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1. INTRODUCTION

Digital cameras are used everywhere for the remote detection of objects. However, their limited color discrimina-
tion (typically limited to black-and-white, or to the three color bands RGB) means that many different objects
can appear the same. An imaging spectrometer detects the spectrum of the object at higher resolution, improv-
ing our knowledge of the object composition. Polarization is another quantity which can tell us more about the
object under view (i.e. its roughness, the angle of its surface relative to the viewing angle, etc.) As we add
in all of the additional quantities into our measurement of an object, however, we find that the measurements
themselves begin to take a lot of time. If the object is moving while the measurement is being taken, or if it is
changing physically, artifacts occur in the data which degrade the measurement. Our research aim is to build a
device which can measure the spatial, spectral, and polarization information of a scene in a single snapshot in
order to minimize temporal artifacts.

The data acquired by an imaging spectropolarimeter can be interpreted as an image of a four-dimensional
volume, since a measure of radiance is obtained for four independent variables or indices: two spatial variables
(x, y), wavelength (λ), and the Stokes vector index (j). We refer to this four-dimensional volume as the
spectropolarimetric hypercube, illustrated in Fig. 1.
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Figure 1. An illustration of the four-dimensional (x, y, λ, j)
nature of the data acquired by an imaging spectropolarime-
ter.
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Figure 2. The lower-dimensional volumes which various
spectrometer types are capable of imaging without scanning.
Such spectrometers could be used with scanning to obtain
spectral and spatial data on the s0 polarization component,
with additional measures (such as rotation of polarizers and
retarders) necessary to obtain complete polarimetric data.

Conventional spectrometers and polarimeters are inherently sensitive to a one-, two-, or three-dimensional
subset of the volume, and must scan out the remaining dimensions in order to obtain a complete data set. For
example, a camera with a narrow-band filter could be used to obtain a single x,y slice through the hypercube.
In this slice x and y vary while λ is fixed at the wavenumber passed by the filter and j is held at zero. The entire
four dimensions could be swept out by swapping in filters with different transmission wavelengths in tandem with
an analyzer and a rotating retarder. Similar examples can be made for other systems, such as slit spectrometers
and whisk broom scanners (see Fig. 2).
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Whereas imaging spectrometers are widely used in remote sensing applications (Earth-observing satellites
such as AVIRIS are well-known examples), imaging spectropolarimeters are uncommon, largely due to the
hardware difficulties introduced by adding polarimetry to an instrument. Traditional approaches use moving
parts, which reduce reliability and robustness, and that a relatively long time is required for the capture of
a complete data set, since multiple exposures are made sequentially in time. Past efforts to build snapshot
instruments have faced extreme difficulties in integrating large complex optical systems with multiple focal plane
arrays. We hope to show a method which can accomplish this with a compact optical system, relying more on
computational complexity than hardware complexity.

2. BACKGROUND — COMPUTED TOMOGRAPHY IMAGING SPECTROMETRY
(CTIS)

The CTIS design involves imaging through a 2D transmission grating, with the result that the imaged scene is
dispersed into a rectangular array of prismatic images (Fig. 6).1, 2 The grating (or “disperser”) is placed into
the collimated path in front of the focal plane array (in this case a CCD camera). By placing a field stop at a
conjugate plane to the FPA, we can limit the spatial extent of the scene imaged, allowing the prismatic images
to be spatially separated (Fig. 4).

The grating is a computer generated hologram, generated as a 2D rectangular surface relief pattern fabricated
from PMMA (plastic).3, 4 The grating is designed to produce the desired dispersion pattern for the spectral range
of the instrument, which for the prototype instrument used here is the visible spectral region (400 nm–700 nm).
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Figure 3. The CTIS optical layout.
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Figure 4. The surface relief pattern of the 2D grating
(“disperser”). Shown here is a section of the grating (2
cells × 2 cells), where each cell comprises 10×10 “phasels”.
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Figure 5. A typical image from a CTIS FPA, shown
with the computed-tomographic model of projections of
the data cube onto the FPA.

The prototype system we have constructed uses a 2048× 2048 pixel B/W CCD camera, and the grating has
been designed to produce what we call a 5 × 5 CTIS diffraction pattern (the measured diffraction orders are
+2,+1, 0,−1, and −2, for a total of 5 measured orders in each of the horizontal and vertical directions). The
undiffracted (zero-order) image in the center of the FPA is basically a miniature black-and-white imager which
provides the spatial resolution of the datacube. The prototype system we have constructed currently provides
a zero-order image size of 70 × 70 pixels. The best spectral sampling of the object is provided by the outer
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diffraction orders, where the spectral projection is the most spread out. Here, the outer diffraction orders in
the prototype system are smeared (spatially and spectrally multiplexed) across a range of 600 pixels. Removing
the spatial component (100 pixels along the diagonal), gives the maximum spectral sampling achievable by this
setup: 500 spectral bands in the visible region.
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Figure 6. A raw CTIS image (with outlines of each diffracted order superimposed). The blowup of the corner diffracted
order gives a figurative illustration of the spatial and spectral multiplexing.

