∆f
⎛
⎝⎜

⎞
⎠⎟

4 /5
8

25a5

⎛

⎝⎜
⎞

⎠⎟

2 /5

a1
2  (43) 

 
For the design outlined above, a1 and a5 are 2.257 and 7.03, respectively.  Using these values and 
an Is of 100 mA, one finds that  
 
 SFDR = 144 dB Hz4 /5  (44)  
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This is substantially better than the 124.6 dB Hz available with an unlinearized Mach-Zehnder 
modulator. 
 
4.2.3  Manufacturing Tolerances 
 
 The 3rd order term of the transfer curve was eliminated by carefully adjusting the corrector 
lengths until it disappeared.  We have evaluated the error in the corrector length and the error in 
the three 180o phase reversers that can be tolerated before the device looses functionality.  The 
criterion used was that the modulator should provide at least 7 dB of SFDR improvement over an 
unlinearized system.   Table 4 shows the results of this analysis. 
 

Table 4.  Manufacturing tolerances. 
 

      Parameter Tolerance

Corrector Length, 0.0081 cm

Phase reversers (IM3) 11o (all three)

Phase Reversers (2ω)          TBD

κ            very insensitive
 

 
 
4.2.4  Phase Reversal Sections and Fabrication Approach 
 
 Achieving an almost instantaneous phase change of 180o is not trivial.  One approach with 
a reasonably good chance of success would be to form a trench in one waveguide using ion-
milling, as shown in Figure 26.  The trench would then be filled with a dielectric having a 
slightly different index of refraction, such that  
 

  ∆n x =
λo

2
 (45) 

 
If the optical loss proved negligible, air itself could be used, thereby eliminating one processing 
step. 
 
 The most critical part of the fabrication process would be attaining the correct “corrector” 
length for a given κ.   The physical length itself is not a problem; lithographic accuracy is such 
that one could manufacture this with micron accuracy.  The problem is that the corrector length 
must be a given fraction of a coupling length, not a physical length. This is a problem, because 
the coupling length is a strong function of the amount of titanium used to form the in-diffused 
optical waveguides, and of the exact distance between the waveguides.   Fabrication of 
directional couplers on another program has shown that reproducibly attaining a specific 
coupling length to better than 5% is difficult. 
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x ~ 10 microns

 
 

Figure 26.  Details of phase-reversal trench. 
 
 
 One could, however, demonstrate a synthesized modulator on single devices by using a 
“hand-tailored” approach.  This would entail fabricating long directional coupler waveguides, 
installing the phase reversal trenches at the appropriate places, putting metal electrodes on the 
waveguides (with no ports or transitions), and then adjusting the length of the corrector sections 
by successively and symmetrically shortening the device length with a high-speed diamond-
blade saw.  Between cuts one would characterize the device’s linearity by measuring the slope of 
the transfer curve, and then calculate the amount to be trimmed on the next cut.  We have 
developed lensed-fiber optical coupling techniques and have the special RF probes that allow 
one to optically couple into and electrically connect to two very closely spaced waveguides, and 
have developed cutback procedures that would allow the length adjustment to be made to the 
required accuracy.  These procedures and techniques, developed for the Y-fed directional coupler 
modulators and discussed in section 5.2 and 5.4, could also be used for this approach.  
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 4.3  Dual-Y Directional Coupler Modulators 
 
4.3.1    Introduction 
 
 The Y-fed directional coupler modulator has several noteworthy properties.  Of most 
interest to us is the fact that it can be linearized, and in a way that supposedly minimizes the 
sensitivity to manufacturing tolerances [5].  As proposed, however, the device does not suppress 
the carrier, and hence can only be used as an intensity modulator.  However, as with the previous 
device, we have found that a simple modification gives fully-suppressed carrier double sideband 
Amplitude Modulation, and does this in a way that allows a comparable degree of linearization. 
 
 The carrier is suppressed by shifting the optical phase of one output by 180o, so that this 
output is inverted, and then summing the inverted and non-inverted outputs with a second Y.   
This technique, first suggested by Desormiere [6] for a different application, subtracts the two 
output fields.  For balanced inputs (provided by the first Y) and no applied voltage, the two fields 
are equal, so that their subtraction leads to zero intensity in the absence of any modulation.  
 

 
 

Figure 27.  Dual-Y Directional Coupler Modulator. 
 

 
 Applying a voltage to the coupler section changes the relative indices of refraction in the 
two arms of the coupler.  This allows quadrature components to develop in each guide that are 
180o out of phase with each other.  When subtracted in the final Y, the two quadrature 
components add, whereas the in-phase components subtract.  Because the growth of the 
quadrature components is approximately proportional to the applied electric field, the emerging 
light has a amplitude that is approximately proportional to the modulation voltage. Hence, just as 
with the simple Mach Zehnder modulator, which cancels the carrier in a similar way, one 
achieves true amplitude modulation with full carrier suppression. 
 
 Linearization schemes for directional couplers are usually difficult to understand 
intuitively.  The design procedure is often to assemble (mathematically) a series of active and 
passive coupler sections, and to then vary all of the device parameters until one finds a sweet 
spot in the transfer curve that produces some degree of linearization.  The Double-Y directional 
coupler is different, in that one can fathom immediately what needs to be done to achieve 
linearization. 
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 The optical fields at the two output ports of the directional coupler are given by the matrix 
equation [7] 
 

 
R
S

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

A − jB
− jB* A*

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅

Ro

So

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (46) 

 
where 

 A = cos
πs
2

1 + x2⎛ 
⎝ 

⎞ 
⎠ + j

x
1 + x2

sin
πs
2

1 + x2⎛ 
⎝ 

⎞ 
⎠  (47) 

 

 B =
sin

πs
2

1 + x2⎛ 
⎝ 

⎞ 
⎠ 

1+ x 2
 (48) 

 
and where x is δ/κ.  δ is the change in propagation constant in each guide due to an applied field, 
and κ is the coupling coefficient between guides.  s is the actual coupler length, L, divided by the 
coupling length for complete power transfer from one arm to the other, lo. 
 
 The effect of the first Y-branch is to split the incoming optical field into two equal 
components.  To conserve power, one must have Ro = So = Ein / 2 .  Inserting this in equation 
(2), and then subtracting the two outputs gives  
 

 Eout =
A − A*

2
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ Ein = j
x sin

π s
2

1+ x 2⎛ 
⎝ 

⎞ 
⎠ 

1 + x2
Ein  (49) 

 
  
  
where x is proportional to the applied voltage.  Hence, if x <<1,  so that the quadratic terms can 
be ignored, and if s is an odd integer (so that the modulation is maximized), then to first order,  
 
 Eout ≅ j x Ein  (50) 
 
Thus the output is the modulation signal, x(t),  multiplied by the carrier signal, Es sin(ωct), which 
is the desired form for a true AM signal. 
 
 For larger values of x, the quadratic terms cannot be ignored.  As x increases, the sine term 
decreases and the numerator increases, so that the overall value of Eout is lowered from the value 
predicted by equation (5).   This lowering produces an undesired curvature in the transfer 
function. 
 
 Suppose, however, that the sine term were to increase while the denominator also 
increased.  If the increases were equal, the effects would compensate, so that this bending away 
from the linear response of equation (1) would be reduced.  One can in fact do just this by 
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adjusting s to be slightly less than the value that gives maximum slope efficiency.  Increasing x 
now moves the sine term towards its maximum, causing it to increase.  By picking the proper 
point on the sine curve, one can match (through a given order in x) the increase in the 
denominator. 
 
 To determine the optimum value of s, one expands the transfer function (49) as a power 
series in x.  Through third order, one finds 
 
 Eout = j x sin 1

2 π s[ ]+ x3 1
4 πscos 1

2π s[ ]− 1
2 sin 1

2π s[ ]( )+ x 5...( )Ein  (51)  
  
As noted above, the values of s that maximize the linear term are 1, 3, 5,….  However, the values 
that eliminate the cubic term are found to be s = 2.861, 4.918, 6.942, … i.e., numbers just 
slightly less than  3, 5, 7, etc.  Thus, the shortest directional coupler that can eliminate the cubic 
term has s = 2.861.  Operating at this point reduces the slope efficiency a mere 2.5 % from its s = 
3.0 value. 
 
