
1

The Virtual Microscope
Ümit Çatalyürek�, Michael D. Beynon�, Chialin Chang�, Tahsin Kurc�, Alan Sussman�, Joel Saltz�

� Dept. of Biomedical Informatics
The Ohio State University

Columbus, OH, 43210

� Dept. of Computer Science
University of Maryland

College Park, MD 20742
�catalyurek.1,kurc.1,saltz.3�@osu.edu �beynon,chialin,als�@cs.umd.edu

Abstract—We present the design and implementation of the Vir-
tual Microscope, a software system employing a client/server ar-
chitecture to provide a realistic emulation of a high power light
microscope. The system provides a form of completely digital
telepathology, allowing simultaneous access to archived digital
slide images by multiple clients. The main problem the system
targets is storing and processing the extremely large quantities of
data required to represent a collection of slides. The Virtual Mi-
croscope client software runs on the end user’s PC or worksta-
tion, while database software for storing, retrieving and process-
ing the microscope image data runs on a parallel computer or on
a set of workstations at one or more potentially remote sites. We
have designed and implemented two versions of the data server
software. One implementation is a customization of a database
system framework that is optimized for a tightly coupled paral-
lel machine with attached local disks. The second implementa-
tion is component-based, and has been designed to accommodate
access to and processing of data in a distributed, heterogeneous
environment. We also have developed caching client software, im-
plemented in Java, to achieve good response time and portabil-
ity across different computer platforms. The performance results
presented show that the Virtual Microscope systems scales well, so
that many clients can be adequately serviced by an appropriately
configured data server.

I. INTRODUCTION

Despite numerous advances in the understanding of dis-
ease processes, most basic aspects of anatomic pathology have
changed little over time. The pathologist supervises the gross
dissection of tissue, which is fixed, dehydrated in organic sol-
vents, embedded in paraffin, sectioned and stained. The tis-
sue specimen is typically directly examined using a light mi-
croscope. The pathologist renders a diagnosis upon the micro-
scopic examination of the tissue sections, and the glass slide
and paraffin blocks are inevitably relegated to some cumber-
some archive. A similar system is employed for cytopathol-
ogy, but an added complication is that the slide is often unique
and irreplaceable. Thus, the dissemination of case material for
consultative, investigative or educational purposes remains la-
borious, and, to a large extent, pathologists only have access to
locally available case material for comparison in difficult cases.

This research was supported by the National Science Foundation under
Grants #ACI-9619020 (UC Subcontract #10152408), #EIA-0121177, #ACI-
0130437, and #ACI-9982087, the Office of Naval Research under Grant
#N6600197C8534, Lawrence Livermore National Laboratory under Grant
#B500288 and #B517095 (UC Subcontract #10184497), and the Department
of Defense, Advanced Research Projects Agency, USAF, AFMC through Sci-
ence Applications International Corporation under Grant #F30602-00-C-0009
(SAIC Subcontract #4400025559).

Michael D. Beynon is currently at MIT Lincoln Laboratory.

Over the past 10 years, there has been increasing interest in
technologies that make it possible to examine specimens at a
distance. There are currently two forms of telepathology imag-
ing: static and dynamic [13], [30], [37], [38], [39]. In static-
image telepathology, the referring pathologist captures a small
set of digital images that are transmitted to the consultant. The
consulting pathologist relies on the referring pathologist to se-
lect tissue fields. In the dynamic mode, live images of micro-
scope slides are transmitted and visualized in real time. The dy-
namic form of telepathology can be carried out by a remotely
controlled real microscope. The remote pathology consultant
is able to control the microscope stage and to select the image
to be viewed. Advanced microscopes provide the functional-
ity for selecting various color filters or applying different illu-
mination modes. They also can allow the simultaneous view-
ing of a slide by multiple clients, although only one client can
control the microscope. One main advantage of using a real
microscope is that live specimens can be viewed in real time.
A software system that allows access to digitized microscopy
slides, on the other hand, can provide a cost-effective, comple-
mentary tool for dynamic telepathology. By simply emulating
the usual behavior of a physical microscope, such a system can
replace cabinets full of slides with a digital storage subsystem.
Retrieving a slide then becomes a matter of accessing the slide
database, without requiring physical access to the slide. As in a
real microscope, it can provide simultaneous access to the slides
by multiple users, who can access and individually manipulate
the same slide or different slides at the same time. In addition,
new software modules can be added to perform various types of
additional processing, such as three dimensional image recon-
struction from data found in multiple focal planes and on mul-
tiple microscope slides, image segmentation and pattern recog-
nition to better characterize known malignancies, and content-
based image retrieval, to find all slides with features similar to
those in a sample slide [18], [40].

While the hardware for digitizing tissue samples and mi-
croscopy slides more effectively is rapidly becoming commer-
cially available [24], the software support required to store,
retrieve, and process digitized slides to provide interactive re-
sponse times for the standard behavior of a physical microscope
remains a challenging issue. At the basic level, the system
should emulate the usual behavior of a physical microscope,
including continuously moving the stage and changing magni-
fication and focus. The processing for viewing a slide requires
projecting high resolution data onto a grid of suitable resolu-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
The Virtual Microscope

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Office of Naval Research,One Liberty Center,875 North Randolph Street
Suite 1425,Arlington,VA,22203-1995

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
We present the design and implementation of the Virtual Microscope, a software system employing a
client/server architecture to provide a realistic emulation of a high power light microscope. The system
provides a form of completely digital telepathology, allowing simultaneous access to archived digital slide
images by multiple clients. The main problem the system targets is storing and processing the extremely
large quantities of data required to represent a collection of slides. The Virtual Microscope client software
runs on the end user’s PC or workstation while database software for storing, retrieving and processing
the microscope image data runs on a parallel computer or on a set of workstations at one or more
potentially remote sites. We have designed and implemented two versions of the data server software. One
implementation is a customization of a database system framework that is optimized for a tightly coupled
parallel machine with attached local disks. The second implementation is component-based, and has been
designed to accommodate access to and processing of data in a distributed, heterogeneous environment.
We also have developed caching client software, implemented in Java, to achieve good response time and
portability across different computer platforms. The performance results presented show that the Virtual
Microscope systems scales well, so that many clients can be adequately serviced by an appropriately
configured data server.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

tion (governed by the desired magnification) and appropriately
compositing pixels mapping onto a single grid point, to avoid
introducing spurious artifacts into the displayed image.

The main difficulty in providing the basic functionality is
storing and processing the extremely large quantities of data
required to represent a large collection of slides. For example,
with a digitizing microscope a single 200X spot of a slide at
a single depth of focus requires a resolution of 1000 by 1000
pixels. With a three-byte RGB color value per pixel, an im-
age at that resolution produces a data size of 3 MB. To com-
pletely cover a slide of 3.5 by 2.5 cm requires a grid of about
50x70 such 200X spots, resulting in an uncompressed file size
of 10.5 GB. However, such an image captures only a single fo-
cal plane. Because histopathology involves interpretation of the
three-dimensional nature of tissue or individual cells, a single
focal plane may not allow adequate characterization of the ma-
terial. To acquire a slide at 5 focal planes increases the file size
to 52.5 GB, and a higher power substantially increases the vol-
ume of these datasets with more spots and more focal planes.
Storage needs are exacerbated by the fact that hospitals can
generate many thousands of slides per year. For instance, at
the Johns Hopkins Hospital the histology laboratory processes
420,000 routine, special-stain, and immunohistochemical slides
per year. Clearly there is an enormous storage requirement.
There are also the attendant difficulties in achieving rapid re-
sponse time for various types of inquiries into the slide image
database.

This paper describes the design and implementation of a
complete software system, called the Virtual Microscope (VM),
that implements a realistic digital emulation of a high power
light microscope, through a client/server hardware and software
architecture [2], [17]. The client software runs on an end user’s
PC or workstation, providing a graphical user interface (GUI)
for viewing slides, while the database software for storing, re-
trieving and processing the microscope image data runs on a
parallel computer or on a cluster of workstations at a poten-
tially remote site. In terms of telepathology imaging, the Vir-
tual Microscope can best be described as a form of completely
digital telepathology. The contributions of this paper are as fol-
lows.

� We describe an implementation of the VM server us-
ing an object-oriented framework, called the Active Data
Repository (ADR), for developing databases of multi-
dimensional datasets on distributed memory parallel ma-
chines. Our previous work [11], [16] used VM as a moti-
vating application scenario for the design of ADR. In this
paper, we focus on the efficient implementation of VM
using ADR. The Virtual Microscope implementation de-
scribed in the prior work suffered from the overhead of
extra function calls, resulting in about 85% slower execu-
tion than the original custom VM server implementation.
The current implementation eliminates the extra function
calls and achieves much better response times. The cur-
rent ADR implementation of the VM server is only 6.6%
slower than the original VM server [2], [17]. We also
examine the effect on performance of partitioning a VM
dataset into data chunks, and look at the scalability of the
ADR implementation, when the number of clients and the

number of processors are varied.
� We compare the performance of the ADR implementation

of the VM server against a component-based implementa-
tion. We experimentally evaluate the two implementations
so as to identify when it is beneficial to use the component-
based implementation over the ADR implementation, and
vice versa.

� We present the design and implementation of a client with
data caching capabilities. Our experimental results show
that data caching at the client improves client response
time. It reduces contention among clients for scarce re-
sources, such as bandwidth in a wide-area network and
processing and I/O in the data server. Caching also im-
proves client response time by reducing the amount of data
requested from a (potentially remote) server.

In section II, we provide an overview of the components of
the Virtual Microscope system. Section III presents the im-
plementation of the Virtual Microscope server using the Active
Data Repository. An experimental evaluation of the implemen-
tation is also discussed in this section. The component-based
implementation of the VM server and the performance com-
parison of the ADR implementation to the component-based
implementation are presented in Section IV. We describe and
experimentally evaluate the design and implementation of the
caching client in Section V. Conclusions are given in Sec-
tion VI.

II. OVERALL SYSTEM ARCHITECTURE

The basic functionality of the Virtual Microscope imple-
ments an accurate emulation of a high power light microscope.
A number of operations must be supported to provide this func-
tionality:

1) Fast browsing through the slide to locate an area of inter-
est,

2) Local browsing to observe the region surrounding the
current view,

3) Changing magnification, and
4) Changing the focal plane.