To develop a method for reconstructing the dispersed prismatic images into a single datacube, we can start
with the linear imaging equation5

g = H f(x, y, λ)

image
(output)

↗
system

operator

↑ ↖
object
(input)

If we lexicographically order the pixel information of our detected image g into a long 1D vector (indexed by i) and
do the same for each voxel in the datacube f (indexed by j), then each column Hi of the system matrix H maps
a single voxel in the datacube to a set of pixels in the image. The system H-matrix can then be calibrated (that
is, its elements can be determined) by using a series of detected images g of a quasi-monochromatic point-source
f : by placing a single-mode optical fiber directly into the field stop and illuminating it with a monochromator,
we effectively have a source which is contained inside a single voxel of the datacube. Adjusting the wavelength
then allows us to map out a full vertical column of voxels in the datacube.

gi = Hij fj

discrete imaging equation

Then, for unknown inputs f , the calibration can be used to construct estimates f̂ of the datacube representing
the input:

f̂j = H+
ji gi ,

calibrated measurement

where H+ is the Moore-Penrose pseudoinverse of the calibrated system matrix. From the method used to
calibrate the system matrix H we can get an idea of what kind of operation its pseudoinverse H+ performs.
The values of the individual matrix elements in H are the weights in the mapping of datacube voxels to FPA
pixels: an element with a large value means that a large amount of the energy from a given voxel gets imaged
onto the pixel to which it is mapped. We can now imagine what it means to do this in reverse: given a set of

3



intensities measured on the FPA, we can then use these measured weights to backproject the pixel intensities into
the voxels in the datacube to which they are mapped. (Each pixel will get mapped to multiple voxels because
of the spectral-spatial multiplexing of the system.) This backprojection process causes blurring, since by itself
it can’t de-multiplex the spatial from the spectral components, so the backprojection is followed by a filtering
operation that reduces the blurring artifacts. In rough form, this backprojection+filtering is the process that
the pseudoinverse matrix represents for this system.

3. CHANNELLED SPECTROPOLARIMETRY (CHSP)

Channelled spectropolarimetry6 is a technique which, through the simple addition of a pair of thick retarders and
an analyzer to an optical system, allows the conversion of a spectrometer into a spectropolarimeter, and therefore
also an imaging spectrometer into an imaging spectropolarimeter. Its great advantages include its compactness
and its lack of moving parts.

CHSP uses the dispersion of birefringence in high-order retarders to interfere components of the input beam.
For example, we can consider a spectrum which is passed through a horizontal polarizer, after which it is incident
on a thick retarder oriented at 45◦(see Fig. 7). To consider what happens to the light as it passes through the
retarder, we split it into two equal components — the projections onto the +45◦ and −45◦ axes of the retarder.
When the light emerges from the retarder, these two components (+45◦ and −45◦) will be out of phase by an
amount given by the retardance of the waveplate. For simple waveplates, the retardance varies linearly with
wavenumber σ := 1/λ:

δ(σ) = 2πd ∆n σ ,

where d is the physical thickness of the retarder. (This nice linear relationship assumes a waveplate material
which has a low dispersion of birefringence.) Thus, the blue end of the spectrum will see a large retardation
between the +45◦ and −45◦ components, while the red end of the spectrum will see much less retardation. If
a horizontally-aligned analyzer is then placed into the beam, the two components (+45◦ and −45◦) are forced
to interfere, and since there is a linear phase ramp going from the blue to red wavelengths, the spectrum is
modulated (at a frequency given by the retardance).
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Figure 7. When a horizontally-polarized spectrum is passed through a high-order retarder oriented at 45◦, and then
passed through a horizontally-oriented analyzer, the spectrum is modulated at a constant frequency.

To build a complete polarimeter with this technique, it is necessary to produce interference not only in the
horizontal/vertical linear polarization components [↔l ] of the beam but also the +45◦/−45◦ linear components [↖↘↗↙]
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and the circular components (RCP/LCP) [�	]. Fig. 8 illustrates the principle of operation: the input broadband
spectrum passes through two high-order retarders; the first retarder is aligned with the analyzer’s transmission
axis and the second retarder is aligned at 45◦to the first. Using Mueller calculus, and representing the spectrum
in terms of wavenumber σ rather than λ, we can relate the measured spectrum I(σ) in terms of the Stokes vector
polarization components in the input beam

2I(σ) = s0 + s1 cos(δ2) + s2 sin(δ1) sin(δ2)− s3 cos(δ1) sin(δ2) ,

where δ1 and δ2 are the retardances of the respective retarders (and each are linear functions of wavenumber
σ). Taking the autocorrelation of I(σ), we obtain a function in which the four individual Stokes components
are separated into seven channels (the seven terms of equation (3)). By proper choice of thicknesses for the
two retarders,7 which decide the retardances δ1 and δ2, these channels do not overlap, so that windowing each
channel individually and taking the forward Fourier transform of the result, we have the four spectrally-resolved
Stokes components. Because the individual channels occupy only a portion of the total signal bandwidth, there
is a reduction in overall spectral resolution (by a factor of seven, typically) in the reconstructed Stokes spectra.
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Figure 8. Channelled spectropolarimeter diagram (adapted from ref. 6). The input spectrum passes through a thick
retarder oriented at 0◦to the horizontal, then another thick retarder oriented at 45◦, followed by an analyzer at 0◦and a
spectrometer. An unpolarized input spectrum is unmodulated, while a polarized input is given high-frequency modula-
tions. In the Fourier domain, the polarization components of the beam are (with a proper choice of retarder thicknesses)
separated into 7 channels. The sj terms shown here are the Stokes vector components representing the polarization state.

