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A Project Abstract

Frequency hopping (FH) is the prevailing spread spectrum method in military communications,
largely due to its low probability of detection and interception. In this project we developed a novel
signal processing scheme for code-blind reception of multiple frequency hopped transmissions
over multipath channels. This technique is based on the principle of dynamic programming and/or
expectation-maximization, coupled with multidimensional harmonic and low-rank analysis. It is
able to jointly estimate hop timing, hop frequency, and direction-of-arrival (DOA) of multiple FH
signals in the presence of frequency collisions, without the knowledge of signal hop patterns. The
method can also be used to obtain locate information and operation characteristics of active FH
jammers. The associated identifiability of 2-D and multidimensional frequency estimation is also
investigated.

B Technical Report

B.1 Problem Statement and Summary of Major Results

This project studied the problem of detection, localization, and tracking of multiple frequency
hopped signals in multipath channels, without the knowledge of their hop codes and hop timing.
Interception and localization of multiple FH signals are challenging problems that feed into mul-
tiple facets of military communications, from interception of noncooperative communications to
jammer mitigation. On the technical side, the problems are challenging not only because hopping
patterns and DOAs are unknown, but also other parameters such as frequency bin-width, hop-rate,
and timing are at least partially unknown in a realistic scenario. Carrier hopping means that one
has to deal with switching exponentials, rather than pure exponentials; and it also induces hopping
in the receive antenna array spatial steering vectors, due to wavelength-dependent phase shifting
from one array element to another.

Many signal processing techniques have been developed for blind interference suppression in
frequency hopping using an antenna array, e.g., [26,29–31]. These approaches aim for interference
suppression rather than joint multiuser detection and hopping pattern identification, they all require
at least knowledge of the hopping pattern of a given signal of interest, and their interference nulling
capability is bounded by the degrees of freedom in the adaptive array. On the other hand, several
papers have been published on the subject of (joint) multiuser detection for frequency hopping
systems, e.g., [4, 18]. These assume, among other things, that the hopping patterns of all signals
are known to the receiver, hence clearly not applicable in a noncooperative scenario.

Without assuming the knowledge of hop patterns, several methods have been proposed for
blind/semi-blind hop timing and frequency estimation. For example, assuming known hop rate,
channelized receivers have been proposed for semi-blind hop timing estimation (knowledge of
frequency channelization is required) for the single user case [2, 25], as well as the multiuser
case [1]. However, the performance of those receivers degrades rapidly if the channelization is im-
perfect. [32] considers adaptive source localization and blind beamforming for FH signals without
the knowledge of hopping patterns. The algorithm requires rough synchronization with the desired
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signal’s hop interval and is restricted to the use of very special array geometries, and the number of
users that can be resolved is bounded by the number of sensor array elements. In our preliminary
work [17], a first step is used to separate multiple FH signals and then a single user is tracked based
on 1-D harmonic retrieval.

The major results of this project are summarized as follows.

1. We developed the DP-2DHR algorithm, based on the principle of dynamic programming
(DP) coupled with 2-D harmonic retrieval (2-D HR), to jointly estimate the hop timing,
hop frequency, DOA, of multiple FH signals in multipath channels with possible frequency
collisions. The algorithm does not require the knowledge of hop patterns or channelization.

2. Using a multiple invariance sensor array, we developed the DP-TALS algorithm with low-
rank decomposition of three-dimensional arrays, for joint timing, frequency, and 2-D DOA
estimation of multiple FH signals without hop pattern knowledge.

3. Relying the principle of expectation-maximization (EM), we developed a low-complexity
EM algorithm for joint hop timing and frequency estimation by exploiting the inherent data
structure of multiple frequency hopped transmission.

4. We advanced the theory of identifiability of 2-D and multidimensional frequency estimation,
and proved the most relaxed identifiability bound of N -D frequency estimation to date. An
eigenvector-based algebraic algorithm for 2-D frequency estimation was also developed,
which achieves the identifiability bound, and offers asymptotically optimal performance.

B.2 The DP-2DHR Algorithm for Timing and Frequency Estimation

B.2.1 Data Modeling

Suppose anM -element uniform linear array (ULA) receives FH transmission from d sources. Each
far field FH signal is from a nominal DOA with negligible angel spread. The array steering vector
in response to a signal from direction α is a(θ) = [1, θ, . . . , θM−1]T , where θ = ej2π∆sin(α). The
received signal is sampled at a sampling rate of 1/T (T is normalized to 1), and the M × 1 signal
vector collected at the ULA output at sampling time n can be expressed as

x(n) =
d∑

r=1

a(θ(p)
r )β(p)

r sr(n) + w(n), (1)

where sr(n) = ejω
(p)
r n, and ω(p)

r is the frequency of the transmitted signal from the r-th user during
its p-th hop. Note that the baseline separation ∆ (measured in wavelength units) is frequency
dependent, hence so are the steering vectors. For notational clarity, sometimes we do not explicitly
denote this dependence as long as it is clear from the context. The transmitted signals can be
fast or slow frequency hopping, with FSK or linear modulation. β

(p)
r is the complex path loss

for the r-th user during its p-th hop that collects the (frequency-dependent) channel attenuation;
the signal’s initial phase φ(p)

r is also absorbed into β(p)
r . Here the carrier shifts due to hopping or
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Figure 1: An example of two frequency-hopped signals.

symbol modulation are treated as conceptually equivalent, albeit of different magnitude. w(n) is
complex white Gaussian noise with variance σ2. Suppose N samples (snapshots) are collected at
the array output, then the received data matrix can be written as X = [x(0) · · · x(N − 1)].

The objective here is to estimate hop timing (i.e., hop instants) and hop frequency sequences
of all transmitted signals from X , in the presence of possible collisions in some time segments,
without the knowledge of signals’ hop patterns or hop rates. In model (1) we assume a single-path
transmitter-receiver propagation for each signal. Later we generalize it to incorporate multipath
propagation with small delay spread. We also assume that the number of signals (and, in a multi-
path scenario, the total number of paths for all signals) has already been estimated by an appropriate
source enumeration method, such as rank criteria (e.g., SVD) or information theoretic criteria (e.g.,
AIC, MDL).