 Unfortunately, the value of s that removes the cubic term does not remove the fifth or 
higher order term.  Conversely, s can be adjusted to remove the fifth order term, but only at the 
expense of having the cubic term return at full strength. There are schemes that will remove 
multiple terms, but each higher term removed brings with it an increase in device complexity and 
an increase in the required manufacturing precision.  For reasons discussed earlier, removing the 
cubic term should be sufficient for this program. 
 
 Eliminating the cubic term does not have a dramatic effect on the visual shape of the 
transfer curve  (Figure 28).   It does, however, significantly increase the SFDR, especially for 
smaller bandwidths. 
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Figure 28.  Transfer curve for s = 3.0 (blue) and  s = 2.861 (red). 
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4.3.2   Sensitivity Analysis 
 
 The dual-Y directional coupler modulator has four sensitivities that must be addressed if 
the device is to perform as advertised.  The first of these is an extreme sensitivity to the coupler 
length parameter, s.  In the measurement section that follows, the data will show that s must be 
set with an accuracy of four significant figures.  We shall see that this length can be adjusted by 
trimming the length of the electrodes, which is considerably easier than trimming the actual 
length of the coupling section, but even electrode trimming is not entirely trivial to do.  
 
 The second is sensitivity to the symmetry of the two Y-branches.  If these do not split and 
recombine the fields equally, and with equal phase delay, the even harmonics and 
intermodulation terms reappear.  Thus, for systems requiring multi-octave performance, 
manufacturing techniques will have to be found to trim the split values, and to remediate any 
differences in phase.  For sub-octave applications, however, the sensitivity to split errors is much 
less.  Errors as large as 10% in the output branch change the SFDR by less than 1 dB.   Such 
large split errors, however, allow a substantial fraction of the carrier to pass through the device. 
Because of our desire to operate in a true suppressed-carrier mode, this is to be avoided 
whenever possible. 
 
 The third is sensitivity to differences in the microwave and optical propagation velocities. 
Although all modulators show a reduction in bandwidth with velocity mismatch, the dual-Y 
directional coupler also suffers a pronounced reduction in linearization.  Fortunately, as we shall 
see shortly, the effect does not appear to be too severe. A reasonable velocity match should allow 
one to achieve 7 dB or more of SFDR improvement over the entire operational band.  
 
 The fourth sensitivity, however, cannot be so easily waved away.  This sensitivity, which is 
peculiar to linearized directional coupler modulators, is a reduction in linearization that occurs at 
higher frequencies due to the microwave loss in the traveling wave electrodes.  This sensitivity, 
which was not discovered until well into this program, is due to the fact that the “corrector” 
sections of the linearized couplers must cancel the nonlinearity of the primary “modulator” 
sections. If the cancellation signal generated by the corrector section is smaller or larger than that 
generated by the primary modulator section then complete cancellation cannot occur and the 
linearization suffers.  We do not have, at this time, a solution that would allow the DYDCM to 
provide high linearity over multi-octave or even over a complete octave of bandwidth at 
frequencies above several GHz.  It can, however, provide sub-octave performance. 
 
 We shall now address all of these sensitivities in some detail with the exception of the first, 
which is primarily a manufacturing problem that will be discussed later in some detail in the 
section on measurements and remediation. 
 
4.3.2.1  Y-Branch Imbalance 
 
 It is useful to describe the optical modes in a directional coupler in terms of the even and 
odd modes.  This is particularly true for the Dual-Y device, which operates only on the 
antisymmetirc mode, and completely ignores the symmetric mode.   Figure 29 shows the profiles 
of the individual optical modes in the R and S waveguides.  One can convert these to the normal 
modes (eigenmodes) of the system using coupled mode analysis.  The even and odd modes that 
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result are the sum (even) and difference (odd) of the individual R and S modes.  These modes 
have different propagation velocities, with the even mode being slightly slower than the odd. 
 
 These eigenmodes are handy for a variety of reasons.  One is that the first Y-branch of the 
DYDCM splits the light-beam and launches a pure even mode into the coupler. If no voltage is 
applied to the directional coupler electrodes, this even mode will remain unchanged as it 
propagates down the coupler, and no odd mode will form. Because of this constancy, the even 
and odd modes form a nice set of basis states that can be used for coupler analysis, in which 
changes due to an applied electric field are treated as perturbations.  
 
 
 

R
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Figure 29.  Even and Odd mode formalism. 
 
 
 
 Another reason is that the second Y-branch acts as a mode filter, passing the even mode 
and filtering out the odd mode.  If one adds a 180o phase-shifter, as shown in Figure 30, the 
combination filters out the even mode and passes the odd (the flipped waveform will, because of 
its opposite sign, cancel the non-flipped waveform when the two are summed in the junction).  
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180o

 
Figure 30.  Mode-filtering properties of a Y-branch with a phase-shifter. 

 
 
 
 When a differential voltage is applied to the two electrodes, the velocities in the two guides 
are changed relative to each other.  This allows the even mode and odd modes to couple. The odd 
mode can now rob power from the even mode, so that the odd mode grows (from zero) as it 
moves along the coupler, while the even mode diminishes. 
 
 If one transforms the R-S equations of the waveguides (equations (26) and (27)) to the 
even-odd equations, one finds  
 

 
dE
dz

= iδ O exp[+i2κ z]  (52) 

 

 
dO
dz

= iδ E exp[−i2κ z]  (53) 

 
where E and O designate the even and odd mode, and δ and κ have the same meaning as before, 
and with δ being proportional to the applied voltage.  Note that if the applied voltage is zero (δ = 
0), there is no change in either mode.  
 
 The solutions for the initial conditions E(0)  = 1 and O(0) = 0 are  
 

 E(z) = exp[iκ z] cos δ 2 +κ 2 z⎡
⎣

⎤
⎦ − iκ

sin δ 2 +κ 2 z⎡
⎣

⎤
⎦

δ 2 +κ 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 (54) 

 

 O(z) = i
δ

δ 2 +κ 2
exp[−iκ z] sin δ 2 +κ 2 z⎡

⎣
⎤
⎦  (55) 

 
If we evaluate equation (55) at the end of the coupler by making the substitutions 
  

 x =
δ
κ

, Ltransfer =
π
2κ

, s =
z

Ltransfer

 (56) 
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and use the fact that passing through the 180o phase shifter and final Y-junction will remove the 
even mode but leave the odd mode unaffected, one finds that the modulator output field is given 
by  
 

 Eout = j
x sin π s

2
1+ x2⎛

⎝⎜
⎞
⎠⎟

1+ x2
Ein  (57) 

 
which is just equation (49). 
 
 The growth of the odd mode occurs only in the region where an electric field is being 
applied to the waveguides. If there is an additional length of directional coupler that follows the 
electrode section, the constancy of the odd mode in regions of no field insures that the result of 
equation (57) is unchanged, i.e., the additional length σ  shown in Figure 31 plays no role 
whatsoever.  
 
 

s σ
π

 
 

Figure 31.  The electrode length, not the coupler length,  determines the parameters. 
 
 This is quite different from the Y-fed directional coupler modulator used for IMDD 
applications.  Here an additional length of coupler following the electrode section changes the 
output, usually for the worse.  The fact that the electrode length determines s for our DYDCM is 
important, because it means that one can trim s using chemical etching or ablative techniques to 
obtain the correct value of  2.861.    The IMDD Y-fed coupler requires that one physically saw 
off the end of the device to do such tuning.  
 
4.3.2.2   Second Harmonic 
 
 The primary effect of phase imbalance in the input and output Y-branches is the generation 
of a second harmonic.  Consider a Y-branch in which the fields are described as shown in Figure 
32, where α and β are complex numbers that contain both phase and amplitude information, and 
where α ≠ β .  If one now evaluates the output field of a DYDCM having two of these 
unbalanced junctions, i.e., 

 Y1 =
1
2

α
β

⎡

⎣
⎢

⎤

⎦
⎥ , Y2 =

1
2

a
b
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Figure 32.  An unbalanced Y-junction. 

 
 

one finds that the expression for the output field is  
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Ein
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(aα − bβ)

2
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2
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⎞
⎠⎟

1+ x2

  (58) 
 
If  α, β, a and b were all unity, as they would be in ideal junctions, then the first two terms would 
disappear, and one would regain equation (57).  However, if they are not, then the first two terms 
are non-zero, and a second harmonic will result. 
 