If we pass a polarized spectrum into a CHSP instrument, we see that the spectrum is given high-frequency
modulations (Fig. 9). If we now calculate the Inverse Fourier Transform of this spectrum, C(OPD) = F−1{I(σ)},
we can see the resulting 7-channel distribution in the Fourier domain. The Stokes component terms are separated
into independent channels, much in the way that communications systems using a single carrier frequency reserve
bandwidth regions for each independent communication channel, referred to as sideband modulation.

As long as none of the Stokes component spectra sj(σ) exceed the bandwidth of a given channel, then each of
the Stokes components can be extracted separately via masking and shifting in the Fourier domain. The spectral
resolution of the system may then be characterized by the OPD-bandwidth provided to each channel. For quartz
retarders, the birefringence at visible wavelengths is approximately 1% of the crystal’s physical thickness, so
that for the pair of quartz retarders used to generate the data in the figures here, with thicknesses of 1.84 and
5.52mm respectively, there is a retardance of δ1 ≈ 18.4 µm for the orthogonal polarizations passing through the
thinner retarder. This gives the width of each individual channel shown in Fig. 9.8

4. SNAPSHOT IMAGING SPECTROPOLARIMETRY (CTICS)

By combining the techniques of CTIS with CHSP, we can construct an instrument which maintains snapshot
capability and obtains information of the four-dimensional hypercube (Fig. 1). Fusing the two techniques involves
the insertion of the pair of high-order retarders and analyzer into the collimated path in front of the CTIS
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Figure 9. (Left:) The measured channelled spectrum for a compound input polarization state. (Right:) The magnitude
of the spectrum’s Fourier Transform |C(OPD|) for the input polarization state. Windows have been superimposed onto
the plot to show the seven channels and the bandwidth region into which each polarization component of the input
spectrum is distributed.

disperser, so that the polarization information in the measured scene can now be encoded in modulations in the
spectrum. This additional capability comes at the cost of reducing the spectral resolution by a factor of 7, but
snapshot capability is maintained.
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Figure 10. The layout of the CTICS system, with the
pair of high-order retarders and analyzer inserted in front
of the disperser.

(enlarged below)

Figure 11. If we image horizontally-polarized light
through a narrow slit, we can see the channelled spectrum
most easily in the diffraction order oriented perpendicu-
larly to the slit.

The addition of the polarization components into the system significantly affects the calibration methods,
however. As mentioned above, the CTIS calibration involves placing a monochromatic point-source into the
field stop (a conjugate plane to the image) and measuring the response of each pixel in the image to each voxel
of the datacube. With the CHSP hardware installed, we follow this procedure as before, making sure that the
point-source used is unpolarized. This allows us to reconstruct the s0 datacube. In order to obtain the remaining
three components of the hypercube, we then calibrate the retardances of each of the two thick retarders and use
those values to demodulate the spectrum (a column of the data cube) via the Fourier windowing technique for
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each channel.

Figure 12. The prototype visible-spectrum CTICS instrument. The physical length of the entire instrument is about
75 cm.

5. IMPLEMENTATION

After integrating the CTICS system shown in Fig. 12, we made our first attempts at calibration and soon learned
that the monochromator available in the lab does not have sufficient light output to allow a narrow band spectral
spectral output for our calibration. If the spectral band is narrowed to the width of the resolution of our CTICS
system (1 nm FWHM), the light output is feeble and the calibration images become swamped with noise. If the
spectral band is widened to allow enough signal through, the system’s spectral resolution suffers — rather than
mapping one datacube voxel to a set of FPA pixels, a wideband calibration input maps a set of voxels to a large
set of pixels, which will result in substantial blurring in the reconstruction. To compensate for these effects, we
first designed a new mounting system (mentioned above) which allows us to place the tip of a single-mode fiber
directly into the field stop (the standard CTIS calibration method has been to image the tip of the fiber into
the field stop, which results in large signal loss and in chromatic aberration). While this gave a large increase in
signal, the increase was still not enough to allow us to narrow the monochromator output down to the needed
1 nm FWHM.

To modify the CTIS calibration to maximize spectral resolution, the approach we take is as follows. Increasing
the spectral width of the monochromator output provides enough light, but the resulting image of the point-
source becomes a streak rather than something pointlike (as shown in the left hand side image of Fig. 13). A
CTIS calibration image thus will contain 25 streaks rather than 25 points. If we use a Gaussian fitting routine to
locate the center of each streak, we can effectively locate the central wavelength of the monochromator output.
This works because the monochromator’s output I(λ) is basically symmetric about the center wavelength. At
the same time, we can see that diffraction increases the size of the PSF only along the diffraction direction;
orthogonal to the diffraction direction, the shape of the streak is purely due to the PSF itself. This gives a clue
about how to estimate the PSF for a given wavelength: we can sum pixels along the diffraction direction, leaving
only the 1D projection of the PSF along a direction orthogonal to the diffraction angle (this is shown in Fig. 14).
We have 25 projections in a 5 × 5 CTIS design, but some of the projection angles coincide, so that there are
actually a total of only 8 non-redundant projection angles available. We can use tomographic methods to try to
reconstruct the 2D PSF from these projections, but we currently assume rotational symmetry so that each of
the projection angles can be treated as being estimates of the 1D PSF expressed in polar form. The final step
is then to interpolate this radial PSF onto the pixel grid at the location of the center wavelength. The resulting
processed data is shown in Fig. 13 below.

