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Abstract

Image segmentation is a fundamental task in image analysis responsible for partitioning an
image into multiple sub-regions based on a desired feature. Active contours have been widely
used as attractive image segmentation methods because they always produce sub-regions with
continuous boundaries, while the kernel-based edge detection methods, e.g. Sobel edge detectors,
often produce discontinuous boundaries. The use of level set theory has provided more flexibil-
ity and convenience in the implementation of active contours. However, traditional edge-based
active contour models have been applicable to only relatively simple images whose sub-regions
are uniform without internal edges.

A partial solution to the problem of internal edges is to partition an image based on the
statistical information of image intensity measured within sub-regions instead of looking for
edges. Although representing an image as a piecewise-constant or unimodal probability density
functions produces better results than traditional edge-based methods, the performances of
such methods is still poor on images with sub-regions consisting of multiple components, e.g. a
military vehicle covered by a camouflage pattern. The segmentation of this kind of multispec-
tral images is even a more difficult problem. The object of this work is to develop advanced
segmentation methods which provide robust performance on the images with non-uniform sub-
regions.

In this work, we propose a framework for image segmentation which partitions an im-
age based on the statistics of image intensity where the statistical information is represented
as a mixture of probability density functions defined in a multi-dimensional image intensity
space. Depending on the method to estimate the mixture density functions, three active con-
tour models are proposed: unsupervised multi-dimensional histogram method, half-supervised
multivariate Gaussian mixture density method, and supervised multivariate Gaussian mixture
density method. The implementation of active contours is done using level sets.

The proposed active contour models show robust segmentation capabilities on images where
traditional segmentation methods show poor performance. Also, the proposed methods provide
a means of autonomous pattern classification by integrating image segmentation and statistical
pattern classification.
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Chapter 1

Introduction

In most image analysis operations, pattern classifiers require individual objects to be separated
from the image, so the description of those objects can be transformed into a suitable form
for computer processing. Image segmentation is a fundamental task, responsible for the
separating operation. The function of segmentation is to partition an image into its constituent
and disjoint sub-regions1, which are uniform according to their properties, e.g. intensity, color,
and texture. Segmentation algorithms are generally based on either discontinuity among sub-
regions, i.e. edges, or uniformity2 within a sub-region, though there are some segmentation
algorithms relying on both discontinuity and uniformity.

1.1 Image Segmentation and Pattern Classification

The distinction between image segmentation and pattern classification is often not clear. The
function of segmentation is simply to partition an image into multiple sub-regions, while the
function of pattern classification is to identify the partitioned sub-regions. Thus, segmentation
and pattern classification usually function as separate and sequential processes. However, they
might function as an integrated process depending on the image analysis problem and the perfor-
mance of the segmentation method. In either way, segmentation critically affects the results of
pattern classification, and often determines the eventual success or failure of the image analysis.

Since segmentation is an important task in image analysis, it is involved in most image
analysis applications, particularly those related to pattern classification, e.g. medical imaging,
remote sensing, security surveillance, military target detection. The level to which segmenta-
tion is carried depends on the problem being solved. That is, segmentation should stop when
the region of interest (ROI) in the application have been isolated. Due to this property of prob-
lem dependence, autonomous segmentation is one of the most difficult tasks in image analysis.
Noise and mixed pixels caused by the poor resolution of sensor images make the segmentation
problem even more difficult. In this document, we propose novel segmentation methods using
a variational framework, called active contours.

1Partitions, sub-regions, parts, sections, objects, and segments are often interchangeably used. The term
sub-regions will be consistently used in this document.

2The terms uniformity and homogeneity are often interchangeably used. The term uniformity will be consis-
tently used in this document.
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1.2 Active Contours

Active contours are connectivity-preserving relaxation [1] methods, applicable to the image
segmentation problems. Active contours have been used for image segmentation and boundary
tracking since the first introduction of snakes by Kass et al. [2]. The basic idea is to start
with initial boundary shapes represented in a form of closed curves, i.e. contours, and itera-
tively modify them by applying shrink/expansion operations according to the constraints of
the image. Those shrink/expansion operations, called contour evolution, are performed by the
minimization of an energy function like traditional region-based segmentation methods or by
the simulation of a geometric partial differential equation (PDE) [3].

An advantage of active contours as image segmentation methods is that they partition an
image into sub-regions with continuous boundaries, while the edge detectors based on threshold
or local filtering, e.g. Canny [4] or Sobel operator, often result in discontinuous boundaries. The
use of level set theory has provided more flexibility and convenience in the implementation of
active contours. Depending on the implementation scheme, active contours can use various
properties used for other segmentation methods such as edges, statistics, and texture. In this
document, the proposed active contour models using the statistical information of image inten-
sity within a sub-region.

1.3 Terminology

A multispectral image3 is defined as a function on a two-dimensional spatial domain Ω, given
by

I(x, y) : Ω → <B, (1.1)

where the input of the function is a two-dimensional vector denoting the coordinates (x, y), and
the output is a vector-valued image intensity I ∈ <B. B denotes the dimension of I, and is
equivalent to the number of spectral bands. Figure 1.1 shows an example of a B-band image.
In this document, we define a multispectral image as a general form of images and a scalar

Figure 1.1: A multispectral image I(x, y): Ω → <B

3Four terms, multispectral images, multi-channel images, vector-valued images [5], and multi-valued images [6],
are often interchangeably used. Only the term multispectral images will be used in this document to avoid a
confusion between vector-valued images and vector (format) images [7]. Every image function introduced in this
document forms a bitmap image.
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image as a particular case of multispectral images when B = 1. The most common example
of multispectral images is an RGB image, consisting of three spectral bands: red, green, and
blue. Hyperspectral images, used in remote sensing, are other examples of multispectral im-
ages. A set of images, measured by physically different sensors and registered, are also examples
of multispectral images. As sensor fusion approaches become more popular in industrial and
medical imaging, there will be more chances to encounter multispectral images in image analysis.

In image processing, particularly medical image processing, modality refers to the type of
input [8], such as the type of sensors, e.g. MRI, CT, or the bandwidth of spectrum. Thus,
a multimodal image often refers to a multispectral image, where each channel is measured by
different modalities. In statistical pattern classification, a statistical distribution consisting of,
or representable by, multiple sub-classes4 is called multimodal distribution, while the other case
is called unimodal distribution. Figure 1.2 shows examples of the two cases. The probability

Figure 1.2: An example of unimodal (solid) and multimodal (dotted) distributions

density function (PDF) p(I), presented as the solid curve, shows a unimodal distribution, while
the mixture density function p(I) = αp1(I)+(1−α)p2(I), presented as the dotted curve, shows
a multimodal distribution. A multi-dimensional statistical distribution, e.g. a two-dimensional
Gaussian distribution, is called a multivariate distribution instead of a multimodal distribution.
Note that the terminology of modality is different in image processing and statistical pattern
classification. In this document, we use the terminology used in statistical pattern classifica-
tion, so unimodal or multimodal refers to the statistical property of image intensity whether
composed of a single class or multiple sub-classes, and univariate or multivariate refers to the
dimensionality of image intensity such as a scalar image or a multispectral image.

1.4 Motivations

Although most image segmentation methods as well as active contours assume that each sub-
region in the image has a uniform property, we often encounter images with non-uniform sub-
regions. Figure 1.3 shows examples of an image with uniform and non-uniform sub-regions.
The zebra shown in figure 1.3(b) consists of white and black strips, while the triangle shown
in figure 1.3(a) has a uniform image intensity. The statistical distribution of image intensity

4Three terms sub-classes, components, and modes are often interchangeably used. The term sub-classes will
be consistently used in this document.
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(a) (b)

Figure 1.3: Examples of gray images with uniform and non-uniform sub-regions: (a) a triangle
with uniform intensity, (b) a zebra with white and black strips

within the triangle and zebra would be similar to the graph shown in figure 1.2. Since the
statistical distribution of image intensity within the zebra has at least two modes, i.e. one for
black stripes and the other for white stripes, the segmentation method should be able to recog-
nize a mixture of sub-classes as the class representing the zebra. Otherwise, the segmentation
method would produce an over-segmentation result separating the white and black stripes or
an under-segmentation result not separating the white stripes and the background. For this
kind of problems, we propose advanced image segmentation methods using the statistical in-
formation of image intensity, where the statistical distribution of image intensity is represented
as a mixture density function.

The image segmentation problem of images with non-uniform sub-regions becomes even
more difficult when the image has multiple bands. Figure 1.4 shows examples of an RGB image
with uniform and non-uniform sub-regions. The toy car shown in figure 1.4(a) is painted with

(a) (b)

Figure 1.4: Examples of a multispectral image with uniform and non-uniform sub-regions: (a)
a toy car painted gray (RGB), (b) a toy tank covered by a camouflage pattern (RGB)

uniform gray color, and the background is also uniform. The toy tank shown in figure 1.4(b) is
painted with multiple different colors due to the camouflage pattern. The statistical distribu-
tion of vector-valued image intensity within the toy car has a single mode, while the statistical
distribution of vector-valued image intensity within the toy tank has multiple modes in a multi-
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dimensional image intensity space. For this kinds of problems, we need to estimate the statistics
of vector-valued image intensity as a mixture of multivariate density functions. As the
estimation of a multivariate mixture density function is a tough problem and requires high
computation, image segmentation using the multivariate mixture density functions is even a
more difficult problem. We propose smart ways to deal with this problem.

Image segmentation has often been considered as a preprocessing of pattern classification,
but they are not necessarily separate procedures in the case of statistical pattern classification
and region-based segmentation. A few active contour models [9, 5, 10] have integrated those
two procedures as an unsupervised segmentation, which partitions an image based on the statis-
tics of image intensity within each subset. We propose two methods which integrate image
segmentation and statistical pattern classification as a supervised segmentation, which
partitions an image based on the image intensity at each pixel and the statistical information
of training samples. This integration reduces the processing time and helps to build an au-
tonomous pattern recognition system.

The proposed active contour models are aimed at providing robust segmentation results for
complicated image analysis, i.e. multispectral images with non-uniform sub-regions, but they
are also applicable to any image segmentation problem. Possible applications are multi-sensor
radiology in medical imaging, hyperspectral image segmentation in remote sensing, and color
image segmentation.
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Chapter 2

Image Segmentation: background

There are two main approaches in image segmentation: edge- and region- based. Edge-based
segmentation partitions an image based on discontinuities among sub-regions, while region-
based segmentation does the same function based on the uniformity of a desired property
within a sub-region. In this chapter, we briefly discuss existing image segmentation technolo-
gies as background.

2.1 Edge-based Segmentation

Edge-based segmentation looks for discontinuities in the intensity of an image. It is more likely
edge detection or boundary detection rather than the literal meaning of image segmentation,
introduced in chapter 1. An edge can be defined as the boundary between two regions with rel-
atively distinct properties. The assumption of edge-based segmentation is that every sub-region
in an image is sufficiently uniform so that the transition between two sub-regions can be deter-
mined on the basis of discontinuities alone. When this assumption is not valid, region-based
segmentation, discussed in the next section, usually provides more reasonable segmentation
results.

Basically, the idea underlying most edge-detection techniques is the computation of a local
derivative operator. The gradient vector of an image I(x, y), given by

∇I =
[

∂I/∂x
∂I/∂y

]
: Ω → <2 , (2.1)

is obtained by the partial derivatives ∂I/∂x and ∂I/∂y at every pixel location. The local
derivative operation can be done by convolving an image with kernels shown in figure 2.1. The

-1
0
1

(a)

-1 0 1
(b)

Figure 2.1: Examples of gradient kernels along: (a) vertical direction, (b) horizontal direction

magnitude of the first derivative

|∇I| =
√

(∂I/∂x)2 + (∂I/∂y)2 : Ω → < (2.2)
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determines the presence of edges in an image1.

The Laplacian of an image function I(x, y) is the sum of the second-order derivatives, defined
as

∇2I =
∂2I

∂x2
+

∂2I

∂y2
: Ω → <. (2.3)

The general use of the Laplacian is in finding the location of edges using its zero-crossings [11].
A critical disadvantage of the gradient operation is that the derivative enhances noise. As
a second-order derivative, the Laplacian is even more sensitive to noise. An alternative is
convolving an image with the Laplacian of a Gaussian (LoG) function [12], given by

LoG(x, y) = − 1
πσ4

[
1− x2 + y2

2σ2

]
exp(−x2 + y2

2σ2
) : Ω → <, (2.4)

where a two-dimensional Gaussian function with the standard deviation σ is defined as

G(x, y) =
1

2πσ2
exp(−x2 + y2

2σ2
) : Ω → <. (2.5)

The LoG function produces smooth edges as the Gaussian filtering provides smoothing ef-
fect [13].

Sobel operation is performed by convolving an image with kernels shown in figure 2.2. Sobel

-1 -2 -1
0 0 0
1 2 1

(a)

-1 0 1
-2 0 2
-1 0 1

(b)

Figure 2.2: Sobel operators along: (a) vertical direction, (b) horizontal direction

operators have the advantage of providing both a derivative and a smoothing effect [11, 14].
The smoothing effect is a particularly attractive feature of the Sobel operators compared to the
gradient kernels shown in figure 2.1 because the derivative enhances noise.

Canny edge detector [15, 4] is based on the extrema of the first derivative of the Gaus-
sian operator applied to an image. The operator first smoothes the image to eliminate noise,
and then finds high gradient regions. After non-maximum suppression, the edges are finally
determined by two thresholds, i.e. τmin and τmax as shown in table 2.1. Canny edge detector
is known as an optimal edge detector because it satisfies the criteria of low error rate, good
localization of edge points, and a single response to a single edge pixel [16].

Edge detection by gradient operations generally work well only in the images with sharp
intensity transitions and relatively low noise. Due to its sensitivity to noise, some smoothing op-
eration is generally required as preprocessing, and the smoothing effect consequently blurs the
edge information. However, the computational cost is relatively lower than other segmentation
methods because the computation can be done by a local filtering operation, i.e. convolution

1Although the literal meaning of the term gradient is the gradient vector ∇I, it often refers to the magnitude
of gradient |∇I| in many publications.
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Table 2.1: Path searching in Canny edge detector
• If |∇I(x, y)| > τmax, then I(x, y) is an edge pixel.

• If τmin < |∇I(x, y)| < τmax,

– If there is a path from (x, y) to neighbor (ℵ) and |∇I(ℵ)| > τmin,
then I(x, y) is an edge pixel.

– Otherwise, I(x, y) is a non-edge pixel.

• If |∇I(x, y)| < τmin, then I(x, y) is a non-edge pixel.

of an image with a kernel. Edge-based active contour models, discussed in section 3.3, use the
magnitude of gradient |∇I| to determine the position of edges.

2.2 Region-based Segmentation

Region-based segmentation looks for uniformity within a sub-region, based on a desired prop-
erty, e.g. intensity, color, and texture. Clustering techniques encountered in pattern classifica-
tion literature have similar objectives and can be applied for image segmentation [17].

Region growing [18] is a technique that merges pixels or small sub-regions into a larger sub-
region. The simplest implementation of this approach is pixel aggregation [11], which starts with
a set of seed points and grows regions from these seeds by appending neighboring pixels if they
satisfy the given criteria. Figure 2.3 shows a simple example of pixel aggregation. Segmentation

2 4 8
3 5 9
4 6 7

(a)

2 2 9
2 2 9
2 9 9

(b)

Figure 2.3: Pixel aggregation: (a) original image with seeds underlined; (b) segmentation result
with τ = 4

starts with two initial seeds, and then the regions grow if they satisfy a criterion such as

|I(x, y)− I(seed)| < τ . (2.6)

Despite the simple nature of the algorithm, there are fundamental problems in region growing:
the selection of initial seeds and suitable properties to grow the regions. Selecting initial seeds
can be often based on the nature of applications or images. For example, the ROI is generally
brighter than the background in IR images. In this case, choosing bright pixels as initial seeds
would be a proper choice.

Additional criteria that utilize properties to grow the regions lead region growing into more
sophisticated methods, e.g. region competition. Region competition [19, 20] merges adjacent
sub-regions under criteria involving the uniformity of regions or sharpness of boundaries. Strong

10



criteria tend to produce over-segmented results, while weak criteria tend to produce poor seg-
mentation results by over-merging the sub-regions with blurry boundaries. An alternative of
region growing is split-and-merge [21], which partitions an image initially into a set of arbitrary,
disjointed sub-regions, and then merge and/or split the sub-regions in an attempt to satisfy the
segmentation criteria.

Another common approach in region-based segmentation is characterizing statistical uni-
formity of sub-regions using parametric models, so called statistical estimation. With this
approach, two sub-regions are considered to be uniform, and consequently merged, if they can
be represented by a single instance of the model, i.e. if they have common parameter values
within a threshold. In practice, the parameters of a sub-region cannot be observed directly but
can only be inferred from the observed data and the knowledge of the imaging process. In sta-
tistical approaches, this inference is often made using Bayes’s rule [22] and the conditional PDF
p(I(x, y)|θm), which presents the conditional probability that certain data I(x, y) (or statistics
derived from the data) will be observed, given that sub-region m has the parameter values of
θm. In typical statistical region merging algorithms [23], stochastic estimates in the parameter
space are obtained for different sub-regions, and merging decisions are based on the similarity
of these parameters.

A limitation of most estimation-based segmentation methods is that they do not explicitly
represent the uncertainty in the estimated parameter values and, therefore, are prone to error
when parameter estimates are poor. A Bayesian probability of homogeneity directly exploits all
of the information contained in the statistical image models, instead of estimating parameter
values [24]. The probability of homogeneity is based on the ability to formulate a prior proba-
bility density on the parameter space, and measures homogeneity by taking the expectation of
the data likelihood over a posterior parameter space.

Image segmentation is often approached by edge-preserving smoothing operations as well
as the partitioning operation. Edge-preserving smoothing techniques can be classified roughly
two approaches [25]: Markov random field (MRF) including energy-based methods [26, 27]
and diffusion-based methods [28, 29]. Both approaches show similar restoration characteris-
tics because the diffusion-based methods can be viewed as an energy-based method that uses
only the prior energy term at a given temperature [30]. Snyder et al. [31, 32, 33] proposed
an edge-preserving smoothing method for image segmentation based on the technology called
mean field annealing (MFA) [30, 34, 35, 36, 37, 38], and the same segmentation method was
extended to vector-valued images by Han et al. [25, 39]. MFA is an energy-based method for
finding the minimum of complex functions which typically have many minima [40]. For the
image segmentation problem, a proper energy function is defined intending to keep the edges
and to smooth the rest of areas in the image. The segmentation is performed by minimizing
the energy function using MFA. MFA approximates a stochastic algorithm called simulated
annealing (SA) [41], which has shown to converge to the global minimum, even for non-convex
problems [42]. Hiriyannaiah et al. [43] derived MFA using the analogy to physics for the restora-
tion of piecewise-constant images, and Bilbro et al. [42] did the same job applying the MFA to
the images with varying gray values.

Region-based approaches are generally less sensitive to noise, and usually produce more
reasonable segmentation results as they rely on global properties rather than local properties,
but their implementation complexity and computational cost can be often quite large. Statis-
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tical segmentation methods, both estimation-based and Bayesian-based, have been extended
to many active contour models including the proposed models. Those active contour models
based on statistical segmentation will be discussed in section 3.4.

2.3 Other Segmentation Methods

The watershed algorithm [46, 47] is a morphology-based segmentation method [48, 49, 50]. It
is based on the assumption that any gray-tone image can be considered as a topographic sur-
face [51]. If we flood this surface from its minima preventing the merge of the waters coming
from different sources, the surface is eventually separated as two different sets: the catchment
basins and the watershed lines. If we apply this transformation to the magnitude of image
gradient |∇I|, the catchment basins correspond to the uniform sub-regions in the image and
the watershed lines correspond to the edges. The flooding operation is simulated using mor-
phological distance operators [52, 53, 54].

Fusions of different principles have produced good results. There have been a few approaches
to integrate region- and edge-based segmentation [55, 56], and also an approach to integrate
region- and morphology-based segmentation called watersnakes [57].

Texture is another feature that we can use to determine the segmentation criteria. Images
can be considered as either a collection of pixels in the spatial domain or the sum of sinusoids of
infinite extent in the spatial-frequency domain. Gabor observed that the spatial representation
and the spatial-frequency representation are just opposite extremes of a continuum of possible
joint space/spatial-frequency representations [58]. In a joint space/spatial-frequency represen-
tations for images, frequency is considered as a local phenomenon that can vary with position
throughout the image. The human visual system is performing a form of local spatial-frequency
analysis on the retinal image, and the analysis is done by a bank of bandpass filters [59].

The same approach can be used to partition textured images in image analysis. Perceptually
significant texture differences presumably correspond to differences in the local spatial-frequency
content using the space/spatial-frequency paradigm. Texture segmentation is done by two
steps: decomposing an image into a joint space/spatial-frequency representation with a bank
of bandpass filters and using this information to locate the regions of similar local spatial-
frequency content. The response of the filter bank generates a kind of multispectral images,
where each band represents the response of the textured image at a particular spatial-frequency
bandwidth. The multi-channel filtering has been implemented by the convolution of the image
with a stack of two-dimensional Gabor filters [60, 61, 62, 63, 64] or wavelets [65, 66].
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Chapter 3

Active Contours: background

The technique of active contours has become quite popular for a variety of applications, partic-
ularly image segmentation and motion tracking, during the last decade. This methodology is
based upon the utilization of deformable contours which conform to various object shapes and
motions. This chapter provides a theoretical background of active contours and an overview of
existing active contour methods.

There are two main approaches in active contours based on the mathematic implementation:
snakes and level sets. Snakes explicitly move predefined snake points based on an energy min-
imization scheme, while level set approaches move contours implicitly as a particular level of a
function. More details about these two approaches will be discussed respectively in section 3.1
and 3.2. As image segmentation methods, there are two kinds of active contour models accord-
ing to the force evolving the contours: edge- and region-based. Edge-based active contours use
an edge detector, usually based on the image gradient, to find the boundaries of sub-regions and
to attract the contours to the detected boundaries. Edge-based approaches are closely related
to the edge-based segmentation discussed in section 2.1. Region-based active contours use the
statistical information of image intensity within each subset instead of searching geometrical
boundaries. Region-based approaches are also closely related to the region-based segmentation
discussed in section 2.2. More details of these two active contour models are respectively dis-
cussed in section 3.3 and section 3.4.