There are several results that one can glean from these equations that are worth mentioning:   
 

1. One cannot adjust the imbalance of Y2 to fix that of Y1 
 

2. The first term only generates a 2nd harmonic when Im(aα - bβ) ≠ 0 (phase imbalance) 
 

3. The 2nd harmonic of the second term is proportional to Re(bα-aβ) (amplitude 
imbalance) 

 
4. The second term produces a much weaker 2nd harmonic because the quadratic 

dependence on x has been removed by linearization   
 

5. The insensitivity of the 2nd harmonic to amplitude imbalance assumes perfect 
linearization (perhaps not realistic). 

 
Comments 2 through 5 assume perfect homodyne detection (i.e., no local oscillator phase error). 
 
One can calculate the SFDR due to the 2nd harmonic for terms one and two, finding 
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 SFDRT 1 =
8

Im aα − bβ
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In equation (59), 2φ is the phase difference between α and β if all the error is in Y1, or the 
average phase error per arm if it is not. The numerical expressions to the right have been 
evaluated for an Is of 100 mA.  
 
 A plot of the tolerable phase error as a function of the measurement bandwidth is shown in 
Figure 33.  The criterion for determining what is tolerable is: a φ that gives SFDR2nd = SFDRIM3. 
 
 

 
 
 

Figure 33.  Input Y-branch phase sensitivity. 
 
 These results seemed rather severe.  However, the Mach-Zehnder modulator has a very 
similar problem:  one must bias the device exactly at Vπ and have perfect extinction to eliminate 
the 2nd harmonic. In fact, the sensitivities to phase and amplitude error are numerically 
comparable to those for the Dual-Y Directional Coupler Modulator.  All of the linearization 
schemes discussed here and in the proposal would require some type of fine adjustment and 
control to suppress the 2nd harmonic. 
 
 There are several ways in which this could be done for the DYDCM.  One of these, shown 
in Figure 34, uses two short DC electrodes with adjustable voltages to fix both amplitude and 
phase errors in the Y-branches.  This technique was developed on another program to trim the 
input of a Y-fed directional coupler intensity modulator.  The only drawback to this approach is 
that it would require 4 connections and 4 voltages to fix both junctions. 
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 A second scheme takes advantage of the fact that an imbalance condition can be 
represented by a combination of even and odd modes.  One could “ungrow” the odd mode by 
applying a voltage at the right place along the structure.  Thus, one could envision having a 
series of four electrodes, of which only one is used (Figure 35).  One would have to determine 
which one experimentally,  but once this was done, two voltages could be used to correct both 
junctions. 
 
 

 
 

Figure 34.  A dual-electrode scheme for adjusting the phase and amplitude imbalance of a Y-
junction. 

 
 

 
 
 

dO
dz

= iδ E exp[−i2κ z]

 
Figure 35.  A second scheme for balancing the Y-junction.  This uses a strategically-placed 

electrode (1 of 4) to “ungrow” the offensive odd mode. 
 

 
 The third scheme assumes that good linearization is achieved, so that the second term of 
equation (58) can be ignored.  When this is the case, a simple phase adjustment in the phase 
reversal section may fix most of the unbalance.  The advantage of this approach is that only one 
electrode is needed (Figure 36), and that electrode is the same as the one doing the 180o phase 
reversal. 
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RF section
DC section  

 
Figure 36.  2nd harmonic reduction and phase reversal using a common electrode.  

 
 
4.3.3  Velocity Mismatch 
 
 There are at least two ways to quantify the sensitivity of the Dual-Y Directional Coupler 
Modulator to velocity mismatch.  One is to use a time-domain approach described in the 
proposal, with propagation of the microwave and optical fields handled by step-wise discrete 
matrix multiplication.  The second, which will be described in some detail below, is to find the 
coupled differential equations that govern the propagation of the optical fields in space and time, 
and to solve these equations by Fourier decomposition. 
 
4.3.3.1   Traveling Wave Coupled Mode Analysis 
 
 Using a coupled mode approach such as that described in [8], one can show that the time-
dependent differential equations for the optical fields propagating in each guide of the directional 
coupler are, in the slowly-varying envelope approximation, given by  
 

 
∂R
∂z

+
no

c
∂R
∂t

= +i δ cos[ω t − β z] R − iκ S  (61) 

 

 ∂S
∂z

+
no

c
∂S
∂t

= −i δ cos[ω t − β z]S − iκ R  (62) 

 
R and S are the optical fields in the top and bottom guide, respectively, δ is the change in 
propagation constant in each guide due to an applied field, and κ is the coupling coefficient 
between guides.  The cosine terms in each equation describe the single-tone traveling microwave 
field being applied to the two directional coupler electrodes.  When β is positive, the optical and 
microwave fields propagate in the same direction; when negative, the fields counter-propagate. If 
the applied field is static (ω →  0), the cosine terms become unity, the time derivatives 
disappear, and one has the simpler coupled mode equations that are usually presented in the 
literature. (See, for example, Schmidt’s article [7].) 
 
 Because the applied microwave field is monochromatic, one can use a harmonic analysis in 
which the field coefficients R and S are expressed as a Fourier expansion of forward-traveling 
optical waves.  Thus,  

 R(z, t) = Rm (z) exp[i m (ω t − βoz )]
m =−∞

∞

∑  (63) 
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with an identical expression for S.  Because m is an integer, the coefficients R and S will be 
composed of harmonics of the microwave modulation frequency.  Solving for all the Rm’s and 
Sm’s will thus give the complete optical spectrum, as well as the RF frequency spectrum of the 
demodulated (photodetected) lightwave. 
 
 After substituting equation (63) in equations (61) and (62), and equating terms with like 
time dependence, one finds the following infinite set of equations: 
 

 
dRm

dz
= +i

δ
2

Rm −1 exp[i(βo − β )z ]+ Rm +1 exp[−i(βo − β) z]( )− iκ Sm  (64) 

 

 
dSm

dz
= −i

δ
2

Sm −1 exp[i(βo − β) z] + Sm +1 exp[−i(βo − β )z]( )− iκ Rm  (65) 

 
 
These equations are for a single microwave tone.  When two tones are applied, as is normally 
done when measuring intermodulation distortion, equation (63) must be modified to read 
 

 R(z, t) = Rmn (z) exp[i m (ω1 t − βo1z) + i n (ω2 t − βo2z)]
m,n= −∞

∞

∑  (66) 

 
If the two tones are of equal amplitude, and sufficiently close in frequency that βo1 ≅ βo2 = βo , 
one finds that 
 
dRmn

dz
= +i

δ
2

Rm −1,n + Rm ,n−1( )exp[i(βo − β) z] + Rm +1,n + Rm,n+1( )exp[−i(βo − β )z]( )− iκ Smn  (67) 

 
dSmn

dz
= −i

δ
2

Sm −1,n + Sm,n−1( )exp[i(βo − β )z] + Sm +1,n + Sm,n +1( )exp[−i(βo − β) z]( )− iκ Rmn  (68)  

 
 
These equations can be solved numerically by truncating the expansion at some upper value of m 
and n, and by using the “NDSolve” algorithm in Mathematica, which can solve a set of 18 
coupled differential equations along the entire length of the coupler in less than a second.  More 
importantly, the code itself is just a paragraph long, and thus simple to write.  Accuracy is 
checked by increasing the number of harmonics used until changes in the solved value for the 
highest harmonic or intermod of interest become insignificant.  For the third order intermod, m = 
n = 3  is usually enough.  
 
 It is instructive to examine the various intermods as they propagate along the directional 
coupler.   Figure 37 shows the absolute value of the amplitude of the third order intermod (m = 2, 
n = -1) as a function of distance along a one-centimeter directional coupler having s = 3.0 (the 
nonlinearized value).  Note that the intermod grows, decreases to zero, and grows again.  If one 
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were to cut this modulator so that if its length is 0.953 cm, the intermod would be zero.   This is 
exactly what one does in setting s = 2.861. 
 
 Figure 37 illustrates one of the primary problems in manufacturing the Dual-Y directional 
coupler modulator.  If the length is not 2.861 lo, suppression of the intermod is incomplete.  In 
fact, if one misses the optimium length by 5%, in either direction, there is no suppression at all.  
On the other hand, if one is within 0.5 % of the correct length, the intermod amplitude is one-
tenth the non-suppresssed value, corresponding to a 20 dB suppression of intermod power.  
Although this sounds impressive, a 20 dB suppression will only give a 6.7 dB improvement in 
the SFDR (20 divided by 3) because of the cubic dependence on drive power.  Nevertheless, this 
might be adequate for applications requiring only a modest improvement in SFDR.   
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Figure 37.  The amplitude of IM3 as a function of distance along the coupler for s = 3.0. 