As far as the system H-matrix is concerned, the difference between using the raw calibration images (where
the point-source images take the form of short streaks) and the processed calibration images (where the point-
source images are copies of the PSF) is that less data smoothing takes place during the reconstruction step. To
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Figure 13. (Left:) A raw CTIS calibration image using a monochromator with substantial spectral width (∼5 nm
FWHM). (Right:) A processed CTIS calibration image, where the system PSF has been interpolated onto the position of
the raw image’s centroid. The processed image is therefore equivalent to an image of an ideal monochromatic point-source.
The features in both images have been enlarged to enhance visibility.

raw calib image

PSF

Figure 14. The image of the calibration pointsource taken
from the upper-right corner diffraction order. Projecting
the image along the diffraction direction provides a 1D to-
mographic projection of the PSF.

Figure 15. After obtaining an estimate of the PSF, we in-
terpolate the circularly-symmetric PSF onto the rectangu-
lar position grid, at a point centered around the measured
centroid of the original calibration streak.

make the distinction clear, we can use the notation Hraw and Hpsf to describe the system matrices resulting
from the two respective methods.

During the measurement step, where we attempt to estimate the datacube from a given image, the recon-
struction algorithms attempt to de-multiplex and deblur the spatial and spectral components of the data. Using
the original and modified calibration techniques described above, we have reconstructed the spectropolarimetric
hypercube for a broadband polarized source. The channelled spectrum at a given spatial location in the cube,
and the resulting reconstructed Stokes spectra, are shown in Figs 16 & 17. The effect of additional blurring on the
spectrum reconstructed from Hraw is apparent, indicating that the modified calibration method has succeeded
in improving the realizable spectral resolution of the system.

Although the new calibration approach shows some success, artifacts in the reconstructed data show that work
is still needed to bring the system up to a standard where it can make useful scientific measurements. The figures
were taken for a pointsource object, which minimizes the blurring taking place in the CTIS reconstructions, and
at a polarization of 45◦, which produces the lowest-frequency modulations. For such a well-behaved object,
the reconstruction is marginally useful, but for a more realistic scene the reconstruction is severely limited in
usefulness. Thus, further work is needed, and the next couple sections outline our work in trying to find new CTIS
designs that can overcome current limitations, and we are starting to work on modifying existing reconstruction
algorithms to reduce noise amplification.
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Figure 16. Using a 45◦linearly polarized source imaged by the CTICS, the above figures show: (i) the spectrum obtained
from a column of a datacube reconstructed with Hraw, (ii) its Fourier-domain representation (the Fourier windows
are shown superimposed), and (iii) the reconstructed Stokes spectra for this location in the object. The noise in the
reconstructed polarization state, especially at the longer wavelengths, indicates the unreliability of the measurement.
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Figure 17. Using the same source as in Fig. 16, the figures here show the same measurements, obtained this time with
Hpsf . The improved preservation of higher frequencies is apparent, which also provides an improved measurement of the
Stokes spectra, but the presence of substantial noise is still apparent.

6. CTIS DESIGN IDEAS: “A MENAGERIE OF CTISES”

For a long time, the evolution of CTIS designs has been to increase the number of diffraction orders. The original
CTIS design employed three crossed cosine gratings — gratings designed to produce diffraction only in the orders
+1 and −1. The next CTIS design (the “5× 5” design) used a CGH to generate a diffraction pattern using the
+2,+1, 0,−1 and +1 orders in the vertical and horizontal directions. A later design (the “7 × 7”) took a step
further and superimposed a total of 49 spectral footprints onto the focal plane array, generated by taking the
+3 through −3 diffraction orders for both vertical and horizontal directions.

Looking at past work on these CTIS designs, however, we realized that to produce good reconstructed
datacubes it should be sufficient to use only the +1 and −1 diffraction orders, if we then change the diffraction
pattern to increase the number of projections. This would give a pattern something like the one shown in Fig. 19.

Another issue that needs to be addressed in considering new CTIS designs is that of the special requirements
for integrating polarimetry into the system — very high spectral resolution. Current CTIS disperser designs are
severely limited in the spectral dispersion they can produce just by the fact that the dispersion angle is linear
in wavelength. If, for example, we design 700 nm light to get dispersed to the edge of the array, then 400 nm
light is necessarily diffracted by 4/7ths of that angle (as in Fig. 20). The space between the zero-order light and
the low-wavelength image is then completely empty (if the field stop is small enough, you can actually fit an
entire inner diffraction order inside that “optimized” diffraction design). If possible, it would help the spectral
resolution greatly if we could modify the grating design to achieve nonlinear dispersion angle with wavelength.