The system design of the Virtual Microscope aims to support
these four operations efficiently. The overall system employs
a multi-tier software architecture with three main tiers; client,
server frontend, and data server. The client is a graphical user
interface that allows a user to perform the four basic actions,
and generates requests to the server frontend as a result of user
actions. The frontend interacts with clients and translates client
requests into queries to the data server. The data server manages
digitized slides, processes the queries and returns image data to
the client.

A. Client Interface

The Internet-downloadable Java client program, shown in
Figure 1, provides a graphical user interface so that users can
control browsing through slides by dragging and clicking the
mouse. The current client is fully implemented in Java 2 to
achieve portability across different platforms. The client soft-
ware is designed to run on an end user’s PC or workstation. The
client can run as a stand-alone application to be able to use the

3

Fig. 1. The Virtual Microscope client.

local disk of the client machine for caching. It can also be used
as a helper application for an Internet browser. That is, a user
viewing a web page containing slide thumbnail images can start
the Virtual Microscope client by simply clicking on a hyperlink.
Upon starting up, the client program connects to the frontend,
and, in a separate thread, listens for connections from the data
server. The communication between the client program and the
frontend and data server is done via TCP/IP sockets.

After selecting a slide, a client receives a thumbnail image,
which is a low-resolution overview of the entire slide image,
from the data server. A slide can be viewed at any of sev-
eral available magnifications. In response to the user’s actions,
queries are generated by the client and sent to the server. The
Virtual Microscope Java client consist of two windows:

1) The display window shows the selected portion of a slide
at a selected magnification (the window on the right in
Figure 1).

2) The control window provides the standard operations
supported by the Virtual Microscope as described previ-
ously (the window on the left in Figure 1). The control
panel has 5 sub-components:
� a sample selection box
� a magnification selection box
� a focal plane selection box
� a thumbnail image, and
� four directional buttons.

The thumbnail image in the control window presents a small,
low magnification version of the entire slide and provides a user
with two types of browsing operations. First, the user can lo-
cate the interesting portion of a slide rapidly by dragging the
mouse on the small box (query box) inside the thumbnail win-
dow. Second, the user can move the microscope stage by small
increments in one of the four directions (i.e., up, down, left,
right) by clicking the corresponding directional button. The
query box inside the window indicates the current portion of
the image shown in the display panel.

Both the control window and the display window are resiz-
able. When the user resizes the display window, the size of the
query box inside the thumbnail window also changes accord-
ingly. The display window is continuously updated while the
user is panning through the image, either using actual image
data cached at the client from previous queries (see Section V)
or from the lower resolution thumbnail image. Once the user

stops dragging and releases the mouse button, a query is gen-
erated and is satisfied either from the client cache or from the
server, with the display area updated from the full image data
at the desired resolution.

B. Server Frontend

The frontend interacts with clients and receives client re-
quests, translates them into queries for the data server, and
schedules them for processing by the data server. The fron-
tend is a sequential program and runs on a workstation. Hav-
ing a separate frontend has two main advantages. First, since
clients can generate queries asynchronously, the existence of a
frontend relieves the data server from being interrupted by the
clients during processing of queries. Second, if a client is be-
hind a firewall, the result of a query must be funneled through
the frontend. In normal operation, the result is sent back to the
client directly from the data server.

C. Data Server

The data server is the program responsible for efficiently
serving image data. In order to produce an image, the data
has to be read from disk and an image of the specified mag-
nification must be reconstructed. Since the ultimate goal of the
Virtual Microscope is to provide users with the illusion that they
are using a physical microscope, the system must be able to sup-
port the standard functions of a physical microscope in software
with a similar level of responsiveness and ease of use. These
requirements present technical challenges in the design and im-
plementation of the data server. The image database must pro-
vide low latency retrieval of large volumes of two dimensional
image data (representing a portion of a focal plane of a given
slide) from disk as well as efficient directory management for a
large collection of slides.

As data from disks becomes available in memory, further
processing is required to produce an image at the magnification
level desired by the client. A query is processed by projecting
high resolution data onto a grid of suitable resolution (governed
by the magnification level requested by the client) and appro-
priately compositing pixels that map to a single grid point, to
avoid introducing spurious artifacts into the displayed image.
In order to achieve good performance, the server should be a
scalable program. It should be designed to run on a parallel
machine or on a cluster of workstations, with each node hav-
ing several local disks. In addition, the server should be able to
take advantage of asynchronous I/O operations and overlap the
computation for a block with I/O for other blocks.

In the next section, we describe an implementation of the data
server using an object-oriented framework, called the Active
Data Repository (ADR), to address the above challenges.

III. VIRTUAL MICROSCOPE SERVER USING THE ACTIVE

DATA REPOSITORY

We have developed the Active Data Repository (ADR) [11],
[16] to provide support for integrating application-specific pro-
cessing with the storage and retrieval of multi-dimensional
datasets on a parallel machine with a disk farm. In a multi-
dimensional dataset, each data item is associated with a point in

4

dataset
service

attribute space
service

...
data aggregation

service
indexing
service

service

client A

query interface
service

application front-end

query execution
service

query planning

query submission
service

client B
requests

outputs

ADR Front-end Process

ADR Back-end

application customization application protocol ADR protocol

ADR queries

Fig. 2. An application suite implemented using ADR. The shaded bars repre-
sent functions added to ADR by the user as part of the customization process.
Client A is a sequential program while client B is a parallel program.

a multi-dimensional space. For instance, a digitized VM slide
can be viewed as a three-dimensional dataset; each focal plane
is a two-dimensional image, and multiple focal planes consti-
tute the third dimension. A reference to the data of interest is
described by a range query, which is a multi-dimensional box
defined in the underlying attribute space of the dataset. Only
the data items whose associated points fall inside the multi-
dimensional box are retrieved– an index (e.g., an R-tree [21])
can be used to quickly locate the data items to be retrieved. The
main data processing steps consist of mapping the input data
items to output data items, and aggregating all the input data
items that map to the same output data item. An intermediate
data structure, called an accumulator, can be used to hold inter-
mediate results during processing.

A. Active Data Repository

The Active Data Repository consists of a set of modular
services, implemented as a C++ class library, and a runtime
system. Several of the services allow customization for user-
defined processing. An application developer has to provide ac-
cumulator data structures for holding intermediate results, and
functions that operate on in-core data to implement application-
specific processing of out-of-core data. A unified interface is
provided for customizing ADR services via C++ class inheri-
tance and virtual functions. The runtime infrastructure supports
common operations such as index creation and lookup, man-
agement of system memory, and scheduling of data retrieval
and processing operations across a parallel machine. Multi-
ple application-specific customizations of ADR services can
co-exist in a single ADR instance, and the runtime system can
manage multiple datasets simultaneously.

ADR provides support for implementing a front-end process,
and a customized back-end (Fig. 2). The front-end interacts
with clients, translates client requests into queries and sends
one or more queries to the parallel back-end. The back-end is
responsible for storing datasets and carrying out application-
specific processing of the data on the parallel machine. The
customizable ADR services in the back-end include: (1) an at-
tribute space service that manages the registration and use of
user-defined mapping functions; (2) a dataset service that man-
ages the datasets stored in the ADR back-end and provides util-
ity functions for loading datasets into ADR; (3) an indexing ser-

vice that manages various indices (default and user-provided)
for the datasets stored in ADR; and (4) a data aggregation ser-
vice that manages the user-provided functions to be used in ag-
gregation operations, and functions to generate the final out-
puts. This service also encapsulates the data types of both the
intermediate results (i.e., accumulator) used by those functions
and the final output datasets.

1) Datasets in ADR: A dataset in ADR is stored as a set of
data chunks, each of which consists of a subset of data items. A
chunk is the unit of data retrieval in ADR. That is, a chunk is re-
trieved as a whole during processing. Retrieving data in chunks
instead of as individual data items reduces I/O overheads (e.g.,
disk seek time), resulting in higher application level I/O band-
width. As every data item is associated with a point in a multi-
dimensional attribute space, every chunk is associated with a
minimum bounding rectangle (MBR) that encompasses the co-
ordinates of all the items in the chunk. The dataset is partitioned
into data chunks by the application developer, and data chunks
in a dataset can have different sizes. Since data is accessed
through range queries, it is desirable to have data items that are
close to each other in the multi-dimensional space placed in the
same data chunk.

Data chunks are distributed across the disks in the system to
fully utilize the aggregate storage space and disk bandwidth.
In order to take advantage of the data access patterns exhib-
ited by range queries, data chunks that are close to each other
in the underlying attribute space should be assigned to differ-
ent disks. By default, the ADR data loading service employs
a Hilbert curve-based declustering algorithm [15], [28] to dis-
tribute the chunks across the disks. Hilbert curve algorithms
are fast and exhibit good clustering and declustering properties.
Other declustering algorithms, such as those based on graph
partitioning [29], can also be used by the application developer.
Each chunk is assigned to a single disk, and is read and written
only by the local processor to which the disk is attached. After
data chunks are assigned to disks, a multi-dimensional index is
constructed using the MBRs of the chunks. The index on each
processor is used to quickly locate the chunks with MBRs that
intersect a given range query. An R-tree [21] implementation
is provided as the default indexing method in ADR, but user-
defined indexing methods can also be implemented.

2) Processing in ADR: The processing of a query in ADR
is accomplished in two steps: a query plan is computed in the
query planning step, and the actual data retrieval and processing
is carried out in the query execution step according to the query
plan.

Query planning is carried out in three phases: index lookup,
tiling and workload partitioning. In the index lookup phase,
indices associated with the datasets are used to identify all the
chunks that intersect with the query. If the output/accumulator
data structure is too large to fit entirely in memory, it is parti-
tioned into tiles in the tiling phase. The ADR data aggregation
service provides C++ base classes, which are customized by an
application developer for tiling the accumulator data structure.
Each tile contains a subset of the accumulator elements so that
the total size of a tile is less than the amount of memory avail-
able for the accumulator. In the current ADR implementation,
the workload partitioning step replicates the entire accumulator

5

tile on each back-end processor, and each processor is responsi-
ble for processing local input data chunks. In the query execu-
tion step, the processing of an output tile is carried out accord-
ing to the query plan. A tile is processed in four phases.

1) Initialization. Accumulator elements for the current tile
are allocated space in memory and initialized in each pro-
cessor.