For simplicity of exposition, let us focus on an FH system where there are two active FH
signals. As shown in Figure 1, s1(t) and s2(t) may have different hop rates and hop timing. Let
ni, i = 0, . . . , K − 1, be the system-wide hop instants (n0 = 0 and nK = N by convention). We
assume that within time period of interest, the total number of hops of all signals is bounded above
by K−1 (such a bound could be deduced from the spectrogram of the data, and need not be tight).

Between any two system-wide consecutive hop instants, e.g., ni and ni+1, there are only two
temporal frequencies involved. During such a time segment, the received data may be written as

X i = [x(ni) · · · x(ni+1 − 1)] = AiBiS
T
i + W i, (2)

where Ai = [a(θ
(p)
1 ) a(θ

(q)
2 )], Bi = diag(β

(p)
1 , β

(q)
2 ), and the subscript i is a time index indicating

that the time segment is delimited between ni and ni+1 − 1, i.e., the i-th system-wide dwell. In (2),
the signal matrix Si is defined as

Si =

[
ejω

(p)
1 ni ejω

(p)
1 (ni+1) · · · ejω

(p)
1 (ni+1−1)

ejω
(q)
2 ni ejω

(q)
2 (ni+1) · · · ejω

(q)
2 (ni+1−1)

]T

,

and W i is the corresponding noise matrix. Here we assume user 1 and user 2 are in their p-th
and q-th hops respectively during this time segment, and a(θ

(p)
1 ) and a(θ

(q)
2 ) are the antenna steer-

ing vectors corresponding to ω
(p)
1 and ω

(q)
2 . Since both Ai and Si are Vandermonde matrices,

the estimation of DOAs and frequencies from X i in (2) is in fact a 2-D constant modulus har-
monic retrieval problem, and there are two frequency components along each of the spatial and
temporal dimensions. If d users are active in the system, a similar 2-D harmonic mixture model
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can be obtained except that the number of frequency components in such a time segment along
each dimension is d. Recently, improved identifiability results and algorithms regarding 2-D HR
have been developed [6, 8, 11, 14, 15]. We use the MDF algorithm in [15] for the purpose of 2-D
frequency estimation here.

B.2.2 Joint Timing and Frequency Estimation

The key idea behind our proposed method of joint hop timing and frequency estimation is that
between any two hypothesized system-wide hops, the data follow a 2-D harmonic model. Hence
for a hypothesized set of hops (that is, including all hops of all users in the system), 2-D harmonic
retrieval methods can be used to estimate model parameters, and subsequently calculate model
fit. If one operates under an upper bound on the total (system-wide) number of hops, then system
stage can be defined as the number of allowable hops, and state can be defined as the hop instant,
hence dynamic programming can be used to find the optimal hop sequence and associated model
parameters per dwell [16]. With d users and a budget of K − 1 hops, define

n = [n1, . . . , nK−1],

α = [α
(0)
1 , . . . , α

(K−1)
1 , . . . , α

(0)
d , . . . , α

(K−1)
d ],

β = [β
(0)
1 , . . . , β

(K−1)
1 , . . . , β

(0)
d , . . . , β

(K−1)
d ],

ω = [ω
(0)
1 , . . . , ω

(K−1)
1 , . . . , ω

(0)
d , . . . , ω

(K−1)
d ],

as the vectors of hop timing, DOAs, complex frequency-dependent attenuations, and hop frequen-
cies. Joint maximum likelihood estimation of n, α, β, and ω from X amounts to minimizing

J(n̂, α̂, β̂, ω̂) =
K−1∑
i=0

‖Xi − X̂i‖2
F (3)

over n̂, α̂, β̂, ω̂, where X̂ i is the reconstructed 2-D harmonic mixture based on ML parameter
estimates (DOAs, complex amplitudes, and carrier frequencies), obtained in each time segment
defined by hypothesized n̂i and n̂i+1, assuming a 2-D harmonic mixture model for the received
data during this segment. Since K will typically be higher than the true number of hops in the
available samples, we include a “parking stage” in the DP program to account for the possibility
of unused hops. In the presence of noise, however, DP will typically use any extra hops available
to track minor noise-induced variations. Such variations can be relatively easily detected after DP,
for frequencies before and after such hops will be approximately equal.

From the MDF estimates, we form

x̂(n) =
d∑

r=1

a(θ̂r)β̂re
jω̂rn,

for ni ≤ n < ni+1; here, θ̂r = ej2π∆sin(α̂r), and the matrix X̂i is constructed from x̂(n) in the same
form as Xi in (2). Define Λi[ni, ni+1 − 1], for 0 ≤ i ≤ K − 1, as the cost function for the time
segment ni ≤ n < ni+1

Λi[ni, ni+1 − 1] = ‖X i − X̂ i‖2
F . (4)
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Table 1: The DP-2DHR Algorithm

1. Initialization
Let k = 1, compute Γk(L) for L = 2, . . . , N − 3K + 2 using Eqns. (4)
and (5).

2. Recursion
For 2 ≤ k ≤ K − 1, compute Γk(L) with L = 3k − 1, . . . , N − 3K +

3k−1, using Eqn. (6) with 3k−3 ≤ nk−1 < L−2; For k = K, compute
Γk(L) with L = N − 1.

For each L, denote the value of nk−1 that minimizes Γk(L) as nk−1(L),
and denote the corresponding α̂k−1, β̂k−1, ω̂k−1 as α̂k−1(L), β̂k−1(L),
and ω̂k−1(L), respectively.

3. Backtracking
The maximum likelihood estimates of hop instants are obtained by using
the backward recursion, i.e., n̂i = ni(n̂i+1 − 1), for i = K − 2, K −
3, . . . , 1, initialized by n̂K−1 = nK−1(N − 1). Similarly, the corre-
sponding DOA, amplitude, and frequency estimates of each segment can
be obtained by their respective backward recursions.