Thus, a good CTIS design will maximize the use of space on the focal plane array to optimize spatial and
spectral resolution while maintaining as many independent projections as possible. An early idea was to try a
dispersion pattern which is rotationally symmetric (what may be called a “conical” grating design due to the
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Figure 18. Past CTIS grating designs. (Left:) The CTIS pattern on the FPA produced by three crossed cosine gratings.
(Center:) The CTIS pattern produced by the 5× 5 design. (Right:) The CTIS pattern for the 7× 7 design.

Figure 19. The CTIS footprint for a design using a radial spoke pattern and a circular field stop.

shape of the wavefront exiting the grating, as shown in Fig. 22). From a system-level perspective, such a grating
would mean that a single voxel in the datacube would produce a ring of light on the array. We no longer have
a discrete number of projections but rather a continuum of projections in all angles. If we look at a different
voxel in the datacube, the ring of pixels on the detector array corresponding to that voxel are translated over. If
the voxel illuminating the array is at a different wavelength then the radius of the ring changes. This is strongly
reminiscent of the annulus aperture well-known from coded aperture imaging: there, the shape of the PSF is
a ring whose center gives the angle towards the source, and whose magnification indicates the distance to the
source.

However, the conical design possesses some serious drawbacks. The problems CTIS experiences in optimizing
spatial and spectral resolution come primarily from the mixing between components. The system operator H is
basically a blurring operator, and our reconstruction algorithms make the best attempt possible to recover the
unblurred object. The more that blurring occurs in a given CTIS design, the more difficult the reconstruction is
going to be (and, given noise considerations, the quality of the result will be lower). If we have more projections,
then the multiplexing (or blurring) happens between different components of the signal, making it easier to
reconstruct the underlying signal in the presence of noise. While the conical grating design has the nice property
of allowing having every possible projection on a discrete rectangular array, the price to be paid is that the
mixing is enormously increased, especially in the blue end of the spectrum. The result is likely a workable CTIS,
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Figure 20. If the zero-order image is kept small in order to
maximize spectral resolution, then the maximum achievable
dispersion of a grating designed for linear dispersion, not
matter what diffraction order, is shown above for the case of
the visible spectrum range, 400 nm–700 nm. (If using a wide
(multi-octave) spectral range, this dispersion can approach
the nonlinear pattern shown below.

Figure 21. The current 5× 5 dispersion CTIS design con-
figuration, optimized for maximum spectral dispersion. For
a visible-spectrum system, the inner diffraction orders fit
entirely inside the outer diffraction orders, even when the
outer orders are maximally dispersed.

Figure 22. The conical CTIS design.

but hardly an optimized CTIS.

To compare some of the CTIS designs, we need to define some metrics which correspond to desired system
parameters. Thus, we can define the number of projections produced by a given design, the maximum spectral
resolution achievable, and the amount of blurring that occurs. (The maximum spectral resolution number is
basically meaningless if all of the data is severely blurred together.)

To characterize the amount of blurring in a given design, we can define a Blur Factor, given by the number
of voxels that the average illuminated pixel maps to. (This is intended to correspond closely to the idea of
backprojection, since that step is the core of the reconstruction algorithm.) While this gives the Blur Factor an
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intuitive interpretation, it unfortunately means that the result is calibration-dependent. So, we can assume that
for the purposes of defining the Blur Factor in each design the calibration images will be taken at evenly spaced
wavelength steps which on average place the resulting images one pixel apart.

A set of CTIS designs is shown below, together with the design parameters relevant to each. The spatial
resolution (in number of pixels) is given by D, and the number of projections (ignoring the zero-order) is given
by N , where we have assumed that the detector array used is 2048×2048 pixels in size. (This produces numbers
for D which are of a convenient size.) The maximum theoretical spectral resolution achievable for a design is
given by L (representing the number of samples of the visible spectral region, 400 nm–700 nm).

Generally, one of the first things commented on regarding the limitations of spectral resolution in a CTIS
system is: why can’t we move the zero order to a corner of the detector and read off only a quadrant of diffraction
orders (thus allowing twice the spectral resolution)? While it is obvious that this provides for only a small number
of diffraction orders, which makes the de-multiplexing task more difficult, the problem needs a more thorough
treatment to be convincing. In Section 7 below, we show how these “asymmetric” CTIS designs produce a
sampling of frequency space which is sparse — much of the Fourier cube is empty (unsampled). However, we
know that the detected data is real-valued, and that the Fourier Transform of a real-valued object has Hermitic
symmetry. In 1D, this means that, for example, F (ξ) = F ∗(−ξ): if you measure the function for all positive
values of ξ, the negative values can be readily supplied. Thus, collecting data in the negative half-space is
unnecessary. Applied to the case of CTIS, this means that, in principle at least, it is possible to measure the
data in one octant of the datacube and from that data reconstruct the missing samples in the remaining seven
octants. Actually putting this idea into implementation is part of our continuing research effort.