 
 
It should be emphasized again that the problem is not achievement of the correct physical length 
(which can be done with an accuracy of better than one micron).  The problem is achieving the 
correct coupling length, which depends on κ.  For material systems such as LiNbO3, which use 
titanium in-diffusion to form the waveguides, holding a 0.5 % tolerance on κ is very difficult. 
 
4.3.3.2  Microwave and Lightwave Velocity Mismatch 
 
 When the microwave and optical waves travel at different velocities, an effect similar to 
that shown in Figure 37 occurs:  the coupler is perceived to have the wrong length, so that the 
intermod is no longer suppressed.  A good benchmark for back-of-the-envelope error analysis is 
the degree of velocity mismatch that raises the intermod to its non-suppressed value.  Our 
analyses have shown that this occurs for IM3 when 
 

 
2π f ∆n L

c
≅ 1.1 

 
 where  ∆n is the difference between the microwave and optical index of refraction, f is the 
modulation frequency, and c is the velocity of light.  Thus, a centimeter-long modulator 
operating at 10 GHz could suffer a 23 % index mismatch before losing all suppression.  

IM3 
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However, a 4 cm long device (more typical of today’s LiNbO3 devices) could tolerate only a 
5.9% mismatch.  Reducing this to 0.59 % would give a SFDR improvement of 6.7 dB, reducing 
it to 0.059% would give 13.3 dB, and so on. 
 
 This improvement with improved manufacturing accuracy does not go on forever.  At some 
point the intermods fall beneath the noise floor; when this happens, further suppression produces 
no further increase in SFDR.  Because of this, the amount of SFDR that one wins with any 
linearization scheme is reduced as the 
noise bandwidth is increased.  
However, because there is less to win, 
the higher the noise floor, the less 
sensitive the device is to 
manufacturing errors.  This is 
illustrated in the figures to the right, 
which show the SFDR of the Dual-Y 
directional coupler as a function of 
ω∆nL/c for three different noise 
bandwidths. 
 
 One sees that the SFDR values 
for the three different bandwidths are 
lower than those for the Dual-Parallel 
and Cascade Mach Zehnders. This 
difference is due to the fact that the 
Dual-Y Directional Coupler 
modulator is fundamentally less linear 
than a Mach Zehnder modulator. An 
examination of the transfer functions 
for the non-linearized directional 
coupler and a simple Mach Zehnder 
shows that the ratio of the cubic to 
linear term for the directional coupler 
is three times larger than that for the 
Mach Zehnder.  A little analysis 
shows that the SFDR for the Mach 
Zehnder should thus be 20/3 Log103, 
or 3.18 dB better than the Dual-Y 
directional coupler. This is indeed 
what we find.  This poorer linearity 
also affects the linearized case:  for a 
1 Hz noise bandwidth, the SFDR of 
the linearized directional coupler is 3 
to 9 dB less than that for the 
linearized Mach Zehnder modulators.  
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4.3.4  Electrode Attenuation 
 
 The Dual-Y Directional Coupler Modulator is almost 3 coupling lengths long.  The first 
coupling length generates a modulated lightwave. The second coupling length undoes this 
modulation, and the third regenerates it.  The lightwave that comes out of a 3-coupling-length 
device thus has the same depth of modulation as that from a single-coupling-length.  The only 
function of the last two coupling lengths in our device is to provide linearization. 
 
 The synthesized devices discussed in section 4.2 operate similarly.  The corrector sections 
that are added at the beginning and the end of the device do not contribute to the depth of 
modulation.  In fact, they often reduce it.  Higher degrees of linearization require additional 
corrector sections that add only to the length, and nothing to the depth of modulation.  Thus, 
linearized directional coupler modulators are always longer, and usually much longer, than 
nonlinearized directional coupler modulators having the same depth of modulation. 
 
 Other linearization schemes that use two or more modulators in series or in parallel [9] 
operate by using a secondary modulator to generate a distortional component of the same 
magnitude but opposite sign of that generated in the primary modulator.  When the signals are 
combined, the two distortional components cancel, thus providing a degree of linearization.  The 
two directional coupler linearization approaches discussed in this final report do this too.  
However, it is not always obvious which section is the primary modulator, and which is the 
secondary.  For the synthesized approach, it is fairly clear that the short corrector sections at the 
beginning and end of the modulator are the source of the distortional component, and are thus the 
secondary modulators.  For the DYDCM, however, it is not so clear, since each section provides 
an equal depth of modulation (although of alternating sign).  Nevertheless, for the discussion that 
follows, we’ll think of the first coupling length as being the primary modulator, and the two 
remaining coupling lengths as being the corrector modulator. 
 
 The analysis performed up to this point has assumed that the applied voltage was uniform 
across the entire length of the device.  If that is not the case, the voltage at the corrector section 
will be larger or smaller than that at the primary section.   The distortional signals generated in 
the two different sections will then no longer be equal, perfect cancellation will not occur, and 
the SDFR will be reduced.   
 
 The resistive loss of the traveling-wave electrodes can have just this effect.  The ohmic loss 
causes the microwave signal to decay exponentially as it travels forward along the device, so the 
applied field at the end of the device (the corrective section) will be smaller than that at the front 
(the primary section).   Because of skin-depth effects, this loss increases with increasing 
modulation frequency. 
 
 To calculate this effect, we have extended the analysis of the previous section by including 
the exponential decay of the field.  Equation (61) and (62) were modified to read   
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= −iδ exp[−αz] cos[ω t − β z]S − iκ R  (70) 

 
and were solved using the techniques described earlier.  The frequency-dependent attenuation 
constant, α(f) was determined from measurements made on Y-Fed IMDD directional coupler 
modulators. 
 
 Figure 39 shows the reduction in SFDR that occurs for a device having the exact length 
needed (s = 2.86059) for complete removal of the 3rd order distortion term.  The value at DC is 
138 dB, as expected.  At higher frequencies, however, the fall-off is precipitous.  The bandwidth 
over which the SFDR is greater than 130 dB is slightly less than 1 GHz. 
 
 

 
 

Figure 39.  SFDR, for a 1 Hz bandwidth, as a function of modulation frequency for a DYDCM with 
s = 2.86059. 

 
 An interesting effect occurs, however, if s is less than the magic value of 2.86059: the point 
of maximum SFDR shifts from DC to a higher frequency.  This is shown in Figure 40 for a 
DYDCM with an s of 2.810. One sees that the peak has shifted up to about 6.5 GHz.  Using our 
simple model, one can argue that this occurs because the corrector’s distortional term is too large 
at DC, but becomes smaller at higher frequencies because of electrode attenuation.  Thus, at a 
particular frequency, the primary and secondary distortional terms become equal, and complete 
cancellation occurs. 
 
 In actuality, this is not quite correct.  The magnitude of the combined primary and corrector 
distortional signals is still relatively larger, but the component that is selected by the homodyne 
detection process does indeed go to zero. (The homodyne detection process selects components 
that are in-phase, and rejects those that are 90o out-of-phase.)  Thus, achieving the high SFDR 
values shown in Figure 40 would require an increased accuracy in the phase-locking circuit of 
the receiver.  For SFDR values greater than 130 dB, the phase-locking error and phase 
fluctuations would have to be less than 6o. 
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Figure 40.  SFDR, for a 1 Hz bandwidth, for a DYDCM with s = 2.810. 
 
 From an experimentalist’s point of view, the options offered by Figure 40 are intriguing.  
The plot implies that one could take a modulator that had been manufactured with the wrong 
value of s, and demonstrate a very high SFDR at a particular frequency that one could find by 
simply doing a frequency sweep.  Thus, it would not be necessary to do any electrode etching or 
physical cutting of the device to get the right operating condition;  one would simply tune to the 
relevant frequency. 
 
 There are also system implications for narrowband links.  If the system need was to operate 
only over a small bandwidth, one could fabricate the devices with the value of s that would shift 
the peak to the center of that particular band.   A SFDR of > 130 dB would be available over a 1 
GHz bandwidth. 
 