3.1 Snakes

The first model of active contour was proposed by Kass et al. [2] and named snakes due to the
appearance of contour1 evolution. Let us define a contour parameterized by arc length s as

C(s) ≡ {(x(s), y(s)) : 0 ≤ s ≤ L} : < → Ω, (3.1)

where L denotes the length of the contour C, and Ω denotes the entire domain of an im-
age I(x, y). The corresponding expression in a discrete domain approximates the continuous
expression as

C(s) ≈ C(n) = {(x(n), y(n)) : 0 ≤ n ≤ N, s = 0 + n∆s}, (3.2)
1Although snakes can be defined as opened curves, we are interested in only the case of closed curves, i.e.

contours C(0) = C(L), because our objective is image segmentation.
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where L = N∆s. An energy function E(C) can be defined on the contour such as

E(C) = Eint + Eext , (3.3)

where Eint and Eext respectively denote the internal energy and external energy functions.
The internal energy function determines the regularity, i.e. smooth shape, of the contour. A
common choice for the internal energy is a quadratic functional given by

Eint ≡
∫ L

0
α|C ′(s)|2 + β|C ′′(s)|2ds (3.4)

≈
N∑

n=0

(α|C ′(n)|2 + β|C ′′(n)|2)∆s .

Here α controls the tension of the contour, and β controls the rigidity of the contour. The
external energy term determines the criteria of contour evolution depending on the image
I(x, y), and can be defined as

Eext ≡
∫ L

0
Eimg(C(s))ds ≈

N∑
n=0

Eimg(C(n))∆s , (3.5)

where Eimg(x, y) denotes a scalar function defined on the image plane, so the local minimum
of Eimg attracts the snakes to edges. A common example of the edge attraction function is a
function of image gradient, given by

Eimg(x, y) =
1

λ|∇Gσ ∗ I(x, y)|
: Ω → <, (3.6)

where Gσ denotes a Gaussian smoothing filter with the standard deviation σ, and λ is a suitably
chosen constant. Solving the problem of snakes is to find the contour C that minimizes the
total energy term E with the given set of weights α, β, and λ. In numerical experiments, a set
of snake points residing on the image plane are defined in the initial stage, and then the next
position of those snake points are determined by the local minimum E. The connected form of
those snake points is considered as the contour.

The classic snakes provide an accurate location of the edges only if the initial contour is
given sufficiently near the edges because they make use of only the local information along the
contour. Estimating a proper position of initial contours without prior knowledge is a difficult
problem. Also, classic snakes cannot detect more than one boundary simultaneously because
the snakes maintain the same topology during the evolution stage. That is, snakes cannot split
to multiple boundaries or merge from multiple initial contours. Level set theory [3] has given a
solution for this problem.

3.2 Level Set Methods

Level set theory, a formulation to implement active contours, was proposed by Osher and
Sethian [3]. They represented a contour implicitly via a two-dimensional Lipschitz-continuous
function φ(x, y) : Ω → < defined on the image plane. The function φ(x, y) is called level set
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function, and a particular level, usually the zero level, of φ(x, y) is defined as the contour, such
as

C ≡ {(x, y) : φ(x, y) = 0}, ∀(x, y) ∈ Ω, (3.7)

where Ω denotes the entire image plane. Figure 3.1(a) shows the evolution of level set function
φ(x, y), and figure 3.1(b) shows the propagation of the corresponding contours C. As the level

(a) (b)

Figure 3.1: Level set evolution and the corresponding contour propagation: (a) topological view
of level set φ(x, y) evolution, (b) the changes on the zero level set C : φ(x, y) = 0

set function φ(x, y) increases from its initial stage, the corresponding set of contours C, i.e. the
red contour, propagates toward outside.2 With this definition, the evolution of the contour is
equivalent to the evolution of the level set function, i.e. ∂C/∂t = ∂φ(x, y)/∂t. The advantage
of using the zero level is that a contour can be defined as the border between a positive area
and a negative area, so the contours can be identified by just checking the sign of φ(x, y). The
initial level set function φ0(x, y) : Ω → < may be given by the signed distance from the initial
contour such as,

φ0(x, y) ≡ {φ(x, y) : t = 0}
= ±D((x, y), Nx,y(C0))

, ∀(x, y) ∈ Ω, (3.8)

where ±D(a, b) denotes a signed distance between a and b, and Nx,y(C0) denotes the nearest
neighbor pixel on initial contours C0 ≡ C(t = 0) from (x, y). Figure 3.2(a) shows an exam-
ple of initial contours C0, and figure 3.2(b) shows the initial level set function φ0(x, y) as the
signed distance computed from the initial contour C0. φ0(x, y) increases, i.e. become brighter,
as a pixel (x, y) is located further inwards from the initial contours C0, while φ0(x, y) decreases,
i.e. become darker, as the pixel is located further outwards from the initial contours. The initial
level set function is zero at the initial contour points given by, φ0(x, y) = 0, ∀(x, y) ∈ C0.

The deformation of the contour is generally represented in a numerical form as a PDE. A
formulation of contour evolution using the magnitude of the gradient of φ(x, y) was initially
proposed by Osher and Sethian [69, 70, 3], given by

∂φ(x, y)
∂t

= |∇φ(x, y)|(ν + εκ(φ(x, y))) , (3.9)

2In figure 3.1, the amount of level set evolution is set as a constant along the entire domain, ∂φ(x, y)/∂t = c,
∀(x, y) ∈ Ω, for easy understanding. Normally, ∂φ(x, y)/∂t is a function of spatial coordinates (x, y).
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(a) (b)

Figure 3.2: Initial contours and corresponding signed distance: (a) the initial contour C0, (b)
the initial level set function φ0(x, y) determined by the signed distance ±D((x, y), Nx,y(C0))

where ν denotes a constant speed term to push or pull the contour, κ(·) : Ω → < denotes the
mean curvature of the level set function φ(x, y) given by

κ(φ(x, y)) = div
(
∇φ

‖∇φ‖

)
=

φxxφ2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)3/2
, (3.10)

where φx and φxx denote the first- and second-order partial derivatives of φ(x, y) respect to x,
and φy and φyy denote the same respect to y. The role of the curvature term is to control the
regularity of the contours as the internal energy term Eint does in the classic snakes model, and
ε controls the balance between the regularity and robustness of the contour evolution.

Another form of contour evolution was proposed by Chan and Vese [9, 71]. The length of
the contour |C| can be approximated by a function of φ(x, y) [72, 73], such as

|C| ≈ Lε(φ(x, y)) =
∫

Ω
|∇Hε(φ(x, y))|dxdy

=
∫

Ω
δε(φ(x, y))|∇φ(x, y)|dxdy , (3.11)

where Hε(·) denotes the regularized form of the unit step function3 H(·): Ω → < given by

H(x, y) =
{

1, if φ(x, y) ≥ 0
0, if φ(x, y) < 0

, ∀(x, y) ∈ Ω , (3.12)

and δε(·) denotes the derivative of Hε(·). Since the unit step function produces either 0 or
1 depending on the sign of the input, the derivative of the unit step function produces non-
zero only where φ(x, y) = 0, i.e. on the contour C. Consequently, the integration shown in
equation 3.11 is equivalent to the length of contours on the image plane. The associated Euler-
Lagrange equation [74] obtained by minimizing Lε(·) with respect to φ and parameterizing the

3This unit step function is often referred to Heaviside function.
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descent directions by an artificial time t is given by

∂φ(x, y)
∂t

= δε(φ(x, y))κ(φ(x, y)). (3.13)

The contour evolution motivated by the equation above can be interpreted as the motion by
mean curvature minimizing the length of the contour. Therefore, equation 3.9 is considered as
the motion motivated by PDE, while equation 3.13 is considered as the motion motivated by
energy minimization.

An outstanding characteristic of level set methods is that contours can split or merge as the
topology of the level set function changes. Therefore, level set methods can detect more than
one boundary simultaneously, and multiple initial contours can be placed. Figure 3.3(a) shows
an example of the topological changes on a level set function, while figure 3.3(b) shows how the
initially separated contours merge as the topology of level set function varies. This flexibility

(a) (b)

Figure 3.3: The change of topology observed in the evolution of level set function and the
propagation of corresponding contours: (a) the topological view of level set φ(x, y) evolution,
(b) the changes on the zero level set C : φ(x, y) = 0

and convenience provide a means for an autonomous segmentation by using a predefined set of
initial contours. The computational cost of level set methods is high because the computation
should be done on the same dimension as the image plane Ω. Thus, the convergence speed is
relatively slower than other segmentation methods, particularly local filtering based methods.
The high computational cost can be compensated by using multiple initial contours. The use
of multiple initial contours increases the convergence speed by cooperating with neighbor con-
tours quickly. Level set methods with faster convergence, called fast marching methods [75],
have been studied intensively for the last decade. Because of these attractive properties, we
implement the proposed active contour model using the level set method.

3.3 Edge-based Active Contours

Edge-based active contours are closely related to the edge-based segmentation. Most edge-based
active contour models consist of two parts: the regularity part, which determines the shape of
contours, and the edge detection part, which attracts the contour towards the edges.
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Geometric active contour model was proposed by Caselles et al. [79] adding an additional
term, called stopping function, to the speed function shown in equation 3.9. It was the first
level set implemented active contour model for the image segmentation problem. Malladi et
al. [80, 76] proposed a similar model given by

∂φ(x, y)
∂t

= g(I(x, y))(κ(φ(x, y)) + ν)|∇φ(x, y)|, (3.14)

where g(·) : Ω → < denotes the stopping function, i.e. a positive and decreasing function of
the image gradient. A simple example of the stopping function is given by

g(I(x, y)) =
1

1 + |∇I(x, y)|n
, (3.15)

where n is given as 1 in [79] and 2 in [80]. Note that |∇I(x, y)| can be interchangeably used
with Eimg shown in equation 3.6. The contours move in the normal direction with a speed of
g(I(x, y))(κ(φ(x, y))+ ν), and therefore stops on the edges, where g(·) vanishes. The curvature
term κ(·) maintains the regularity of the contours, while the constant term ν accelerates and
keeps the contour evolution by minimizing the enclosed area [81].

Geodesic active contour model was proposed by Caselles et al. [82, 83] after the geometric
active contour model. Kichenassamy et al. [84] and Yezzi et al. [85] also proposed a similar
active contour model. Based on the principle of the classic dynamic systems, solving the active
contour problem is equivalent to finding a path of minimal distance, called geodesic curve [86]
given by

∂C

∂t
= (g(I(x, y))κ(φ(x, y))−∇g(I(x, y)) · N )N , (3.16)

where N denotes the inward unit normal4 given by

N = − ∇φ

‖∇φ‖
. (3.17)

From the relation between a contour and a level set function and the level set formulation of
the steepest descent method, solving this geodesic problem is equivalent to searching for the
steady state of the level set evolution equation [82, 87] given by

∂φ(x, y)
∂t

= g(I(x, y))(κ(φ(x, y)) + ν)|∇φ(x, y)|+∇g(I(x, y)) · ∇φ(x, y), (3.18)

where ν is an additional speed term to accelerate the evolution.5 The equivalence between clas-
sic snakes and geodesic active contours has been also shown by other authors [88, 89, 90, 91] in
slightly different views. We can notice that the geodesic active contour model shown in equa-
tion 3.18 is identical to the geometric active contour model shown in equation 3.14 except for
the advection term ∇g(I(x, y)) · ∇φ(x, y). Geodesic active contours have been the most pop-
ular methods among the edge-based active contour models, and their applications have been
extended to multispectral images by Sapiro.

Color snakes is the geodesic active contour model particularly for multispectral images
proposed by Sapiro [86, 92, 93, 87]. In order to detect the edges in multispectral images, a

4Some authors define N as the outward unit normal with an opposite sign.
5The level set function still slowly converges even without ν.
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special gradient function based on Riemannian geometry, called color gradient function, is used
instead of the traditional image gradient function. A simple example of the color gradient
function is given by

g(I(x, y)) =
1

1 + (λ+ − λ−)
, (3.19)

where λ+ and λ− respectively present the maximal and the minimal rate of changes on the
multispectral image I(x, y). λ+ and λ− are the eigenvalues of the metric tensor [94] given by

[
g11 g12

g21 g22

]
=

∑
b

 (
∂Ib
∂x

)2
∂Ib
∂x

∂Ib
∂y

∂Ib
∂y

∂Ib
∂x

(
∂Ib
∂y

)2

 , (3.20)

where Ib denotes the b-th band of the multispectral image I(x, y). In the case of scalar images,
i.e. gray images, λ+ = |∇I|2 and λ− = 0, so the stopping function shown in equation 3.19
become identical to equation 3.15. Sapiro also introduced color self-snakes [86, 95, 93, 87],
which diffuse the image in the same way that we evolve the level set function. This is an edge-
preserving smoothing method like MFA or image diffusion using active contours.

Due to the structure of the speed functions and the stopping functions in equation 3.9
and equation 3.18, edge-based active contour models have a few disadvantages compared to the
region-based active contour models, discussed in the next section. Because of the constant term
ν, edge-based active contour models evolve the contour towards only one direction, either inside
or outside. Therefore, an initial contour should be placed completely inside or outside of ROI,
and some level of a prior knowledge is still required. Also, edge-based active contours inherit
some disadvantages of the edge-based segmentation methods due to the similar technique used.
Since both edge-based segmentation and edge-based active contours rely on the image gradient
operation, edge-based active contours may skip the blurry boundaries, and they are sensitive
to local minima or noise as edge-based segmentation does. Gradient vector flow fast geodesic
active contours [96, 97] proposed by Paragios replaced the edge detection (boundary attraction)
term with gradient vector field [98, 99, 100, 101, 102], that refers to a spatial diffusion of the
boundary information and guides the propagation to the object boundaries from both sides, to
give more freedom from the restriction of initial contour position.

3.4 Region-based Active Contours

Most region-based active contour models consist of two parts: the regularity part, which de-
termines the smooth shape of contours, and the energy minimization part, which searches for
uniformity of a desired feature within a subset. A nice characteristic of region-based active
contours is that the initial contours can be located anywhere in the image as region-based
segmentation relies on the global energy minimization rather than local energy minimization.
Therefore, less prior knowledge is required than edge-based active contours.

Piecewise-constant active contour6 model was proposed by Chan and Vese [9, 71] using the
Mumford-Shah segmentation model [105, 106]. Piecewise-constant active contour model moves

6Although the titles of [9, 71] are “Active Contours without Edges,” all region-based active contours introduced
in this section also do not use edge information. Thus, we refer to this method as piecewise-constant active contour
model through this document.
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deformable contours minimizing an energy function instead of searching edges. A constant ap-
proximates the statistical information of image intensity within a subset, and a set of constants,
i.e. a piecewise-constant, approximate the statistics of image intensity along the entire domain
of an image. The energy function measures the difference between the piecewise-constant and
the actual image intensity at every image pixel. The level set evolution equation is given by

∂φ(x, y)
∂t

= δε(φ(x, y))[νκ(φ(x, y))− {(I(x, y)− µ1)2 − (I(x, y)− µ0)2}], (3.21)

where µ0 and µ1 respectively denote the mean of the image intensity within the two subsets,
i.e. the outside and inside of contours. The final partitioned image can be represented as a set
of piecewise-constants, where each subset is represented as a constant. This method has shown
the fastest convergence speed among region-based active contours due to the simple represen-
tation. Lee et al. [107] showed an improvement to the piecewise-constant active contour model
on illuminated images by proposing an alternative energy function.

Piecewise-smooth active contour model, an extension of piecewise-constant model using a
set of smoothed partial images, was also proposed by Chan and Vese [108, 109, 110, 111, 112].
The same segmentation principles used for piecewise-constant model partitions an image, but
a smoothed partial images instead of constants represent each subset. The level set evolution
equation is given by

∂φ(x, y)
∂t

= δε(φ(x, y))
[

νκ(φ(x, y))− {(I(x, y)− µ1(x, y))2 − (I(x, y)− µ0(x, y))2}
−ω(|∇µ1(x, y)|2 − |∇µ0(x, y)|2)

]
, (3.22)

where µ0(x, y) and µ1(x, y) respectively denote the smoothed images within the outside and
inside of contours. The segmentation result of piecewise-smooth active contours is similar to
the segmentation by color self-snakes because of the similar approach.

Although traditional region-based active contours partition an image into multiple sub-
regions, those multiple regions belong to only two subsets: either the inside or the outside
of contours. Chan and Vese proposed multi-phase active contour model7 [108, 74, 113, 114,
115], which increases the number of subsets8 that active contours can find simultaneously.
Multiple active contours evolve independently based on the piecewise-constant model shown in
equation 3.21 or the piecewise-smooth model shown in equation 3.22, and multiple subsets are
defined by a group of disjoint combination of the level set functions. For example, N level set
functions define maximum 2N subsets of the entire region. An example of subsets defined by
4-phase active contours is

Ω0

Ω1

Ω2

Ω3

 ≡

(x, y) :


φ2(x, y) < 0, φ1(x, y) < 0
φ2(x, y) < 0, φ1(x, y) > 0
φ2(x, y) > 0, φ1(x, y) < 0
φ2(x, y) > 0, φ1(x, y) > 0


 , (3.23)

7Here, the term multi refers to more than two instead of more than one. Two terms phase and subset are
considered identical in the image segmentation problem, and used interchangeably in this document.

8A sub-region refers to a group of image pixels that have similar property and reside within the same bound-
aries. A subset refers to a group of the subregions that have similar property but does not necessarily reside
within the same boundary.
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where {Ω0,Ω1,Ω2,Ω3} denote the four subsets defined by two level set functions {φ1, φ2},
i.e. two active contours. The level set evolution equation for this case is given by

∂φ1(x, y)
∂t

= δε(φ1(x, y))

νκ(φ1(x, y))−


{

(I(x, y)− µ3)2−
(I(x, y)− µ2)2

}
H2+{

(I(x, y)− µ1)2−
(I(x, y)− µ0)2

}
(1−H2)




∂φ2(x, y)
∂t

= δε(φ2(x, y))

νκ(φ2(x, y))−


{

(I(x, y)− µ3)2−
(I(x, y)− µ1)2

}
H1+{

(I(x, y)− µ2)2−
(I(x, y)− µ0)2

}
(1−H1)


 ,(3.24)

where Hn ≡ Hε(φn(x, y)) and {µ0, µ1, µ2, µ3} denote the mean of image intensity within
the corresponding subsets {Ω0,Ω1,Ω2,Ω3}. Rousson and Deriche [116, 10, 117] and Yezzi et
al. [118, 119] proposed a similar multi-phase active contour model for segmentation problems,
and Samson et al. [120, 121, 122] also proposed a multi-phase active contour model for pattern
classification problems. Multi-phase active contours provide a means to integrate segmentation
and pattern classification tasks. m-phase active contours partition the image into multiple
sub-regions (� m), and they simultaneously identify those regions into m-subsets, i.e. classes.
Depending whether training samples are provided or not, supervised or unsupervised segmen-
tation can actually perform supervised or unsupervised pattern classification. This provides
a way to the autonomous pattern classification technology reducing the number of procedures
and processing time.

The same segmentation principle can be extended to multispectral images by taking the
mean of energy functions measured at each band [5, 123]. The level set evolution equation of
2-phase active contour model is given by

∂φ(x, y)
∂t

= δε(φ(x, y))[νκ(φ(x, y))−
B∑
b

{ω1b(Ib(x, y)− µ1b)2 − ω0b(Ib(x, y)− µ0b)2}], (3.25)

where µi = [µi1, µi2, . . . , µib, . . . , µiB]T denotes the mean vector of the vector valued image in-
tensity I(x, y) within the corresponding subset Ωi.

Rousson and Deriche proposed a variational formulation obtained from a Bayesian segmen-
tation model [116, 10, 117]. While the piecewise-constant active contour model uses a group of
constants to represent subsets, this method implicitly uses a conditional PDF of a given value
I(x, y) with respect to the hypothesis, i.e. a unimodal (multivariate) Gaussian distribution,
given by

p(I(x, y)|{µi,Σi}) =
1

(2π)d/2|Σi|1/2
exp

(
−1

2
(I(x, y)− µi)

TΣ−1
i (I(x, y)− µi)

)
, (3.26)

where µi and Σi are the parameters of a (multivariate) Gaussian distribution. Taking the
negative log form of the PDF as an energy function, the level set evolution equation minimizing
the energy function is given by

∂φ(x, y)
∂t

= δε(φ(x, y))[νκ(φ(x, y))− {e1(x, y)− e0(x, y)}] , (3.27)
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where the objective functions ei are given by

ei(x, y) ≡ − log p(I(x, y)|µi,Σi)
' log |Σi|+ (I(x, y)− µi)

TΣ−1
i (I(x, y)− µi). (3.28)

The extension of this method for multispectral images is trivial as the energy function is based
on the multivariate PDF. A unique feature of this method is that multivariate PDF consider
each band of multispectral images as independent dimension of an image intensity space. Mul-
tivariate PDF does not make big improvement in this active contour model, but it does make
a significant improvement in the proposed active contour models using a mixture density func-
tion. More detail of the improvement will be discussed in chapter 5.2.

Due to the global energy minimization, region-based active contours generally do not have
any restriction on the placement of initial contours. That is, region-based active contour can
detect interior boundaries regardless of the position of initial contours. The use of pre-defined
initial contours provides a method of autonomous segmentation. Also, they are less sensitive
to local minima or noise than edge-based active contours. However, due to the assumption
of uniform image intensity, most methods are applicable only to images where each subset is
representable by a simple expression, e.g. single Gaussian distribution or a constant. If a sub-
set, i.e. class, consists of multiple distinctive sub-classes, e.g. the zebra shown in figure 1.3(b),
these methods would produce over-segmented or under-segmented results. We propose novel
region-based active contour models which produce improved results using multivariate mixture
density functions.