Tables 1&2 below summarize the complete set of designs were are considering for using with a CTIS instru-
ment. The D, N , and L factors are the same as given before, except that in the tables they are given both in
terms of the fraction of the focal plane array or (in parentheses) in terms of pixels on the default 2048 × 2048
array. The fill factor describes the fraction of pixels on the array that are illuminated, and the blur factor gives
the average number of voxels mapped to a given illuminated pixel on the array. The parameters φ and γ refer
to properties of the designs in Fourier space, where φ is the “missing cone angle” and γ is the fraction of the
sampled frequency space which lies inside the missing cone. An explanation of the Fourier approach is given in
detail in the following section.

In the tabulated data, it should be mentioned that since the spiral designs cannot be represented by a linear
projection, the spatial-spectral footprints on the array cannot be represented as sampling a planar region in
Fourier space. However, in order to make some kind of comparison with the other designs here, the spiral
patterns are assumed to be represented as equivalent radial design patterns (i.e. a nonlinear radial pattern with
the same number of projections and spectral resolution as the spiral design).
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Figure 23. Descour design,
D = 100, N = 16, L = 550.

Figure 24. 5×5 design, D =
100, N = 24, L = 526.

Figure 25. 7×7 design, D =
100, N = 48, L = 526.

Figure 26. Linear radial de-
sign, D = 75, N = 40, L =
419.

Figure 27. Linear radial de-
sign, D = 100, N = 30,
L = 413.

Figure 28. Linear conical
design, D = 100, N = ∞,
L = 413.

Figure 29. 5 × 5 corner de-
sign, D = 100, N = 8, L =
1208.

Figure 30. Linear radial cor-
ner design, D = 100, N = 16,
L = 826.

Figure 31. Nonlinear 3 × 3
design, D = 100, N = 8, L =
1208.

Figure 32. Nonlinear coni-
cal design, D = 100, N = ∞,
L = 854.

Figure 33. Nonlinear radial
design, D = 100, N = 16,
L = 685.

Figure 34. Nonlinear radial
design, D = 100, N = 24,
L = 545.

Figure 35. Spiral design,
D = 100, N = 16, L = 1501.

Figure 36. Spiral design,
D = 100, N = 24, L = 907.13



Table 1. Comparison of the CTIS designs. D = (dim of the zero order) / (dim of the full array), N = number of
projections, L = (pixels of spectral dispersion) / (dim of the full array). Values in parentheses are for an array of
dimension 2048 pixels. The linear designs have a Fourier cube scaled to z = ±14.5.

Design Parameters Design Metrics

Design Type D N L Fill Blur φ γ Notes

Linear Designs

5x5 Full 0.03 (60) 24 0.29 (596) 0.19 67 5.78 0.058
5x5 Outer 0.03 (60) 16 0.29 (596) 0.13 69 5.78 0.058
Radial Linear 0.03 (60) 50 0.21 (422) 0.34 43 8.10 0.082
Descour 0.04 (75) 18 0.27 (558) 0.18 111 7.66 0.089
5x5 Full 0.04 (75) 24 0.28 (570) 0.24 81 7.50 0.099 (411nm – 700nm)
Radial Linear 0.04 (75) 40 0.20 (419) 0.35 53 10.16 0.146
7x7 Linear 0.04 (75) 48 0.28 (570) 0.42 70 7.49 0.099 (411nm – 700nm)
Descour 0.05 (100) 18 0.27 (550) 0.25 141 10.28 0.163
5x5 Full 0.05 (100) 24 0.26 (526) 0.31 102 10.76 0.206 (430nm – 700nm)
Radial Linear 0.05 (100) 30 0.20 (413) 0.37 68 13.60 0.265
7x7 Full 0.05 (100) 48 0.26 (526) 0.54 112 10.76 0.206 (430nm – 700nm)
Descour 0.07 (150) 18 0.26 (536) 0.40 193 15.61
Radial Linear 0.07 (150) 20 0.20 (402) 0.39 95 20.40
5x5 Full 0.07 (150) 24 0.21 (438) 0.44 133 18.90 (469nm – 700nm)
7x7 Linear 0.07 (150) 48 0.21 (438) ∼0.78 143 18.91 (469nm – 700nm)
Radial Linear 0.10 (200) 14 0.19 (391) 0.37 150 27.04
Descour 0.10 (200) 18 0.25 (522) 0.57 236 20.95
5x5 Full 0.10 (200) 24 0.17 (349) 0.57 147 29.81 (511nm – 700nm)
7x7 Linear 0.10 (200) 48 0.17 (349) ∼0.90 157 29.79 (511nm – 700nm)

Corner Designs

5x5 Corner 0.03 (60) 8 0.63 (1293) 0.12 84 2.66 0.012∗ (375nm – 700nm)
Radial Corner 0.03 (60) 26 0.41 (843) 0.33 46 4.07 0.023∗

5x5 Corner 0.04 (75) 8 0.62 (1261) 0.15 103 3.40 0.020∗ (380nm – 700nm)
Radial Corner 0.04 (75) 21 0.41 (837) 0.34 57 5.12 0.036∗