Furthermore, to solve the minimization problem in (3) by DP, we define

Γk(L) = min
n1,...,nk−1

n0=0,nk=L+1

k−1∑
i=0

Λi[ni, ni+1 − 1], (5)

where 0 < n1 < · · · < nk−1 < L. Eqn. (5) can be viewed as the minimization problem of finding
the best fit for a subset of the data of sizeM×(L+1) when a total number of k−1 hops is allowed.
Hence ΓK(N − 1) is the minimum of J(n̂, α̂, ω̂, φ̂). From (5), a recursion for the minimum can
be developed as

Γk(L) = min
nk−1

(
Γk−1(nk−1 − 1) + Λk−1[nk−1, L]

)
. (6)

This means that for a data matrix of sizeM×(L+ 1), the minimum error for k segments (i.e., k−1

hop instants) is the minimum error for the first k − 1 segments that end at n = nk−1 − 1, and the
error contributed by the last segment from n = nk−1 to n = L. The solution of the minimization
of (3) is for k = K and L = N − 1, which yields the joint estimates of hop timing, DOAs, and
frequencies of all signals.

Assuming that the minimum length of a segment is three samples, the procedure to compute
the solution by the DP and 2-D Harmonic Retrieval (DP-2DHR) algorithm is summarized in Table
1. Note that frequencies and complex amplitudes of different segments pertaining to a particular
signal can be associated via their corresponding DOA parameters, since for a single segment,

7



frequency and DOA parameters pertaining to one signal are paired up automatically by the MDF
algorithm. Depending on different transmission schemes, the application of the DP-2DHR method
may slightly vary as described in the following cases.

1. Slow frequency hopping (SFH) with M-ary FSK modulation: Frequency changes due to
baseband modulation are usually much smaller than those due to carrier hopping. Hence
symbol rate and hop rate can be obtained from the result of DP, and consequently symbol
recovery is possible.

2. SFH with M-ary PSK or M-ary QAM modulation: During one hop dwell, frequency is
constant, but the complex amplitudes are different from symbol to symbol due to modulation
(recall that for one hop dwell, the effect of channel on the complex amplitudes is constant).
Hop timing can be detected from frequency change. Hence symbol rate and hop rate are
distinguishable from the result of DP.

3. SFH with GMSK modulation: A GMSK signal is not a pure exponential in one symbol
period. However, narrowband GMSK can be well-approximated by a pure exponential for
our purpose.

4. Fast frequency hopping (FFH): The DP-2DHR method is applicable for hop timing and
hop frequency sequence estimation. However, additional information is needed for symbol
detection, e.g., symbol period and symbol synchronization are required since the DP-2DHR
can only provide chip synchronization in this case.

Next we present the numerical simulation results to demonstrate the proposed DP-2DHR algo-
rithm for joint hop timing and frequency estimation in the presence of frequency collisions. Two
FH signals with DOAs [12◦, 17◦] are simulated, each hopping with different hop timing. The re-
ceiver array has M = 6 antennas, with baseline separation of λ/2 at fc = 1 GHz. With M = 6,
the array has a 3dB beamwidth of about 28◦ so that the two sources, separated by 5◦, are not di-
rectly resolvable. A hopping frequency band of bandwidth 8 MHz is occupied by 32 frequency
channels with 0.25 MHz channel spacing. The received signal is well-modeled as narrow-band.
For simplicity of illustration, hop rate is set the same as symbol rate (125 Kbps). At the receiver,
the complex antenna outputs are sampled at a rate of 8 MHz after down-conversion, and N = 48

complex samples are collected at each antenna, resulting in a 6 µs long analysis window, hence
each signal hops at most once within this window. SNR is defined as

SNR := 10 log10

( ||X||2F
MNσ2

)
, (7)

where the noise variance σ2 = N0B, and B is the processing signal bandwidth.
An example for the FH-FSK case is shown in Table 2 and Figure 2. In this example, two BFSK

signals begin in different bins; then signal 1 hops to the same bin as signal 2; then signal 2 hops
out of his original bin and into a new bin. This gives three segments: the first and the third without
collisions, and the second with collisions. Table 2 gives the DOA estimation results for the three
segments and Figure 2 gives the corresponding results of hop timing and frequency estimation

8



Table 2: DP-2DHR: DOA estimation of two FH-FSK signals.

True Estimated DOA
DOA 1st Seg. 2nd Seg. 3rd Seg.

Signal 1 12◦ 12.24◦ 13.23◦ 12.69◦

Signal 2 17◦ 17.35◦ 16.10◦ 17.16◦
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0

2
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6

8
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Original 
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Hop Timing 

Hop Timing
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Figure 2: DP-2DHR: multiuser tracking of FH-FSK signals (SNR=10dB).

for the two signals. SNR is 10dB. We assume that any mobility-induced changes in DOA are
negligible within the analysis window. Thus, varying hop frequencies are associated with different
signals via their corresponding window invariant DOA parameters. The results show that DOA,
hop timing and frequency estimates are close to the respective true values even in the presence of
collisions. They also demonstrate that good estimates can be obtained, based on measurements of
duration less than one symbol period; this implies that the algorithm is capable of blind multiuser
tracking at moderate to heavy loads.

Figure 3 depicts the Root Mean Square Error (RMSE) of DP-2DHR hop timing and frequency
estimates in the presence of collisions. The RMSE is obtained via Monte Carlo simulation. For
each realization, each of the two FH-FSK signals hops once within the observation window. Hop
timing is randomly generated, and frequencies are also randomly selected from the 32 candidate
bins with the constraint that there is always one collision in the three hop-free segments. The
RMSE vs. SNR performance shown in Figure 3 indicates that the DP-2DHR algorithm performs
quite well even in the low SNR regime, given the fact that the signals are tracked in a situation
where hop pattern, rate, and timing are all unknown.