2) Local Reduction. Each processor retrieves and pro-
cesses data chunks stored on local disks. Data items in
a data chunk are mapped to accumulator elements and
aggregated using user-defined functions. Partial results
are stored in the local copy of the accumulator tile on a
processor.

3) Global Combine. Partial results computed in each pro-
cessor in phase 2 are combined across the processors via
inter-processor communication to compute final results
for the accumulator.

4) Output Handling. The final output for the current tile
is computed from the corresponding accumulator values
computed in phase 3. The output is either sent back to a
client or stored back into ADR.

A query iterates through these phases repeatedly until all tiles
have been processed and the entire output has been computed.
The output can be returned to the client from the back-end
nodes, either through a socket interface or via Meta-Chaos [14].
The socket interface is used for sequential clients, while the
Meta-Chaos interface is mainly used for parallel clients.

Note that ADR assumes the order the input data items are
processed does not affect the correctness of the result, i.e., ag-
gregation operations are commutative and associative. There-
fore, the runtime system can order the retrieval of input data
chunks to minimize I/O overheads. Moreover, disk operations,
network operations and processing are overlapped as much
as possible during query processing. Overlap is achieved by
maintaining explicit queues for each kind of operation (data
retrieval, message sends and receives, data processing) and
switching between queued operations as required. Pending
asynchronous I/O and communication operations in the op-
eration queues are polled and, upon their completion, new
asynchronous operations are initiated when more work is re-
quired and memory buffer space is available. Data chunks are
therefore retrieved and processed in a pipelined fashion. For
portability reasons, the current ADR implementation uses the
POSIX lio listio interface for its non-blocking I/O opera-
tions, and MPI [33] as its underlying interprocessor communi-
cation layer.

The back-end can execute multiple queries concurrently.
Each query is assigned its own workspace (e.g., memory for the
accumulator data structure). The runtime system switches be-
tween queries to issue I/O and communication operations, and
handles the computation for a query when the corresponding
I/O and communication operations complete.

B. The Virtual Microscope Implementation using ADR

We now discuss how digitized microscopy images are stored
for the efficient processing of VM queries, and describe the
VM-specific customization of the ADR services (Fig. 3).

Query Interface
Service

Query Submission
Service

Front-end

Virtual Microscope Front-end

Dataset
Service

Attribute Space
Service

Data Aggregation
Service

Indexing
Service

Query Execution
Service

Query Planning
Service

Back-end

. . .

Query:
* Slide number
* Focal plane
* Magnification
* Region of interest

Image blocks

Client

Client Client Client

Fig. 3. Virtual Microscope customization of the Active Data Repository.

1) Storing Digitized Images: Managing extremely large
quantities of data is the major problem in the design and imple-
mentation of the Virtual Microscope. The large volume of im-
age data requires effective use of a large number of disk units,
which in turn requires effective placement of multidimensional
data sets (each slide consisting of multiple 2D focal planes)
onto a large disk farm to maximize disk access parallelism and
minimize disk access latency.

We focus on parallelism and locality of data retrieval from
secondary storage. Disk access parallelism reduces the volume
of data retrieved from individual disk units, thereby minimizing
overall query processing time. On the other hand, disk access
locality affects the amount of time spent to locate the data ob-
jects on a single disk (i.e., disk seek and latency).

The digitized image from a slide is essentially a three dimen-
sional data set, because each slide may consist of multiple focal
planes. In other words, each digitized slide consists of several
two-dimensional images stacked on top of one another. How-
ever, the portion of the entire image that must be retrieved to
provide a view into the slide for any given set of microscope pa-
rameters (area of interest, magnification and focal plane) is two
dimensional. Therefore, to optimize performance, each two-
dimensional image (a focal plane) should be an independent
unit for the data declustering algorithm to maximize disk par-
allelism, whereas the entire three-dimensional data set (a set of
focal planes) should be considered together by the data cluster-
ing algorithm to improve data locality on each disk (changing
focal planes does not change the area of interest within a plane).
If each focal plane of the slide is stored as a single image, it con-
stitutes a very large image. For example, the size of the tissue
slides in our archive varies from 10Kx10K pixels to 60Kx60K
pixels. In other words, these images require from 300MB to
10.8GB of storage. While current storage technology provides
adequate capacity to store these large images, in order to pro-
cess the images efficiently they must be partitioned into blocks
(or tiles). If the whole image must be processed, the size cho-
sen for the tiles should depend on the processing required for
each tile and the processing power and I/O capabilities of the
server hardware. Even if the processing that will be carried out
on each tile does not require very much computation, storing
very large tiles may reduce overall system performance if disk

6

I/O becomes a bottleneck. In the Virtual Microscope system,
the VM data server does not process the whole image for each
query. Most queries require processing only a small portion of
the image. Hence the size of the tiles must be big enough to
efficiently use the disk subsystem, but not so big that too much
unneeded data is retrieved and processed. The shape of each tile
can also affect the amount of data retrieved from disk. Tiles that
are elongated in one dimension are likely to result in retrieval
of much unneeded data. For example, if a slide is partitioned in
the x-dimension into vertical strips, a query that spans the entire
x-dimension, but only a small portion of the y-dimension, will
cause the data for the entire slide to be read from disk. Thus, in
the VM implementation, we partition a slide into tiles that are
close to square in shape.

The images should also be stored in a compressed form. In
the current implementation we have selected JPEG compres-
sion as the default method because of the availability of fast
and stable compression/decompression libraries [22]. As we
have pointed out previously [2], wavelet-based image compres-
sion appears to be the most appropriate technique for the Virtual
Microscope system. However, we have tested two public do-
main wavelet compression libraries that implement the JPEG-
2000 standard [10], [23], [26] and found that they are about 10
to 20 times slower for decompressing microscope images than
the public domain implementation of the JPEG library from the
Independent JPEG Group [22].

An image tile is used as the unit of data storage and retrieval
in the Virtual Microscope customization of ADR. That is, a tile
and its associated metadata (position of the tile in the whole
image and its size) are stored as a single chunk in an ADR data
file. The chunks are distributed across the system disks using
a Hilbert curve-based declustering algorithm (see Section III-
A.1).

2) Customization of ADR Services: ADR provides an
algorithm-independent interface that is used by the data aggre-
gation service. During the processing of a query, the server
process finds the image blocks that intersect the query region,
and reads them from disks. A retrieved image block is first
decompressed, since image blocks are stored on disks in a com-
pressed format to reduce storage requirements. Then the block
is clipped to the query region. Finally, each clipped block is
subsampled to achieve the magnification (zoom) level specified
by the query. The aggregation service is customized by imple-
menting these four operations in a virtual method that is called
by the ADR runtime system when a data chunk is available in
memory. New image processing functionality for the Virtual
Microscope system can be added by implementing new aggre-
gation functions.

In the implementation of the indexing service customiza-
tion, we have exploited the fact that the image tiles are non-
overlapping and that the slides are fully rectangular images
without holes. The tiles are numbered in row-major order;
hence, given the location of the tile the data chunk that con-
tains the tile in JPEG format can be determined very quickly.
If the system needs to store datasets with holes in the images,
or images that are not rectangular, the default R-tree indexing
method in ADR can be employed.

The output of a VM query is a 2-dimensional image produced

(a) Left/Right (odd clients) (b) Up/Down (even clients)

Fig. 4. Sweeping patterns over interesting points.

by clipping the input image tiles to the query window and sub-
sampling the clipped tiles to get the desired magnification. A 2-
dimensional array can be used as an accumulator to hold pixels
from the clipped and subsampled input image tiles. In that case,
the 2-dimensional array is replicated in each processor, and the
final image is computed in the global combine and output han-
dling steps of the query execution phase in ADR. However, the
clipping and subsampling of an image tile can be done inde-
pendently of other image tiles, and image tiles contain disjoint
subsets of the pixels in the entire slide. As a result, each proces-
sor needs to allocate only the portions of the output image that
are computed by processing the local image tiles. By sparsely
allocating the accumulator in this way, we can reduce the aggre-
gate system memory required for the accumulator, and do not
need to perform the ADR global combine step. The resulting
image blocks are stored in memory during the local aggregation
step, and directly sent to the client in the output handling step.
The client assembles and displays the image blocks from the
data server to form the query output.

C. Experimental Results

In this section we present experimental performance results
for the ADR version of the Virtual Microscope server running
on a Linux PC cluster. The PC cluster consists of one front-
end node and five processing nodes, with a total of 800GB
of disk storage. Each processing node has an 800MHz Pen-
tium III CPU, 128MB main memory, and two 5400RPM Max-
tor 80GB EIDE disks. The processing nodes are interconnected
via 100Mbps switched Ethernet. The front-end node is also
connected to the same switch.

We have used the driver program described in [5] to emu-
late the behavior of multiple simultaneous end users (clients).
The implementation of the client driver is based on a workload
model that has been statistically generated from traces collected
from real experienced users. Interesting regions are modeled as
points in the slide, and provided as an input file to the driver
program. When a user pans near an interesting region, there is
a high probability a request will be generated. The driver adds
noise to requests to avoid multiple clients asking for the same
region. In addition, the driver avoids having all the clients scan
the slide in the same manner. The slide is swept through in
either an up-down fashion or a left-right fashion, as shown in
Fig. 4, as observed from real users. For the experiments pre-
sented in this section, each client generates 100 queries. The
generated query set contains queries at different resolutions,
hence some of the queries (those at lower resolutions) require
processing more data at the VM data server, since the data is
stored at the highest resolution. For example, a query at 50x
magnification requires processing 64 times more data than a

7

Response Time for 512x512 Output

Chunk Size

128x128 256x256 512x512 1024x1024 2048x2048

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

0.0

1.0

2.0

3.0

4.0

5.0
overall

400x

200x

100x

50x

(a) 512x512 output image

Response Time for 1024x1024 Output

Chunk Size

128x128 256x256 512x512 1024x1024 2048x2048

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

0.0

2.0

4.0

6.0

8.0

10.0
overall

400x

200x

100x

50x

(b) 1024x1024 output image

Fig. 5. Performance results for the Virtual Microscope ADR server running
on 5 processors for varying image chunk sizes. Average response times of the
server for the queries to produce an output image.

query requesting an output at 400x magnification. The response
times that are shown in Figures 5 – 7 are the average response
times for a single query. In the experiments we have used a
tissue slide of size 32336x27840 pixels.