3.5 Active Contours Integrating Edge- and Region-based Seg-
mentation

In order to improve the segmentation performance, the integration of edge- and region-based
information sources using active contours has been proposed by a few authors. Geodesic active
region is a supervised active contour model, proposed by Paragios [124, 125, 126], integrating
edge- and region-based segmentation module in an energy function. A statistical analysis
based on the Minimum Description Length (MDL) criterion and the Maximum Likelihood
(ML) principle for the observed density function, i.e. an image histogram, indicates the number
of sub-regions and the statistical PDF within those sub-regions using a mixture of Gaussian
elements. Regional probability is estimated from the statistical PDF based on prior knowledge,
i.e. training samples. Then, the boundary information is determined by a probabilistic edge
detector, estimated from the regional probabilities of neighborhood [127, 128]. For example,
an image pixel is more likely an edge pixel if the neighborhood pixels, located on the opposite
sides, have high regional probabilities for a different class. The level set evolution equation is
given by

∂φ(x, y)
∂t

= |∇φ(x, y)|

 α
∑

b ωb log
(

p1(Ib(x,y))
p2(Ib(x,y))

)
+

(1− α)
{

g(pB(x, y))κ(φ(x, y)) +∇g(pe(x, y)) · ∇φ(x,y)
|∇φ(x,y)|

}  (3.29)

where Ib(x, y) denotes b-th band of a multispectral image I(x, y), and pi(Ib(x, y)) denotes the
regional probability presenting a probability that a pixel Ib(x, y) belongs to sub-region i, pe(x, y)
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denotes the probabilistic edge detector presenting a probability that a boundary pixel is located
at (x, y), and g(pe) denotes a positive and decreasing function of the probability. The regional
probability is computed from each band and accumulated. A detail to determine both proba-
bilities, pi(Ib(x, y)) and pe(x, y), is explained in [128]. The geodesic active region model is later
applied to a medical imaging problem [129, 130] with a gradient vector flow-based boundary
component. The approach was based on a coupled propagation of two active contours, and
integrates visual information with anatomical constraints.

Jehan-Besson et al. also proposed an active contour model [131, 132] minimizing an en-
ergy criterion involving both region and boundary functionals. These functionals are derived
through a shape derivative approach instead of classical calculus of variation. They focus on
statistical property, i.e. the PDF of the color histogram of a sub-region. Active contours are
propagated minimizing the distance between two histograms for matching or tracking purposes.
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Chapter 4

Region-based Segmentation using
Active Contours

Region-based segmentation looks for uniformity within a sub-region based on a desired feature,
e.g. intensity, color, and texture. Region-based active contour models have shown attractive
characteristics, such as the unrestricted position of initial contours, the automatic detection of
interior boundaries, and reasonable segmentation due to global energy minimization though the
segmentation results are still case dependent. Region-based active contours evolve deformable
shapes based on two forces: energy minimization based on the statistical properties, which pur-
sues the uniformity within each subset, and curvature motion motivated by level set function,
which keeps the regularity of active contours. In this chapter, we propose a novel segmentation
principle based on regional energy minimization using the statistics of image intensity. First,
we redefine the terminology used in the image segmentation problem in section 4.1. Then,
we discuss the base segmentation model, proposed by Mumford-Shah, of the proposed active
contour model in section 4.2. Finally, we discuss the proposed segmentation principle and its
implementation in section 4.3.

4.1 Image, Subset, and Sub-region

Let us redefine the notation of terms used in our segmentation model.1 As introduced in
chapter 1, an image I(x, y) is the native input data of the image analysis, given as a form of
a function defined on a two-dimensional spatial domain. We define a multispectral image as
a general form of images and a scalar image as a particular case of multispectral images. A
multispectral image I(x, y) can be defined as a set of vectors given by

I(x, y) ≡ [I1(x, y), I2(x, y), . . . , Ib(x, y), . . . , IB(x, y)]T : Ω → <B, (4.1)

where Ib(x, y) denotes a scalar image measured at band b. Let the vector-valued image intensity
of I(x, y) be a multi-dimensional random variable I ∈ <B where B denotes the dimension of I
and is equivalent to the number of optical bands measured.

Let Ψ represent the entire region of an image I(x, y). Image segmentation is a task to par-
tition the entire region Ψ into n sub-regions, {Ψ1,Ψ2, . . . ,Ψi, . . . ,Ψn}, with the criteria shown
in table 4.1. Ci denotes the boundary wrapping sub-region Ψi. The first and second condi-

1These notations are not necessarily identical to the terms introduced in other publications.
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Table 4.1: The criteria of general image segmentation

1. C =
n⋃

i=1
Ci.

2. Ci
⋂

Cj 6= ∅ if Ψi and Ψj are neighbors.

3. Ψ =
(

n⋃
i=1

Ψi

) ⋃
C.

4. I(x, y) are connected, ∀(x, y) ∈ Ψi, ∀i.

5. Ψi
⋂

Ψj = ∅, ∀i, j, if i 6= j.

tions indicate the property of boundaries wrapping sub-regions {Ψi}. As each sub-region has
a boundary, the boundaries of two neighbor sub-regions are overlapped. C denotes the entire
set of boundaries.2 The third condition indicates that the segmentation must be complete;
that is, every image pixel should be an element of a sub-region Ψi or boundaries C. The fourth
condition requires that all image pixels in a sub-region must be connected in a predefined sense;
that is, they should be located at the inside of a boundary. The fifth condition indicates that
the sub-regions must be disjoint each other, so an image pixel should be an element of only
one sub-region. Here, we can notice the difference between the image segmentation problem
and the pattern classification problem. A data sample can be a member of multiple classes in
pattern classification, but an image pixel should be a member of only one sub-region in image
segmentation.

Table 4.1 lists the criteria of general image segmentation, and we here introduce slightly
different criteria for region-based segmentation. Let a set Ω, instead of a region Ψ, represent the
entire domain of an image I(x, y). The region-based image segmentation is a task to partition
the entire set Ω of an image into m subsets, {Ω1,Ω2, . . . ,Ωi, . . . ,Ωm}, with the criteria shown in
table 4.2. The only difference between a subset Ωi and a sub-region Ψj is that a subset Ωi does

Table 4.2: The criteria of region-based image segmentation

1. C =
m⋃

i=1
Ci.

2. Ci
⋂

Cj 6= ∅ if Ωi and Ωj are neighbors.

3. Ω =
(

m⋃
i=1

Ωi

) ⋃
C.

4. Ωi
⋂

Ωj = ∅ for ∀i, j if i 6= j.

not necessarily form a spatial unit. That is, Ωi may contain multiple sub-regions Ψj residing
in different spatial locations on the entire set Ω of an image. Following expression shows the
relation between n subsets and m sub-regions:

(Ω = Ψ) ⊇ Ωi ⊇ Ψj ⊇ (x, y), (4.2)
2The width of a boundary is often considered as infinitely small in continuous expression.
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where i = 1, 2, . . . ,m and j = 1, 2, . . . , n.3 (Ω = Ψ) denotes the entire set of an image as the
largest possible spatial unit, while (x, y) denotes an image pixel as the smallest possible spatial
unit. Figure 4.1 shows an example that sub-regions and subsets are not identical. The entire set

Figure 4.1: Subsets {Ω0,Ω1} and sub-regions {Ψ0,Ψ1,Ψ2}

of the image (Ω = Ψ) consists of two subsets {Ω0,Ω1} and three sub-regions {Ψ0,Ψ1,Ψ2}. A
subset Ω1 exists at two different spatial locations, where each of them is independently marked
as Ψ1 and Ψ2. Therefore, two main approaches of segmentation, i.e. edge- and region-based,
can be reintroduced such that edge-based segmentation partitions an image I(x, y) into multiple
sub-regions Ψj searching for discontinuities among sub-regions, while region-based segmenta-
tion partitions an image I(x, y) into multiple subsets Ωi searching for uniformity within a subset
Ωi.

4.2 The Base Segmentation Model

Mumford and Shah [105, 106] posed the image segmentation problem as a variational problem to
find an optimal piecewise-smooth approximation f(x, y) of the given scalar image I(x, y) and a
set of boundaries C, such that the approximation f(x, y) varies smoothly within the connected
components of the subsets excluding the boundaries, i.e. Ω\C. They proposed to solve the
variational segmentation problem by minimizing the following global energy function [74]

EMS(f, C) ≡
∫

Ω
|I(x, y)− f(x, y)|2dxdy + µ

∫
Ω\C

|∇f(x, y)|2dxdy + ν|C|, (4.3)

with respect to two terms, the approximation f of the given image and the variational bound-
aries C. The global energy function EMS consists of three parts. The minimization of the first
part approximates the image I(x, y) with an alternative expression f(x, y) by minimizing the
squared difference between the two expressions |I(x, y)−f(x, y)|2. The second part piecewisely
smoothes f(x, y) by minimizing |∇f(x, y)|2 on Ω\C. C has the role of approximating the edges
of I(x, y). The third part smoothes C by minimizing4 the length |C|. The existence and regu-
larity of the solution of the problem above is proven in [136, 105].

3According to the definition, m ≤ n in general, but it can be m � n depending on the image.
4In the original publication [108, 105, 106], the integration respect to one-dimensional Hausdorff measure was

used instead of |C|. The equivalence between two expressions |C| =
R

C
dH1 is shown in [74].
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The global piecewise approximation f(x, y) can be represented as a sum of sub-approximations
given by

f(x, y) ≡
∑

i

fiχi(x, y), ∀(x, y) ∈ Ω, (4.4)

where fi approximates the given multispectral image I(x, y) within Ωi, and χi(x, y) : Ω → {0, 1}
is determined by the spatial domain of Ωi such as

χi(x, y) =
{

1 , ∀(x, y) ∈ Ωi

0 , ∀(x, y) /∈ Ωi

}
, ∀i. (4.5)

Note that fi is not necessarily an image function but any expression that represents the feature,
used as the region-based segmentation criteria, of the image within Ωi.

The global energy function EMS(f, C) given in equation 4.3 can be simplified and generalized
by ignoring the smoothing term and defining independent objective functions for each subset,
such that

E({fi}, C) ≡
∑

i

∫
Ωi

e(x, y|fi)dxdy + ν|C|, (4.6)

where the variational contour C determines the domain of variational subsets Ωi. The objective
function e(x, y|fi) : Ω → < determines the condition of region-based segmentation within each
Ωi, e.g. the uniformity of image intensity I, and how well the approximation fi represents the
given image. Better fi results in lower e for each Ωi, consequently lower E. The minimum of E
is achieved by two sequential minimization procedures. First, the minimization of E with re-
spect to each of fi, while C is fixed, finds the best representations of each Ωi of the given image
I(x, y) minimizing the objective function e(x, y|fi). Then, the minimization of E with respect
to C, while {fi} are fixed, smoothes the variational boundaries C minimizing |C|. Combination
of these two minimizations leads to the region-based active contour evolution, which moves a
set of contours C satisfying the segmentation constraints on the given image.

Depending on the objective function e(x, y|fi) and representation fi, various active contour
models can be achieved from the global energy function shown in equation 4.6. The energy
function of piecewise-constant active contour model [5] can be transformed to equation 4.6 with
an objective function

e(x, y|fi ≡ µi) =
1
B

B∑
b=1

(Ib(x, y)− µi,b)2, ∀(x, y) ∈ Ωi, ∀i, (4.7)

where fi is given as a vector µi ≡ [µ1, . . . , µb, . . . , µB]T ∈ <B. The optimal fi minimizing E is
the mean vector of I(x, y) within Ωi. The energy function of [10] also can be transformed to
the same form with an objective function

e(x, y|fi ≡ {µi,Σi}) = log |Σi|+ (I(x, y)− µi)
TΣ−1

i (I(x, y)− µi), ∀(x, y) ∈ Ωi, ∀i, (4.8)

where fi is given as a set of parameters, i.e. the mean vector µi and covariance matrix Σi of a
multivariate Gaussian PDF. The optimal fi minimizing E is the mean vector µ and covariance
matrix Σ of I(x, y) within Ωi.
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4.3 Proposed Region-based Segmentation Model

The objective function of a piecewise-constant active contour model shown in equation 4.7 mea-
sures the average Euclidean distance between the vector-valued image intensity I(x, y) and the
mean vector µi of I(x, y) within a subset Ωi. The objective function shown in equation 4.8
measures the Mahalanobis distance [22] between I(x, y) and µi weighted by the covariance Σi.
Thus, both objective functions produce the minimum if I(x, y) = µi, and produce larger val-
ues as I(x, y) and µi are located further from each other in the image intensity space. The
assumption of these approaches is that there is a constant value, i.e. fi = µi or fi = {µi,Σi},
which best represents Ωi, and consequently the entire image is representable as a piecewise-
constant expression f . However, many images we encounter in image segmentation problems,
particularly the images with non-uniform subsets such as the zebra in figure 1.3(b), are too
complicated to be represented as a piecewise-constant expression. Therefore, we propose an ob-
jective function, which uses a conditional PDF of I(x, y) instead of a distance between I(x, y)
and {fi}. With the proposed objective function, there is no certain best representation fi but
a PDF representation pi for each Ωi. Depending on the method to estimate the PDF, there are
two approaches, unsupervised and supervised. Unsupervised method partitions images looking
for uniform statistics of image intensity within a subset, while supervised method does the
same job looking for similarity between the statistics of image intensity and the corresponding
training samples for a subset.

If an image pixel is likely be an element of a subset, the objective function should produce
a lower value under the assumption of I(x, y) ∈ Ωi. If an image pixel is unlikely be an element
of the subset, the objective function should produce higher value under the same assumption.
The objective function

e(x, y|pi) = − log pi, ∀(x, y) ∈ Ω, ∀i, (4.9)

provides the desired feature where pi denotes an unsupervised multivariate conditional PDF
of vector-valued image intensity I on the condition that I(x, y) is an element of Ωi, given by

pi ≡ p(I(x, y)|(x, y) ∈ Ωi), ∀i. (4.10)

If pi is fixed as a Gaussian distribution, equation 4.9 is equivalent to equation 4.8. Note that
the proposed objective function may have multiple local maxima, while the objective functions
in equation 4.7 and 4.8 have only a global minimum. The corresponding global energy function
is given by

E({pi}, C) ≡
∑

i

∫
Ωi

e(x, y|pi)dxdy + ν|C|. (4.11)

The minimum of E is achieved by a similar way to minimize equation 4.6. First, instead of
minimizing E with respect to each fi, we estimate the conditional probability pi from the given
image, which is equivalent to finding the best fitting fi. The estimated pi provides a force
moving the active contour C to the proper position where C divides the entire domain Ω of the
image I(x, y) into multiple subsets {Ωi}, i.e. satisfying the segmentation constraints. Then, the
minimization of E with respect to C, while {pi} are fixed, smoothes the variational boundaries
C minimizing |C|.

If some level of prior knowledge, i.e. training samples, of an object is available, we can
estimate the conditional PDF p(I|Ωi) directly from the training samples, such that

p(I|Ωi) ≈ p̂(I|Ωi) = p(I|Ii), (4.12)
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where Ii = {I1, . . . , In, . . . , IN} denotes the ideally sampled training data or a statistical tem-
plate of the object, which is supposed to be isolated as a subset Ωi in the result of the seg-
mentation. p(I|Ii) : <B → < denotes a multivariate conditional PDF of a vector-valued image
intensity I on the condition that the multispectral image pixel is an element of training samples
Ii. An objective function similar to equation 4.9 can be used with a supervised conditional
PDF given by

ei(x, y) = − log p(I(x, y)|I(x, y) ∈ Ii), ∀(x, y) ∈ Ω, ∀i, (4.13)

where ei(x, y) measures the similarity between the statistics of I and Ii. Since the best fitting
PDF is given from training samples instead of the given image, the minimization of E with
respect to pi is not necessary in supervised methods, and the global energy function shown in
equation 4.11 can be simplified as a function of C only, such as

E(C) ≡
∑

i

∫
Ωi

ei(x, y)dxdy + ν|C|. (4.14)

This will simplify the segmentation procedure, consequently reducing the convergence time of
active contours. Since the best fitting p(I|Ωi) is given, the segmentation result will be also more
robust than the result of unsupervised methods.

Various expressions can be used for p(I|Ωi) as long as they satisfy the unit volume condition:∫
I
p(I|Ωi) = 1, or

∑
I

p(I|Ωi) = 1, ∀i. (4.15)

For example, either a parametric continuous PDF, e.g. a Gaussian density function p(I|µi,Σi),
or a non-parametric discrete PDF can be used as long as they are integrated as one. The details
of proposed model for p(I|Ωi) will be discussed in chapter 5, and the estimation methods will
be discussed in chapter 6.
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Chapter 5

Probability Density Model

The objective of region-based segmentation is to partition the entire set Ω of an image into
multiple disjoint subsets {Ωi} based on the uniformity of a desired feature within each Ωi. Un-
fortunately, image intensity within a subset Ωi is not always uniform in practical applications.
Subsets often form a mixture of multiple sub-classes, e.g. the zebra shown in figure 1.3(b) or
the camouflage pattern on the toy tank shown in figure 1.4(b). In this chapter, we propose a
multivariate mixture density function as the statistical model of vector-valued image intensity
used for image segmentation. Section 5.1 discusses the need and use of a mixture density func-
tion as the statistical model of scalar image intensity. Section 5.2 extends the use of mixture
density function to the case of multispectral images comparing the multivariate mixture density
function and the product of marginal density functions which has been commonly used in other
segmentation methods.

5.1 Mixture Density Function

The assumption of segmentation models introduced in section 4.2 is that the statistical infor-
mation of image intensity within each subset is representable by a simple expression fi, such
as a vector-valued constant µi as shown in equation 4.7 or a small number of parameters {µi,
Σi} as shown in equation 4.8. However, the statistical distribution of image intensity of a
subset is often unrepresentable in a simple form. Figure 5.1 shows an example of an image with
non-uniform subsets and its hand-segmented result. Figure 5.1(a) shows a result of diffusion
applied on figure 1.3(b). The background is quite uniform, and the statistical distribution (his-
togram) of image intensity within the background forms a unimodal density function as shown
in figure 5.2(b). The actual histogram of the background presented as the solid line can be rea-
sonably represented with a Gaussian density function presented as the dotted line. However,
the zebra consists of black and white stripes, and the statistical distribution of image intensity
within the zebra is not unimodal as shown in figure 5.2(a). The higher peaks located about
I ≈ 30 and I ≈ 50 in figure 5.2(a) present the black stripes of zebra, and the relatively lower
peaks located about I ≈ 100 and I ≈ 150 present the white stripes of zebra. Thus, a Gaussian
density function cannot simply represent the actual statistical distribution (histogram) of image
intensity within the zebra though it can represent the background.

We propose to use a mixture of probability density functions as the feature represent-
ing the statistical property of image intensity I within a subset Ωi, such that the conditional
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(a) (b)

Figure 5.1: A multimodal image and its ground truth: (a) a zebra, (b) the hand-segmented
image

(a) (b)

Figure 5.2: A multimodal distribution of image intensity and its representation using a unimodal
Gaussian distribution: (a) zebra and (b) background of figure 5.1(a)

PDF of I on the condition I(x, y) ∈ Ωi is given by

p(I|Ωi) ≡ pi(I) =
K∑

k=1

αkpi(I|k), ∀i, (5.1)

where K denotes the number of sub-classes of the mixture, and pi(I|k) : < → < denotes the
conditional PDF of I on the condition that I(x, y) is an element of Ωi and I(x, y) is generated
by the sub-class k. The weights {αk} of each sub-class, often called mixing probabilities, satisfy

K∑
k=1

αk = 1. (5.2)

Using a mixture density function, the histogram shown in figure 5.2(a) can be represented as a
mixture of at least two simple parametric density functions.

5.2 Multivariate Mixture Density Function

We proposed to use a mixture density function for scalar images in section 5.1. How about
multispectral images? The mixture density function of scalar image intensity I shown in equa-
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tion 5.1 is a complicated statistical model, and a mixture density function of vector-valued image
intensity I is an even more complicated statistical model. For example, the histogram of 24bit
RGB image intensity requires 224 = 16777216 histogram bins, while the histogram of 8bit gray
image requires 256 histogram bins. Because of the complexity and the high computational cost,
the active contour models employing mixture density functions [137, 124, 138, 139] as well as
traditional region-based active contour models [140, 5] have used alternative expressions rather
than dealing with multi-dimensional image intensity space. Based on the assumption that each
band is independent, a common alternative expression of p(I) is the product of marginal density
functions measured at each dimension, i.e. spectral bands, such as

g(I) ≡
B∏

b=1

p(Ib). (5.3)

If p(I) is a mixture density function, the equivalent expression can be expressed as

g(I) ≡
B∏

b=1

K∑
k=1

αkp(Ib|k). (5.4)

Using this expression, the proposed objective functions shown in equation 4.9 or 4.13 are given
by

ei(x, y) ≡ − log
B∏
b

K∑
k=1

αkpi(Ib(x, y)|k), ∀(x, y) ∈ Ω, ∀i,

= −
B∑
b

log
K∑

k=1

αkpi(Ib(x, y)|k). (5.5)

The computation of g(I) is relatively easier than p(I) because the dimensionality of p(Ib) is
as low as < → < even though g(I) and p(I) have the same dimensionality as <B → <. The
expressions similar to g(I) and log g(I) have been used in a few other active contour models
designed for multispectral images [5, 140], and we had previously proposed a similar expres-
sion [139] using the product of normalized histograms measured at each band. This is not a bad
idea because the statistical meaning of p(I) and g(I) are equivalent as long as p(I) is a unimodal
distribution as shown in figure 5.3. Figure 5.3(a) presents a PDF of a two-dimensional random
variable I ∈ <2, which is distributed by a two-dimensional Gaussian density function p(I|µ,Σ).
In figure 5.3(b), the shades on the walls present the marginal density functions of I, respectively
given by p(I1) and p(I2). The three-dimensional curve presents the product of p(Ib) given by
g(I) = p(I1)p(I2). As the two expressions p(I) and g(I) are equivalent, we can alternatively use
g(I) for p(I) in this case.