5x5 Corner 0.05 (100) 8 0.59 (1208) 0.19 133 4.73 (390nm – 700nm)
Radial Corner 0.05 (100) 16 0.40 (826) 0.35 76 6.90
5x5 Corner 0.10 (200) 8 0.49 (996) 0.37 231 11.35 (430nm – 700nm)
Radial Corner 0.10 (200) 8 0.38 (783) 0.37 144 14.32

Special Cases

Conical Linear 0.04 (75) ∼298 0.20 (418) 0.48 5625 10.16 0.144
Conical Linear 0.05 (100) ∼377 0.20 (413) 0.47 10000 13.60 0.262
Conical Linear 0.07 (150) ∼534 0.20 (402) 0.44 22500 20.44
Conical Linear 0.10 (200) ∼691 0.19 (391) 0.42 40000 27.04
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Table 2. Comparison of the CTIS designs. D = (dim of the zero order) / (dim of the full array), N = number of
projections, L = (pixels of spectral dispersion) / (dim of the full array). Values in parentheses are for an array of
dimension 2048 pixels. The nonlinear designs have a Fourier cube scaled to z = ±38.

Design Parameters Design Metrics

Design Type D N L Fill Blur φ γ Notes

Nonlinear Designs

3x3 Nonlinear 0.03 (60) 8 0.63 (1292) 0.16 43 2.66 0.012
Spiral 0.03 (60) 16 1.16 (2372) 0.55 49 1.45 0.003∗

Radial Nonlinear 0.03 (60) 16 0.39 (807) 0.20 47 4.25 0.025

3x3 Nonlinear 0.04 (75) 8 0.62 (1261) 0.20 53 3.40 0.020
Spiral 0.04 (75) 16 0.96 (1970) 0.58 60 2.18 0.007∗

Radial Nonlinear 0.04 (75) 16 0.37 (762) 0.24 58 5.62 0.044
Spiral 0.04 (75) 24 0.62 (1272) 0.57 58 3.40 0.016∗

Radial Nonlinear 0.04 (75) 24 0.32 (653) 0.31 56 6.55 0.075

3x3 Nonlinear 0.05 (100) 8 0.59 (1208) 0.27 69 4.73 0.039
Spiral 0.05 (100) 16 0.73 (1501) 0.60 79 3.87 0.021∗

Radial Nonlinear 0.05 (100) 16 0.33 (685) 0.29 74 8.30 0.096
Spiral 0.05 (100) 24 0.45 (907) 0.57 75 6.29 0.055∗

Radial Nonlinear 0.05 (100) 24 0.27 (545) 0.36 71 10.38 0.191

3x3 Nonlinear 0.07 (150) 8 0.54 (1102) 0.38 98 7.75
Spiral 0.07 (150) 16 0.46 (934) 0.61 110 9.24
Radial Nonlinear 0.07 (150) 16 0.26 (533) 0.38 101 15.70
Spiral 0.07 (150) 24 0.22 (445) 0.49 96 19.02
Radial Nonlinear 0.07 (150) 24 0.16 (329) 0.39 90 24.48

3x3 Nonlinear 0.10 (200) 8 0.49 (995) 0.49 124 11.35
Spiral 0.10 (200) 16 0.27 (555) 0.55 107 19.79
Radial Nonlinear 0.10 (200) 16 0.19 (380) 0.42 148 27.70

Special Cases

Conical Nonlinear 0.03 (60) ∼251 0.45 (914) 0.77 3600 3.76 0.019
Conical Nonlinear 0.04 (75) ∼298 0.44 (892) 0.77 5625 4.81 0.032
Conical Nonlinear 0.05 (100) ∼377 0.42 (854) 0.77 10000 6.68 0.061
Conical Nonlinear 0.07 (150) ∼534 0.38 (779) 0.76 22500 10.90
Spiral (10) 2 65.9 (135,000) (nonimaging)
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7. THE FOURIER REPRESENTATION OF CTIS DESIGNS

From the analogy of the CTIS measurement technique (measuring a 3D object, the datacube, from its 2D
projections), we can make use of an important mathematical theorem that has found use in the computed
tomography literature: the Fourier Slice Theorem. This theorem states that the Fourier Transform of a single
projection (a 2D object) is equivalent to the Fourier Transform of the original object (in 3D) evaluated along a
plane which passes through the origin. Thus, each footprint for a given CTIS design corresponds to sampling
the Fourier cube (the Fourier Transform of the object’s datacube) along a single plane. The effect of having
many different projections is to sample along a number of planes tilted at different angles, but all of which pass
through the origin in Fourier space.