B.2.3 Multipath Channels with Small Delay Spread

The DP-2DHR method developed in Section B.2.2 assumes single-path transmitter-receiver prop-
agation for each frequency hopped signal. When the signal bandwidth is greater than the channel
coherence bandwidth, channel effects due to multipath propagation cannot be ignored. Multipath
reflections create fictitious sources in the spatial dimension, as well as unknown delay spread in
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Figure 3: DP-2DHR: RMSE of timing and frequency estimation vs. SNR.

the temporal dimension. Few techniques can be found in the literature on blind parameter estima-
tion for FH signals in multipath channels, e.g., [7], which assumes a fixed but unknown header in
each packet of the FH signal. In this section we show that the DP-2DHR method can be extended
to blindly estimate hop timing and frequency of multiple FH signals in multipath channels with
unknown but small delay spread.

Suppose the r-th signal arrives at the ULA from Lr distinct paths due to multipath propagation,
then (1) can be extended to

x(n) =
d∑

r=1

Lr∑
l=1

a
(
θ

(p)
rl

)
β

(p)
rl sr (n− τrl) + w(n) (8)

=
d∑

r=1

Lr∑
l=1

a
(
θ

(p)
rl

)
β̃

(p)
rl e

jω
(p)
r n + w(n) (9)

for n = 0, . . . , N − 1, where β̃(p)
rl = β

(p)
rl e

jω
(p)
r τrl . Here we assume that the delay spread for a given

signal is small so that time delay can be approximated by phase shift.
Between any two system-wide consecutive hop instants, e.g., ni and ni+1, the received data

can be expressed in matrix form X i = AiBiS
T
i + W i, which is a 2-D harmonic mixture model

that is essentially the same as (2), with the difference that the number of frequency components in
such a time segment along each dimension is L1 + L2 + · · · + Ld. Some frequency components
in the time dimension are identical due to multipath reflection, but they can be dealt with by the
MDF algorithm. Hence DP-2DHR can be applied as before for joint hop timing and frequency
estimation.

Note that frequencies and complex amplitudes of different segments pertaining to a particular
path can be associated via their corresponding DOA parameters, since for a single segment, fre-
quency, amplitude, and DOA parameters pertaining to one path are paired up automatically by the
MDF algorithm. In addition, different paths pertaining to a particular emitter will result in differ-
ent DOAs but identical hop frequency sequence and hop timing (recall that time delay is treated as
phase shift), hence paths can be associated with emitters by hop sequences, which is a clustering
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Table 3: DP-2DHR: DOA estimation in the presence of multipath.

True Estimated DOA
DOA 1st Seg. 2nd Seg. 3rd Seg.

Path 1-1 6◦ 4.67◦ 7.48◦ 6.33◦

Path 1-2 14◦ 12.25◦ 14.85◦ 13.55◦

Path 2-1 25◦ 25.50◦ 24.91◦ 24.17◦

0 1 2 3 4 5 6
0

2

4

6

8

0 1 2 3 4 5 6
0

2

4

6

8

0 1 2 3 4 5 6
0

2

4

6

8
Estimated
Original

Estimated
Original

Estimated
Original

f
(M

H
z)

f
(M

H
z)

f
(M

H
z)

t (µs)

(a) Path 1 of Signal 1

(b) Path 2 of Signal 2

(c) Signal 2

Figure 4: DP-2DHR: multiuser tracking in the presence of multipath.

problem and can be solved, e.g., by calculating the pair-wise distance among all recovered hop
sequences.

An example of multiuser tracking by the DP-2DHR algorithm is shown in Table 3 and Figure 4.
Again, varying hop frequencies are associated with different paths via their corresponding window
invariant DOA parameters. The results show that hop timing and frequency estimates are close to
their respective true values. Figure 4 also indicates that paths 1 and 2 pertain to the same emitter
since they have essentially the same hop timing and frequency sequence. Similar results have been
obtained for GMSK modulated signals [16].

Figure 5 plots the RMSE of hop timing and frequency estimation of the DP-2DHR algorithm in
the presence of multipath propagation. The results indicate that the DP-2DHR algorithm performs
well in multipath channels, given the fact that the signals are tracked in a situation where hop code,
rate, timing, and multipath delay are all unknown.

In practical systems, the number of signals is much less than the number of time samples,
and the number of antenna elements usually ranges from 3 to 8. It can be shown that a good
estimate of the complexity of the DP-2DHR algorithm is O(KN5). There are several ways that
this complexity can be reduced: i) It is only during the initial acquisition period that the full
complexity of the blind algorithm is needed. If frequencies hop at a regular rate, hop timing and
hop period can be estimated by applying the DP-2DHR algorithm to a relatively short portion
of a long data record, while frequency estimation for the remaining data can be accomplished
by applying the MDF algorithm to pre-decided hop-free data blocks delimited by system-wide
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Figure 5: DP-2DHR: RMSE of timing and frequency estimation in the presence of multipath.

adjacent hop instants. This will reduce the complexity significantly. ii) The DP-2DHR algorithm
may be simplified using standard approaches of reduced-complexity Viterbi decoding, such as
path pruning based on metric thresholding, early path merging, etc. These will of course incur
a performance loss, but if, e.g., the truncation parameter is appropriately chosen, the loss will
be small. iii) If one has a reasonably good idea about the hop rates, the problem can be much
simplified. If the hop code and hop timing of a signal-of-interest are known, then one can de-hop
and obtain a model with much reduced noise and interference, since only interferers who collided
with the particular user of interest within the observation interval will remain in the de-hopped
signal; and the receiver can cut-down its bandwidth to the hopping bin-bandwidth in this case. iv)
As a further alternative, simpler frequency estimation techniques can be used in place of 2-D MDF.
Clearly, there are many trade-offs one may pursue.

In the development of the DP-2DHR algorithm, signal bandwidth is assumed to be known. In a
practical blind estimation scenario, the receiver may also lack knowledge of the signal bandwidth.
Relative to the other unknowns (hop patterns, timing and rates), it is simpler for the receiver to es-
timate the compound signal bandwidth, e.g., via energy detection. However, due to sampling rate
and noise power considerations, an intercept receiver may only observe part of the spread band-
width. In this case, the performance of DP-2DHR will be degraded due to bandwidth mismatch
because signals may hop in and out of the observed band, making it difficult to track across hops.
Identifiability issues also become much more complicated in the presence of bandwidth mismatch,
due to model order variations.