Unfortunately, g(I) for p(I) are not equivalent any more if p(I) is a mixture density function
as shown in figure 5.4. Figure 5.4(a) presents a PDF of I ∈ <2, distributed by a mixture of
two different two-dimensional Gaussian functions p(I) = αp(I|µ1,Σ1)+(1−α)p(I|µ2,Σ2). The
shades on the walls present p(I1) = αp1(I1)+(1−α)p2(I1) and p(I2) = αp1(I2)+(1−α)p2(I2),
and the three-dimensional curve presents g(I) = p(I1)p(I2) = {αp1(I1)+(1−α)p2(I1)}{αp1(I2)+
(1 − α)p2(I2)}. As we can see in figure 5.4(a) and 5.4(b), the product of marginal density
functions measured at each dimension, i.e. g(I), is not equivalent to the true PDF p(I) any
more. Although there are only two modes in the true PDF p(I), there are four modes in g(I).
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(a) (b)

Figure 5.3: A unimodal distribution in a two-dimensional image intensity space and its recon-
struction: (a) p(I), (b) g(I) = p(I1)p(I2)

(a) (b)

Figure 5.4: A multimodal distribution in a two-dimensional image intensity space and its re-
construction: (a) p(I) = αp1(I) + (1− α)p2(I), (b) g(I) = {αp1(I1) + (1− α)p2(I1)}{αp1(I2) +
(1− α)p2(I2)}

The two excessive modes likely result in classifying the out-class image pixels as the given class,
equivalent to the false alarm [141] in pattern classification. Since

∫
g(I) is fixed as 1, the two

excessive modes result in reducing the power of the two correct modes in g(I). This incident
likely results in excluding the in-class image pixels from the given class, equivalent to the mis-
classification [141] in pattern classification. Therefore, g(I), i.e. the alternative expression of
p(I), is not a proper choice for the multispectral images with non-uniform subsets though it is a
reasonable choice for the multispectral images with uniform subsets. Therefore, we propose to
use a mixture of multivariate probability density functions as the statistical information
of vector-valued image intensity within a subset, such that

pi(I) ≡ p(I|Ωi)

=
K∑

k=1

αkpi(I|k), ∀i, (5.6)

where pi(I|k) denotes the conditional PDF of I on the condition that I(x, y) ∈ Ωi and I is
generated by a sub-class k. The corresponding objective function equivalent to equation 4.9
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using the proposed density model is given by

e(x, y|pi) = − log
K∑

k=1

αkp(I(x, y)|(x, y) ∈ Ωi, k), ∀(x, y) ∈ Ω, ∀i, (5.7)

and the corresponding objective function equivalent to equation 4.13 using the proposed density
model is given by

ei(x, y) = − log
K∑

k=1

αkp(I(x, y)|I(x, y) ∈ Ii, k), ∀(x, y) ∈ Ω, ∀i. (5.8)
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Chapter 6

Density Estimation Methods

We have proposed to use a multivariate mixture density function as the conditional PDF of
vector-valued image intensity pi(I). In this chapter, we discuss the estimation methods of mul-
tivariate mixture density functions as a topic of statistical pattern recognition. Estimating a
mixture density function, often called mixture fitting, has been one of the most difficult tasks in
statistical pattern recognition. A multi-dimensional feature space makes the estimation prob-
lem even more difficult.

Let N data samples I be given as I ≡ {I(1), I(2), . . . , I(n), . . . , I(N)}, where I ∈ <B denotes
a multi-dimensional random variable. The PDF of a random variable can be estimated from
the data samples I if the statistical distribution of the data samples approximates the true
PDF p(I), such as

p(I) ≈ p(I). (6.1)

The base assumption of this approximation is that each data sample I(n) is generated indepen-
dently and ideally from the true PDF p(I).

There are two approaches to estimate p(I) based on the ways to represent a mixture density
function: parametric and non-parametric. Parametric approaches consider p(I) as a mixture
of multiple continuous parametric density functions, while non-parametric approaches consider
p(I) as a discrete function. Section 6.1 discusses parametric density estimation methods, and
section 6.2 discusses non-parametric density estimation.

6.1 Parametric Density Estimation Methods

In the parametric approaches, a collection of parameters

Θ =
[
{α1, . . . , αk, . . . , αK},
{θ1, . . . ,θk, . . . ,θK}

]
(6.2)

represent a mixture density function p(I), where each parameter set θk specifies the conditional
PDF of a vector-valued image intensity I on the condition that I is generated by sub-class k, and
αk specifies the relative weight of the corresponding sub-class. The mixture density function
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p(I) can be approximated by estimating a parameter set Θ from data samples I, such that

p(I) ≡ p(I|Θ) ≈ p(I|Θ̂) =
K∑

k=1

α̂kp(I|θ̂k), (6.3)

where each θk is estimated based on a particular stochastic model such as a Gaussian distribu-
tion p(I|µ,Σ). As a parametric density function, we propose to use a mixture of multivariate
Gaussian distributions for p(I|Θ), such that the estimated PDF of a sub-class is given by

p(I|θ̂k) ≡ p(I|µ̂k, Σ̂k). (6.4)

The stochastic model above is an arbitrary random distribution whose only prior knowledge
is that the statistics of each sub-class k is representable as a weighted multivariate Gaussian
distribution αkp(I|µk,Σk). There are four sets of parameters to be estimated: the number of
sub-classes K, the weight of each sub-class {αk}, the mean vector of each sub-class {µk}, and
the covariance matrix of each sub-class {Σk}.

Based on the assumption that each data sample I(n) is generated independently, the likeli-
hood measured from the data samples I is given by

p(I|Θ) =
N∏

n=1

p(I(n)|Θ), (6.5)

and the log-likelihood of a K-component mixture model is given from equation 6.3 and 6.5 as

log p(I|Θ) = log
N∏

n=1

p(I(n)|Θ) =
N∑

n=1

log
K∑

k=1

αkp(I(n)|θk) . (6.6)

It is well known that the maximum likelihood (ML) estimate [141, 143]

Θ̂ML = arg max
Θ
{log p(I|Θ)} (6.7)

or the Bayesian maximum a posteriori (MAP)

Θ̂MAP = arg max
Θ
{log p(I|Θ) + log p(Θ)} (6.8)

cannot be found analytically for this mixture density estimation problem [144, 145]. Therefore,
an iterative learning algorithm, e.g. the EM algorithm, has been recommended [141] as an at-
tractive solution.

6.1.1 EM Algorithm

The expectation-maximization (EM) methods [146, 147, 141, 148, 149] have been popularly
used to obtain the ML or MAP estimates of the mixture parameters. The EM algorithm is an
iterative procedure which finds local maxima of log p(I|Θ) or log p(I|Θ)+log p(Θ) interpreting
the observed samples I as incomplete data. For the mixture density model, the missing part is
given as a set of labels

Z = {z(1), z(2), . . . , z(n), . . . , z(N)} , (6.9)
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where each label is a multi-dimensional binary vector

z(n) = [z1(n), z2(n), . . . , zk(n), . . . , zK(n)]T ∈ {0, 1}K (6.10)

indicating which sub-class produced the observed sample I(n). That is, zk(n) = 1 if and only if
I(n) is generated by the sub-class k. Otherwise, zk(n) = 0. The complete log-likelihood, i.e. the
one from which we could estimate Θ if the complete data X = {I,Z} was observed [149], is
given by

log p(I,Z|Θ) =
N∑

n=1

K∑
k=1

zk(n) log[αkp(I(n)|θk)] . (6.11)

A time-varied estimate Θ̂(t) is produced by iteratively applying two sequential steps, i.e. ex-
pectation and maximization, until the given convergence criterion is met.

In the expectation stage, often called E-step, the conditional expectation of the complete
log-likelihood is computed given I and the current estimate Θ̂(t). Since the elements of Z are
binary, their conditional expectation is given by

W ≡ E[Z|I, Θ̂(t)] ∈ <K , (6.12)

where each element is given by

wk(n) ≡ E[zk(n)|I, Θ̂(t)]
= Pr[zk(n) = 1|I(n), Θ̂(t)]

=
α̂k(t)p(I(n)|θ̂k(t))∑K
j=1 α̂j(t)p(I(n)|θ̂j(t))

, (6.13)

with the unit volume condition
K∑

k=1

wk(n) = 1 . (6.14)

Equation 6.13 may be interpreted as an instance of Bayes law, i.e. α̂k(t) and wk(n) are re-
spectively equivalent to the a priori probability and the a posteriori probability of zk(n) = 1
after observing I(n). Since log p(I,Z|Θ) is linear with respect to the missing Z, the condi-
tional expectation of the complete log-likelihood is given by substituting W ≡ E[Z|I, Θ̂(t)]
into log p(I,Z|Θ), such as

Q(Θ, Θ̂(t)) ≡ E
[
log p(I,Z|Θ)|I, Θ̂(t)

]
= log p(I,W|Θ)

=
N∑

n=1

K∑
k=1

wk(n) log[αkp(I(n)|θk)] . (6.15)

The estimated parameter set Θ̂ is the one maximizing the likelihood function above.

In the maximization stage, often called M-step, the estimated parameters are updated ac-
cording to

Θ̂(t + 1) = arg max
Θ
{Q(Θ, Θ̂(t)) + log p(Θ)} , (6.16)
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in the case of MAP estimation, or

Θ̂(t + 1) = arg max
Θ
{Q(Θ, Θ̂(t))} , (6.17)

for the ML criterion.

Despite its popular use, the EM algorithm for mixture density estimation has several draw-
backs: First, the number of sub-classes K should be provided as a prior knowledge. This
requirement limits the use of EM algorithm for unsupervised learning. Second, K is fixed
during the estimation process, so the EM algorithm may converge to the boundary of the
parameter space. For example, the weight αk may become zero and consequently the corre-
sponding parameters specifying the sub-class k become singular if K is significantly higher than
the unknown true number of sub-classes. Third, it is a local (greedy) method, thus sensitive
to initial values of parameters θ̂k(t = 0). If θ̂k(t = 0) is too far way from the true parameter
θk, the EM algorithm may not converge to the true or optimal parameters because the EM
algorithm cannot move sub-classes across low likelihood regions1 [144, 150]. Common solutions
for these problems are: using multiple random starts and choosing the final estimates with the
highest likelihood [151, 148, 149, 152] or initialization by clustering [151, 148, 149]. Figure 6.1
shows the results of the standard EM algorithm using different K. 1000 random samples I were

(a) (b)

Figure 6.1: The performance of EM algorithm according to the number of sub-classes assumed:
(a) K = 4, (b) K = 10

generated from a mixture of 4 Gaussian density functions. The (black) solid curves present the
true PDF p(I) which generated the observed data samples. The (red) solid curves present the
estimated density function p(I|Θ̂), and the (red) dotted curves present the weighted density
functions of sub-classes, given by α̂kp(I|θ̂k). A successful estimation is determined by how close
the p(I|Θ̂) is estimated to the p(I). In figure 6.1(a), the EM algorithm cannot find any of the
true sub-classes with K = 4 because the initializations of the parameters {θk(t = 0)} are too
far away from the true position and too close from the neighbor sub-classes, while it finds all
four true sub-classes with K = 10 as shown in figure 6.1(b).

1Note the term region, used here, exists in a parameter space. The region, used in segmentation, exists on a
spatial domain.
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6.1.2 EM Algorithm with MML

The estimation of the number of sub-classes K [153] has been an important issue in mixture
density estimation. If K is too high, the density estimation may fail to converge to the true
density due to singular parameters, while the estimated density function cannot approximate
the true underlying mixture density function if K is too low. Figueiredo and Jain proposed an
advanced EM method [144] based on the minimum encoding length criteria, which automati-
cally selects the number of sub-classes K by annihilating the weak candidates of sub-classes.

The minimum encoding length criteria are popular concepts in the encoding and error
checking problem in the communication engineering area, and they are also widely applied in
pattern classification area. According to the minimum encoding length criteria, e.g. Minimum
Message Length (MML) [154, 155] and Minimum Description Length (MDL) [156], a good data
generation model, i.e. a parameter set Θ, is a representation which minimizes the length of
code required to describe the data samples I [144, 157]. Let the data samples I, known to have
been generated according to p(I|Θ), be encoded and transmitted. If p(I|Θ) is fully known to
both the transmitter and the receiver, they can both build the same code, and communication
can proceed. However, if the parametric model Θ is unknown, the transmitter has to start by
estimating and transmitting Θ. This leads to a two-part message, whose total length is given
by

L(Θ, I) = L(Θ) + L(I|Θ) . (6.18)

The estimated parameter set Θ̂ is the one minimizing this length function.

According to the standard two-part code formulation of MDL and MML, the expected
number of data samples generated by sub-class k is Nαk, where N denotes the number of data
samples. Thus, the optimal, in the MDL sense, code length of each θk is (M/2) log(Nαk),
where M denotes the number of parameters specifying θk. As the zero-weighted sub-class is
considered to be removed, we need to code only non-zero weighted αk 6= 0 sub-classes. The
optimal parameter set Θ is estimated by minimizing the cost function

L(Θ, I) =
M

2

K∑
k:αk>0

log
(

Nαk

12

)
+

Knz

2
log

N

12
+

Knz(M + 1)
2

− log p(I|Θ) , (6.19)

with respect to Θ given by
Θ̂ = arg min

Θ
L(Θ, I) , (6.20)

where Knz denotes the number of sub-classes with non-zero weight αk 6= 0. From the Bayesian
point of view [158], the cost function shown above is equivalent, for fixed Knz, to an a posteriori
density resulting from the adoption of Dirichlet-type prior for the weights {αk}, given by [144]

p(α1, . . . , αK) ∝ exp

{
−M

2

K∑
k=1

log αk

}
, (6.21)

and a flat prior leading to ML estimates for the parameters {θk} specifying each sub-class k.
The EM algorithm to minimize the cost function in equation 6.19, with fixed Knz, has the
following M-step:

α̂k(t + 1) =
max

{
0,

(∑N
n=1 wk(n)

)
− M

2

}
∑K

j=1 max
{

0,
(∑N

n=1 wj(n)
)
− M

2

} , ∀k , (6.22)
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θ̂k(t + 1) = arg max
θk

Q(Θ, Θ̂(t)) , {k : α̂k(t + 1) > 0} , (6.23)

where the conditional expectation wk(n) are given by the E-step in equation 6.13. The M-step
defined by equation 6.22 and equation 6.23 do the actual component annihilation by setting the
weight αk as zero.

The parameter set θk specifying the sub-classes for which α̂k(t + 1) = 0 become irrelevant
because any sub-class for which αk = 0 does not contribute to the log-likelihood in equation 6.6,
thus the algorithm explicitly removes the weakest sub-class, decreasing Knz. This prevents the
estimation algorithm from approaching the boundary of the parameter space, one of the draw-
backs of the standard EM algorithm for mixture density model. This algorithm also solves
the initialization problem by starting with very high number of initial sub-classes Kinit and
removing weak sub-classes step by step. The initial parameters {θk(t = 0)} can be located
anywhere along the whole parameter space. Although this algorithm still does not guarantee
the global convergence, it does provide a flexible way to deal with.

The direct use of the standard EM algorithm with M-step in equation 6.22 and 6.23 has
a failure mode, i.e. if the number of initial sub-classes Kinit is too large, no sub-class has
enough initial support

∑N
n=1 wk(n) > M/2 , ∀k and consequently {α̂k} will be undetermined.

Component-wise EM (CEM) algorithm [160] avoids this problem by updating each element of
parameter set Θ = {{αk}, {θk}} sequentially instead of simultaneously. That is, update α1,
θ1, recompute W, and update α2 and θ2, recompute W again, and so on. If one sub-class
is annihilated α̂k(t + 1) = 0, its probability mass is immediately redistributed to the other
sub-classes with non-zero weight α̂k(t + 1) 6= 0. This consequently increases their chance of
survival, and allows initialization with an arbitrarily large Kinit.

Figure 6.2 shows the performance of this method applied to the same data samples used
for the standard EM method in figure 6.1. 1000 random samples were generated by a mixture

Figure 6.2: The advanced EM method proposed by Figueiredo and Jain applied to the same
data used in figure 6.1. The estimation starts with Kinit = 32 and converges to K = 4.

density function p(I), presented as the (black) solid curves. Randomly chosen 32 sub-classes are
initialized Kinit = 32, and then the weakest sub-class is removed if a criterion is satisfied. After
the iterative EM processing, it eventually converges to the four sub-classes K = 4, presented
as the (red) dotted curves. The estimated mixture density function p(I|Θ̂), presented as the
(red) solid curves, successfully estimates the true mixture density function p(I).
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6.2 Non-parametric Density Estimation

In non-parametric approaches, a discrete function instead of a mixture of parametric density
functions approximates the true PDF of data samples. Given independently and ideally gener-
ated data samples I, the assumption of non-parametric approach is that we can approximate
the statistical distribution of a random variable I directly from the statistics of I without any
particular stochastic model, such that

p(I) ≈ p̂(I) = h(I), (6.24)

where h(·) denotes a non-parametric density function.

If N observed data samples I = {I(1), I(2), . . . , I(N)} are generated from the true PDF
p(I), parametric learning algorithms estimate the stochastic model of random variable I based
on two assumptions: the statistics of I follow a particular stochastic model, e.g. a Gaussian dis-
tribution p(I|µ,Σ); and the stochastic model can represent p(I). If the data samples I do not
satisfy these assumptions, the estimated parametric expressions p(I|µ̂, Σ̂) cannot approximate
p(I). Since non-parametric approaches do not rely on any particular stochastic model, they can
estimate the true underlying PDF of data samples unless the data samples I were observed in
a biased manner. This is an attractive feature for a mixture density estimation because the
true p(I) is often difficult to express with a particular stochastic model.

6.2.1 Histogram

There are many non-parametric density estimation methods, e.g. Parzen windows, k-nearest
neighbor, and histogram. Histogram, often called frequency histogram, is the most elemental
method among them. Given N observed data samples I, the histogram divides the dynamic
range of image intensity I into a given number of bins, and counts the number of data samples
corresponding to each bin [161]. Because of this simple procedure, we use a multi-dimensional
histogram density function2 to estimate the discrete non-parametric PDF of image intensity,
such that

h(I) ≡
{

1
N

hist[I]
∆I

}
: <B → <, (6.25)

where hist[I] denotes a multi-dimensional histogram of I, ∆I denotes the volume of a histogram
bin, and N denotes the number of data samples I. h(I) should satisfy the unit volume condition
given by ∑

I

h(I) = 1. (6.26)

In the case of scalar images, ∆I is equivalent to the width of a histogram bin, and the range of
each ∆I do not overlap, which is different from other non-parametric methods. The histogram
density function h(I) approximates p(I) in a discrete manner. Figure 6.3 shows an example of
the histogram density function h(I) of the same data samples used in the previous graphs. The
width of each bin ∆I is set to 1 in figure 6.3(a), and set to 3 in figure 6.3(b). With the same
number of data samples, h(I) tends to be smoother losing its precision as ∆I increases, while

2Although h(I) shown in equation 6.25 is occasionally referred to histogram or frequency histogram in other
publications [161], it is defined as histogram density function in this document. Histogram and frequency his-
togram are referred to the frequency number for each bin, i.e. the histogram in common sense.
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(a) (b)

Figure 6.3: An example of the histogram density function h(I): (a) ∆I = 1, (b) ∆I = 3

h(I) tends to be more sparky as ∆I decreases. If ∆I is infinitely narrow and N is infinitely
high at the same time, the discrete h(I) can ideally approximate the true PDF p(I), such that

p(I) ≈ lim
∆I→0

lim
N→∞

h(I). (6.27)

The process of computing a histogram density function h(I) is simple and easy to implement.
Also, h(I) does not require any iterative learning process, and consequently requires shorter
computation time. Since active contours have an iterative process demanding long computation
time, h(I) is a quite attractive density estimation method for active contours. However, the
accumulation procedure requiems a huge amount of memory depending on the dimensionality
of I. For example, a histogram of a 24bit RGB image intensity consists of 224 = 16777216 bins,
128Mbytes if 8bytes/bin.

The frequency of each bin of a histogram is independent ignoring the neighborhood in the
image intensity space. That is, the frequency of the bin a is independent from the frequency
of the bin a + 1. This localized frequency is a good feature for mixture density model because
weak sub-classes can survive without being dominated by a strong neighbor sub-class as shown
in figure 6.1(a). However, it also overfits the distribution of the histogram density function
h(I) to the data samples I, and reduces the flexibility of the estimated PDF p(I). That is, the
p(I) from a set of data samples I1 may be different from the p(I) from the other set of data
samples I2 even if both I1 and I2 are generated from a statistical model. A partial solution
of this problem is to provide a large data set. This problem becomes even more serious partic-
ularly if the dimensionality of I is high. Thus, a histogram density function needs extremely
higher number of data samples as the dimension of data grows, which is called the curse of
dimensionality [162]. The high sensitivity to noise is another problem caused by the localized
bins. Kernel density estimation methods, e.g. Parzen window [141], provide more flexible and
smooth distribution than h(I) at the expense of computation time.
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Chapter 7

Active Contour Implementation
using Level Set

The proposed segmentation methods are implemented in a form of active contours. We propose
to use the region-based active contour model using level set theory. The level set implemen-
tation of the proposed active contour model is based on the multi-phase active contour model
proposed by Chan and Vese [108, 74, 113]. In this chapter, we discuss the level set implemen-
tation of the proposed active contour models.

7.1 The Base Active Contour Model

Multi-phase active contours can partition an image into more than two subsets simultaneously.
Let us redefine the entire domain Ω of an image I(x, y) as a disjoint set of subsets, such that

Ω ≡
⋃
i

Ωi, (7.1)

where the interior regions include the contour pixels C ∈ Ωin. Then, each subset can be
identified by a set of binary identity functions

χi(x, y) ≡
{

1, if (x, y) ∈ Ωi

0, otherwise

}
, ∀(x, y) ∈ Ω, ∀i (7.2)

composed of a group of regularized unit step functions Hj : Ω → {0, 1} given by

Hj ≡ Hε(φj(x, y)) ≈
{

1, if φj(x, y) ≥ 0
0, if φj(x, y) < 0

}
, ∀(x, y) ∈ Ω, ∀j. (7.3)

The identity functions {χi(x, y) : Ω → {0, 1}} for the case of 2 subsets and 4 subsets are
respectively defined as [74][

χ0(x, y)
χ1(x, y)

]
=

{
(x, y) :

[
(1−H1)

H1

]}
, ∀(x, y) ∈ Ω, (7.4)

and 
χ0(x, y)
χ1(x, y)
χ2(x, y)
χ3(x, y)

 =

(x, y) :


(1−H2)(1−H1)

(1−H2)H1

H2(1−H1)
H2H1


 , ∀(x, y) ∈ Ω. (7.5)
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J level set functions {φ1, . . . , φj , . . . , φJ} can compose up to 2J subsets {Ω1, . . . ,Ωi, . . . ,Ω2J}
in this way. An example of subsets, defined by multi-phase level set functions, is shown in
figure 7.1 where {Ω0,Ω1,Ω2,Ω3} denote the four subsets defined by two level set functions
{φ1, φ2}.