The performance results for the VM data server using differ-
ent chunk sizes are displayed in Fig. 5. In this figure, the 400x,
200x, 100x and 50x bars show the average response times of
the VM data server to the queries at different resolutions, where
400x is the highest resolution stored in the VM data server. The
overall bar displays the average response times of the VM sys-
tem to the set of queries at all resolutions. As seen in Fig. 5(a),
chunk size 256x256 produces the best response time at each
resolution, and therefore for the overall average for queries that
request a 512x512 output image. Both 128x128 and 512x512
chunk sizes result in response times that are approximately
33% higher. Increasing the chunk size decreases system perfor-
mance because with too large a chunk size all of the processing
nodes in the VM data server cannot be efficiently utilized, espe-
cially for queries requesting a relatively small output image. As
chunk size increases, the number of chunks that intersect with a
fixed size user request decreases. For example, with chunk size
2048x2048 a query requesting an output of size 512x512 at the
highest resolution intersects with either 1, or 2 or 4 chunks. It
is highly probable that most such queries will intersect only 1
chunk because of the large chunk size. In that case 4 processors
of the 5-processor VM data server will be idle. For queries that
request a 1024x1024 output image (Fig. 5(b)), the best response
time is achieved by a chunk size of either 256x256 or 512x512.

Server Response Time for 512x512 Output

Number of Processors

1 2 3 4 5

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

0.0

1.0

2.0

3.0

4.0
1 Client

2 Clients

3 Clients

4 Clients

5 Clients

(a) 512x512 output image

Server Response Time for 1024x1024 Output

Number of Processors

1 2 3 4 5

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

0.0

3.0

6.0

9.0

12.0

15.0
1 Client

2 Clients

3 Clients

4 Clients

5 Clients

(b) 1024x1024 output image

Fig. 6. Performance figures for Virtual Microscope ADR server on varying
number of processors for generating the output image. In this experiment, each
client submits 100 queries to the server.

Again, increasing the chunk size decreases performance. Us-
ing a chunk size that is too small also decreases overall system
performance because reading chunks from disk becomes a bot-
tleneck, producing too many small disk I/O requests in the data
server. Since a 256x256 chunk size gave the best response times
for queries requesting both 512x512 and 1024x1024 output im-
ages, we have selected 256x256 as the default chunk size for
the remaining experiments in this section.

Fig. 6 displays the average response times for queries that
request 512x512 and 1024x1024 output images, with queries
generated by multiple concurrently running clients. Each client
is an instance of the driver program and generates 100 queries.
The generated query set contains queries at different resolu-
tions. The response times that are shown in these figures are
the average response times for a single query. As is seen in
Figures 6(a) and (b), the performance of the ADR version of
the VM server scales very well as both the number of clients
and the output size increase. For example, for queries that re-
quest a 512x512 output image and with 5 clients, the speedup
for five processors is 3.6 compared to a one processor server,
whereas the speedup is somewhat worse (3.0) for one client.
For queries that request a 1024x1024 output image, the speedup
for one client with a five processors is 3.5, and for five clients
the speedup is 4.1.

Fig. 7 displays a breakdown of the execution times of the
ADR version of the VM data server. As described in Sec-
tion III-A.2, query execution in ADR has four phases: initial-
ization, local reduction, global combine and output handling.
In the VM customization, initialization only allocates space for
the accumulator, which holds decompressed and clipped image
chunks. Decompression, clipping and subsampling are done in

8

Time Breakdown

Number of Processors

1 2 3 4 5

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

0.0

0.3

0.6

0.9

1.2

1.5
output handling
reduction
initialization

(a) ADR processing phases

Time Breakdown in Reduction Phase

Number of Processors

1 2 3 4 5

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

0.0

0.3

0.6

0.9

1.2

1.5
overhead
computation

(b) Reduction phase

Fig. 7. Breakdown of query execution time into phases.

the local reduction phase. In the VM data server there is no need
for a global combine, since the VM client stitches together the
image chunks received from the data server. In the output han-
dling phase, clipped and subsampled images are compressed to
reduce network traffic and sent to the VM client. As is seen in
Fig. 7(a), most of the server time is spent in the local reduc-
tion phase and a small fraction is spent in the output handling
phase. Initialization time is so small that it is not even visible
in the figure. Fig. 7(b) displays a time breakdown for the re-
duction phase. In this figure, computation corresponds to the
execution time of JPEG decompression, clipping and subsam-
pling, after a data chunk is retrieved from disk and is available
in memory. The remaining time in the reduction phase is de-
noted by overhead. As was discussed in Section III-A.2, data
chunks are retrieved from disks via non-blocking I/O functions
to overlap I/O with computation, and the ADR runtime system
manages buffer space and performs scheduling of I/O, network,
and computation operations. Thus, in Fig. 7(b), overhead in-
cludes non-overlapped I/O and other overheads incurred by the
runtime system. The overhead is very small compared to the
computation time; it is approximately 3% of the computation
time, on average. Our results show that most of the I/O is over-
lapped with computation, and very little overhead is incurred
by the runtime system.

IV. THE VIRTUAL MICROSCOPE SERVER IN A

DISTRIBUTED COMPUTING ENVIRONMENT

The ADR implementation of the Virtual Microscope aims to
provide a scalable, portable, and customizable data server op-
timized for disk-based datasets on a tightly-coupled, homoge-

neous parallel machine. Advances in networking, computing,
and storage technologies are rapidly making it possible to ef-
fectively use a networked collection of storage and computing
systems. Although a networked collection of storage and com-
puting systems offers a powerful and flexible environment, it
requires distributed access and processing of data in a hetero-
geneous environment. The heterogeneity can arise for several
reasons: (1) cpu/disk/memory resources are non-uniform, per-
haps caused by multiple purchases of equipment over time; (2)
space availability can dictate sub-optimal placement of the ap-
plication dataset on disks, causing non-uniform data retrieval
costs; (3) these can be unexpected or non-uniform application
access patterns, including data subsetting, into the dataset; (4)
shared resources, such as cluster nodes, can result in varying
resource availability. To attain good performance when hetero-
geneity is present, applications should be flexible. Moreover,
they should be optimized in the use of resources and be able to
adapt to changes in their availability.

Consider a scientist who wants to compare properties of a 3D
reconstructed view of a dataset, recently generated by a digitiz-
ing microscope at a collaborating institution, with the properties
of a large collection of reference datasets. The 3D reconstruc-
tion operation involves retrieving portions of 2D slides (or focal
planes) from the regions in question, and then performing fea-
ture recognition and interpolating between the slices to extract
the important 3D features. A description of these features and
the associated properties are then compared against a database
of known features, and some appropriate similarity measure is
computed. The final result is the set of reference features found
that are close in some way to those found in the new raw dataset,
along with the corresponding view renderings to visualize.

In this scenario, the required resources (new raw dataset, ref-
erence database, and the scientist) can all be at locations dis-
tributed across a wide-area network. The storage requirement
for such a collection is enormous; the size of the entire collec-
tion generated in a year in one hospital can reach up to sev-
eral hundred terabytes. Since the reference dataset is very large
and can be useful to many users, it is likely to be stored in an
image library in one or more archival storage systems. More-
over, the archival storage systems may be located at different
departments in a hospital or at different hospitals. The new raw
dataset would be stored at the site where the slides were digi-
tized. If the hosts containing the data are high capacity archival
systems that do not allow the execution of the 3D reconstruction
code (or make it prohibitively expensive), it becomes unclear
how to structure the application for efficient execution. Ideally
we would like to execute portions of the application at strategic
points in the available collection of machines. For example, if
the portion of code that performs the range select on the new
raw dataset could be run on the host where the data lives, the
amount of data to be transmitted over the wide-area network
would be reduced. A computation farm could be an ideal lo-
cation for the feature recognition and 3D reconstruction due to
the parallelism inherent in the codes.

There is a large body of research on building computational
grids and providing support for enabling execution of applica-
tions in a wide-area environment [12], [19]. There is also hard-
ware and software research on archival storage systems, includ-

9

ing distributed parallel storage systems [27], file systems [35],
high-performance I/O systems [36] and remote I/O [34]. How-
ever, providing support for efficient subsetting and processing
of very large scientific datasets stored in archival storage sys-
tems in a distributed environment remains a challenging re-
search issue. We have developed a middleware infrastructure,
called DataCutter [4], [6], [8], that enables processing of scien-
tific datasets stored in archival storage systems in a distributed,
heterogeneous environment. In this section we describe an im-
plementation of the Virtual Microscope server using the Data-
Cutter infrastructure. We compare the DataCutter implementa-
tion of VM to the Active Data Repository implementation in a
heterogeneous environment.

A. DataCutter

DataCutter provides a set of core services, namely an index-
ing service and a filtering service, on top of which more ap-
plication specific services can be implemented. The indexing
service provides support for accessing subsets of datasets via
multi-dimensional range queries. To ensure scalability to very
large datasets, DataCutter uses a multi-level hierarchical index-
ing scheme, implemented atop the R-tree index method [3]. The
filtering service supports the filter-stream programming frame-
work for executing application-specific processing as a set of
components, called filters, in a distributed environment. Pro-
cessing, network and data copying overheads are minimized by
the ability to place filters on different hosts. The filtering ser-
vice can be used to instantiate and execute collections of fil-
ters on various hosts, including networks of workstations and
SMP clusters. The filtering service is designed to allow many
filters to carry out resource constrained, pipelined communica-
tion and pipelined processing of data. DataCutter allows users
to define multiple linked filters as well as sets of concurrent fil-
ter instances that are used collectively to perform computation;
work can be directed to any running instance. DataCutter can
be used to support data subsetting and user-defined filtering of
large multi-dimensional datasets in a distributed environment.
It can also be used to support the generation of new data prod-
ucts that can be subsequently visualized or stored.