There is a distinguishing feature to every CTIS design: a cone-shaped region, centered on the reciprocal-
wavelength axis h, where none of the frequencies of the Fourier cube are sampled. This is a well-known problem
for limited-angle tomography, and one which can cause considerably difficulty for accurate reconstruction. This
provides another important characterization of the various CTIS designs: the size of the missing cone. In each
of the Fourier representations, the geometry of the sampling planes allows us to obtain the missing cone angle,
represented by φ, and the fraction γ of the Fourier cube which lies inside the cone.
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Figure 37. The nomenclature used for the axes in forward
and reciprocal space.
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Figure 39. The shapes of the missing cone regions for (a) the 5× 5 design CTIS (which has a square base), (b) a radial
6-projection design (the original Descour CTIS design), and (c) a radial 8-projection design.
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Figure 40. Descour design,
D = 100, N = 16, L = 550.
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Figure 41. 5×5 design, D =
100, N = 24, L = 526.
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Figure 42. 7×7 design, D =
100, N = 48, L = 526.
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Figure 43. Linear radial de-
sign, D = 75, N = 40, L =
419.
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Figure 44. Linear radial de-
sign, D = 100, N = 30,
L = 413.
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Figure 45. Linear conical
design, D = 100, N = ∞,
L = 413.
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Figure 46. 5 × 5 corner de-
sign, D = 100, N = 8, L =
1208.
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Figure 47. Linear radial cor-
ner design, D = 100, N = 16,
L = 826.
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Figure 48. Nonlinear 3 × 3
design, D = 100, N = 8, L =
1208.
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Figure 49. Nonlinear coni-
cal design, D = 100, N = ∞,
L = 854.
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Figure 50. Nonlinear radial
design, D = 100, N = 16,
L = 685.
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Figure 51. Nonlinear radial
design, D = 100, N = 24,
L = 545.

- 1

- 0.5

0

0.5

1

ξ- 1

- 0.5

0

0.5

1
η

- 20

0

20

h

-

- 0.5

0

0.5

1

0

Figure 52. Spiral design,
D = 100, N = 16, L = 1501.
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Figure 53. Spiral design,
D = 100, N = 24, L = 907.
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8. DESIGNING THE DISPERSER FOR THE NEW CTIS PATTERNS

After treating ideas relating to various CTIS design patterns, we have yet to consider how each design could
possibly by manufactured for use in a real instrument. For past CTIS designs, all of which used “linear” gratings
(for which the dispersion angle is linearly related to the wavelength), the technique for designing the dispersers
has been a variant of the well-known Gerchberg-Saxton approach (also known as phase retrieval). This technique
allows us to determine the phase profile of the grating which is capable of producing the desired intensity pattern
on the focal plane array. For example, if we wish to construct a 5 × 5 CTIS pattern, then we can start by
building the 25 dots onto a 2048 × 2048 data array. These represent the desired intensity pattern. Since we
don’t know the phase pattern on the array, we can just start by allowing all of the pixels to have random phase
values. If we then take the inverse Fourier Transform of this function, then we have its Fourier representation
at the pupil plane, where we intend to place the disperser. The disperser itself will be a transmission grating,
and the light exiting the grating (if we limit ourselves to considering only monochromatic light for the moment)
can be modelled as a plane wave multiplied by the phase function of the grating. That is, the physical model
requires that we have a uniform amplitude at the pupil plane. The Fourier representation of the desired intensity
pattern will almost certainly not have a uniform amplitude, and so we can keep the phase portion and replace the
amplitude with a uniform value. Taking the forward Fourier Transform of the result, we have an approximation
to the desired intensity pattern. It we continue to iterate this process, we can continue to refine the estimate
so that the phases at the pupil plane accurately reproduce the desired intensity pattern at the focal plane (the
diagram below illustrates this).

start: geiφrandomy
f̂ eiθ

replace
amplitude

y
1eiθ

F−1

←−−−−−−−−−−

F−−−−−−−−−−→

geiφx
replace
amplitude

ĝeiφ

Using this technique, we can obtain the CGH designs for the 5×5 CTIS design, the Linear radial design, and
the Linear conical design, as shown in Figures 54, 55, and 56. (In the greyscale phase maps, white corresponds
to phase values of 2π and black to phase values of 0.)

For the nonlinear CTIS patterns, the disperser design approach is completely different. We are currently
investigating whether we can make use of volume holograms in order to gain the added degrees of freedom to
make a nonlinear disperser design. The basic idea is that we should be able to generate inside a holographic
medium a set of multiple fringe fields, each one of which can be used independently to control the diffraction
wavelength and diffraction angle of the input beam. Superimposing all of these fringe fields (a technique which
has been mastered by holographic data storage researchers) should allow us to construct a complete diffraction
pattern of almost any desired shape.
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Figure 54. Greyscale map of the CGH pixel
phases for the 5× 5 CTIS design.

Figure 55. Greyscale map of the CGH pixel
phases for the Linear radial CTIS design.

Figure 56. Greyscale map of the CGH pixel phases
for the Linear conical CTIS design.
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9. CONCLUSION

There still remain a number of barriers to practical implementation of the CTIS (and CTICS) instrument for
remote sensing measurements. By attempting to integrate polarimetry into a CTIS instrument, one of these
barriers — spectral resolution — becomes a particularly limiting factor. However, there are a number of paths
promising large gains in CTIS capability. Altering the calibration method for CTIS has allowed us to construct
an instrument capable of an order of magnitude better spectral resolution than previous CTIS instruments.
Modifying the disperser design could further improve both spatial and spectral resolution by a factor of 2. If the
nonlinear CTIS disperser designs prove to be workable, then an order of magnitude increase in spectral resolution
becomes possible. Modifications to the reconstruction algorithms to improve their performance in the presence
of noise may provide another factor of 2 to 4 in reconstruction data quality.
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