We have conducted extensive simulation experiments to study the performance of the DP-
2DHR algorithm. More results may be found in [16]. In addition, based on a software testbed
developed for [17], we have designed a new software demo for blind multiuser tracking in FH
systems using Matlab. A screen shot of the demo is shown in Figure 6.

B.3 The DP-TALS Algorithm with Multiple Invariance Sensor Arrays

The principle of DP-2DHR can be extended to jointly estimate 2-D DOA (azimuth and elevation
angles), hop timing, and frequency of multiple FH transmissions using an antenna array possess-
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Figure 6: A software demo for blind multiuser tracking in frequency hopping systems.

ing multiple invariances (MI). An MI sensor array is composed of multiple identical subarrays
displaced in the same or different directions. A multiple invariant rectangular array is shown in
Figure 7. Several methods have been proposed for direction finding and/or other parameter esti-
mation using MI sensor arrays, e.g., [24, 27, 28, 34]. An important assumption of these methods
is that the incoming signals are narrowband, so that the propagation delay of the signals from one
subarray to another can be approximated by phase shift. However, if the FH system under consid-
eration is a wideband system, then the inherent frequency variability poses special difficulties for
signal parameter estimation, due to the fact that the phase shifts among subarrays are (wideband)
frequency dependent. Nevertheless, these methods can still be applied to individual hop-free seg-
ments if hop timing is known, since for a hop-free data segment, each of the signals impinging on
the sensor array can be modeled as a narrowband signal.

Here we extend the idea of DP-2DHR by coupling the DP principle with low-rank decompo-
sition of data collected from an MI sensor array. The resulted algorithm is termed the DP-TALS
algorithm where TALS stands for Trilinear Alternating Least Squares. Suppose a receiver utilizes
a 2-D antenna array, which is composed of H identical subarrays of m sensors each displaced in
different directions. Though each signal’s carrier frequencies are hopped over a wide frequency
band, between any two system wide consecutive hop instants, e.g., ni and ni+1, the discrete-time
baseband equivalent model for the array output can still be written as an M × (ni+1 − ni) matrix

X i = AiS
T
i + W i, (10)

where Ai = [a(α1, ψ1) · · · a(αd, ψd)], and αr, ψr are azimuth and elevation angles. The frequency-
dependent complex amplitude (due to path attenuation) is absorbed into Ai. Let Jh denote the
m×M selection matrix that extracts the m rows corresponding to the h-th subarray, then it holds
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Figure 7: A rectangular sensor array possessing multiple shift invariances.

that [28]

Y i =

 J1
...

JH

X i =

 AiΦ
(1)
i

...
AiΦ

(H)
i

ST
i + V i, (11)

where the m× d matrix Ai is the response of subarray 1 (reference), and Φ
(h)
i is a d× d diagonal

matrix of phase shifts, which is a function of signal parameters (DOA and frequency) and the dis-
placement of the h-th subarray relative to the reference, with Φ

(1)
i = I . V (i) is the corresponding

noise matrix. Define a H × d matrix Φi such that its h-th row consists of the diagonal elements of
Φ

(h)
i , then (11) can be rewritten as

Y i = (Φi � Ai) ST
i + V i, (12)

where � stands for the Khatri-Rao product.
For given ni and ni+1, the objective is to blindly estimate 2-D directions αr and θr, as well

as frequency ω
(p)
r from Y i, in (12), for r = 1, . . . , d. A key observation is that with proper

dimensioning and under certain relatively mild conditions, Eqn. (12) is in fact a low-rank trilinear
(three-way) model that exhibits strong identifiability properties [23] and can be estimated via well-
established iterative least squares algorithms [24]. Low-rank three-way array decomposition is
unique under a relatively mild rank-like condition [10]. The identifiability of the model (12) is
established in [24].

In particular, TALS can be used to estimate Ai, Φi, and Si from the noisy observations Y i.
The basic idea of ALS is to update matrices one by one in an alternating fashion during each
iteration, conditioned on previously obtained estimates for the remaining matrices [24]. Upon
convergence of TALS, and Ai, Φi, and Si will be estimated up to scaling and common permutation
of columns. The azimuth and elevation angles can then be estimated via simple division from Φi,
and the temporal frequencies can be estimated from Si via single 1-D harmonic retrieval techniques
(e.g., periodogram) or simple division. Since the permutation of columns is common to all three
matrices, (αr, ψr, ω

(p)
r ) will be paired up automatically by TALS. Notice that both Ai and Si in

(12) are Vandermonde. This constraint can be incorporated into the iteration process of TALS to
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Figure 8: DP-TALS: RMSE of timing and frequency estimation using a 2-D antenna array.

expedite convergence and improve estimation performance. Joint timing and frequency estimation
is achieved by coupling DP with TALS (DP-TALS) [13].

We have tested the algorithm with a rectangular array of size 2×6, comprising four overlapping
uniform linear subarrays of 5 sensors each. The spacing ∆ is half wavelength at fc = 2 GHz. Two
BFSK modulated signals with 2-D DOA (elevation α, azimuth ψ) angles of (10◦, 6◦) and (17◦,
12◦), hop with different timing. The hopping bandwidth is 80 MHz with 1 MHz channel spacing.
Both symbol period and hop dwell are 0.8 µs. The received signal is sampled at 80 MHz after
down-conversion, and N = 48 samples are collected at each sensor.

For each realization of the Monte Carlo simulation, each of the two FH-FSK signals hops once
within the observation window. Hop timing and frequencies are randomly generated. The RMSE
versus SNR curves of the DP-TALS algorithm in Figure 8 demonstrate that the algorithm performs
quite well for a wide range of SNRs. However, we note that the complexity of DP-TALS is higher
than that of DP-2DHR due to the iterative nature of TALS.