 A final comment about Figure 40.  One sees that the maximum SFDR shown is somewhat 
greater than the 138 dB value expected.  This occurs because for all linearization schemes there 
is an operational point where one can actually achieve a SFDR value that is several dB larger 
than that achieved by a simple removal of the 3rd order distortional term.  However, operation 
about this point leads to “cliffs” in the SFDR map [9] that are more confusing than useful, so we 
have avoided this issue by designing for a removal of the third order term only.  In Figure 40, the 
use of a sub-optimum value of s and the sweep in frequency allows one to pass through this 
operating point, and pick up the few extra dB of SFDR that are available. 
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5.0   DEVICE MEASUREMENT 
 
5.1   The PACT Program Modulators 
 
 The analyses of the previous sections have shown that the Dual-Y Directional Coupler 
Modulator should achieve a high degree of linearization if correctly fabricated.  However, there 
were reasons for concern.  Over the years, a large number of the linearization schemes that were 
reduced to practice have been found wanting.  The devices often were either unstable, or 
required a degree of precision in control of some parameter that was not realistic, or simply 
didn’t work because of manufacturing problems.  We were thus apprehensive that we could 
spend considerable time and effort making these devices, and then find that they didn’t work for 
reasons that had not been anticipated. 
 
 We were thus delighted to be able to take advantage of the fact that there was another 
program at HRL developing a similar device, although for an entirely different application.  The 
PACT program [10] was designing and fabricating Y-fed IMDD directional coupler modulators 
for use in an optical A-to-D converter.  These devices were almost identical to the Dual-Y 
Directional Coupler Modulators that we were developing, but differed in that they did not have 
the second Y-combiner nor the requisite 180o phase shifter.   The PACT device is shown in 
Figure 41, the transfer curve in Figure 42. 
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Figure 41.  A Y-Fed Directional Coupler Intensity Modulator for IMDD applications. 
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Figure 42.  Intensity transfer curve for the modulator of Figure 41, with s = 2.861. 
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At our request the PACT Program Office graciously transferred the devices that had been 
fabricated on their program to this program, and allowed us to modify them as needed for our 
measurements. 
 
 The Y-fed directional coupler intensity modulator (YFDCM) can be linearized by making s 
= 2.86059, the exact same value needed for our coherent-AM device.  The plan was to adjust the 
length of one of these devices to achieve the desired s, and to then measure the degree of 
linearization by monitoring either the 3rd harmonic or IM3 using the modulator as an intensity 
modulator (not an amplitude modulator), and detecting by direct detection. The use of Intensity 
Modulation and Direct Detection (IMDD) would greatly simplify the measurements, thereby 
allowing the expeditious screening and measurement of many devices.  
 
 If good linearization could be demonstrated, the plan was to then demonstrate a coherent 
device either by adding a fiber-based Y-Junction/Phase-shifter to the PACT device and 
measuring the device in a coherent AM link, or by fabricating a complete DYDCM in lithium 
niobate.  The path chosen would depend on the available time and resources.   
 
 The fiber-based Y-Junction/Phase-shifter mentioned above is shown in Figure 43.  It 
consists of a 3-dB coupler and two lengths of fiber, one of which would either be heated or 
stretched in order to give a controlled 90o phase shift.  The assembly would then be spliced into 
the AM link of Figure 6, replacing the MZ modulator. 

φ

50:50 
coupler

receiver

 
Figure 43.  A method for using two fibers, a phase-shifter and a 3-dB coupler to mimic the Y-

junction/Phase-shifter needed for a DYDCM.  
 

 
5.2  Length Adjustment 
 
 As pointed out earlier, one cannot change s on a Y-fed Directional Coupler Intensity 
Modulator by changing the electrode length.  One must physically change the length by sawing 
through the modulator and discarding the unwanted portion. Two things happened when we did 
this.   The first was that we cut off the probe pads at the end of the modulator, so that we could 
no longer make RF contact at the termination end of the device.  We were aware of this, and had 
purchased a special probe from GGB Industries (Picoprobe) that had a 14 micron tip-to-tip 
separation which would allow us to touch down on the two long 50-Ohm Co-Planar-Strip (CPS) 
electrodes that covered the waveguides.  Thus, we could launch the drive signal from the uncut 
end, which still had a launch pad, and use the special probe and a 50-Ω termination attached to 
the probe to terminate the CPS line. 
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 The second thing that happened was that the sawing operation, which used a 30,000 rpm 
high-speed diamond blade with a water jet, moved some of the soft gold of the electrode from 
one waveguide electrode to the other, electrically shorting the two electrodes together.  It was 
first believed that the backward wave generated on the CPS by a reflection at this short would 
not affect the performance of the modulator. However, that proved not to be the case.  
Measurements and analyses showed that the linearization properties of the YFDCM were indeed 
affected by the reflected wave.  Thus, a way had to be found to open up these shorts. 
 
 Mechanical techniques were out of the question because of the small feature size (~ 10 
microns):  a micro-scribe would merely increase the damage. It was decided to remove the 
smeared gold at the edge of the cut by chemically etching it away.  The first attempts to do this 
by simply placing the wafer vertically in a very thin layer of etchant proved unsuccessful.   
Capillary action wicked the etchant solution up the electrodes, removing much more gold than 
was desired.  It was then decided to cover the wafer with resist, and lithographically expose the 
launch pads while leaving the waveguide electrodes covered.  The wafer would then be sawed 
while the resist was on, and the troublesome gold removed chemically. 
 
 This technique, after several iterations, seemed to work quite well.  Figure 44 shows two 
different electrode pairs after sawing and after chemical removal of the gold.  The gray strips that 
remain after the gold removal for the device on the left are due to the 100-Angstrom-thick layer 
of titanium used for adhesion of the gold to the 1-micron-thick SiO2 buffer layer covering the 
LiNbO3.  In a few cases the ends of the gold electrodes were bent to the left by the blade, as 
shown in the figure on the right.  However, even these devices were electrically open after 
etching.  
 

 
 

Figure 44.  The ends of the YFDCM electrodes after etching.  The devices are still covered with a 
thin layer of resist.  The bending of the electrodes of the device on the right did not cause shorting. 
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 Figure 45 shows the probe pad at the beginning of the modulator.  The pad, which is 
designed for either a 100 or 150-micron-pitch probe, has had the resist removed lithographically 
so that DC and RF contact to the pad can be made. 
 
 

 
Figure 45.  Launch pad at the top of the modulator.  The resist above the pads has been removed 

lithographically so that RF contact can be made. 
 
 
Our approach for achieving the correct coupling length, s, was to now do the following: 
 

1. Make an initial cut at a point where s is known to be > 2.861 
 

2. Remove the short by locally etching away the gold   
 

3. Measure the 3rd harmonic as a function of drive power.  Determine position of next 
cut 

 
4. If logarithmic slope is exactly 5, stop. 

 
 
Before doing this, however, we went through a screening procedure to select those wafers that 
had the best chance of success. 
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5.3  Screening 
 
 There were a large number of wafers that had been generated on the PACT program, but 
only a few were appropriate for our program.  We thus had to institute a screening procedure to 
select wafers that had devices with the appropriate length, that were not internally shorted and 
that had transfer curves that followed the theory (indicative of good devices).  The devices had to 
be calibrated so that not only the approximate value of s but also the calibration factor for x  (the 
relation between applied voltage and the x of equation (49)) was known for each.  Calibration of 
x was a tedious process that we will describe shortly, and because of this was only done once per 
wafer and only on those wafers that looked really promising.  To cull out those wafers that were 
unsatisfactory, we used the large amount of transfer curve data that had been generated on the 
PACT program, provided to us courtesy of the PACT Program Office.   The data for one of the 
selected devices are shown in the Figure 46. 
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Figure 46.  Measured transfer curve for a YFDCM.  The two colors are for the two different output 

ports. 
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5.4  Harmonic Measurements 
 
 We have developed a technique that allows one to completely characterize all of the 
operational parameters of a Y-fed directional coupler modulator operating as an IMDD device. 
The accuracy for x and s is approximately 2 and 3 significant figures respectively, which though 
not quite good enough to determine s to the four significant figures needed, is more than enough 
to calibrate x, which then allows a more accurate determination of s through another 
measurement that we’ll describe later. 
 