1) Multi-level Indexing for Subsetting Very Large Datasets:
We assume that a scientific dataset consists of a set of data files
and a set of index files. Data files contain the data elements
of a dataset; data files can be distributed across multiple stor-
age systems. Each data file is viewed as consisting of a set of
data chunks, as in ADR. Efficient spatial data structures have
been developed for indexing and accessing multi-dimensional
datasets, such as R-trees and their variants [3]. However, stor-
ing very large datasets may result in a large set of data files,
each of which may itself be very large. Therefore a single in-
dex for an entire dataset could be very large. Thus, it may be
expensive, both in terms of memory space and CPU cycles, to
manage the index, and to perform a search to find intersecting
data chunks using a single index file. Assigning an index file for
each data file in a dataset could also be expensive because it is
then necessary to access all the index files for a given search. To
alleviate some of these problems, we have developed a multi-
level hierarchical indexing scheme implemented via summary
index files and detailed index files. The elements of a summary

index file associate metadata (i.e. an MBR) with one or more
data chunks and/or detailed index files. Detailed index file en-
tries themselves specify multiple data chunks. Each detailed
index file is associated with some set of data files, and stores
the index and metadata for all data chunks in those data files.
There are no restrictions on which data files are associated with
a particular detailed index file for a dataset. Data files can be or-
ganized in an application-specific way into logical groups, and
each group can be associated with a detailed index file for bet-
ter performance. R-trees are used as the indexing method for
summary and detailed index files.

2) Processing of Data: Filters and Streams: Recent re-
search on programming models for developing applications in
the Grid has converged on the use of component-based mod-
els [1], [20], [25], [31], [32], in which an application is com-
posed of multiple interacting computational objects. In the
DataCutter project, we have developed a framework, called
filter-stream programming, for developing data intensive ap-
plications in a distributed environment. The filter-stream pro-
gramming model represents processing components of a data-
intensive application as a set of filters, which are designed to be
efficient in their use of resources. Data exchange between any
two filters is described via streams, which are uni-directional
pipes that deliver data in fixed size buffers. The basic idea be-
hind the use of the filter-stream programming model is to some-
what constrain the behavior of a generic message passing ap-
plication, so that the application can expose information that is
useful for improving performance in several ways. Filters are
location-independent, because stream names are used to spec-
ify filter to filter connectivity, rather than endpoint location on
a specific host. This allows the placement of filters on differ-
ent hosts in a distributed environment. Therefore, processing,
network and data copying overheads can be minimized by the
ability to place filters on different platforms.

A filter is a user-defined object with methods to carry out
application-specific processing on data. A filter is specified by
the application code to execute, and the layout of input and out-
put streams it will use. Currently, filter code is expressed us-
ing a C++ language binding by sub-classing a filter base class.
This provides a well-defined interface between the filter code
and the filtering service. The interface for filters consists of an
initialization function, a processing function, and a finalization
function.

class ApplicationFilter : public DC Filter Base t �
public:

int init(int argc, char *argv[]) � ... �;
int process(stream t st[]) � ... �;
int finalize(void) � ... �;

�

A stream is an abstraction used for all filter communication,
and specifies how filters are logically connected. It provides the
means of uni-directional data flow between two filters, from up-
stream filter to downstream filter. Bi-directional data exchange
is achieved by creating two streams in opposite directions. All
transfers to and from streams are through a buffer abstraction. A
buffer represents a contiguous memory region containing use-
ful data. Streams transfer data in fixed size buffers. The size of
a buffer is determined in the init call; a filter discloses a min-

10

imum and an optional maximum value for each of its streams.
The actual size of the buffer allocated by the filtering service
is guaranteed to be at least the minimum value. The optional
maximum value is a preferred buffer size hint to the filtering
service. The size of the data in a buffer can be smaller than the
size of the buffer. Therefore, the buffer contains a pointer to
the start, the length of the portion containing useful data, and
the maximum size of the buffer. In the current prototype im-
plementation we use TCP for stream communication, but any
point-to-point communication library could be added.

DataCutter provides several degrees of flexibility to improve
application performance [7], [8], [9]. The choice of placement
represents an important degree of freedom in affecting applica-
tion performance by placing filters with affinity to data sources
near the sources, minimizing communication volume on slow
links, and placing filters to deal with heterogeneity. Parallelism
in executing application-defined queries via group instances
and parallel filters is another degree of freedom. Group in-
stances enable inter-query parallelism by concurrent instances
of filter groups, because multiple queries can be processed con-
currently by different group instances. Parallel filters, on the
other hand, allow a finer level of intra-query parallelism via
multiple copies of a single filter within a single filter group.

A filter group is a set of running filters that are logically re-
lated and are used together to perform a computation. Multiple
concurrent running instances of any number of filter groups is
supported by the DataCutter runtime system. Each filter within
a filter group is executed in a separate POSIX thread context,
which allows for concurrent execution. Work can be appended
to any running group instance and is handled in FIFO order by
an instance. There is no ordering between work appended to
concurrent group instances.

If an application implemented using filters involves pipelined
processing of data, the performance of the application depends
on how well the stages of pipeline are balanced in terms of rel-
ative processing time of the stages and the ratio of communi-
cation cost between two stages to the computation cost of each
stage. The performance penalty that is observed in an unbal-
anced pipeline can be addressed by using what we refer to as
transparent copies, where the filter is unaware of the concur-
rent filter replication. We define a copy set to be all transparent
copies of a given filter that are executing on a particular host.
The DataCutter filtering service maintains the illusion of a sin-
gle logical point-to-point stream for communication between
a logical producer and a logical consumer in the filter group.
When this logical producer and/or logical consumer has trans-
parent copies, the filter service must decide for each producer
which consumer to send a buffer to. Each copy set shares a
single buffer queue, so there is perfect demand-based balance
within a single host. For distribution between copy sets (dif-
ferent hosts), we have investigated several policies: (1) Round
robin distribution of buffers among copy sets, (2) Round robin
among copy sets based on the number of copies on that host,
and (3) a Demand Driven sliding window mechanism. The De-
mand Driven policy is designed to send buffers to the filter that
will result in the fastest processing. To approximate this, we
instead send it to the filter that is showing recent good perfor-
mance. When a consumer filter processes a data buffer received

zoom viewread_data decompress clip

Fig. 8. Virtual Microscope decomposition

from a producer, it sends back an acknowledgment message to
the producer that indicates the buffer is now being processed.
The producer chooses the consumer filter with the fewest unac-
knowledged buffers to send a data buffer. The effect is to direct
more buffers to faster consumers, with a cost of extra acknowl-
edgment message traffic.

B. The Virtual Microscope Server using DataCutter

The filter decomposition used for the Virtual Microscope sys-
tem is shown in Fig. 8. This filter pipeline structure is natural
for query-response applications. The figure depicts the main
dataflow path of image data through the system. The thickness
of the stream arrows indicate the relative volume of data that
flows on the different streams. In this implementation each of
the main processing steps in the server is a filter:

� read data (R): Full-resolution data chunks that intersect
the query region are read from disk, and written to the out-
put stream.

� decompress (D): Image blocks are read individually from
the input stream. Each block is decompressed using JPEG
decompression and converted into three byte RGB format.
The image block is then written to the output stream.

� clip (C): Uncompressed image blocks are read from the
input stream. Portions of the block that lie outside the
query region are removed, and the clipped image block
is written to the output stream.

� zoom (Z): Image blocks are read from the input stream,
subsampled to achieve the magnification requested in the
query, and then written to the output stream.

� view (V): Image blocks are received for a given query,
collected into a single reply, and sent to the client using
the standard Virtual Microscope client/server protocol.

C. Experimental Results

1) Serving Digitized Microscopy Images from an Archival
Storage System: We have implemented a simple data server for
digitized microscopy images, stored in the IBM HPSS archival
storage system at the University of Maryland [4], [6]. The
HPSS setup has 10 terabytes (1TB is 1000GB) of tape storage
space, 500GB of disk cache, and is accessed through a 10-node
IBM SP multicomputer. One node of the SP is used to run the
filter that carries out index lookup, and the client was run on a
SUN workstation connected to the SP node through the depart-
ment Ethernet. The Virtual Microscope client trace driver was
again used to drive the experiments. The driver was always ex-
ecuted on the same host as the view filter, which is referred to
as the client host. The server host is where the read data filter
is run, which is the machine containing the dataset.

We experimented with different placements of the read data
(R), decompress (D), clip (C), zoom (Z), and view (V) filters
by running some of the filters (and the filtering service) on
the same SP node where the indexing service is executed, as

11

Filter Placement / Query

RDCZ--V RDC--ZV RD--CZV R--DCZV

R
es

po
ns

e
T

im
e

(s
ec

)

0

120

240

360

480

600

720

840

960

1080

1200

q6 q6 q6 q6q7 q7 q7 q7q8 q8 q8 q8

Other
HPSS data
HPSS index

(a) Server has no added load

Filter Placement / Query

RDCZ--V RDC--ZV RD--CZV R--DCZV

R
es

po
ns

e
T

im
e

(s
ec

)

0

120

240

360

480

600

720

840

960

1080

1200

q6 q6 q6 q6q7 q7 q7 q7q8 q8 q8 q8

Other
HPSS data
HPSS index

(b) Server is loaded to double execution time of only the
filters on the server

Fig. 9. Execution time of queries under varying server load. R,D,C,Z,V de-
note the filters read data, decompress, clip, zoom, and view respectively. The
placement of the filters at the server and client is denoted by �server�–�client�.
HPSS index is the index lookup time, HPPS data and Other are the the sum of
the execution time for searching segments that intersect a query, and for pro-
cessing the retrieved data via filters. The subsampling factor for queries is 8.

well as on the SUN workstation where the client is run. In the
next set of experiments (Fig. 9), we consider varying the server
load. In these experiments, we used a scaled version of a VM
dataset. The scaled dataset is 250GB compressed (5.7TB un-
compressed), and corresponds to a 2D image with 1.4M�1.4M
RGB pixels. The image is regularly partitioned into data chunks
and stored in 1024 files on the HPSS. In all experiments, we use
a subsampling factor of �. The execution times are response
times seen by the visualization client averaged over 3 repeated
runs for three queries, ��, ��, and ��. �� covers � � � chunks
of the image, �� and �� cover 4 times and 16 times the area
covered by ��, respectively.

Figures 9(a) and (b) show query execution times when the
server load is the same as the client load and when the server
load is doubled. The different loads were emulated by artifi-
cially slowing down the set of filters running on the server host
such that the total running time was increased. For example,
the zoom filter runs twice as long in the �� case because the
filter is delayed. As is seen from the figures, running the fil-
ters at the client (R-DCZV) achieves better performance than
running them at the server (RDCZ-V) as server load increases
(or the client host becomes relatively faster). This result is not
unexpected, but the experiment quantifies the effect for this par-

Average Response Time for 512x512 Output

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1 2 4 8

Number of Processors

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

ADR
ADR-1bg
ADR-4bg
ADR-16bg

(a) 512x512 output image
Average Response Time for 1024x1024 Output

0.0

5.0

10.0

15.0

20.0

25.0

30.0

1 2 4 8

Number of Processors

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

ADR
ADR-1bg
ADR-4bg
ADR-16bg

(b) 1024x1024 output image

Fig. 10. Average response time of the ADR server, when the number of back-
ground jobs and the number of processors are varied.

ticular configuration. The use of a different client to server net-
work, or hosts with different relative speeds would significantly
change the observed trends and trade-off points.