Figure 7.1: Subsets and contours defined by two level set functions, {φ1, φ2}

Using the identity functions {χi(x, y)}, the integration over each subset Ωi in the global
energy function E shown in equation 4.11 and 4.14 can be transformed to the integration over
the entire image plane Ω, such as∫

Ωi

ei(x, y)dxdy =
∫

Ω
ei(x, y)χi(x, y)dxdy, ∀i, (7.6)

which makes the computation much easier. Also, the length of contours |Cj | is equivalent to
the integration of |∇Hj | over Ω, such that

|Cj | =
∫

Ω
|∇Hε(φj(x, y))|dxdy, ∀j, (7.7)

where Cj denotes a set of active contours formed by the corresponding level set function φj(x, y)
as Cj ≡ {(x, y) : φj(x, y) = 0}. The global energy function of the multi-phase active contour
model and the associated Euler-Lagrange equation obtained by minimizing the energy function
E with respect to Φ = {φ1, . . . , φj , . . . , φJ}, which are introduced in [74, 113], can be generalized
with an arbitrary form of objective functions ei(x, y), such as

E ≡
2J∑
i=1

∫
Ωi

ei(x, y)dxdy + ν

J∑
j=1

|Cj | (7.8)

=
2J∑
i=1

∫
Ω

ei(x, y)χi(x, y)dxdy + ν

J∑
j=1

∫
Ω
|∇Hj |dxdy,

and
∂φj(x, y)

∂t
= δj

νκj −
2J∑
i=1

ei(x, y)
∂χi

∂Hj

 , ∀j, (7.9)

where δj ≡ δε(φj(x, y)) denotes the first derivatives of Hj with respect to φj , and κj ≡
κ(φj(x, y)) denotes the mean curvature of φj(x, y).
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7.2 Proposed Active Contour Model

The proposed active contour model is obtained by substituting the two proposed objective
functions e(x, y|pi) in equation 4.9 and ei(x, y) in equation 4.13 into the generalized multi-
phase active contour model shown in equation 7.9, such that

∂φj(x, y)
∂t

= δj

νκj +
2J∑
i=1

log pi(I(x, y))
∂χi

∂Hj

 , ∀j, (7.10)

where pi(I(x, y)) ≡ p(I(x, y)|(x, y) ∈ Ωi) for unsupervised segmentation model, and pi(I(x, y)) ≡
p(I(x, y)|I(x, y) ∈ Ii) for supervised segmentation model. The conditional PDF pi(·) could be
either a parametric expression or a non-parametric expression. We propose to use a mixture
of multivariate density functions as shown in equation 6.3 for supervised segmentation model.
More detail will be discussed in chapter 9 and 10. We also propose to use a histogram density
function as shown in equation 6.24 and 6.25 for unsupervised segmentation model. More detail
will be discussed in chapter 8. The actual level set evolution equations for the case of two
subsets and four subsets are respectively given by

∂φ(x, y)
∂t

= δε(φ(x, y))[νκ(φ(x, y)) (7.11)

+ {log p1(I(x, y))− log p0(I(x, y))}],

and

∂φ1(x, y)
∂t

= δ1

 νκ1+{
(log p3 − log p2)H2+

(log p1 − log p0)(1−H2)

}  (7.12)

∂φ2(x, y)
∂t

= δ2

 νκ2+{
(log p3 − log p1)H1+

(log p2 − log p0)(1−H1)

}  ,

where log pi ≡ log pi(I(x, y)). δj ≡ δε(φj(x, y)) is not necessarily a Dirac delta function, but it
performs a role of window like a bandpass filter which controls the width ε to update φj(x, y).
The level set function φj(x, y) only where |φ(x, y)| < ε, i.e. around corresponding contours Cj ,
are updated and the rest of area is ignored. The curvature term κj keeps Cj in a smooth shape.
During the the contour evolution, pi(I(x, y)) for supervised segmentation methods returns the
probability of I(x, y) under the condition that I(x, y) is an element of given training samples
Ii, while pi(I(x, y)) for unsupervised segmentation methods returns the probability of I(x, y)
under the condition that I(x, y) is an element of the subset Ωi. These conditional probabilities
provide a force which changes the corresponding level set functions, i.e. propagates the corre-
sponding active contours, and consequently partitions the given image satisfying the desired
property, which is either uniformity of I within Ωi or similarity between the statistics of I and
Ii. The terms inside of {·} in above expressions provide segmentation force, while the curva-
ture terms provide a regularity force. Constant ν controls the balance between these two forces.
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Chapter 8

Unsupervised Active Contour Model
using Multi-dimensional Histograms

In this chapter, we propose an unsupervised active contour model using the non-parametric
density estimation method introduced in section 6.2.1. The proposed active contour model
measures a non-parametric PDF expression of each subset at each iteration, and updates level
set functions based on the measured PDF expressions. Section 8.1 discuss the proposed unsu-
pervised image segmentation model. We propose to use a multi-dimensional histogram density
function as a discrete non-parametric density function of image intensity within each subset.
The detail of this approach is discussed in section 8.2. Section 8.3 discusses the implementation
of active contours using level set. Section 8.4 shows the numerical algorithm of the proposed
method, and section 8.5 shows the experimental results applied on synthetic and real images.

8.1 Unsupervised Image Segmentation

The proposed method follows the classical role of image segmentation, which partitions an
image without any prior knowledge or training samples, using a global energy minimization.
The global energy function is given by

E({pi}, C) ≡
∑

i

∫
Ωi

e(x, y|pi)dxdy + ν|C|, (8.1)

and the global energy E is minimized with respect to two expressions: {pi}, i.e. the statistical
representation of the image within a subset Ωi, and the variational contours C. First, the
minimum E with respect to {pi} is achieved while C is fixed. Then, the minimum E with
respect to C is achieved while {pi} are fixed. An objective function

e(x, y|pi) = − log pi, ∀(x, y) ∈ Ω, ∀i, (8.2)

determines the region-based segmentation criteria based on the statistical distribution of image
intensity within each subset Ωi. As e(·) has the minimum value where pi has the maximum
value, the minimum E with respect to {pi} is achieved where every pi has the maximum. This
is done by a similar way to the simplified Mumford-Shah segmentation model introduced in
section 4.2 except that pi is a statistical distribution of image intensity here, instead of a simple
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expression fi. The best pi satisfying the segmentation criteria is a conditional PDF of image
intensity on the condition that the image pixel is an element of Ωi, given by

pi ≡ p(I(x, y)|(x, y) ∈ Ωi), ∀i, (8.3)

where I(x, y) : Ω → <B denotes a vector-valued image pixel. The estimated pi provides a
force to propagate the variational contours C to the proper position where C divides the en-
tire domain Ω of the image I(x, y) into multiple subsets {Ωi}. This performs an unsupervised
image segmentation. Then, the minimization of E with respect to C smoothes the variational
boundaries C minimizing |C|.

As the proposed method does not require any prior knowledge or training samples, the use
of proposed method is convenient and flexible, so it can be used in any kinds of images as the
first choice. However, the performance of segmentation tends to be limited depending on the
character of the given images. It is particularly limited if the image has significant non-uniform
subsets. Supervised segmentation methods introduced in the next two chapters may show bet-
ter performance in those non-uniform images.

8.2 Multi-dimensional Histogram Density Function

We have proposed to use a multivariate mixture density function as the statistical distribution
of image intensity within a subset. In the proposed method, we propose to use a normalized
multi-dimensional histogram, which is also introduced as a multi-dimensional histogram den-
sity function in section 6.2.1, as a non-parametric and discrete expression of the multivariate
mixture density function.

Let I = {I(1), I(2), . . . , I(N)} be the N observed data samples, and I ∈ <B be the vector-
valued image intensity. The histogram density function of given data samples is given by

h(I) ≡
{

1
N

hist[I]
∆I

}
: <B → <, (8.4)

where hist[I] denotes a multi-dimensional histogram of I, and ∆I denotes the volume of a
histogram bin. If the histogram density function h(I) is normalized as∑

I

h(I) = 1 (8.5)

with unlimited number of data samples, i.e. N → ∞, and infinitely narrow histogram bins,
i.e. ∆I → 0, the discrete h(I) ideally approximates a continuous PDF, given by

p(I) ≈ lim
∆I→0

lim
N→∞

h(I). (8.6)

In the proposed active contour model, h(I) substitutes the pi in equation 8.1 and 11.8 as a
discrete non-parametric form of a multivariate mixture density function.

In practical image processing problems, the number of data samples is limited and the width
of a histogram bin cannot be zero. However, the native data is already in a sampled discrete
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form in digital image processing, so the quantization error caused by h(I) is reasonably low
if ∆I = 1. The simple computation of a histogram is another advantage. Although there are
many non-parametric density estimation methods, e.g. k-nearest neighborhood, Parzen window,
histogram provides fairly reasonable information with a short computation time. However, the
required amount of memory significantly increases depending on the number of bands B and
the resolution of image intensity ∆I. For example, a 24bit RGB image requires 224 × 8 = 128
Mbytes, while a gray image requires only 28 × 8 = 2 Kbytes.

The statistics of image intensity in an image is not always representable as a simple para-
metric expression, such as a Gaussian distribution. Since the proposed method does not rely
on a particular stochastic model, the use of the proposed method is more flexible and robust
than other methods using simple parametric expressions. Figure 8.1 shows an example of
non-uniform images whose statistical distribution is unrepresentable with a simple paramet-
ric expression. The wood pattern shown in figure 8.1(a) shows a non-uniform texture, and

(a) (b)

Figure 8.1: Statistical distribution of image intensity: (a) a wood pattern, (b) the histogram

the statistical distribution, i.e. a histogram, of image intensity shown in figure 8.1(b) shows
a high peak in the range of high intensity and a low and wide distribution along the range
of low intensity. The statistics of these data samples are not easily representable with a sim-
ple Gaussian or other parametric distributions though it is trivial for a non-parametric method.

8.3 Contour Evolution

The implementation of proposed active contour model is done using the multi-phase active con-
tour model introduced in section 7.2. We define multiple level set functions Φ = {φ1, . . . , φj , . . . , φJ}
on the spatial domain, and each level set function represents a set of contours Cj . J level set
functions can partition an image up to 2J subsets as shown in chapter 7.

The Euler-Lagrange equation obtained by minimizing the energy function E with respect
to level set functions Φ = {φ1, . . . , φj , . . . , φJ} is given by

∂φj(x, y)
∂t

= δj

νκj +
2J∑
i=1

log h(I(x, y)|(x, y) ∈ Ωi)
∂χi

∂Hj

 , ∀j, (8.7)
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where χi(x, y) : Ω → {0, 1} denotes the binary identity functions introduced in equation 7.4
and 7.5, and Hj ≡ Hε(φj(x, y)) : Ω → < denotes the regularized unit step function of φj(x, y),
introduced in equation 7.3. h(I(x, y)|(x, y) ∈ Ωi) denotes the histogram density function mea-
sured within Ωi, and it determines the amount of update in φj(x, y). δj ≡ δε(φj(x, y)) : Ω → <
performs a function of a window, which updates φj(x, y) only around the contours where
|φj(x, y)| < ε. The curvature term κj ≡ κ(φj(x, y)) : Ω → <, introduced in equation 3.10,
keeps the regularity of contours, and ν controls the relative weight between the segmentation
force and regularity force.

The update of level set functions is performed as an iterative processing. At each iteration,
we measure h(I(x, y)|(x, y) ∈ Ωi) of each subset, and update each level set function φj(x, y)
according to the update function shown above until the active contours finally converge to the
position of desired boundaries.

8.4 Algorithm

Table 8.1: The input and output variables used in the unsupervised multi-dimensional histogram
method

• Input

– I(x, y) : Ω → <B, a multispectral image.

– J , the number of level set functions {φj(x, y)} = the number of active
contours {Cj}.

– ν, a parameter to control the regularity of contours.

– ∆t, the time step of iterative processing.

• Output

– S(x, y) : Ω → {1, . . . , 2J}, the segmented image

Table 8.1 shows the input and output variables used in the proposed method. A multi-
spectral image I(x, y) is given as the input data. The number of level set functions, which is
equivalent to the number of contours, is set as J . ν controls the regularity of contour evolu-
tion by controlling the relative balance between segmentation force and regularity force. ∆t
determines the convergence speed. After the proposed active contours converge, the algorithm
produces the segmented image S(x, y) indicating each subset with different numbers.

As shown in algorithm 1, the proposed active contour algorithm consists of two stages: ini-
tialization and contour evolution. During the initialization stage, J sets of initial contours {Cj}
are given either manually or from a defined set, and corresponding level set functions are initial-
ized as the signed distance from each (x, y) to the closest contours. During the iterative contour
evolution, the mean curvature κj(x, y) and the unit step function Hj(x, y) are computed from
each level set function φj(x, y). The mathematical description of function meanCurvature(·)
and unitStep(·) are described respectively in equations 3.10 and 7.3. Then, binary identity
functions χi(x, y) and the histogram density functions hi(I) for each subset Ωi are measured.
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The mathematical description of functions identityFunction(·) and histogramDensity(·) are
introduced respectively in equations 7.4 and 8.4. The measured hi(I) updates objective func-
tions ei(x, y) for Ωi, and finally level set functions {φj(x, y)} are updated.

Algorithm 1: Unsupervised Active Contour Model using Multi-dimensional Histogram
Density Functions

Initialization
t = 0.
for j = 1 · · ·J do

Cj(x(s), y(s), t = 0): Initialize contours.
φj(x, y, t = 0) = ±D((x, y), N(x,y)(Cj)): Initialize level set functions.

Contour evolution
repeat

for j = 1 · · ·J do
κj(x, y) = meanCurvature(φj(x, y))
Hj(x, y) = unitStep(φj(x, y))

Unsupervised region-based segmentation
for i = 1 · · · 2J do

χi(x, y) = identityFunction({Hj(x, y), ∀j})
hi(I) = histogramDensity(I(x, y)χi(x, y))
ei(x, y) = − log hi(I(x, y))

Update level set function
for j = 1 · · ·J do

φj(x, y) = φj(x, y) + ∆tδ(φj(x, y))

[
νκ(φj(x, y))−

2J∑
i=1

ei(x, y) ∂χi

∂Hj

]
t = t + ∆t

until until the evolution of contour converges

Segmentation result

S(x, y) =
2J∑
i=1

χi(x, y)

Table 8.2 shows the input and output variables used in the histogram density function
histogramDensity(I). The density function takes three inputs: data samples I, the dynamic
range of image intensity, and the size of histogram bins ∆I. The dynamic range and ∆I de-
termines the resolution of the histogram. After computation, the density function produces a
normalized multi-dimensional histogram as a non-parametric and discrete density function. As
shown in algorithm 2, the estimation of a histogram density function consists of two stages:
initialization and computation. The mathematical model of this method was introduced in
equation 8.4. First, the initial histogram is defined based on the dimension of the vector-valued
image intensity I ∈ <B and the given dynamic range. Then, the corresponding histogram bin
for each data sample is accumulated, and the whole histogram is normalized in the final stage.
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Table 8.2: The input and output variables used in the multi-dimensional histogram density
function

• Input

– I = {I(1), I(2), . . . , I(n), . . . , I(N)}, I ∈ <B, data samples.

– [(min1 max1)T , . . . , (minb maxb)T , . . . , (minB maxB)T ], the dynamic
range of image intensity I at each band.

– ∆I, the volume of a histogram bin.

• Output

– h(I) : <B → <, histogram density function.

Algorithm 2: Histogram density function

Initialization
hist[I]: Initiate a B-dimensional histogram

Computing density function
for n = 1 · · ·N do hist(I(n)) = hist(I(n)) + 1
h(I) = hist(I)/(N∆I): Normalization

Figure 8.2 shows the iterative contour evolution of the proposed active contour model. The

Figure 8.2: The iterative procedure of proposed active contour model: (top) contour evolution,
(bottom) corresponding segments

figures on the top show the contour evolution, and the figures on the bottom show the corre-
sponding segments. At the initial stage, a set of initial contours are given from a predefined
shape as shown in the left figures. The contours move separating the given image, and finally
converge to the boundary of the small rectangle.
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8.5 Experiments

In this section, we apply the proposed segmentation method to three different images, and
compare the results of the proposed method to the results of other active contour models.
Two active contour models, which share the same region-based segmentation principle, were
used as benchmarks: a piecewise-constant active contour model proposed by Sandberg and
Chan [5, 123, 140] and another active contour model proposed by Rousson and Deriche [10, 117].
Sandberg’s method will be referred to method 1, and Rousson’s method will be referred to
method 2. All three methods including the proposed method determine the segmentation cri-
teria based on the statistical property of image intensity measured within a subset. Method 1
represents each subset as a vector-valued constant number. Method 2 represents each subset as
a multivariate Gaussian density function. Both methods 1 and 2 use parameters to represent
each subset. Method 1 uses the mean of image intensity measured within the subset, while
method 2 uses the mean and covariance of image intensity measured within the subset. The
detail of mathematical and analytical descriptions of both methods are presented in section 3.4.

Figure 8.3(a) shows an example of synthetic gray images with textures. There is a small

(a) (b)

Figure 8.3: Synthetic textured image: (a) a textured gray image, (b) the ground truth image

rectangle in the image, and both the rectangle and the background have their own texture
pattern. The object of this experiment is to separate the rectangle from the background. Fig-
ure 8.3(b) shows the ground truth, the ideal result of segmentation, of the given image. The
dark part presents the background, class 1, while the bright part presents the rectangle, class
2.

Figure 8.4 shows the result of method 1 applied on figure 8.3(a). Figure 8.4(a) shows the
final stage of contour evolution, and figure 8.4(b) shows the corresponding segmentation result.
Method 1 cannot partition the rectangle as a single object as it separates the rectangle as
dark sub-regions and bright sub-regions, and the same effect also appears on the background.
Method 1 fails in this problem because the dark intensity and the bright intensity of the rect-
angle stay too far away in the image intensity space, so it cannot represent the subset with the
average value of the intensity.

Figure 8.5 shows the result of method 2 applied on figure 8.3(a). Figure 8.5(a) shows the
final stage of contour evolution, and figure 8.5(b) shows the corresponding segmentation result.
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(a) (b)

Figure 8.4: Method 1 applied to a synthetic textured image: (a) the final stage of contour
evolution, (b) the segmented subsets

(a) (b)

Figure 8.5: Method 2 applied to a synthetic textured image: (a) the final stage of contour
evolution, (b) the segmented subsets

Method 2 shows a better segmentation result than method 1. It successfully separates the
rectangle from the background, but there are still a few artifacts in the background.

Figure 8.6 shows the result of the proposed method applied on the same image. Figure 8.6(a)
shows the final stage of contour evolution, and figure 8.6(b) shows the corresponding segmen-
tation result. The proposed method successfully separates the rectangle from the background
without significant artifacts, which were observed in the cases of other two methods.

For more precise comparison, we measure the statistical distribution of image intensity
within class 2, which is supposed to be the small rectangle in the segmentation result. Figure 8.7(a), 8.7(b),
and 8.7(c) respectively present the results of method 1, method 2, and the proposed method.
The blue solid line of all three graphs presents the statistical distribution of image intensity
within the rectangle in the ground truth image. Because of the wood pattern, the statistical
distribution of the rectangle is not simple. There is a high peak at the region of high intensity
in the graph, and there are multiple low peaks at the region of dark intensity in the graph.
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(a) (b)

Figure 8.6: Proposed method applied to a synthetic textured image: (a) the final stage of
contour evolution, (b) the segmented subsets

(a) (b)

(c)

Figure 8.7: Statistical distribution of image intensity within class 2, the small rectangle: (a)
method 1, (b) method 2, (c) proposed method

The green solid line of all three graphs presents the same statistics measured within class 2 in
the segmentation result. As the green solid line exists closer to the blue solid line, it presents
better result. In figure 8.7(a), the dotted green line with a circle presents the representation of
the subset used in method 1, i.e. the mean of green solid line. The green line is very different
from the ground truth because the constant representation is not sufficient to represent the
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complicated ground truth. In figure 8.7(b), the dotted green line presents the representation of
the subset used in method 2, i.e. the Gaussian density function of image intensity measured.
Although the green solid line stays close to the blue line, the dotted line seems quite different
from the actual distribution, and it consequently results in the artifacts shown in figure 8.5.
In figure 8.7(c), the result of the proposed method and the ground truth data is almost identical.

Figure 8.8(a) shows another example of gray images with textures. There are five objects

(a) (b)

Figure 8.8: Synthetic textured image: (a) a textured gray image, (b) the ground truth image

in a synthetic gray image: a circle, a rectangle, a horizontal ellipse, a vertical ellipse, and a
triangle. The circle and vertical ellipse have uniform image intensity, but the triangle and the
horizontal ellipse have textured pattern. The rectangle has a gradient intensity. The overall
image has some noise, so the edges between each object and the background are not clear. The
object of this experiment is to separate all objects from the background forming two classes,
i.e. background and objects. Figure 8.8(b) shows the ground truth of this experiment. Class
1, i.e. background, appears as a bright sub-region, while class 2, i.e. objects, appear as dark
sub-regions.

Figure 8.9 shows the result of method 1 applied on figure 8.8(a). Figure 8.9(a) shows the
final stage of contour evolution, and figure 8.9(b) shows the corresponding segmentation result.
Although method 1 successfully partitions the circle and vertical ellipse as class 2, it completely
fails to separate the horizontal ellipse from the background. Also, only some portions of the
rectangle and triangle appear as class 2 in the final result due to their textured pattern and
gradient intensity. Since method 1 represents two classes as two constant numbers, it cannot
recognize an object if the image intensity of the object is not uniform.

Figure 8.10 shows the result of method 2 applied on figure 8.8(a). Figure 8.10(a) shows
the final stage of contour evolution, and figure 8.10(b) shows the corresponding segmentation
result. Method 2 shows a better segmentation result than method 1 successfully separating
the circle, vertical ellipse, triangle, and rectangle from the background. However, there are
still a few artifacts on the horizontal ellipse due to the textured pattern because the statistical
distribution of the texture pattern stays out of the Gaussian density function of class 2.

Figure 8.11 shows the result of the proposed method applied on the same image. Figure 8.11(a)
shows the final stage of contour evolution, and figure 8.11(b) shows the corresponding segmen-
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(a) (b)

Figure 8.9: Method 1 applied to a synthetic textured image: (a) the final stage of contour
evolution, (b) the segmented subsets

(a) (b)

Figure 8.10: Method 2 applied to a synthetic textured image: (a) the final stage of contour
evolution, (b) the segmented subsets

tation result. The proposed method successfully separates all five objects, even the horizontal
ellipse with texture pattern, from the background without significant artifacts. This experiment
shows how robust the proposed method is in the segmentation problems of non-uniform images.