 The technique is as follows.  The modulator is mounted in our test setup, 1.55 µm light is 
fiber-coupled into the launch end of the modulator, and the output light is fiber-coupled with a 
lensed-fiber into a calibrated photodetector that is part of a lightwave measurement system 
(Figure 47).  An RF signal at 145 MHz is first passed through a bias-T, then through a narrow 
filter to remove any spurious harmonics, and then finally launched onto one end of the modulator 
using a 100-micron-pitch Signal-Ground Picoprobe.  A DC bias voltage is applied to the 
modulator electrodes through the bias-T, and the fundamental, 2nd and 3rd harmonics generated in 
the photodetector measured on the spectrum analyzer. 
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Figure 47.  Harmonic measurement system. 
 
 The lightwave measurement system has switchable optical and electrical attenuators in 
front of the photodetector and microwave spectrum analyzer, respectively.  This allows one to 
rapidly switch attenuators in and out to determine whether photodetector or spectrum-analyzer 
nonlinearity is interfering with the measurement. 
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 The measurement is performed by measuring the 1st, 2nd and 3rd harmonics that are 
generated for a fixed-frequency and fixed power level signal at a particular DC bias voltage.  The 
bias voltage is then changed, the system allowed to equilibrate, and the measurement repeated 
over a 15 to 30 volt range centered at zero.  The results of one of these measurements is shown in 
Figure 48.  The blue points are the measured values the black curves are the theoretical fit.  With 
the exception of the transfer curve, the vertical scales are all power in dBm. 

 
Figure 48.  The 1st, 2nd and 3rd harmonic as a function of DC bias voltage on the modulator. 

 
 The high accuracy of the measurement is due to the fact that there are only three adjustable 
parameters, s and x and the DC switching voltage that one can adjust to fit all the data.  A small 
error in any one of these leads immediately to a poor fit.  The fit values for this particular curve 
are: s = 2.72, x = 0.13 and Vs = 12.7 Volts.  This particular modulator is number Y30G4A from 
wafer 750N4.  The total optical power coming out of the modulator is 0 dBm (1 milliwatt), the 
RF drive power at the probe is 10 dBm.  Because the modulator was driven at a low frequency, 
the CPS electrodes did not have to be terminated.   
 
 Using the transfer curve data available to us, we did a search of the 25 existing wafers, and 
found 4 that were appropriate.  On these 4 wafers, we found 4 modulators that were close to s = 
2.86.  We decided to measure these 4 devices carefully, before doing any cutting,  on the off-
chance that one already had the magic value of s = 2.861. 
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 The measurement that most accurately determines s, and that allows us to accurately 
predict the value of SFDR that that particular device would deliver, is just a measurement of the 
3rd harmonic power versus drive power.  Figure 49 shows a typical measurement of one of the 
four “hot” devices.  The blue curve is a theoretical fit to the black data points that gives the value 
of s shown (2.873).  Hence, this device is only 0.4% longer than the magic value of 2.861.  The 
slope for this device is 4.4, not 5, but 4.4 already denotes a significant amount of linearization.  
However, it is not enough to get us to our goal of a SFDR of 130 dB in a 1 Hertz bandwidth.  
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Figure 49.  3rd harmonic power vs drive level for device Y31G4B, wafer 750N4. 
 
 We then made several measurements on devices that we were sure had a value of s less 
than 2.861.  When s is less than 2.861, the 3rd harmonic curve should show a sharp null (a 
trough) at some power level.  However, our measurement did not show the null predicted by 
theory, as is evident in Figure 50.  This was very disturbing.  In addition, the measurement was 
occasionally very noisy when operating where the trough should be, with the data points jumping 
up and down by 10 dB.  
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Figure 50.  3rd harmonic power vs drive level for device Y30G4B, wafer 750N4. 
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 Our assumption at the time was that we were having problems with bias drift.  This is a 
common problem in LiNbO3, and is related to the fact that the SiO2 coating that one puts on top 
of the wafer to isolate the optical waveguides from the metal electrodes to prevent optical loss is 
less conductive than the LiNbO3 underneath.  When this is the case, the application of a voltage 
to the electrodes will generate an electric field in the LiNbO3 that will, due to the larger 
conductivity of the LiNbO3, decay with time.  After a long enough time, the field in the LiNbO3 
becomes zero with all of the field ending up in the SiO2 buffer layer.  This is shown figuratively 
in Figure 51. 
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Figure 51.  The electric fields in a LiNbO3 modulator when bias drift is a problem.  With time, the 
dashed field lines disappear, and all of the field ends up in the SiO2 buffer layer. 

 
If the field decays with time, then the actual bias point of the modulator changes.  Our thinking 
was that if the LiNbO3 conductivity varied along the device, then different regions of the 
modulator would see a different bias voltage, and this could ruin the linearization. 
 
 The known fix for this problem is to make the SiO2 buffer layer more conductive than the 
LiNbO3.  This can be done with a special coating process that had been developed on another 
program.  And we were in luck (or so we thought), because one of the good wafers had already 
had this coating applied.   
 
 We made some preliminary measurements on this wafer, and found a device that seemed to 
have a value of s even closer to 2.861.  A complete harmonic scan with bias voltage was then 
performed (Figure 52).  The device seemed to take a long time to come to equilibrium at each 
new measurement point, but it did have a much lower switching voltage, which is what one 
would expect for a high-conductivity SiO2.   A measurement of the 3rd harmonic vs drive power 
gave the curve shown in Figure 53.  A fit to the data gave an s of 2.857, which was indeed closer 
to 2.861 than the device of Figure 49.  Portions of the curve showed a slope greater than 5, but 
this was consistent with a device having a null somewhere off the left side of the graph. 
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Figure 52.  Harmonic data for device Y33G2A from wafer 800D.  This wafer has the anti-drift 
coating. 
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Figure 53.  3rd harmonic data for the device of Figure 52. 
 
 
 

 The big surprise came the next day when we measured the same device again, and got an 
entirely different curve, shown in Figure 54.  It was now clear that we had a very serious 
problem of some sort. 
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Figure 54.  The device of Figure 53, measured a second time (the red curve). 
 
 The major change seemed to be at the lower end of the curve.  To pursue this, we 
monitored the lowest data point over time, and found that it drifted slowly, sometimes going up, 
sometimes down.  The drift times could be very slow (on the order of hours).  We thus had three 
problems: 
 

1. The data was not reproducible at lower drive levels 
2. There was no real  “trough” for devices with s < 2.861 
3. The data was very noisy when operating where the trough should be. 

 
 A list of all the possible mechanisms that could explain these observations was put 
together.  One by one, over a period of several days, each of the items on the list was 
investigated and eliminated either experimentally or by analysis. Until we came to the last item 
on the list: ambient temperature.  And then we hit the jackpot. 
 
 We had done some calculations of temperature effects, and found that all of the 
perturbative mechanisms that we could think of had no effect on modulator performance.  
Nevertheless, the effects we were observing seemed to have a thermal character.   To investigate 
this experimentally, we mounted the wafer on a special aluminum chuck that we used to measure 
high-temperature drift effects in LiNbO3 modulators, and measured the 3rd harmonic while 
raising the temperature of the chuck at a rate of 0.1 decree C per minute.  The results, shown in 
cartoon fashion in  
Figure 55, showed a large and cyclic behavior.  And as soon as we saw this, we knew what the 
problem was. 
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Figure 55.  3rd harmonic power as a function of device temperature for a fixed drive level. 
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5.5  The Fabry-Perot Modulator Effect 
 
 The source of the problem is a Fabry-Perot (FP) modulator effect.  Because these devices 
are being measured on a full wafer, no bevel-cuts have yet been made to frustrate undesired 
reflections (this is normally done during packaging).  Hence, the end-facets of the device being 
measured have two very nicely-polished surfaces at which small but non-negligible reflections 
can occur.  This forms a Fabry-Perot etalon. 
 
 A Fabry-Perot etalon is a one-dimensional optical cavity or waveguide with partially-
reflecting surfaces at each end.  The etalon transmittance changes with wavelength due to 
multiple internal reflections that can add constructively or destructively depending on the etalon 
length.  A simple waveguide etalon is shown in Figure 56 
 
 

 
 

Figure 56.  A Fabry-Perot etalon.   The small red arrows inside represent the light reflected at each 
surface. 