2) A Comparison of ADR and DataCutter Servers: We
now present an experimental comparison of the ADR and
DataCutter implementations of the Virtual Microscope server.
The experiments were carried out using a PC cluster and an
SMP machine, both running Linux, at University of Maryland.
The PC cluster has single-processor nodes, interconnected via
Switched Fast Ethernet. Each node has a Pentium III 650MHz
CPU, 128MB of main memory, and two 75GB IDE disks. The
SMP machine has 8 Pentium III 550MHz processors, 4GB of
main memory, and 18GB of disk space. In these experiments
we used the same tissue slide that was used for the experiments
in Section III-C. The slide consists of a single focal plane of
32336x27840 pixels. We used the client emulation driver pro-
gram [5] to generate queries to the data server.

In the first set of experiments, we measure the effect of vary-
ing background load on some of the server nodes on the perfor-
mance of the ADR server. Fig. 10 shows the average response
time achieved by the ADR server. The response time was mea-
sured in the client driver program, which also performs the fi-
nal stitching of partial images received from the server backend
nodes. Each bar in the graphs represents the average response
time for 100 queries. In these experiments, the input tissue slide
was partitioned into chunks of 256x256 pixels, and the chunks
were distributed across the nodes for each machine configura-
tion so that each node has the same number of data chunks.

12

Average Response Time for 512x512 Output

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 4 8

Number of Processors

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

ADR
DC-5F
DC-2F

(a) No background load

Average Response Time for 512x512 Output

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2 4 8

Number of Processors

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

ADR-1bg
DC-5F-1bg
DC-2F-1bg

(b) 1 background job

Average Response Time for 512x512 Output

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

2 4 8

Number of Processors

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

ADR-4bg
DC-5F-4bg
DC-2F-4bg

(c) 4 background jobs

Fig. 11. Average response time of the VM servers for 512x512 output image.

Average Response Time for 1024x1024 Output

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 2 4 8

Number of Processors

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

ADR
DC-5F
DC-2F

(a) No background load

Average Response Time for 1024x1024 Output

0.0

1.0

2.0

3.0

4.0

5.0

6.0

2 4 8

Number of Processors

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

ADR-1bg
DC-5F-1bg
DC-2F-1bg

(b) 1 background job

Average Response Time for 1024x1024 Output

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

2 4 8

Number of Processors

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

ADR-4bg
DC-5F-4bg
DC-2F-4bg

(c) 4 background jobs

Fig. 12. Average response time of the VM servers for 1024x1024 output image.

For the experiments, background load was added to half of the
nodes in each configuration by executing a user level job that
consumes CPU time, at the same priority as the filter code. For
the machine configuration with one processor, no background
job was run. For 2-, 4-, and 8-processor configurations, we ran
1, 4, and 16 background jobs, denoted by 1bg, 4bg, and 16bg
in the figures, on half of the processors in each configuration.
As is seen from Fig. 10, the performance of the ADR server
degrades significantly as background load increases. As was
discussed in Section III, each backend node in the ADR server
processes only the data stored on its local disk. As more back-
ground jobs are executed on some of the nodes, those nodes
spend more time to process data chunks, even though a nearly
equal number of data chunks are distributed to each node.

Figures 11) and 12 show the performance of the ADR and
DataCutter implementations of the VM server for queries that
produce 512x512 and 1024x1024 output images, respectively,
when background load is varied. In these experiments, we used
two different filter configurations for the DataCutter-based VM
server: DC-5F denotes the data server with 5 separate filters,
namely Read, Decompress, Clip, Zoom, and View. DC-2F, on
the other hand, is the VM server implemented using 2 filters.
In this configuration there is one read filter and the decompress,
clip, zoom, and view operations are combined into a single fil-
ter. For the VM server versions implemented using DataCutter,
one transparent copy of each filter was executed on each of the
nodes in the system. We used the demand-driven sliding win-
dows mechanism for on-the-fly distribution of data buffers be-
tween copy sets on different hosts (see Section IV-A.2). As is

seen from the figures, without background load the five-filter
version of the data server, DC-5F, is slower than the ADR ver-
sion. However, the two-filter version, DC-2F, performs as well
as the ADR server. For DC-5F, data buffers between each stage
of the pipeline are distributed using the demand-driven sliding
windows mechanism. Although this configuration may result in
better pipelining of processing and better load balance among
transparent copies, the volume of data communication will be
higher than that of both the ADR version and the DC-2F config-
uration. In this case, the extra communication overhead due to
additional stages in the pipeline offsets the additional pipelin-
ing and load balance achieved. The response time of the ADR
server discernibly increases as the number of background jobs
rises. Background load also slows down the DataCutter version
of the VM server. However, its effect is much less than that on
the ADR server. For example, DC-5F is slower than ADR when
there are no background jobs, but it becomes faster with even
1 background job on 8-processor configurations. With 4 back-
ground jobs, both DataCutter implementations, DC-5F and DC-
2F, run faster than ADR implementation. As seen in the figure,
the performance improvement of DataCutter implementations
increases with the increasing number of background jobs. This
is because of the dynamic distribution of data buffers among the
transparent copies of a filter resulting from the demand driven
scheme. When the load on a node increases, the data buffers
from the read filter running on that node are sent by the runtime
system to other nodes that are less loaded.

Fig. 13 shows average response times using the ADR
and DataCutter implementations of the VM server on the 8-

13

processor SMP machine, when the number of clients is var-
ied. In this set of experiments, we ran 8 backend processes
for the ADR server. Each client generates 100 queries and
waits for the completion of a query before submitting a new
query. As was discussed in Section IV, the DataCutter filter-
stream programming model provides the abstraction of filter
group instances and transparent copies, which can be sepa-
rately or collectively employed to improve application perfor-
mance. In the experiments, we varied the number of group in-
stances and the number of copies per filter in each group in-
stance to create different server configurations. In the figures,
� � �� � �� � � � �� � � � �	
 denotes that there are �

instances of the filter group that consist of filters ��� ��, and
�	 and that � transparent copies of ��, � transparent copies of
��, and � transparent copies of �	 are executed for each group
instance. Queries submitted by the clients are assigned to the
group instances in round-robin fashion. Multiple queries can be
executed concurrently if there is more than one group instance,
but each group instance evaluates one query at a time. As is
seen from the figure, for a small number of clients (e.g., 1 or
2) the ADR server performs better than the DataCutter server
versions. When there are a few clients, it is more beneficial to
execute each query in parallel using the maximum number of
processors available. Similarly, the DataCutter server configu-
rations with fewer instances, but more transparent copies per in-
stance, achieve better performance for small numbers of clients.
When the number of clients increases, the DataCutter imple-
mentations of the VM server with multiple group instances per-
form better. For a large number of clients, inter-query paral-
lelism can be exploited to improve the performance of the data
server. As is seen from Fig. 13(a), especially when the queries
are small (i.e., the query window is small), there is more inter-
query parallelism available for improving application perfor-
mance, as the parallel execution of a single query may incur
load imbalance. When bigger queries are executed, it is likely
that good load balance will be achieved for each query. Hence,
the ADR server scales better for bigger queries, as is seen from
Fig. 13(b). Nevertheless, our results show that DataCutter pro-
vides sufficient flexibility so that the data server configuration
can be modified to accommodate various data access patterns.

V. DATA CACHING IN THE CLIENT

In a client-server environment, the data server often needs
to interact with many clients simultaneously. This can cause
high demand on the server and network resources. For interac-
tive applications the system as a whole should achieve accept-
ably small response times. Response time is measured as the
amount of time between the initiation of a request and when
the last piece of data is delivered. If a response takes too long,
the application may become unusable. The base Virtual Micro-
scope implementation attempts to achieve low response time
by using a scalable parallel server with a disk farm so that data
access and processing required by a client request can be com-
pleted quickly. However, for a given server configuration, as
more clients are added, the server has to multiplex between
more client requests. As a result, the response time observed
by an individual client rises. Moreover, if the connection be-
tween a client and the server spans a wide-area network, the

Average Response Time for 512x512 Output

0.00

0.50

1.00

1.50

2.00

2.50

1 2 4 8

Number of Clients

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

ADR
8x(R-DCZV)
4x(2xR-2xDCZV)
2x(4xR-4xDCZV)
4x(2xR-4xD-2xCZV)

(a) 512x512 output image
Average Response Time for 1024x1024 Output

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 4 8

Number of Clients

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

ADR
8x(R-DCZV)
4x(2xR-2xDCZV)
2x(4xR-4xDCZV)
4x(2xR-4xD-2xCZV)

(b) 1024x1024 output image

Fig. 13. Average response time of different versions of the VM servers on the
8-processor SMP.

demands on the network can be extremely high, and the latency
incurred between clients and a server may be very high. In or-
der to improve the overall system performance, the following
issues should be addressed:
Reduction of wide-area network usage. Clients connected to
a server over a wide-area network make use of resources that
are shared by other applications, namely the long-haul links
and intermediate nodes in the network. Transferring high vol-
umes of data through such shared resources is expensive, thus
the latency between a client and the server may be very high.
Although the use of a parallel data server makes it possible to
efficiently store and process very large images at the server, the
output (a 2-dimensional image) of a typical query may still be
large. For instance, the size of the output is about 1MB for a
query window at 640x480 pixels resolution. Therefore it may
not be possible to achieve interactive viewing for clients con-
necting to the server over a slow network connection. Using
image compression techniques, the size of the output image can
be reduced by perhaps a factor of 10, but even then a single
view may require 20 to 30 seconds to transmit over a standard
modem connection. Therefore compression cannot be the only
mechanism used to reduce wide-area data volume for Virtual
Microscope style applications.
Reduction in the server workload. Reduced workload at the
server is an important way to improve overall system scalabil-
ity. With less applied workload, the system should see reduced
utilization, hence better performance as more clients are added.