Figure 8.12 shows an example of outdoor RGB images. This color image consists of three
bands: red, green, blue. In the picture, there is a gray squirrel in the green grass field. The back
of the squirrel shows a mix of gray color, the stomach side of the squirrel shows a mix of pink,
and the tail shows a mix of pink and brown. Due to the texture of fur, there are a significant
number of narrow shadows and sharp edges along the whole body of the squirrel as well as
the grass field. The object of this experiment is to separate the squirrel from the grass field,
i.e. background. This is a difficult segmentation problem because the color of neither squirrel
or grass field is uniform. Although this non-uniform texture is a common problem found in any
outdoor color images, it makes image segmentation very difficult.

Figure 8.13 shows the result of method 1 applied on figure 8.12. Figure 8.13(a) shows the
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(a) (b)

Figure 8.11: Proposed method applied to a synthetic textured image: (a) the final stage of
contour evolution, (b) the segmented subsets

Figure 8.12: An outdoor RGB image

(a) (b)

Figure 8.13: Method 1 applied to an outdoor RGB image: (a) the final stage of contour
evolution, (b) the segmented subsets

final stage of contour evolution, and figure 8.13(b) shows the corresponding segmentation result.
Because of the strong sharp texture pattern on the squirrel and the grass field, method 1 pro-
duces a lot of noise-like artifacts but cannot properly separate the squirrel from the background.
Both the grass field and the squirrel are too complicated to be represented as a constant number
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due to the presence of many small edges and shadows.

Figure 8.14 shows the result of method 2 applied on figure 8.12. Figure 8.14(a) shows the

(a) (b)

Figure 8.14: Method 2 applied to an outdoor RGB image: (a) the final stage of contour
evolution, (b) the segmented subsets

final stage of contour evolution, and figure 8.14(b) shows the corresponding segmentation re-
sult. Method 2 shows a better segmentation result than method 1 successfully separating the
squirrel from the grass field. However, there are still a few artifacts on the background due to
the small edges and shadows of grass field.

Figure 8.15 shows the result of the proposed method applied on the same image. Figure 8.15(a)

(a) (b)

Figure 8.15: Proposed method applied to an outdoor RGB image: (a) the final stage of contour
evolution, (b) the segmented subsets

shows the final stage of contour evolution, and figure 8.15(b) shows the corresponding segmen-
tation result. The proposed method successfully separates the squirrel from the grass field, and
the number of noise-like artifacts is much lower than method 2 as well as method 1. This exper-
iment shows that the proposed method is robust in the segmentation problems of multispectral
images with non-uniform subsets, which is common in outdoor color images.
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Chapter 9

Half-supervised Active Contour
Model using Multivariate Gaussian
Mixture Density Functions

In this chapter, we propose a half-supervised1 active contour model using a parametric density
estimation method introduced in section 6.1.1. The proposed method follows the same region-
based segmentation principle introduced in chapter 8 except for two major modifications. First,
a supervised estimation method, instead of an unsupervised method, estimates the conditional
PDF pi from prior knowledge. Second, pi is estimated as a mixture of parametric continuous
functions instead of a non-parametric discrete function. Section 9.1 discusses the parametric
density estimation method, and section 9.2 discusses the half-supervised image segmentation
model. Section 9.3 presents the numerical algorithms of the proposed method, and section 9.4
presents the experimental results applied on synthetic and real images.

9.1 Multivariate Gaussian Mixture Density Function Estimated
by EM

In chapter 8, we proposed to estimate the conditional PDF pi of image intensity within a subset
Ωi as a non-parametric discrete function. In this chapter, we propose to estimate pi as a mixture
of continuous parametric density functions

pi ≡
K∑

k=1

αkp(I|θk), (9.1)

where the number of sub-classes K and the weight of each sub-class {αk} determine the global
statistical property of a mixture density function pi, and the parameter set θk determines
the local statistical property of a sub-class k. The PDF of each sub-class is represented as a
multivariate Gaussian density function

p(I|θk) = p(I|µk,Σk), ∀k, (9.2)
1Although there is no such term as half-supervised, we refer to the proposed method as a half-supervised

method because it requires relatively lower level of prior knowledge compared to the supervised method introduced
in the next chapter.
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where µk and Σk respectively denote the mean vector and the covariance matrix of data belong
to the sub-class k. A global PDF can be estimated as a mixture of K Gaussian density functions
by estimating these four sets of parameters: K, {αk}, {µk}, and {Σk}.

The proposed method uses the classic EM method, introduced in section 6.1.1, to estimate
the mixture density function pi from given data samples I, such as

pi ≈
K∑

k=1

α̂kp(I|µ̂k, Σ̂k). (9.3)

As mentioned in section 6.1, there are two problems to estimate a mixture density function
using the classic EM method. First, classic EM method cannot estimate K. Second, the result
of classic EM method highly depends on the initial values of the parameters to be estimated:
{αk(t = 0)}, {µk(t = 0)}, and {Σk(t = 0)}. In the proposed method, we solve these prob-
lems by providing partial information of pi as a prior knowledge, and then estimate the rest of
information from the given data samples and the prior knowledge. Thus, the parameters are
estimated by a supervised method instead of an unsupervised method as chapter 8.

A total of four sets of parameters are required to present pi as a mixture of Gaussian density
functions: the number of sub-classes K, the weight of each sub-class {αk}, the mean vector
of each sub-class {µk}, and the covariance matrix of each sub-class {Σk}. Let us assume that
some training samples are available and the statistical properties of both the training sam-
ples and test data are similar. We can find the expected values of K and {µk} from training
samples and provide them as the prior knowledge of supervised density estimation. Then, the
proposed EM method needs to estimate only {αk} and {Σk} from the test data. Figure 9.1
shows an example of mixture density estimation using the proposed method. The blue solid

Figure 9.1: Density estimation using a supervised EM method

line presents the histogram of data samples, i.e. the true statistical distribution of the given
data. There are three peaks in the histogram, thus the PDF of the given data should be rep-
resented as a mixture of at least three Gaussian density functions. Let us assume that two
information are available: the expected number of sub-classes K = 3 and the expected values
of the mean of each sub-class {µ1, µ2, µ3} shown as the three red circles. Then, the classic EM
method can estimate the weights of each sub-class {α̂1, α̂2, α̂3} and the covariance matrix of
each sub-class {σ̂1, σ̂2, σ̂3} from the given data. The red dotted line presents the estimated para-
metric mixture density function. The mathematic description of the general EM method was
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described in section 6.1.1, and the algorithm of the proposed method is presented in section 9.3.

9.2 Half-supervised Image Segmentation

The proposed segmentation method consists of two stages: training and test. During the train-
ing stage, a low level of prior knowledge is provided. The test stage consists of two procedures.
First, we estimate the statistical distribution of image intensity within each subset as a mixture
of continuous parametric density functions. Then, we partition an image using the same energy
minimization based image segmentation principle used in the unsupervised multi-dimensional
histogram method.

The same global energy function introduced in section 8.1

E({pi}, C) ≡
∑

i

∫
Ωi

e(x, y|pi)dxdy + ν|C| (9.4)

is minimized with respect to two expressions: {pi}, i.e. the representation of the image within
a subset Ωi, and the variational contours C. The objective function e(x, y|pi) determines the
region-based segmentation criteria based on pi, and the best pi satisfying the segmentation
criteria is a conditional PDF of image intensity on the condition that the image pixel is an
element of Ωi, i.e. p(I(x, y)|(x, y) ∈ Ωi).

In the proposed method, pi is represented by four sets of parameters: the number of sub-
classes K, the weight of each sub-class {αk}, the mean vector of each sub-class {µk}, and
the covariance matrix of each sub-class {Σk}. Before the image segmentation, i.e. during the
training stage, the expected values of K and {µk} are provided from training samples. Dur-
ing image segmentation, i.e. the test stage, {αk} and {Σk} of image intensity within Ωi are
estimated by the classic EM method as described in the previous section. The given param-
eters, K̂ and {µ̂k}, and the estimated parameters, {α̂k} and {Σ̂k}, represent the conditional
PDF pi of image intensity at each subset, and the estimated pi provides a force to propagate
the variational contours C to the proper position where C divides the entire domain Ω of the
image I(x, y) into multiple subsets {Ωi}. Figure 9.2 and 9.3 show an example of the proposed
half-supervised segmentation. Figure 9.2(a) shows an RGB image consisting of two military
camouflage patterns where each of the pattern consists of at least three different paints, and
figure 9.2(b) shows the two subsets of the given image as {Ω1,Ω2}. Since both camouflage
patterns consist of three different paints, the PDF of image intensity for each subset should be
a mixture of at least three sub-classes. Figure 9.3 shows the example of training stage of the
proposed method. The vector-valued image intensities at six points are measured from training
samples, and assigned as {µ1,µ2,µ3,µ4,µ5,µ6} for the background Ω1 in figure 9.3(a). Three
samples are measured from training samples, and assigned as {µ1,µ2,µ3} for the rectangle Ω2

in figure 9.3(b). During the image segmentation, {α̂k} and {Σ̂k} are estimated for both subsets
{Ω1,Ω2} from the given expected values of K̂ and {µ̂k} and the image intensity of each subset
{I(x, y)|∀(x, y) ∈ Ωi}.

The minimization of E with respect to C smoothes the variational boundaries C minimizing
the length |C|. We use the same level set theory introduced in section 8.3 to implement the
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(a) (b)

Figure 9.2: A complicated synthetic RGB image: (a) an RGB image with two camouflage
patterns, (b) the ground truth image

(a) (b)

Figure 9.3: Training stage of the proposed method: (a) 6 samples measured for background,
(b) 3 samples measured for the rectangle

proposed active contour model.

The proposed half-supervised image segmentation method performs better than the unsu-
pervised image segmentation method introduced in the last chapter particularly if the image
has distinctive non-uniform sub-regions as shown in figure 9.3. Since the statistical property of
each subset must be represented as a mixture density function, the segmentation of the images
like figure 9.3 is extremely difficult for unsupervised segmentation methods. The supervised
density estimation improves the classic EM method providing more robust segmentation capa-
bility, and the parametric mixture density function provides more flexibility than the histogram
density function.

9.3 Algorithm

Table 9.1 shows the input and output variables used in the proposed segmentation method.
A multispectral image I(x, y) is given as the input data. The number of level set functions,
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Table 9.1: The input and output variables used in the half-supervised multivariate Gaussian
mixture density method

• Input

– I(x, y) : Ω → <B, a multispectral image.

– J , the number of level set functions {φj(x, y)} = the number of active
contours {Cj}.

– ν, a parameter to control the regularity of contours.

– ∆t, the time step of iterative processing.

– {I1,I2,. . . ,I2J}, training samples for each subset.

• Output

– S(x, y) : Ω → {1, . . . , 2J}, the segmented image

which is equivalent to the number of contours, is set as J . ν controls the regularity of contour
evolution by controlling the relative balance between segmentation force and regularity force.
∆t determines the convergence speed. The expected number K̂ of sub-classes and the expected
mean vectors {µ̂k} of sub-classes for each subset is measured from the training samples Ii for
each subset Ωi, and they provide prior information on supervised density estimation for {α̂k}
and {Σ̂k}. After the proposed active contours converge, the algorithm produces the segmented
image S(x, y) indicating each subset with different numbers.

The proposed active contour algorithm consists of three stages: training, initialization, and
contour evolution (test). During the training stage, the expected number K̂ of sub-classes
and the expected mean vectors {µ̂k} of sub-classes are measured from the training samples
Ii and assigned for each subset Ωi. The description of function priorInfo(·) is presented in
section 9.2. During the initialization stage, J sets of initial contours {Cj} are given either man-
ually or from a defined set, and corresponding level set functions are initialized as the signed
distance from each (x, y) to the closest contours. During the iterative contour evolution, the
mean curvature κj(x, y) and the unit step function Hj(x, y) are computed from each φj(x, y).
The mathematical description of function meanCurvature(·) and unitStep(·) are introduced
respectively in equation 3.10 and 7.3. Then, binary identity functions χi(x, y) for each subset Ωi

are computed. The mathematical description of function identityFunction(·) is introduced
in equation 7.4. The weights {α̂k} and covariance matrix {Σ̂k} of sub-classes are estimated
from the given {µ̂k} and the image intensity measured within each subset I(x, y)χi(x, y) using
the classic EM method. The mathematical description of function EM(·) is introduced in sec-
tion 6.1.1, and the numerical algorithm is presented in algorithm 4. The estimated {α̂k} and
{Σ̂k} and the given {µ̂k} determine the conditional PDF of image intensity pi, and pi updates
the objective function ei(x, y) for Ωi. The level set functions {φj(x, y)} are finally updated
based on χi(x, y) and ei(x, y).
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Algorithm 3: Half-supervised Active Contour Model using Multivariate Gaussian Mix-
ture Density Functions

Training
for i = 1 · · · 2J do

[K̂, {µ̂k}]i = priorInfo(Ii): The expected number and the means of sub-classes

Initialization
t = 0.
for j = 1 · · ·J do

Cj(x(s), y(s), t = 0): Initialize contours.
φj(x, y, t = 0) = ±D((x, y), N(x,y)(Cj)): Initialize level set functions.

Contour evolution
repeat

for j = 1 · · ·J do
κj(x, y) = meanCurvature(φj(x, y))
Hj(x, y) = unitStep(φj(x, y))

Half-supervised region-based segmentation
for i = 1 · · · 2J do

χi(x, y) = identityFunction({Hj(x, y), ∀j})
[{α̂k}, {Σ̂k}]i = EM(I(x, y)χi(x, y)|[K̂, {µ̂k}]i)
ei(x, y) = − log p(I(x, y)|[K̂, {α̂k}, {µ̂k}, {Σ̂k}]i)

Update level set function
for j = 1 · · ·J do

φj(x, y) = φj(x, y) + ∆tδ(φj(x, y))

[
νκ(φj(x, y))−

2J∑
i=1

ei(x, y) ∂χi

∂Hj

]
t = t + ∆t

until until the evolution of contour converges

Segmentation result

S(x, y) =
2J∑
i=1

χi(x, y)

Table 9.2 shows the input and output variables used in the function EM(I|K, {µk}). The

Table 9.2: The input and output variables used in the estimation of a mixture of multivariate
Gaussian density functions using a classic EM method

• Input

– I = {I(1), I(2), . . . , I(n), . . . , I(N)}, I ∈ <B, data samples.

– K: the number of sub-classes.

– {µk}: the mean vector of each sub-class.

• Output

– {α̂k}: the estimated weight of each sub-class.

– {Σ̂k}: the estimated covariance matrix of each sub-class.
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supervised EM method takes three inputs, data samples I, the number of sub-classes K, and
the mean vector of each sub-class {µk}, and produces two outputs, the estimated weight {α̂k}
and covariance matrix {Σ̂k} of each sub-class.

The proposed EM method estimates the output values through an iterative process consist-
ing of three steps: expectation (E-step), maximization (M-step), and evaluation. During E-step,
the expected posterior probabilities of the given data samples based on the current Σ̂k and given
µk for each sub-class k are estimated and updated. During M-step, two output parameters, α̂k

and Σ̂k, which maximize the likelihood function Q(t), are estimated for each sub-class k. Dur-
ing the evaluation step, we check the value of Q(t), and stop the iteration if Q(t) has converged.

Algorithm 4: Half-supervised classic EM Algorithm

Initialization
for k = 1 · · ·K do

αk = 1/K
Σk: identity matrix

Q(0) = ∞, ∆Q = ∞
Estimation

while ∆Q ≥ ε do
E-step: update posterior probabilities.

for k = 1 · · ·K do
for n = 1 · · ·N do uk(n) = p(I(n)|µk, Σ̂k)

for k = 1 · · ·K do
for n = 1 · · ·N do wk(n) = α̂kuk(n)/

∑K
j=1 α̂juj(n)

M-step: update parameter set Θ = [{α̂k}, {Σ̂k}].
for k = 1 · · ·K do α̂k = 1

N

∑N
n=1 wk(n)

{α̂k} = α̂k/
∑K

j=1 α̂j , ∀k
for k = 1 · · ·K do

Σ̂k =
PN

n=1 wk(n)(I(n)−µk)(I(n)−µk)TPN
n=1 wk(n)

Evaluation: check the criterion to stop the iteration.
Q(t) = 1

N

∑N
n=1

∑K
k=1 wk(n) log α̂kuk(n)

∆Q = |Q(t)−Q(t− 1)|
t = t + 1

9.4 Experiments

In this section, we apply the proposed segmentation method to four different images, and com-
pare the results of the proposed method to the results of other active contour models. The
same region-based active contour models used in the last chapter were used as benchmarks.
All three methods including the proposed method determine the segmentation criteria based
on the statistical property of image intensity measured within a subset. Method 1 and 2 are
unsupervised methods, while the proposed method uses prior knowledge from the given training
samples. The experiments of all three methods use the same pre-defined initial contours. The
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detail of mathematical and analytical descriptions of both benchmarks methods are presented
in section 3.4.

Figure 9.4 shows an example of synthetic RGB images with complicated non-uniform pat-
terns. There is a rectangle in the middle of the image in figure 9.4(a). Figure 9.4(b) shows the

(a) (b)

Figure 9.4: A complicated synthetic RGB image: (a) an RGB image with two camouflage
patterns, (b) the ground truth image

ground truth information of the given image. The object of this experiment is to separate the
rectangle, class 2, from the background, class 1. This is a difficult segmentation problem be-
cause the statistical distribution of both the rectangle and the background are complicated due
to the military camouflage patterns consisting of multiple paints. Also, the image is manipu-
lated, so the mean vectors of both interior and exterior are identical as [R,G,B] = [163, 164, 77].

Figure 9.5 shows the result of method 1 applied on figure 9.4. Figure 9.5(a) shows the

(a) (b)

Figure 9.5: Method 1 applied to a complicated synthetic RGB image: (a) the final stage of
contour evolution, (b) the segmented subsets

final stage of contour evolution, and figure 9.5(b) shows the corresponding segmentation result.
Method 1 cannot separate the rectangle as a single object because it separates the rectangle
as two sub-regions, bright and dark, and the same effect also appears on the background. The
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dark sub-class and the bright sub-class of the rectangle stay too far sway in the image intensity
space, so the average value of the intensity cannot represent the subset. The same problem
appears on the background.

Figure 9.6 shows the result of method 2 applied on figure 9.4. Figure 9.6(a) shows the

(a) (b)

Figure 9.6: Method 2 applied to a complicated synthetic RGB image: (a) the final stage of
contour evolution, (b) the segmented subsets

final stage of contour evolution, and figure 9.6(b) shows the corresponding segmentation result.
Method 2 cannot separate the rectangle as a single object because of the same reason that
method 1 fails. Experiments shown in figure 9.5 and 9.6 show the limitation of unsupervised
segmentation methods on the images with non-uniform sub-regions.

We applied the proposed half-supervised segmentation method on the same image. Fig-
ure 9.7 shows the training stage of the proposed method. Training samples for both the

(a) (b)

Figure 9.7: Training stage of the proposed method: (a) 6 samples measured for background,
(b) 3 samples measured for the core

rectangle and the background are provided. Six vector-valued image intensities are measured
from the training samples and assigned as {µ̂1, µ̂2, . . . , µ̂6} for the background in figure 9.7(a).
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Three vector-valued image intensities are measured from the training samples and assigned as
{µ̂1, µ̂2, µ̂3} for the rectangle in figure 9.7(b). Figure 9.8 shows the the result of the proposed
method. Figure 9.8(a) shows the final stage of contour evolution, and figure 9.8(b) shows the

(a) (b)

Figure 9.8: Proposed method applied to a complicated synthetic RGB image: (a) the final stage
of contour evolution, (b) the segmented subsets

corresponding segmentation result. The proposed method successfully separates the rectangle
from the background without any significant artifact.

For more precise comparison, the statistical distribution of image intensity within both class
1 and 2 are measured. Figure 9.9 shows the statistical distribution of image intensity measured
at green channel within class 1, which is supposed to be the background in the segmentation
result. Figure 9.9(a), 9.9(b), and 9.9(c) respectively present the results of method 1, method
2, and the proposed method. The blue solid lines of all three graphs present the statistical
distribution of image intensity measured at the background, and it shows that the camouflage
pattern of background consists of at least three different paints. The green solid lines of all
three graphs present the same statistics measured within class 1 in the segmentation results.
As the green solid line exists closer to the blue solid line, it presents better result. In fig-
ure 9.9(a), the dotted red line with a circle presents the representation of the subset used in
method 1, i.e. the mean of green solid line. The measured statistics are very different from the
ground truth because the constant representation is not sufficient to represent the non-uniform
sub-region consisting of three different paints. In figure 9.9(b), the dotted red line presents
the representation of the subset used in method 2, i.e. the Gaussian density function of image
intensity measured. The measured statistics is very different from the ground truth because
of the same reason as figure 9.9(a). The red circles in figure 9.9(c) present {µ̂1, µ̂2, . . . , µ̂6}
measured from training samples. They are the centers of each sub-class. The dotted red line
presents the estimated parametric mixture density function at the final stage of contour evo-
lution. Although the estimated mixture density function is not identical to the true statistical
distribution, i.e. the blue solid line, it successfully finds the position of peaks producing a good
segmentation result. The estimated weights {α̂1, α̂2, . . . , α̂6} help to ignore insignificant sub-
classes and to emphasize significant sub-classes. The measured statistics and the ground truth
are almost identical. Figure 9.10 shows the same measure for class 2, the rectangle. Both
method 1 and 2 cannot produce satisfying results, while the proposed method successfully es-
timates a mixture density function, which is close to the true statistical distribution of image
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(a) (b)

(c)

Figure 9.9: Statistical distribution of image intensity within the background measured at green
channel: (a) method 1, (b) method 2, (c) proposed method

intensity, from {µ̂1, µ̂2, µ̂3}. The measured statistics and the ground truth are almost identical.

Figure 9.11 shows an RGB image captured from a virtual 3D scene generated by an ATR
simulator. The background is reconstructed from an air-borne range data, and the correspond-
ing color picture is put on the reconstructed surface as texture. We also reconstruct a tank
model, and put the camouflage pattern shown in figure 9.7(b) on its surface. The object of
this experiment is to extract the shape of the tank from the scene as a target. This image is
another difficult problem because there are a lot of shades on the surface of both the tank and
the background as well as the complicated camouflage pattern.