 
 The transmittance of the etalon will also change if one varies the index of refraction of the 
waveguide material.  The optical length of the cavity (kL) will then change, moving the 
operating point to a different location on the etalon transmittance curve shown in Figure 57. If 
the operating point is on one of the steep slopes of this curve, and the index is dithered at high 
frequency, one gets significant high-frequency modulation.  If, on the other hand, the operating 
point is at the top or bottom of this curve, the modulation will be close to zero.  If the operating  
point now moves to the opposite side of one of these bumps, then the modulation due to index 
dithering will again be significant, but of the opposite phase.   
 
 

T(kL)
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Figure 57.  The transmittance of a LiNbO3/glass etalon as a function of optical length. 

 
The dithering is provided by the microwave field and the electrooptic effect of the material.  The 
change in the operating point, however, is provided by the thermally-induced index change and 
mechanical expansion of LiNbO.  Thus, as the temperature of the material slowly increases, one 
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slowly moves from left to right on the transmittance curve of Figure 57, passing through points 
of positive modulation, zero modulation, and negative modulation. 
 
 The modulation itself is not necessarily a problem.  The nonlinearity of the etalon 
transmittance curve, however, is.  This nonlinearity produces a 3rd harmonic that can either add 
to or subtract from the 3rd harmonic naturally produced by the YFDCM, depending on 
temperature.  We have done a calculation of this effect, and have found that it has the right 
magnitude to explain the observed data.  In addition, a calculation of the length and index change 
in LiNbO3 showed that, for the length of this particular wafer, one would expect 5.4 cycles for a 
1o C temperature change of the modulator.  This is exactly what we see. 
 
 The question now is whether this can explain all of the nasty effects we have seen.  And the 
answer is yes.   Figure 58 shows two sets of data from the same device.  If we assume that a FP 
modulator effect is generating a 3rd harmonic that is interfering with our measurement, then one 
can determine the magnitude of that harmonic from the maximum and minimum values of the 3rd 
harmonic measured for a particular drive level during the temperature sweep (in this case the 
lowest data point).  By knowing the maximum value at one drive level, and by knowing that it 
follows a cubic power law (slope 3), one can deduce the 3rd harmonic power for all other drive 
powers.  We have done this for the modulator of the left figure, showing the FP power that 
results as a red line.  That same curve was then plotted in the figure to the right, which was a 
device from the same wafer (and should therefore have the same FP modulator effect).  Note that 
the red line deduced from measurements on the left device explains the observed data for the 
device on the right.  There is no trough on the right-hand figure because the FP modulator effect 
is “filling” the trough.  Furthermore, the data in the trough will be very noisy whenever 
temperature puts the FP modulator operating point at either the top or bottom of the tranmissivity 
curve:  when this happens, the trough will empty because the red line has dropped way down; 
very small temperature fluctuations, however, will cause it to refill, then empty again, and so on.  
This explains the very large (10 dB) fluctuations that were occasionally observed.    
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Figure 58.  Measured 3rd harmonic data (points) and the FP modulator 3rd harmonic power (red 

line) for two devices from the same wafer. The blue and black points in the left figure are for 
measurements made at two different times The blue curve in the right is the predicted response for 

a device with no FP effect. 
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 Although these arguments are compelling, they do not prove that the FP modulator effect is 
responsible for the observed effects.  To test this hypothesis, we measured another wafer before 
and after making a 6o saw cut at one end of the wafer.  Experimental results for devices made on 
another program with this bevel have shown that the reflected wave is reduced by 33 to 35 dB, 
which is somewhat less than the > 40 dB predicted by our analysis, but a respectable reduction 
nonetheless.  Because the fiber itself did not have a bevel, we reduced the reflection from the 
fiber-air interface by moving the fiber away from the output facet until the signal intensity had 
dropped by 10 dB, which should reduce the power reflected back into the modulator by 20 dB.   
 
 The before-and-after measurement data of Figure 59 show convincingly that the FP 
modulator effect was playing a strong role.  The red data points (the “before” measurement) 
show a slight dip at the position of the trough.  However when the FP effect was removed by the 
6o cut, the trough deepened by more than 20 dB.  Note the almost perfect fit of the data to the 
blue theoretical curve.  
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Figure 59.  3rd harmonic power for device Y34G3B, wafer 800D3.  The black data points were taken 
after a 6o angle had been formed at the end of the wafer, the red data taken before. 

 
 The depth of the trough, though much improved, is not infinite.  There is thus some other 
effect, 20 dB smaller than the FP modulator effect that is interfering. This is not surprising.  As 
one travels down the slope 5 curve, one will invariably run into other effects having slope 3 that 
were too small to be seen in earlier measurements because they were always masked by the 
distortional tones of the modulator.  This is shown in Figure 60. When the modulator is fixed 
somewhat (i.e., give a slope of 5), then at some lower level some “other” effect, (e.g., effect a), 
will manifest itself.   And when effect a is fixed, effect b will surface, and so on. Whether or not 
these affect the SFDR depends on the position of the noise floor. 
 
 One can correct for the FP modulator effect rigorously by doing a temperature sweep and a 
correction at each data point.  This, however, is very time consuming.  What we did instead is 
take a data set in which it was clear that the FP effect was subtracting from the true level (Figure 
53), and added the FP power to that data.  This gave the data points and fit shown in Figure 61.   
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Figure 60.  A plot showing how slope-3 effects will always manifest themselves when  the primary 

distortional term is slope 5. 
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Figure 61.  3rd harmonic power for  device Y33G2A, wafer 800D2, corrected to remove the Fabry-
Perot modulator effect. 

 
 

The slope of this curve is 4.6, which is still not the desired 5.0.  However, a slope of 4.6 is not 
bad.  The question is, is it good enough? 
 
 Table 5 shows the theoretical SFDR that one would achieve for a perfect device with s = 
2.8606, and for our device having an s of 2.867.  One sees that the SFDR for a 1-Hz bandwidth is 
130 dB, which was our program goal.  The table also shows how the advantage of linearization 
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falls off as the bandwidth increases, even for a perfect device.  This fall-off is typical of all 
linearization schemes that eliminate the 3rd order distortional term. 
 
 

Table 5.  SFDR versus measurement bandwidth for two different values of s. 
 

Bandwidth s = 2.8606 s = 2.867 Mach-Zehnder

     1 Hz    138.9   130.3       124.7
     1 kHz    114.7   110.1       104.6
     1 MHz      90.6      88.9          84.6
     1 GHz      66.6      66.2          64.6

 
 

 
 At the conclusion of these last measurements the program was almost over.  The funding 
that remained at this point, roughly two-man-weeks, was used to chase down a serious error in 
the unlinearized coherent AM link SFDR measurement.  This error was found and corrected, and 
a completely new set of measurements made to replace the data that were suspect.  These new 
data were presented in this final report. 
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6.0  Summary and Conclusions 
 
 This program has shown that coherent AM optical links can be made that have a SFDR 
much higher that that available with IMDD links.  Values of 120 dB Hz2/3 were obtained for an 
unlinearized link using a 100 mW laser and COTS modulators and photodetectors.  Slightly 
higher values (123 dB Hz2/3) were obtained when the laser power was boosted to 500 mW with a 
fiber optical amplifier.  The link, which used polarization-maintaining components and fiber 
throughout, and fusion-splices instead of connectors, had none of the instabilities historically 
associated with homodyne systems.  The system locked, and held lock, for the duration of all 
measurements (which often lasted all day).  We saw no damage effects in the modulators used, 
even at the 500 mW power levels used at the program’s end. 
 
 The plan to raise the 120-123 dB Hz2/3 SFDR values demonstrated on the first part of this 
program to 130 dB Hz4/5 by using a linearized directional coupler modulator was pursued, but 
was not completed.  Y-fed directional coupler modulators having the correct configuration were 
loaned to us by the PACT program office, and an extensive set of measurements was conducted 
on these devices.  After resolving a very serious measurement problem, it was found that the 
devices did indeed perform as theoretically predicted at low frequencies.   The modulators were 
stable, did not drift once equilibrium was reached, and showed the linearization predicted by 
theory.  A logarithmic slope of 4.6 was demonstrated for the best device; the only reason a 
perfect slope-5 was not demonstrated was because the 3.3-cm device tested was 66 microns too 
long, and not because it had any inherent flaws. 
 
 Our analysis showed, however, that Y-fed linearized directional coupler modulators (and 
perhaps all linearized directional coupler modulators) have a shortcoming that makes them 
unsuitable for wideband operation, at least for coherent-AM applications:  RF attenuation in the 
CPS traveling-wave electrodes degrades the linearization at higher frequencies.  The present 
devices can be designed to operate at a specific center frequency, but the linearization bandwidth 
at this frequency is less than 2 GHz. 
 