One possible approach that can be taken to address these is-

14

(a) (b) (c)

Fig. 14. Virtual Microscope client query execution steps using the multi-resolution image cache.

sues is to cache data near a client. In earlier work [5], we
examined the performance impact of a diskless proxy, where
data blocks were cached only in processor memory. A proxy
behaves as an intermediate server between a set of co-located
clients and a remote server. It appears to the remote server as a
client, and to a client as a server.

Given that there is sufficient common interest among mul-
tiple clients, several benefits can be realized with a proxy in
place. First, the response time seen by each client can be re-
duced. With efficient data caching, most client requests can
be served by the proxy across the local-area network, instead
of the data server across the wide-area network. Second, the
amount of redundant data sent across the wide-area network can
be reduced. Instead of multiple clients requesting the same or
overlapping regions of a dataset from the server, the proxy can
request the data only once. Third, server scalability is improved
by reducing its utilization.

Our experimental results showed that using a proxy does im-
prove overall system performance. However, caching at the
proxy provides a benefit only when two requirements are met.
First, the clients need to be local to the proxy. This reduces
the long latency seen in contacting the remote server to resolve
proxy cache misses. Second, some commonality of interest
among the set of clients must exist. This reduces the working
set size in the proxy, which helps avoid cache overflow. With
both conditions satisfied, the maximum benefit occurs when all
but the first request for a block of data is in the proxy cache.
Moreover, since all client requests go through the proxy, re-
sponse time as seen by the client for requests that miss the cache
is higher than when there is no proxy.

Typical users of the Virtual Microscope (e.g., pathology con-
sultants, medical students) would also like to access the image
data via the Internet from their home, usually over a slow con-
nection. In that case, clients can be at geographically distant
locations. Moreover, compared to a collaborative environment,
it is unlikely that there will be many overlapping regions of in-
terest among the clients. As a result, there will be little benefit
from the use of a proxy. Nevertheless, a client can still bene-
fit from data caching, if data can be cached at the client. For
this purpose, we have designed the VM client to maintain and
use a two-level cache; the client memory is a first-level cache,
and the local disk on the client machine is a second-level cache.
The caching mechanism implemented in the client works as fol-
lows. Images are viewed as partitioned into tiles at the client,

where a tile is a fixed sized rectangular portion of the image 1.
The tiles are used as the units of caching for portions of the
image. When the user selects a region to view, the client de-
termines the set of tiles that intersect with the selected region,
and tiles that are in the cache are displayed directly. A least
recently used (LRU) policy has been adopted for both levels of
the cache. When a tile is needed to display a selected region
of the image, the memory cache is first searched. If the tile is
not found in the memory cache, the disk cache is searched and
if the tile is found it is both inserted into the memory cache
and used for display. Only tiles that are not in either cache are
requested from the server, and before display are inserted into
both the memory and disk cache.

A. Multi-Resolution Image Caching

The VM client caches an image at the resolution the image
was retrieved from the server. Hence, when a user selects a re-
gion of interest, the client cache may contain multiple tiles at
different magnification levels that intersect the region of inter-
est. The VM client will first try to construct the requested image
using the tiles in the cache. If the cache already contains all the
corresponding tiles at the requested resolution, the output image
is constructed from those tiles and displayed. However, part of
the image may not be available at the requested resolution. In
that case, the VM client first tries to construct the missing parts
of the output image using tiles cached at higher resolutions (us-
ing the same subsampling algorithm as in the data server to con-
struct the desired lower resolution image). If the entire image
cannot be constructed with either tiles at the requested resolu-
tion or tiles at higher resolutions, the missing tiles are temporar-
ily displayed by blowing up (replicating pixels from) the lower
resolution tiles or, as a last resort, the thumbnail image. The
parts of the image that have not been displayed at the desired
resolution are requested from the data server. Fig. 14 shows
these execution steps. In Fig. 14(a), the user-selected region is
displayed from tiles that are available in the client cache. The
lower left part of the requested image is displayed from tiles
cached at the requested resolution or from tiles cached at higher
resolution. The upper left part of the image is displayed from
cached lower resolution tiles, and the right part of the image is

�The best choice of image tile size in the client takes into account the tile size
used in the data server. A client can request that information when it initially
connects to the server.

15

100x

200x

400x

100x

200x

400x

Fig. 15. An illustration of image tiling at multiple resolutions

displayed by blowing up the thumbnail image. The VM client
requests the parts of the image that have not been displayed at
the requested resolution from the server. In Fig. 14(b) the up-
per left part of the image is being replaced with the results from
queries sent to the VM server. The client continues to fill in the
image with tiles requested from the server for the right side of
the image, as displayed in Fig. 14(c).

In the current implementation, the VM client sends queries
to the VM server only at the user-specified resolution or at the
next higher resolution. For example, suppose a user selected a
region at 100x in a slide that was scanned and stored at 400x.
Fig. 15 displays an illustration of the slide tiling at three resolu-
tions (100x, 200x, and 400x). Although the user selection may
intersect more than one tile at the requested resolution, for the
sake of simplicity in the presentation, suppose the user selected
a region that intersects only one tile, and let the shaded tile at
100x be that tile. If the tile is already in the cache, the requested
region can be directly drawn using that tile. However, if it is not
in the cache, the VM client searches for tiles at the next higher
resolution that can be used to construct the tile at the requested
resolution. The four tiles at 200x that can be used to construct
the requested tile at 100x are also shaded in Fig. 15. If the client
cache contains all four of those tiles, the VM client can imme-
diately draw the user-requested image via subsampling of the
200x tiles. If any of those tiles is not in cache, the client recur-
sively searches at the next higher resolution (400x) to construct
the missing 200x tile. If the tile at 100x still cannot be fully
constructed, the client must request tiles from the data server.
The tile at 100x will be requested from the server if two or more
tiles are missing at 200x. However, if only one tile is missing at
200x, the client will request the tile at 200x to attempt to reduce
the workload at the data server, because a 200x tile will require
fewer data chunks to be retrieved and processed at the server
than will a 100x tile.

For efficient use of memory and disk space resources on the
client machine, image tiles are stored in JPEG format. This in-
troduces compression and decompression overhead when a tile
is used. However, with JPEG compression we have been able
to compress the slide images by up to a factor of 15 from the
original size without a noticeable loss in image quality. This
helps to reduce the I/O time for each tile and more than com-
pensates for compression/decompression overhead. Compres-
sion also allows for caching many more tiles for a given cache
size, further improving overall system performance.

Average Response Time

Output Size

512x512 1024x1024

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

0.0

1.0

2.0

3.0

4.0

5.0

6.0
128x128-Tile

256x256-Tile

512x512-Tile

1024x1024-Tile

Fig. 16. Overall average response times of caching client for varying cache
tile sizes.

B. Experimental Results

For the experimental evaluation of caching client perfor-
mance, we employ an ADR version of the VM data server, with
the client generated workload the same as that described in Sec-
tion III-C. The data server runs on the five processor PC clus-
ter described in Section III-C. Average response times for the
VM clients are displayed in Figures 16–18. For the caching
client, the response time also includes caching overheads, such
as cache lookups and inserting tiles into the cache. To insert
a tile into the cache, server tiles received from the VM data
server are decompressed and stitched together as required (no
stitching is necessary if the client tiles are chosen to be the same
as the server tiles), then the constructed tile is compressed and
inserted into the client cache.

Fig. 16 displays the average response times of the caching
client using different cache tile sizes, for queries that request
512x512 or 1024x1024 output images. Each bar in the figure
shows the average response times for 500 queries using 4 differ-
ent cache tile sizes. As is seen in the figure, for queries that re-
quest a 512x512 image, tile sizes of either 256x256 or 512x512
result in the best performance, with an average response time
of about 0.4 seconds. For queries with an output image size
of 1024x1024, a tile size of 512x512 produces the best perfor-
mance, with about a 0.7 second average response time. Using
a cache tile size that is too small causes many small requests to
be sent to the VM server, which decreases server performance.
Using a cache tile size that is too large causes the data server
to process too much extra image data, and also increases client
caching overhead because of JPEG compression and decom-
pression of the tiles.

Fig. 17 displays the average response times of the caching
client with respect to cache-hit ratio (i.e. the number of tiles
obtained from cache divided by the total number of tiles re-
quested), for output image sizes of 512x512 and 1024x1024.
As we described in the previous section, the caching client first
determines which tiles intersect with the user query and those
tiles are searched for in the cache. We plotted the queries ac-
cording to the percentage of tiles that intersect with the query
that are available in cache versus average response time, with
the results shown in Fig. 17. Each line plotted in the figure
displays the average response times for queries at varying reso-
lutions. The thick solid black line shows the overall average
response times for each hit-ratio. As expected, the average

16

Average Response Time for 512x512 Output

% Hit Ratio

0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

0.0

3.0

6.0

9.0

12.0
overall
400x
200x
100x
50x

(a)

Average Response Time for 1024x1024 Output

% Hit Ratio

0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

0.0

5.0

10.0

15.0

20.0
overall
400x
200x
100x
50x

(b)

Fig. 17. Average response times of caching client for 1000 queries, generating
(a) 512x512 output image, and (b) 1024x1024 output image. In this experiment,
the cache tiles are 512x512.

response time of the VM client decreases drastically with in-
creasing cache hit ratio. For example, for queries producing a
1024x1024 image at 50x, if none of the required tiles are in the
cache the average response time can be as high as 19 seconds.
However, if all tiles are in the cache, the average response time
is only 0.3 seconds.

A comparison of the response times of the non-caching and
caching clients is displayed in Fig. 18. For the caching client,
two response times are displayed for each experiment. The
first one shows the response time of the caching client when
the client starts with an empty cache, labeled cold cache. The
second one shows the response time of the caching client when
the client has been run a second time, that is when it starts with
a non-empty cache, labeled warm cache. For a single client,
using the caching client starting with a cold cache reduces re-
sponse time about 20% on average. The use of the caching
client also improves overall VM system performance by re-
ducing the load at the VM data server. For example, with five
caching clients the average response time seen by each client is
about 35% less than the average response time seen by five non-
caching clients. Starting from a non-empty cache speeds up the
response time of the caching client by more than 50%, lead-
ing to approximately 75% faster response time than the non-
caching client, on average.

Response Time for 1024x1024 Output

Number of Clients

1 2 3 4 5

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

0.0

2.0

4.0

6.0
no cache

cold cache

warm cache

Fig. 18. The average response times of the non-caching and caching clients.
The VM data server is run on 5 processors.