Figure 9.12 shows the result of method 1 applied on figure 9.11. Figure 9.12(a) shows the
final stage of contour evolution, and figure 9.12(b) shows the corresponding segmentation result.
Method 1 identifies the sky as the target, the white subset. Also, method 1 cannot extract the
whole body of the tank from the scene because of the complicated camouflage pattern. Method
2 also produces an undesirable result as shown in figure 9.13. The mountains and other areas
in the background are identified as target, the dark subset.

We applied the proposed half-supervised segmentation method on the same image. Fig-
ure 9.14 shows the training stage of the proposed method. We used the same image as the
training samples for this experiment. Three vector-valued image intensities are measured from
a mountain, sky and the field, and assigned for the background. Six vector-valued image in-
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(a) (b)

(c)

Figure 9.10: Statistical distribution of image intensity within the core measured at green chan-
nel: (a) method 1, (b) method 2, (c) proposed method

Figure 9.11: A complicated synthetic RGB image

tensities are measured from the tank, and assigned for the tank. After applying the proposed
method on the same image, we successfully extract the almost perfect shape of the tank from
the background as shown in figure 9.15. Figure 9.15(a) shows the final stage of contour evolu-
tion, and figure 9.15(b) shows the corresponding segmentation result. In figure 9.15(b), we can
see very sophisticated detail of the tank. This experiment shows the robustness of the proposed
method in ATR problems.

Figure 9.16 shows an example of outdoor gray scale images with texture. There are two
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(a) (b)

Figure 9.12: Method 1 applied to a complicated synthetic RGB image: (a) the final stage of
contour evolution, (b) the segmented subsets

(a) (b)

Figure 9.13: Method 2 applied to a complicated synthetic RGB image: (a) the final stage of
contour evolution, (b) the segmented subsets

(a) (b)

Figure 9.14: Training stage of the proposed method: (a) 3 samples measured for background,
(b) 6 samples measured for the tank

zebras standing close on the field. The zebras consist of white and black stripes, while the
background is textured gray. The object of this experiment is to extract the shape of zebras
from the background. This is a difficult segmentation problem because of the complicated
patterns of zebras. The white stripes of zebras are brighter than the background, while the
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(a) (b)

Figure 9.15: Proposed method applied to a complicated synthetic RGB image: (a) the final
stage of contour evolution, (b) the segmented subsets

Figure 9.16: A complicated outdoor gray image; two zebras

black stripes of zebras are darker than the background. Also, some portions of zebras, e.g. white
stripes under the shade, have similar intensity to the background. The statistical distribution of
image intensity within the zebras must be represented as a mixture of more than two sub-classes.

Figure 9.17 shows the result of method 1 applied on figure 9.16. Figure 9.17(a) shows the
final stage of contour evolution, and figure 9.17(b) shows the corresponding segmentation re-
sult. Although method 1 identifies the whole background as a subset, it separates the zebras
into two parts: bright sub-regions and dark sub-regions. Also, method 1 identifies the bright
sub-regions of zebras as the background.

Figure 9.18 shows the result of method 2 applied on figure 9.16. Figure 9.18(a) shows the
final stage of contour evolution, and figure 9.18(b) shows the corresponding segmentation re-
sult. Although method 2 produces better segmentation result than method 1, there are many
artifacts on both zebras and background. The sub-regions of zebras whose intensity is similar
to the background are identified as background, the white subset, while the sub-regions of back-
ground whose intensity is darker than the other parts of background are identified as zebras,
the black subset.
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(a) (b)

Figure 9.17: Method 1 applied to the zebra image: (a) the final stage of contour evolution, (b)
the segmented subsets

(a) (b)

Figure 9.18: Method 2 applied to the zebra image: (a) the final stage of contour evolution, (b)
the segmented subsets

Figure 9.19 shows the training stage of the proposed segmentation method. We used the
same image as the training samples for this experiment. The image intensities of two sam-
ples are measured and assigned as {µ̂1, µ̂2} for the background. Four image intensities from
bright white stripes, dark white stripes, bright black stripes, and dark black stripes are mea-
sured and assigned as {µ̂1, µ̂2, µ̂3, µ̂4} for the zebras. After applying the proposed method on
the same image, the proposed method successfully extracts the shape of two zebras from the
background as shown in figure 9.20. Figure 9.20(a) shows the final stage of contour evolution,
and figure 9.20(b) shows the corresponding segmentation result. Although there are still a few
artifacts on the zebras, the number of artifacts has been significantly reduced, and there are no
artifacts in the background. The artifacts found within zebras appear because the image inten-
sity of those sub-regions is identical to the background. This experiment shows the robustness
and the limitation of the proposed segmentation method.

Figure 9.21 shows an example of indoor RGB images with a strong texture. There is a
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(a) (b)

Figure 9.19: Training stage of the proposed method: (a) 2 samples measured for background,
(b) 4 samples measured for zebras

(a) (b)

Figure 9.20: Proposed method applied to the zebra image: (a) the final stage of contour
evolution, (b) the segmented subsets

Figure 9.21: A complicated indoor RGB image; hand
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human hand and a donut-shaped object on the texture background. The object of this experi-
ment is to extract the hand and the donut-shaped object from the background and to identify
them as different subsets. Thus, the ideal segmentation result should have three subsets as
{Ωhand,Ωobject,Ωbackground}. This is a difficult segmentation problem because it requires not
only segmentation but also pattern classification. The textured background is another difficult
problem. In order to partition the given image into three subsets, all three active contour mod-
els use two level set functions {φ1(x, y), φ2(x, y)}. The mathematical description of 4-phase
active contour is presented in chapter 7.

Figure 9.22 shows the result of method 1 applied on figure 9.21. Figure 9.22(a) shows the

(a) (b)

Figure 9.22: Method 1 applied to the hand image: (a) the final stage of contour evolution, (b)
the segmented subsets

final stage of contour evolution, and figure 9.22(b) shows the corresponding segmentation result.
Method 1 produces a very poor segmentation result in this case. Because of the texture, a lot of
artifacts appear on the background. Also, the use of two level set functions produces undesired
local minima resulting in a lot of artifacts on the hand.

Figure 9.23 shows the result of method 2 applied on figure 9.21. Figure 9.23(a) shows the fi-

(a) (b)

Figure 9.23: Method 2 applied to the hand image: (a) the final stage of contour evolution, (b)
the segmented subsets

nal stage of contour evolution, and figure 9.23(b) shows the corresponding segmentation result.
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Although method 2 produces a relatively cleaner segmentation on the textured background,
it generates a lot of artifacts on the background, which is the local minima of two level set
functions. Method 2 also identifies the hand and the donut-shaped object as the same subset.
A smart choice of initial contours may avoid the artifacts caused by local minima of two level
set functions, but it requires prior knowledge of given image.

Figure 9.24 shows the training step of the proposed segmentation method. We used the same

(a) (b)

Figure 9.24: Training stage of the proposed method: (a) 3 samples measured for hand, (b) 2
samples measured for the donut shaped object

image as the training samples for this experiment. The vector-valued image intensities of three
samples are measured from hand and assigned as {µ̂1, µ̂2, µ̂3} for the hand. Two samples are
measured from the donut-shaped object, and assigned as {µ̂1, µ̂2} for the object. For the back-
ground, we did not provide any information, but assumed the background can be represented as
a multivariate Gaussian density function. After applying the proposed method on the same im-
age, the proposed method successfully extracts the shape of hand and the donut-shaped object
from the background, and identifies them as three different subsets {Ωhand,Ωobject,Ωbackground}
as shown in figure 9.25. Although there are still a few artifacts, identified as Ωunknown, the

(a) (b)

Figure 9.25: Proposed method applied to the hand image: (a) the final stage of contour evolu-
tion, (b) the segmented subsets

proposed method shows the best result compared to the benchmarks. This experiment shows
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that the proposed method can be used for not only image segmentation but also pattern clas-
sification.
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Chapter 10

Supervised Active Contour Model
using Multivariate Gaussian
Mixture Density Functions

In this chapter, we propose a supervised active contour model using the parametric density es-
timation method introduced in section 6.1.2. The proposed active contour model estimates the
statistical information of training samples for each subset, and applies the pre-estimated infor-
mation into image segmentation without iterative density estimation during contour evolution.
Section 10.1 discusses the supervised image segmentation model, and section 10.2 discusses the
parametric density estimation method. Section 10.3 presents the numerical algorithms of the
proposed method, and section 10.4 presents the experimental results applied on synthetic and
real images.

10.1 Supervised Image Segmentation

The proposed segmentation method consists of two stages: training and test stages. During the
training stage, an advanced EM method with MML estimates the PDF of training samples as
a mixture of multivariate Gaussian density functions. During the test stage, the proposed seg-
mentation method assigns the pre-estimated density functions as the conditional PDF of image
intensity for each subset, and partitions the given image without any density estimation process.

Let us assume that training samples for each subset are available and the statistical dis-
tribution of training samples is similar to the statistical distribution of image intensity within
each subset in the image. Then, we can estimate the conditional PDF of image intensity from
the training samples, such as

p(I(x, y)|(x, y) ∈ Ωi) ≈ p(I|I ∈ Ii), ∀i (10.1)

where Ii = {I1, . . . , In, . . . , IN} denotes the ideally sampled training samples or a statistical
template of the object, which is supposed to be isolated as a subset Ωi in the result of the
segmentation. p(I|I ∈ Ii) : <B → < denotes a multivariate conditional PDF of a vector-valued
image intensity I on the condition that the multispectral image pixel is an element of training
samples Ii. The detail on the density estimation of p(I|I ∈ Ii) will be discussed in the next
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section.

The proposed segmentation method uses the same global energy minimization scheme as
the other two methods introduced in chapter 8 and 9. However, the minimization of the global
energy function E with respect to the statistical representation pi in equation 9.4 and 8.1 of
each subset is not necessary in the proposed method because the best fitting pi is already given
as p(I|I ∈ Ii) from training samples instead of the given image. The global energy function can
be simplified as a function of variational contours C only, such as

E(C) ≡
∑

i

∫
Ωi

− log p(I(x, y)|I(x, y) ∈ Ii)dxdy + ν|C|, (10.2)

where the pre-estimated p(I(x, y)|I(x, y) ∈ Ii) determines the segmentation criteria and pro-
vides a force to propagate the variational contours C to the proper position where C divides
the entire domain Ω of the image I(x, y) into multiple subsets {Ωi}. This is a supervised image
segmentation. Then, the minimization of E with respect to C smoothes the variational bound-
aries C minimizing the length |C|.

The Euler-Lagrange equation obtained by minimizing the energy function E with respect
to level set functions Φ = {φ1, . . . , φj , . . . , φJ} is given by

∂φj(x, y)
∂t

= δj

νκj +
2J∑
i=1

log p(I(x, y)|I(x, y) ∈ Ii)
∂χi

∂Hj

 , ∀j, (10.3)

where δj ≡ δε(φj(x, y)) controls the width of update ∂φj/∂t, p(I(x, y)|I(x, y) ∈ Ii) provides
a force to propagate contours Cj , and ∂χi/∂Hj determines the region where φj updates.
The implementation of the proposed active contour model is identical to the two other pro-
posed active contour models except that the proposed method does not need to compute
p(I(x, y)|I(x, y) ∈ Ii) at each iteration.

The proposed active contour model estimates the PDF of training samples prior to the con-
tour evolution, and does not estimate the PDF from the image but only apply the pre-estimated
PDF for image segmentation. This supervised approach simplifies the segmentation procedure
reducing the convergence time of active contours. As long as the training samples are reliable,
the segmentation results will be also more robust than the results of the two methods intro-
duced in chapter 8 and 9 as well as traditional segmentation methods. However, the results
will not consistent or robust if the training samples are unreliable.

10.2 Multivariate Gaussian Mixture Density Function Estimated
by EM with MML

In this chapter, we represent the conditional PDF of vector-valued image intensity for being
an element of a subset p(I(x, y)|(x, y) ∈ Ωi) in the same way that we estimate pi in chapter 9,
i.e. a mixture of multivariate Gaussian density functions

p(I(x, y)|(x, y) ∈ Ωi) ≡
K∑

k=1

αkp(I(x, y)|µk,Σk), ∀i, (10.4)
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except that the mixture density function is estimated from training samples Ii given by

p(I(x, y)|(x, y) ∈ Ωi) ≈
K̂∑

k=1

α̂kp(Ii|µ̂k, Σ̂k), ∀i. (10.5)

The estimation above is done by estimating four sets of parameters: the number of sub-classes
K, the weight {αk}, the mean vector {µk}, and the covariance matrix {Σk}.

Since classic EM method cannot estimate the number of sub-classes K, the proposed method
uses an advanced EM method proposed by Figueiredo and Jain [144] to estimate a mixture den-
sity function from given data samples, i.e. training samples. The advanced EM method based
on the minimum encoding length criteria initiates a high number of sub-classes, and eliminates
the weakest sub-class one by one, so it can automatically select the number of sub-classes K.
Therefore, all four sets of parameters, K̂, {α̂k}, {µ̂k}, {Σ̂k}, can be estimated from given data
samples without any prior knowledge on the data. That is an unsupervised density estima-
tion method estimates parameters, and a supervised segmentation method partitions an image
based on the estimated parameters. The detail of mathematic description of this density esti-
mation method is presented in section 6.1.2, and the numerical algorithm is presented in the
next section.

10.3 Algorithm

Table 10.1: The input and output variables used in the supervised active contour model using
multivariate Gaussian mixture densities

• Input

– I(x, y) : Ω → <B, a multispectral image.

– J , the number of level set functions {φj(x, y)} = the number of active
contours {Cj}.

– ν, a parameter to control the regularity of contours.

– ∆t, the time step of iterative processing.

– {I1,I2,. . . ,I2J}, training samples for each subset.

• Output

– S(x, y) : Ω → {1, . . . , 2J}, the segmented image

Table 10.1 shows the input and output variables used in the proposed segmentation method.
A multispectral image I(x, y) is given as the input data. The number of level set functions,
which is equivalent to the number of contours, is set as J . ν controls the regularity of con-
tour evolution by controlling the relative balance between segmentation force and regularity
force. ∆t determines the convergence speed. The parameters representing each subset Ωi are
estimated from the corresponding training samples Ii. After the proposed active contours con-
verge, the algorithm produces the segmented image S(x, y) indicating each subset with different
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numbers.

The proposed active contour algorithm consists of three stages: training, initialization, and
contour evolution (test). During the training stage, the four sets of parameters representing the
PDF of training samples Ii are estimated for each subset Ωi: the mean vector {µ̂k}, the weight
{α̂k}, and the covariance matrix {Σ̂k} of each sub-class, and the number K̂ of sub-classes. The
mathematical description of density estimation method EMwMML(·) is presented in section 6.1.2,
and the algorithm is presented in algorithm 6.

Algorithm 5: Supervised Active Contour Model using Multivariate Gaussian Mixture
Density Functions

Training
for i = 1 · · · 2J do

[K̂, {α̂k}, {µ̂k}, {Σ̂k}]i = EMwMML(Ii)

Initialization
t = 0.
for j = 1 · · ·J do

Cj(x(s), y(s), t = 0): Initialize contours.
φj(x, y, t = 0) = ±D((x, y), N(x,y)(Cj)): Initialize level set functions.

Contour evolution
repeat

for j = 1 · · ·J do
κj(x, y) = meanCurvature(φj(x, y))
Hj(x, y) = unitStep(φj(x, y))

Supervised region-based segmentation
for i = 1 · · · 2J do

χi(x, y) = identityFunction({Hj(x, y), ∀j})
ei(x, y) = − log p(I(x, y)|[K̂, {α̂k}, {µ̂k}, {Σ̂k}]i)

Update level set function
for j = 1 · · ·J do

φj(x, y) = φj(x, y) + ∆tδ(φj(x, y))

[
νκ(φj(x, y))−

2J∑
i=1

ei(x, y) ∂χi

∂Hj

]
t = t + ∆t

until until the evolution of contour converges

Segmentation result

S(x, y) =
2J∑
i=1

χi(x, y)

During the initialization stage, J sets of initial contours {Cj} are given either manually or
from a defined set, and corresponding level set functions are initialized as the signed distance
from each (x, y) to the closest contours. During the iterative contour evolution, the mean cur-
vature κj(x, y) and the unit step function Hj(x, y) are computed from each level set function
φj(x, y). The mathematical description of function meanCurvature(·) and unitStep(·) are in-
troduced respectively in equation 3.10 and 7.3. Then, binary identity functions χi(x, y) for
each subset Ωi are computed. The mathematical description of function identityFunction(·)
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is given in equation 7.4. There is no density estimation procedure during the contour evo-
lution as the required parameters are already estimated from training samples Ii. Instead,
the proposed method just assigns the pre-estimated parametric mixture density functions
p(I(x, y)|[K̂, {α̂k}, {µ̂k}, {Σ̂k}]i) to each subset Ωi on the image, and the density functions per-
form the role of conditional PDF of image intensity. p(I(x, y)|[K̂, {α̂k}, {µ̂k}, {Σ̂k}]i) updates
the objective function ei(x, y) for Ωi, consequently updates the level set functions {φj(x, y)}
based on χi(x, y) and ei(x, y).

Table 10.2: The input and output variables used in the estimation of a mixture of multivariate
Gaussian density functions using an advanced EM method with MML

• Input

– I = {I(1), I(2), . . . , I(n), . . . , I(N)}, I ∈ <B, data samples.

– Kmax: the maximum possible number of sub-classes.

– Kmin: the minimum possible number of sub-classes.

• Output

– K̂: the estimated number of sub-classes.

– {µ̂k}: the estimated mean vector of each sub-class.

– {α̂k}: the estimated weight of each sub-class.

– {Σ̂k}: the estimated covariance matrix of each sub-class.

Table 10.2 shows the input and output variables used in the function EMwMML(·) [144]. The
advanced unsupervised EM method takes data samples I and the maximum and minimum
possible number of sub-classes {Kmax,Kmin} as input, and produces the four sets of parame-
ters representing a mixture of multivariate Gaussian density functions: the mean vectors {µ̂k},
the weights {α̂k}, and the covariance matrix {Σ̂k} of each sub-class, and the number K̂ of
sub-classes.

The advanced EM method used in the proposed active contour model estimates the output
values through an iterative process consisting of four steps: expectation (E-step), maximization
(M-step), evaluation, and annihilation. At the initialization stage, the number of sub-classes
is initialized as Kmax. The three other parameters, {α̂k}, {µ̂k}, {Σ̂k}, are also initialized as
appropriate values. During E-step, the expected posterior probabilities of the given data sam-
ples based on the current status of parameters [α̂k, µ̂k, Σ̂k] are estimated and updated for
each sub-class k. During M-step, four output parameters, [K̂, {α̂k}, {µ̂k}, {Σ̂k}], are estimated.
Function eliminate(·) eliminates the sub-class with zero weight α̂k = 0, adjusts the number
of sub-classes K̂ = K̂ − 1, and rearranges the parameters of remained sub-classes. During the
evaluation step, we check the value of metric function L, and stop the iteration if L(t) has
converged. During the annihilation step, we eliminate the sub-class with the lowest weight.
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Algorithm 6: Advanced EM Algorithm with MML

Initialization
K̂ = Kmax

for k = 1 · · ·K do
Initialize α̂k, µ̂k, Σ̂k.
for n = 1 · · ·N do uk(n) = p(I(n)|µk,Σk)

L(0) = ∞, Lmin = ∞
Estimation

while K̂ ≥ Kmin do
while ∆L ≥ ε do

k = 1
while k ≤ K̂ do

E-step: update posterior probabilities.

for n = 1 · · ·N do wk(n) = α̂kuk(n)PK̂
j=1 α̂juj(n)

M-step: update parameter set Θ = [K̂, {α̂k}, {µ̂k}, {Σ̂k}].
α̂k = max(0,

PN
n=1 wk(n)−N/2)PK

j=1{max(0,
PN

n=1 wj(n)−N/2)}

{α̂k} = α̂k/
∑K

j=1 α̂j , ∀k
if α̂k = 0 then

[K̂, {uk}, {α̂k}, {µ̂k}, {Σ̂k}] = eliminate(K̂, {uk}, {α̂k}, {µ̂k}, {Σ̂k})
else

for k = 1 · · · K̂ do

µ̂k =
PN

n=1 I(n)wk(n)PN
n=1 wk(n)

Σ̂k =
PN

n=1 wk(n)(I(n)−µ̂k)(I(n)−µ̂k)TPN
n=1 wk(n)

for n = 1 · · ·N do uk(n) = p(I(n)|θk) = p(I(n)|µ̂k, Σ̂k)
k = k + 1

Evaluation: check the criterion to stop the iteration.

L(t) = M
2

∑K
k=1 log Nα̂k

12 + k
2 log N

12 + K̂(M+1)
2 −

∑N
n=1 log

(∑K̂
k=1 α̂kuk(n)

)
∆L = |{L(t)− L(t− 1)}/L(t− 1)|

if Lmin > L(t) then Lmin = L(t) and Θbest = Θ(t)

Annihilation: eliminate the weakest sub-class.
if K̂ 6= Kmin then

α̂k∗ = 0 where k∗ = arg min
k

α̂k

{α̂k} = α̂k/
∑K

j=1 α̂j , ∀k
[K̂, {uk}, {α̂k}, {µ̂k}, {Σ̂k}] = eliminate(K̂, {uk}, {α̂k}, {µ̂k}, {Σ̂k})

10.4 Experiments

In this section, we apply the proposed segmentation method to three different images, and com-
pare the results of the proposed method to the results of other active contour models. The same
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region-based active contour models used in the last two chapters were used as benchmarks. All
three methods including the proposed method preform the segmentation based on the statis-
tical property of image intensity measured within a subset. Method 1 and 2 are unsupervised
methods, while the proposed method determines the statistical information from training sam-
ples. The experiments of all three methods use the same pre-defined initial contours. The
detail of mathematical and analytical descriptions of both benchmarks methods are presented
in section 3.4.

Figure 10.1 shows an example of synthetic gray images with textures. There is a small

(a) (b)

Figure 10.1: Synthetic textured image: (a) a textured gray image, (b) the ground truth image

rectangle in figure 10.1(a), and both the rectangle and the background have their own texture
pattern. The object of this experiment is to separate the rectangle from the background. Fig-
ure 10.1(b) shows the ground truth of the given image. The dark part presents the background,
class 1, while the bright part presents the rectangle, class 2.