B.4 An EM Algorithm for Hop Timing Estimation

We have shown that the minimizing of (3) is not analytically solvable, and one way to compute
it is by dynamic programming, which yield optimal solution, but comes with high computational
complexity (O(KN5)) that may prohibit real-time implementation. The expectation-maximization
(EM) principle offers a second alternative to solve this problem. It is more efficient but sometimes
only offers sub-optimal solutions since it may converge to a local minimum instead of a globe
minimum. The EM algorithm was introduced in the statistics literature as a general approach for
iteratively maximizing likelihood functions. It has found applications in many estimation prob-
lems in signal processing [19]. For example, the EM algorithm has been proposed for sequence
detection and timing synchronization by several researchers [3, 5, 20, 21]. [3] discusses sequence
recovery of multiple DS-CDMA users with known synchronization, while [5,20,21] consider joint
sequence detection and timing estimation for a single user transmission of baseband or direct se-
quence CDMA (DS-CDMA) signals. The problem studied here is thus unique in several aspects:
we consider joint sequence detection and timing estimation for multiple FH spread-spectrum trans-
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missions; frequency collisions may be present; and the hop pattern is unknown hence matched
filtering is not applicable.

To solve (3), let X represent the observed but incomplete data, and (X,n) be the complete
data. Further define

φ = [θT ,βT ,ωT ]T

as the set of parameters to be evaluated. Using the EM principle, the value of φ which maximizes
the likelihood function p(X|φ) corresponds to the value of φ found iteratively through steps:

E-step: compute

Q
(
φ|φ(p)

)
= E

[
log p(X,n|φ)|X,φ(p)

]
(13)

M-step: compute

φ(p+1) = arg max
φ

Q
(
φ|φ(p)

)
(14)

the conditional expectation in the E-step is with respect to the conditional density of the random
parameter n given the X and assuming that φ = φ(p).

From Bayes rule, it is ready to show that p(X,n|φ) = p(X|n,φ)p(n|φ). Since the noise
is white Gaussian, p(X|n,φ) is a joint Gaussian pdf. Because n is independent to φ, p(n|φ) =

p(n). Thus, E[p(n)|X,φ(p)] does not depend on either φ or φ(p). After simple manipulation of
the log likelihood function and dropping unnecessary terms, we can rewrite the E-step as:

E-step: compute

Q
(
φ|φ(p)

)
= E

[
‖X − D‖2

F |X,φ(p)
]
,

where D = [D0 D1 · · · DK−1], and Di = AiBiS
T
i .

To further simplify Q(φ|φ(p)), let us consider:

‖X − D‖2
F = tr

{
(X − D)(X − D)H

}
,

therefore

E
[
‖X − D‖2

F |X,φ(p)
]

= tr
{

XXH − E
[
D|X,φ(p)

]
XH

−XE
[
DH |X,φ(p)

]
+ E

[
DDH |X,φ(p)

]}
. (15)

Now let us consider one term of (15). We have

E
[
D|X,φ(p)

]
XH =

K−1∑
i=0

E
[
Di|X,φ(p)

]
XH

i

=
K−1∑
i=0

Â
(p)

i B̂
(p)

i E
[
ST

i |X,φ(p)
]
XH

i , (16)

since Â
(p)

i and B̂
(p)

i do not depend on n if φ(p) is given. Other expectation terms in (15) can be
expanded similarly to (16). Based on (15), as shown in [13], it can be verified that a simplified EM
algorithm is given by

16



E-step: for 1 ≤ i ≤ K − 1, compute

n̂
(p)
i = arg min

ni∈[n̂
(p)
i−1+1,n̂

(p−1)
i+1 −1]

∥∥∥X i − Â
(p)

i B̂
(p)

i (Ŝ
(p)

i )T
∥∥∥2

F

+
∥∥∥X i−1 − Â

(p)

i−1B̂
(p)

i−1(Ŝ
(p)

i−1)
T
∥∥∥2

F
(17)

M-step: compute

φ(p+1) = arg min
φ

{
K∑

i=1

∥∥X i − AiBiS
T
i

∥∥2

F
|n̂(p)

}
, (18)

where φ(p+1) can are obtained by applying the MDF algorithm to X i’s determined by n̂(p).

In summary, given a received data block with multiple hops, the EM algorithm first takes a ran-
dom guess of n̂(0) as the initial for the E-step, and compute φ(1) as the initial for the M-step. Then
the algorithm iterates the following two steps until convergence: the expectation step, Eqn. (17),
involves assigning signal segments to the current estimated hop frequencies that fits them best;
The maximization step, Eqn. (18), provides a new estimate of hop frequencies, is accomplished by
applying the MDF algorithm to data segments according to the updated assignment. Upon conver-
gence, frequencies and complex amplitudes of different segments pertaining to a particular signal
can be associated via their corresponding DOA parameters, since for a single segment, frequency
and DOA parameters pertaining to one user are paired up automatically by the MDF algorithm.
Therefore joint estimation of hop timing and frequencies of all users are obtained.

Figure 9 depicts the RMSE of hop timing and frequency estimation of three FH-FSK signals.
For each realization, each of the three FH-FSK signals hops three times within the observation
window. Hop timing is randomly generated, and frequencies are also randomly selected from
the 80 candidate bins with the constraint that there are always two collisions randomly located
in the 10 hop-free segments (in average collision accounts for about 20% time of the observation
duration). The RMSE vs. SNR performance shown in these figures indicates that the EM algorithm
performs quite well even in the low SNR regime, given the fact that the parameters are estimated
in a situation where hop pattern, rate, and timing are all unknown.

B.5 Identifiability of 2-D and Multidimensional Frequency Estimation

The blind multiuser tracking techniques based on the dynamic programming and the EM principles
described above require a coupled 2-D frequency estimation step. Therefore the study of identi-
fiability (ID) of 2-D frequency estimation is valuable in determining the maximum number of
frequencies (thus the number of FH signals) that can be recovered from a given data size. Recently
much progress has been made on the deterministic ID [22] and statistical ID [9,14] of multidimen-
sional frequency estimation. For example, in the 2-D case, the MDF algorithm and the Unitary
ESPRIT algorithm can uniquely estimate up to 0.25M1M2 frequencies almost surely from a single
snapshot of M1×M2 data mixture, provided that the 2-D frequencies are drawn from a continuous
distribution (hence the name of statistical identifiability). In this project, we have proved the most
relaxed statistical identifiability bound to date, as given in the following theorem [12].
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Figure 9: The EM algorithm: RMSE of timing and frequency estimation vs. SNR.