VI. CONCLUSIONS

In this paper we have discussed the design and implementa-
tion of a client/server database system that provides a realistic
emulation of a high power light microscope. The system also
provides capabilities that can never be achieved with a physical
microscope, such as simultaneous viewing and manipulation of
the same slide by multiple end users. To solve the main problem
in providing a system that performs adequately, namely stor-
ing and processing very large quantities of slide image data,
we have presented the design and implementation of two ver-
sions of the Virtual Microscope server software that target (1)
tightly coupled parallel computers with a disk farm and (2) dis-
tributed computing environments providing access to archival
storage systems. Both servers employ more general software
frameworks, the Active Data Repository and DataCutter, appro-
priately customized to provide the required Virtual Microscope
functionality. The use of such frameworks allows the server
systems to take advantage of all the performance optimizations
that have been engineered into the frameworks for executing a
large class of data intensive applications on the targeted compu-
tational platforms. In addition, we have described the optimiza-
tions required in the client software to provide rapid response
times for users, in particular caching image data in both mem-
ory and local disk on the client machine. The overall perfor-
mance results show that the resulting Virtual Microscope sys-
tem can provide scalable server performance and good client
response times. Such results show that it is becoming feasible
to deploy such a system within a clinical setting, for example
allowing a pathologist to access a slide sample at any time from
an inexpensive PC, without requiring physical access to a slide
or a microscope.

REFERENCES

[1] M. Aeschlimann, P. Dinda, J. Lopez, B. Lowekamp, L. Kallivokas, and
D. O’Hallaron. Preliminary report on the design of a framework for
distributed visualization. In Proceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques and Applications
(PDPTA’99), pages 1833–1839, Las Vegas, NV, June 1999.

[2] A. Afework, M. D. Beynon, F. Bustamante, A. Demarzo, R. Ferreira,
R. Miller, M. Silberman, J. Saltz, A. Sussman, and H. Tsang. Digital dy-
namic telepathology - the Virtual Microscope. In Proceedings of the 1998
AMIA Annual Fall Symposium. American Medical Informatics Associa-
tion, Nov. 1998.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The ��-tree:
An efficient and robust access method for points and rectangles. In Pro-
ceedings of the 1990 ACM-SIGMOD Conference, pages 322–331, May
1990.

17

[4] M. Beynon, T. Kurc, A. Sussman, and J. Saltz. Design of a framework for
data-intensive wide-area applications. In Proceedings of the 9th Hetero-
geneous Computing Workshop (HCW2000), pages 116–130. IEEE Com-
puter Society Press, May 2000.

[5] M. Beynon, A. Sussman, and J. Saltz. Performance impact of proxies
in data intensive client-server applications. In Proceedings of the 1999
International Conference on Supercomputing. ACM Press, June 1999.

[6] M. D. Beynon, R. Ferreira, T. Kurc, A. Sussman, and J. Saltz. Data-
Cutter: Middleware for filtering very large scientific datasets on archival
storage systems. In Proceedings of the Eighth Goddard Conference on
Mass Storage Systems and Technologies/17th IEEE Symposium on Mass
Storage Systems, pages 119–133. National Aeronautics and Space Ad-
ministration, Mar. 2000. NASA/CP 2000-209888.

[7] M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Sussman, and
J. Saltz. Distributed processing of very large datasets with DataCutter.
Parallel Computing, 27(11):1457–1478, Oct. 2001.

[8] M. D. Beynon, T. Kurc, A. Sussman, and J. Saltz. Optimizing execution
of component-based applications using group instances. In IEEE Inter-
national Symposium on Cluster Computing and the Grid (CCGrid2001),
Brisbane, Australia, May 2001.

[9] M. D. Beynon, A. Sussman, U. Catalyurek, T. Kurc, and J. Saltz. Perfor-
mance optimization for data intensive grid applications. In Proceedings of
the Third Annual International Workshop on Active Middleware Services
(AMS2001), Aug. 2001.

[10] Canon Research Centre France, the Swiss Federal Institute of Technology
and ERICSSON Research. JJ2000. http://jj2000.epfl.ch.

[11] C. Chang, R. Ferreira, A. Sussman, and J. Saltz. Infrastructure for build-
ing parallel database systems for multi-dimensional data. In Proceedings
of the Second Merged IPPS/SPDP Symposiums. IEEE Computer Society
Press, Apr. 1999.

[12] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The
Data Grid: Towards an architecture for the distributed management and
analysis of large scientific datasets. http://www.globus.org/, 1999.

[13] D. Comaniciu, W. Chen, P. Meer, and D. J. Foran. Multiuser workspaces
for remote microscopy in telepathology. In IEEE Proceedings on
Computer-Based Medical Systems, volume 2, pages 150–155, 1999.

[14] G. Edjlali, A. Sussman, and J. Saltz. Interoperability of data parallel
runtime libraries. In Proceedings of the Eleventh International Parallel
Processing Symposium. IEEE Computer Society Press, Apr. 1997.

[15] C. Faloutsos and P. Bhagwat. Declustering using fractals. In the 2nd In-
ternational Conference on Parallel and Distributed Information Systems,
pages 18–25, San Diego, CA, Jan. 1993.

[16] R. Ferreira, T. Kurc, M. Beynon, C. Chang, A. Sussman, and J. Saltz.
Object-relational queries into multi-dimensional databases with the Ac-
tive Data Repository. Parallel Processing Letters, 9(2):173–195, 1999.

[17] R. Ferreira, B. Moon, J. Humphries, A. Sussman, J. Saltz, R. Miller, and
A. Demarzo. The Virtual Microscope. In Proceedings of the 1997 AMIA
Annual Fall Symposium, pages 449–453. American Medical Informatics
Association, Hanley and Belfus, Inc., Oct. 1997. Also available as Univer-
sity of Maryland Technical Report CS-TR-3777 and UMIACS-TR-97-35.

[18] D. J. Foran, D. Comaniciu, P. Meer, and L. A. Goodell. Computer-
assisted discrimination among malignant lymphomas and leukemia us-
ing immunophenotyping, intelligent image repositories, and telemi-
croscopy. IEEE Transaction on Information Technology in Biomedicine,
04(04):265–273, December 2000.

[19] I. Foster and C. Kesselman. The GRID: Blueprint for a New Computing
Infrastructure. Morgan-Kaufmann, 1999.

[20] Global Grid Forum. http://www.gridforum.org.
[21] A. Guttman. R-Trees: A dynamic index structure for spatial searching. In

Proceedings of the 1984 ACM-SIGMOD Conference, pages 47–57, June
1984.

[22] The Independent JPEG Group’s JPEG software, March 1998.
http://www.ijg.org.

[23] Image Power, Inc. and the University of British Columbia, Canada.
JasPer v1.6, 2000. http://www.ece.ubc.ca/ mdadams/jasper/.

[24] Interscope technologies. http://www.interscopetech.com, 2001.
[25] C. Isert and K. Schwan. ACDS: Adapting computational data streams for

high performance. In 14th International Parallel & Distributed Process-
ing Symposium (IPDPS 2000), pages 641–646, Cancun, Mexico, May
2000. IEEE Computer Society Press.

[26] ISO/IEC JTC 1/SC 29/WG 1. ISO/IEC FCD 15444-1: Information tech-
nology – JPEG 2000 image coding system: Core coding system [WG 1 N
1646], March 2000. http://www.jpeg.org/FCD15444-1.htm.

[27] W. Johnston and B. Tierney. A distributed parallel storage architecture
and its potential application within EOSDIS. In the Fourth NASA God-
dard Conference on Mass Storage Systems and Technologies, 1995.

[28] B. Moon, H. Jagadish, C. Faloutsos, and J. Saltz. Analysis of the clus-

tering properties of the Hilbert space-filling curve. IEEE Transactions on
Knowledge and Data Engineering, 13(1):124–141, Feb. 2001.

[29] B. Moon and J. H. Saltz. Scalability analysis of declustering methods for
multidimensional range queries. IEEE Transactions on Knowledge and
Data Engineering, 10(2):310–327, March/April 1998.

[30] S. Olsson and C. Busch. A national telepathology trial in Sweden: Feasi-
bility and assessment. Arch. Anat. Cytol. Pathol., 43:234–241, 1995.

[31] B. Plale and K. Schwan. dQUOB: Managing large data flows using dy-
namic embedded queries. In IEEE International High Performance Dis-
tributed Computing (HPDC), August 2000.

[32] M. Rodríguez-Mart́inez and N. Roussopoulos. MOCHA: A self-
extensible database middleware system for distributed data sources. In
Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data (SIGMOD00), pages 213–224. ACM Press, May
2000. ACM SIGMOD Record, Vol. 29, No. 2.

[33] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra.
MPI: The Complete Reference. Scientific and Engineering Computation
Series. MIT Press, 1996.

[34] SRB: The Storage Resource Broker.
http://www.npaci.edu/DICE/SRB/index.html.

[35] M. Teller and P. Rutherford. Petabyte file systems based on tertiary stor-
age. In the Sixth NASA Goddard Space Flight Center Conference on Mass
Storage Systems and Technologies, Fifteenth IEEE Symposium on Mass
Storage Systems, 1998.

[36] R. Thakur, A. Choudhary, R. Bordawekar, S. More, and S. Kuditipudi.
Passion: Optimized I/O for parallel applications. IEEE Computer,
29(6):70–78, June 1996.

[37] J. Z. Wang, J. Nguyen, K.-K. Lo, C. Law, and D. Regula. Multiresolu-
tion browsing of pathology images using wavelets. In Proceedings of the
1999 AMIA Annual Fall Symposium, pages 340–344. American Medical
Informatics Association, Hanley and Belfus, Inc., Nov. 1999.

[38] M. Weinstein and J. I. Epstein. Telepathology diagnosis of prostate needle
biopsies. Human Pathology, 28(1):22–29, Jan. 1997.

[39] R. S. Weinstein, A. Bhattacharyya, A. R. Graham, and J. R. Davis.
Telepathology: A ten-year progress report. Human Pathology, 28(1):1–7,
Jan. 1997.

[40] A. W. Wetzel, P. L. Andrews, M. J. Becich, and J. Gilbertson. Computa-
tional aspects of pathology image classification and retrieval. Journal of
Supercomputing, 11:279–293, 1997.