Figure 10.2 shows the result of method 1 applied on figure 10.1. Figure 10.2(a) shows the

(a) (b)

Figure 10.2: Method 1 applied to a synthetic textured image: (a) the final stage of contour
evolution, (b) the segmented subsets

final stage of contour evolution, and figure 10.2(b) shows the corresponding segmentation result.
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Method 1 produces extremely many artifacts on both the background and the rectangle because
of the complicated texture patterns. Method 1 partitions the image into dark sub-regions and
bright sub-regions, but they are not equivalent to the two texture patterns.

Figure 10.3 shows the result of method 2 applied on figure 10.1. Figure 10.3(a) shows the

(a) (b)

Figure 10.3: Method 2 applied to a synthetic textured image: (a) the final stage of contour
evolution, (b) the segmented subsets

final stage of contour evolution, and figure 10.3(b) shows the corresponding segmentation result.
Method 2 does not show many artifacts on the background, but cannot extract the shape of
the rectangle. Figure 10.2 and 10.3 show that the performance of unsupervised segmentation
methods is limited if the image has non-uniform subsets and different subsets show similar
image intensities.

We applied the proposed supervised segmentation method on the same image. Figure 9.7
shows the training samples used for the proposed method. Two reference images of the tex-

(a) (b)

Figure 10.4: Training stage of the proposed method: (a) reference image for background, (b)
reference image for the rectangle

ture patterns are given as training samples. Figure 10.4(a) shows the training samples for the
background, and figure 10.4(b) shows the training samples for the rectangle. The proposed
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method estimates the PDF of both images as a mixture of Gaussian density functions, and as-
sign them as the conditional PDF of image intensity for each subset. Figure 10.5 shows the the
result of the proposed method. Figure 10.5(a) shows the final stage of contour evolution, and

(a) (b)

Figure 10.5: Proposed method applied to a synthetic textured image: (a) the final stage of
contour evolution, (b) the segmented subsets

figure 10.5(b) shows the corresponding segmentation result. The proposed method successfully
separates the rectangle from the background without any significant artifact.

For more precise comparison, the statistical distribution of image intensity within both the
background and the rectangle are measured. Figure 10.6 shows the statistical distribution of
image intensity within class 1, which is supposed to be the background in the segmentation re-
sult. Figure 10.6(a), 10.6(b), and 10.6(c) respectively present the results of method 1, method
2, and the proposed method. The blue solid lines of all three graphs present the statistical
distribution of image intensity measured at the background, which is a mixture of at least three
sub-classes. The green solid lines of all three graphs present the same statistics measured within
class 1 in the segmentation results. As the green solid line exists closer to the blue solid line, it
presents better result. In figure 10.6(a), the dotted red line with a circle presents the represen-
tation of the subset used in method 1, i.e. the mean of green solid line. The measured statistics
is very different from the ground truth because the constant representation is not sufficient
to represent the non-uniform sub-region consisting of many sub-classes. In figure 10.6(b), the
dotted red line presents the representation of the subset used in method 2, i.e. the Gaussian
density function of image intensity measured. The measured statistics is similar to the ground
truth though the representation is quite different from the true statistics. In figure 10.6(c),
the dotted red line presents the estimated parametric mixture density function from training
samples. The estimated density function is very similar to the true statistics, and the measured
statistics is almost identical to the ground truth. Figure 9.10 shows the same measure for class
2, the rectangle. Although the ground truth looks like a simple Gaussian distribution, neither
method 1 or 2 can produce reasonable results, as shown in figure 10.7(a) and 10.7(b), because
the non-uniform statistics in the other subset was too complicated for them. In figure 10.7(c).
the proposed method estimates very accurate statistics from training samples, and it leads to
a very successful segmentation result.

Figure 10.8 shows an example of outdoor gray images with texture. There is a zebra stand-
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(a) (b)

(c)

Figure 10.6: Statistical distribution of image intensity within background: (a) method 1, (b)
method 2, (c) proposed method

ing on the field. The zebra consists of white and black stripes, while the background is uniformly
gray. The object of this experiment is to extract the shape of zebra from the background. This
is a difficult segmentation problem because of the complicated patterns of the zebra and the
shade under the zebra. The white stripes of zebra are brighter than the background, while the
black stripes of zebra are darker than the background. Also, some portions of zebras, e.g. white
stripes under the shade, have similar intensity to the background. The shade under the zebra
is as dark as the black stripes though it is not part of the zebra. The statistical distribution of
image intensity within the zebra must be represented as a mixture of more than at least two
sub-classes.

Figure 10.9 shows the result of method 1 applied on figure 10.8. Figure 10.9(a) shows the
final stage of contour evolution, and figure 10.9(b) shows the corresponding segmentation result.
Method 1 separates the zebra into two parts, i.e. bright sub-regions and dark sub-regions, but
identifies the bright sub-regions of the zebra as the background.

Figure 10.10 shows the result of method 2 applied on figure 10.8. Figure 10.10(a) shows
the final stage of contour evolution, and figure 10.10(b) shows the corresponding segmenta-
tion result. Although method 2 produces better segmentation result than method 1, there are
still many artifacts on both zebras and background. The sub-regions of zebras whose inten-
sity is similar to the background are identified as background, i.e. the white subset, while the
sub-regions of background whose intensity is darker than the other parts of background are
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(a) (b)

(c)

Figure 10.7: Statistical distribution of image intensity within the small rectangle: (a) method
1, (b) method 2, (c) proposed method

(a) (b)

Figure 10.8: A complicated outdoor image: (a) a zebra, (b) the ground truth image

identified as zebras, i.e. the black subset.

Figure 10.11 shows the training stage of the proposed segmentation method. We used the
same image as the training samples for this experiment. The yellow rectangles indicate the
regions used as training samples. The statistical distribution of image intensity within those
sampled regions {p(I|I ∈ Ii)} is estimated as a mixture of Gaussian density functions, and
assigned as the conditional PDF of image intensity as the background p(I(x, y)|(x, y) ∈ Ω1)
and the zebra p(I(x, y)|(x, y) ∈ Ω2). Figure 10.12(a) shows the final stage of contour evolution,
and figure 10.12(b) shows the corresponding segmentation result. Although there are still a few
artifacts on the zebra, the number has been significantly reduced. There are no artifacts in the
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(a) (b)

Figure 10.9: Method 1 applied to a complicated outdoor image: (a) the final stage of contour
evolution, (b) the segmented subsets

(a) (b)

Figure 10.10: Method 2 applied to a complicated outdoor image: (a) the final stage of contour
evolution, (b) the segmented subsets

(a) (b)

Figure 10.11: Training stage of the proposed method: (a) training samples for background, (b)
training samples for the zebra

background. The artifacts found within the zebra appear because the image intensity of those
sub-regions is identical to the background. This experiment shows how robust the proposed
method using mixture density functions is compared to traditional methods using unimodal
density functions, and it also shows the limitation of the image segmentation method based on
image intensity as it cannot separate two objects with identical image intensities.
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(a) (b)

Figure 10.12: Proposed method applied to a complicated outdoor image: (a) the final stage of
contour evolution, (b) the segmented subsets

Figure 10.13 shows an example of applications using the proposed method on indoor RGB
images. The object of this experiment is to simulate ATR problems with real RGB images in-

(a)

(b) (c)

Figure 10.13: Complicated indoor RGB images: (a) reference image, (b) test 1, (c) test 2

stead of synthetic images. We measure training samples from a reference image, and apply the
proposed method with the training samples into other images taken under different light condi-
tion and angle. We applied them into the images with even unknown objects. Figure 10.13(a)
shows the reference image. There is a toy tank on the carpet, and the carpet has a wool pat-
tern. This image simulates a miniature version of a tank on the grass field. Figure 10.13(b)
and 10.13(c) show the two test images. The reference image figure 10.13(a) is taken from di-
rectly above the target simulating a view from satellite or high-altitude reconnaissance flight,
while the first test image figure 10.13(b) is taken from a diagonal view and the focus is little bit
blurred simulating a view from a missile or a jet fighter. The second test image figure 10.13(c)
shows another target, a humvee, as well as the tank shown in the reference image. There is also
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a gray painted vehicle in the figure 10.13(c), which simulates a non-target object. This is the
most difficult problem among the experiments shown in this document because the reference
image and test images were taken from different views, and we do not have information for all
objects appeared in the test images, i.e. the humvee and the gray painted vehicle.

Figure 10.11 shows the training stage of the proposed segmentation method. We obtain

(a) (b)

Figure 10.14: Training stage of the proposed method: (a) training samples for background, (b)
training samples for the tank

some training samples from the reference image. The yellow rectangles indicate the regions
used as training samples. The statistical distribution of image intensity within those sampled
regions {p(I|I ∈ Ii)} is estimated as a mixture of multivariate Gaussian density functions, and
assigned as the conditional PDF of image intensity as the background p(I(x, y)|(x, y) ∈ Ω1) and
the target p(I(x, y)|(x, y) ∈ Ω2).

Figure 10.15 shows the result of the proposed method applied on figure 10.13(b). Figure 10.15(a)

(a) (b)

Figure 10.15: Proposed method applied to test 1 image: (a) the final stage of contour evolution,
(b) the segmented subsets

shows the final stage of contour evolution, and figure 10.16(b) shows the corresponding seg-
mentation result. The object of this experiment is to extract the shape of the tank from the
background, and the proposed method produces a reasonable result. Although there are a few
small artifacts on the result, a smarter choice of training samples may solve the problem.
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Figure 10.16 shows the result of the proposed method applied on figure 10.13(c). Figure 10.16(a)

(a) (b)

Figure 10.16: Proposed method applied to test 2 image: (a) the final stage of contour evolution,
(b) the segmented subsets

shows the final stage of contour evolution, and figure 10.16(b) shows the corresponding segmen-
tation result. The object of this experiment is to extract the shape of the tank and the humvee,
but to ignore the non-target object, i.e. the gray painted car. There was no such information
on the non-target object in the reference image. The proposed method successfully extracts the
shape of the tank and the humvee, while it ignores the non-target object. There is an artifact
on the hood of the humvee because the white star did not appear in the reference image. The
segmentation result is little bit affected by shading and different light condition. The shadows
of the gray painted vehicle are recognized as targets, and a bright portion of the tank is recog-
nized as the background. This experiment shows the potential use of the proposed method in
real ATR problems and the possible problems that should be improved by future research.

92



Chapter 11

Improvements in Unsupervised
Active Contour Model using an
Expanded Feature Space

In this chapter, we propose some improvements over the unsupervised image segmentation
method using Multi-dimensional Histograms introduced in chapter 8. The feature space is
expanded to include 3 more features apart from image intensity. These are then non-linearly
diffused before using them to measure a PDF expression for each subset in the image at each
iteration and update the level set function. Section 11.1 discusses feature extraction procedure
to compute the new expanded set of features. Section 11.2 discusses the PDF modeling of
the new feature set for improved unsupervised image segmentation. Section 11.3 shows the
numerical algorithm and section 11.4 shows results on some real images.

11.1 Feature Extraction

The proposed improvement is based on expanding the feature set to include features from the
modified classical structure tensor as proposed in Rousson and Derichel [164]. The classical
structure tensor is defined below:

Jρ = Kρ ∗ (∇I∇IT ) =
(

Kρ ∗ I2
x Kρ ∗ IxIy

Kρ ∗ IxIy Kρ ∗ I2
y

)
(11.1)

where Kρ is a Gaussian kernel with standard deviation ρ and the subscripts denote partial
derivatives of the image. We replace the convolution with the Gaussian kernel with non-linear
diffusion as proposed in [164]. Using a Gaussian kernel results in the smoothing of the edges
and thus, leads to inaccurate segmentation near the boundaries. Non-linear diffusion avoids
the problem by reducing the smoothening near the edges.

Thus, our feature space is given by the non-linearly diffused version of:

u =
[

I I2
x I2

y IxIy

]T (11.2)

Note that u is a vector valued image.
We use the vector valued non-linear diffusion scheme as proposed in [164].

∂tui = div(g(
N∑

k=1

|∇uk|2)∇ui) ∀i (11.3)
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All the channels are coupled in the diffusivity function g(s). Therefore, an edge in one
channel inhibits smoothing in the others. The diffusivity function g(s) is defined as:

g(s) =
1

s + ε
(11.4)

where ε is a small constant to avoid division by zero.

11.2 Probability Density Estimation

The probability density function for the contour evolution is estimated using the expanded
feature set rather than just the multi-dimensional histogram of the image intensity. The four
feature vectors are assumed to be independent of each other. The feature vector I is estimated
using a multi-dimensional histogram as proposed in chapter 8.

The other 3 feature vectors are approximated as a multidimensional-Gaussian distribution
with parameters {µi,Σi} for each subset Ωi of the image. These are updated at every iteration
during the evolution of the contour as follows:

µi =
∫
Ω

u(x)χidx
/∫

Ω

χidx

Σi =
∫
Ω

(u(x)− µi)(u(x)− µi)T χidx
/∫

Ω

χidx

(11.5)

where χi is the binary identity function defined in chapter 7.
Note that the Covariance matrix (Σi) is diagonal because of the independence of each feature

channel.
The total probability density function for each subset of the image(Ωi) is then estimated as

follows:

pi(u(x)) =
4∏

k=1

pi(uk(x)) (11.6)

The proposed method uses the same global energy minimization scheme as proposed in
chapter 8. The global energy function is given by

E({pi}, C) ≡
∑

i

∫
Ωi

e(x, y|pi)dxdy + ν|C|, (11.7)

and the global energy E is minimized with respect to two expressions: {pi}, i.e. the statistical
representation of the image within a subset Ωi, and the variational contours C. First, the
minimum E with respect to {pi} is achieved while C is fixed. Then, the minimum E with
respect to C is achieved while {pi} are fixed. An objective function

e(x, y|pi) = − log pi, ∀(x, y) ∈ Ω, ∀i, (11.8)

determines the region-based segmentation criteria . The probability density function pi for each
subset(Ωi) is estimated by using equation 11.6.
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11.3 Algorithm

The contour evolution algorithm is similar to the one proposed in chapter 8. There are however,
some differences. One is the feature extraction step and the other is in the computation of the
objective function. Table 11.1 shows the input and output variables used in the algorithm and
the modified algorithm is shown in algorithm 7.

Table 11.1: The input and output variables used in the unsupervised image segmentation with
the expanded feature space

• Input

– I(x, y) : Ω → <1, a greyscale image.

– J , the number of level set functions {φj(x, y)} = the number of active
contours {Cj}.

– ν, a parameter to control the regularity of contours.

– ∆t, the time step of iterative processing.

• Output

– S(x, y) : Ω → {1, . . . , 2J}, the segmented image

Because of the expanded feature, the probability density is estimated by a Multi-dimensional
Histogram for feature u1 which is the diffused version of the image intensity(I). The other
features approximated by Gaussian distribution.
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Algorithm 7: Unsupervised Active Contour Model using and Expanded Feature Space

Initialization
t = 0.
u = FeatureExtract(I(x, y))
for j = 1 · · ·J do

Cj(x(s), y(s), t = 0): Initialize contours.
φj(x, y, t = 0) = ±D((x, y), N(x,y)(Cj)): Initialize level set functions.

Contour evolution
repeat

for j = 1 · · ·J do
κj(x, y) = meanCurvature(φj(x, y))
Hj(x, y) = unitStep(φj(x, y))

Unsupervised region-based segmentation
for i = 1 · · · 2J do

χi(x, y) = identityFunction({Hj(x, y), ∀j})
pi = histogramDensity(u1(x, y)χi(x, y))
for k = 2 · · · 4 do

µi,k = mean(uk, χi(x, y))
Σi,k = Variance(uk, χi(x, y))
pi=pi ∗ GaussianEstimate(uk(x, y), µi,Σi)

ei(x, y) = − log pi

Update level set function
for j = 1 · · ·J do

φj(x, y) = φj(x, y) + ∆tδ(φj(x, y))

[
νκ(φj(x, y))−

2J∑
i=1

ei(x, y) ∂χi

∂Hj

]
t = t + ∆t

until until the evolution of contour converges

Segmentation result

S(x, y) =
2J∑
i=1

χi(x, y)

Table 11.2 shows the input and output variables used in the feature extraction procedure
and the actual algorithm is shown in algorithm 8.

Table 11.2: The input and output variables used in feature extraction
• Input

– I(x, y) : Ω → <1, a greyscale image.

• Output

– u : Ω → {u1, . . . , u4}, the feature vectors

The feature extraction procedure involves the computation of the image gradient. The
gradients are then used to compute the feature channels (u

′
). u

′
is finally, non-linearly diffused

to obtain the desired feature vector(u).
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Algorithm 8: Feature Extraction

[Ix, Iy] = ComputeImageGradient(I)
u

′
=

[
I, I2

x, I2
y , IxIy

]T

u = NonLinearDiffusion(u
′
)

11.4 Results

In this section, we apply the proposed method to the zebra image to highlight the significant
improvements obtained over the method proposed in chapter 8.

Figure 11.1 shows the zebra image on which the proposed method was tested on. Feature

Figure 11.1: The Zebra Test Image

extraction was performed on the above image by the algorithm proposed in section 11.1. Figure
11.2 shows the four feature channels obtained after feature extraction and non-linear diffusion.
These form the feature vector u.

Figure 11.2: The 4 smoothened feature channels(I, I2
x, I2

y , IxIy)

Figure 11.3 shows the final stages of contour evolution.
As it can be seen, the proposed method successfully segments the zebra from the background.

The results show a significant improvement over the previous methods. Furthermore, the new
algorithm is unsupervised.
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Figure 11.3: The Final Stage of Contour Evolution

Thus, the expanded feature space coupled with the unsupervised segmentation algorithm
proposed in chapter 8 overcomes the earlier drawback that it cannot separate objects with
similar image intensities.

The current approach is, however, by no means complete and has been tested only on gray
scale images. The proposed approach could be extended to multi-spectral images by future
research.
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Chapter 12

Conclusions

The proposed work has two main objects: robust image segmentation and the integration of
image segmentation and pattern classification. Although image segmentation is a fundamental
problem in image analysis, it has been difficult for traditional image segmentation methods to
produce satisfying results on images with non-uniform sub-regions. We have developed robust
image segmentation methods, which can produce good segmentation results on difficult image
segmentation problems that traditional segmentation methods cannot produce reasonable re-
sults. In traditional image analysis, image segmentation performs a role of preprocessing for
pattern classification providing the input data. We have integrated image segmentation and
statistical pattern classification by using the statistical distribution of image intensity as the
feature used in image segmentation. Thus, the proposed image segmentation methods produce
the result of statistical pattern classification as well as image segmentation reducing the com-
putation time and effort.

The proposed image segmentation methods use the framework of active contours. As active
contours always provide continuous boundaries of sub-regions, they can produce more reason-
able segmentation results than traditional segmentation methods, and consequently improve
the final results of image analysis. The mathematical implementation of the proposed active
contour models is accomplished using level set method. By presenting contours as a level of a
topological function, we can merge multiple contours into one contour, or can split a contour
into multiple contours, providing a good flexibility in the use of active contours.

Traditional image segmentation methods partition an image based on either discontinuity
between sub-regions or uniformity within a sub-region of a desired feature, e.g. image intensity,
texture. Instead of a simple feature, the proposed image segmentation methods use the sta-
tistical distribution of image intensity within a sub-region, in a form of conditional probability
density functions, as the feature to determine the segmentation criteria. Since the segmentation
criteria are determined by the statistics of large samples rather than a single image intensity
at a pixel, the proposed image segmentation methods show robust performance on images with
noise. The proposed image segmentation methods partition an image in two ways: unsuper-
vised or supervised. The unsupervised method partitions an image based on the uniformity
of the feature within a sub-region. The supervised method partitions an image based on the
similarity of the feature within a sub-region to the feature provided from corresponding training
samples. The unique character of the proposed methods, which helps them to outperform tradi-
tional methods, is the use of a mixture density function to represent the statistical distribution
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of image intensity within a subset. As the segmentation criteria is determined by a mixture
of sub-probability density functions instead of a probability density function, the proposed
methods are able to recognize subsets with non-uniform (multimodal) image intensity, such as
zebras. For multispectral images, we use a mixture of multivariate density functions instead
of a product of marginal mixture density functions to represent the statistics of complicated
patterns. These methods recognize extremely non-uniform vector-valued image intensities, such
as military camouflage patterns, very well.

As the application of the proposed segmentation principle, three image segmentation meth-
ods are proposed. First, we represent the statistics of image intensities within each subset during
the contour evolution in a form of multi-dimensional histograms. The use of a non-parametric
discrete function provides an improved segmentation results compared to traditional segmenta-
tion methods based on particular stochastic model because the statistics of image intensity can
be hardly represented as a simple stochastic model. Second, we represent the same statistics as
a mixture of multivariate Gaussian density functions during the contour evolution, using a prior
knowledge provided from training samples. The use of supervised mixture density functions
provides significant improvements on segmentation and classification results because proposed
method can recognize extremely non-uniform subsets. This method provides reasonable results
even on the images that the previous method cannot segment well. Third, instead of computing
the statistics of image intensity during contour evolution, we compute the statistics of corre-
sponding training samples in advance before image segmentation, and assign the pre-computed
statistics as the conditional PDF of image intensities for each subset during image segmenta-
tion. This method provides reasonable results even on images that the two previous proposed
methods cannot segment well. The Unsupervised method was further improved by expanding
the feature space to include the image gradients. Non-linear diffusion was used to smoothen
the feature vector and then used to evolve the contour. This method produces even better
results than the previous three methods. The biggest advantage of this method is that it is
unsupervised. However, the method has been tested only on grey scale images given the time.
Future work would be extending this method to multi-spectral images.
In order to show the improved performance of the proposed methods, we have applied them to
images that other segmentation methods cannot properly segment. As benchmarks, the seg-
mentation results of proposed methods and the results of two more traditional active contour
models, which share similar segmentation criteria, are compared. The proposed methods have
shown very promising results outperforming the reference methods.

Although the proposed methods produce very robust and promising results, there are still a
few aspects could be improved. Since the proposed methods represent the statistical distribution
of image intensity in a complicated form, i.e. a mixture of multivariate density functions, the
required computation is relatively larger than traditional methods increasing the convergence
time. The fast advance of computer processor may solve this problem. Since supervised methods
extract information from training samples, the performance may rely on the quality of training
samples. A smart choice of training samples may reduce the effect of this problem.

The expanded feature space provides a significant improvement in performance. However,
this method was not explored in detail given the time and can be the basis for future work.
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