Theorem 1 Given a sum of F 2-D exponentials as

xm1,m2 =
F∑

f=1

cfe
j(m1−1)ωf ej(m2−1)νf , (19)

for m1 = 1, . . . ,M1, and m2 = 1, . . . ,M2, and without loss of generality, assume that M1 ≥
M2, then the parameter triples (ωf , νf , cf ), f = 1, · · · , F , are almost surely uniquely resolvable,
provided that

F ≤ max
K1+L1=M1

K2+L2=M2+1

min (2K1K2, L1L2) (20)

where (ωf , νf ) are assumed to be drawn from a distribution that is continuous with respect to the
Lebesgue measure in Π2F , and cf is drawn from a continuous distribution on C.

We need the following results to prove Theorem 1. Given (19), define two Vandermonde matrices
A ∈ C

M1×F and B ∈ C
M2×F , with generators ejωf and ejνf , f = 1, . . . , F , respectively, then the

2-D mixture in (19) can be written in matrix form as

X = AD(c)BT , (21)

where c = [c1, c2, . . . , cF ]T . Eqn. (21) can also be written in vector form. For example, let

x = [x1,1, x1,2, · · · , x1,M2 , x2,1, · · · , xM1,M2 ]
T ,

then it can be verified that
x = (A � B)c, (22)

Proposition 1 If we define a two-dimensional smoothing operator S for the measurement vector
x in (22) as

S(x) := [J1,1x · · ·J1,L2x J2,1x · · ·J2,L2x · · ·JL1,L2x],
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where

JK1
p =

[
0K1×(p−1) IK1 0K1×(L1−p)

] ∈ C
K1×M1 ,

JK2
q =

[
0K2×(q−1) IK2 0K2×(L2−q)

] ∈ C
K2×M2 ,

Jp,q = JK1
p ⊗ JK2

q , (23)

and 1 ≤ p ≤ L1, 1 ≤ q ≤ L2, and Ki and Li, for i = 1, 2, are positive integers such that

K1 + L1 = M1 + 1, K2 + L2 = M2 + 1. (24)

Then it can be verified that

XS = S(x) =
(
A(K1) � B(K2)

)
D (c)

(
A(L1) � B(L2)

)T

.

Next we present the proof of Theorem 1 in the following.
Proof: Given x, define two selection matrices:

J1 =
[
IM1−1 0(M1−1)×1

]
, J2 =

[
0(M1−1)×1 IM1−1

]
.

Due to the shift invariance property of Vandermonde matrices, we have

x1 =(J1 ⊗ IM2)x = (A(M1−1) � B)c, (25)

x2 =(J2 ⊗ IM2)x = (A(M1−1) � B)D(ω)c, (26)

where x is given in (22), and ω := [ejω1 , ejω2 , · · · , ejωF ]
T . We can now apply the 2-D smoothing

operator S defined in Proposition 1 to x1 and x2. Since the sizes of x1 and x2 are (M1 − 1)×M2,
the integers in (24) should be chosen such that

K1 + L1 = M1, K2 + L2 = M2 + 1. (27)

Applying the 2-D smoothing operator, we obtain

X1,S = S(x1) = GD(c)HT ,

X2,S = S(x2) = GD(c)D(ω)HT ,

where G := A(K1) � B(K2), and H := A(L1) � B(L2).
To further explore the data structure, we can perform the backward smoothing on the data

vector x in (22). Define
y := Πx∗ = (A � B)c̃, (28)

where Π is a backward permutation matrix with ones on its antidiagonal, and c̃ = [c̃1, c̃2, · · · , c̃F ]T ,
with

c̃f = cfe
−j(M1−1)ωf−j(M2−1)νf . (29)
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Applying the same technique to y that we used to obtain X1,S and X2,S from x, we have

y1 = (J1 ⊗ IM2)y = (A(M1−1) � B)c̃,

y2 = (J2 ⊗ IM2)y = (A(M1−1) � B)D(ω)c̃,

Y 1,S = S(y1) = GD(c̃)HT ,

Y 2,S = S(y2) = GD(c̃)D(ω)HT .

If we define the following matrices

Z1 :=

[
X1,S
Y 1,S

]
, Z2 :=

[
X2,S
Y 2,S

]
, (30)

then we have

Z :=

[
Z1

Z2

]
=

[
P

PD(ω)

]
HT , (31)

where the size of Z is 4K1K2×L1L2, and a 2K1K2×F matrix P is defined as P := [c c̃]T �G.
Since both P and H are Khatri-Rao products of Vandermonde matrices, invoking the Theorem 1
of [14], when 2K1K2 ≥ F and L1L2 ≥ F , P and H are almost surely full column rank. Hence
Z1 and Z2 are of rank F . The singular value decomposition of Z yields[

Z1

Z2

]
= U sΣsV

H
s , (32)

where U s has F columns which together span the column space of Z. Since the same space is
spanned by the columns of [(P )T (PD(ω))T ]T , there exist an F × F nonsingular matrix T−1

such that

U s =

[
U 1

U 2

]
=

[
P

PD(ω)

]
T−1. (33)

Here we divide U s into two equal size sub-matrices U 1, and U 2, each of size 2K1K2 × F . Then
U †

1U 2 satisfies:
U †

1U 2 = TD(ω)T−1. (34)

Assuming that the elements of ω are distinct, T can be obtained from the eigenvalue decom-
position of U †

1U 2 up to column permutation and scaling ambiguity. Suppose that the eigenvalue
decomposition of U †