 Our measurements on the first part of the program also suggested that the photodetectors 
were beginning to limit the SFDR of the unlinearized link.  Although this will have to be looked 
into more rigorously before any definitive statement can be made, the possibility exists that 
today’s photodetectors could limit the performance of optical AM links to ~ 127 dB Hz2/3. 
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Appendix A:   Laser Excess Noise (REN) 
 
 To see just what effect laser amplitude and phase noise has on link performance, we must 
redo the analysis of section 2.2 with laser fluctuations included in the field equations.  Using the 
well-known narrow band approach, in which the noise is expressed as in-phase and quadrature 
components, the signal and local oscillator fields are now given by 
 
 Es(t) = Esθ( t) cos(ωc t) + ηs

I (t)cos(ωc t) +ηs
Q( t)sin(ωc t)( ) (71) 

 
 Elo( t) = Elo cos(ωc t +φ) +η lo

I (t)cos(ωct + φ) + ηlo
Q (t)sin(ωct + φ)( ) (72) 

 
 The noise terms, ηI and ηQ, are slowly varying functions of time representing the in-phase 
(I) and quadrature (Q) components of the noise for each laser.  Note that, as written, the η’s are 
unitless quantities that specify what fraction of the respective field is noise.  Thus, their powers 
are expressed in dBc. 
 
 The analysis performed in section 2.2 is now repeated.  One sends the two signals through 
the combiner, with the fields going to the cross ports being phase-shifted by 90o, and those not, 
not.  The summed fields are then squared by each detector, yielding time-dependent detector 
currents.  One then computes the current into the amplifier by subtracting one photodetector 
current from the other.  After maximizing the signal term by setting sinφ to 1, and cosφ to zero, 
one finds that  
 
 Isignal = I1 − I2 = Es Elo θ( t) 1+ ηlo

I ( t) +ηs
I (t) +η lo

I (t)ηs
I (t) +η lo

Q( t)ηs
Q (t)( ) (73) 

 
The first term is the desired signal, the second and third are the in-phase noise of the local and 
signal lasers, and the fourth and fifth are the noise⊗ noise terms.  The noise⊗ noise has a 
spectrum that is roughly twice as wide as the in-phase noise of either oscillator.  However, it is 
also much, much smaller.  We shall ignore it for now, and focus on the two dominant terms. 
 
 If one knows the noise spectral density for both lasers, one can compute the noise spectrum 
of the receiver at all frequencies and for all operating conditions.  However, one need not have 
full knowledge of the spectral shape to appreciate several salient features of equation (73). 
 
 The first is that θ(t) modulates the noise as well as the carrier.  The effect of this is to 
translate the noise spectrum up to the modulation frequency, and convert it to a double-sided 
spectrum, centered at the modulation frequency, as shown in Figure 62 below. 
 
 The second feature is that the magnitude of the upconverted spectrum is proportional to the 
power in the modulation tone.  Thus, if the laser noise exceeds the shot noise, the SNR becomes 
constant, regardless of signal strength (!).  This is not good for those applications that look for 
weak signals in the presence of strong ones.  The strong signal will raise the noise floor high 
enough to hide the weak signal, although the weak signal would be fully visible if the strong 
signal were to disappear. 



 

 

 

73

 

fc
S(f)

f f

S(f)

 
Figure 62.  The up-conversion of baseband noise to “skirt” noise due to modulation at fc. 

 
 This all sounds quite alarming, but in fact the fiber and solid state lasers that we propose to 
use for this program have REN noise that is confined to below 1 MHz.  Thus, the upconverted 
noise puts noise skirts on the signal that can prevent the detection of signals that are really “close 
in”, but it will not affect signals located farther than 1 MHz away.  Thus, for surveillance 
applications, laser excess noise plays no role. However, it does have ramifications for radar, 
where one often tries to get within 100 Hz of the carrier to detect Doppler shifts. 
 
 This problem of upconverted noise is not unique to AM.  It shows up in IMDD, PM and 
FM systems also, although in the later two cases the origin is phase noise, not amplitude noise. 
 
 This brings us to another feature of equation (73):  that there is no contribution from laser 
phase noise (other than the small amount in the noise⊗ noise terms).  This is due to the fact that 
we are homodyne detecting in a way that maximizes the detection of amplitude variations, and 
minimizes the detection of phase variations.  If we were to change φ to 0o, we would detect phase 
variations, and not amplitude variations.  Hence, homodyne AM detection rejects phase noise of 
both the source and local oscillator lasers. 
 
 Interestingly enough, phase noise would probably not be an issue anyway, because we are 
planning on using the same laser for the source and LO.  Because homodyne detection is the 
projection of one rotating vector onto another in an Argand diagram, equal phase noise causes 
the two vectors to wiggle together, so that the angle between the two is always the same, and the 
projection is unchanged.  However, this means that the amplitude variations are also the same, so 
that the first two noise terms in equation (73) will add as amplitudes, not as powers, and the 
noise will be 3 dB worse than it would be for two independent lasers with slow phase locking. 
 
 Laser excess noise will degrade the SFDR when the spectral noise density of η  multiplied 
by θo

2 exceeds the shot noise.  For a 1 Hz bandwidth, this will be the case when the spectral 
noise is greater than -128 dBc/Hz.  Examination of literature data for a few solid state lasers [1] 
shows that this will be the case for frequencies lower than 100-1000 Hz.  For larger bandwidths, 
this threshold value shifts upward as the 1/3 power of bandwidth. 
 
 The lasers measured in [1] were used mostly for pulsed application, with no particular 
attempts being made to reduce amplitude noise.   None, for example, employed REN noise 
suppression techniques.  Hence, considerable improvement might be possible.  However, it is 
important to emphasize, again, that this limitation exists only at frequencies very close to the 
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modulation frequency, and that at higher offset frequencies (> 1 MHz) equation (14) in section 
2.2 holds unequivocally. 
 
1. Scott, R.P., C. Langrock, and B.H. Kolner, High-dynamic range laser amplitude and 

phase noise measurement techniques. J. Selected Topics in Quantum Electronics, 2001. 
7(4): p. 641-655. 
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Appendix B:   Effects of Finite Modulator Extinction  
 
 
 To analyze the effects of imperfect extinction, we shall represent the field amplitudes in 
each arm of the Mach Zehnder interferometer by ξ and 1-ξ, with ξ being 1/2 for perfect 
extinction.   The field emerging from the modulator is the sum of the fields from each arm,   
 
 E(t) = E1 + E2 = Es ξ cos(ωct + θ −π / 2) + (1− ξ)cos(ωc t − θ + π / 2)( ) (74) 
 
When ξ is 1/2, one gets the usual expression for fully suppressed carrier modulation,  
 
 E(t) = Es cos(ωct) sinθ(t)  (75) 
 
Applying the signal of equation (74) to the dual balanced detector described in section 2.2, and 
allowing the phase angle, φ, to have a slight offset, ∆φ, from its optimum value of π/2, gives 
 
 I1 − I2 = EsElo cos ∆φ sinθ(t) + (1− 2ξ)EsElo sin∆φ cosθ( t)  
 
The first term is the normal signal, slightly reduced by the phase offset.  The second term is the 
source of the second harmonic.  Note that when ∆φ is zero, one completely recovers the signal, 
regardless of any error in ξ. 
 
 Expanding cosθ in a power series, one finds that the second harmonic signal is 
 
 I2ω m

= 1
4 (1− 2ξ)2 IsI lo sin∆φ θo

2 cos(2ωm t)  
 
Repeating the procedure for the calculation of the SFDR outlined in section 2.2, one finds that   
the SFDR for a system having a small phase locking error, ∆φ is given by 
 

 SFDR2ω =
4

1− 2ξ sin ∆φ
Is
eB

⎛ 
⎝ 

⎞ 
⎠ 

1/2

 (76) 

 
The second harmonic begins to be a problem when this value is the same as that for IM3.  This 
will happen when  

 1− 2ξ sin ∆φ =
eB
Is

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1/6

 (77) 

 
Note that 1− 2ξ  is just the square root of the extinction ratio.  Thus, for a 20 dB extinction ratio, 
1− 2ξ  is 0.1. 
 
 
 