1U 2 gives

T ′ =TΛ∆, (35)

where Λ is a nonsingular diagonal column scaling matrix and ∆ is a permutation matrix. Because
the column scaling and permutation will not have material effect on the algorithm, for notation
simplicity we use the same symbol for a matrix with or without scaling and permutation as long
as it is clear from the context. Once we obtain T ′, we can retrieve P and H up to common
permutation and column scaling according to

P ′ = U 1T
′ = PΛ∆, (36)

H ′ =
(
P ′†Z1

)T

= HΛ−1∆. (37)
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Table 4: Identifiability bound of 2-D frequency estimation

M1\M2 3 4 5 6 7 8 9 10 11 12
3 4 4 6 8 8 10 12 12 14 16
4 4 6 8 9 12 12 15 16 18 20
5 6 8 9 12 12 16 18 20 21 24
6 8 9 12 12 16 18 20 24 24 28
7 8 12 12 16 18 20 24 25 30 32
8 10 12 16 18 20 24 25 30 32 36
9 12 15 18 20 24 25 30 32 36 40
10 12 16 20 24 25 30 32 36 40 42
11 14 18 21 24 30 32 36 40 42 49
12 16 20 24 28 32 36 40 42 49 50

In (37) we have used the fact that ∆−1 = ∆T . The permutation is not an issue here, however,
because ωf and νf appear in the same column of P ′, as well as in H ′, thus are automatically paired;
and arbitrary nonzero column scaling is immaterial, because the frequencies can be obtained by
dividing suitably chosen elements of the aforementioned column. For example, suppose ejωf and
ejνf appear in the f -th column of P ′, then ejωf can be retrieved by any one of the following
equations in the noiseless case:

ejωf =
p′n,f

p′n−K2,f

, n = K2(k1 − 1) + k2, (38)

where k1 = 2, · · · , K1, k2 = 1, · · · , K2, and similarly, ejνf can be retrieved by any one of the
following:

ejνf =
p′n,f

p′n−1,f

, n = K2(k1 − 1) + k2, (39)

where k1 = 1, · · · , K1, and k2 = 2, · · · , K2. Notice that ejωf and ejνf are automatically paired
since they are obtained from the same column of P ′.

Hence we have shown that the 2-D frequencies can be uniquely recovered almost surely, pro-
vided that F ≤ 2K1K2 and F ≤ L1L2, where Ki and Li are positive integers subject to

K1 + L1 = M1, K2 + L2 = M2 + 1.

Therefore Theorem 1 is proved.
It is difficult to obtain the exact solution of the integer optimization problem in (20). Here we

have listed the maximum number of 2-D frequencies that can be uniquely identified for certain
data sizes in Table 4. We have also found the lower and upper bounds of the maximum number
identifiable 2-D frequencies as given in the following proposition [12].
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Proposition 2 The maximum number of 2-D frequencies given in Theorem 1 is bounded by

min
{

2
[
(
√

2 − 1)M1

] [
(
√

2 − 1)(M2 + 1)
]
,
[
(2 −

√
2)M1

] [
(2 −

√
2)(M2 + 1)

]}
≤ max

K1+L1=M1
K2+L2=M2+1

min (2K1K2, L1L2) ≤ �0.343M1(M2 + 1)	 .

Theorem 1 shows significant improvement on the identifiability bound of 2-D frequency es-
timation over existing algebraic algorithms. Previously the most relaxed statistical ID bound is
achieved by the MDF algorithm as shown in [15]. Using Theorem 1 of [14], we are also able to
obtain the statistical ID bounds of the Unitary ESPRIT algorithm [6] and the MEMP algorithm [8].
Figure 10 plots a comparison of the statistical ID bounds of different algebraic algorithms for 2-
D frequency estimation in the absence of noise. The Unitary ESPRIT algorithm and the MDF
algorithm have the same ID bound, which is

F ≤ 
M1/2� 
M2/2� .

The statistical ID bound of the MEMP algorithm is slightly smaller than those of the MDF algo-
rithm and the Unitary ESPRIT algorithm because no backward-forward smoothing is used in the
MEMP algorithm. Note that the deterministic ID bound of the MEMP algorithm is

F ≤ min (M1/2,M2/2)

as shown in [8] and [33]. It can be seen from Fig. 10 that Theorem 1 offers a significantly improved
ID bound over existing results. We note that an algebraic algorithm for 2-D frequency estimation
can be obtained from the constructive proof of Theorem 1, which may be used to replace the
aforementioned MDF algorithm [12].

The 2-D identifiability results can be generalized to the case of N -D frequency estimation.

Theorem 2 Given a sum of F N -D exponentials

xm1,...,mN
=

F∑
f=1

cf

N∏
n=1

ejωf,n(mn−1), (40)

formn = 1, . . . ,Mn, n = 1, . . . , N , and without loss of generality, assume thatM1 = max{Mn, n =

1, . . . , N}, if

F ≤ max
K1+L1=M1

Kn+Ln=Mn+1
2≤n≤N

min

(
2

N∏
n=1

Kn,

N∏
n=1

Ln

)
, (41)

and the distributions used to draw the NF frequencies and F amplitudes are continuous with
respect to Lebesgue measure in ΠNF and C, respectively, then the parameter (N + 1)-tuples
(ωf,1, . . . , ωf,N , cf ), f = 1, . . . , F , are almost surely uniquely resolvable.
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Figure 10: Comparison of identifiability results for 2-D frequency estimation (M1 = M2).

B.6 Conclusion

In this project we have developed a signal processing scheme for blind tracking of multiple FH
signals over multipath channels. This technique is based on the principle of dynamic programming
and expectation-maximization, coupled with multidimensional harmonic and low-rank analysis.
Numerical simulations demonstrate its capability of joint estimation of hop timing, frequency, and
DOA of multiple FH signals in the presence of frequency collisions, without the knowledge of
signal hop patterns. The significance of this project in basic research lies in innovative methods for
signal detection and jammer localization in frequency hopping communications, and fundamental
understanding of the identifiability of multidimensional frequency estimation. Furthermore, it
has yielded practical algorithms that are applicable in the presence of modulation uncertainly and
unknown channels.
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